Sample records for concept design implementation

  1. Community College Faculty Perceptions of the Implementation of the Universal Design for Instruction Concept

    ERIC Educational Resources Information Center

    Rao-Delgado, Antoinette Toni C.

    2010-01-01

    Purpose: The purpose of this study was to explore the perceptions of community college faculty regarding their experiences in learning and implementing a new pedagogical concept, Universal Design for Instruction (UDI). Specifically, I explored (a) their perceptions regarding the utilization of the UDI concept on their teaching strategies, (b)…

  2. Possibilities-within-Constraints: Implementing the Funds of Knowledge Concept in the People's Republic of China

    ERIC Educational Resources Information Center

    Poole, Adam

    2016-01-01

    This article is designed as the starting point for future research into the implementation of the funds of knowledge concept in the People's Republic of China. Utilizing an exploratory research design, I sketch how the funds of knowledge concept could be used by teachers to empower ethnic minority and city-born migrant children disadvantaged by…

  3. Pharmacology Goes Concept-Based: Course Design, Implementation, and Evaluation.

    PubMed

    Lanz, Amelia; Davis, Rebecca G

    Although concept-based curricula are frequently discussed in the nursing education literature, little information exists to guide the development of a concept-based pharmacology course. Traditionally, nursing pharmacology courses are taught with an emphasis on drug class where a prototype drug serves as an exemplar. When transitioning pharmacology to a concept-based course, special considerations are in order. How can educators successfully integrate essential pharmacological content into a curriculum structured around nursing concepts? This article presents one approach to the design and implementation of a concept-based undergraduate pharmacology course. Planning methods, supportive teaching strategies, and course evaluation procedures are discussed.

  4. Design study of Software-Implemented Fault-Tolerance (SIFT) computer

    NASA Technical Reports Server (NTRS)

    Wensley, J. H.; Goldberg, J.; Green, M. W.; Kutz, W. H.; Levitt, K. N.; Mills, M. E.; Shostak, R. E.; Whiting-Okeefe, P. M.; Zeidler, H. M.

    1982-01-01

    Software-implemented fault tolerant (SIFT) computer design for commercial aviation is reported. A SIFT design concept is addressed. Alternate strategies for physical implementation are considered. Hardware and software design correctness is addressed. System modeling and effectiveness evaluation are considered from a fault-tolerant point of view.

  5. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 4: Solar electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the solar electric propulsion (SEP) concept design developed as part of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the SEP concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  6. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 2: Cryo/aerobrake vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The cryogenic/aerobrake (CAB) and the cryogenic all-propulsive (CAP) concept designs developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study are presented. The evolution of the CAB and CAP concepts is described along with the requirements, guidelines and assumptions for the designs. Operating modes and options are defined and systems descriptions of the vehicles are presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities, and costs.

  7. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 5: Nuclear electric propulsion vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The nuclear electric propulsion (NEP) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study is presented. The evolution of the NEP concept is described along with the requirements, guidelines, and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  8. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document (draft final). Volume 3: Nuclear thermal rocket vehicle

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents the nuclear thermal rocket (NTR) concept design developed in support of the Space Transfer Concepts and Analysis for Exploration Missions (STCAEM) study. The evolution of the NTR concept is described along with the requirements, guidelines and assumptions for the design. Operating modes and options are defined and a systems description of the vehicle is presented. Artificial gravity configuration options and space and ground support systems are discussed. Finally, an implementation plan is presented which addresses technology needs, schedules, facilities and costs.

  9. Methodology issues in implementation science.

    PubMed

    Newhouse, Robin; Bobay, Kathleen; Dykes, Patricia C; Stevens, Kathleen R; Titler, Marita

    2013-04-01

    Putting evidence into practice at the point of care delivery requires an understanding of implementation strategies that work, in what context and how. To identify methodological issues in implementation science using 4 studies as cases and make recommendations for further methods development. Four cases are presented and methodological issues identified. For each issue raised, evidence on the state of the science is described. Issues in implementation science identified include diverse conceptual frameworks, potential weaknesses in pragmatic study designs, and the paucity of standard concepts and measurement. Recommendations to advance methods in implementation include developing a core set of implementation concepts and metrics, generating standards for implementation methods including pragmatic trials, mixed methods designs, complex interventions and measurement, and endorsing reporting standards for implementation studies.

  10. Analysis, Design and Implementation of a Networking Proof-of-Concept Prototype to Support Maritime Visit, Board, Search and Seizure Teams

    DTIC Science & Technology

    2014-03-01

    M. Callaghan ( AKR -1001). Retrieved from http://www.navsource.org/archives/09/54/541001.htm Nguyen, H., & Baker, M. (2012). Characteristics of a ...AND IMPLEMENTATION OF A NETWORKING PROOF-OF-CONCEPT PROTOTYPE TO SUPPORT MARITIME VISIT, BOARD, SEARCH AND SEIZURE TEAMS by Van E. Stewart...2. REPORT DATE March 2014 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE ANALYSIS, DESIGN AND IMPLEMENTATION OF A

  11. Operational concepts and implementation strategies for the design configuration management process.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trauth, Sharon Lee

    2007-05-01

    This report describes operational concepts and implementation strategies for the Design Configuration Management Process (DCMP). It presents a process-based systems engineering model for the successful configuration management of the products generated during the operation of the design organization as a business entity. The DCMP model focuses on Pro/E and associated activities and information. It can serve as the framework for interconnecting all essential aspects of the product design business. A design operation scenario offers a sense of how to do business at a time when DCMP is second nature within the design organization.

  12. Staff Perspectives on the Use of a Computer-Based Concept for Lifestyle Intervention Implemented in Primary Health Care

    ERIC Educational Resources Information Center

    Carlfjord, Siw; Johansson, Kjell; Bendtsen, Preben; Nilsen, Per; Andersson, Agneta

    2010-01-01

    Objective: The aim of this study was to evaluate staff experiences of the use of a computer-based concept for lifestyle testing and tailored advice implemented in routine primary health care (PHC). Design: The design of the study was a cross-sectional, retrospective survey. Setting: The study population consisted of staff at nine PHC units in the…

  13. Potential of Diesel Engine, Diesel Engine Design Concepts, Control Strategy and Implementation

    DOT National Transportation Integrated Search

    1980-03-01

    Diesel engine design concepts and control system strategies are surveyed with application to passenger cars and light trucks. The objective of the study is to indicate the fuel economy potential of the technologies investigated. The engine design par...

  14. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael P.; Stone, Nobie H.

    2014-01-01

    The PROPEL flight mission concept will demonstrate the safe use of an electrodynamic tether for generating thrust. PROPEL is being designed to be a versatile electrodynamic-tether system for multiple end users and to be flexible with respect to platform. As such, several implementation options are being explored, including a comprehensive mission design for PROPEL with a mission duration of six months; a space demonstration mission concept design with configuration of a pair of tethered satellites, one of which is the Japanese H-II Transfer Vehicle; and an ESPA-based system. We report here on these possible implementation options for PROPEL. electrodynamic tether; PROPEL demonstration mission; propellantless propulsion

  15. Learning Design Implementation for Distance e-Learning: Blending Rapid e-Learning Techniques with Activity-Based Pedagogies to Design and Implement a Socio-Constructivist Environment

    ERIC Educational Resources Information Center

    Santally, Mohammad Issack; Rajabalee, Yousra; Cooshna-Naik, Dorothy

    2012-01-01

    This paper discusses how modern technologies are changing the teacher-student-content relationships from the conception to the delivery of so-called "distance" education courses. The concept of Distance Education has greatly evolved in the digital era of 21st Century. With the widespread use and access to the Internet, exponential growth…

  16. Airspace Concept Evaluation System (ACES), Concept Simulations using Communication, Navigation and Surveillance (CNS) System Models

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don

    2006-01-01

    Project Objectives include: a) CNS Model Development; b Design/Integration of baseline set of CNS Models into ACES; c) Implement Enhanced Simulation Capabilities in ACES; d) Design and Integration of Enhanced (2nd set) CNS Models; and e) Continue with CNS Model Integration/Concept evaluations.

  17. [Research advances in secondary development of Chinese patent medicines based on quality by design concept].

    PubMed

    Gong, Xing-Chu; Chen, Teng; Qu, Hai-Bin

    2017-03-01

    Quality by design (QbD) concept is an advanced pharmaceutical quality control concept. The application of QbD concept in the research and development of pharmaceutical processes of traditional Chinese medicines (TCM) mainly contains five parts, including the definition of critical processes and their evaluation criteria, the determination of critical process parameters and critical material attributes, the establishment of quantitative models, the development of design space, as well as the application and continuous improvement of control strategy. In this work, recent research advances in QbD concept implementation methods in the secondary development of Chinese patent medicines were reviewed, and five promising fields of the implementation of QbD concept were pointed out, including the research and development of TCM new drugs and Chinese medicine granules for formulation, modeling of pharmaceutical processes, development of control strategy based on industrial big data, strengthening the research of process amplification rules, and the development of new pharmaceutical equipment.. Copyright© by the Chinese Pharmaceutical Association.

  18. 49 CFR 236.913 - Filing and approval of PSPs.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... architectural concepts; the PSP describes a product that uses design or safety assurance concepts considered... the end of the system design review phase of product development and 180 days prior to planned implementation, inviting FRA to participate in the design review process and receive periodic briefings and...

  19. 49 CFR 236.913 - Filing and approval of PSPs.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... architectural concepts; the PSP describes a product that uses design or safety assurance concepts considered... the end of the system design review phase of product development and 180 days prior to planned implementation, inviting FRA to participate in the design review process and receive periodic briefings and...

  20. Developing and Implementing an Assessment Technique to Measure Linked Concepts

    ERIC Educational Resources Information Center

    Ye, Li; Oueini, Razanne; Lewis, Scott E.

    2015-01-01

    The links students make among chemistry content is considered essential for a robust, enduring understanding in multiple learning theories. This article describes the development and implementation of an assessment technique, termed a Measure of Linked Concepts, designed to inform instructors on students' understanding of linking content…

  1. Implementation of accessible tourism concept at museums in Jakarta

    NASA Astrophysics Data System (ADS)

    Wiastuti, R. D.; Adiati, M. P.; Lestari, N. S.

    2018-03-01

    Accessibility, sustainability and equitable participation by all makeup what is known as Tourism for All. Tourism product must be designed for all people despite the age, gender and ability as one of the requirements to comply the accessible tourism concept. Museum as one of the elements of tourism chain must adhere to accessible tourism concept thus able to be enjoyed for everyone regardless of one’s abilities. The aim of this study is to identify the implementation of accessible tourism concept at the museum in Jakarta and to provide practical accessibility- improvement measures for the museum in Jakarta towards accessible tourism concept. This research is qualitative- explorative research. Jakarta Tourism Board website was used as the main reference to obtain which museum that was selected. Primary data collect from direct field observations and interview. The results outline museum implementation of accessible tourism that classified into five criteria; information, transport, common requirements, universal design, and accessibility. The implication of this study provides recommendations to enhance museums’ accessibility performance expected to be in line with accessible tourism concept.

  2. A Hybrid Cadre Concept for International Space Station (ISS) Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff; Mears, Teri

    2000-01-01

    The International Space Station (ISS) is a continuously operating on-orbit facility, with a ten to fifteen year lifetime. The staffing and rotation concepts defined and implemented for the ISS program must take into account the unique aspects associated with long duration mission operations. Innovative approaches to mission design and operations support must be developed and explored which address these unique aspects. Previous National Aeronautics and Space Administration (NASA) man-based space programs, with the exception of Skylab, dealt primarily with short duration missions with some amount of down time between missions; e.g., Shuttle, Spacelab, and Spacehab programs. The ISS Program on the other hand requires continuous support, with no down time between missions. ISS operations start with the first element launch and continue through the end of the program. It is this key difference between short and long duration missions that needs to be addressed by the participants in the ISS Program in effectively and efficiently staffing the positions responsible for mission design and operations. The primary drivers considered in the development of staffing and rotation concepts for the ISS Program are budget and responsiveness to change. However, the long duration aspects of the program necessitate that personal and social aspects also be considered when defining staffing concepts. To satisfy these needs, a Hybrid Cadre concept has been developed and implemented in the area of mission design and operations. The basic premise of the Hybrid Cadre concept is the definition of Increment-Independent and Increment-Dependent cadre personnel. This paper provides: definitions of the positions required to implement the concept, the rotation scheme that is applied to the individual positions, and a summary of the benefits and challenges associated with implementing the Hybrid Cadre concept.

  3. An Artificial-Gravity Space-Settlement Ground-Analogue Design Concept

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2016-01-01

    The design concept of a modular and extensible hypergravity facility is presented. Several benefits of this facility are described including that the facility is suitable as a full-scale artificial-gravity space-settlement ground analogue for humans, animals, and plants for indefinite durations. The design is applicable as an analogue for on-orbit settlements as well as those on moons, asteroids, and Mars. The design creates an extremely long-arm centrifuge using a multi-car hypergravity vehicle travelling on one or more concentric circular tracks. This design supports the simultaneous generation of multiple-gravity levels to explore the feasibility and value of and requirements for such space-settlement designs. The design synergizes a variety of existing technologies including centrifuges, tilting trains, roller coasters, and optionally magnetic levitation. The design can be incrementally implemented such that the facility can be operational for a small fraction of the cost and time required for a full implementation. Brief concept of operation examples are also presented.

  4. Bridging History of the Concept of Function with Learning of Mathematics: Students' Meta-Discursive Rules, Concept Formation and Historical Awareness

    ERIC Educational Resources Information Center

    Kjeldsen, Tinne Hoff; Petersen, Pernille Hviid

    2014-01-01

    In this paper we present a matrix-organised implementation of an experimental course in the history of the concept of a function. The course was implemented in a Danish high school. One of the aims was to bridge history of mathematics with the teaching and learning of mathematics. The course was designed using the theoretical frameworks of a…

  5. Toward a More Efficient Military Exchange System

    DTIC Science & Technology

    1991-07-01

    Corps exchanges to use AAFES facility design and construction services. 0 Require the Navy and Marine Corps to adopt the AAFES food service franchising ... Franchising Development The Navy (NAVRESSO) is about to centrally develop and implement some in- house food franchising concepts. AAFES already has such...chose to implement the AAFES concepts. From the results of initial surveys, AAFES believes that introducing all of its food franchising concepts on all

  6. Application of green concept in mechanical design and manufacture

    NASA Astrophysics Data System (ADS)

    Liu, Xing ping

    2017-11-01

    With the development of productive forces, the relationship between human and nature is becoming tight increasingly, especially environmental pollution and resource consumption that comes from equipment manufacturing industry mainly. Green development concept is a new concept which can solve the current ecological environment. The philosophical foundation and theoretical basis of green idea are expounded through the study of scientific development and green concept. The difference between the traditional design and the green design is analyzed; the meaning and content of the mechanical design for green concept are discussed. And the evaluation method of green design is discussed too. The significance of green development concept in the mechanical design and manufacturing science is pinpointed clearly. The results show that the implementation of green design under the mechanical design, from the source of pollution control to achieve green manufacturing, is the only way to achieve sustainable development.

  7. Pedagogy and Student Services for Institutional Transformation: Implementing Universal Design in Higher Education

    ERIC Educational Resources Information Center

    Higbee, Jeanne L., Ed.; Goff, Emily, Ed.

    2008-01-01

    PASS IT seeks to address a compelling need in higher education by developing a corps of trainers to facilitate professional development workshops in the implementation of Universal Design (UD) and Universal Instructional Design (UID) in higher education. UID, an adaptation of the architectural concept of Universal Design, is a relatively new model…

  8. Total Quality Management Practices and Their Effects on Organizational Performance

    ERIC Educational Resources Information Center

    Hung, Richard Yu-Yuan; Lien, Bella Ya-Hui

    2004-01-01

    This paper reports a study designed to examine the key concepts of Total Quality Management (TQM) implementation and their effects on organizational performance. Process Alignment and People Involvement are two key concepts for successful implementation of TQM. The purpose of this paper is to discuss how these two constructs affect organizational…

  9. Space shuttle auxiliary propulsion system design study. Phase C and E report: Storable propellants, RCS/OMS/APU integration study

    NASA Technical Reports Server (NTRS)

    Anglim, D. D.; Bruns, A. E.; Perryman, D. C.; Wieland, D. L.

    1972-01-01

    Auxiliary propulsion concepts for application to the space shuttle are compared. Both monopropellant and bipropellant earth storable reaction control systems were evaluated. The fundamental concepts evaluated were: (1) monopropellant and bipropellant systems installed integrally within the vehicle, (2) fuel systems installed modularly in nose and wing tip pods, and (3) fuel systems installed modularly in nose and fuselage pods. Numerous design variations within these three concepts were evaluated. The system design analysis and methods for implementing each of the concepts are reported.

  10. The UARS and open data system concept and analysis study. Executive summary

    NASA Technical Reports Server (NTRS)

    Mittal, M.; Nebb, J.; Woodward, H.

    1983-01-01

    Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. The designs are consistent with requirements shared by UARS and OPEN and the data storage and data processing demands of these missions. Because more detailed information is available for UARS, the design approach was to size the system and to select components for a UARS CDHF, but in a manner that does not optimize the CDHF at the expense of OPEN. Costs for alternative implementations of the UARS designs are presented showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign.

  11. The UARS and open data concept and analysis study. [upper atmosphere

    NASA Technical Reports Server (NTRS)

    Mittal, M.; Nebb, J.; Woodward, H.

    1983-01-01

    Alternative concepts for a common design for the UARS and OPEN Central Data Handling Facility (CDHF) are offered. Costs for alternative implementations of the UARS designs are presented, showing that the system design does not restrict the implementation to a single manufacturer. Processing demands on the alternative UARS CDHF implementations are then discussed. With this information at hand together with estimates for OPEN processing demands, it is shown that any shortfall in system capability for OPEN support can be remedied by either component upgrades or array processing attachments rather than a system redesign. In addition to a common system design, it is shown that there is significant potential for common software design, especially in the areas of data management software and non-user-unique production software. Archiving the CDHF data are discussed. Following that, cost examples for several modes of communications between the CDHF and Remote User Facilities are presented. Technology application is discussed.

  12. Mitigation of Engine Inlet Distortion Through Adjoint-Based Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Rallabhandi, Sriram; Nielsen, Eric J.; Diskin, Boris

    2017-01-01

    The adjoint-based design capability in FUN3D is extended to allow efficient gradient- based optimization and design of concepts with highly integrated aero-propulsive systems. A circumferential distortion calculation, along with the derivatives needed to perform adjoint-based design, have been implemented in FUN3D. This newly implemented distortion calculation can be used not only for design but also to drive the existing mesh adaptation process and reduce the error associated with the fan distortion calculation. The design capability is demonstrated by the shape optimization of an in-house aircraft concept equipped with an aft fuselage propulsor. The optimization objective is the minimization of flow distortion at the aerodynamic interface plane of this aft fuselage propulsor.

  13. Concept mapping for virtual rehabilitation and training of the blind.

    PubMed

    Sanchez, Jaime; Flores, Hector

    2010-04-01

    Concept mapping is a technique that allows for the strengthening of the learning process, based on graphic representations of the learner's mental schemes. However, due to its graphic nature, it cannot be utilized by learners with visual disabilities. In response to this limitation we implemented a study that involves the design of AudiodMC, an audio-based, virtual environment for concept mapping designed for use by blind users and aimed at virtual training and rehabilitation. We analyzed the stages involved in the design of AudiodMC from a user-centered design perspective, considering user involvement and usability testing. These include an observation stage to learn how blind learners construct conceptual maps using concrete materials, a design stage to design of a software tool that aids blind users in creating concept maps, and a cognitive evaluation stage using AudiodMC. We also present the results of a study implemented in order to determine the impact of the use of this software on the development of essential skills for concept mapping (association, classification, categorization, sorting and summarizing). The results point to a high level of user acceptance, having identified key sound characteristics that help blind learners to learn concept codification and selection skills. The use of AudiodMC also allowed for the effective development of the skills under review in our research, thus facilitating meaningful learning.

  14. Listen to Me: Report of the Ninth Annual NEA-CHR Conference, "Implementing Cultural Diversity in Instructional Programs".

    ERIC Educational Resources Information Center

    National Education Association, Washington, DC. Center for Human Relations.

    This publication is a compilation of speeches, seminar summaries, and participant reactions and recommendations from the Ninth Annual NEA-CHR Conference printed in both English and Spanish. The conference was designed to present the concept of cultural pluralism and to suggest ways of implementing this concept in instructional programs. The…

  15. The Use of Engineering Design Concept for Computer Programming Course: A Model of Blended Learning Environment

    ERIC Educational Resources Information Center

    Tritrakan, Kasame; Kidrakarn, Pachoen; Asanok, Manit

    2016-01-01

    The aim of this research is to develop a learning model which blends factors from learning environment and engineering design concept for learning in computer programming course. The usage of the model was also analyzed. This study presents the design, implementation, and evaluation of the model. The research methodology is divided into three…

  16. Teaching Classical Mechanics Concepts Using Visuo-Haptic Simulators

    ERIC Educational Resources Information Center

    Neri, Luis; Noguez, Julieta; Robledo-Rella, Victor; Escobar-Castillejos, David; Gonzalez-Nucamendi, Andres

    2018-01-01

    In this work, the design and implementation of several physics scenarios using haptic devices are presented and discussed. Four visuo-haptic applications were developed for an undergraduate engineering physics course. Experiments with experimental and control groups were designed and implemented. Activities and exercises related to classical…

  17. Implementation of a research prototype onboard fault monitoring and diagnosis system

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.; Schutte, Paul C.; Ricks, Wendell R.

    1987-01-01

    Due to the dynamic and complex nature of in-flight fault monitoring and diagnosis, a research effort was undertaken at NASA Langley Research Center to investigate the application of artificial intelligence techniques for improved situational awareness. Under this research effort, concepts were developed and a software architecture was designed to address the complexities of onboard monitoring and diagnosis. This paper describes the implementation of these concepts in a computer program called FaultFinder. The implementation of the monitoring, diagnosis, and interface functions as separate modules is discussed, as well as the blackboard designed for the communication of these modules. Some related issues concerning the future installation of FaultFinder in an aircraft are also discussed.

  18. Communications, Navigation, and Surveillance Models in ACES: Design Implementation and Capabilities

    NASA Technical Reports Server (NTRS)

    Kubat, Greg; Vandrei, Don; Satapathy, Goutam; Kumar, Anil; Khanna, Manu

    2006-01-01

    Presentation objectives include: a) Overview of the ACES/CNS System Models Design and Integration; b) Configuration Capabilities available for Models and Simulations using ACES with CNS Modeling; c) Descriptions of recently added, Enhanced CNS Simulation Capabilities; and d) General Concepts Ideas that Utilize CNS Modeling to Enhance Concept Evaluations.

  19. A study on design and development of enterprise-wide concepts for clinical documentation templates.

    PubMed

    Zhou, Li; Gurjar, Rupali; Regier, Rachel; Morgan, Stephen; Meyer, Theresa; Aroy, Teal; Goldman, Debora Scavone; Hongsermeier, Tonya; Middleton, Blackford

    2008-11-06

    Structured clinical documents are associated with many potential benefits. Underlying terminologies and structure of information are keys to their successful implementation and use. This paper presents a methodology for design and development of enterprise-wide concepts for clinical documentation templates for an ambulatory Electronic Medical Record (EMR) system.

  20. Concept of a methodical process for the design of concentrating photovoltaic systems according to the context of use

    NASA Astrophysics Data System (ADS)

    González-Correa, David; Osorio-Gómez, Gilberto; Mejía-Gutiérrez, Ricardo

    2016-09-01

    Concentrating Photo Voltaic (CPV) systems maximize energy harvested from the sun with multi-junction solar cells of less area, reducing related implementation costs and reaching energy production thresholds up to 38,9 %. Nowadays, CPV systems are generally implemented in solar energy farms in a permanent location, however, these systems could be used in other dynamic contexts, such as vehicles or portable devices. In this way, mechanical and geometrical parameters related to manipulation, transportation and installation should be carefully considered at the design stage. Besides, each condition of use presents different variables affecting these parameters. In all, there is not an established architecture for these systems, opening up the possibility of radically changing their use, geometry and components. Therefore, a concept of a methodical process for designing of CPV systems is proposed in order to predict their behavior in terms of implementation and energy production. This might allow the development of robust concepts that can be adapted to different context of use as required, providing an itinerant character and thus extending the field of implementation of these systems beyond a static use. The relevant variables for the use of CPV systems are determined through experimentation considering the implementation of Fresnel lenses as light concentrators. This allows generating a structured design guide composed of different methods of measurement, selection and development. The methodical process is based on a perspective of functional modules considering needs, technical aspects and particular usage conditions of each design and it would provide appropriate guidelines in each circumstance.

  1. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  2. Design and implementation of fuzzy logic controllers. Thesis Final Report, 27 Jul. 1992 - 1 Jan. 1993

    NASA Technical Reports Server (NTRS)

    Abihana, Osama A.; Gonzalez, Oscar R.

    1993-01-01

    The main objectives of our research are to present a self-contained overview of fuzzy sets and fuzzy logic, develop a methodology for control system design using fuzzy logic controllers, and to design and implement a fuzzy logic controller for a real system. We first present the fundamental concepts of fuzzy sets and fuzzy logic. Fuzzy sets and basic fuzzy operations are defined. In addition, for control systems, it is important to understand the concepts of linguistic values, term sets, fuzzy rule base, inference methods, and defuzzification methods. Second, we introduce a four-step fuzzy logic control system design procedure. The design procedure is illustrated via four examples, showing the capabilities and robustness of fuzzy logic control systems. This is followed by a tuning procedure that we developed from our design experience. Third, we present two Lyapunov based techniques for stability analysis. Finally, we present our design and implementation of a fuzzy logic controller for a linear actuator to be used to control the direction of the Free Flight Rotorcraft Research Vehicle at LaRC.

  3. Professional Development of Russian HEIs' Management and Faculty in CDIO Standards Application

    ERIC Educational Resources Information Center

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-01-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes…

  4. Design and Implementation of a Studio-Based General Chemistry Course

    ERIC Educational Resources Information Center

    Gottfried, Amy C.; Sweeder, Ryan D.; Bartolin, Jeffrey M.; Hessler, Jessica A.; Reynolds, Benjamin P.; Stewart, Ian C.; Coppola, Brian P.; Holl, Mark Banaszak M.

    2007-01-01

    The design and implementation of a new value-added general chemistry course, which could use the studio instructional method to incorporate the existing educational research is reviewed. These teaching methods and activities were woven into the course to provide the students with ways of learning chemical concepts and practicing scientific…

  5. Safety Guided Design of Crew Return Vehicle in Concept Design Phase Using STAMP/STPA

    NASA Astrophysics Data System (ADS)

    Nakao, H.; Katahira, M.; Miyamoto, Y.; Leveson, N.

    2012-01-01

    In the concept development and design phase of a new space system, such as a Crew Vehicle, designers tend to focus on how to implement new technology. Designers also consider the difficulty of using the new technology and trade off several system design candidates. Then they choose an optimal design from the candidates. Safety should be a key aspect driving optimal concept design. However, in past concept design activities, safety analysis such as FTA has not used to drive the design because such analysis techniques focus on component failure and component failure cannot be considered in the concept design phase. The solution to these problems is to apply a new hazard analysis technique, called STAMP/STPA. STAMP/STPA defines safety as a control problem rather than a failure problem and identifies hazardous scenarios and their causes. Defining control flow is the essential in concept design phase. Therefore STAMP/STPA could be a useful tool to assess the safety of system candidates and to be part of the rationale for choosing a design as the baseline of the system. In this paper, we explain our case study of safety guided concept design using STPA, the new hazard analysis technique, and model-based specification technique on Crew Return Vehicle design and evaluate benefits of using STAMP/STPA in concept development phase.

  6. Low-earth-orbit Satellite Internet Protocol Communications Concept and Design

    NASA Technical Reports Server (NTRS)

    Slywezak, Richard A.

    2004-01-01

    This report presents a design concept for a low-Earth-orbit end-to-end Internet-Protocol- (IP-) based mission. The goal is to maintain an up-to-date communications infrastructure that makes communications seamless with the protocols used in terrestrial computing. It is based on the premise that the use of IPs will permit greater interoperability while also reducing costs and providing users the ability to retrieve data directly from the satellite. However, implementing an IP-based solution also has a number of challenges, since wireless communications have different characteristics than wired communications. This report outlines the design of a low-Earth-orbit end-to-end IP-based mission; the ideas and concepts of Space Internet architectures and networks are beyond the scope of this document. The findings of this report show that an IP-based mission is plausible and would provide benefits to the user community, but the outstanding issues must be resolved before a design can be implemented.

  7. Toward using games to teach fundamental computer science concepts

    NASA Astrophysics Data System (ADS)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  8. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are toomore » costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.« less

  9. Environmental concept for engineering software on MIMD computers

    NASA Technical Reports Server (NTRS)

    Lopez, L. A.; Valimohamed, K.

    1989-01-01

    The issues related to developing an environment in which engineering systems can be implemented on MIMD machines are discussed. The problem is presented in terms of implementing the finite element method under such an environment. However, neither the concepts nor the prototype implementation environment are limited to this application. The topics discussed include: the ability to schedule and synchronize tasks efficiently; granularity of tasks; load balancing; and the use of a high level language to specify parallel constructs, manage data, and achieve portability. The objective of developing a virtual machine concept which incorporates solutions to the above issues leads to a design that can be mapped onto loosely coupled, tightly coupled, and hybrid systems.

  10. Communications systems checkout study

    NASA Technical Reports Server (NTRS)

    Ginter, W. G.

    1972-01-01

    The results and conclusions of an engineering study of Space Station communications subsystem checkout are reported. The primary purpose of the study is to recommend specific guidelines and constraints for the design and utilization of the communications subsystem leading to a practical and effective means of onboard checkout implementation. Major study objectives are as follows: (1) identify candidate communications subsystem checkout concepts, (2) determine implementation impacts of feasible concepts, (3) evaluate practicality and effectiveness of alternative concepts, (4) propose baseline modifications to accommodate preferred concepts, and (5) recommend areas for additional investigation. In addition, study results are interpreted, where appropriate, in terms of their applicability to checkout of Shuttle-Orbiter communications subsystem.

  11. A run-time control architecture for the JPL telerobot

    NASA Technical Reports Server (NTRS)

    Balaram, J.; Lokshin, A.; Kreutz, K.; Beahan, J.

    1987-01-01

    An architecture for implementing the process-level decision making for a hierarchically structured telerobot currently being implemented at the Jet Propolusion Laboratory (JPL) is described. Constraints on the architecture design, architecture partitioning concepts, and a detailed description of the existing and proposed implementations are provided.

  12. Exploring Young Children's Understanding about the Concept of Volume through Engineering Design in a STEM Activity: A Case Study

    ERIC Educational Resources Information Center

    Park, Do-Yong; Park, Mi-Hwa; Bates, Alan B.

    2018-01-01

    This case study explores young children's understanding and application of the concept of volume through the practices of engineering design in a STEM activity. STEM stands for science, technology, engineering, and mathematics. However, engineering stands out as a challenging area to implement. In addition, most early engineering education…

  13. Venus Atmospheric Maneuverable Platform (VAMP) - A Low Cost Venus Exploration Concept

    NASA Astrophysics Data System (ADS)

    Lee, G.; Polidan, R. S.; Ross, F.

    2015-12-01

    The Northrop Grumman Aerospace Systems and L-Garde team has been developing an innovative mission concept: a long-lived, maneuverable platform to explore the Venus upper atmosphere. This capability is an implementation of our Lifting Entry Atmospheric Flight (LEAF) system concept, and the Venus implementation is called the Venus Atmospheric Maneuverable Platform (VAMP). The VAMP concept utilizes an ultra-low ballistic coefficient (< 50 Pa), semi-buoyant aircraft that deploys prior to entering the Venus atmosphere, enters without an aeroshell, and provides a long-lived (months to a year) maneuverable vehicle capable of carrying science instruments to explore the Venus upper atmosphere. In this presentation we provide an update on the air vehicle design and a low cost pathfinder mission concept that can be implemented in the near-term. The presentation also provides an overview of our plans for future trade studies, analyses, and prototyping to advance and refine the concept. We will discuss the air vehicle's entry concepts of operations (CONOPs) and atmospheric science operations. We will present a strawman concept of a VAMP pathfinder, including ballistic coefficient, planform area, percent buoyancy, wing span, vehicle mass, power supply, propulsion, materials considerations, structural elements, and instruments accommodation. In this context, we will discuss the following key factors impacting the design and performance of VAMP: Entry into the Venus atmosphere, including descent profile, heating rate, total heat load, stagnation, and acreage temperatures Impact of maximum altitude on air vehicle design and entry heating Candidate thermal protection system (TPS) requirements We will discuss the interdependencies of the above factors and the manner in which the VAMP pathfinder concept's characteristics affect the CONOPs and the science objectives. We will show how the these factors provide constraints as well as enable opportunities for novel long duration scientific studies of the Venus upper atmosphere that support Venus science goals. We will also discuss how the VAMP platform itself can facilitate some of these science measurements.

  14. Process Design Manual for Nitrogen Control.

    ERIC Educational Resources Information Center

    Parker, Denny S.; And Others

    This manual presents theoretical and process design criteria for the implementation of nitrogen control technology in municipal wastewater treatment facilities. Design concepts are emphasized through examination of data from full-scale and pilot installations. Design data are included on biological nitrification and denitrification, breakpoint…

  15. Design concepts for low-cost composite turbofan engine frame

    NASA Technical Reports Server (NTRS)

    Mitchell, S. C.; Stoffer, L. J.

    1980-01-01

    Design concepts for low cost, lightweight composite engine frames were applied to the design requirements for the frame of a commercial, high bypass engine. Four alternative composite frame design concepts identified which consisted of generic type components and subcomponents that could be adapted to use in different locations in the engine and the different engine sizes. A variety of materials and manufacturing methods were projected with a goal for the lowest number of parts at the lowest possible cost. After a preliminary evaluation of all four frame concepts, two designs were selected for an extended design and evaluation which narrowed the final selection down to one frame that was significantly lower in cost and slighty lighter than the other frame. An implementation plan for this lowest cost frame is projected for future development and includes prospects for reducing its weight with proposed unproven, innovative fabrication techniques.

  16. Alternative divertor target concepts for next step fusion devices

    NASA Astrophysics Data System (ADS)

    Mazul, I. V.

    2016-12-01

    The operational conditions of a divertor target in the next steps of fusion devices are more severe in comparison with ITER. The current divertor designs and technologies have a limited application concerning these conditions, and so new design concepts/technologies are required. The main reasons which practically prevent the use of the traditional motionless solid divertor target are analyzed. We describe several alternative divertor target concepts in this paper. The comparative analysis of these concepts (including the advantages and the drawbacks) is made and the prospects for their practical implementation are prioritized. The concept of the swept divertor target with a liquid metal interlayer between the moving armour and motionless heat-sink is presented in more detail. The critical issues of this design are listed and outlined, and the possible experiments are presented.

  17. Automating expert role to determine design concept in Kansei Engineering

    NASA Astrophysics Data System (ADS)

    Lokman, Anitawati Mohd; Haron, Mohammad Bakri Che; Abidin, Siti Zaleha Zainal; Khalid, Noor Elaiza Abd

    2016-02-01

    Affect has become imperative in product quality. In affective design field, Kansei Engineering (KE) has been recognized as a technology that enables discovery of consumer's emotion and formulation of guide to design products that win consumers in the competitive market. Albeit powerful technology, there is no rule of thumb in its analysis and interpretation process. KE expertise is required to determine sets of related Kansei and the significant concept of emotion. Many research endeavors become handicapped with the limited number of available and accessible KE experts. This work is performed to simulate the role of experts with the use of Natphoric algorithm thus providing sound solution to the complexity and flexibility in KE. The algorithm is designed to learn the process by implementing training datasets taken from previous KE research works. A framework for automated KE is then designed to realize the development of automated KE system. A comparative analysis is performed to determine feasibility of the developed prototype to automate the process. The result shows that the significant Kansei is determined by manual KE implementation and the automated process is highly similar. KE research advocates will benefit this system to automatically determine significant design concepts.

  18. The Application of Concurrent Engineering Tools and Design Structure Matrix in Designing Tire

    NASA Astrophysics Data System (ADS)

    Ginting, Rosnani; Fachrozi Fitra Ramadhan, T.

    2016-02-01

    The development of automobile industry in Indonesia is growing rapidly. This phenomenon causes companies related to the automobile industry such as tire industry must develop products based on customers’ needs and considering the timeliness of delivering the product to the customer. It could be reached by applying strategic planning in developing an integrated concept of product development. This research was held in PT. XYZ that applied the sequential approach in designing and developing products. The need to improve in one stage of product development could occur re-designing that needs longer time in developing a new product. This research is intended to get an integrated product design concept of tire pertaining to the customer's needs using Concurrent Engineering Tools by implementing the two-phased of product development. The implementation of Concurrent Engineering approach results in applying the stage of project planning, conceptual design, and product modules. The product modules consist of four modules that using Product Architecture - Design Structure Matrix to ease the designing process of new product development.

  19. A design optimization process for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chamberlain, Robert G.; Fox, George; Duquette, William H.

    1990-01-01

    The Space Station Freedom Program is used to develop and implement a process for design optimization. Because the relative worth of arbitrary design concepts cannot be assessed directly, comparisons must be based on designs that provide the same performance from the point of view of station users; such designs can be compared in terms of life cycle cost. Since the technology required to produce a space station is widely dispersed, a decentralized optimization process is essential. A formulation of the optimization process is provided and the mathematical models designed to facilitate its implementation are described.

  20. Surfacing the Structures of Patriarchy: Teaching and Learning Threshold Concepts in Women's Studies

    ERIC Educational Resources Information Center

    Hassel, Holly; Reddinger, Amy; van Slooten, Jessica

    2011-01-01

    Patriarchy is a threshold concept in women's studies--a significant, defining concept that transforms students' understanding of the discipline. This article reviews our design, implementation, and findings of a lesson study crafted to teach women's studies students the complex idea of patriarchy as a social system. We analyze the lesson using…

  1. Conceptualizing and Describing Teachers' Learning of Pedagogical Concepts

    ERIC Educational Resources Information Center

    González, María José; Gómez, Pedro

    2014-01-01

    In this paper, we propose a model to explore how teachers learn pedagogical concepts in teacher education programs that expect them to become competent in lesson planning. In this context, we view pedagogical concepts as conceptual and methodological tools that help teachers to design a lesson plan on a topic, implement this lesson plan and assess…

  2. Presentation of Class 1 designs for a family of commuter airplanes

    NASA Technical Reports Server (NTRS)

    Creighton, Tom; Dragush, George; Hendrich, Louis; Hensley, Doug; Morgan, Louise; Oxendine, Charles; Remen, John; Robinson, Terry; Russell, Mark; Swift, Jerry

    1986-01-01

    The Class 1 configuration designs of a family of commuter aircraft are presented. The proposed aircraft will have a capacity of from 25 to 100 passengers. They are to have the following common features: (1) 2 aft fuselage mounted engines; (2) a low wing; (3) a T-tail type empennage; and (4) a tricycle type landing gear. A family concept is introduced to achieve structural, systems and handling quality commonality throughout. Implementing commonality can substantially reduce manufacturing and production costs. By achieving common system designs, maintenance costs can be reduced by permitting airlines to stock a smaller inventory of spares. Therefore, the higher degree of commonality, the lower the direct operating and life cycle costs. The attempt to implement some of the commonality requirements has caused configuration design problems, i.e., the twin-body concept was introduced. Design data are compared to existing aircraft, and the extent of structural, systems and handling qualities achieved are reviewed.

  3. The Implementation of Problem-Solving Based Laboratory Activities to Teach the Concept of Simple Harmonic Motion in Senior High School

    NASA Astrophysics Data System (ADS)

    Iradat, R. D.; Alatas, F.

    2017-09-01

    Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.

  4. Energy-absorbing car seat designs for reducing whiplash.

    PubMed

    Himmetoglu, S; Acar, M; Bouazza-Marouf, K; Taylor, A J

    2008-12-01

    This study presents an investigation of anti-whiplash features that can be implemented in a car seat to reduce whiplash injuries in the case of a rear impact. The main emphasis is on achieving a seat design with good energy absorption properties. A biofidelic 50th percentile male multi-body human model for rear impact is developed to evaluate the performance of car seat design concepts. The model is validated using the responses of 7 volunteers from the Japanese Automobile Research Institute (JARI) sled tests, which were performed at an impact speed of 8 kph with a rigid seat and without head restraint and seatbelt. A generic multi-body car seat model is also developed to implement various seatback and recliner properties, anti-whiplash devices, and head restraints. Using the same driving posture and the rigid seat in the JARI sled tests as the basic configuration, several anti-whiplash seats are designed to allow different types of motion for the seatback and seat-pan. The anti-whiplash car seat design concepts limit neck internal motion successfully until the head-to-head restraint contact occurs and they exhibit low NIC(max) values (7 m(2)/s(2) on average). They are also effective in reducing neck compression forces and T1 forward accelerations. In principle, these car seat design concepts employ controlled recliner rotation and seat-pan displacement to limit the formation of S-shape. This is accomplished by using anti-whiplash devices that absorb the crash energy in such a way that an optimum protection is provided at different severities. The results indicate that the energy absorbing car seat design concepts all demonstrate good whiplash-reducing performances at the IIWPG standard pulse. Especially in higher severity rear impacts, two of the car seat design concepts reduce the ramping of the occupant considerably.

  5. Assessing Implementation Fidelity: Challenges as Seen through the Lens of Two Experimental Studies

    ERIC Educational Resources Information Center

    Vig, Rozy; Taylor, Megan W.; Star, Jon R.; Chao, Theodore

    2014-01-01

    The concept of "implementation fidelity" is broadly used to capture the extent to which an intervention is executed as intended by the designers of the intervention (Century, Rudnick, & Freeman, 2010; Huntley, 2005, McNaught, Tarr, & Sears, 2010, Munter, 2010). Though implementation fidelity instruments are often used to assess…

  6. Preliminary Design of ICI-based Multimedia for Reconceptualizing Electric Conceptions at Universitas Pendidikan Indonesia

    NASA Astrophysics Data System (ADS)

    Samsudin, A.; Suhandi, A.; Rusdiana, D.; Kaniawati, I.

    2016-08-01

    Interactive Conceptual Instruction (ICI) based Multimedia has been developed to represent the electric concepts turn into more real and meaningful learning. The initial design of ICI based multimedia is a multimedia computer that allows users to explore the entire electric concepts in terms of the existing conceptual and practical. Pre-service physics teachers should be provided with the learning that could optimize the conceptions held by re-conceptualizing concepts in Basic Physics II, especially the concepts about electricity. To collect and to analyze the data genuinely and comprehensively, researchers utilized a developing method of ADDIE which has comprehensive steps: analyzing, design, development, implementation, and evaluation. The ADDIE developing steps has been utilized to describe comprehensively from the phase of analysis program up until the evaluation program. Based on data analysis, it can be concluded that ICI-based multimedia could effectively increase the pre-service physics teachers’ understanding on electric conceptions for re-conceptualizing electric conceptions at Universitas Pendidikan Indonesia.

  7. Study of Comet Nucleus Gamma-Ray Spectrometer Penetration System

    NASA Technical Reports Server (NTRS)

    Adams, G. L.; Amundsen, R. J.; Beardsley, R. W.; Cash, R. H.; Clark, B. C.; Knight, T. C. D.; Martin, J. P.; Monti, P.; Outteridge, D. A.; Plaster, W. D.

    1986-01-01

    A penetrator system has been suggested as an approach for making in situ measurements of the composition and physical properties of the nucleus of a comet. This study has examined in detail the feasibility of implementing the penetrator concept. The penetrator system and mission designs have been developed and iterated in sufficient detail to provide a high level of confidence that the concept can be implemented within the constraints of the Mariner Mark 2 spacecraft.

  8. Guidelines for the design and evaluation of human factors aspects of automated guideway transit systems

    DOT National Transportation Integrated Search

    1979-03-01

    This report is a summary of human factors considerations for the planning, : deSign, construction, and implementation of Automated Guideway Transit (AGT) Systems : including Downtown People Mover (DPM) systems. Design concepts such as passenger : saf...

  9. Universal Design and the Smart Home.

    PubMed

    Pennick, Tim; Hessey, Sue; Craigie, Roland

    2016-01-01

    The related concepts of Universal Design, Inclusive Design, and Design For All, all recognise that no one solution will fit the requirements of every possible user. This paper considers the extent to which current developments in smart home technology can help to reduce the numbers of users for whom mainstream technology is not sufficiently inclusive, proposing a flexible approach to user interface (UI) implementation focussed on the capabilities of the user. This implies development of the concepts underlying Universal Design to include the development of a flexible inclusive support infrastructure, servicing the requirements of individual users and their personalised user interface devices.

  10. The use of high impact practices (HIPs) on chemistry lesson design and implementation by pre-service teachers

    NASA Astrophysics Data System (ADS)

    Chamrat, Suthida; Apichatyotin, Nattaya; Puakanokhirun, Kittaporn

    2018-01-01

    The quality of lesson design is essential to learning effectiveness. Research shows some characteristics of lessons have strong effect on learning which were grouped into "High Impact Practices or HIPs. This research aims to examine the use of HIPs on chemistry lesson design as a part of Teaching Science Strand in Chemistry Concepts course. At the first round of lesson design and implementing in classroom, 14 chemistry pre-services teachers freely selected topics, designed and implemented on their own ideas. The lessons have been reflected by instructors and their peers. High Impact Practices were overtly used as the conceptual framework along with the After-Action Review and Reflection (AARR). The selected High Impact practice in this study consisted of 6 elements: well-designed lesson, vary cognitive demand/academic challenge, students center approach, opportunity of students to reflect by discussion or writing, the assignment of project based learning or task, and the lesson reflects pre-service teachers' Technological Pedagogical Content Knowledge (TPACK). The second round, pre-service teachers were encouraged to explicitly used 6 High Impact Practices in cooperated with literature review specified on focused concepts for bettering designed and implemented lessons. The data were collected from 28 lesson plans and 28 classroom observations to compare and discuss between the first and second lesson and implementation. The results indicated that High Impact Practices effect on the quality of delivered lesson. However, there are some elements that vary on changes which were detailed and discussed in this research article.

  11. Implementing Game Design in School: A Worked Example (Mise en oeuvre de la conception de jeu à l'école: un exemple pratique)

    ERIC Educational Resources Information Center

    Herro, Danielle C.

    2015-01-01

    This case uses a worked or "working example" model (Gee, 2010), documenting the implementation of a novel game design curriculum in the United States. Created by an Instructional Technology Administrator (ITA) and two classroom teachers, it was subsequently offered to high school students. With an aim of providing in-depth understanding…

  12. Analysis of Local and Foreign Edutainment Products--An Effort to Implement the Design Framework for an Edutainment Environment in Malaysia

    ERIC Educational Resources Information Center

    Embi, Zarina Che; Hussain, Hanafizan

    2005-01-01

    In the world of "edutainment" where multimedia is the ultimate content provider, educational electronic games are a new and fun way for young children to learn concepts and processes that have usually been delivered via books within the traditional classroom. In an effort to implement a design framework for developing educational games…

  13. Assistant Personal Robot (APR): Conception and Application of a Tele-Operated Assisted Living Robot.

    PubMed

    Clotet, Eduard; Martínez, Dani; Moreno, Javier; Tresanchez, Marcel; Palacín, Jordi

    2016-04-28

    This paper presents the technical description, mechanical design, electronic components, software implementation and possible applications of a tele-operated mobile robot designed as an assisted living tool. This robotic concept has been named Assistant Personal Robot (or APR for short) and has been designed as a remotely telecontrolled robotic platform built to provide social and assistive services to elderly people and those with impaired mobility. The APR features a fast high-mobility motion system adapted for tele-operation in plain indoor areas, which incorporates a high-priority collision avoidance procedure. This paper presents the mechanical architecture, electrical fundaments and software implementation required in order to develop the main functionalities of an assistive robot. The APR uses a tablet in order to implement the basic peer-to-peer videoconference and tele-operation control combined with a tactile graphic user interface. The paper also presents the development of some applications proposed in the framework of an assisted living robot.

  14. Computer Systems for Teaching Complex Concepts.

    ERIC Educational Resources Information Center

    Feurzeig, Wallace

    Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…

  15. Concepts, requirements, and design approaches for building successful planning and scheduling systems

    NASA Technical Reports Server (NTRS)

    Hornstein, Rhoda Shaller; Willoughby, John K.

    1991-01-01

    Traditional practice of systems engineering management assumes requirements can be precisely determined and unambiguously defined prior to system design and implementation; practice further assumes requirements are held static during implementation. Human-computer decision support systems for service planning and scheduling applications do not conform well to these assumptions. Adaptation to the traditional practice of systems engineering management are required. Basic technology exists to support these adaptations. Additional innovations must be encouraged and nutured. Continued partnership between the programmatic and technical perspective assures proper balance of the impossible with the possible. Past problems have the following origins: not recognizing the unusual and perverse nature of the requirements for planning and scheduling; not recognizing the best starting point assumptions for the design; not understanding the type of system that being built; and not understanding the design consequences of the operations concept selected.

  16. An Expert System For Tuning Particle-Beam Accelerators

    NASA Astrophysics Data System (ADS)

    Lager, Darrel L.; Brand, Hal R.; Maurer, William J.; Searfus, Robert M.; Hernandez, Jose E.

    1989-03-01

    We have developed a proof-of-concept prototype of an expert system for tuning particle beam accelerators. It is designed to function as an intelligent assistant for an operator. In its present form it implements the strategies and reasoning followed by the operator for steering through the beam transport section of the Advanced Test Accelerator at Lawrence Livermore Laboratory's Site 300. The system is implemented in the language LISP using the Artificial Intelligence concepts of frames, daemons, and a representation we developed called a Monitored Decision Script.

  17. ACCESS 1: Approximation Concepts Code for Efficient Structural Synthesis program documentation and user's guide

    NASA Technical Reports Server (NTRS)

    Miura, H.; Schmit, L. A., Jr.

    1976-01-01

    The program documentation and user's guide for the ACCESS-1 computer program is presented. ACCESS-1 is a research oriented program which implements a collection of approximation concepts to achieve excellent efficiency in structural synthesis. The finite element method is used for structural analysis and general mathematical programming algorithms are applied in the design optimization procedure. Implementation of the computer program, preparation of input data and basic program structure are described, and three illustrative examples are given.

  18. Design guide for space shuttle low-cost payloads

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A handbook is presented which delineates the principles of the new low-cost design methodology for designers of unmanned payloads to be carried by the space shuttle. The basic relationships between payload designs and program cost effects are discussed, and some concepts for designing low-cost payloads and implementing low-cost programs are given. The data are summarized from a payloads effects study of three unmanned earth satellites (OAO, a syneq orbiter, and a small research satellite), and the earth satellite design is emphasized. Brief summaries of space shuttle and space tug performance, environmental, and interface data pertinent to low-cost payload concepts are included.

  19. USU Contracts and Grants System--Innovative Inquiry.

    ERIC Educational Resources Information Center

    Henderson, Harold C.; Eagar, Virginia L.

    1981-01-01

    In January of 1979, the Contracts and Grants Office at Utah State University implemented a computerized system to keep track of pending research proposals, as well as active grants. The automation process used is described from its conception, design, and implementation to future enhancements. (Author/MLW)

  20. Problems and Prospects in Foreign Language Computing.

    ERIC Educational Resources Information Center

    Pusack, James P.

    The problems and prospects of the field of foreign language computing are profiled through a survey of typical implementation, development, and research projects that language teachers may undertake. Basic concepts in instructional design, hardware, and software are first clarified. Implementation projects involving courseware evaluation, textbook…

  1. The Use of Interactive Computer Animations Based on POE as a Presentation Tool in Primary Science Teaching

    NASA Astrophysics Data System (ADS)

    Akpınar, Ercan

    2014-08-01

    This study investigates the effects of using interactive computer animations based on predict-observe-explain (POE) as a presentation tool on primary school students' understanding of the static electricity concepts. A quasi-experimental pre-test/post-test control group design was utilized in this study. The experiment group consisted of 30 students, and the control group of 27 students. The control group received normal instruction in which the teacher provided instruction by means of lecture, discussion and homework. Whereas in the experiment group, dynamic and interactive animations based on POE were used as a presentation tool. Data collection tools used in the study were static electricity concept test and open-ended questions. The static electricity concept test was used as pre-test before the implementation, as post-test at the end of the implementation and as delay test approximately 6 weeks after the implementation. Open-ended questions were used at the end of the implementation and approximately 6 weeks after the implementation. Results indicated that the interactive animations used as presentation tools were more effective on the students' understanding of static electricity concepts compared to normal instruction.

  2. National Computer Security Conference Proceedings (12th): Information Systems Security: Solutions for Today - Concepts for Tomorrow Held in Baltimore, Maryland on 10-13 October 1989

    DTIC Science & Technology

    1989-10-13

    and other non -technical aspects of the system). System-wide Perspective. The systerm that is being designed and engineered must include not just the...specifications and is regarded as the lowest-level (implementation) of detail.-’ Ihis decomposition follows the typical "top down" design methodology ...formal verification process has contributed to the security and correctness of the TCB design and implementation. FORMUL METHODOLOGY DESCRIPTION The

  3. Interface Design Concepts in the Development of ELSA, an Intelligent Electronic Library Search Assistant.

    ERIC Educational Resources Information Center

    Denning, Rebecca; Smith, Philip J.

    1994-01-01

    Describes issues and advances in the design of appropriate inference engines and knowledge structures needed by commercially feasible intelligent intermediary systems for information retrieval. Issues associated with the design of interfaces to such functions are discussed in detail. Design principles for guiding implementation of these interfaces…

  4. Using the science writing heuristic approach as a tool for assessing and promoting students' conceptual understanding and perceptions in the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Mohammad, Elham Ghazi

    This thesis reports on a study that examined the impact of implementing SWH (inquiry-based approach) in a general chemistry lab on non-science-major students' understanding of chemistry concepts and students' perceptions toward writing in science and implementing SWH. This study was conducted in a large university in the Midwest of the United States in a college freshman chemistry laboratory for non-science-major students. The research framework is presented including the following: the qualitative research design with the observation as data collection method for this design and the criteria for teacher level of implementation and the ranking mechanism; and the quantitative research design with data collection and analysis methods including pre- and post-conceptual exams, lecture question, open-ended surveys. This research was based on a quasi-experimental mixed-method design a focus on student performance on higher order conceptual questions, and open-ended survey at the end of semester about their perception toward writing to learn ad implementing SWH. Results from the qualitative and quantitative component indicated that implementing SWH approach has notably enhanced both male and female conceptual understanding and perception toward chemistry and implementing SWH. It is known that there is gender gap in science, where female have lower perception and self confident toward science. Interestingly, my findings have showed that implementing SWH helped closing the gap between male and female who started the semester with a statistically significant lower level of conceptual understanding of chemistry concepts among females than males.

  5. Opportunities and Challenges of Implementing Instructional Games in Mathematics Classrooms: Examining the Quality of Teacher-Student Interactions during the Cover-Up and Un-Cover Games

    ERIC Educational Resources Information Center

    Heshmati, Saeideh; Kersting, Nicole; Sutton, Taliesin

    2018-01-01

    This study explored the design and implementation of the Cover-up and Un-cover games, two manipulative-based fraction games, in 14 fifth-grade classrooms. We examined how the fraction concepts were integrated into the game design and explored the nature of teacher-student interactions during games using lesson videos. Our examination showed that…

  6. Application of the concept of dynamic trim control to automatic landing of carrier aircraft. [utilizing digital feedforeward control

    NASA Technical Reports Server (NTRS)

    Smith, G. A.; Meyer, G.

    1980-01-01

    The results of a simulation study of an alternative design concept for an automatic landing control system are presented. The alternative design concept for an automatic landing control system is described. The design concept is the total aircraft flight control system (TAFCOS). TAFCOS is an open loop, feed forward system that commands the proper instantaneous thrust, angle of attack, and roll angle to achieve the forces required to follow the desired trajector. These dynamic trim conditions are determined by an inversion of the aircraft nonlinear force characteristics. The concept was applied to an A-7E aircraft approaching an aircraft carrier. The implementation details with an airborne digital computer are discussed. The automatic carrier landing situation is described. The simulation results are presented for a carrier approach with atmospheric disturbances, an approach with no disturbances, and for tailwind and headwind gusts.

  7. Strategies for teaching object-oriented concepts with Java

    NASA Astrophysics Data System (ADS)

    Sicilia, Miguel-Ángel

    2006-03-01

    A considerable amount of experiences in teaching object-oriented concepts using the Java language have been reported to date, some of which describe language pitfalls and concrete learning difficulties. In this paper, a number of additional issues that have been experienced as difficult for students to master, along with approaches intended to overcome them, are addressed. Concretely, practical issues regarding associations, interfaces, genericity and exceptions are described. These issues suggest that more emphasis is required on presenting Java programs as derivations of conceptual models, in order to guarantee that a thorough design of the object structure actually precedes implementation issues. In addition, common student misunderstandings about the uses of interfaces and exceptions point to the necessity of introducing both specific design philosophies and also a clear distinction between design-for-reuse and more specific implementation issues.

  8. U.S. Space Shuttle GPS navigation capability for all mission phases

    NASA Technical Reports Server (NTRS)

    Kachmar, Peter; Chu, William; Montez, Moises

    1993-01-01

    Incorporating a GPS capability on the Space Shuttle presented unique system integration design considerations and has led to an integration concept that has minimum impact on the existing Shuttle hardware and software systems. This paper presents the Space Shuttle GPS integrated design and the concepts used in implementing this GPS capability. The major focus of the paper is on the modifications that will be made to the navigation systems in the Space Shuttle General Purpose Computers (GPC) and on the Operational Requirements of the integrated GPS/GPC system. Shuttle navigation system architecture, functions and operations are discussed for the current system and with the GPS integrated navigation capability. The GPS system integration design presented in this paper has been formally submitted to the Shuttle Avionics Software Control Board for implementation in the on-board GPC software.

  9. Conceptual design of a data reduction system

    NASA Technical Reports Server (NTRS)

    1983-01-01

    A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.

  10. Evaluating the Interdisciplinary Discoverability of Data

    NASA Astrophysics Data System (ADS)

    Gordon, S.; Habermann, T.

    2017-12-01

    Documentation needs are similar across communities. Communities tend to agree on many of the basic concepts necessary for discovery. Shared concepts such as a title or a description of the data exist in most metadata dialects. Many dialects have been designed and recommendations implemented to create metadata valuable for data discovery. These implementations can create barriers to discovering the right data. How can we ensure that the documentation we curate will be discoverable and understandable by researchers outside of our own disciplines and organizations? Since communities tend to use and understand many of the same documentation concepts, the barriers to interdisciplinary discovery are caused by the differences in the implementation. Thus tools and methods designed for the conceptual layer that evaluate records for documentation concepts, regardless of the dialect, can be effective in identifying opportunities for improvement and providing guidance. The Metadata Evaluation Web Service combined with a Jupyter Notebook interface allows a user to gather insight about a collection of records with respect to different communities' conceptual recommendations. It accomplishes this via data visualizations and provides links to implementation specific guidance on the ESIP Wiki for each recommendation applied to the collection. By utilizing these curation tools as part of an iterative process the data's impact can be increased by making it discoverable to a greater scientific and research community. Due to the conceptual focus of the methods and tools used, they can be utilized by any community or organization regardless of their documentation dialect or tools.

  11. Design and Prototyping of a High Granularity Scintillator Calorimeter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zutshi, Vishnu

    A novel approach for constructing fine-granularity scintillator calorimeters, based on the concept of an Integrated Readout Layer (IRL) was developed. The IRL consists of a printed circuit board inside the detector which supports the directly-coupled scintillator tiles, connects to the surface-mount SiPMs and carries the necessary front-end electronics and signal/bias traces. Prototype IRLs using this concept were designed, prototyped and successfully exposed to test beams. Concepts and implementations of an IRL carried out with funds associated with this contract promise to result in the next generation of scintillator calorimeters.

  12. User-Centered Design for Psychosocial Intervention Development and Implementation

    PubMed Central

    Lyon, Aaron R.; Koerner, Kelly

    2018-01-01

    The current paper articulates how common difficulties encountered when attempting to implement or scale-up evidence-based treatments are exacerbated by fundamental design problems, which may be addressed by a set of principles and methods drawn from the contemporary field of user-centered design. User-centered design is an approach to product development that grounds the process in information collected about the individuals and settings where products will ultimately be used. To demonstrate the utility of this perspective, we present four design concepts and methods: (a) clear identification of end users and their needs, (b) prototyping/rapid iteration, (c) simplifying existing intervention parameters/procedures, and (d) exploiting natural constraints. We conclude with a brief design-focused research agenda for the developers and implementers of evidence-based treatments. PMID:29456295

  13. Interdisciplinary Concepts for Design and Implementation of Mixed Reality Interactive Neurorehabilitation Systems for Stroke

    PubMed Central

    Lehrer, Nicole; Duff, Margaret; Venkataraman, Vinay; Turaga, Pavan; Ingalls, Todd; Rymer, W. Zev; Wolf, Steven L.; Rikakis, Thanassis

    2015-01-01

    Interactive neurorehabilitation (INR) systems provide therapy that can evaluate and deliver feedback on a patient's movement computationally. There are currently many approaches to INR design and implementation, without a clear indication of which methods to utilize best. This article presents key interactive computing, motor learning, and media arts concepts utilized by an interdisciplinary group to develop adaptive, mixed reality INR systems for upper extremity therapy of patients with stroke. Two INR systems are used as examples to show how the concepts can be applied within: (1) a small-scale INR clinical study that achieved integrated improvement of movement quality and functionality through continuously supervised therapy and (2) a pilot study that achieved improvement of clinical scores with minimal supervision. The notion is proposed that some of the successful approaches developed and tested within these systems can form the basis of a scalable design methodology for other INR systems. A coherent approach to INR design is needed to facilitate the use of the systems by physical therapists, increase the number of successful INR studies, and generate rich clinical data that can inform the development of best practices for use of INR in physical therapy. PMID:25425694

  14. Interdisciplinary concepts for design and implementation of mixed reality interactive neurorehabilitation systems for stroke.

    PubMed

    Baran, Michael; Lehrer, Nicole; Duff, Margaret; Venkataraman, Vinay; Turaga, Pavan; Ingalls, Todd; Rymer, W Zev; Wolf, Steven L; Rikakis, Thanassis

    2015-03-01

    Interactive neurorehabilitation (INR) systems provide therapy that can evaluate and deliver feedback on a patient's movement computationally. There are currently many approaches to INR design and implementation, without a clear indication of which methods to utilize best. This article presents key interactive computing, motor learning, and media arts concepts utilized by an interdisciplinary group to develop adaptive, mixed reality INR systems for upper extremity therapy of patients with stroke. Two INR systems are used as examples to show how the concepts can be applied within: (1) a small-scale INR clinical study that achieved integrated improvement of movement quality and functionality through continuously supervised therapy and (2) a pilot study that achieved improvement of clinical scores with minimal supervision. The notion is proposed that some of the successful approaches developed and tested within these systems can form the basis of a scalable design methodology for other INR systems. A coherent approach to INR design is needed to facilitate the use of the systems by physical therapists, increase the number of successful INR studies, and generate rich clinical data that can inform the development of best practices for use of INR in physical therapy. © 2015 American Physical Therapy Association.

  15. Stopped-Rotor Cyclocopter for Venus Exploration

    NASA Technical Reports Server (NTRS)

    Husseyin, Sema; Warmbrodt, William G.

    2016-01-01

    The cyclocopter system can use two or more rotating blades to create lift, propulsion and control. This system is explored for its use in a mission to Venus. Cyclocopters are not limited to speed and altitude and can provide 360 degrees of vector thrusting which is favorable for good maneuverability. The novel aspect of this study is that no other cyclocopter configuration has been previously proposed for Venus or any (terrestrial or otherwise) exploration application where the cyclocopters rotating blades are stopped, and act as fixed wings. The design considerations for this unique planetary aerial vehicle are discussed in terms of implementing the use of a cyclorotor blade system combined with a fixed wing and stopped rotor mechanism. This proposed concept avoids many of the disadvantages of conventional-rotor stopped-rotor concepts and accounts for the high temperature, pressure and atmospheric density present on Venus while carrying out the mission objectives. The fundamental goal is to find an ideal design that implements the combined use of cyclorotors and fixed wing surfaces. These design concepts will be analyzed with the computational fluid dynamics tool RotCFD for aerodynamic assessment. Aspects of the vehicle design is 3D printed and tested in a small water tunnel or wind tunnel.

  16. Composite Materials: An Educational Need.

    ERIC Educational Resources Information Center

    Saliba, Tony E.; Snide, James A.

    1990-01-01

    Described is the need to incorporate the concepts and applications of advanced composite materials into existing chemical engineering programs. Discussed are the justification for, and implementation of topics including transport phenomena, kinetics and reactor design, unit operations, and product and process design. (CW)

  17. Mechanistic-empirical design, implementation, and monitoring for flexible pavements : a project summary.

    DOT National Transportation Integrated Search

    2014-05-01

    This document is a summary of tasks performed for Project ICT-R27-060. : Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were : developed in previous Illinois Cooperative Highway Research Program projects (IHR-510...

  18. Cymatics for the cloaking of flexural vibrations in a structured plate

    PubMed Central

    Misseroni, D.; Colquitt, D. J.; Movchan, A. B.; Movchan, N. V.; Jones, I. S.

    2016-01-01

    Based on rigorous theoretical findings, we present a proof-of-concept design for a structured square cloak enclosing a void in an elastic lattice. We implement high-precision fabrication and experimental testing of an elastic invisibility cloak for flexural waves in a mechanical lattice. This is accompanied by verifications and numerical modelling performed through finite element simulations. The primary advantage of our square lattice cloak, over other designs, is the straightforward implementation and the ease of construction. The elastic lattice cloak, implemented experimentally, shows high efficiency. PMID:27068339

  19. Advanced Design and Implementation of a Control Architecture for Long Range Autonomous Planetary Rovers

    NASA Technical Reports Server (NTRS)

    Martin-Alvarez, A.; Hayati, S.; Volpe, R.; Petras, R.

    1999-01-01

    An advanced design and implementation of a Control Architecture for Long Range Autonomous Planetary Rovers is presented using a hierarchical top-down task decomposition, and the common structure of each design is presented based on feedback control theory. Graphical programming is presented as a common intuitive language for the design when a large design team is composed of managers, architecture designers, engineers, programmers, and maintenance personnel. The whole design of the control architecture consists in the classic control concepts of cyclic data processing and event-driven reaction to achieve all the reasoning and behaviors needed. For this purpose, a commercial graphical tool is presented that includes the mentioned control capabilities. Messages queues are used for inter-communication among control functions, allowing Artificial Intelligence (AI) reasoning techniques based on queue manipulation. Experimental results show a highly autonomous control system running in real time on top the JPL micro-rover Rocky 7 controlling simultaneously several robotic devices. This paper validates the sinergy between Artificial Intelligence and classic control concepts in having in advanced Control Architecture for Long Range Autonomous Planetary Rovers.

  20. Control theory meets synthetic biology

    PubMed Central

    2016-01-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. PMID:27440256

  1. Control theory meets synthetic biology.

    PubMed

    Del Vecchio, Domitilla; Dy, Aaron J; Qian, Yili

    2016-07-01

    The past several years have witnessed an increased presence of control theoretic concepts in synthetic biology. This review presents an organized summary of how these control design concepts have been applied to tackle a variety of problems faced when building synthetic biomolecular circuits in living cells. In particular, we describe success stories that demonstrate how simple or more elaborate control design methods can be used to make the behaviour of synthetic genetic circuits within a single cell or across a cell population more reliable, predictable and robust to perturbations. The description especially highlights technical challenges that uniquely arise from the need to implement control designs within a new hardware setting, along with implemented or proposed solutions. Some engineering solutions employing complex feedback control schemes are also described, which, however, still require a deeper theoretical analysis of stability, performance and robustness properties. Overall, this paper should help synthetic biologists become familiar with feedback control concepts as they can be used in their application area. At the same time, it should provide some domain knowledge to control theorists who wish to enter the rising and exciting field of synthetic biology. © 2016 The Author(s).

  2. Independence and shared decision making: the role of smart home technology in empowering older adults.

    PubMed

    Demiris, George

    2009-01-01

    This study aims to explore the concepts of independence and shared decision making in the context of smart home technologies for older adults. We conducted a Delphi study with three rounds involving smart home designers, and researchers as well as community dwelling older adults. While there were differences in the way different stakeholders define these concepts, the study findings provide clear implications for the design, implementation and evaluation of smart home applications.

  3. Optimization of Instrument Requirements for NASAs GEO-CAPE Coastal Mission Concept Based On Sensor Capability And Cost Studies

    NASA Technical Reports Server (NTRS)

    Mannino, Antonio

    2015-01-01

    NASA's GEOstationary Coastal and Air Pollution Events (GEOCAPE) mission concept recommended by the U.S. National Research Council (2007) focuses on measurements of atmospheric trace gases and aerosols and aquatic coastal ecology and biogeochemistry from geostationary orbit (35,786 km altitude). GEO-CAPE is currently in pre-formulation (pre- Phase) A with no established launch date. NASA continues to support science and engineering studies to reduce mission risk. Instrument design lab (IDL) studies were commissioned in 2014 to design and cost two implementations for geostationary ocean color instruments (1) Wide-Angle Spectrometer (WAS) and (2) Filter Radiometer (FR) and (3) a cost scaling study to compare the costs for implementing different science performance requirements.

  4. Implementation of authentic assessment in the project based learning to improve student's concept mastering

    NASA Astrophysics Data System (ADS)

    Sambeka, Yana; Nahadi, Sriyati, Siti

    2017-05-01

    The study aimed to obtain the scientific information about increase of student's concept mastering in project based learning that used authentic assessment. The research was conducted in May 2016 at one of junior high school in Bandung in the academic year of 2015/2016. The research method was weak experiment with the one-group pretest-posttest design. The sample was taken by random cluster sampling technique and the sample was 24 students. Data collected through instruments, i.e. written test, observation sheet, and questionnaire sheet. Student's concept mastering test obtained N-Gain of 0.236 with the low category. Based on the result of paired sample t-test showed that implementation of authentic assessment in the project based learning increased student's concept mastering significantly, (sig<0.05).

  5. Advanced solar receivers for space power

    NASA Technical Reports Server (NTRS)

    Strumpf, H. J.; Coombs, M. G.; Lacy, D. E.

    1988-01-01

    A study has been conducted to generate and evaluate advanced solar heat receiver concepts suitable for orbital application with Brayton and Stirling engine cycles in the 7-kW size range. The generated receiver designs have thermal storage capability and, when implemented, will be lighter, smaller, and/or more efficient than baseline systems such as the configuration used for the Brayton solar receiver under development by Garrett AiResearch for the NASA Space Station. In addition to the baseline designs, four other receiver concepts were designed and evaluated with respect to Brayton and Stirling engines. These concepts include a higher temperature version of the baseline receiver, a packed bed receiver, a plate-fin receiver, and a heat pipe receiver. The thermal storage for all designs is provided by the melting and freezing of a salt.

  6. Implementing an Online Writing Assessment Strategy for Gerontology

    ERIC Educational Resources Information Center

    Brown, Pamela S.; Hanks, Roma S.

    2008-01-01

    Assessment of student learning is a growing concern for programs in gerontology. This report focuses on the conception, design, funding, and implementation of an innovative online workshop to assess and improve writing skills of students enrolled in distance-learning gerontology classes. The approach is multidisciplinary and involves a…

  7. Implementing the Multicultural Education Perspective into the Nursing Curriculum.

    ERIC Educational Resources Information Center

    White, Hazel L.

    This paper was written to provide nurse educators with strategies for implementing multicultural concepts into their nursing programs. Administrators are urged to design their total educational process and educational content to reflect a commitment to cultural pluralism, in which traits of nonmainstream cultures are treated as differences rather…

  8. Planning and Implementing the Daily Routine in Slovene Kindergartens and Reggio Emilia Concept

    ERIC Educational Resources Information Center

    Bercnik, Sanja; Devjak, Tatjana

    2012-01-01

    Authors in this paper present the design and implementation of daily routines in Slovenian kindergartens. Slovenian national document for preschool education, "Curriculum for Kindergartens" (1999), describes daily kindergarten activities (communication and interaction with and among children, use of compliment and reprehension, and rules…

  9. Reading Comprehension to 1970: Its Theoretical and Empirical Bases, and Its Implementation in Secondary Professional Textbooks, Instructional Materials, and Tests.

    ERIC Educational Resources Information Center

    Harker, William John

    This study was designed: (1) to determine current concepts of reading comprehension deriving from experimental investigations and theoretical statements, and (2) to establish whether these concepts are represented consistently in current secondary professional reading textbooks, instructional materials, and published tests. Current knowledge of…

  10. Radical Redesign of Nursing Homes: Applying the Green House Concept in Tupelo, Mississippi

    ERIC Educational Resources Information Center

    Rabig, Judith; Thomas, William; Kane, Rosalie A.; Cutler, Lois J.; McAlilly, Steve

    2006-01-01

    Purpose: We present the concept of the Green House, articulated by William Thomas as a radically changed, "deinstitutionalized" nursing home well before its first implementation, and we describe and discuss implications from the first Green Houses in Tupelo, Mississippi. Design and Methods: Green Houses are small, self-contained houses…

  11. Computer-Based Exercises To Supplement the Teaching of Stereochemical Aspects of Drug Action.

    ERIC Educational Resources Information Center

    Harrold, Marc W.

    1995-01-01

    At the Duquesne University (PA) school of pharmacy, five self-paced computer exercises using a molecular modeling program have been implemented to teach stereochemical concepts. The approach, designed for small-group learning, has been well received and found effective in enhancing students' understanding of the concepts. (Author/MSE)

  12. Pre-Service Teachers' TPACK Development and Conceptions through a TPACK-Based Course

    ERIC Educational Resources Information Center

    Durdu, Levent; Dag, Funda

    2017-01-01

    This study examines pre-service teachers' Technological Pedagogical Content Knowledge (TPACK) development and analyses their conceptions of learning and teaching with technology. With this aim in mind, researchers designed and implemented a computer-based mathematics course based on a TPACK framework. As a research methodology, a parallel mixed…

  13. An efficient liner cooling scheme for advanced small gas turbine combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Mongia, Hukam C.; Acosta, Waldo A.

    1993-01-01

    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, small gas turbine, reverse-flow combustor utilizing a compliant metal/ceramic (CMC) wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CMC cooling technique and then demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F burner outlet temperature. The CMC concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefits of improved efficiency, reduced emissions, and lower smoke levels. The program was divided into four tasks. Task 1 defined component materials and localized design of the composite wall structure in conjunction with development of basic design models for the analysis of flow and heat transfer through the wall. Task 2 included implementation of the selected materials and validated design models during combustor preliminary design. Detail design of the selected combustor concept and its refinement with 3D aerothermal analysis were completed in Task 3. Task 4 covered detail drawings, process development and fabrication, and a series of burner rig tests. The purpose of this paper is to provide details of the investigation into the fundamental flow and heat transfer characteristics of the CMC wall structure as well as implementation of the fundamental analysis method for full-scale combustor design.

  14. A model-based design and validation approach with OMEGA-UML and the IF toolset

    NASA Astrophysics Data System (ADS)

    Ben-hafaiedh, Imene; Constant, Olivier; Graf, Susanne; Robbana, Riadh

    2009-03-01

    Intelligent, embedded systems such as autonomous robots and other industrial systems are becoming increasingly more heterogeneous with respect to the platforms on which they are implemented, and thus the software architecture more complex to design and analyse. In this context, it is important to have well-defined design methodologies which should be supported by (1) high level design concepts allowing to master the design complexity, (2) concepts for the expression of non-functional requirements and (3) analysis tools allowing to verify or invalidate that the system under development will be able to conform to its requirements. We illustrate here such an approach for the design of complex embedded systems on hand of a small case study used as a running example for illustration purposes. We briefly present the important concepts of the OMEGA-RT UML profile, we show how we use this profile in a modelling approach, and explain how these concepts are used in the IFx verification toolbox to integrate validation into the design flow and make scalable verification possible.

  15. Mechanistic-Empirical (M-E) Design Implementation & Monitoring for Flexible Pavements : 2018 PROJECT SUMMARY

    DOT National Transportation Integrated Search

    2018-06-01

    This document is a summary of the tasks performed for Project ICT-R27-149-1. Mechanistic-empirical (M-E)based flexible pavement design concepts and procedures were previously developed in Illinois Cooperative Highway Research Program projects IHR-...

  16. Continued implementation of high performance thin overlays in Texas districts.

    DOT National Transportation Integrated Search

    2017-06-22

    As part of Research Project 0-5598, outputs include guidelines and specifications on how a district can design and construct long-life overlays using the concept of balanced mix design; and training materials describing the best ways to select, desig...

  17. Design-Driven Education in Primary and Secondary School Contexts. A Qualitative Study on Teachers' Conceptions on Designing

    ERIC Educational Resources Information Center

    Heikkilä, Anni-Sofia; Vuopala, Essi; Leinonen, Teemu

    2017-01-01

    Design in educational contexts is a relatively new topic. The basic idea of design and design-driven education is that students and teachers participate together in the planning, implementation and evaluation of learning projects. However, how design-driven education should be carried out in practice is yet to be established. Therefore, the aim of…

  18. A novel beam optics concept in a particle therapy gantry utilizing the advantages of superconducting magnets.

    PubMed

    Gerbershagen, Alexander; Meer, David; Schippers, Jacobus Maarten; Seidel, Mike

    2016-09-01

    A first order design of the beam optics of a superconducting proton therapy gantry beam is presented. The possibilities of superconducting magnets with respect to the beam optics such as strong fields, large apertures and superposition of different multipole fields have been exploited for novel concepts in a gantry. Since various techniques used in existing gantries have been used in our first design steps, some examples of the existing superconducting gantry designs are described and the necessary requirements of such a gantry are explained. The study of a gantry beam optics design is based on superconducting combined function magnets. The simulations have been performed in first order with the conventional beam transport codes. The superposition of strong dipole and quadrupole fields generated by superconducting magnets enables the introduction of locally achromatic bending sections without increasing the gantry size. A rigorous implementation of such beam optics concepts into the proposed gantry design dramatically increases the momentum acceptance compared to gantries with normal conducting magnets. In our design this large acceptance has been exploited by the implementation of a degrader within the gantry and a potential possibility to use the same magnetic field for all energies used in a treatment, so that the superconducting magnets do not have to vary their fields during a treatment. This also enables very fast beam energy changes, which is beneficial for spreading the Bragg peak over the thickness of the tumor. The results show an improvement of its momentum acceptance. Large momentum acceptance in the gantry creates a possibility to implement faster dose application techniques. Copyright © 2016. Published by Elsevier GmbH.

  19. Development of rotorcraft interior noise control concepts. Phase 3: Development of noise control concepts

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Gintoli, P. J.; Ingraham, S. T.; Moore, J. A.

    1986-01-01

    The goal of this research is the understanding of helicopter internal noise mechanisms and the development, design, and testing of noise control concepts which will produce significant reductions in the acoustic environment to which passengers are exposed. The Phase 3 effort involved the identification and evaluation of current and advanced treatment concepts, including isolation of structure-borne paths. In addition, a plan was devised for the full-scale evaluation of an isolation concept. Specific objectives were as follows: (1) identification and characterization of various noise control concepts; (2) implementation of noise control concepts within the S-76 SEA (statistical energy analysis) model; (3) definition and evaluation of a preliminary acoustic isolation design to reduce structure-borne transmission of acoustic frequency main gearbox gear clash vibrations into the airframe; (4) formulation of a plan for the full-scale validation of the isolation concept; and (5) prediction of the cabin noise environment with various noise control concepts installed.

  20. Study of repeater technology for advanced multifunctional communications satellites

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Investigations are presented concerning design concepts and implementation approaches for the satellite communication repeater subsystems of advanced multifunctional satellites. In such systems the important concepts are the use of multiple antenna beams, repeater switching (routing), and efficient spectrum utilization through frequency reuse. An information base on these techniques was developed and tradeoff analyses were made of repeater design concepts, with the work design taken in a broad sense to include modulation beam coverage patterns. There were five major areas of study: requirements analysis and processing; study of interbeam interference in multibeam systems; characterization of multiple-beam switching repeaters; estimation of repeater weight and power for a number of alternatives; and tradeoff analyses based on these weight and power data.

  1. The Effectiveness of Guided Inquiry-based Learning Material on Students’ Science Literacy Skills

    NASA Astrophysics Data System (ADS)

    Aulia, E. V.; Poedjiastoeti, S.; Agustini, R.

    2018-01-01

    The purpose of this research is to describe the effectiveness of guided inquiry-based learning material to improve students’ science literacy skills on solubility and solubility product concepts. This study used Research and Development (R&D) design and was implemented to the 11th graders of Muhammadiyah 4 Senior High School Surabaya in 2016/2017 academic year with one group pre-test and post-test design. The data collection techniques used were validation, observation, test, and questionnaire. The results of this research showed that the students’ science literacy skills are different after implementation of guided inquiry-based learning material. The guided inquiry-based learning material is effective to improve students’ science literacy skills on solubility and solubility product concepts by getting N-gain score with medium and high category. This improvement caused by the developed learning material such as lesson plan, student worksheet, and science literacy skill tests were categorized as valid and very valid. In addition, each of the learning phases in lesson plan has been well implemented. Therefore, it can be concluded that the guided inquiry-based learning material are effective to improve students’ science literacy skills on solubility and solubility product concepts in senior high school.

  2. Enhanced Internet firewall design using stateful filters final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hutchins, J.A.; Simons, R.W.

    1997-08-01

    The current state-of-the-art in firewall design provides a lot of security for company networks, but normally at the expense of performance and/or functionality. Sandia researched a new approach to firewall design which incorporates a highly stateful approach, allowing much more flexibility for protocol checking and manipulation while retaining performance. A prototype system was built and multiple protocol policy modules implemented to test the concept. The resulting system, though implemented on a low-power workstation, performed almost at the same performance as Sandia`s current firewall.

  3. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  4. What values in design? The challenge of incorporating moral values into design.

    PubMed

    Manders-Huits, Noëmi

    2011-06-01

    Recently, there is increased attention to the integration of moral values into the conception, design, and development of emerging IT. The most reviewed approach for this purpose in ethics and technology so far is Value-Sensitive Design (VSD). This article considers VSD as the prime candidate for implementing normative considerations into design. Its methodology is considered from a conceptual, analytical, normative perspective. The focus here is on the suitability of VSD for integrating moral values into the design of technologies in a way that joins in with an analytical perspective on ethics of technology. Despite its promising character, it turns out that VSD falls short in several respects: (1) VSD does not have a clear methodology for identifying stakeholders, (2) the integration of empirical methods with conceptual research within the methodology of VSD is obscure, (3) VSD runs the risk of committing the naturalistic fallacy when using empirical knowledge for implementing values in design, (4) the concept of values, as well as their realization, is left undetermined and (5) VSD lacks a complimentary or explicit ethical theory for dealing with value trade-offs. For the normative evaluation of a technology, I claim that an explicit and justified ethical starting point or principle is required. Moreover, explicit attention should be given to the value aims and assumptions of a particular design. The criteria of adequacy for such an approach or methodology follow from the evaluation of VSD as the prime candidate for implementing moral values in design.

  5. Investigation into Practical Implementations of a Zero Knowledge Protocol.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marleau, Peter; Krentz-Wee, Rebecca E.

    In recent years, the concept of Zero Knowledge Protocols (ZKP) as a useful approach to nuclear warhead verification has become increasingly popular. Several implementations of ZKP have been proposed, driving technology development toward proof of concept demonstrations. Whereas proposed implementations seem to fall within the general class of template-based techniques, all physical implementations of ZKPs proposed to date have a complication: once the instrumentation is prepared, it is no longer authenticatable; the instrument physically contains sensitive information. In this work we explore three different concepts that may offer more authenticatable and practical ZKP implementations and evaluate the sensitive information thatmore » may be at risk when doing so: sharing a subset of detector counts in a preloaded image (with spatial information removed), real-time image subtraction, and a new concept, CONfirmation using a Fast-neutron Imaging Detector with Anti-image NULL-positive Time Encoding (CONFIDANTE). CONFIDANTE promises to offer an almost ideal implementation of ZKP: a positive result is indicated by a constant rate at all times enabling the monitoring party the possibility of full access to the instrument before, during, and after confirmation. A prototype of CONFIDANTE was designed, built, and its performance evaluated in a series of measurements of several objects including a set of plutonium dioxide Hemispheres. Very encouraging results proving feasibility are presented. 1 Rebecca is currently a graduate student in Nuclear Engineering at UC Berkeley« less

  6. Design and evaluation of a filter spectrometer concept for facsimile cameras

    NASA Technical Reports Server (NTRS)

    Kelly, W. L., IV; Jobson, D. J.; Rowland, C. W.

    1974-01-01

    The facsimile camera is an optical-mechanical scanning device which was selected as the imaging system for the Viking '75 lander missions to Mars. A concept which uses an interference filter-photosensor array to integrate a spectrometric capability with the basic imagery function of this camera was proposed for possible application to future missions. This paper is concerned with the design and evaluation of critical electronic circuits and components that are required to implement this concept. The feasibility of obtaining spectroradiometric data is demonstrated, and the performance of a laboratory model is described in terms of spectral range, angular and spectral resolution, and noise-equivalent radiance.

  7. A large scale software system for simulation and design optimization of mechanical systems

    NASA Technical Reports Server (NTRS)

    Dopker, Bernhard; Haug, Edward J.

    1989-01-01

    The concept of an advanced integrated, networked simulation and design system is outlined. Such an advanced system can be developed utilizing existing codes without compromising the integrity and functionality of the system. An example has been used to demonstrate the applicability of the concept of the integrated system outlined here. The development of an integrated system can be done incrementally. Initial capabilities can be developed and implemented without having a detailed design of the global system. Only a conceptual global system must exist. For a fully integrated, user friendly design system, further research is needed in the areas of engineering data bases, distributed data bases, and advanced user interface design.

  8. The Design and Implementation of a Prototype Web-Portal for the Integrated Mobile Alerting System (IMAS)

    DTIC Science & Technology

    2006-06-01

    Deitel , Harvey M., Paul J. Deitel , and Andrew B. Goldberg. 2004. Internet & World Wide Web: How to Program . Third Edition. Upper Saddle River...mobile devices. The proposed design will result in a proof-of-concept solution that demonstrates a way for users to specify how they wish to ...ORGANIZATION OF THE THESIS The following chapters in this thesis explore various technologies and how they may be implemented to support IMAS

  9. Rotor systems research aircraft simulation mathematical model

    NASA Technical Reports Server (NTRS)

    Houck, J. A.; Moore, F. L.; Howlett, J. J.; Pollock, K. S.; Browne, M. M.

    1977-01-01

    An analytical model developed for evaluating and verifying advanced rotor concepts is discussed. The model was used during in both open loop and real time man-in-the-loop simulation during the rotor systems research aircraft design. Future applications include: pilot training, preflight of test programs, and the evaluation of promising concepts before their implementation on the flight vehicle.

  10. Tool for Experimenting with Concepts of Mobile Robotics as Applied to Children's Education

    ERIC Educational Resources Information Center

    Jimenez Jojoa, E. M.; Bravo, E. C.; Bacca Cortes, E. B.

    2010-01-01

    This paper describes the design and implementation of a tool for experimenting with mobile robotics concepts, primarily for use by children and teenagers, or by the general public, without previous experience in robotics. This tool helps children learn about science in an approachable and interactive way, using scientific research principles in…

  11. Two-Stage Hands-On Technology Activity to Develop Preservice Teachers' Competency in Applying Science and Mathematics Concepts

    ERIC Educational Resources Information Center

    Lin, Kuen-Yi; Williams, P. John

    2017-01-01

    This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey's learning experience theory that is designed to enhance preservice teachers' primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions…

  12. Innovative Access Programme for Young Mothers Wishing to Train in Childbirth Education: From Concept to Evaluation

    ERIC Educational Resources Information Center

    Nolan, Mary L.

    2008-01-01

    This paper describes the conception, planning, implementation and evaluation of an access programme arising out of an innovative collaboration between two charities, Straight Talking and the National Childbirth Trust. The access programme was designed at the request of a group of young mothers who had finished compulsory education and subsequently…

  13. Fault-tolerant wait-free shared objects

    NASA Technical Reports Server (NTRS)

    Jayanti, Prasad; Chandra, Tushar D.; Toueg, Sam

    1992-01-01

    A concurrent system consists of processes communicating via shared objects, such as shared variables, queues, etc. The concept of wait-freedom was introduced to cope with process failures: each process that accesses a wait-free object is guaranteed to get a response even if all the other processes crash. However, if a wait-free object 'crashes,' all the processes that access that object are prevented from making progress. In this paper, we introduce the concept of fault-tolerant wait-free objects, and study the problem of implementing them. We give a universal method to construct fault-tolerant wait-free objects, for all types of 'responsive' failures (including one in which faulty objects may 'lie'). In sharp contrast, we prove that many common and interesting types (such as queues, sets, and test&set) have no fault-tolerant wait-free implementations even under the most benign of the 'non-responsive' types of failure. We also introduce several concepts and techniques that are central to the design of fault-tolerant concurrent systems: the concepts of self-implementation and graceful degradation, and techniques to automatically increase the fault-tolerance of implementations. We prove matching lower bounds on the resource complexity of most of our algorithms.

  14. Fueling Chemical Engineering Concepts with Biodiesel Production: A Professional Development Experience for High School Pre-Service Teachers

    ERIC Educational Resources Information Center

    Gupta, Anju

    2015-01-01

    This one-day workshop for pre-service teachers was aimed at implementing a uniquely designed and ready-to-implement chemical engineering curriculum in high school coursework. This educational and professional development opportunity introduced: 1) chemical engineering curriculum and career opportunities, 2) basic industrial processes and flow…

  15. Curriculum Policy Implementation: How Schools Respond to Government's "Soft" Policy in the Curriculum Reform

    ERIC Educational Resources Information Center

    Chan, Jacqueline K. S.

    2012-01-01

    "Soft" policy has newly emerged as a policy implementation concept in relation to governance. Non-binding in character, "soft" policy is designed for multi-level systems of governance in which there is relative autonomy at different levels of collective decision-making. "Soft" policy has gained attention since the…

  16. The Development and Implementation of a Diversity Management Curriculum: Organizational Change through Exploration and Exploitation

    ERIC Educational Resources Information Center

    Danowitz, Mary Ann; Hanappi-Egger, Edeltraud; Hofmann, Roswitha

    2009-01-01

    Purpose: The purpose of this paper is to provide concepts and strategies to successfully introduce and implement curricular change; especially, related to incorporating diversity management into academic programs. Design/methodology/approach: Utilizing documents and accounts from two agents involved in the change process and an outside observer,…

  17. Foundations of Algebra: 2009-10. Implementation Insights. E&R Report No. 10.28

    ERIC Educational Resources Information Center

    Paeplow, Colleen

    2010-01-01

    This report examined the implementation of Foundations of Algebra, a course designed to provide high school students with low mathematics performance an extra opportunity to review and study foundational mathematics concepts prior to enrolling in Introductory Mathematics and subsequently Algebra I. In the fall of 2009, 877 high school students…

  18. The Implementation and Use of E-Learning in the Corporate University

    ERIC Educational Resources Information Center

    Macpherson, Allan; Homan, Gill; Wilkinson, Krystal

    2005-01-01

    Purpose: The use of e-learning in corporate universities enables access and broadens the curriculum. This paper assesses the use and implementation of e-learning through case material, and explores some of the challenges and emerging concerns. Design/methodology/approach: The paper reviews the corporate university concept and considers how an…

  19. ThermoData Engine (TDE): software implementation of the dynamic data evaluation concept. 5. Experiment planning and product design.

    PubMed

    Diky, Vladimir; Chirico, Robert D; Kazakov, Andrei F; Muzny, Chris D; Magee, Joseph W; Abdulagatov, Ilmutdin; Kang, Jeong Won; Kroenlein, Kenneth; Frenkel, Michael

    2011-01-24

    ThermoData Engine (TDE) is the first full-scale software implementation of the dynamic data evaluation concept, as reported recently in this journal. In the present paper, we describe development of an algorithmic approach to assist experiment planning through assessment of the existing body of knowledge, including availability of experimental thermophysical property data, variable ranges studied, associated uncertainties, state of prediction methods, and parameters for deployment of prediction methods and how these parameters can be obtained using targeted measurements, etc., and, indeed, how the intended measurement may address the underlying scientific or engineering problem under consideration. A second new feature described here is the application of the software capabilities for aid in the design of chemical products through identification of chemical systems possessing desired values of thermophysical properties within defined ranges of tolerance. The algorithms and their software implementation to achieve this are described. Finally, implementation of a new data validation and weighting system is described for vapor-liquid equilibrium (VLE) data, and directions for future enhancements are outlined.

  20. Assured Crew Return Vehicle

    NASA Technical Reports Server (NTRS)

    Stone, D. A.; Craig, J. W.; Drone, B.; Gerlach, R. H.; Williams, R. J.

    1991-01-01

    The developmental status is discussed regarding the 'lifeboat' vehicle to enhance the safety of the crew on the Space Station Freedom (SSF). NASA's Assured Crew Return Vehicle (ACRV) is intended to provide a means for returning the SSF crew to earth at all times. The 'lifeboat' philosophy is the key to managing the development of the ACRV which further depends on matrixed support and total quality management for implementation. The risk of SSF mission scenarios are related to selected ACRV mission requirements, and the system and vehicle designs are related to these precepts. Four possible ACRV configurations are mentioned including the lifting-body, Apollo shape, Discoverer shape, and a new lift-to-drag concept. The SCRAM design concept is discussed in detail with attention to the 'lifeboat' philosophy and requirements for implementation.

  1. Simulator Evaluation of Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Elliott, Dawn M.

    2001-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2500 ft. This report describes the AILS operational concept and the results of a ground-based flight simulation experiment of one implementation of this concept. The focus of this simulation experiment was to evaluate pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which all aircraft oil one approach intrudes into the path of an aircraft oil the other approach. Results from this study showed that the design-goal mean miss-distance of 1200 ft to potential collision situations was surpassed with an actual mean miss-distance of 2236 ft. Pilot reaction times to the alerting system, which was an operational concern, averaged 1.11 sec, well below the design-goal reaction time 2.0 sec.These quantitative results and pilot subjective data showed that the AILS concept is reasonable from an operational standpoint.

  2. Overcoming Barriers to Implementation of Evidence-Based Practice Concepts in Athletic Training Education: Perceptions of Select Educators

    PubMed Central

    Manspeaker, Sarah; Van Lunen, Bonnie

    2011-01-01

    Context: The need to include evidence-based practice (EBP) concepts in entry-level athletic training education is evident as the profession transitions toward using evidence to inform clinical decision making. Objective: To evaluate athletic training educators' experience with implementation of EBP concepts in Commission on Accreditation of Athletic Training Education (CAATE)-accredited entry-level athletic training education programs in reference to educational barriers and strategies for overcoming these barriers. Design: Qualitative interviews of emergent design with grounded theory. Setting: Undergraduate CAATE-accredited athletic training education programs. Patients or Other Participants: Eleven educators (3 men, 8 women). The average number of years teaching was 14.73 ± 7.06. Data Collection and Analysis: Interviews were conducted to evaluate perceived barriers and strategies for overcoming these barriers to implementation of evidence-based concepts in the curriculum. Interviews were explored qualitatively through open and axial coding. Established themes and categories were triangulated and member checked to determine trustworthiness. Results: Educators identified 3 categories of need for EBP instruction: respect for the athletic training profession, use of EBP as part of the decision-making toolbox, and third-party reimbursement. Barriers to incorporating EBP concepts included time, role strain, knowledge, and the gap between clinical and educational practices. Suggested strategies for surmounting barriers included identifying a starting point for inclusion and approaching inclusion from a faculty perspective. Conclusions: Educators must transition toward instruction of EBP, regardless of barriers present in their academic programs, in order to maintain progress with other health professions' clinical practices and educational standards. Because today's students are tomorrow's clinicians, we need to include EBP concepts in entry-level education to promote critical thinking, inspire potential research interest, and further develop the available body of knowledge in our growing clinical practice. PMID:22488139

  3. Approximation concepts for efficient structural synthesis

    NASA Technical Reports Server (NTRS)

    Schmit, L. A., Jr.; Miura, H.

    1976-01-01

    It is shown that efficient structural synthesis capabilities can be created by using approximation concepts to mesh finite element structural analysis methods with nonlinear mathematical programming techniques. The history of the application of mathematical programming techniques to structural design optimization problems is reviewed. Several rather general approximation concepts are described along with the technical foundations of the ACCESS 1 computer program, which implements several approximation concepts. A substantial collection of structural design problems involving truss and idealized wing structures is presented. It is concluded that since the basic ideas employed in creating the ACCESS 1 program are rather general, its successful development supports the contention that the introduction of approximation concepts will lead to the emergence of a new generation of practical and efficient, large scale, structural synthesis capabilities in which finite element analysis methods and mathematical programming algorithms will play a central role.

  4. Duct wall impedance control as an advanced concept for acoustic impression

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Tester, B. J.

    1975-01-01

    Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.

  5. Technical and Economic Assessment of Span-Loaded Cargo Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The benefits are assessed of span distributed loading concepts as applied to future commercial air cargo operations. A two phased program is used to perform this assessment. The first phase consists of selected parametric studies to define significant configuration, performance, and economic trends. The second phase consists of more detailed engineering design, analysis, and economic evaluations to define the technical and economic feasibility of a selected spanloader design. A conventional all-cargo aircraft of comparable technology and size is used as a comparator system. The technical feasibility is demonstrated of the spanloader concept with no new major technology efforts required to implement the system. However, certain high pay-off technologies such as winglets, airfoil design, and advanced structural materials and manufacturing techniques need refinement and definition prior to application. In addition, further structural design analysis could establish the techniques and criteria necessary to fully capitalize upon the high degree of structural commonality and simplicity inherent in the spanloader concept.

  6. 3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ku, J.H.; Choung, W.M.; You, G.S.

    The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluationmore » plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.« less

  7. Towards More Powerful Learning Environments through Combining the Perspectives of Designers, Teachers, and Students

    ERIC Educational Resources Information Center

    Konings, Karen D; Brand-Gruwel, Saskia; van Merrienboer, Jeroen J. G.

    2005-01-01

    In order to reach the main aims of modern education, powerful learning environments are designed. The characteristics of the design of PLEs are expected to have positive effects on student learning. Additionally, teachers' conceptions of learning and teaching do influence the implementation of a PLE. Moreover, students' perceptions of a learning…

  8. 77 FR 13173 - Best Equipped Best Served

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ... implications of these selected scenarios. The candidate proposals for discussion have been designed to deliver on the best equipped, best performing, best served concept for implementation in the 2012-2014...

  9. Do we face a fourth paradigm shift in medicine--algorithms in education?

    PubMed

    Eitel, F; Kanz, K G; Hortig, E; Tesche, A

    2000-08-01

    Medicine has evolved toward rationalization since the Enlightenment, favouring quantitative measures. Now, a paradigm shift toward control through formalization can be observed in health care whose structures and processes are subjected to increasing standardization. However, educational reforms and curricula do not yet adequately respond to this shift. The aim of this article is to describe innovative approaches in medical education for adapting to these changes. The study design is a descriptive case report relying on a literature review and on a reform project's evaluation. Concept mapping is used to graphically represent relationships among concepts, i.e. defined terms from educational literature. Definitions of 'concept map', 'guideline' and 'algorithm' are presented. A prototypical algorithm for organizational decision making in the project's instructional design is shown. Evaluation results of intrinsic learning motivation are demonstrated: intrinsic learning motivation depends upon students' perception of their competence exhibiting path coefficients varying from 0.42 to 0.51. Perception of competence varies with the type of learning environment. An innovative educational format, called 'evidence-based learning (EBL)' is deduced from these findings and described here. Effects of formalization consist of structuring decision making about implementation of different learning environments or about minimizing variance in teaching or learning. Unintended effects of formalization such as implementation problems and bureaucracy are discussed. Formalized tools for designing medical education are available. Specific instructional designs influence students' learning motivation. Concept maps are suitable for controlling educational quality, thus enabling the paradigm shift in medical education.

  10. Utopian Kinetic Structures and Their Impact on the Contemporary Architecture

    NASA Astrophysics Data System (ADS)

    Cudzik, Jan; Nyka, Lucyna

    2017-10-01

    This paper delves into relationships between twentieth century utopian concepts of movable structures and the kinematic solutions implemented in contemporary architectural projects. The reason for conducting this study is to determine the impact of early architectural conceptions on today’s solutions. This paper points out close links that stem from the imagination of artists and architects working in 1960s and 70s and the solutions implemented by contemporary architects of that era. The research method of this paper is based on comparative analyses of architectural forms with adopted kinematic solutions. It is based on archive drawings’ studies and the examination of theoretical concepts. The research pertains to different forms of such mobility that evolved in 1960s and 70s. Many of them, usually based on the simple forms of movement were realized. The more complicated ones remained in the sphere of utopian visionary architecture. In this case, projects often exceed technical limitations and capabilities of design tools. Finally, after some decades, with the development of innovative architectural design tools and new building technologies many early visions materialized into architectural forms. In conclusion, this research indicates that modern kinematic design solutions are often based on conceptual designs formed from the beginning of the second half of the twentieth century.

  11. Implementation literacy strategies on health technology theme Learning to enhance Indonesian Junior High School Student's Physics Literacy

    NASA Astrophysics Data System (ADS)

    Feranie, Selly; Efendi, Ridwan; Karim, Saeful; Sasmita, Dedi

    2016-08-01

    The PISA results for Indonesian Students are lowest among Asian countries in the past two successive results. Therefore various Innovations in science learning process and its effectiveness enhancing student's science literacy is needed to enrich middle school science teachers. Literacy strategies have been implemented on health technologies theme learning to enhance Indonesian Junior high school Student's Physics literacy in three different health technologies e.g. Lasik surgery that associated with application of Light and Optics concepts, Ultra Sonographer (USG) associated with application of Sound wave concepts and Work out with stationary bike and walking associated with application of motion concepts. Science learning process involves at least teacher instruction, student learning and a science curriculum. We design two main part of literacy strategies in each theme based learning. First part is Integrated Reading Writing Task (IRWT) is given to the students before learning process, the second part is scientific investigation learning process design packed in Problem Based Learning. The first part is to enhance student's science knowledge and reading comprehension and the second part is to enhance student's science competencies. We design a transformation from complexity of physics language to Middle school physics language and from an expensive and complex science investigation to a local material and simply hands on activities. In this paper, we provide briefly how literacy strategies proposed by previous works is redesigned and applied in classroom science learning. Data were analysed using t- test. The increasing value of mean scores in each learning design (with a significance level of p = 0.01) shows that the implementation of this literacy strategy revealed a significant increase in students’ physics literacy achievement. Addition analysis of Avarage normalized gain show that each learning design is in medium-g courses effectiveness category according to Hake's classification.

  12. Design for robustness of unique, multi-component engineering systems

    NASA Astrophysics Data System (ADS)

    Shelton, Kenneth A.

    2007-12-01

    The purpose of this research is to advance the science of conceptual designing for robustness in unique, multi-component engineering systems. Robustness is herein defined as the ability of an engineering system to operate within a desired performance range even if the actual configuration has differences from specifications within specified tolerances. These differences are caused by three sources, namely manufacturing errors, system degradation (operational wear and tear), and parts availability. Unique, multi-component engineering systems are defined as systems produced in unique or very small production numbers. They typically have design and manufacturing costs on the order of billions of dollars, and have multiple, competing performance objectives. Design time for these systems must be minimized due to competition, high manpower costs, long manufacturing times, technology obsolescence, and limited available manpower expertise. Most importantly, design mistakes cannot be easily corrected after the systems are operational. For all these reasons, robustness of these systems is absolutely critical. This research examines the space satellite industry in particular. Although inherent robustness assurance is absolutely critical, it is difficult to achieve in practice. The current state of the art for robustness in the industry is to overdesign components and subsystems with redundancy and margin. The shortfall is that it is not known if the added margins were either necessary or sufficient given the risk management preferences of the designer or engineering system customer. To address this shortcoming, new assessment criteria to evaluate robustness in design concepts have been developed. The criteria are comprised of the "Value Distance", addressing manufacturing errors and system degradation, and "Component Distance", addressing parts availability. They are based on an evolutionary computation format that uses a string of alleles to describe the components in the design concept. These allele values are unitless themselves, but map to both configuration descriptions and attribute values. The Value Distance and Component Distance are metrics that measure the relative differences between two design concepts using the allele values, and all differences in a population of design concepts are calculated relative to a reference design, called the "base design". The base design is the top-ranked member of the population in weighted terms of robustness and performance. Robustness is determined based on the change in multi-objective performance as Value Distance and Component Distance (and thus differences in design) increases. It is assessed as acceptable if differences in design configurations up to specified tolerances result in performance changes that remain within a specified performance range. The design configuration difference tolerances and performance range together define the designer's risk management preferences for the final design concepts. Additionally, a complementary visualization capability was developed, called the "Design Solution Topography". This concept allows the visualization of a population of design concepts, and is a 3-axis plot where each point represents an entire design concept. The axes are the Value Distance, Component Distance and Performance Objective. The key benefit of the Design Solution Topography is that it allows the designer to visually identify and interpret the overall robustness of the current population of design concepts for a particular performance objective. In a multi-objective problem, each performance objective has its own Design Solution Topography view. These new concepts are implemented in an evolutionary computation-based conceptual designing method called the "Design for Robustness Method" that produces robust design concepts. The design procedures associated with this method enable designers to evaluate and ensure robustness in selected designs that also perform within a desired performance range. The method uses an evolutionary computation-based procedure to generate populations of large numbers of alternative design concepts, which are assessed for robustness using the Value Distance, Component Distance and Design Solution Topography procedures. The Design for Robustness Method provides a working conceptual designing structure in which to implement and gain the benefits of these new concepts. In the included experiments, the method was used on several mathematical examples to demonstrate feasibility, which showed favorable results as compared to existing known methods. Furthermore, it was tested on a real-world satellite conceptual designing problem to illustrate the applicability and benefits to industry. Risk management insights were demonstrated for the robustness-related issues of manufacturing errors, operational degradation, parts availability, and impacts based on selections of particular types of components.

  13. Visualizing Volume to Help Students Understand the Disk Method on Calculus Integral Course

    NASA Astrophysics Data System (ADS)

    Tasman, F.; Ahmad, D.

    2018-04-01

    Many research shown that students have difficulty in understanding the concepts of integral calculus. Therefore this research is interested in designing a classroom activity integrated with design research method to assist students in understanding the integrals concept especially in calculating the volume of rotary objects using disc method. In order to support student development in understanding integral concepts, this research tries to use realistic mathematical approach by integrating geogebra software. First year university student who takes a calculus course (approximately 30 people) was chosen to implement the classroom activity that has been designed. The results of retrospective analysis show that visualizing volume of rotary objects using geogebra software can assist the student in understanding the disc method as one way of calculating the volume of a rotary object.

  14. Mechanical Drawing and Design.

    ERIC Educational Resources Information Center

    Mikulsky, Marilyn; McEnaney, Walter K.

    A syllabus is provided for a comprehensive foundation course in mechanical drawing and design for grades 9, 10, 11, or 12 that is prerequisite to advanced elective courses. Introductory materials include course objectives, an overview of basic concepts, and guidelines for implementation. Brief discussions of and suggestions for the areas of design…

  15. Idea Bank: Individualized Assessment in the Choral Ensemble

    ERIC Educational Resources Information Center

    Furby, Victoria J.

    2013-01-01

    Choral directors will always be assessed by the quality of their choral performances. The concepts presented in this article are designed to strengthen and improve choral performance. If choral directors can design an individualized assessment plan and implement some of these ideas during each grading period, grades will be more equitably…

  16. Using Technology and Inquiry to Improve Student Understanding of Watershed Concepts

    ERIC Educational Resources Information Center

    Smith, Julie M.; Edwards, Patrick M.; Raschke, Jason

    2006-01-01

    This paper presents the design, implementation and assessment of the Columbia River Basin Environmental Research Project (CERP) curriculum. CERP is an online inquiry-based, regional geographic curriculum designed to improve technology skills and content knowledge about water quality and watershed-level processes. Student attitudes and knowledge…

  17. First-Year Hands-On Design Course: Implementation & Reception

    ERIC Educational Resources Information Center

    Butterfield, Anthony E.; Branch, Kyle; Trujillo, Edward

    2015-01-01

    To incorporate active and collaborative teaching methods early in our curriculum, we have developed a freshman design laboratory. The course introduces numerous core concepts and lab skills, by way of seven teaching modules, including spectrometer construction and a collaborative project with seniors. Survey data show students enjoyed and learned…

  18. The Principles of Designing an Expert System in Teaching Mathematics

    ERIC Educational Resources Information Center

    Salekhova, Lailya; Nurgaliev, Albert; Zaripova, Rinata; Khakimullina, Nailya

    2013-01-01

    This study reveals general didactic concepts of the Expert Systems (ES) development process in the educational area. The proof of concept is based on the example of teaching the 8th grade Algebra subject. The main contribution in this work is the implementation of innovative approaches in analysis and processing of data by expert system as well as…

  19. A Residential School's Outdoor Education Program for Emotionally Handicapped Adolescents. Final Project Report of the Rhinecliff Union Free School District, Holy Cross Campus.

    ERIC Educational Resources Information Center

    Rigothi, Anthony, Ed.

    Concept definition and activity description constituted the major focus of implementation proceedings of this outdoor education program designed for a residential school serving secondary students with emotional and drug related problems. Major program objectives were the development of greater academic growth and more positive self-concept for…

  20. Fair Play: Developing Self-Concept and Decision-Making Skills in the Middle School. Implementation Handbook.

    ERIC Educational Resources Information Center

    Florida State Univ., Tallahassee.

    This handbook is designed to assist schools in carrying out the following goals of the Fair Play program: to strengthen and expand students' female or male self-concepts, to increase their decision-making skills, and to increase their academic achievement by changing their stereotypic attitude toward particular content areas. The Fair Play program…

  1. VISTILES: Coordinating and Combining Co-located Mobile Devices for Visual Data Exploration.

    PubMed

    Langner, Ricardo; Horak, Tom; Dachselt, Raimund

    2017-08-29

    We present VISTILES, a conceptual framework that uses a set of mobile devices to distribute and coordinate visualization views for the exploration of multivariate data. In contrast to desktop-based interfaces for information visualization, mobile devices offer the potential to provide a dynamic and user-defined interface supporting co-located collaborative data exploration with different individual workflows. As part of our framework, we contribute concepts that enable users to interact with coordinated & multiple views (CMV) that are distributed across several mobile devices. The major components of the framework are: (i) dynamic and flexible layouts for CMV focusing on the distribution of views and (ii) an interaction concept for smart adaptations and combinations of visualizations utilizing explicit side-by-side arrangements of devices. As a result, users can benefit from the possibility to combine devices and organize them in meaningful spatial layouts. Furthermore, we present a web-based prototype implementation as a specific instance of our concepts. This implementation provides a practical application case enabling users to explore a multivariate data collection. We also illustrate the design process including feedback from a preliminary user study, which informed the design of both the concepts and the final prototype.

  2. Identification of Increasing Green Behaviour in Citraland Bagya City, Medan

    NASA Astrophysics Data System (ADS)

    Aulia, D. N.; Marpaung, B. O. Y.; Suryani, L.

    2017-03-01

    This present time, Indonesia just began applying the concept of Green Architecture. The actions require community participation as residents and the users of the building. The built environment is designed around the idea of Green Architecture but inhabited and managed improperly; the goal of sustainable built environment is not achieved. The aspect of behaviour is the key factor in the implementation of Green Architecture’s concept. This research is a descriptive exploratory which is to identify the problems to the implementation of Green Architecture’s concept in planned housing. Then the study will explore the components causes of the problems used as a problem solver. The study conducted on the living behaviour in Citraland Bagya City’s resident. The estate is designed and built with the concept of Green Architecture in Medan city. The research was carried out by the four aspects of housing are the physical, social and cultural, policy, and management issue. These three components will indirectly relate to the economic issues that are the efficiency and effectiveness of living behaviour. The results showed that the increasing of green behavior is still small and the occupant requires motivation and socialization of living green.

  3. Implementation Options for the PROPEL Electrodynamic Tether Demonstration Mission

    NASA Technical Reports Server (NTRS)

    Bilen, Sven G.; Johnson, C. Les; Gilchrist, Brian E.; Hoyt, Robert P.; Elder, Craig H.; Fuhrhop, Keith P.; Scadera, Michael; Stone, Nobie

    2014-01-01

    The PROPEL ("Propulsion using Electrodynamics") flight demonstration mission concept will demonstrate the use of an electrodynamic tether (EDT) for generating thrust, which will allow the propulsion system to overcome the limitations of the rocket equation. The mission concept has been developed by a team of government, industry, and academia partners led by NASA Marshall Space Flight Center (MSFC). PROPEL is being designed for versatility of the EDT system with multiple end users in mind and to be flexible with respect to platform. Previously, we reported on a comprehensive mission design for PROPEL with a mission duration of six months or longer with multiple mission goals including demonstration of significant boost, deboost, inclination change, and drag make-up activities. To explore a range of possible configurations, primarily driven by cost considerations, other mission concept designs have been pursued. In partnership with the NASA's Office of Chief Technologist (OCT) Game Changing Program, NASA MSFC Leadership, and the MSFC Advanced Concepts Office, a mission concept design was developed for a near-term EDT propulsion flight validation mission. The Electrodynamic Tether Propulsion Study (ETPS) defined an EDT propulsion system capable of very large delta-V for use on future missions developed by NASA, DoD, and commercial customers. To demonstrate the feasibility of an ETPS, the study focused on a space demonstration mission concept design with configuration of a pair of tethered satellite busses, one of which is the Japanese H-II Transfer Vehicle (HTV). The HTV would fly its standard ISS resupply mission. When resupply mission is complete, the ISS reconfigures and releases the HTV to perform the EDT experiment at safe orbital altitudes below the ISS. Though the focus of this particular mission concept design addresses a scenario involving the HTV or a similar vehicle, the propulsion system's capability is relevant to a number of applications, as noted above. The ETPS builds on prior work on long-life, failure-resistant, conducting tethers and includes an instrument suite with demonstrated heritage capable of performing necessary diagnostics to measure performance against predictions for a given system size (to be determined) and boost rate. Mission designs in other configurations and launch vehicle options are being developed such that the system can be demonstration should a flight opportunity be identified. We will report on past and ongoing implementation options for PROPEL.

  4. The quest for quality and productivity in health services.

    PubMed

    Sahney, V K; Warden, G L

    1991-01-01

    The leaders of health care organizations across the country are facing significant pressures to improve the quality of their services while reducing the rate of cost increases within the industry. Total Quality Management (TQM) has been credited, by many leaders in the manufacturing industry, as an effective tool to manage their organizations. This article presents key concepts of TQM as discussed by quality experts, namely, Deming, Juran, and Crosby. It discusses 12 key concepts that have formed the foundation of TQM implementation at Henry Ford Health System. The process of implementation is presented in detail, and the role of TQM in clinical applications is discussed. Success factors and visible actions by senior management designed to reinforce the implementation of TQM in any organization are presented.

  5. "Gaa-Noodin-Oke" (Alternative Energy/Wind Power): A Curriculum Implementation on the White Earth Reservation

    ERIC Educational Resources Information Center

    Guzey, Siddika Selcen; Nyachwaya, James; Moore, Tamara J.; Roehrig, Gillian H.

    2014-01-01

    A wind energy focused curriculum for grades 4-8 was designed and implemented to promote the understanding of wind energy concepts with American Indian students. 57 students who participated in the 2009 summer program of the "Reach for the Sky" (RFTS) Science, Technology, Engineering, and Mathematics (STEM) received the curriculum. The…

  6. Project on School Staff Health Promotion in Poland: The First Experiences

    ERIC Educational Resources Information Center

    Woynarowska-Soldan, Magdalena

    2015-01-01

    Purpose: The purpose of this paper is to present the concept, methods of implementation, results and experiences from the first stage of the three-year project on school staff health promotion carried out within the framework of the health-promoting school (HPS) network in Poland. Design/methodology/approach: The project was implemented in 2012 in…

  7. Career Development via Counselor/Teacher Teams; Guide for Implementation.

    ERIC Educational Resources Information Center

    Royal Oak City School District, MI.

    The career development modules of the implementation guide, designed by counselor/teacher teams in Royal Oak, Michigan for junior high students, are intended to be used as a working copy for counselor/teacher teams. Career education concepts of self-awareness, assessment, and decision-making are correlated with the broad questions of: Who am I?…

  8. Secondary Geography and the Australian Curriculum--Directions in School Implementation: A Comparative Study

    ERIC Educational Resources Information Center

    Casinader, Niranjan

    2016-01-01

    At first glance, the introduction of a national curriculum for Australian schools suggested a new era of revival for school geography. Since the late 1980s, the development and introduction of more integrated conceptions of curriculum design and implementation has seen the decline of Geography as a distinct subject in Australian schools, with…

  9. Baseband-processed SS-TDMA communication system architecture and design concepts

    NASA Technical Reports Server (NTRS)

    Attwood, S.; Sabourin, D.

    1982-01-01

    The architecture and system design for a commercial satellite communications system planned for the 1990's was developed by Motorola for NASA's Lewis Research Center. The system provides data communications between individual users via trunking and customer premises service terminals utilizing a central switching satellite operating in a time-division multiple-access (TDMA) mode. The major elements of the design incorporating baseband processing include: demand-assigned multiple access reservation protocol, spectral utilization, system synchronization, modulation technique and forward error control implementation. Motorola's baseband processor design, which is being proven in a proof-of-concept advanced technology development, will perform data regeneration and message routing for individual users on-board the spacecraft.

  10. An affective e-commerce design for SMEs product marketing based on kansei engineering

    NASA Astrophysics Data System (ADS)

    Habyba, A. N.; Djatna, T.; Anggraeni, E.

    2018-04-01

    One of the SMEs problems in Indonesia in this information technology era is the inability to control the market. SMEs can use the e-commerce website to improve their competitiveness. It can be used as a marketing tool for SMEs to promote their products and expands the SMEs markets especially for the agroindustry SMEs where located in district area that still rely on local markets to sell their product. Some SMEs e-commerce websites have been developed in Indonesia but can not significantly increased the sales of SMEs product. Furthemore, the design of it is only able to meet the consumer need in function and usability. The development of e-commerce design should pay attention in high affective quality. This is because the affective responses effect the user’s perception of cognitive quality, usability and ease of use of e-commerce. This study is aimed to make e-commerce that can meet the affective needs of users. The result of Kansei words selection and extraction using TF-IDF are four design concepts of e-commerce website. The formulation of new SMEs e-commerce website design is resulted from the integration of four design concepts and four design elements. The “Natural-Formal” concept has the greatest value than other concepts after QTT-1 analysis. This concept can implemented as the new SMEs e-commerce website design.

  11. Self-Shielding Of Transmission Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christodoulou, Christos

    The use of shielding to contend with noise or harmful EMI/EMR energy is not a new concept. An inevitable trade that must be made for shielding is physical space and weight. Space was often not as much of a painful design trade in older larger systems as they are in today’s smaller systems. Today we are packing in an exponentially growing number of functionality within the same or smaller volumes. As systems become smaller and space within systems become more restricted, the implementation of shielding becomes more problematic. Often, space that was used to design a more mechanically robust componentmore » must be used for shielding. As the system gets smaller and space is at more of a premium, the trades starts to result in defects, designs with inadequate margin in other performance areas, and designs that are sensitive to manufacturing variability. With these challenges in mind, it would be ideal to maximize attenuation of harmful fields as they inevitably couple onto transmission lines without the use of traditional shielding. Dr. Tom Van Doren proposed a design concept for transmission lines to a class of engineers while visiting New Mexico. This design concept works by maximizing Electric field (E) and Magnetic Field (H) field containment between operating transmission lines to achieve what he called “Self-Shielding”. By making the geometric centroid of the outgoing current coincident with the return current, maximum field containment is achieved. The reciprocal should be true as well, resulting in greater attenuation of incident fields. Figure’s 1(a)-1(b) are examples of designs where the current centroids are coincident. Coax cables are good examples of transmission lines with co-located centroids but they demonstrate excellent field attenuation for other reasons and can’t be used to test this design concept. Figure 1(b) is a flex circuit design that demonstrate the implementation of self-shielding vs a standard conductor layout.« less

  12. Design of the ARES Mars Airplane and Mission Architecture

    NASA Technical Reports Server (NTRS)

    Braun, Robert D.; Wright, Henry S.; Croom, Mark A.; Levine, Joel S.; Spencer, David A.

    2006-01-01

    Significant technology advances have enabled planetary aircraft to be considered as viable science platforms. Such systems fill a unique planetary science measurement gap, that of regional-scale, near-surface observation, while providing a fresh perspective for potential discovery. Recent efforts have produced mature mission and flight system concepts, ready for flight project implementation. This paper summarizes the development of a Mars airplane mission architecture that balances science, implementation risk and cost. Airplane mission performance, flight system design and technology maturation are described. The design, analysis and testing completed demonstrates the readiness of this science platform for use in a Mars flight project.

  13. On data modeling for neurological application

    NASA Astrophysics Data System (ADS)

    Woźniak, Karol; Mulawka, Jan

    The aim of this paper is to design and implement information system containing large database dedicated to support neurological-psychiatric examinations focused on human brain after stroke. This approach encompasses the following steps: analysis of software requirements, presentation of the problem solving concept, design and implementation of the final information system. Certain experiments were performed in order to verify the correctness of the project ideas. The approach can be considered as an interdisciplinary venture. Elaboration of the system architecture, data model and the tools supporting medical examinations are provided. The achievement of the design goals is demonstrated in the final conclusion.

  14. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  15. Integrating Green Building Criteria Into Housing Design Processes Case Study: Tropical Apartment At Kebon Melati, Jakarta

    NASA Astrophysics Data System (ADS)

    Farid, V. L.; Wonorahardjo, S.

    2018-05-01

    The implementation of Green Building criteria is relatively new in architectural practice, especially in Indonesia. Consequently, the integration of these criteria into design process has the potential to change the design process itself. The implementation of the green building criteria into the conventional design process will be discussed in this paper. The concept of this project is to design a residential unit with a natural air-conditioning system. To achieve this purpose, the Green Building criteria has been implemented since the beginning of the design process until the detailing process on the end of the project. Several studies was performed throughout the design process, such as: (1) Conceptual review, where several professionally proved theories related to Tropical Architecture and passive design are used for a reference, and (2) Computer simulations, such as Computational Fluid Dynamics (CFD) and wind tunnel simulation, used to represent the dynamic response of the surrounding environment towards the building. Hopefully this paper may become a reference for designing a green residential building.

  16. Implementation of STEAM Education to Improve Mastery Concept

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Rusnayati, H.; Purwanto; Aristantia, G.

    2018-01-01

    Science Technology Engineering, Art, Mathematics (STEAM) is an integration of art into Science Technology Engineering, Mathematics (STEM). Connecting art to science makes learning more effective and innovative. This study aims to determine the increase in mastery of the concept of high school students after the application of STEAM education in learning with the theme of Water and Us. The research method used is one group Pretest-posttest design with students of class VII (n = 37) junior high school. The instrument used in the form of question of mastery of concepts in the form of multiple choices amounted to 20 questions and observation sheet of learning implementation. The results of the study show that there is an increase in conceptualization on the theme of Water and Us which is categorized as medium (=0, 46) after the application of the STEAM approach. The conclusion obtained that by applying STEAM approach in learning can improve the mastery of concept

  17. Space network scheduling benchmark: A proof-of-concept process for technology transfer

    NASA Technical Reports Server (NTRS)

    Moe, Karen; Happell, Nadine; Hayden, B. J.; Barclay, Cathy

    1993-01-01

    This paper describes a detailed proof-of-concept activity to evaluate flexible scheduling technology as implemented in the Request Oriented Scheduling Engine (ROSE) and applied to Space Network (SN) scheduling. The criteria developed for an operational evaluation of a reusable scheduling system is addressed including a methodology to prove that the proposed system performs at least as well as the current system in function and performance. The improvement of the new technology must be demonstrated and evaluated against the cost of making changes. Finally, there is a need to show significant improvement in SN operational procedures. Successful completion of a proof-of-concept would eventually lead to an operational concept and implementation transition plan, which is outside the scope of this paper. However, a high-fidelity benchmark using actual SN scheduling requests has been designed to test the ROSE scheduling tool. The benchmark evaluation methodology, scheduling data, and preliminary results are described.

  18. Level conceptual change pre-service elementary teachers on electric current conceptions through visual multimedia supported conceptual change

    NASA Astrophysics Data System (ADS)

    Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.

    2018-05-01

    Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.

  19. From the abstract to the concrete - Implementation of an innovative tool in home care.

    PubMed

    Kajamaa, Anu; Schulz, Klaus-Peter

    2018-02-01

    Background The implementation of innovations in practice is a critical factor for change and development processes in health and home care. We therefore analyze how an innovative tool - a mobility agreement to maintain physical mobility of home care clients - was implemented in Finnish home care. Methods Our study involves ethnographic research of 13 home care visits, two years after the mobility agreement was implemented. We analyze the emergence of contradictions, the motives of the actors and the use of artifacts supporting or inhibiting the implementation. Two in-depth cases illustrate the implementation of the mobility agreement in home care visits. Findings Our findings show that, first, to achieve practice change and development, the innovation implementation requires the overcoming of contradictions in the implementation process. Second, it calls for the emergence of a shared motive between the actors to transform the abstract concept of an innovation into a concrete practice. Third, artifacts, customary to the clients are important in supporting the implementation process. Fourth, the implementation brings about a modification of the innovation and the adopting social system. Conclusions Innovation implementation should be seen as a transformation process of an abstract concept into a concrete practice, enabled by the actors involved. Concept design and implementation should be closely linked. In health/home care innovation management, the implementation of innovations needs to be understood as a complex collective learning process. Results can be far reaching - in our case leading to change of home care workers' professional understanding and elderly clients' mobility habits.

  20. Leadership in evidence-based practice: a systematic review.

    PubMed

    Reichenpfader, Ursula; Carlfjord, Siw; Nilsen, Per

    2015-01-01

    This study aims to systematically review published empirical research on leadership as a determinant for the implementation of evidence-based practice (EBP) and to investigate leadership conceptualization and operationalization in this field. A systematic review with narrative synthesis was conducted. Relevant electronic bibliographic databases and reference lists of pertinent review articles were searched. To be included, a study had to involve empirical research and refer to both leadership and EBP in health care. Study quality was assessed with a structured instrument based on study design. A total of 17 studies were included. Leadership was mostly viewed as a modifier for implementation success, acting through leadership support. Yet, there was definitional imprecision as well as conceptual inconsistency, and studies seemed to inadequately address situational and contextual factors. Although referring to an organizational factor, the concept was mostly analysed at the individual or group level. The concept of leadership in implementation science seems to be not fully developed. It is unclear whether attempts to tap the concept of leadership in available instruments truly capture and measure the full range of the diverse leadership elements at various levels. Research in implementation science would benefit from a better integration of research findings from other disciplinary fields. Once a more mature concept has been established, researchers in implementation science could proceed to further elaborate operationalization and measurement. Although the relevance of leadership in implementation science has been acknowledged, the conceptual base of leadership in this field has received only limited attention.

  1. DoD Key Technologies Plan

    DTIC Science & Technology

    1992-07-01

    methodologies ; software performance analysis; software testing; and concurrent languages. Finally, efforts in algorithms, which are primarily designed to upgrade...These codes provide a powerful research tool for testing new concepts and designs prior to experimental implementation. DoE’s laser program has also...development, and specially designed production facilities. World leadership in bth non -fluorinated and fluorinated materials resides in the U.S. but Japan

  2. Smart Cutting Tools and Smart Machining: Development Approaches, and Their Implementation and Application Perspectives

    NASA Astrophysics Data System (ADS)

    Cheng, Kai; Niu, Zhi-Chao; Wang, Robin C.; Rakowski, Richard; Bateman, Richard

    2017-09-01

    Smart machining has tremendous potential and is becoming one of new generation high value precision manufacturing technologies in line with the advance of Industry 4.0 concepts. This paper presents some innovative design concepts and, in particular, the development of four types of smart cutting tools, including a force-based smart cutting tool, a temperature-based internally-cooled cutting tool, a fast tool servo (FTS) and smart collets for ultraprecision and micro manufacturing purposes. Implementation and application perspectives of these smart cutting tools are explored and discussed particularly for smart machining against a number of industrial application requirements. They are contamination-free machining, machining of tool-wear-prone Si-based infra-red devices and medical applications, high speed micro milling and micro drilling, etc. Furthermore, implementation techniques are presented focusing on: (a) plug-and-produce design principle and the associated smart control algorithms, (b) piezoelectric film and surface acoustic wave transducers to measure cutting forces in process, (c) critical cutting temperature control in real-time machining, (d) in-process calibration through machining trials, (e) FE-based design and analysis of smart cutting tools, and (f) application exemplars on adaptive smart machining.

  3. Space Mission Concept Development Using Concept Maturity Levels

    NASA Technical Reports Server (NTRS)

    Wessen, Randii R.; Borden, Chester; Ziemer, John; Kwok, Johnny

    2013-01-01

    Over the past five years, pre-project formulation experts at the Jet Propulsion Laboratory (JPL) has developed and implemented a method for measuring and communicating the maturity of space mission concepts. Mission concept development teams use this method, and associated tools, prior to concepts entering their Formulation Phases (Phase A/B). The organizing structure is Concept Maturity Level (CML), which is a classification system for characterizing the various levels of a concept's maturity. The key strength of CMLs is the ability to evolve mission concepts guided by an incremental set of assessment needs. The CML definitions have been expanded into a matrix form to identify the breadth and depth of analysis needed for a concept to reach a specific level of maturity. This matrix enables improved assessment and communication by addressing the fundamental dimensions (e.g., science objectives, mission design, technical risk, project organization, cost, export compliance, etc.) associated with mission concept evolution. JPL's collaborative engineering, dedicated concept development, and proposal teams all use these and other CML-appropriate design tools to advance their mission concept designs. This paper focuses on mission concept's early Pre-Phase A represented by CMLs 1- 4. The scope was limited due to the fact that CMLs 5 and 6 are already well defined based on the requirements documented in specific Announcement of Opportunities (AO) and Concept Study Report (CSR) guidelines, respectively, for competitive missions; and by NASA's Procedural Requirements NPR 7120.5E document for Projects in their Formulation Phase.

  4. Revolutionary Concepts for Helicopter Noise Reduction: SILENT Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan; Cox, Charles; Booth, Earl R., Jr. (Technical Monitor)

    2002-01-01

    As part of a NASA initiative to reduce helicopter main rotor noise, a Phase 1 study has been performed of candidate noise reduction concepts. Both conventional and novel design technologies have been analyzed that reduce the community impact of helicopter operations. In this study the noise reduction potential and design implications are assessed for conventional means of noise reduction, e.g., tip speed reduction, tip shapes and airfoil tailoring, and for two innovative design concepts: modulated blade spacing and x-force control. Main rotor designs that incorporate modulated blade spacing are shown to have reduced peak noise levels in most flight operations. X-force control alters the helicopter's force balance whereby the miss distance between main rotor blades and shed vortices can be controlled. This control provides a high potential to mitigate BVI noise radiation. Each concept is evaluated using best practice design and analysis methods, achieving the study's aim to significantly reduce noise with minimal performance degradation and no vibration increase. It is concluded that a SILENT main rotor design, incorporating the modulated blade spacing concept, offers significantly reduced noise levels and the potential of a breakthrough in how a helicopter's sound is perceived and judged. The SILENT rotor represents a definite advancement in the state-of-the-art and is selected as the design concept for demonstration in Phase 2. A Phase 2 Implementation Plan is developed for whirl cage and wind tunnel evaluations of a scaled model SILENT rotor.

  5. Environmental control system transducer development study

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1973-01-01

    A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.

  6. FPGA implementation of ICA algorithm for blind signal separation and adaptive noise canceling.

    PubMed

    Kim, Chang-Min; Park, Hyung-Min; Kim, Taesu; Choi, Yoon-Kyung; Lee, Soo-Young

    2003-01-01

    An field programmable gate array (FPGA) implementation of independent component analysis (ICA) algorithm is reported for blind signal separation (BSS) and adaptive noise canceling (ANC) in real time. In order to provide enormous computing power for ICA-based algorithms with multipath reverberation, a special digital processor is designed and implemented in FPGA. The chip design fully utilizes modular concept and several chips may be put together for complex applications with a large number of noise sources. Experimental results with a fabricated test board are reported for ANC only, BSS only, and simultaneous ANC/BSS, which demonstrates successful speech enhancement in real environments in real time.

  7. Implementation of basic chemistry experiment based on metacognition to increase problem-solving and build concept understanding

    NASA Astrophysics Data System (ADS)

    Zuhaida, A.

    2018-04-01

    Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.

  8. Apollo experience report: Electronic systems test program accomplishments and results

    NASA Technical Reports Server (NTRS)

    Ohnesorge, T. E.

    1972-01-01

    A chronological record is presented of the Electronic Systems Test Program from its conception in May 1963 to December 1969. The original concept of the program, which was primarily a spacecraft/Manned Space Flight Network communications system compatibility and performance evaluation, is described. The evolution of these concepts to include various levels of test detail, as well as systems level design verification testing, is discussed. Actual implementation of these concepts is presented, and the facility to support the program is described. Test results are given, and significant contributions to the lunar landing mission are underlined. Plans for modifying the facility and the concepts, based on Apollo experience, are proposed.

  9. Towards local implementation of Dutch health policy guidelines: a concept-mapping approach.

    PubMed

    Kuunders, Theo J M; van Bon-Martens, Marja J H; van de Goor, Ien A M; Paulussen, Theo G W M; van Oers, Hans A M

    2017-02-22

    To develop a targeted implementation strategy for a municipal health policy guideline, implementation targets of two guideline users [Regional Health Services (RHSs)] and guideline developers of leading national health institutes were made explicit. Therefore, characteristics of successful implementation of the guideline were identified. Differences and similarities in perceptions of these characteristics between RHSs and developers were explored. Separate concept mapping procedures were executed in two RHSs, one with representatives from partner local health organizations and municipalities, the second with RHS members only. A third map was conducted with the developers of the guideline. All mapping procedures followed the same design of generating statements up to interpretation of results with participants. Concept mapping, as a practical implementation tool, will be discussed in the context of international research literature on guideline implementation in public health. Guideline developers consider implementation successful when substantive components (health issues) of the guidelines, content are visible in local policy practice. RHSs, local organizations and municipalities view the implementation process itself within and between organizations as more relevant, and state that usability of the guideline for municipal policy and commitment by officials and municipal managers are critical targets for successful implementation. Between the RHSs, differences in implementation targets were smaller than between RHSs and guideline developers. For successful implementation, RHSs tend to focus on process targets while developers focus more on the thematic contents of the guideline. Implications of these different orientations for implementation strategies are dealt with in the discussion. © The Author 2017. Published by Oxford University Press.

  10. Implementation and spread of interventions into the multilevel context of routine practice and policy: implications for the cancer care continuum.

    PubMed

    Yano, Elizabeth M; Green, Lawrence W; Glanz, Karen; Ayanian, John Z; Mittman, Brian S; Chollette, Veronica; Rubenstein, Lisa V

    2012-05-01

    The promise of widespread implementation of efficacious interventions across the cancer continuum into routine practice and policy has yet to be realized. Multilevel influences, such as communities and families surrounding patients or health-care policies and organizations surrounding provider teams, may determine whether effective interventions are successfully implemented. Greater recognition of the importance of these influences in advancing (or hindering) the impact of single-level interventions has motivated the design and testing of multilevel interventions designed to address them. However, implementing research evidence from single- or multilevel interventions into sustainable routine practice and policy presents substantive challenges. Furthermore, relatively few multilevel interventions have been conducted along the cancer care continuum, and fewer still have been implemented, disseminated, or sustained in practice. The purpose of this chapter is, therefore, to illustrate and examine the concepts underlying the implementation and spread of multilevel interventions into routine practice and policy. We accomplish this goal by using a series of cancer and noncancer examples that have been successfully implemented and, in some cases, spread widely. Key concepts across these examples include the importance of phased implementation, recognizing the need for pilot testing, explicit engagement of key stakeholders within and between each intervention level; visible and consistent leadership and organizational support, including financial and human resources; better understanding of the policy context, fiscal climate, and incentives underlying implementation; explication of handoffs from researchers to accountable individuals within and across levels; ample integration of multilevel theories guiding implementation and evaluation; and strategies for long-term monitoring and sustainability.

  11. Implementation and Spread of Interventions Into the Multilevel Context of Routine Practice and Policy: Implications for the Cancer Care Continuum

    PubMed Central

    Green, Lawrence W.; Glanz, Karen; Ayanian, John Z.; Mittman, Brian S.; Chollette, Veronica; Rubenstein, Lisa V.

    2012-01-01

    The promise of widespread implementation of efficacious interventions across the cancer continuum into routine practice and policy has yet to be realized. Multilevel influences, such as communities and families surrounding patients or health-care policies and organizations surrounding provider teams, may determine whether effective interventions are successfully implemented. Greater recognition of the importance of these influences in advancing (or hindering) the impact of single-level interventions has motivated the design and testing of multilevel interventions designed to address them. However, implementing research evidence from single- or multilevel interventions into sustainable routine practice and policy presents substantive challenges. Furthermore, relatively few multilevel interventions have been conducted along the cancer care continuum, and fewer still have been implemented, disseminated, or sustained in practice. The purpose of this chapter is, therefore, to illustrate and examine the concepts underlying the implementation and spread of multilevel interventions into routine practice and policy. We accomplish this goal by using a series of cancer and noncancer examples that have been successfully implemented and, in some cases, spread widely. Key concepts across these examples include the importance of phased implementation, recognizing the need for pilot testing, explicit engagement of key stakeholders within and between each intervention level; visible and consistent leadership and organizational support, including financial and human resources; better understanding of the policy context, fiscal climate, and incentives underlying implementation; explication of handoffs from researchers to accountable individuals within and across levels; ample integration of multilevel theories guiding implementation and evaluation; and strategies for long-term monitoring and sustainability. PMID:22623601

  12. Sweet! Candy Bar Activity Teaches CAD, Math, and Graphics

    ERIC Educational Resources Information Center

    Granlund, George

    2009-01-01

    By far, the tastiest technology learning activity that the author's students work on is the development of the design of a chocolate candy bar. This article describes how the author implemented the candy bar activity. The activity gives students an opportunity to design a product and to take it from concept through to production.

  13. The University and the Voluntary Work Culture: Reality and Perspective

    ERIC Educational Resources Information Center

    Almaraee, Mohammed Abdullah

    2016-01-01

    To explore the present role of universities in propagating the culture of voluntary work in the Saudi community, mixed research design has been incorporated along with descriptive statistics for retrieving outcomes. The research design has been implemented in order to evaluate the concept of voluntary work culture among the university staff and…

  14. A Consumer Education Self-Help Manual for Displaced Homemaker Service Providers.

    ERIC Educational Resources Information Center

    Williams, Herma; Thompson, Patricia

    This manual is designed to allow service providers at displaced homemaker centers to update and refresh their knowledge and information of consumer concepts and to initiate and implement some consumer education services designed to meet the needs of displaced homemakers. Material is divided into five parts. Part 1 focuses on financial management…

  15. Lean, Mean and Green: An Affordable Net Zero School

    ERIC Educational Resources Information Center

    Stanfield, Kenneth

    2010-01-01

    From its conception, Richardsville Elementary was designed to be an affordable net zero facility. The design team explored numerous energy saving strategies to dramatically reduce energy consumption. By reducing energy use to 19.31 kBtus annually, the net zero goal could be realized through the implementation of a solar array capable of producing…

  16. Designing the Next-Generation Chemistry Journal: The Internet Journal of Chemistry.

    ERIC Educational Resources Information Center

    Bachrach, Steven M.; Burleigh, Darin C.; Krassivine, Anatoli

    1998-01-01

    Discusses how the journal "Internet Journal of Chemistry" is designed to take advantage of newly available technologies. Describes the development of the concept of an electronic journal, decision-making on the scope and coverage of the journal, financial logistics, and how the journal will be implemented. Includes perspectives on how this new…

  17. PACE Instructor Guide. Level 1. Research & Development Series No. 240A.

    ERIC Educational Resources Information Center

    Ashmore, M. Catherine; Pritz, Sandra G.

    This teaching guide is designed for use in implementing the first level of a comprehensive entrepreneurship curriculum entitled: A Program for Acquiring Competence in Entrepreneurship (PACE). Designed for use with secondary students, the first level of PACE consists of 18 lessons that introduce students to the concepts involved in entrepreneurship…

  18. An Analysis of 16-17-Year-Old Students' Understanding of Solution Chemistry Concepts Using a Two-Tier Diagnostic Instrument

    ERIC Educational Resources Information Center

    Adadan, Emine; Savasci, Funda

    2012-01-01

    This study focused on the development of a two-tier multiple-choice diagnostic instrument, which was designed and then progressively modified, and implemented to assess students' understanding of solution chemistry concepts. The results of the study are derived from the responses of 756 Grade 11 students (age 16-17) from 14 different high schools…

  19. Explicit-Reflective Teaching Nature of Science as Embedded within the Science Topic: Interactive Historical Vignettes Technique

    ERIC Educational Resources Information Center

    Nur, Erdogan Melek; Fitnat, Koseoglu

    2015-01-01

    It is obvious that more extensive work is needed in developing historical materials that address nature of science (NOS) concepts that will be implemented by teachers. Owing to the importance of meeting this need, research problem of this study is to design historical vignettes focused on the concept of chemical equilibrium which lies at the heart…

  20. The Effect of Three Levels of Inquiry on the Improvement of Science Concept Understanding of Elementary School Teacher Candidates

    ERIC Educational Resources Information Center

    Artayasa, I. Putu; Susilo, Herawati; Lestari, Umie; Indriwati, Sri Endah

    2018-01-01

    This research aims to compare the effect of the implementation of three levels of inquiry: level 2 (structured inquiry), level 3 (guided inquiry), and level 4 (open inquiry) toward science concept understanding of elementary school teacher candidates. This is a quasi experiment research with pre-test post-test nonequivalent control group design.…

  1. A Crafts-Oriented Approach to Computing in High School: Introducing Computational Concepts, Practices, and Perspectives with Electronic Textiles

    ERIC Educational Resources Information Center

    Kafai, Yasmin B.; Lee, Eunkyoung; Searle, Kristin; Fields, Deborah; Kaplan, Eliot; Lui, Debora

    2014-01-01

    In this article, we examine the use of electronic textiles (e-textiles) for introducing key computational concepts and practices while broadening perceptions about computing. The starting point of our work was the design and implementation of a curriculum module using the LilyPad Arduino in a pre-AP high school computer science class. To…

  2. Analysing the Correlation between Social Network Analysis Measures and Performance of Students in Social Network-Based Engineering Education

    ERIC Educational Resources Information Center

    Putnik, Goran; Costa, Eric; Alves, Cátia; Castro, Hélio; Varela, Leonilde; Shah, Vaibhav

    2016-01-01

    Social network-based engineering education (SNEE) is designed and implemented as a model of Education 3.0 paradigm. SNEE represents a new learning methodology, which is based on the concept of social networks and represents an extended model of project-led education. The concept of social networks was applied in the real-life experiment,…

  3. Implementing Problem-Solving Techniques in an Urban Central Office Department by Establishing Teams and Infusing TQM Concepts.

    ERIC Educational Resources Information Center

    Smith, Jewell R.

    This practicum is designed to assist central office personnel in evaluating the work environment for better coordination to accomplish work, plan for a change effort, and implement a participatory change initiative. The work setting involved a K-12 urban school district (193 schools) containing 431 central-office administrators and more than…

  4. Implications of Incessant Strike Actions on the Implementation of Technical Education Programme in Nigeria

    ERIC Educational Resources Information Center

    Adavbiele, J. A.

    2015-01-01

    This paper was designed to x-ray the implications of incessant strike actions on the implementation of Technical education programme in Nigeria. The paper took an exploratory view on the concept of strike actions in Nigeria with particular references on notable strike actions that have occurred in Nigeria. The types of strike were explained and…

  5. How To Curb the Appetite for Energy in University Laboratories.

    ERIC Educational Resources Information Center

    Zsirai, Ted; Wright, Michaella

    2001-01-01

    Discusses ways to cut rising energy costs within university laboratories by using heat recovery systems and variable volume exhaust hood systems. Explores the implementation of broad-based, sustainable laboratory classroom design concepts. (GR)

  6. Evolution of diffusion and dissemination theory.

    PubMed

    Dearing, James W

    2008-01-01

    The article provides a review and considers how the diffusion of innovations Research paradigm has changed, and offers suggestions for the further development of this theory of social change. Main emphases of diffusion Research studies are compared over time, with special attention to applications of diffusion theory-based concepts as types of dissemination science. A considerable degree of paradigmatic evolution is observed. The classical diffusion model focused on adopter innovativeness, individuals as the locus of decision, communication channels, and adoption as the primary outcome measures in post hoc observational study designs. The diffusion systems in question were centralized, with fidelity of implementation often assumed. Current dissemination Research and practice is better characterized by tests of interventions that operationalize one or more diffusion theory-based concepts and concepts from other change approaches, involve complex organizations as the units of adoption, and focus on implementation issues. Foment characterizes dissemination and implementation Research, Reflecting both its interdisciplinary Roots and the imperative of spreading evidence-based innovations as a basis for a new paradigm of translational studies of dissemination science.

  7. The structure of the clouds distributed operating system

    NASA Technical Reports Server (NTRS)

    Dasgupta, Partha; Leblanc, Richard J., Jr.

    1989-01-01

    A novel system architecture, based on the object model, is the central structuring concept used in the Clouds distributed operating system. This architecture makes Clouds attractive over a wide class of machines and environments. Clouds is a native operating system, designed and implemented at Georgia Tech. and runs on a set of generated purpose computers connected via a local area network. The system architecture of Clouds is composed of a system-wide global set of persistent (long-lived) virtual address spaces, called objects that contain persistent data and code. The object concept is implemented at the operating system level, thus presenting a single level storage view to the user. Lightweight treads carry computational activity through the code stored in the objects. The persistent objects and threads gives rise to a programming environment composed of shared permanent memory, dispensing with the need for hardware-derived concepts such as the file systems and message systems. Though the hardware may be distributed and may have disks and networks, the Clouds provides the applications with a logically centralized system, based on a shared, structured, single level store. The current design of Clouds uses a minimalist philosophy with respect to both the kernel and the operating system. That is, the kernel and the operating system support a bare minimum of functionality. Clouds also adheres to the concept of separation of policy and mechanism. Most low-level operating system services are implemented above the kernel and most high level services are implemented at the user level. From the measured performance of using the kernel mechanisms, we are able to demonstrate that efficient implementations are feasible for the object model on commercially available hardware. Clouds provides a rich environment for conducting research in distributed systems. Some of the topics addressed in this paper include distributed programming environments, consistency of persistent data and fault-tolerance.

  8. A four stage approach for ontology-based health information system design.

    PubMed

    Kuziemsky, Craig E; Lau, Francis

    2010-11-01

    To describe and illustrate a four stage methodological approach to capture user knowledge in a biomedical domain area, use that knowledge to design an ontology, and then implement and evaluate the ontology as a health information system (HIS). A hybrid participatory design-grounded theory (GT-PD) method was used to obtain data and code them for ontology development. Prototyping was used to implement the ontology as a computer-based tool. Usability testing evaluated the computer-based tool. An empirically derived domain ontology and set of three problem-solving approaches were developed as a formalized model of the concepts and categories from the GT coding. The ontology and problem-solving approaches were used to design and implement a HIS that tested favorably in usability testing. The four stage approach illustrated in this paper is useful for designing and implementing an ontology as the basis for a HIS. The approach extends existing ontology development methodologies by providing an empirical basis for theory incorporated into ontology design. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. The MeSH translation maintenance system: structure, interface design, and implementation.

    PubMed

    Nelson, Stuart J; Schopen, Michael; Savage, Allan G; Schulman, Jacque-Lynne; Arluk, Natalie

    2004-01-01

    The National Library of Medicine (NLM) produces annual editions of the Medical Subject Headings (MeSH). Translations of MeSH are often done to make the vocabulary useful for non-English users. However, MeSH translators have encountered difficulties with entry vocabulary as they maintain and update their translation. Tracking MeSH changes and updating their translations in a reasonable time frame is cumbersome. NLM has developed and implemented a concept-centered vocabulary maintenance system for MeSH. This system has been extended to create an interlingual database of translations, the MeSH Translation Maintenance System (MTMS). This database allows continual updating of the translations, as well as facilitating tracking of the changes within MeSH from one year to another. The MTMS interface uses a Web-based design with multiple colors and fonts to indicate concepts needing translation or review. Concepts for which there is no exact English equivalent can be added. The system software encourages compliance with the Unicode standard in order to ensure that character sets with native alphabets and full orthography are used consistently.

  10. Extension of HCDstruct for Transonic Aeroservoelastic Analysis of Unconventional Aircraft Concepts

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2017-01-01

    A substantial effort has been made to implement an enhanced aerodynamic modeling capability in the Higher-fidelity Conceptual Design and structural optimization tool. This additional capability is needed for a rapid, physics-based method of modeling advanced aircraft concepts at risk of structural failure due to dynamic aeroelastic instabilities. To adequately predict these instabilities, in particular for transonic applications, a generalized aerodynamic matching algorithm was implemented to correct the doublet-lattice model available in Nastran using solution data from a priori computational fluid dynamics anal- ysis. This new capability is demonstrated for two tube-and-wing aircraft configurations, including a Boeing 737-200 for implementation validation and the NASA D8 as a first use case. Results validate the current implementation of the aerodynamic matching utility and demonstrate the importance of using such a method for aircraft configurations featuring fuselage-wing aerodynamic interaction.

  11. Failsafe automation of Phase II clinical trial interim monitoring for stopping rules.

    PubMed

    Day, Roger S

    2010-02-01

    In Phase II clinical trials in cancer, preventing the treatment of patients on a study when current data demonstrate that the treatment is insufficiently active or too toxic has obvious benefits, both in protecting patients and in reducing sponsor costs. Considerable efforts have gone into experimental designs for Phase II clinical trials with flexible sample size, usually implemented by early stopping rules. The intended benefits will not ensue, however, if the design is not followed. Despite the best intentions, failures can occur for many reasons. The main goal is to develop an automated system for interim monitoring, as a backup system supplementing the protocol team, to ensure that patients are protected. A secondary goal is to stimulate timely recording of patient assessments. We developed key concepts and performance needs, then designed, implemented, and deployed a software solution embedded in the clinical trials database system. The system has been in place since October 2007. One clinical trial tripped the automated monitor, resulting in e-mails that initiated statistician/investigator review in timely fashion. Several essential contributing activities still require human intervention, institutional policy decisions, and institutional commitment of resources. We believe that implementing the concepts presented here will provide greater assurance that interim monitoring plans are followed and that patients are protected from inadequate response or excessive toxicity. This approach may also facilitate wider acceptance and quicker implementation of new interim monitoring algorithms.

  12. Swingbed Amine Carbon Dioxide Removal Flight Experiment - Feasibility Study and Concept Development for Cost-Effective Exploration Technology Maturation on The International Space Station

    NASA Technical Reports Server (NTRS)

    Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy

    2011-01-01

    The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.

  13. Engineering Concepts in Stem Cell Research.

    PubMed

    Narayanan, Karthikeyan; Mishra, Sachin; Singh, Satnam; Pei, Ming; Gulyas, Balazs; Padmanabhan, Parasuraman

    2017-12-01

    The field of regenerative medicine integrates advancements made in stem cells, molecular biology, engineering, and clinical methodologies. Stem cells serve as a fundamental ingredient for therapeutic application in regenerative medicine. Apart from stem cells, engineering concepts have equally contributed to the success of stem cell based applications in improving human health. The purpose of various engineering methodologies is to develop regenerative and preventive medicine to combat various diseases and deformities. Explosion of stem cell discoveries and their implementation in clinical setting warrants new engineering concepts and new biomaterials. Biomaterials, microfluidics, and nanotechnology are the major engineering concepts used for the implementation of stem cells in regenerative medicine. Many of these engineering technologies target the specific niche of the cell for better functional capability. Controlling the niche is the key for various developmental activities leading to organogenesis and tissue homeostasis. Biomimetic understanding not only helped to improve the design of the matrices or scaffolds by incorporating suitable biological and physical components, but also ultimately aided adoption of designs that helped these materials/devices have better function. Adoption of engineering concepts in stem cell research improved overall achievement, however, several important issues such as long-term effects with respect to systems biology needs to be addressed. Here, in this review the authors will highlight some interesting breakthroughs in stem cell biology that use engineering methodologies. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Scaling Agile Methods for Department of Defense Programs

    DTIC Science & Technology

    2016-12-01

    concepts that drive the design of scaling frameworks, the contextual drivers that shape implementation, and widely known frameworks available today...Barlow probably governs some of the design choices you make. Barlow’s formula helps us understand the relationship between the outside diameter of a...encouraged to cross-train engineering staff and move away from a team structure where people focus on only one specialty, such as design

  15. The Understanding by Design Guide to Advanced Concepts in Creating and Reviewing Units

    ERIC Educational Resources Information Center

    McTighe, Jay; Wiggins, Grant

    2012-01-01

    Regardless of your stage at implementing the design tools and using the improved template for Understanding by Design[R] (UbD), this companion to "The UbD Guide to Creating High-Quality Units" is essential for taking your work to a higher plane. This volume features a set of hands-on modules containing worksheets, models, and self-assessments that…

  16. Multidisciplinary Design and Analysis for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Freeman, H. JoAnne

    1999-01-01

    Multidisciplinary design and analysis (MDA) has become the normal mode of operation within most aerospace companies, but the impact of these changes have largely not been reflected at many universities. On an effort to determine if the emergence of multidisciplinary design concepts should influence engineering curricula, NASA has asked several universities (Virginia Tech, Georgia Tech, Clemson, BYU, and Cal Poly) to investigate the practicality of introducing MDA concepts within their undergraduate curricula. A multidisciplinary team of faculty, students, and industry partners evaluated the aeronautical engineering curriculum at Cal Poly. A variety of ways were found to introduce MDA themes into the curriculum without adding courses or units to the existing program. Both analytic and educational tools for multidisciplinary design of aircraft have been developed and implemented.

  17. Software For Drawing Design Details Concurrently

    NASA Technical Reports Server (NTRS)

    Crosby, Dewey C., III

    1990-01-01

    Software system containing five computer-aided-design programs enables more than one designer to work on same part or assembly at same time. Reduces time necessary to produce design by implementing concept of parallel or concurrent detailing, in which all detail drawings documenting three-dimensional model of part or assembly produced simultaneously, rather than sequentially. Keeps various detail drawings consistent with each other and with overall design by distributing changes in each detail to all other affected details.

  18. Early outreach: career awareness for health professions.

    PubMed

    Lourenço, S V

    1983-01-01

    "Early outreach" may be defined as a long-term, talent-development strategy designed to prepare a well qualified pool of disadvantaged and underrepresented minority applicants for entry into health professions schools, particularly medical schools. The concept of early outreach is to prepare, motivate, and educate talented, economically disadvantaged junior high or secondary school students to gain the necessary academic qualifications to make high school graduation, college attendance, and health careers a reality. In this paper the author defines the problem to which early outreach is addressed and discussed the contextual and historical background of the concept. A number of programs at the Health Sciences Center at the University of Illinois at Chicago designed and implemented to provide a model to achieve the concept of early outreach are described.

  19. En route air traffic flow simulation.

    DOT National Transportation Integrated Search

    1971-01-01

    The report covers the conception, design, development, and initial implementation of an advanced simulation technique applied to a study of national air traffic flow and its control by En Route Air Route Traffic Control Centers (ARTCC). It is intende...

  20. The design concept of the 6-degree-of-freedom hydraulic shaker at ESTEC

    NASA Technical Reports Server (NTRS)

    Brinkman, P. W.; Kretz, D.

    1992-01-01

    The European Space Agency (ESA) has decided to extend its test facilities at the European Space and Technology Center (ESTEC) at Noordwijk, The Netherlands, by implementing a 6-degree-of-freedom hydraulic shaker. This shaker will permit vibration testing of large payloads in the frequency range from 0.1 Hz to 100 Hz. Conventional single axis sine and random vibration modes can be applied without the need for a configuration change of the test set-up for vertical and lateral excitations. Transients occurring during launch and/or landing of space vehicles can be accurately simulated in 6-degrees-of-freedom. The performance requirements of the shaker are outlined and the results of the various trade-offs, which are investigated during the initial phase of the design and engineering program are provided. Finally, the resulting baseline concept and the anticipated implementation plan of the new test facility are presented.

  1. Research Initiatives and Preliminary Results In Automation Design In Airspace Management in Free Flight

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Lebacqz, J. Victor (Technical Monitor)

    1997-01-01

    The NASA and the FAA have entered into a joint venture to explore, define, design and implement a new airspace management operating concept. The fundamental premise of that concept is that technologies and procedures need to be developed for flight deck and ground operations to improve the efficiency, the predictability, the flexibility and the safety of airspace management and operations. To that end NASA Ames has undertaken an initial development and exploration of "key concepts" in the free flight airspace management technology development. Human Factors issues in automation aiding design, coupled aiding systems between air and ground, communication protocols in distributed decision making, and analytic techniques for definition of concepts of airspace density and operator cognitive load have been undertaken. This paper reports the progress of these efforts, which are not intended to definitively solve the many evolving issues of design for future ATM systems, but to provide preliminary results to chart the parameters of performance and the topology of the analytic effort required. The preliminary research in provision of cockpit display of traffic information, dynamic density definition, distributed decision making, situation awareness models and human performance models is discussed as they focus on the theme of "design requirements".

  2. Developing Trustworthy Commissioned Officers: Transcending the Honor Codes and Concept

    DTIC Science & Technology

    2012-10-01

    extracurricular   activities ).       This   developmental  concept  recognizes  that  individuals...tangible   activities  within  the  developmental  programs  at  each  SOC  must  be  designed  and  implemented...develop  simultaneously  across  and  within  all   domains   as   they   complete   the   activities  

  3. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fourth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2013-01-01

    This paper presents an overview of the fourth major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. Revisions to this algorithm were based on a change to the expected operational environment.

  4. Experiment module concepts study. Volume 3: Module and subsystem design

    NASA Technical Reports Server (NTRS)

    Hunter, J. R.; Chiarappa, D. J.

    1970-01-01

    The final common module set exhibiting wide commonality is described. The set consists of three types of modules: one free flying module and two modules that operate attached to the space station. The common module designs provide for the experiment program as defined. The feasibility, economy, and practicality of these modules hinges on factors that do not affect the approach or results of the commonality process, but are important to the validity of the common module concepts. Implementation of the total experiment program requires thirteen common modules: five CM-1, five CM-3, and three CM-4 modules.

  5. Chapter 2 - An overview of the LANDFIRE Prototype Project

    Treesearch

    Matthew G. Rollins; Robert E. Keane; Zhiliang Zhu; James P. Menakis

    2006-01-01

    This chapter describes the background and design of the Landscape Fire and Resource Management Planning Tools Prototype Project, or LANDFIRE Prototype Project, which was a sub-regional, proof-of-concept effort designed to develop methods and applications for providing the high-resolution data (30-m pixel) needed to support wildland fire management and to implement the...

  6. Saturn S-2 problem resolution history report

    NASA Technical Reports Server (NTRS)

    Virgil, F. W.

    1971-01-01

    A summary of S-2 Program problems and the solutions that were implemented is presented. The problems occurred during a period starting with the initial design concepts and continuing through the launch of the tenth S-2 flight stage information is from nine separate disciplines: design, facilities, logistics, manufacturing, material, program management, quality assurance, safety, and tests.

  7. Teaching Auction Strategy Using Experiments Administered Via the Internet

    ERIC Educational Resources Information Center

    Asker, John; Grosskopf, Brit; McKinney, C. Nicholas; Niederle, Muriel; Roth, Alvin E.; Weizsacker, Georg

    2004-01-01

    The authors present an experimental design used to teach concepts in the economics of auctions and implications for e-Business procurement. The experiment is easily administered and can be adapted to many different treatments. The chief innovation is that it does not require the use of a lab or class time. Instead, the design can be implemented on…

  8. Make-Her-Spaces as Hybrid Places: Designing and Resisting Self Constructions in Urban Classrooms

    ERIC Educational Resources Information Center

    Norris, Aaminah

    2014-01-01

    This qualitative study analyzes how an urban schoolteacher guided her 19 tenth grade Latina and African American young women in developing positive self-concepts as expressed through the implementation of design thinking processes. This work examines how young women who had limited access to digital media negotiated their identities as they…

  9. A Generic, Agent-Based Framework for Design and Development of UAV/UCAV Control Systems

    DTIC Science & Technology

    2004-02-27

    37 EID Principles .................................................................................................. 38 Experimental Support for EID...Year 2 Interface design and implementation; creation of the simulation environment; Year 3 Demonstration of the concept and experimental evaluation...UAV/UCAV control in which operators can experience high cognitive workloads. There are several ways in which systems can construct user models by

  10. Applied Digital Logic Exercises Using FPGAs

    NASA Astrophysics Data System (ADS)

    Wick, Kurt

    2017-09-01

    Applied Digital Logic Exercises Using FPGAs is appropriate for anyone interested in digital logic who needs to learn how to implement it through detailed exercises with state-of-the-art digital design tools and components. The book exposes readers to combinational and sequential digital logic concepts and implements them with hands-on exercises using the Verilog Hardware Description Language (HDL) and a Field Programmable Gate Arrays (FGPA) teaching board.

  11. JT8D and JT9D jet engine performance improvement program. Task 1: Feasibility analysis

    NASA Technical Reports Server (NTRS)

    Gaffin, W. O.; Webb, D. E.

    1979-01-01

    JT8D and JT9D component performance improvement concepts which have a high probability of incorporation into production engines were identified and ranked. An evaluation method based on airline payback period was developed for the purpose of identifying the most promising concepts. The method used available test data and analytical models along with conceptual/preliminary designs to predict the performance improvements, weight, installation characteristics, cost for new production and retrofit, maintenance cost, and qualitative characteristics of candidate concepts. These results were used to arrive at the concept payback period, which is the time required for an airline to recover the investment cost of concept implementation.

  12. Fuzzy expert systems using CLIPS

    NASA Technical Reports Server (NTRS)

    Le, Thach C.

    1994-01-01

    This paper describes a CLIPS-based fuzzy expert system development environment called FCLIPS and illustrates its application to the simulated cart-pole balancing problem. FCLIPS is a straightforward extension of CLIPS without any alteration to the CLIPS internal structures. It makes use of the object-oriented and module features in CLIPS version 6.0 for the implementation of fuzzy logic concepts. Systems of varying degrees of mixed Boolean and fuzzy rules can be implemented in CLIPS. Design and implementation issues of FCLIPS will also be discussed.

  13. Core concepts of spatial prioritisation in systematic conservation planning.

    PubMed

    Kukkala, Aija S; Moilanen, Atte

    2013-05-01

    Systematic conservation planning (SCP) is a field of conservation biology concerned with delivering on-the-ground actions that achieve conservation goals. It describes a set of operational models that cover both design and implementation of conservation, with a strong focus on mobilising the collective action typically required to implement conservation. SCP, as it was originally described, was composed of six different stages: collection of data, identification of conservation goals, evaluation of the existing protected area network, design of expansions, implementation of conservation action, and long-term maintenance of biodiversity in the network. Since then, the operational model has been expanded into several different variants. Conservation actions applied inside SCP include establishment and expansion of reserve networks and allocation of habitat restoration and management. Within the broader context of SCP, there is a fundamental biogeographic-economic analysis frequently called spatial conservation prioritisation or conservation assessment, which is used for identifying where important areas for biodiversity are and how conservation goals might be achieved efficiently. Here, we review the usage and meaning of the 12 biogeographic-economic core concepts of SCP: adequacy, complementarity, comprehensiveness, effectiveness, efficiency, flexibility, irreplaceability, replacement cost, representation, representativeness, threat, and vulnerability. Some of the concepts have clear definitions whereas others may have alternative and possibly conflicting definitions. With a comprehensive literature review literature, we elucidate the historical backgrounds of these concepts, the first definitions and usages, alternative later definitions, key applications, and prior reviews. This review reduces linguistic uncertainty in the application of SCP. Since SCP is a global activity with a multitude of different stakeholders involved, it is vital that those involved can speak the same language. Through these concepts, this review serves as a source of information about the historical development of SCP. It provides a comprehensive review for anyone wishing to understand the key concepts of spatial prioritisation within SCP. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

  14. Core concepts of spatial prioritisation in systematic conservation planning

    PubMed Central

    Kukkala, Aija S; Moilanen, Atte

    2013-01-01

    Systematic conservation planning (SCP) is a field of conservation biology concerned with delivering on-the-ground actions that achieve conservation goals. It describes a set of operational models that cover both design and implementation of conservation, with a strong focus on mobilising the collective action typically required to implement conservation. SCP, as it was originally described, was composed of six different stages: collection of data, identification of conservation goals, evaluation of the existing protected area network, design of expansions, implementation of conservation action, and long-term maintenance of biodiversity in the network. Since then, the operational model has been expanded into several different variants. Conservation actions applied inside SCP include establishment and expansion of reserve networks and allocation of habitat restoration and management. Within the broader context of SCP, there is a fundamental biogeographic-economic analysis frequently called spatial conservation prioritisation or conservation assessment, which is used for identifying where important areas for biodiversity are and how conservation goals might be achieved efficiently. Here, we review the usage and meaning of the 12 biogeographic-economic core concepts of SCP: adequacy, complementarity, comprehensiveness, effectiveness, efficiency, flexibility, irreplaceability, replacement cost, representation, representativeness, threat, and vulnerability. Some of the concepts have clear definitions whereas others may have alternative and possibly conflicting definitions. With a comprehensive literature review literature, we elucidate the historical backgrounds of these concepts, the first definitions and usages, alternative later definitions, key applications, and prior reviews. This review reduces linguistic uncertainty in the application of SCP. Since SCP is a global activity with a multitude of different stakeholders involved, it is vital that those involved can speak the same language. Through these concepts, this review serves as a source of information about the historical development of SCP. It provides a comprehensive review for anyone wishing to understand the key concepts of spatial prioritisation within SCP. PMID:23279291

  15. Designing learning apparatus to promote twelfth grade students’ understanding of digital technology concept: A preliminary studies

    NASA Astrophysics Data System (ADS)

    Marlius; Kaniawati, I.; Feranie, S.

    2018-05-01

    A preliminary learning design using relay to promote twelfth grade student’s understanding of logic gates concept is implemented to see how well it’s to adopted by six high school students, three male students and three female students of twelfth grade. This learning design is considered for next learning of digital technology concept i.e. data digital transmition and analog. This work is a preliminary study to design the learning for large class. So far just a few researches designing learning design related to digital technology with relay. It may due to this concept inserted in Indonesian twelfth grade curriculum recently. This analysis is focus on student difficulties trough video analysis to learn the concept. Based on our analysis, the recommended thing for redesigning learning is: students understand first about symbols and electrical circuits; the Student Worksheet is made in more detail on the assembly steps to the project board; mark with symbols at points in certain places in the circuit for easy assembly; assembly using relays by students is enough until is the NOT’s logic gates and the others that have been assembled so that effective time. The design of learning using relays can make the relay a liaison between the abstract on the digital with the real thing of it, especially in the circuit of symbols and real circuits. Besides it is expected to also enrich the ability of teachers in classroom learning about digital technology.

  16. Model-Based Design of Air Traffic Controller-Automation Interaction

    NASA Technical Reports Server (NTRS)

    Romahn, Stephan; Callantine, Todd J.; Palmer, Everett A.; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    A model of controller and automation activities was used to design the controller-automation interactions necessary to implement a new terminal area air traffic management concept. The model was then used to design a controller interface that provides the requisite information and functionality. Using data from a preliminary study, the Crew Activity Tracking System (CATS) was used to help validate the model as a computational tool for describing controller performance.

  17. Evaluation of competence-based teaching in higher education: From theory to practice.

    PubMed

    Bergsmann, Evelyn; Schultes, Marie-Therese; Winter, Petra; Schober, Barbara; Spiel, Christiane

    2015-10-01

    Competence-based teaching in higher education institutions and its evaluation have become a prevalent topic especially in the European Union. However, evaluation instruments are often limited, for example to single student competencies or specific elements of the teaching process. The present paper provides a more comprehensive evaluation concept that contributes to sustainable improvement of competence-based teaching in higher education institutions. The evaluation concept considers competence research developments as well as the participatory evaluation approach. The evaluation concept consists of three stages. The first stage evaluates whether the competencies students are supposed to acquire within the curriculum (ideal situation) are well defined. The second stage evaluates the teaching process and the competencies students have actually acquired (real situation). The third stage evaluates concrete aspects of the teaching process. Additionally, an implementation strategy is introduced to support the transfer from the theoretical evaluation concept to practice. The evaluation concept and its implementation strategy are designed for internal evaluations in higher education and primarily address higher education institutions that have already developed and conducted a competence-based curriculum. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A System Analysis Approach to Robot Gripper Control Using Phase Lag Compensator Bode Designs

    NASA Astrophysics Data System (ADS)

    Aye, Khin Muyar; Lin, Htin; Tun, Hla Myo

    2008-10-01

    In this paper, we introduce the result comparisons that were developed for the phase lag compensator design using Bode Plots. The implementation of classical experiments as MATLAB m-files is described. Robot gripper control system can be designed to gain insight into a variety of concepts, including stabilization of unstable systems, compensation properties, Bode analysis and design. The analysis has resulted in a number of important conclusions for the design of a new generation of control support systems.

  19. Remote Attitude Measurement Sensor (RAMS)

    NASA Technical Reports Server (NTRS)

    Davis, H. W.

    1989-01-01

    Remote attitude measurement sensor (RAMS) offers a low-cost, low-risk, proven design concept that is based on mature, demonstrated space sensor technology. The electronic design concepts and interpolation algorithms were tested and proven in space hardware like th Retroreflector Field Tracker and various star trackers. The RAMS concept is versatile and has broad applicability to both ground testing and spacecraft needs. It is ideal for use as a precision laboratory sensor for structural dynamics testing. It requires very little set-up or preparation time and the output data is immediately usable without integration or extensive analysis efforts. For on-orbit use, RAMS rivals any other type of dynamic structural sensor (accelerometer, lidar, photogrammetric techniques, etc.) for overall performance, reliability, suitability, and cost. Widespread acceptance and extensive usage of RAMS will occur only after some interested agency, such as OAST, adopts the RAMS concept and provides the funding support necessary for further development and implementation of RAMS for a specific program.

  20. Co-design in synthetic biology: a system-level analysis of the development of an environmental sensing device.

    PubMed

    Ball, David A; Lux, Matthew W; Graef, Russell R; Peterson, Matthew W; Valenti, Jane D; Dileo, John; Peccoud, Jean

    2010-01-01

    The concept of co-design is common in engineering, where it is necessary, for example, to determine the optimal partitioning between hardware and software of the implementation of a system features. Here we propose to adapt co-design methodologies for synthetic biology. As a test case, we have designed an environmental sensing device that detects the presence of three chemicals, and returns an output only if at least two of the three chemicals are present. We show that the logical operations can be implemented in three different design domains: (1) the transcriptional domain using synthetically designed hybrid promoters, (2) the protein domain using bi-molecular fluorescence complementation, and (3) the fluorescence domain using spectral unmixing and relying on electronic processing. We discuss how these heterogeneous design strategies could be formalized to develop co-design algorithms capable of identifying optimal designs meeting user specifications.

  1. A quantitative analysis study on the implementation of partnering in the design and build construction project

    NASA Astrophysics Data System (ADS)

    Halil, F. M.; Nasir, N. M.; Shukur, A. S.; Hashim, H.

    2018-02-01

    Design and Build construction project involved the biggest scale of the cost of investment as compared to the traditional approach. In Design and Build, the client hires a design professional that will design according to the client’s need and specification. This research aim is to explore the concept of partnering implementation practiced in the design and build procurement approach. Therefore, the selection of design professionals such as Contractors and consultants in the project is crucial to ensure the successful project completion on time, cost, and quality. The methodology adopted using quantitative approach. Administration of the questionnaire was distributed to the public client by using postal survey. Outcomes of the results, the public clients agreed that project management capabilities and commitment to budget as a crucial element of partnering from the design professional in design and build construction project.

  2. Better design quality of public toilets for visually impaired persons: an all-round concept in design for the promotion of health.

    PubMed

    Siu, Kin Wai Michael

    2008-11-01

    According to United Nations statistics, about one-thirtieth of the world's population is visually impaired. These visually impaired persons (VIPs) face a variety of difficulties in their daily lives. This is the case not only in countries with a shortage of resources or with relatively low living standards, but also in developed countries. Most of the time, such difficulties in daily life come from the misunderstanding of VIPs' wants and needs and in turn poor design quality. To enhance equal opportunities in society, promote public health and improve the design quality of the public environment and facilities, a project on how VIPs access public toilets has been under way since 2004. To maintain better design quality in public toilets, the FISH concept has been initiated. This design concept includes the design considerations of friendly, informative, safe, and hygienic. This paper reviews the wants and needs of VIPs that should be considered in using public toilets, and the help that they need to be given. Based on the findings of the project, this paper then discusses how better quality designs for public toilets to promote public health can be obtained by implementing FISH.

  3. Design Validation Methodology Development for an Aircraft Sensor Deployment System

    NASA Astrophysics Data System (ADS)

    Wowczuk, Zenovy S.

    The OCULUS 1.0 Sensor Deployment concept design, was developed in 2004 at West Virginia University (WVU), outlined the general concept of a deployment system to be used on a C-130 aircraft. As a sequel, a new system, OCULUS 1.1, has been developed and designed. The new system transfers the concept system design to a safety of flight design, and also enhanced to a pre-production system to be used as the test bed to gain full military certification approval. The OCULUS 1.1 system has an implemented standard deployment system/procedure to go along with a design suited for military certification and implementation. This design process included analysis of the system's critical components and the generation of a critical component holistic model to be used as an analysis tool for future payload modification made to the system. Following the completion of the OCULUS 1.1 design, preparations and procedures for obtaining military airworthiness certification are described. The airworthiness process includes working with the agency overseeing all modifications to the normal operating procedures made to military C-130 aircraft and preparing the system for an experimental flight test. The critical steps in his process include developing a complete documentation package that details the analysis performed on the OCULUS 1.1 system and also the design of experiment flight test plan to analyze the system. Following the approval of the documentation and design of experiment an experimental flight test of the OCULUS 1.1 system was performed to verify the safety and airworthiness of the system. This test proved successfully that the OCULUS 1.1 system design was airworthy and approved for military use. The OCULUS 1.1 deployment system offers an open architecture design that is ideal for use as a sensor testing platform for developmental airborne sensors. The system's patented deployment methodology presents a simplistic approach to reaching the systems final operating position which offers the most robust field of view area of rear ramp deployment systems.

  4. Spanwise morphing trailing edge on a finite wing

    NASA Astrophysics Data System (ADS)

    Pankonien, Alexander M.; Inman, Daniel J.

    2015-04-01

    Unmanned Aerial Vehicles are prime targets for morphing implementation as they must adapt to large changes in flight conditions associated with locally varying wind or large changes in mass associated with payload delivery. The Spanwise Morphing Trailing Edge concept locally varies the trailing edge camber of a wing or control surface, functioning as a modular replacement for conventional ailerons without altering the spar box. Utilizing alternating active sections of Macro Fiber Composites (MFCs) driving internal compliant mechanisms and inactive sections of elastomeric honeycombs, the SMTE concept eliminates geometric discontinuities associated with shape change, increasing aerodynamic performance. Previous work investigated a representative section of the SMTE concept and investigated the effect of various skin designs on actuation authority. The current work experimentally evaluates the aerodynamic gains for the SMTE concept for a representative finite wing as compared with a conventional, articulated wing. The comparative performance for both wings is evaluated by measuring the drag penalty associated with achieving a design lift coefficient from an off-design angle of attack. To reduce experimental complexity, optimal control configurations are predicted with lifting line theory and experimentally measured control derivatives. Evaluated over a range of off-design flight conditions, this metric captures the comparative capability of both concepts to adapt or "morph" to changes in flight conditions. Even with this simplistic model, the SMTE concept is shown to reduce the drag penalty due to adaptation up to 20% at off-design conditions, justifying the increase in mass and complexity and motivating concepts capable of larger displacement ranges, higher fidelity modelling, and condition-sensing control.

  5. Design and implementation of a status at a glance user interface for a power distribution expert system

    NASA Technical Reports Server (NTRS)

    Liberman, Eugene M.; Manner, David B.; Dolce, James L.; Mellor, Pamela A.

    1993-01-01

    A user interface to the power distribution expert system for Space Station Freedom is discussed. The importance of features which simplify assessing system status and which minimize navigating through layers of information are examined. Design rationale and implementation choices are also presented. The amalgamation of such design features as message linking arrows, reduced information content screens, high salience anomaly icons, and color choices with failure detection and diagnostic explanation from an expert system is shown to provide an effective status-at-a-glance monitoring system for power distribution. This user interface design offers diagnostic reasoning without compromising the monitoring of current events. The display can convey complex concepts in terms that are clear to its users.

  6. On implementation of the extended interior penalty function. [optimum structural design

    NASA Technical Reports Server (NTRS)

    Cassis, J. H.; Schmit, L. A., Jr.

    1976-01-01

    The extended interior penalty function formulation is implemented. A rational method for determining the transition between the interior and extended parts is set forth. The formulation includes a straightforward method for avoiding design points with some negative components, which are physically meaningless in structural analysis. The technique, when extended to problems involving parametric constraints, can facilitate closed form integration of the penalty terms over the most important parts of the parameter interval. The method lends itself well to the use of approximation concepts, such as design variable linking, constraint deletion and Taylor series expansions of response quantities in terms of design variables. Examples demonstrating the algorithm, in the context of planar orthogonal frames subjected to ground motion, are included.

  7. Technical design of RISP RFQ Cooler buncher

    NASA Astrophysics Data System (ADS)

    Boussaid, Ramzi; Park, Young-Ho; Kondrashev, Sergey

    2017-12-01

    An RFQCB is designed at Rare Isotope Science Project (RISP) project to efficiently accept high intensity continuous beams provided by ISOL-RISP facility and deliver to Electron Beam Ion Source (EBIS) charge breeder bunched beams with emittance around 3 π.mm.mrad, energy spread < 10 eV and short bunch width ( 10 μs). A new design concept to be implemented in this RFQCB have been developed, including a novel optics system with improved differential pumping system. An electric system providing RF voltages of high amplitudes going up to 10 kV is being also developed. The mechanical design of the various elements forming the radiofrequency quadrupole (RFQ) charge breeder (CB) and their matter are also performed. An overview of the RISP RFQCB design concept as well as the development of its sub-systems will be reported.

  8. Enabling Exploration Missions Now: Applications of On-orbit Staging

    NASA Technical Reports Server (NTRS)

    Folta, David C.; Vaughn, Frank; Westmeyer, Paul; Rawitscher, Gary; Bordi, Francesco

    2005-01-01

    Future NASA Exploration goals are difficult to meet using current launch vehicle implementations and techniques. We introduce a concept of On-Orbit Staging (OOS) using multiple launches into a Low Earth orbit (LEO) staging area to increase payload mass and reduce overall cost for exploration initiative missions. This concept is a forward-looking implementation of ideas put forth by Oberth and Von Braun to address the total mission design. Applying staging throughout the mission and utilizing technological advances in propulsion efficiency and architecture enable us to show that exploration goals can be met in the next decade. As part of this architecture, we assume the readiness of automated rendezvous, docking, and assembly technology.

  9. The Proposal Concept of Development and Implementation in Strategy of Sustainable Corporate Social Responsibility in the Context of the HCS Model 3E

    NASA Astrophysics Data System (ADS)

    Sakál, Peter; Hrdinová, Gabriela

    2016-06-01

    This article is the result of a conceptual design methodology for the development of a sustainable strategy of sustainable corporate social responsibility (SCSR) in the context of the HCS model 3E formed, as a co-author within the stated grants and dissertation. On the basis of the use of propositional logic, the SCSR procedure is proposed for incorporation into the corporate strategy of sustainable development and the integrated management system (IMS) of the industrial enterprise. The aim of this article is the proposal of the concept of development and implementation strategy of SCSR in the context of the HCS model 3E.

  10. Cockpit resource management training

    NASA Technical Reports Server (NTRS)

    Yocum, M.; Foushee, C.

    1984-01-01

    Cockpit resource management which is a multifaceted concept is outlined. The system involves the effective coordination of many resources: aircraft systems, company, air traffic control, equipment, navigational aids, documents, and manuals. The main concept, however, is group interaction. Problems which arise from lack of coordination, decision making, and lack of communication are pointed out. Implementation by the regional airline industry of cockpit resource management, designed to deal with human interactions problems in the most cost effective manner, is discussed.

  11. Flight elements: Fault detection and fault management

    NASA Technical Reports Server (NTRS)

    Lum, H.; Patterson-Hine, A.; Edge, J. T.; Lawler, D.

    1990-01-01

    Fault management for an intelligent computational system must be developed using a top down integrated engineering approach. An approach proposed includes integrating the overall environment involving sensors and their associated data; design knowledge capture; operations; fault detection, identification, and reconfiguration; testability; causal models including digraph matrix analysis; and overall performance impacts on the hardware and software architecture. Implementation of the concept to achieve a real time intelligent fault detection and management system will be accomplished via the implementation of several objectives, which are: Development of fault tolerant/FDIR requirement and specification from a systems level which will carry through from conceptual design through implementation and mission operations; Implementation of monitoring, diagnosis, and reconfiguration at all system levels providing fault isolation and system integration; Optimize system operations to manage degraded system performance through system integration; and Lower development and operations costs through the implementation of an intelligent real time fault detection and fault management system and an information management system.

  12. Artificial Intelligence Techniques: Applications for Courseware Development.

    ERIC Educational Resources Information Center

    Dear, Brian L.

    1986-01-01

    Introduces some general concepts and techniques of artificial intelligence (natural language interfaces, expert systems, knowledge bases and knowledge representation, heuristics, user-interface metaphors, and object-based environments) and investigates ways these techniques might be applied to analysis, design, development, implementation, and…

  13. Applying health education theory to patient safety programs: three case studies.

    PubMed

    Gilkey, Melissa B; Earp, Jo Anne L; French, Elizabeth A

    2008-04-01

    Program planning for patient safety is challenging because intervention-oriented surveillance data are not yet widely available to those working in this nascent field. Even so, health educators are uniquely positioned to contribute to patient safety intervention efforts because their theoretical training provides them with a guide for designing and implementing prevention programs. This article demonstrates the utility of applying health education concepts from three prominent patient safety campaigns, including the concepts of risk perception, community participation, and social marketing. The application of these theoretical concepts to patient safety programs suggests that health educators possess a knowledge base and skill set highly relevant to patient safety and that their perspective should be increasingly brought to bear on the design and evaluation of interventions that aim to protect patients from preventable medical error.

  14. Design and implementation of a unified certification management system based on seismic business

    NASA Astrophysics Data System (ADS)

    Tang, Hongliang

    2018-04-01

    Many business software for seismic systems are based on web pages, users can simply open a browser and enter their IP address. However, how to achieve unified management and security management of many IP addresses, this paper introduces the design concept based on seismic business and builds a unified authentication management system using ASP technology.

  15. Development of a high capacity toroidal Ni/Cd cell

    NASA Technical Reports Server (NTRS)

    Holleck, G. L.; Foos, J. S.; Avery, J. W.; Feiman, V.

    1981-01-01

    A nickel cadmium battery design which can offer better thermal management, higher energy density and much lower cost than the state-of-the-art is emphasized. A toroidal Ni/Cd cell concept is described. It was critically reviewed and used to develop two cell designs for practical implementation. One is a double swaged and the other a swaged welded configuration.

  16. Career Mobility: Implementing the Ladder Concept in Associate Degree and Practical Nursing Curricula.

    ERIC Educational Resources Information Center

    Story, Donna Ketchum

    Designing a career ladder curriculum is not simply taking an existing practical nurse curriculum and an associate degree nursing curriculum and placing one after the other. The curriculum is designed to produce students who are competent practitioners as practical nurses at the end of the first level and then allow them to continue for an…

  17. Practical implementation of the concept of converted electric vehicle with advanced traction and dynamic performance and environmental safety indicators

    NASA Astrophysics Data System (ADS)

    Sidorov, K. M.; Yutt, V. E.; Grishchenko, A. G.; Golubchik, T. V.

    2018-02-01

    The objective of the work presented in this paper is to describe the implementation of the technical solutions have been developed, with regard to structure, composition, and characteristics, for an experimental prototype of an electric vehicle which has been converted from a conventional vehicle. The methodology of the study results is based on the practical implementation of the developed concept of the conversion of conventional vehicles into electric vehicles. The main components of electric propulsion system of the experimental prototype of electric vehicle are developed and manufactured on the basis of computational researches, taking into account the criteria and principles of conversion within the framework of presented work. The article describes a schematic and a design of power conversion and commutation electrical equipment, traction battery, electromechanical transmission. These results can serve as guidance material in the design and implementation of electric propulsion system (EPS) components of electric vehicles, facilitate the development of optimal technical solutions in the development and manufacture of vehicles, including those aimed at autonomy of operation and the use of perspective driver assistance systems. As part of this work, was suggested a rational structure for an electric vehicle experimental prototype, including technical performance characteristics of the components of EPS.

  18. Shuttle free-flying teleoperator system experiment definition. Volume 3: program development requirements

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The planning data are presented for subsequent phases of free-flying teleoperator program (FFTO) and includes costs, schedules and supporting research and technology activities required to implement the free-flying teleoperator system and associated flight equipment. The purpose of the data presented is to provide NASA with the information needed to continue development of the FFTO and integrate it into the space shuttle program. The planning data describes three major program phases consisting of activities and events scheduled to effect integrated design, development, fabrication and operation of an FFTO system. Phase A, Concept Generation, represents a study effort directed toward generating and evaluating a number of feasible FFTO experiment system concepts. Phase B, Definition, will include preliminary design and supporting analysis of the FFTO, the shuttle based equipment and ground support equipment. Phase C/D, Design, Development and Operations will include detail design of the operational FFTO, its integration into the space shuttle, hardware fabrication and testing, delivery of flight hardware and support of flight operations. Emphasis is placed on the planning for Phases A and B since these studies will be implemented early in the development cycle. Phase C/D planning is more general and subject to refinement during the definition phase.

  19. The evolution of the simulation environment in the ALMA Observatory

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Soto, Ruben; Saez, Norman; Velez, Gaston; Staig, Tomas; Sepulveda, Jorge; Saez, Alejandro; Ovando, Nicolas; Ibsen, Jorge

    2016-07-01

    The Atacama Large Millimeter /submillimeter Array (ALMA) has entered into operation phase since 2013. This transition changed the priorities within the observatory, in which, most of the available time will be dedicated to science observations at the expense of technical time. Therefore, it was planned to design and implement a new simulation environment, which must be comparable - or at least- be representative of the production environment. Concepts of model in the loop and hardware in the loop were explored. In this paper we review experiences gained and lessons learnt during the design and implementation of the new simulation environment.

  20. Design analysis tracking and data relay satellite simulation system

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The design and development of the equipment necessary to simulate the S-band multiple access link between user spacecraft, the Tracking and Data Relay Satellite, and a ground control terminal are discussed. The core of the S-band multiple access concept is the use of an Adaptive Ground Implemented Phased Array. The array contains thirty channels and provides the multiplexing and demultiplexing equipment required to demonstrate the ground implemented beam forming feature. The system provided will make it possible to demonstrate the performance of a desired user and ten interfering sources attempting to pass data through the multiple access system.

  1. The impact of problem solving strategy with online feedback on students’ conceptual understanding

    NASA Astrophysics Data System (ADS)

    Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.

    2018-04-01

    The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.

  2. NASA Propulsion Concept Studies and Risk Reduction Activities for Resource Prospector Lander

    NASA Technical Reports Server (NTRS)

    Trinh, Huu P.; Williams, Hunter; Burnside, Chris

    2015-01-01

    The trade study has led to the selection of propulsion concept with the lowest cost and net lowest risk -Government-owned, flight qualified components -Meet mission requirements although the configuration is not optimized. Risk reduction activities have provided an opportunity -Implement design improvements while development with the early-test approach. -Gain knowledge on the operation and identify operation limit -Data to anchor analytical models for future flight designs; The propulsion system cold flow tests series have provided valuable data for future design. -The pressure surge from the system priming and waterhammer within component operation limits. -Enable to optimize the ullage volume to reduce the propellant tank mass; RS-34 hot fire tests have successfully demonstrated of using the engines for the RP mission -No degradation of performance due to extended storage life of the hardware. -Enable to operate the engine for RP flight mission scenarios, outside of the qualification regime. -Provide extended data for the thermal and GNC designs. Significant progress has been made on NASA propulsion concept design and risk reductions for Resource Prospector lander.

  3. CADBIT II - Computer-Aided Design for Built-In Test. Volume 1

    DTIC Science & Technology

    1993-06-01

    data provided in the CADBIT I Final Report, as indicated in Figure 1.2. "• CADBIT II IMPLEMENTS SYSTEM CONCEPT, REQUIREMENTS, AND DATA DEVELOPED DURING...CADBIT II software was developed using de facto computer standards including Unix, C, and the X Windows-based OSF/Motif graphical user interface... export connectivity infermation. Design Architect is a package for designers that includes schematic capture, VHDL editor, and libraries of digital

  4. Implementing China's circular economy concept at the regional level: a review of progress in Dalian, China.

    PubMed

    Geng, Yong; Zhu, Qinghua; Doberstein, Brent; Fujita, Tsuyoshi

    2009-02-01

    The circular economy (CE) concept was introduced in China to address environmental degradation and resource scarcity associated with rapid economic development. Chosen as a demonstration city, Dalian has implemented the CE strategy as a means of conserving water, materials, energy and land. This paper outlines some of the regional CE initiatives that have been successful to date in Dalian, including those focusing on conserving energy and water resources and others focusing on reduced industrial emissions. The paper details the approach used in implementing the CE concept in Dalian, tracing the foci and goals of the program, and the sectoral approach used to implement a CE. Although Dalian municipality has achieved many successes in implementing a CE, our paper identifies several challenges that, until recently, have held back complete implementation. These include: the lack of incentives for older industries to 'green' their operations, the lack of financial support to expand the CE concept, and a broad-based need for heightened public awareness and participation in CE initiatives. Our paper then identifies several responses by Dalian municipality to overcome these challenges, including pricing and tax reforms that serve as conservation incentives, the provision of financial support for CE promotion through budget reorganization, and the organization of CE training programs. Our paper concludes that, although CE initiatives have been successful in Dalian, more is possible and more is needed before Dalian can be designated a true 'eco-city'. The approach used by Dalian can provide guidance for other Chinese cities, although it is recognized that each city must tailor its own approach for differing contexts and conditions.

  5. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases [1]. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission [2]. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful application of an ADM approach to an ACO design study. Following the overview of the tool set automation, an example problem will be given to illustrate the implementation of the ADM approach. The example problem will first cover the inclusion of ground rules and assumptions (GR&A) for a study. The GR&A are very important to the study as they determine the constraints within which a trade study can be conducted. These trades must ultimately reconcile with the customer's desired output and any anticipated "what if" questions.

  6. Fusion of waveform events and radionuclide detections with the help of atmospheric transport modelling

    NASA Astrophysics Data System (ADS)

    Krysta, Monika; Kushida, Noriyuki; Kotselko, Yuriy; Carter, Jerry

    2016-04-01

    Possibilities of associating information from four pillars constituting CTBT monitoring and verification regime, namely seismic, infrasound, hydracoustic and radionuclide networks, have been explored by the International Data Centre (IDC) of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) for a long time. Based on a concept of overlying waveform events with the geographical regions constituting possible sources of the detected radionuclides, interactive and non-interactive tools were built in the past. Based on the same concept, a design of a prototype of a Fused Event Bulletin was proposed recently. One of the key design elements of the proposed approach is the ability to access fusion results from either the radionuclide or from the waveform technologies products, which are available on different time scales and through various different automatic and interactive products. To accommodate various time scales a dynamic product evolving while the results of the different technologies are being processed and compiled is envisioned. The product would be available through the Secure Web Portal (SWP). In this presentation we describe implementation of the data fusion functionality in the test framework of the SWP. In addition, we address possible refinements to the already implemented concepts.

  7. What can nanosafety learn from drug development? The feasibility of "safety by design".

    PubMed

    Hjorth, Rune; van Hove, Lilian; Wickson, Fern

    2017-04-01

    "Safety by design" (SbD) is an intuitively appealing concept that is on the rise within nanotoxicology and nanosafety research, as well as within nanotechnology research policy. It leans on principles established within drug discovery and development (DDD) and seeks to address safety early, as well as throughout product development. However, it remains unclear what the concept of SbD exactly entails for engineered nanomaterials (ENMs) or how it is envisioned to be implemented. Here, we review the concept as it is emerging in European research and compare its resemblance with the safety testing and assessment practices in DDD. From this comparison, it is clear that "safety" is not obtained through DDD, and that SbD should be considered a starting point rather than an end, meaning that products will still need to progress through thorough safety evaluations and regulation. We conclude that although risk reduction is clearly desirable, the way SbD is currently communicated tends to treat safety as an inherent material property and that this is fundamentally problematic as it represents a recasting and reduction of societal issues into technical problems. SbD therefore faces a multitude of challenges, from practical implementation to unrealistic stakeholder expectations.

  8. Twitter's tweet method modelling and simulation

    NASA Astrophysics Data System (ADS)

    Sarlis, Apostolos S.; Sakas, Damianos P.; Vlachos, D. S.

    2015-02-01

    This paper seeks to purpose the concept of Twitter marketing methods. The tools that Twitter provides are modelled and simulated using iThink in the context of a Twitter media-marketing agency. The paper has leveraged the system's dynamic paradigm to conduct Facebook marketing tools and methods modelling, using iThink™ system to implement them. It uses the design science research methodology for the proof of concept of the models and modelling processes. The following models have been developed for a twitter marketing agent/company and tested in real circumstances and with real numbers. These models were finalized through a number of revisions and iterators of the design, develop, simulate, test and evaluate. It also addresses these methods that suit most organized promotion through targeting, to the Twitter social media service. The validity and usefulness of these Twitter marketing methods models for the day-to-day decision making are authenticated by the management of the company organization. It implements system dynamics concepts of Twitter marketing methods modelling and produce models of various Twitter marketing situations. The Tweet method that Twitter provides can be adjusted, depending on the situation, in order to maximize the profit of the company/agent.

  9. Mapping the Diagnosis Axis of an Interface Terminology to the NANDA International Taxonomy

    PubMed Central

    Juvé Udina, Maria-Eulàlia; Gonzalez Samartino, Maribel; Matud Calvo, Cristina

    2012-01-01

    Background. Nursing terminologies are designed to support nursing practice but, as with any other clinical tool, they should be evaluated. Cross-mapping is a formal method for examining the validity of the existing controlled vocabularies. Objectives. The study aims to assess the inclusiveness and expressiveness of the nursing diagnosis axis of a newly implemented interface terminology by cross-mapping with the NANDA-I taxonomy. Design/Methods. The study applied a descriptive design, using a cross-sectional, bidirectional mapping strategy. The sample included 728 concepts from both vocabularies. Concept cross-mapping was carried out to identify one-to-one, negative, and hierarchical connections. The analysis was conducted using descriptive statistics. Results. Agreement of the raters' mapping achieved 97%. More than 60% of the nursing diagnosis concepts in the NANDA-I taxonomy were mapped to concepts in the diagnosis axis of the new interface terminology; 71.1% were reversely mapped. Conclusions. Main results for outcome measures suggest that the diagnosis axis of this interface terminology meets the validity criterion of cross-mapping when mapped from and to the NANDA-I taxonomy. PMID:22830046

  10. Mapping the Diagnosis Axis of an Interface Terminology to the NANDA International Taxonomy.

    PubMed

    Juvé Udina, Maria-Eulàlia; Gonzalez Samartino, Maribel; Matud Calvo, Cristina

    2012-01-01

    Background. Nursing terminologies are designed to support nursing practice but, as with any other clinical tool, they should be evaluated. Cross-mapping is a formal method for examining the validity of the existing controlled vocabularies. Objectives. The study aims to assess the inclusiveness and expressiveness of the nursing diagnosis axis of a newly implemented interface terminology by cross-mapping with the NANDA-I taxonomy. Design/Methods. The study applied a descriptive design, using a cross-sectional, bidirectional mapping strategy. The sample included 728 concepts from both vocabularies. Concept cross-mapping was carried out to identify one-to-one, negative, and hierarchical connections. The analysis was conducted using descriptive statistics. Results. Agreement of the raters' mapping achieved 97%. More than 60% of the nursing diagnosis concepts in the NANDA-I taxonomy were mapped to concepts in the diagnosis axis of the new interface terminology; 71.1% were reversely mapped. Conclusions. Main results for outcome measures suggest that the diagnosis axis of this interface terminology meets the validity criterion of cross-mapping when mapped from and to the NANDA-I taxonomy.

  11. Advanced supersonic technology concept study: Hydrogen fueled configuration

    NASA Technical Reports Server (NTRS)

    Brewer, G. D.

    1974-01-01

    Conceptual designs of hydrogen fueled supersonic transport configurations for the 1990 time period were developed and compared with equivalent technology Jet A-1 fueled vehicles to determine the economic and performance potential of liquid hydrogen as an alternate fuel. Parametric evaluations of supersonic cruise vehicles with varying design and transport mission characteristics established the basis for selecting a preferred configuration which was then studied in greater detail. An assessment was made of the general viability of the selected concept including an evaluation of costs and environmental considerations, i.e., exhaust emissions and sonic boom characteristics. Technology development requirements and suggested implementation schedules are presented.

  12. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  13. High-Fidelity e-Learning: SEI’s Virtual Training Environment (VTE)

    DTIC Science & Technology

    2009-01-01

    Assessment 2.4 Collaboration 2.4.1 Peer-Student Collaboration 2.4.2 Instructor Support 2.5 Accessibility 2.6 Modularity 2.6.1 Design for Re-Use 2.6.2 Design ...ing Environment as an implementation of a high-fidelity e-Ieaming system. This report does not cover concepts of pedagogy or instructional design in e...pedagogical agents. This is the basis for Clark and Mayer’s Personalization principle for designing media for e-learning [Clark & Mayer 2003]. E-learning

  14. Environmental engineering of navigation infrastructure: a survey of existing practices, challenges, and potential opportunities.

    PubMed

    Fredette, Thomas J; Foran, Christy M; Brasfield, Sandra M; Suedel, Burton C

    2012-01-01

    Navigation infrastructure such as channels, jetties, river training structures, and lock-and-dam facilities are primary components of a safe and efficient water transportation system. Planning for such infrastructure has until recently involved efforts to minimize impacts on the environment through a standardized environmental assessment process. More recently, consistent with environmental sustainability concepts, planners have begun to consider how such projects can also be constructed with environmental enhancements. This study examined the existing institutional conditions within the US Army Corps of Engineers and cooperating federal agencies relative to incorporating environmental enhancements into navigation infrastructure projects. The study sought to (1) investigate institutional attitudes towards the environmental enhancement of navigation infrastructure (EENI) concept, (2) identify potential impediments to implementation and solutions to such impediments, (3) identify existing navigation projects designed with the express intent of enhancing environmental benefit in addition to the primary project purpose, (4) identify innovative ideas for increasing environmental benefits for navigation projects, (5) identify needs for additional technical information or research, and (6) identify laws, regulations, and policies that both support and hinder such design features. The principal investigation tool was an Internet-based survey with 53 questions. The survey captured a wide range of perspectives on the EENI concept including ideas, concerns, research needs, and relevant laws and policies. Study recommendations included further promotion of the concept of EENI to planners and designers, documentation of existing projects, initiation of pilot studies on some of the innovative ideas provided through the survey, and development of national goals and interagency agreements to facilitate implementation. Copyright © 2011 SETAC.

  15. Design of a multi-spectral imager built using the compressive sensing single-pixel camera architecture

    NASA Astrophysics Data System (ADS)

    McMackin, Lenore; Herman, Matthew A.; Weston, Tyler

    2016-02-01

    We present the design of a multi-spectral imager built using the architecture of the single-pixel camera. The architecture is enabled by the novel sampling theory of compressive sensing implemented optically using the Texas Instruments DLP™ micro-mirror array. The array not only implements spatial modulation necessary for compressive imaging but also provides unique diffractive spectral features that result in a multi-spectral, high-spatial resolution imager design. The new camera design provides multi-spectral imagery in a wavelength range that extends from the visible to the shortwave infrared without reduction in spatial resolution. In addition to the compressive imaging spectrometer design, we present a diffractive model of the architecture that allows us to predict a variety of detailed functional spatial and spectral design features. We present modeling results, architectural design and experimental results that prove the concept.

  16. Design trade-off and proof of concept for LOUPE, the Lunar Observatory for Unresolved Polarimetry of Earth.

    PubMed

    Hoeijmakers, H J; Arts, M L J; Snik, F; Keller, C U; Kuiper, J M

    2016-09-19

    We provide a proof of the technical feasibility of LOUPE, the first integral-field snapshot spectropolarimeter, designed to monitor the reflected flux and polarization spectrum of Earth. These are to be used as benchmark data for the retrieval of biomarkers and atmospheric and surface characteristics from future direct observations of exoplanets. We perform a design trade-off for an implementation in which LOUPE performs snapshot integral-field spectropolarimetry at visible wavelengths. We used off-the-shelf optics to construct a polarization modulator, in which polarization information is encoded into the spectrum as a wavelength-dependent modulation, while spatial resolution is maintained using a micro-lens array. The performance of this design concept is validated in a laboratory setup. Our proof-of-concept is capable of measuring a grid of 50 × 50 polarization spectra between 610 and 780 nm of a mock target planet - proving the merit of this design. The measurements are affected by systematic noise on the percent level, and we discuss how to mitigate this in future iterations. We conclude that LOUPE can be small and robust while meeting the science goals of this particular space application, and note the many potential applications that may benefit from our concept for doing snapshot integral-field spectropolarimetry.

  17. Modular space station phase B extension preliminary system design. Volume 3: Experiment analyses

    NASA Technical Reports Server (NTRS)

    Wengrow, G. L.; Lillenas, A. N.

    1972-01-01

    Experiment analysis tasks performed during program definition study are described. Experiment accommodation and scheduling, and defining and implementing the laboratory evolution are discussed. The general purpose laboratory requirements and concepts are defined, and supplemental studies are reported.

  18. Cultural Change and a Balanced Scorecard. Does Your Organization Measure Up?

    ERIC Educational Resources Information Center

    McAlary, Chris K.

    2001-01-01

    Discusses the balanced scorecard concept, a customer-based planning and process improvement system for measuring the success of campus business enterprises and helping to better achieve organizational goals. Scorecard design and implementation are described as are selected success stories. (GR)

  19. The Woodlands, Texas.

    ERIC Educational Resources Information Center

    McHaney, Larry J.; Bernhardt, Jerry

    1988-01-01

    The authors describe the "central project" concept for implementing technology education while addressing education reform. The central project is a topic around which students, teachers, administrators, and the community focus their energies as a team. At McCullough High School (Texas), the central project involved design and…

  20. The Machine Intelligence Hex Project

    ERIC Educational Resources Information Center

    Chalup, Stephan K.; Mellor, Drew; Rosamond, Fran

    2005-01-01

    Hex is a challenging strategy board game for two players. To enhance students' progress in acquiring understanding and practical experience with complex machine intelligence and programming concepts we developed the Machine Intelligence Hex (MIHex) project. The associated undergraduate student assignment is about designing and implementing Hex…

  1. Distributed Simulation as a modelling tool for the development of a simulation-based training programme for cardiovascular specialties.

    PubMed

    Kelay, Tanika; Chan, Kah Leong; Ako, Emmanuel; Yasin, Mohammad; Costopoulos, Charis; Gold, Matthew; Kneebone, Roger K; Malik, Iqbal S; Bello, Fernando

    2017-01-01

    Distributed Simulation is the concept of portable, high-fidelity immersive simulation. Here, it is used for the development of a simulation-based training programme for cardiovascular specialities. We present an evidence base for how accessible, portable and self-contained simulated environments can be effectively utilised for the modelling, development and testing of a complex training framework and assessment methodology. Iterative user feedback through mixed-methods evaluation techniques resulted in the implementation of the training programme. Four phases were involved in the development of our immersive simulation-based training programme: ( 1) initial conceptual stage for mapping structural criteria and parameters of the simulation training framework and scenario development ( n  = 16), (2) training facility design using Distributed Simulation , (3) test cases with clinicians ( n  = 8) and collaborative design, where evaluation and user feedback involved a mixed-methods approach featuring (a) quantitative surveys to evaluate the realism and perceived educational relevance of the simulation format and framework for training and (b) qualitative semi-structured interviews to capture detailed feedback including changes and scope for development. Refinements were made iteratively to the simulation framework based on user feedback, resulting in (4) transition towards implementation of the simulation training framework, involving consistent quantitative evaluation techniques for clinicians ( n  = 62). For comparative purposes, clinicians' initial quantitative mean evaluation scores for realism of the simulation training framework, realism of the training facility and relevance for training ( n  = 8) are presented longitudinally, alongside feedback throughout the development stages from concept to delivery, including the implementation stage ( n  = 62). Initially, mean evaluation scores fluctuated from low to average, rising incrementally. This corresponded with the qualitative component, which augmented the quantitative findings; trainees' user feedback was used to perform iterative refinements to the simulation design and components (collaborative design), resulting in higher mean evaluation scores leading up to the implementation phase. Through application of innovative Distributed Simulation techniques, collaborative design, and consistent evaluation techniques from conceptual, development, and implementation stages, fully immersive simulation techniques for cardiovascular specialities are achievable and have the potential to be implemented more broadly.

  2. 2D/3D Synthetic Vision Navigation Display

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.

    2008-01-01

    Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.

  3. An Operations Concept for Integrated Model-Centric Engineering at JPL

    NASA Technical Reports Server (NTRS)

    Bayer, Todd J.; Cooney, Lauren A.; Delp, Christopher L.; Dutenhoffer, Chelsea A.; Gostelow, Roli D.; Ingham, Michel D.; Jenkins, J. Steven; Smith, Brian S.

    2010-01-01

    As JPL's missions grow more complex, the need for improved systems engineering processes is becoming clear. Of significant promise in this regard is the move toward a more integrated and model-centric approach to mission conception, design, implementation and operations. The Integrated Model-Centric Engineering (IMCE) Initiative, now underway at JPL, seeks to lay the groundwork for these improvements. This paper will report progress on three fronts: articulating JPL's need for IMCE; characterizing the enterprise into which IMCE capabilities will be deployed; and constructing an operations concept for a flight project development in an integrated model-centric environment.

  4. Space shuttle auxiliary propulsion system design study. Phase D report: Oxygen-hydrogen special RCS studies

    NASA Technical Reports Server (NTRS)

    Baumann, T. L.; Pattern, T. C.; Mckee, H. B.

    1972-01-01

    Two alternate oxygen-hydrogen auxiliary propulsion system concepts for use with the space shuttle vehicle were evaluated. The two concepts considered were: (1) gaseous oxygen-hydrogen systems with electric or hydraulic motor driven pumps to provide system pressure and (2) liquid oxygen-hydrogen systems which delivered propellants to the engines in a liquid state without the need for pumps. The various means of implementing each of the concepts are compared on the basis of weight, technology requirements, and operational considerations. It was determined that the liquid oxygen-hydrogen system concepts have the potential to produce substantial weight reductions in the space shuttle orbiter total impulse range.

  5. Feasibility study of shared-ride auto transit. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kocur, G.; Zaelke, D.; Neumann, L.

    1977-09-01

    The report examines the feasibility of the implementation of shared-ride auto transit (SRAT), which is an innovative approach for increasing auto occupancy in rural and urban areas. The report focuses on operational concepts, potential usage, legal and regulatory issues, and institutional issues. Formulation of the SRAT concept was motivated by several concerns, such as: (1) energy conservation; (2) transit service to areas unable to economically justify conventional transit services, and to travel disadvantaged groups; (3) transit service replacement to achieve greater efficiency and to reduce transit deficits; (4) provision of inexpensive transit service; and (5) the increase of safety andmore » reliability of hitchhiking. Four case study sites (Boulder, Colorado; Boston, Massachusetts; Portland, Oregon; and Tidewater, Virginia), were used to identify the specific institutional issues likely to impact SRAT implementation for that site, and to identify the opportunities for designing, implementing and operating SRAT in a variety of institutional settings.« less

  6. Ethical budgets: a critical success factor in implementing new public management accountability in health care.

    PubMed

    Bosa, Iris M

    2010-05-01

    New public management accountability is increasingly being introduced into health-care systems throughout the world - albeit with mixed success. This paper examines the successful introduction of new management accounting systems among general practitioners (GPs) as an aspect of reform in the Italian health-care system. In particular, the study examines the critical role played by the novel concept of an 'ethical budget' in engaging the willing cooperation of the medical profession in implementing change. Utilizing a qualitative research design, with in-depth interviews with GPs, hospital doctors and managers, along with archival analysis, the present study finds that management accounting can be successfully implemented among medical professionals provided there is alignment between the management imperative and the ethical framework in which doctors practise their profession. The concept of an 'ethical budget' has been shown to be an innovative and effective tool in achieving this alignment.

  7. First-order reliability application and verification methods for semistatic structures

    NASA Astrophysics Data System (ADS)

    Verderaime, V.

    1994-11-01

    Escalating risks of aerostructures stimulated by increasing size, complexity, and cost should no longer be ignored in conventional deterministic safety design methods. The deterministic pass-fail concept is incompatible with probability and risk assessments; stress audits are shown to be arbitrary and incomplete, and the concept compromises the performance of high-strength materials. A reliability method is proposed that combines first-order reliability principles with deterministic design variables and conventional test techniques to surmount current deterministic stress design and audit deficiencies. Accumulative and propagation design uncertainty errors are defined and appropriately implemented into the classical safety-index expression. The application is reduced to solving for a design factor that satisfies the specified reliability and compensates for uncertainty errors, and then using this design factor as, and instead of, the conventional safety factor in stress analyses. The resulting method is consistent with current analytical skills and verification practices, the culture of most designers, and the development of semistatic structural designs.

  8. An advanced wide area chemical sensor testbed

    NASA Astrophysics Data System (ADS)

    Seeley, Juliette A.; Kelly, Michael; Wack, Edward; Ryan-Howard, Danette; Weidler, Darryl; O'Brien, Peter; Colonero, Curtis; Lakness, John; Patel, Paras

    2005-11-01

    In order to meet current and emerging needs for remote passive standoff detection of chemical agent threats, MIT Lincoln Laboratory has developed a Wide Area Chemical Sensor (WACS) testbed. A design study helped define the initial concept, guided by current standoff sensor mission requirements. Several variants of this initial design have since been proposed to target other applications within the defense community. The design relies on several enabling technologies required for successful implementation. The primary spectral component is a Wedged Interferometric Spectrometer (WIS) capable of imaging in the LWIR with spectral resolutions as narrow as 4 cm-1. A novel scanning optic will enhance the ability of this sensor to scan over large areas of concern with a compact, rugged design. In this paper, we shall discuss our design, development, and calibration process for this system as well as recent testbed measurements that validate the sensor concept.

  9. Exploration Planetary Surface Structural Systems: Design Requirements and Compliance

    NASA Technical Reports Server (NTRS)

    Dorsey, John T.

    2011-01-01

    The Lunar Surface Systems Project developed system concepts that would be necessary to establish and maintain a permanent human presence on the Lunar surface. A variety of specific system implementations were generated as a part of the scenarios, some level of system definition was completed, and masses estimated for each system. Because the architecture studies generally spawned a large number of system concepts and the studies were executed in a short amount of time, the resulting system definitions had very low design fidelity. This paper describes the development sequence required to field a particular structural system: 1) Define Requirements, 2) Develop the Design and 3) Demonstrate Compliance of the Design to all Requirements. This paper also outlines and describes in detail the information and data that are required to establish structural design requirements and outlines the information that would comprise a planetary surface system Structures Requirements document.

  10. A Concept Mapping Approach to Guide and Understand Dissemination and Implementation

    PubMed Central

    Green, Amy E.; Fettes, Danielle L.; Aarons, Gregory A.

    2013-01-01

    Many efforts to implement evidence-based programs do not reach their full potential or fail due to the variety of challenges inherent in dissemination and implementation. This article describes the use of concept mapping—a mixed method strategy—to study implementation of behavioral health innovations and evidence-based practice (EBP). The application of concept mapping to implementation research represents a practical and concise way to identify and quantify factors affecting implementation, develop conceptual models of implementation, target areas to address as part of implementation readiness and active implementation, and foster communication among stakeholders. Concept mapping is described and a case example is provided to illustrate its use in an implementation study. Implications for the use of concept mapping methods in both research and applied settings towards the dissemination and implementation of behavioral health services are discussed. PMID:22892987

  11. A concept mapping approach to guide and understand dissemination and implementation.

    PubMed

    Green, Amy E; Fettes, Danielle L; Aarons, Gregory A

    2012-10-01

    Many efforts to implement evidence-based programs do not reach their full potential or fail due to the variety of challenges inherent in dissemination and implementation. This article describes the use of concept mapping-a mixed method strategy-to study implementation of behavioral health innovations and evidence-based practice (EBP). The application of concept mapping to implementation research represents a practical and concise way to identify and quantify factors affecting implementation, develop conceptual models of implementation, target areas to address as part of implementation readiness and active implementation, and foster communication among stakeholders. Concept mapping is described and a case example is provided to illustrate its use in an implementation study. Implications for the use of concept mapping methods in both research and applied settings towards the dissemination and implementation of behavioral health services are discussed.

  12. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  13. Economical Implementation of a Filter Engine in an FPGA

    NASA Technical Reports Server (NTRS)

    Kowalski, James E.

    2009-01-01

    A logic design has been conceived for a field-programmable gate array (FPGA) that would implement a complex system of multiple digital state-space filters. The main innovative aspect of this design lies in providing for reuse of parts of the FPGA hardware to perform different parts of the filter computations at different times, in such a manner as to enable the timely performance of all required computations in the face of limitations on available FPGA hardware resources. The implementation of the digital state-space filter involves matrix vector multiplications, which, in the absence of the present innovation, would ordinarily necessitate some multiplexing of vector elements and/or routing of data flows along multiple paths. The design concept calls for implementing vector registers as shift registers to simplify operand access to multipliers and accumulators, obviating both multiplexing and routing of data along multiple paths. Each vector register would be reused for different parts of a calculation. Outputs would always be drawn from the same register, and inputs would always be loaded into the same register. A simple state machine would control each filter. The output of a given filter would be passed to the next filter, accompanied by a "valid" signal, which would start the state machine of the next filter. Multiple filter modules would share a multiplication/accumulation arithmetic unit. The filter computations would be timed by use of a clock having a frequency high enough, relative to the input and output data rate, to provide enough cycles for matrix and vector arithmetic operations. This design concept could prove beneficial in numerous applications in which digital filters are used and/or vectors are multiplied by coefficient matrices. Examples of such applications include general signal processing, filtering of signals in control systems, processing of geophysical measurements, and medical imaging. For these and other applications, it could be advantageous to combine compact FPGA digital filter implementations with other application-specific logic implementations on single integrated-circuit chips. An FPGA could readily be tailored to implement a variety of filters because the filter coefficients would be loaded into memory at startup.

  14. Design guide for low cost standardized payloads, volume 1

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Concept point designs of low cost and refurbishable spacecraft, subsystems, and modules revealed payload program savings up to 50 percent. The general relationship of payload approaches to program costs; cost reductions from low cost standardized payloads; cost effective application of payload reliability, MMD, repair, and refurbishment; and implementation of standardization for future spacecraft are discussed. Shuttle interfaces and support equipment for future payloads are also considered

  15. Forest landscape analysis and design: a process for developing and implementing land management objectives for landscape patterns.

    Treesearch

    Nancy Diaz; Dean Apostol

    1992-01-01

    This publication presents a Landscape Design and Analysis Process, along with some simple methods and tools for describing landscapes and their function. The information is qualitative in nature and highlights basic concepts, but does not address landscape ecology in great depth. Readers are encouraged to consult the list of selected references in Chapter 2 if they...

  16. 'But This Isn't School': Exploring Tensions in the Intersection between School and Leisure Activities in Classroom Game Design

    ERIC Educational Resources Information Center

    Øygardslia, Kristine

    2018-01-01

    While there are several positive outcomes from implementing game design in a formal learning context, there are also challenges that have to be considered in order to improve game-based learning. This is explored in the article, using the concepts of "activity frames" and "stancetaking", focusing on the social organization of…

  17. Increasing Active Learning and End-Client Interaction in the Systems Analysis and Design and Capstone Courses

    ERIC Educational Resources Information Center

    Reinicke, Bryan A.; Janicki, Thomas N.

    2010-01-01

    Systems analysis and design (SAD) is one of the core courses offered in most IS programs, yet this class can be challenging for students and instructors alike. The concepts can be abstract, and getting students to appreciate their importance can be difficult. This paper discusses the implementation of a two semester sequence in which the students…

  18. Space Station Freedom operations costs

    NASA Technical Reports Server (NTRS)

    Accola, Anne L.; Williams, Gregory J.

    1988-01-01

    Measures to reduce the operation costs of the Space Station which can be implemented in the design and development stages are discussed. Operational functions are described in the context of an overall operations concept. The provisions for operations cost responsibilities among the partners in the Space Station program are presented. Cost estimating methodologies and the way in which operations costs affect the design and development process are examined.

  19. Understanding Acid-Base Concepts: Evaluating the Efficacy of a Senior High School Student-Centred Instructional Program in Indonesia

    ERIC Educational Resources Information Center

    Rahayu, Sri; Chandrasegaran, A. L.; Treagust, David F.; Kita, Masakazu; Ibnu, Suhadi

    2011-01-01

    This study was a mixed quantitative-qualitative research to evaluate the efficacy of a designed student-centred instructional (DSCI) program for teaching about acids and bases. The teaching innovation was designed based on constructivist, hands-on inquiry and context-based approaches and implemented in seven 45-min lessons with a class of 36 grade…

  20. Large Advanced Space Systems (LASS) computer-aided design program additions

    NASA Technical Reports Server (NTRS)

    Farrell, C. E.

    1982-01-01

    The LSS preliminary and conceptual design requires extensive iteractive analysis because of the effects of structural, thermal, and control intercoupling. A computer aided design program that will permit integrating and interfacing of required large space system (LSS) analyses is discussed. The primary objective of this program is the implementation of modeling techniques and analysis algorithms that permit interactive design and tradeoff studies of LSS concepts. Eight software modules were added to the program. The existing rigid body controls module was modified to include solar pressure effects. The new model generator modules and appendage synthesizer module are integrated (interfaced) to permit interactive definition and generation of LSS concepts. The mass properties module permits interactive specification of discrete masses and their locations. The other modules permit interactive analysis of orbital transfer requirements, antenna primary beam n, and attitude control requirements.

  1. Comparing video and avatar technology for a health education application for deaf people.

    PubMed

    Chiriac, Ionuţ Adrian; Stoicu-Tivadar, Lăcrămioara; Podoleanu, Elena

    2015-01-01

    The article describes the steps and results of a parallel research investigating e-health systems design and implementation for deaf people both in avatar and video technology. The application translates medical knowledge and concepts in deaf sign language for impaired users through an avatar. Two types of avatar technologies are taken into consideration: Video Avatar with recorded humans interface and Animated Avatar with animated figure interface. The comparative study investigates the data collection, design, implementation and the impact study. The comparative analysis of video and animated technology for data collection shows that the video format editing requires fewer skills and results are obtained easier, quicker and less expensive. The video technology supports an easier to design and implement architecture. The impact study for 2 deaf students communities is under development and for the time being the video avatar is better perceived.

  2. Personal Finance Education Guide.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This guide is intended to assist curriculum planners and classroom teachers in designing and implementing personal finance instruction to meet a variety of student needs, interests, and abilities. It is organized under five concept areas: employment and income, money management, credit, purchase of goods and services, and rights and…

  3. On Mediation in Virtual Learning Environments.

    ERIC Educational Resources Information Center

    Davies, Larry; Hassan, W. Shukry

    2001-01-01

    Discusses concepts of mediation and focuses on the importance of implementing comprehensive virtual learning environments. Topics include education and technology as they relate to cultural change, social institutions, the Internet and computer-mediated communication, software design and human-computer interaction, the use of MOOs, and language.…

  4. Highly-efficient, frequency-tripled Nd:YAG laser for spaceborne LIDARs

    NASA Astrophysics Data System (ADS)

    Treichel, R.; Hoffmann, H.-D.; Luttmann, J.; Morasch, V.; Nicklaus, K.; Wührer, C.

    2017-11-01

    For a spaceborne lidar a highly reliable, long living and efficient laser source is absolutely essential. Within the frame of the development of a laser source for the backscatter lidar ATLID, which will be flown on EarthCare mission, we setup and tested a predevelopment model of an injection-seeded, diode pumped, frequency tripled, pulsed high power Nd:YAG MOPA laser operating nominally at 100 Hz pulse repetition frequency. We also tested the burst operation mode. The excellent measured performance parameter will be introduced. The oscillator rod is longitudinally pumped from both sides. The oscillator has been operated with three cavity control methods: "Cavity Dither", "Pound-Drever-Hall" and "Adaptive Ramp & Fire". Especially the latter method is very suitable to operate the laser in harsh vibrating environment such in airplanes. The amplifier bases on the InnoSlab design concept. The constant keeping of a moderate fluence in the InnoSlab crystal permits excellent possibilities to scale the pulse energy to several 100 mJ. An innovative pump unit and optics makes the laser performance insensitive to inhomogeneous diode degradation and allows switching of additional redundant diodes. Further key features have been implemented in a FM design concept. The operational lifetime is extended by the implementation of internal redundancies for the most critical parts. The reliability is increased due to the higher margin onto the laser induced damage threshold by a pressurized housing. Additionally air-to-vacuum effects becomes obsolete. A high efficient heat removal concept has been implemented.

  5. Rapid prototyping prosthetic hand acting by a low-cost shape-memory-alloy actuator.

    PubMed

    Soriano-Heras, Enrique; Blaya-Haro, Fernando; Molino, Carlos; de Agustín Del Burgo, José María

    2018-06-01

    The purpose of this article is to develop a new concept of modular and operative prosthetic hand based on rapid prototyping and a novel shape-memory-alloy (SMA) actuator, thus minimizing the manufacturing costs. An underactuated mechanism was needed for the design of the prosthesis to use only one input source. Taking into account the state of the art, an underactuated mechanism prosthetic hand was chosen so as to implement the modifications required for including the external SMA actuator. A modular design of a new prosthesis was developed which incorporated a novel SMA actuator for the index finger movement. The primary objective of the prosthesis is achieved, obtaining a modular and functional low-cost prosthesis based on additive manufacturing executed by a novel SMA actuator. The external SMA actuator provides a modular system which allows implementing it in different systems. This paper combines rapid prototyping and a novel SMA actuator to develop a new concept of modular and operative low-cost prosthetic hand.

  6. Knowledge translation on dementia: a cluster randomized trial to compare a blended learning approach with a "classical" advanced training in GP quality circles

    PubMed Central

    Vollmar, Horst C; Butzlaff, Martin E; Lefering, Rolf; Rieger, Monika A

    2007-01-01

    Background Thus far important findings regarding the dementia syndrome have been implemented into patients' medical care only inadequately. A professional training accounting for both, general practitioners' (GP) needs and learning preferences as well as care-relevant aspects could be a major step towards improving medical care. In the WIDA-study, entitled "Knowledge translation on dementia in general practice" two different training concepts are developed, implemented and evaluated. Both concepts are building on an evidence-based, GP-related dementia guideline and communicate the guideline's essential insights. Methods/Design Both development and implementation emphasize a procedure that is well-accepted in practice and, thus, can achieve a high degree of external validity. This is particularly guaranteed through the preparation of training material and the fact that general practitioners' quality circles (QC) are addressed. The evaluation of the two training concepts is carried out by comparing two groups of GPs to which several quality circles have been randomly assigned. The primary outcome is the GPs' knowledge gain. Secondary outcomes are designed to indicate the training's potential effects on the GPs' practical actions. In the first training concept (study arm A) GPs participate in a structured case discussion prepared for by internet-based learning material ("blended-learning" approach). The second training concept (study arm B) relies on frontal medical training in the form of a slide presentation and follow-up discussion ("classical" approach). Discussion This paper presents the outline of a cluster-randomized trial which has been peer reviewed and support by a national funding organization – Federal Ministry of Education and Research (BMBF) – and is approved by an ethics commission. The data collection has started in August 2006 and the results will be published independently of the study's outcome. Trial Registration Current Controlled Trials [ISRCTN36550981] PMID:17587452

  7. Biological Signal Processing with a Genetic Toggle Switch

    PubMed Central

    Hillenbrand, Patrick; Fritz, Georg; Gerland, Ulrich

    2013-01-01

    Complex gene regulation requires responses that depend not only on the current levels of input signals but also on signals received in the past. In digital electronics, logic circuits with this property are referred to as sequential logic, in contrast to the simpler combinatorial logic without such internal memory. In molecular biology, memory is implemented in various forms such as biochemical modification of proteins or multistable gene circuits, but the design of the regulatory interface, which processes the input signals and the memory content, is often not well understood. Here, we explore design constraints for such regulatory interfaces using coarse-grained nonlinear models and stochastic simulations of detailed biochemical reaction networks. We test different designs for biological analogs of the most versatile memory element in digital electronics, the JK-latch. Our analysis shows that simple protein-protein interactions and protein-DNA binding are sufficient, in principle, to implement genetic circuits with the capabilities of a JK-latch. However, it also exposes fundamental limitations to its reliability, due to the fact that biological signal processing is asynchronous, in contrast to most digital electronics systems that feature a central clock to orchestrate the timing of all operations. We describe a seemingly natural way to improve the reliability by invoking the master-slave concept from digital electronics design. This concept could be useful to interpret the design of natural regulatory circuits, and for the design of synthetic biological systems. PMID:23874595

  8. Effects of socioscientific issues-based instruction on argumentation ability and biology concepts of upper secondary school students

    NASA Astrophysics Data System (ADS)

    Faelt, Surasak; Samiphak, Sara; Pattaradilokrat, Sittiporn

    2018-01-01

    Argumentation skill is an essential skill needed in students, and one of the competencies in scientific literacy. Through arguing on socioscientific issues, students may gain deeper conceptual understanding. The purpose of this research is to examine the efficacy of a socioscientific issues-based instruction compared with an inquirybased instruction. This is to determine which one is better in promoting 10th grade students' argumentation ability and biology concepts of digestive system and cellular respiration. The forty 10th grade students included in this study were from two mathematics-science program classes in a medium-sized secondary school located in a suburb of Buriram province, Thailand. The research utilizes a quasi-experimental design; pre-test post-test control group design. We developed and implemented 4 lesson plans for both socioscientific issues-based instruction and inquiry-based instruction. Ten weeks were used to collect the data. A paper-based questionnaire and informal interviews were designed to test students' argumentation ability, and the two-tier multiple-choice test was designed to test their biology concepts. This research explore qualitatively and quantitatively students' argumentation abilities and biology concepts, using arithmetic mean, mean of percentage, standard deviation and t-test. Results show that there is no significant difference between the two group regarding mean scores of the argumentation ability. However, there is significant difference between the two groups regarding mean scores of the biology concepts. This suggests that socioscientific issues-based instruction could be used to improve students' biology concepts.

  9. Conflict Prevention and Separation Assurance Method in the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    Consiglio, Maria C.; Carreno, Victor A.; Williams, Daniel M.; Munoz, Cesar

    2005-01-01

    A multilayer approach to the prevention of conflicts due to the loss of aircraft-to-aircraft separation which relies on procedures and on-board automation was implemented as part of the SATS HVO Concept of Operations. The multilayer system gives pilots support and guidance during the execution of normal operations and advance warning for procedure deviations or off-nominal operations. This paper describes the major concept elements of this multilayer approach to separation assurance and conflict prevention and provides the rationale for its design. All the algorithms and functionality described in this paper have been implemented in an aircraft simulation in the NASA Langley Research Center s Air Traffic Operation Lab and on the NASA Cirrus SR22 research aircraft.

  10. Implementing PEHR: Design and Integration of a Consent Creator Service.

    PubMed

    Weiss, Nicolas; Aguduri, Lakshmi S; Yüksekogul, Nilay; Schreiweis, Björn; Brandner, Antje; Bronsch, Tobias; Pensold, Peter; Stein, Katharina E; Bergh, Björn; Heinze, Oliver

    2016-01-01

    Giving the patient full control over his medical data electronically remains one of the most discussed topics in healthcare today. The INFOPAT project in the Rhine-Neckar region focuses on a personal cross-enterprise electronic health record (PEHR) in which the patient plays a major role. Thus, he should be provided with the possibility of granting access to his medical data which could be realized using a consent creator service. This paper presents a user interface concept for such a service as well as aspects for the technical implementation. In addition, a pattern for integrating the service into an existing IHE based infrastructure is shown. These concepts could be further adapted for improving patient empowerment in health care projects.

  11. Integrated autopilot/autothrottle for the NASA TSRV B-737 aircraft: Design and verification by nonlinear simulation

    NASA Technical Reports Server (NTRS)

    Bruce, Kevin R.

    1989-01-01

    An integrated autopilot/autothrottle was designed for flight test on the NASA TSRV B-737 aircraft. The system was designed using a total energy concept and is attended to achieve the following: (1) fuel efficiency by minimizing throttle activity; (2) low development and implementation costs by designing the control modes around a fixed inner loop design; and (3) maximum safety by preventing stall and engine overboost. The control law was designed initially using linear analysis; the system was developed using nonlinear simulations. All primary design requirements were satisfied.

  12. CSI, optimal control, and accelerometers: Trials and tribulations

    NASA Technical Reports Server (NTRS)

    Benjamin, Brian J.; Sesak, John R.

    1994-01-01

    New results concerning optimal design with accelerometers are presented. These results show that the designer must be concerned with the stability properties of two Linear Quadratic Gaussian (LQG) compensators, one of which does not explicitly appear in the closed-loop system dynamics. The new concepts of virtual and implemented compensators are introduced to cope with these subtleties. The virtual compensator appears in the closed-loop system dynamics and the implemented compensator appears in control electronics. The stability of one compensator does not guarantee the stability of the other. For strongly stable (robust) systems, both compensators should be stable. The presence of controlled and uncontrolled modes in the system results in two additional forms of the compensator with corresponding terms that are of like form, but opposite sign, making simultaneous stabilization of both the virtual and implemented compensator difficult. A new design algorithm termed sensor augmentation is developed that aids stabilization of these compensator forms by incorporating a static augmentation term associated with the uncontrolled modes in the design process.

  13. FACET: Future ATM Concepts Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Bilmoria, Karl D.; Banavar, Sridhar; Chatterji, Gano B.; Sheth, Kapil S.; Grabbe, Shon

    2000-01-01

    FACET (Future ATM Concepts Evaluation Tool) is an Air Traffic Management research tool being developed at the NASA Ames Research Center. This paper describes the design, architecture and functionalities of FACET. The purpose of FACET is to provide E simulation environment for exploration, development and evaluation of advanced ATM concepts. Examples of these concepts include new ATM paradigms such as Distributed Air-Ground Traffic Management, airspace redesign and new Decision Support Tools (DSTs) for controllers working within the operational procedures of the existing air traffic control system. FACET is currently capable of modeling system-wide en route airspace operations over the contiguous United States. Airspace models (e.g., Center/sector boundaries, airways, locations of navigation aids and airports) are available from databases. A core capability of FACET is the modeling of aircraft trajectories. Using round-earth kinematic equations, aircraft can be flown along flight plan routes or great circle routes as they climb, cruise and descend according to their individual aircraft-type performance models. Performance parameters (e.g., climb/descent rates and speeds, cruise speeds) are obtained from data table lookups. Heading, airspeed and altitude-rate dynamics are also modeled. Additional functionalities will be added as necessary for specific applications. FACET software is written in Java and C programming languages. It is platform-independent, and can be run on a variety of computers. FACET has been designed with a modular software architecture to enable rapid integration of research prototype implementations of new ATM concepts. There are several advanced ATM concepts that are currently being implemented in FACET airborne separation assurance, dynamic density predictions, airspace redesign (re-sectorization), benefits of a controller DST for direct-routing, and the integration of commercial space transportation system operations into the U.S. National Airspace System (NAS).

  14. Design and Multicentric Implementation of a Generic Software Architecture for Patient Recruitment Systems Re-Using Existing HIS Tools and Routine Patient Data

    PubMed Central

    Trinczek, B.; Köpcke, F.; Leusch, T.; Majeed, R.W.; Schreiweis, B.; Wenk, J.; Bergh, B.; Ohmann, C.; Röhrig, R.; Prokosch, H.U.; Dugas, M.

    2014-01-01

    Summary Objective (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Methods Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user’s request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. Results 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. Conclusion A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials. PMID:24734138

  15. Design and multicentric implementation of a generic software architecture for patient recruitment systems re-using existing HIS tools and routine patient data.

    PubMed

    Trinczek, B; Köpcke, F; Leusch, T; Majeed, R W; Schreiweis, B; Wenk, J; Bergh, B; Ohmann, C; Röhrig, R; Prokosch, H U; Dugas, M

    2014-01-01

    (1) To define features and data items of a Patient Recruitment System (PRS); (2) to design a generic software architecture of such a system covering the requirements; (3) to identify implementation options available within different Hospital Information System (HIS) environments; (4) to implement five PRS following the architecture and utilizing the implementation options as proof of concept. Existing PRS were reviewed and interviews with users and developers conducted. All reported PRS features were collected and prioritized according to their published success and user's request. Common feature sets were combined into software modules of a generic software architecture. Data items to process and transfer were identified for each of the modules. Each site collected implementation options available within their respective HIS environment for each module, provided a prototypical implementation based on available implementation possibilities and supported the patient recruitment of a clinical trial as a proof of concept. 24 commonly reported and requested features of a PRS were identified, 13 of them prioritized as being mandatory. A UML version 2 based software architecture containing 5 software modules covering these features was developed. 13 data item groups processed by the modules, thus required to be available electronically, have been identified. Several implementation options could be identified for each module, most of them being available at multiple sites. Utilizing available tools, a PRS could be implemented in each of the five participating German university hospitals. A set of required features and data items of a PRS has been described for the first time. The software architecture covers all features in a clear, well-defined way. The variety of implementation options and the prototypes show that it is possible to implement the given architecture in different HIS environments, thus enabling more sites to successfully support patient recruitment in clinical trials.

  16. Design and implementation of dynamic hybrid Honeypot network

    NASA Astrophysics Data System (ADS)

    Qiao, Peili; Hu, Shan-Shan; Zhai, Ji-Qiang

    2013-05-01

    The method of constructing a dynamic and self-adaptive virtual network is suggested to puzzle adversaries, delay and divert attacks, exhaust attacker resources and collect attacking information. The concepts of Honeypot and Honeyd, which is the frame of virtual Honeypot are introduced. The techniques of network scanning including active fingerprint recognition are analyzed. Dynamic virtual network system is designed and implemented. A virtual network similar to real network topology is built according to the collected messages from real environments in this system. By doing this, the system can perplex the attackers when Hackers attack and can further analyze and research the attacks. The tests to this system prove that this design can successfully simulate real network environment and can be used in network security analysis.

  17. Doppler Lidar System Design via Interdisciplinary Design Concept at NASA Langley Research Center - Part III

    NASA Technical Reports Server (NTRS)

    Barnes, Bruce W.; Sessions, Alaric M.; Beyon, Jeffrey; Petway, Larry B.

    2014-01-01

    Optimized designs of the Navigation Doppler Lidar (NDL) instrument for Autonomous Landing Hazard Avoidance Technology (ALHAT) were accomplished via Interdisciplinary Design Concept (IDEC) at NASA Langley Research Center during the summer of 2013. Three branches in the Engineering Directorate and three students were involved in this joint task through the NASA Langley Aerospace Research Summer Scholars (LARSS) Program. The Laser Remote Sensing Branch (LRSB), Mechanical Systems Branch (MSB), and Structural and Thermal Systems Branch (STSB) were engaged to achieve optimal designs through iterative and interactive collaborative design processes. A preliminary design iteration was able to reduce the power consumption, mass, and footprint by removing redundant components and replacing inefficient components with more efficient ones. A second design iteration reduced volume and mass by replacing bulky components with excessive performance with smaller components custom-designed for the power system. The existing power system was analyzed to rank components in terms of inefficiency, power dissipation, footprint and mass. Design considerations and priorities are compared along with the results of each design iteration. Overall power system improvements are summarized for design implementations.

  18. Description of the control system design for the SSF PMAD DC testbed

    NASA Technical Reports Server (NTRS)

    Baez, Anastacio N.; Kimnach, Greg L.

    1991-01-01

    The Power Management and Distribution (PMAD) DC Testbed Control System for Space Station Freedom was developed using a top down approach based on classical control system and conventional terrestrial power utilities design techniques. The design methodology includes the development of a testbed operating concept. This operating concept describes the operation of the testbed under all possible scenarios. A unique set of operating states was identified and a description of each state, along with state transitions, was generated. Each state is represented by a unique set of attributes and constraints, and its description reflects the degree of system security within which the power system is operating. Using the testbed operating states description, a functional design for the control system was developed. This functional design consists of a functional outline, a text description, and a logical flowchart for all the major control system functions. Described here are the control system design techniques, various control system functions, and the status of the design and implementation.

  19. Alternative approximation concepts for space frame synthesis

    NASA Technical Reports Server (NTRS)

    Lust, R. V.; Schmit, L. A.

    1985-01-01

    A structural synthesis methodology for the minimum mass design of 3-dimensionall frame-truss structures under multiple static loading conditions and subject to limits on displacements, rotations, stresses, local buckling, and element cross-sectional dimensions is presented. A variety of approximation concept options are employed to yield near optimum designs after no more than 10 structural analyses. Available options include: (A) formulation of the nonlinear mathematcal programming problem in either reciprocal section property (RSP) or cross-sectional dimension (CSD) space; (B) two alternative approximate problem structures in each design space; and (C) three distinct assumptions about element end-force variations. Fixed element, design element linking, and temporary constraint deletion features are also included. The solution of each approximate problem, in either its primal or dual form, is obtained using CONMIN, a feasible directions program. The frame-truss synthesis methodology is implemented in the COMPASS computer program and is used to solve a variety of problems. These problems were chosen so that, in addition to exercising the various approximation concepts options, the results could be compared with previously published work.

  20. Think Scientifically: Science Hidden in a Storybook

    NASA Astrophysics Data System (ADS)

    Van Norden, W. M.

    2012-12-01

    The Solar Dynamics Observatory's Think Scientifically (TS) program links literacy and science in the elementary classroom through an engaging storybook format and hands-on, inquiry based activities. TS consists of three illustrated storybooks, each addressing a different solar science concept. Accompanying each book is a hands-on science lesson plan that emphasizes the concepts addressed in the book, as well as math, reading, and language arts activities. Written by teachers, the books are designed to be extremely user-friendly and easy to implement in classroom instruction. The objectives of the program are: (1) to increase time spent on science in elementary school classrooms, (2) to assist educators in implementing hands-on science activities that reinforce concepts from the book, (3) to increase teacher capacity and comfort in teaching solar concepts, (4) to increase student awareness and interest in solar topics, especially students in under-served and under-represented communities. Our program meets these objectives through the National Science Standards-based content delivered in each story, the activities provided in the books, and the accompanying training that teachers are offered through the program.; ;

  1. Satellite voice broadcast. Volume 2: System study

    NASA Technical Reports Server (NTRS)

    Bachtell, E. E.; Bettadapur, S. S.; Coyner, J. V.; Farrell, C. E.

    1985-01-01

    The Technical Volume of the Satellite Broadcast System Study is presented. Designs are synthesized for direct sound broadcast satellite systems for HF-, VHF-, L-, and Ku-bands. Methods are developed and used to predict satellite weight, volume, and RF performance for the various concepts considered. Cost and schedule risk assessments are performed to predict time and cost required to implement selected concepts. Technology assessments and tradeoffs are made to identify critical enabling technologies that require development to bring technical risk to acceptable levels for full scale development.

  2. A New System To Support Knowledge Discovery: Telemakus.

    ERIC Educational Resources Information Center

    Revere, Debra; Fuller, Sherrilynne S.; Bugni, Paul F.; Martin, George M.

    2003-01-01

    The Telemakus System builds on the areas of concept representation, schema theory, and information visualization to enhance knowledge discovery from scientific literature. This article describes the underlying theories and an overview of a working implementation designed to enhance the knowledge discovery process through retrieval, visual and…

  3. Partners in Learning

    ERIC Educational Resources Information Center

    Mann, Leah; Rentfro, Jody

    2017-01-01

    Using concepts such as Design Thinking to create inquiry-based, hands-on learning opportunities centered on student ideation and creation, Lewisville Independent School District (LISD) in North Texas reimagined the role of library instruction through implementation of a Mobile Transformation Lab. The purpose of this lab is to serve the more than…

  4. Cross Cultural Education: Teaching toward a Planetary Perspective. The Curriculum Series.

    ERIC Educational Resources Information Center

    Williams, Robert L.

    The report offers practical suggestions, organizational strategies, and educational concepts to classroom teachers and curriculum developers for designing and implementing polycultural programs. Polycultural education is defined as experiences provided by the school which enable students to appreciate their own and other people's ethnocultural…

  5. Driver Performance and IVHS Collision Avoidance Systems: A Search for Design-Relevant Measurement Protocols

    DOT National Transportation Integrated Search

    1993-04-14

    In 2005, the US Department of Transportation (DOT) initiated a program to develop and test a 5.9GHzbased Vehicle Infrastructure Integration (VII) proof of concept (POC). The POC was implemented in the northwest suburbs of Detroit, Michigan. This r...

  6. Curriculum for Discussion Time.

    ERIC Educational Resources Information Center

    Steinhoff, Mary E.

    This curriculum guide consists of materials for use in implementing two 10-meeting series of group discussions designed to enhance the process of the socialialization of students enrolled in an associate degree nursing program. Addressed in the discussion sessions are the following topics: developing an awareness of self-concept and gaining…

  7. MATREX Leads the Way in Implementing New DOD VV&A Documentation Standards

    DTIC Science & Technology

    2007-05-24

    Acquisition Operations & Support B C Sustainment FRP Decision Review FOC LRIP/IOT& ECritical Design Review Pre-Systems Acquisition Concept...Communications Human Performance Model • C3GRID – Command & Control, Computer GRID • CES – Communications Effects Server • CMS2 – Comprehensive

  8. Design Trajectories: Four Experiments in PLE Implementation

    ERIC Educational Resources Information Center

    van Harmelen, M.

    2008-01-01

    Increasingly, there is a shared understanding that the educational approach driving the development of Personal Learning Environments (PLEs) is one of learner empowerment and facilitation of the efforts of self-directed learners. This approach fits well with concepts of social constructivism, constructionism, and the development and execution of…

  9. Should students design or interact with models? Using the Bifocal Modelling Framework to investigate model construction in high school science

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Tamar; Schneider, Bertrand; Blikstein, Paulo

    2018-05-01

    The Bifocal Modelling Framework (BMF) is an approach for science learning which links students' physical experimentation with computer modelling in real time, focusing on the comparison of the two media. In this paper, we explore how a Bifocal Modelling implementation supported learning outcomes related to both content and metamodeling knowledge, focusing on the role of designing models. Our study consisted of three conditions implemented with a total of 69 9th grade high-school students. The first and second classes were assigned two implementation modes of BMF: with and without a model design module. The third condition, employed as a control, consisted of a class that received instruction in the school's traditional approach. Our results indicate that students participating in both BMF implementations demonstrated improved content knowledge and a better understanding of metamodeling. However, only the 'BMF-with-design' group improved significantly in both content and metamodeling knowledge. Our qualitative analyses indicate that both BMF groups designed detailed models that included scientific explanations. However only students who engaged in the model design component: (1) completed a detailed model displaying molecular interaction; and (2) developed a critical perspective about models. We discuss the implications of those results for teaching scientific science concepts and metamodeling knowledge.

  10. Global Combat Support System-Marine Corps Proof-of-Concept for Dashboard Analytics

    DTIC Science & Technology

    2014-12-01

    The core is modern, commercial-off-the-shelf enterprise resource planning ( ERP ) software (Oracle 11i e-Business Suite). GCSS-MCs design is focused...factor in the decision to implement this new software . GCSS-MC is the technology centerpiece of the Logistics Modernization (LogMod) Program...GCSS-MC is based on the implementation of Oracle e-Business Suite 11i as the core software package. This is the same infrastructure that Oracle

  11. The role of the nurse-physician leadership dyad in implementing the Baby-Friendly Hospital Initiative.

    PubMed

    St Fleur, Rose; McKeever, Joyce

    2014-01-01

    The concept of the nurse-physician leadership dyad incorporates the expertise of both nurses and physicians as leaders of change within health system environments. The leadership dyad model has been used traditionally in health care administrative settings to manage utilization of resources more effectively. Because the Baby-Friendly designation requires major cultural shifts in long-standing maternity care practices, an interdisciplinary approach to implementation is necessary. © 2014 AWHONN.

  12. Studies for the electro-magnetic calorimeter SplitCal for the SHiP experiment at CERN with shower direction reconstruction capability

    NASA Astrophysics Data System (ADS)

    Bonivento, Walter M.

    2018-02-01

    This paper describes the basic ideas and the first simulation results of a new electro-magnetic calorimeter concept, named SplitCal, aimed at optimising the measurement of photon direction in fixed-target experiment configuration, with high photon detection efficiency. This calorimeter was designed for the invariant mass reconstruction of axion-like particles decaying into two photons in the mass range 200 MeV to 1 GeV for the proposed proton beam dump experiment SHiP at CERN. Preliminary results indicate that angular resolutions better than obtained by past experiments can be achieved with this design. An implementation of this concept with real technologies is under study.

  13. Synchronous Motor with Hybrid Permanent Magnets on the Rotor

    PubMed Central

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-01-01

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume. PMID:25014102

  14. Synchronous motor with hybrid permanent magnets on the rotor.

    PubMed

    Slusarek, Barbara; Kapelski, Dariusz; Antal, Ludwik; Zalas, Pawel; Gwoździewicz, Maciej

    2014-07-10

    Powder metallurgy allows designers of electric motors to implement new magnetic circuit structures. A relatively new concept is the use of a magnet system consisting of various types of magnets on one rotor, for example sintered and bonded magnets. This concept has been applied to the design and manufacture of the four-pole rotor of a synchronous motor with 400 W power and a rotational speed of 1500 rpm. In this motor, the stator of an asynchronous motor type Sh 71-4B is applied. The application of the new construction of the rotor resulted in an increase in motor efficiency and power factor compared to an asynchronous motor with the same volume.

  15. Aeroservoelastic wind-tunnel investigations using the Active Flexible Wing Model: Status and recent accomplishments

    NASA Technical Reports Server (NTRS)

    Noll, Thomas E.; Perry, Boyd, III; Tiffany, Sherwood H.; Cole, Stanley R.; Buttrill, Carey S.; Adams, William M., Jr.; Houck, Jacob A.; Srinathkumar, S.; Mukhopadhyay, Vivek; Pototzky, Anthony S.

    1989-01-01

    The status of the joint NASA/Rockwell Active Flexible Wing Wind-Tunnel Test Program is described. The objectives are to develop and validate the analysis, design, and test methodologies required to apply multifunction active control technology for improving aircraft performance and stability. Major tasks include designing digital multi-input/multi-output flutter-suppression and rolling-maneuver-load alleviation concepts for a flexible full-span wind-tunnel model, obtaining an experimental data base for the basic model and each control concept and providing comparisons between experimental and analytical results to validate the methodologies. The opportunity is provided to improve real-time simulation techniques and to gain practical experience with digital control law implementation procedures.

  16. MSIX - A general and user-friendly platform for RAM analysis

    NASA Astrophysics Data System (ADS)

    Pan, Z. J.; Blemel, Peter

    The authors present a CAD (computer-aided design) platform supporting RAM (reliability, availability, and maintainability) analysis with efficient system description and alternative evaluation. The design concepts, implementation techniques, and application results are described. This platform is user-friendly because of its graphic environment, drawing facilities, object orientation, self-tutoring, and access to the operating system. The programs' independency and portability make them generally applicable to various analysis tasks.

  17. Applying an Activity Theory Lens to Designing Instruction for Learning about the Structure, Behavior, and Function of a Honeybee System

    ERIC Educational Resources Information Center

    Danish, Joshua A.

    2014-01-01

    This article reports on a study in which activity theory was used to design, implement, and analyze a 10-week curriculum unit about how honeybees collect nectar with a particular focus on complex systems concepts. Students (n = 42) in a multi-year kindergarten and 1st-grade classroom participated in this study as part of their 10 regular classroom…

  18. Preliminary design of a redundant strapped down inertial navigation unit using two-degree-of-freedom tuned-gimbal gyroscopes

    NASA Technical Reports Server (NTRS)

    1976-01-01

    This redundant strapdown INS preliminary design study demonstrates the practicality of a skewed sensor system configuration by means of: (1) devising a practical system mechanization utilizing proven strapdown instruments, (2) thoroughly analyzing the skewed sensor redundancy management concept to determine optimum geometry, data processing requirements, and realistic reliability estimates, and (3) implementing the redundant computers into a low-cost, maintainable configuration.

  19. Designing of a technological line in the context of controlling with the use of integration of the virtual controller with the mechatronics concept designer module of the PLM Siemens NX software

    NASA Astrophysics Data System (ADS)

    Herbuś, K.; Ociepka, P.

    2017-08-01

    In the work is examined the sequential control system of a technological line in the form of the final part of a system of an internal transport. The process of designing this technological line using the computer-aided approach ran concurrently in two different program environments. In the Mechatronics Concept Designer module of the PLM Siemens NX software was developed the 3D model of the technological line prepared for verification the logic interrelations implemented in the control system. For this purpose, from the whole system of the technological line, it was distinguished the sub-system of actuators and sensors, because their correct operation determines the correct operation of the whole system. Whereas in the application of the virtual controller have been implemented the algorithms of work of the planned line. Then both program environments have been integrated using the OPC server, which enables the exchange of data between the considered systems. The data on the state of the object and the data defining the way and sequence of operation of the technological line are exchanged between the virtual controller and the 3D model of the technological line in real time.

  20. Development of a synthetic aperture radar design approach for wide-swath implementation

    NASA Technical Reports Server (NTRS)

    Jean, B. R.

    1981-01-01

    The first phase of a study program to develop an advanced synthetic aperture radar design concept is presented. Attributes of particular importance for the system design include wide swath coverage, reduced power requirements, and versatility in the selection of frequency, polarization and incident angle. The multiple beam configuration provides imaging at a nearly constant angle of incidence and offers the potential of realizing a wide range of the attributes desired for an orbital imaging radar for Earth resources applications.

  1. A Human-Centered Command and Control (C2) Assessment of an Experimental Campaign Planning Tool

    DTIC Science & Technology

    2014-04-01

    and control (team without the CPT) groups . The two groups were designed to have an equal number of members; however, one member of the experimental...the researchers to analyze the planning process and outcomes. 3.3 Design and Procedure An experimental versus control group design was implemented...the post -PFnet (figure 16b). Within the PFnets, a concept can be focused on in order to identify how the individual or group is defining or

  2. Space transfer concepts and analysis for exploration missions. Implementation plan and element description document. Volume 1: Major trades. Book 1: Draft final

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This document presents trade studies and reference concept designs accomplished during a study of Space Transfer Concepts and Analyses for Exploration Missions (STCAEM). This volume contains the major top level trades, level 2 trades conducted in support of NASA's Lunar/Mars Exploration Program Office, and a synopsis of the vehicles for different propulsion systems under trade consideration. The vehicles are presented in more detail in other volumes of this report. Book 1 of Volume 1 covers the following analyses: lunar/Mars commonality trades, lunar/Mars mission operations, and Mars transfer systems.

  3. Traction-drive, seven-degree-of-freedom telerobot arm: A concept for manipulaton in space

    NASA Technical Reports Server (NTRS)

    Kuban, D. P.; Williams, D. M.

    1987-01-01

    As man seeks to expand his dominion into new environments, the demand increases for machines that perform useful functions in remote locations. This new concept for manipulation in space is based on knowledge and experience gained from manipulator systems developed to meet the needs of remote nuclear applications. It merges the best characteristics of teleoperation and robotic technologies. The design goals for the telerobot, a mechanical description, and technology areas that must be addressed for successful implementation are presented and discussed. The concept incorporates mechanical traction drives, redundant kinematics, and modular arm subelements to provide a backlash-free manipulator capable of obstacle avoidance.

  4. Software design and implementation concepts for an interoperable medical communication framework.

    PubMed

    Besting, Andreas; Bürger, Sebastian; Kasparick, Martin; Strathen, Benjamin; Portheine, Frank

    2018-02-23

    The new IEEE 11073 service-oriented device connectivity (SDC) standard proposals for networked point-of-care and surgical devices constitutes the basis for improved interoperability due to its independence of vendors. To accelerate the distribution of the standard a reference implementation is indispensable. However, the implementation of such a framework has to overcome several non-trivial challenges. First, the high level of complexity of the underlying standard must be reflected in the software design. An efficient implementation has to consider the limited resources of the underlying hardware. Moreover, the frameworks purpose of realizing a distributed system demands a high degree of reliability of the framework itself and its internal mechanisms. Additionally, a framework must provide an easy-to-use and fail-safe application programming interface (API). In this work, we address these challenges by discussing suitable software engineering principles and practical coding guidelines. A descriptive model is developed that identifies key strategies. General feasibility is shown by outlining environments in which our implementation has been utilized.

  5. Design and Analysis Tools for Supersonic Inlets

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Folk, Thomas C.

    2009-01-01

    Computational tools are being developed for the design and analysis of supersonic inlets. The objective is to update existing tools and provide design and low-order aerodynamic analysis capability for advanced inlet concepts. The Inlet Tools effort includes aspects of creating an electronic database of inlet design information, a document describing inlet design and analysis methods, a geometry model for describing the shape of inlets, and computer tools that implement the geometry model and methods. The geometry model has a set of basic inlet shapes that include pitot, two-dimensional, axisymmetric, and stream-traced inlet shapes. The inlet model divides the inlet flow field into parts that facilitate the design and analysis methods. The inlet geometry model constructs the inlet surfaces through the generation and transformation of planar entities based on key inlet design factors. Future efforts will focus on developing the inlet geometry model, the inlet design and analysis methods, a Fortran 95 code to implement the model and methods. Other computational platforms, such as Java, will also be explored.

  6. Geometrical model for DBMS: an experimental DBMS using IBM solid modeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ali, D.E.D.L.

    1985-01-01

    This research presents a new model for data base management systems (DBMS). The new model, Geometrical DBMS, is based on using solid modelling technology in designing and implementing DBMS. The Geometrical DBMS is implemented using the IBM solid modelling Geometric Design Processor (GDP). Built basically on computer-graphics concepts, Geometrical DBMS is indeed a unique model. Traditionally, researchers start with one of the existent DBMS models and then put a graphical front end on it. In Geometrical DBMS, the graphical aspect of the model is not an alien concept tailored to the model but is, as a matter of fact, themore » atom around which the model is designed. The main idea in Geometrical DBMS is to allow the user and the system to refer to and manipulate data items as a solid object in 3D space, and representing a record as a group of logically related solid objects. In Geometical DBMS, hierarchical structure is used to present the data relations and the user sees the data as a group of arrays; yet, for the user and the system together, the data structure is a multidimensional tree.« less

  7. Development and Engineering Design in Support of "Rover Ranch": A K-12 Outreach Software Project

    NASA Technical Reports Server (NTRS)

    Pascali, Raresh

    2003-01-01

    A continuation of the initial development started in the summer of 1999, the body of work performed in support of 'ROVer Ranch' Project during the present fellowship dealt with the concrete concept implementation and resolution of the related issues. The original work performed last summer focused on the initial examination and articulation of the concept treatment strategy, audience and market analysis for the learning technologies software. The presented work focused on finalizing the set of parts to be made available for building an AERCam Sprint type robot and on defining, testing and implementing process necessary to convert the design engineering files to VRML files. Through reverse engineering, an initial set of mission critical systems was designed for beta testing in schools. The files were created in ProEngineer, exported to VRML 1.0 and converted to VRML 97 (VRML 2.0) for final integration in the software. Attributes for each part were assigned using an in-house developed JAVA based program. The final set of attributes for each system, their mutual interaction and the identification of the relevant ones to be tracked, still remain to be decided.

  8. Structural concept studies for a horizontal cylindrical lunar habitat and a lunar guyed tower

    NASA Technical Reports Server (NTRS)

    Yin, Paul K.

    1990-01-01

    A conceptual structural design of a horizontal cylindrical lunar habitat is presented. The design includes the interior floor framing, the exterior support structure, the foundation mat, and the radiation shielding. Particular attention was given on its efficiency in shipping and field erection, and on selection of structural materials. Presented also is a conceptual design of a 2000-foot lunar guyed tower. A special field erection scheme is implemented in the design. In order to analyze the over-all column buckling of the mast, where its axial compression includes its own body weight, a simple numerical procedure is formulated in a form ready for coding in FORTRAN. Selection of structural materials, effect of temperature variations, dynamic response of the tower to moonquake, and guy anchoring system are discussed. Proposed field erection concepts for the habitat and for the guyed tower are described.

  9. Development of a Mobile User Interface for Image-based Dietary Assessment.

    PubMed

    Kim, Sungye; Schap, Tusarebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2010-12-31

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records.

  10. MAST Propellant and Delivery System Design Methods

    NASA Technical Reports Server (NTRS)

    Nadeem, Uzair; Mc Cleskey, Carey M.

    2015-01-01

    A Mars Aerospace Taxi (MAST) concept and propellant storage and delivery case study is undergoing investigation by NASA's Element Design and Architectural Impact (EDAI) design and analysis forum. The MAST lander concept envisions landing with its ascent propellant storage tanks empty and supplying these reusable Mars landers with propellant that is generated and transferred while on the Mars surface. The report provides an overview of the data derived from modeling between different methods of propellant line routing (or "lining") and differentiate the resulting design and operations complexity of fluid and gaseous paths based on a given set of fluid sources and destinations. The EDAI team desires a rough-order-magnitude algorithm for estimating the lining characteristics (i.e., the plumbing mass and complexity) associated different numbers of vehicle propellant sources and destinations. This paper explored the feasibility of preparing a mathematically sound algorithm for this purpose, and offers a method for the EDAI team to implement.

  11. Input filter compensation for switching regulators

    NASA Technical Reports Server (NTRS)

    Lee, F. C.; Kelkar, S. S.

    1982-01-01

    The problems caused by the interaction between the input filter, output filter, and the control loop are discussed. The input filter design is made more complicated because of the need to avoid performance degradation and also stay within the weight and loss limitations. Conventional input filter design techniques are then dicussed. The concept of pole zero cancellation is reviewed; this concept is the basis for an approach to control the peaking of the output impedance of the input filter and thus mitigate some of the problems caused by the input filter. The proposed approach for control of the peaking of the output impedance of the input filter is to use a feedforward loop working in conjunction with feedback loops, thus forming a total state control scheme. The design of the feedforward loop for a buck regulator is described. A possible implementation of the feedforward loop design is suggested.

  12. A new model in achieving Green Accounting at hotels in Bali

    NASA Astrophysics Data System (ADS)

    Astawa, I. P.; Ardina, C.; Yasa, I. M. S.; Parnata, I. K.

    2018-01-01

    The concept of green accounting becomes a debate in terms of its implementation in a company. The result of previous studies indicates that there are no standard model regarding its implementation to support performance. The research aims to create a different green accounting model to other models by using local cultural elements as the variables in building it. The research is conducted in two steps. The first step is designing the model based on theoretical studies by considering the main and supporting elements in building the concept of green accounting. The second step is conducting a model test at 60 five stars hotels started with data collection through questionnaire and followed by data processing using descriptive statistic. The result indicates that the hotels’ owner has implemented green accounting attributes and it supports previous studies. Another result, which is a new finding, shows that the presence of local culture, government regulation, and the awareness of hotels’ owner has important role in the development of green accounting concept. The results of the research give contribution to accounting science in terms of green reporting. The hotel management should adopt local culture in building the character of accountant hired in the accounting department.

  13. Task Listing for Introduction to Health Occupations. Competency-Based Education.

    ERIC Educational Resources Information Center

    Henrico County Public Schools, Glen Allen, VA. Virginia Vocational Curriculum Center.

    This task listing is designed to be used in combination with the "Health Occupations Education Service Area Resource" in order to implement competency-based education in health occupations programs in Virginia. The task listing contains four major sections: (1) content/concept areas; (2) program and course description; (3) content…

  14. Putting Health Education on the Public Health Map in Canada--The Role of Higher Education

    ERIC Educational Resources Information Center

    Vamos, Sandra; Hayos, Julia

    2010-01-01

    The health education profession has developed over recent years garnering national and international attention. Canada's evolving health education perspective emphasizing the concept of health literacy within the broader public health system reflects the need for trained, competent and skilled health educators designing, implementing and…

  15. Exploring Approaches to Teaching in Three-Dimensional Virtual Worlds

    ERIC Educational Resources Information Center

    Englund, Claire

    2017-01-01

    Purpose: The purpose of this paper is to explore how teachers' approaches to teaching and conceptions of teaching and learning with educational technology influence the implementation of three-dimensional virtual worlds (3DVWs) in health care education. Design/methodology/approach: Data were collected through thematic interviews with eight…

  16. What's the Matter? Studying the Concept of Matter in Middle School.

    ERIC Educational Resources Information Center

    Abell, Sandra K.; And Others

    1996-01-01

    Describes a fifth-grade science classroom where students were asked to invent an operational definition of matter and validate that definition by designing and implementing a variety of tests. Challenges students to confront their misunderstandings about matter and move beyond merely reciting a definition. (JRH)

  17. Options for Organizing the Tanker Airlift Control Center Flight Dispatch Function: An Exploratory Concept Study

    DTIC Science & Technology

    2000-06-01

    it poised to fall? Am I prepared to pay the applicable capital gains tax ? Each of these questions could represent a decision frame. The...Center (FEDSIM). AMC Corporate Systems Analysis, Design , and Implementation PEP 18 TACC Project. Falls Chruch , VA: Federal Systems Integration and

  18. Design for an Adaptive Library Catalog.

    ERIC Educational Resources Information Center

    Buckland, Michael K.; And Others

    1992-01-01

    Describes OASIS, a prototype adaptive online catalog implemented as a front end to the University of California MELVYL catalog. Topics addressed include the concept of adaptive retrieval systems, strategic search commands, feedback, prototyping using a front-end, the problem of excessive retrieval, commands to limit or increase search results, and…

  19. Development of a Computer Simulation Game Using a Reverse Engineering Approach

    ERIC Educational Resources Information Center

    Ozkul, Ahmet

    2012-01-01

    Business simulation games are widely used in the classroom to provide students with experiential learning opportunities on business situations in a dynamic fashion. When properly designed and implemented, the computer simulation game can be a useful educational tool by integrating separate theoretical concepts and demonstrating the nature of…

  20. Management Information Systems for Higher Education. Studies in Institutional Management in Higher Education.

    ERIC Educational Resources Information Center

    Hussain, K. M., Ed.

    Contents include an introduction to information systems (basic concepts and life-cycle); development of an information system (design, implementation, testing, and conversion); operation (evaluation and maintenance, quality control, and economics); and case studies of such systems at the New University of Lisbon, Bath University, Laval University…

  1. Teaching an Electrical Circuits Course Using a Virtual Lab

    ERIC Educational Resources Information Center

    Rahman, Md Zahidur

    2014-01-01

    This paper describes designing and implementing a scholarship of teaching and learning (SoTL) study in a basic electrical circuits course at LaGuardia Community College. Inspired by my understanding of Shulman's (2005) concept of "signature pedagogy" and Mazur's (2009) emphasis on student-centered approaches, and aware that our students…

  2. Developing a Learning Classroom: Moving beyond Management through Relationships, Relevance, and Rigor

    ERIC Educational Resources Information Center

    Cooper, Nic; Garner, Betty K.

    2012-01-01

    All too often, managing a classroom means gaining control, dictating guidelines, and implementing rules. Designed for any teacher struggling with student behavior, motivation, and engagement, "Developing a Learning Classroom" explores how to create a thriving, learning-centered classroom through three critical concepts: relationships, relevance,…

  3. Using Participatory Management in a Traditional Environment.

    ERIC Educational Resources Information Center

    Tavarone, Antonia R.

    This paper describes the use of a participatory management process in an older, public-sector bureaucracy with an extremely traditional, hierarchical, and entrenched culture. Into this culture, two separate projects were introduced: an employee involvement program using the quality circle concept and a task force that would design and implement an…

  4. Measurement Science and Training.

    ERIC Educational Resources Information Center

    Bunderson, C. Victor

    The need for training and retraining is a central element in current discussions about the economy of the United States. This paper is designed to introduce training practitioners to some new concepts about how measurement science can provide a new framework for assessing progress and can add new discipline to the development, implementation, and…

  5. Linking Multiple Databases: Term Project Using "Sentences" DBMS.

    ERIC Educational Resources Information Center

    King, Ronald S.; Rainwater, Stephen B.

    This paper describes a methodology for use in teaching an introductory Database Management System (DBMS) course. Students master basic database concepts through the use of a multiple component project implemented in both relational and associative data models. The associative data model is a new approach for designing multi-user, Web-enabled…

  6. Designing, Implementing and Evaluating a Consultancy Approach to Teaching Environmental Management to Undergraduates

    ERIC Educational Resources Information Center

    Beavis, Sara; Beckmann, Elizabeth A.

    2012-01-01

    What are the benefits of engaging undergraduate students with authentic, inquiry-based curricula that develop transdisciplinary research skills? Internationally, many educators believe that research-active curricula help students better understand how scientific and technological concepts underlie the complexities of our world, especially in the…

  7. Evaluation of an Inservice Program for Earth Science Teachers

    ERIC Educational Resources Information Center

    Mayer, Victor J.; And Others

    1975-01-01

    Reports on the evaluation of an earth science inservice program designed to (1) improve teachers' understandings of principles and concepts, (2) assist teachers in the use of investigatory techniques for teaching, (3) assist teachers in developing and implementing laboratory-oriented courses and (4) instruct teachers in techniques of self…

  8. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  9. A Cognitive Theory Driven New Orientation of Indonesian Lessons

    ERIC Educational Resources Information Center

    Nowinska, Edyta

    2014-01-01

    The main focus of this design research was on students' mathematical thinking and skills and on their understanding of mathematical concepts and methods. The mathematical content our project starts with is the introduction of integers. For this content new learning environments have been developed, implemented and evaluated. An important question…

  10. Visions for Children: African American Early Childhood Education Program.

    ERIC Educational Resources Information Center

    Hale-Benson, Janice

    The features of an early childhood education demonstration program, Visions for Children, are delineated in this paper. The program was designed to facilitate the intellectual development, boost the academic achievement, and enhance the self-concepts of African-American preschool children. The program implements a curriculum that focuses on…

  11. Nature as an engineer: one simple concept of a bio-inspired functional artificial muscle.

    PubMed

    Schmitt, S; Haeufle, D F B; Blickhan, R; Günther, M

    2012-09-01

    The biological muscle is a powerful, flexible and versatile actuator. Its intrinsic characteristics determine the way how movements are generated and controlled. Robotic and prosthetic applications expect to profit from relying on bio-inspired actuators which exhibit natural (muscle-like) characteristics. As of today, when constructing a technical actuator, it is not possible to copy the exact molecular structure of a biological muscle. Alternatively, the question may be put how its characteristics can be realized with known mechanical components. Recently, a mechanical construct for an artificial muscle was proposed, which exhibits hyperbolic force-velocity characteristics. In this paper, we promote the constructing concept which is made by substantiating the mechanical design of biological muscle by a simple model, proving the feasibility of its real-world implementation, and checking their output both for mutual consistency and agreement with biological measurements. In particular, the relations of force, enthalpy rate and mechanical efficiency versus contraction velocity of both the construct's technical implementation and its numerical model were determined in quick-release experiments. All model predictions for these relations and the hardware results are now in good agreement with the biological literature. We conclude that the construct represents a mechanical concept of natural actuation, which is suitable for laying down some useful suggestions when designing bio-inspired actuators.

  12. Reference Models for Structural Technology Assessment and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Cerro, Jeff; Martinovic, Zoran; Eldred, Lloyd

    2005-01-01

    Previously the Exploration Concepts Branch of NASA Langley Research Center has developed techniques for automating the preliminary design level of launch vehicle airframe structural analysis for purposes of enhancing historical regression based mass estimating relationships. This past work was useful and greatly reduced design time, however its application area was very narrow in terms of being able to handle a large variety in structural and vehicle general arrangement alternatives. Implementation of the analysis approach presented herein also incorporates some newly developed computer programs. Loft is a program developed to create analysis meshes and simultaneously define structural element design regions. A simple component defining ASCII file is read by Loft to begin the design process. HSLoad is a Visual Basic implementation of the HyperSizer Application Programming Interface, which automates the structural element design process. Details of these two programs and their use are explained in this paper. A feature which falls naturally out of the above analysis paradigm is the concept of "reference models". The flexibility of the FEA based JAVA processing procedures and associated process control classes coupled with the general utility of Loft and HSLoad make it possible to create generic program template files for analysis of components ranging from something as simple as a stiffened flat panel, to curved panels, fuselage and cryogenic tank components, flight control surfaces, wings, through full air and space vehicle general arrangements.

  13. Quality By Design: Concept To Applications.

    PubMed

    Swain, Suryakanta; Padhy, Rabinarayan; Jena, Bikash Ranjan; Babu, Sitty Manohar

    2018-03-08

    Quality by Design is associated to the modern, systematic, scientific and novel approach which is concerned with pre-distinct objectives that not only focus on product, process understanding but also leads to process control. It predominantly signifies the design and product improvement and the manufacturing process in order to fulfill the predefined manufactured goods or final products quality characteristics. It is quite essential to identify desire and required product performance report such as Target Product Profile, typical Quality Target Product Profile (QTPP) and Critical Quality attributes (CQA). This review highlighted about the concepts of QbD design space, for critical material attributes (CMAs) as well as the critical process parameters that can totally affect the CQAs within which the process shall be unaffected and consistently manufacture the required product. Risk assessment tools and design of experiments are its prime components. This paper outlines the basic knowledge of QbD, the key elements; steps as well as various tools for QbD implementation in pharmaceutics field are presented briefly. In addition to this, quite a lot of applications of QbD in numerous pharmaceutical related unit operations are discussed and summarized. This article provides a complete data as well as the road map for universal implementation and application of QbD for pharmaceutical products. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  15. Waveguide metatronics: Lumped circuitry based on structural dispersion.

    PubMed

    Li, Yue; Liberal, Iñigo; Della Giovampaola, Cristian; Engheta, Nader

    2016-06-01

    Engineering optical nanocircuits by exploiting modularization concepts and methods inherited from electronics may lead to multiple innovations in optical information processing at the nanoscale. We introduce the concept of "waveguide metatronics," an advanced form of optical metatronics that uses structural dispersion in waveguides to obtain the materials and structures required to construct this class of circuitry. Using numerical simulations, we demonstrate that the design of a metatronic circuit can be carried out by using a waveguide filled with materials with positive permittivity. This includes the implementation of all "lumped" circuit elements and their assembly in a single circuit board. In doing so, we extend the concepts of optical metatronics to frequency ranges where there are no natural plasmonic materials available. The proposed methodology could be exploited as a platform to experimentally validate optical metatronic circuits in other frequency regimes, such as microwave frequency setups, and/or to provide a new route to design optical nanocircuitry.

  16. [Establishment of design space for production process of traditional Chinese medicine preparation].

    PubMed

    Xu, Bing; Shi, Xin-Yuan; Qiao, Yan-Jiang; Wu, Zhi-Sheng; Lin, Zhao-Zhou

    2013-03-01

    The philosophy of quality by design (QbD) is now leading the changes in the drug manufacturing mode from the conventional test-based approach to the science and risk based approach focusing on the detailed research and understanding of the production process. Along with the constant deepening of the understanding of the manufacturing process, the design space will be determined, and the emphasis of quality control will be shifted from the quality standards to the design space. Therefore, the establishment of the design space is core step in the implementation of QbD, and it is of great importance to study the methods for building the design space. This essay proposes the concept of design space for the production process of traditional Chinese medicine (TCM) preparations, gives a systematic introduction of the concept of the design space, analyzes the feasibility and significance to build the design space in the production process of traditional Chinese medicine preparations, and proposes study approaches on the basis of examples that comply with the characteristics of traditional Chinese medicine preparations, as well as future study orientations.

  17. A knowledge-based, concept-oriented view generation system for clinical data.

    PubMed

    Zeng, Q; Cimino, J J

    2001-04-01

    Information overload is a well-known problem for clinicians who must review large amounts of data in patient records. Concept-oriented views, which organize patient data around clinical concepts such as diagnostic strategies and therapeutic goals, may offer a solution to the problem of information overload. However, although concept-oriented views are desirable, they are difficult to create and maintain. We have developed a general-purpose, knowledge-based approach to the generation of concept-oriented views and have developed a system to test our approach. The system creates concept-oriented views through automated identification of relevant patient data. The knowledge in the system is represented by both a semantic network and rules. The key relevant data identification function is accomplished by a rule-based traversal of the semantic network. This paper focuses on the design and implementation of the system; an evaluation of the system is reported separately.

  18. Origins Space Telescope Concept 1: Mid to Far Infrared Mission

    NASA Astrophysics Data System (ADS)

    Carter, Ruth; DiPirro, Michael; Origins Space Telescope Decadal Mission Study Team

    2018-01-01

    Origins Space Telescope (OST), is a NASA large mission concept designed to investigate the mid to far infrared sky. It would launch in the mid 2030’s, with mission development and implementation beginning in the mid-2020’s. This poster presents the overall architecture of OST Mission Concept 1. The Concept 1 telescope has a 9-meter diameter off-axis primary mirror, a three-mirror astigmat with a field steering mirror, covering the wavelength range of 6 to 600 µm. Five science instruments are on board the OST observatory for spectroscopy, imaging and coronagraphy. The instruments are the Medium Resolution Survey Spectrometer (MRSS), High Resolution Spectrometer (HRS), Far –IR Imaging and Polarimeter (FIP), Mid-IR Imaging Spectrometer and Coronagraph (MISC) and Heterodyne Instrument (HERO). The instruments are housed in the Instrument Accommodation Module (IAM). The Telescope and IAM are actively cooled to 4 Kelvin by relative high maturity 4 K cryocoolers To limit the Sun, Earth, Moon, and Spacecraft thermal radiation into the 4 K environment, multiple layers of sun shields similar to those used on JWST, are implemented. The sun-shields are also designed to minimize solar pressure and center of gravity discrepancies, thus resulting in the “sugar-scoop” like shape. To prevent locally generated stray light from entering the 4 Kelvin environment during mission operations, a 4 K baffle around the telescope and IAM is used. The OST Observatory will be inserted to a Sun-Earth L2 for mission operations.

  19. Toward a Proof of Concept Cloud Framework for Physics Applications on Blue Gene Supercomputers

    NASA Astrophysics Data System (ADS)

    Dreher, Patrick; Scullin, William; Vouk, Mladen

    2015-09-01

    Traditional high performance supercomputers are capable of delivering large sustained state-of-the-art computational resources to physics applications over extended periods of time using batch processing mode operating environments. However, today there is an increasing demand for more complex workflows that involve large fluctuations in the levels of HPC physics computational requirements during the simulations. Some of the workflow components may also require a richer set of operating system features and schedulers than normally found in a batch oriented HPC environment. This paper reports on progress toward a proof of concept design that implements a cloud framework onto BG/P and BG/Q platforms at the Argonne Leadership Computing Facility. The BG/P implementation utilizes the Kittyhawk utility and the BG/Q platform uses an experimental heterogeneous FusedOS operating system environment. Both platforms use the Virtual Computing Laboratory as the cloud computing system embedded within the supercomputer. This proof of concept design allows a cloud to be configured so that it can capitalize on the specialized infrastructure capabilities of a supercomputer and the flexible cloud configurations without resorting to virtualization. Initial testing of the proof of concept system is done using the lattice QCD MILC code. These types of user reconfigurable environments have the potential to deliver experimental schedulers and operating systems within a working HPC environment for physics computations that may be different from the native OS and schedulers on production HPC supercomputers.

  20. Exploring spiritual value in earth science concept through learning using chain till unanswered questions

    NASA Astrophysics Data System (ADS)

    Johan, Henny; Suhandi, Andi; Samsudin, Ahmad; Ratna Wulan, Ana

    2017-08-01

    Now days, the youth's moral decline is an urgent problem in our country. Natural science especially earth and space science learning is potential to insert spirituality value in its learning activities. The aim of this study is to explore concept of planet earth to embed spirituality attitude through earth science learning. Interactive conceptual learning model using chain till unanswered questions (CTUQ) with help visualizations was implemented in this study. 23 pre-service physics teacher in Bengkulu, Indonesia participated in this study. A sixth indicator of spiritual aspect about awareness of divinity were used to identify the shifted of students' spirituality. Quasi experimental research design had been utilized to implement the learning model. The data were collected using a questionnaire in pretest and posttest. Open ended question was given at post-test only. Questionnaire was analyzed quantitative while open ended question was analyzed qualitatively. The results show that after implementation student's spiritual shifted to be more awareness of divinity. Students' response at scale 10 increased been 97.8% from 87.5% of total responses. Based on analysis of open ended question known that the shifted was influenced by spiritual value inserted in concepts, CTUQ, and media visualization used to show unobservable earth phenomenon during learning activities. It can be concluded that earth science concepts can be explored to embed spiritual aspect.

  1. VIMOS Instrument Control Software Design: an Object Oriented Approach

    NASA Astrophysics Data System (ADS)

    Brau-Nogué, Sylvie; Lucuix, Christian

    2002-12-01

    The Franco-Italian VIMOS instrument is a VIsible imaging Multi-Object Spectrograph with outstanding multiplex capabilities, allowing to take spectra of more than 800 objects simultaneously, or integral field spectroscopy mode in a 54x54 arcsec area. VIMOS is being installed at the Nasmyth focus of the third Unit Telescope of the European Southern Observatory Very Large Telescope (VLT) at Mount Paranal in Chile. This paper will describe the analysis, the design and the implementation of the VIMOS Instrument Control System, using UML notation. Our Control group followed an Object Oriented software process while keeping in mind the ESO VLT standard control concepts. At ESO VLT a complete software library is available. Rather than applying waterfall lifecycle, ICS project used iterative development, a lifecycle consisting of several iterations. Each iteration consisted in : capture and evaluate the requirements, visual modeling for analysis and design, implementation, test, and deployment. Depending of the project phases, iterations focused more or less on specific activity. The result is an object model (the design model), including use-case realizations. An implementation view and a deployment view complement this product. An extract of VIMOS ICS UML model will be presented and some implementation, integration and test issues will be discussed.

  2. New procedures of ergonomics design in a large oil company.

    PubMed

    Alhadeff, Cynthia Mossé; Silva, Rosana Fernandes da; Reis, Márcia Sales dos

    2012-01-01

    This study presents the challenge involved in the negotiation and construction of a standard process in a major petroleum company that has the purpose of guiding the implementation of ergonomic studies in the development of projects, systemising the implementation of ergonomics design. The standard was created by a multi-disciplinary working group consisting of specialists in ergonomics, who work in a number of different areas of the company. The objective was to guide "how to" undertake ergonomics in all projects, taking into consideration the development of the ergonomic appraisals of work. It also established that all the process, in each project phase, should be accompanied by a specialist in ergonomics. This process as an innovation in the conception of projects in this company, signals a change of culture, and, for this reason requires broad dissemination throughout the several company leadership levels, and training of professionals in projects of ergonomics design. An implementation plan was also prepared and approved by the corporate governance, complementing the proposed challenge. In this way, this major oil company will implement new procedures of ergonomics design to promote health, safety, and wellbeing of the workforce, besides improving the performance and reliability of its systems and processes.

  3. An all-digital receiver for satellite audio broadcasting signals using trellis coded quasi-orthogonal code-division multiplexing

    NASA Astrophysics Data System (ADS)

    Braun, Walter; Eglin, Peter; Abello, Ricard

    1993-02-01

    Spread Spectrum Code Division Multiplex is an attractive scheme for the transmission of multiple signals over a satellite transponder. By using orthogonal or quasi-orthogonal spreading codes the interference between the users can be virtually eliminated. However, the acquisition and tracking of the spreading code phase can not take advantage of the code orthogonality since sequential acquisition and Delay-Locked loop tracking depend on correlation with code phases other than the optimal despreading phase. Hence, synchronization is a critical issue in such a system. A demonstration hardware for the verification of the orthogonal CDM synchronization and data transmission concept is being designed and implemented. The system concept, the synchronization scheme, and the implementation are described. The performance of the system is discussed based on computer simulations.

  4. Rural domestic wastewater treatment in Norway and Poland: experiences, cooperation and concepts on the improvement of constructed wetland technology.

    PubMed

    Paruch, A M; Mæhlum, T; Obarska-Pempkowiak, H; Gajewska, M; Wojciechowska, E; Ostojski, A

    2011-01-01

    This article describes Norwegian and Polish experiences concerning domestic wastewater treatment obtained during nearly 20 years of operation for constructed wetland (CW) systems in rural areas and scattered settlements. The Norwegian CW systems revealed a high performance with respect to the removal of organic matter, biogenic elements and faecal indicator bacteria. The performance of the Polish CW systems was unstable, and varied between unsatisfied and satisfied treatment efficiency provided by horizontal and vertical flow CWs, respectively. Therefore, three different concepts related to the improvement of CW technology have been developed and implemented in Poland. These concepts combined some innovative solutions originally designed in Norway (e.g. an additional treatment step in biofilters) with Polish inspiration for new CWs treating rural domestic wastewater. The implementation of full-scale systems will be evaluated with regard to treatment efficiency and innovative technology; based on this, a further selection of the most favourable CW for rural areas and scattered settlements will be performed.

  5. Microprocessor design for GaAs technology

    NASA Astrophysics Data System (ADS)

    Milutinovic, Veljko M.

    Recent advances in the design of GaAs microprocessor chips are examined in chapters contributed by leading experts; the work is intended as reading material for a graduate engineering course or as a practical R&D reference. Topics addressed include the methodology used for the architecture, organization, and design of GaAs processors; GaAs device physics and circuit design; design concepts for microprocessor-based GaAs systems; a 32-bit GaAs microprocessor; a 32-bit processor implemented in GaAs JFET; and a direct coupled-FET-logic E/D-MESFET experimental RISC machine. Drawings, micrographs, and extensive circuit diagrams are provided.

  6. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on-going study progresses.

  7. Shape design sensitivity analysis and optimal design of structural systems

    NASA Technical Reports Server (NTRS)

    Choi, Kyung K.

    1987-01-01

    The material derivative concept of continuum mechanics and an adjoint variable method of design sensitivity analysis are used to relate variations in structural shape to measures of structural performance. A domain method of shape design sensitivity analysis is used to best utilize the basic character of the finite element method that gives accurate information not on the boundary but in the domain. Implementation of shape design sensitivty analysis using finite element computer codes is discussed. Recent numerical results are used to demonstrate the accuracy obtainable using the method. Result of design sensitivity analysis is used to carry out design optimization of a built-up structure.

  8. Process control systems at Homer City coal preparation plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shell, W.P.

    1983-03-01

    An important part of process control engineering is the implementation of the basic control system design through commissioning to routine operation. This is a period when basic concepts can be reviewed and improvements either implemented or recorded for application in future systems. The experience of commissioning the process control systems in the Homer City coal cleaning plant are described and discussed. The current level of operating control performance in individual sections and the overall system are also reported and discussed.

  9. Research on blackboard architectures at the Heuristic Programming Project (HPP)

    NASA Technical Reports Server (NTRS)

    Nii, H. Penny

    1985-01-01

    Researchers are entering the second decade of research in the Blackboard problem solving framework with focus in the following areas: (1) extensions to the basic concepts implemented in AGE-1 to address, for example, reasoning with uncertain data; (2) a new architecture and development environment, BB1, that implements methods for explicity controlling the reasoning; and (3) the design of and experimentation with multiprocessor architectures using the Blackboard as an organizing framework. A summary of these efforts is presented.

  10. Trajectory tracking control for a nonholonomic mobile robot under ROS

    NASA Astrophysics Data System (ADS)

    Lakhdar Besseghieur, Khadir; Trębiński, Radosław; Kaczmarek, Wojciech; Panasiuk, Jarosław

    2018-05-01

    In this paper, the implementation of the trajectory tracking control strategy on a ROS-based mobile robot is considered. Our test-bench is the nonholonomic mobile robot ‘TURTLEBOT’. ROS facilitates considerably setting-up a suitable environment to test the designed controller. Our aim is to develop a framework using ROS concepts so that a trajectory tracking controller can be implemented on any ROS-enabled mobile robot. Practical experiments with ‘TURTLEBOT’ are conducted to assess the framework reliability.

  11. Fiber-Optic Terahertz Data-Communication Networks

    NASA Technical Reports Server (NTRS)

    Chua, Peter L.; Lambert, James L.; Morookian, John M.; Bergman, Larry A.

    1994-01-01

    Network protocols implemented in optical domain. Fiber-optic data-communication networks utilize fully available bandwidth of single-mode optical fibers. Two key features of method: use of subpicosecond laser pulses as carrier signals and spectral phase modulation of pulses for optical implementation of code-division multiple access as multiplexing network protocol. Local-area network designed according to concept offers full crossbar functionality, security of data in transit through network, and capacity about 100 times that of typical fiber-optic local-area network in current use.

  12. Utilization of building information modeling in infrastructure’s design and construction

    NASA Astrophysics Data System (ADS)

    Zak, Josef; Macadam, Helen

    2017-09-01

    Building Information Modeling (BIM) is a concept that has gained its place in the design, construction and maintenance of buildings in Czech Republic during recent years. This paper deals with description of usage, applications and potential benefits and disadvantages connected with implementation of BIM principles in the preparation and construction of infrastructure projects. Part of the paper describes the status of BIM implementation in Czech Republic, and there is a review of several virtual design and construction practices in Czech Republic. Examples of best practice are presented from current infrastructure projects. The paper further summarizes experiences with new technologies gained from the application of BIM related workflows. The focus is on the BIM model utilization for the machine control systems on site, quality assurance, quality management and construction management.

  13. Deployment Analysis of a Simple Tape-Spring Hinge Using Probabilistic Methods

    NASA Technical Reports Server (NTRS)

    Lyle, Karen H.; Horta, Lucas G.

    2012-01-01

    Acceptance of new deployable structures architectures and concepts requires validated design methods to minimize the expense involved with technology validation flight testing. Deployable concepts for large lightweight spacecraft include booms, antennae, and masts. This paper explores the implementation of probabilistic methods in the design process for the deployment of a strain-energy mechanism, specifically a simple tape-spring hinge. Strain-energy mechanisms are attractive for deployment in very lightweight systems because they do not require the added mass and complexity associated with motors and controllers. However, designers are hesitant to include free deployment, strain-energy mechanisms because of the potential for uncontrolled behavior. In the example presented here, the tapespring cross-sectional dimensions have been varied and a target displacement during deployment has been selected as the design metric. Specifically, the tape-spring should reach the final position in the shortest time with the minimal amount of overshoot and oscillations. Surrogate models have been used to reduce computational expense. Parameter values to achieve the target response have been computed and used to demonstrate the approach. Based on these results, the application of probabilistic methods for design of a tape-spring hinge has shown promise as a means of designing strain-energy components for more complex space concepts.

  14. Ergonomics in designing process: dialogue between designers, executors and users in the maintenance activity of radars in an oil refinery.

    PubMed

    Menegon, Fabrício Augusto; Rodrigues, Daniela da Silva; Fontes, Andréa Regina Martins; Menegon, Nilton Luiz

    2012-01-01

    This paper aims to discuss the role of ergonomics in design process using the dialogue developed by designers, implementers and users in an oil refinery. It was possible to identify the need of minimizing the postural constraints, risk of accidents, mechanical shocks and to enlarge safety perception in the access and permanency of the users at the workspace. It has been determined and validated by workers and managers to implement different deadlines depending on programming, viability and execution time for the improvements proposed. In a long-term: it was proposed the substitution of the ladders with time planning according to the maintenance program of the tanks; in a short-time: it was suggested the expansion of the existing platforms, implementation of a walkway connection provided with guardrails between the upper access of the side ladder and the repositioning of radar set and aerial aiming at the usage by workers at the workstation of the new platform. It was also elaborated eight typologies of intervention, according to the request, type of tank, material stored, and its setting place. The design process arises from ergonomics workplace analysis that presents concepts for solutions which was a mediator tool to be settled between users and implementers.

  15. Social network analysis for program implementation.

    PubMed

    Valente, Thomas W; Palinkas, Lawrence A; Czaja, Sara; Chu, Kar-Hai; Brown, C Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach.

  16. Social Network Analysis for Program Implementation

    PubMed Central

    Valente, Thomas W.; Palinkas, Lawrence A.; Czaja, Sara; Chu, Kar-Hai; Brown, C. Hendricks

    2015-01-01

    This paper introduces the use of social network analysis theory and tools for implementation research. The social network perspective is useful for understanding, monitoring, influencing, or evaluating the implementation process when programs, policies, practices, or principles are designed and scaled up or adapted to different settings. We briefly describe common barriers to implementation success and relate them to the social networks of implementation stakeholders. We introduce a few simple measures commonly used in social network analysis and discuss how these measures can be used in program implementation. Using the four stage model of program implementation (exploration, adoption, implementation, and sustainment) proposed by Aarons and colleagues [1] and our experience in developing multi-sector partnerships involving community leaders, organizations, practitioners, and researchers, we show how network measures can be used at each stage to monitor, intervene, and improve the implementation process. Examples are provided to illustrate these concepts. We conclude with expected benefits and challenges associated with this approach. PMID:26110842

  17. Career Education. Administrators and Counselors Implementation Model. Module III--Teacher Information and Orientation for Administrators. (3.1) Identify Change Strategy.

    ERIC Educational Resources Information Center

    Thompson, John A.; Chock, Mona K.O.

    Part of a 13-volume series designed to be used as a group inservice or a self-learning system to train school administrators and counselors for their role in career education, this section of module 3 is designed to identify change strategies to help the principal motivate teachers to accept the concept of career education. (Module 3 is one of six…

  18. Overcoming barriers to implementation of evidence-based practice concepts in athletic training education: perceptions of select educators.

    PubMed

    Manspeaker, Sarah; Van Lunen, Bonnie

    2011-01-01

    The need to include evidence-based practice (EBP) concepts in entry-level athletic training education is evident as the profession transitions toward using evidence to inform clinical decision making. To evaluate athletic training educators' experience with implementation of EBP concepts in Commission on Accreditation of Athletic Training Education (CAATE)-accredited entry-level athletic training education programs in reference to educational barriers and strategies for overcoming these barriers. Qualitative interviews of emergent design with grounded theory. Undergraduate CAATE-accredited athletic training education programs. Eleven educators (3 men, 8 women). The average number of years teaching was 14.73 ± 7.06. Interviews were conducted to evaluate perceived barriers and strategies for overcoming these barriers to implementation of evidence-based concepts in the curriculum. Interviews were explored qualitatively through open and axial coding. Established themes and categories were triangulated and member checked to determine trustworthiness. Educators identified 3 categories of need for EBP instruction: respect for the athletic training profession, use of EBP as part of the decision-making toolbox, and third-party reimbursement. Barriers to incorporating EBP concepts included time, role strain, knowledge, and the gap between clinical and educational practices. Suggested strategies for surmounting barriers included identifying a starting point for inclusion and approaching inclusion from a faculty perspective. Educators must transition toward instruction of EBP, regardless of barriers present in their academic programs, in order to maintain progress with other health professions' clinical practices and educational standards. Because today's students are tomorrow's clinicians, we need to include EBP concepts in entry-level education to promote critical thinking, inspire potential research interest, and further develop the available body of knowledge in our growing clinical practice.

  19. Preliminary design of a supersonic cruise aircraft high-pressure turbine

    NASA Technical Reports Server (NTRS)

    Aceto, L. D.; Calderbank, J. C.

    1983-01-01

    Development of the supersonic cruise aircraft engine continued in this National Aeronautics and Space Administration (NASA) sponsored Pratt and Whitney program for the Preliminary Design of an Advanced High-Pressure Turbine. Airfoil cooling concepts and the technology required to implement these concepts received particular emphasis. Previous supersonic cruise aircraft mission studies were reviewed and the Variable Stream Control Engine (VSCE) was chosen as the candidate or the preliminary turbine design. The design was evaluated for the supersonic cruise mission. The advanced technology to be generated from these designs showed benefits in the supersonic cruise application and subsonic cruise application. The preliminary design incorporates advanced single crystal materials, thermal barrier coatings, and oxidation resistant coatings for both the vane and blade. The 1990 technology vane and blade designs have cooled turbine efficiency of 92.3 percent, 8.05 percent Wae cooling and a 10,000 hour life. An alternate design with 1986 technology has 91.9 percent efficiency and 12.43 percent Wae cooling at the same life. To achieve these performance and life results, technology programs must be pursued to provide the 1990's technology assumed for this study.

  20. Improvement of Automated POST Case Success Rate Using Support Vector Machines

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.

    2017-01-01

    During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.

  1. Applying Contamination Modelling to Spacecraft Propulsion Systems Designs and Operations

    NASA Technical Reports Server (NTRS)

    Chen, Philip T.; Thomson, Shaun; Woronowicz, Michael S.

    2000-01-01

    Molecular and particulate contaminants generated from the operations of a propulsion system may impinge on spacecraft critical surfaces. Plume depositions or clouds may hinder the spacecraft and instruments from performing normal operations. Firing thrusters will generate both molecular and particulate contaminants. How to minimize the contamination impact from the plume becomes very critical for a successful mission. The resulting effect from either molecular or particulate contamination of the thruster firing is very distinct. This paper will discuss the interconnection between the functions of spacecraft contamination modeling and propulsion system implementation. The paper will address an innovative contamination engineering approach implemented from the spacecraft concept design, manufacturing, integration and test (I&T), launch, to on- orbit operations. This paper will also summarize the implementation on several successful missions. Despite other contamination sources, only molecular contamination will be considered here.

  2. The impact of CmapTools utilization towards students' conceptual change on optics topic

    NASA Astrophysics Data System (ADS)

    Rofiuddin, Muhammad Rifqi; Feranie, Selly

    2017-05-01

    Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.

  3. Simulation Propulsion System and Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Falck, Robert D.; Gray, Justin S.

    2017-01-01

    A number of new aircraft concepts have recently been proposed which tightly couple the propulsion system design and operation with the overall vehicle design and performance characteristics. These concepts include propulsion technology such as boundary layer ingestion, hybrid electric propulsion systems, distributed propulsion systems and variable cycle engines. Initial studies examining these concepts have typically used a traditional decoupled approach to aircraft design where the aerodynamics and propulsion designs are done a-priori and tabular data is used to provide inexpensive look ups to the trajectory ana-ysis. However the cost of generating the tabular data begins to grow exponentially when newer aircraft concepts require consideration of additional operational parameters such as multiple throttle settings, angle-of-attack effects on the propulsion system, or propulsion throttle setting effects on aerodynamics. This paper proposes a new modeling approach that eliminated the need to generate tabular data, instead allowing an expensive propulsion or aerodynamic analysis to be directly integrated into the trajectory analysis model and the entire design problem optimized in a fully coupled manner. The new method is demonstrated by implementing a canonical optimal control problem, the F-4 minimum time-to-climb trajectory optimization using three relatively new analysis tools: Open M-DAO, PyCycle and Pointer. Pycycle and Pointer both provide analytic derivatives and Open MDAO enables the two tools to be combined into a coupled model that can be run in an efficient parallel manner that helps to cost the increased cost of the more expensive propulsion analysis. Results generated with this model serve as a validation of the tightly coupled design method and guide future studies to examine aircraft concepts with more complex operational dependencies for the aerodynamic and propulsion models.

  4. Implementing Lumberjacks and Black Swans Into Model-Based Tools to Support Human-Automation Interaction.

    PubMed

    Sebok, Angelia; Wickens, Christopher D

    2017-03-01

    The objectives were to (a) implement theoretical perspectives regarding human-automation interaction (HAI) into model-based tools to assist designers in developing systems that support effective performance and (b) conduct validations to assess the ability of the models to predict operator performance. Two key concepts in HAI, the lumberjack analogy and black swan events, have been studied extensively. The lumberjack analogy describes the effects of imperfect automation on operator performance. In routine operations, an increased degree of automation supports performance, but in failure conditions, increased automation results in more significantly impaired performance. Black swans are the rare and unexpected failures of imperfect automation. The lumberjack analogy and black swan concepts have been implemented into three model-based tools that predict operator performance in different systems. These tools include a flight management system, a remotely controlled robotic arm, and an environmental process control system. Each modeling effort included a corresponding validation. In one validation, the software tool was used to compare three flight management system designs, which were ranked in the same order as predicted by subject matter experts. The second validation compared model-predicted operator complacency with empirical performance in the same conditions. The third validation compared model-predicted and empirically determined time to detect and repair faults in four automation conditions. The three model-based tools offer useful ways to predict operator performance in complex systems. The three tools offer ways to predict the effects of different automation designs on operator performance.

  5. Context and implementation: A concept analysis towards conceptual maturity.

    PubMed

    Pfadenhauer, Lisa Maria; Mozygemba, Kati; Gerhardus, Ansgar; Hofmann, Bjørn; Booth, Andrew; Lysdahl, Kristin Bakke; Tummers, Marcia; Burns, Jacob; Rehfuess, Eva Annette

    2015-01-01

    Context and implementation of health interventions have received increasing attention over the past decade, in particular with respect to their influence on the effectiveness and reach of complex interventions. The underlying concepts are both considered partially mature, limiting their operationalization in research and practice. We conducted systematic literature searches and pragmatic utility (PU) concept analyses to provide a state-of-the-art assessment of the concepts of "context" and "implementation" in the health sciences to create a common understanding for their use within systematic reviews and HTA. We performed two separate searches, one for context (EMBASE, MEDLINE) and the other for implementation (Google Scholar) to identify relevant models, theories and frameworks. 17 publications on context and 35 articles on implementation met our inclusion criteria. PU concept analysis comprises three guiding principles: selection of the literature, organization and structuring of the literature, and asking analytic questions of the literature. Both concepts were analyzed according to four features of conceptual maturity, i.e., consensual definitions, clear characteristics, fully described preconditions and outcomes, and delineated boundaries. Context and implementation are highly intertwined, with both concepts influencing and interacting with each other. Context is defined as a set of characteristics and circumstances that surround the implementation effort. Implementation is conceptualized as a planned and deliberately initiated effort with the intention to put an intervention into practice. The concept of implementation presents largely consensual definitions and relatively well-defined boundaries, while distinguishing features, preconditions and outcomes are not yet fully articulated. In contrast, definitions of context vary widely, and boundaries with neighbouring concepts, such as setting and environment, are blurred; characteristics, preconditions and outcomes are ill-defined. Therefore, the maturity of both concepts should be further improved to facilitate operationalization in systematic reviews and HTAs. Copyright © 2015. Published by Elsevier GmbH.

  6. Flight Mechanics of the Entry, Descent and Landing of the ExoMars Mission

    NASA Technical Reports Server (NTRS)

    HayaRamos, Rodrigo; Boneti, Davide

    2007-01-01

    ExoMars is ESA's current mission to planet Mars. A high mobility rover and a fixed station will be deployed on the surface of Mars. This paper regards the flight mechanics of the Entry, Descent and Landing (EDL) phases used for the mission analysis and design of the Baseline and back-up scenarios of the mission. The EDL concept is based on a ballistic entry, followed by a descent under parachutes and inflatable devices (airbags) for landing. The mission analysis and design is driven by the flexibility in terms of landing site, arrival dates and the very stringent requirement in terms of landing accuracy. The challenging requirements currently imposed to the mission need innovative analysis and design techniques to support system design trade-offs to cope with the variability in entry conditions. The concept of the Global Entry Corridor has been conceived, designed, implemented and successfully validated as a key tool to provide a global picture of the mission capabilities in terms of landing site reachability.

  7. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marman Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Allton, Charles; Jennings, Mallory; Aitchision, Lindsay

    2013-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  8. Suitport Feasibility - Human Pressurized Space Suit Donning Tests with the Marmon Clamp and Pneumatic Flipper Suitport Concepts

    NASA Technical Reports Server (NTRS)

    Boyle, Robert M.; Rodriggs, Liana; Alton, Charles; Jennings, Mallory; Aitchison, Lindsay

    2012-01-01

    The suitport concept has been recently implemented as part of the small pressurized lunar rover (Currently the Space Exploration vehicle, or SEV) and the Multi-Mission Space Exploration Vehicle (MMSEV) concept demonstrator vehicle. Suitport replaces or augments the traditional airlock function of a spacecraft by providing a bulkhead opening, capture mechanism, and sealing system to allow ingress and egress of a space suit while the space suit remains outside of the pressurized volume of the spacecraft. This presents significant new opportunities to EVA exploration in both microgravity and surface environments. The suitport concept will enable three main improvements in EVA by providing reductions in: pre-EVA time from hours to less than thirty minutes; airlock consumables; contamination returned to the cabin with the EVA crewmember. Two second generation suitports were designed and tested. The previously reported second generation Marman Clamp suitport and a newer concept, the Pneumatic Flipper Suitport. These second generation suitports demonstrated human donning and doffing of the Z1 spacesuit with an 8.3 psi pressure differential across the spacesuit. Testing was performed using the JSC B32 Chamber B, a human rated vacuum chamber. The test included human rated suitports, the suitport compatible prototype suit, and chamber modifications. This test brought these three elements together in the first ever pressurized donning of a rear entry suit through a suitport. This paper presents the results of the testing, including unexpected difficulties with doffing, and engineering solutions implemented to ease the difficulties. A review of suitport functions, including a discussion of the need to doff a pressurized suit in earth gravity, is included. Recommendations for future design and testing are documented.

  9. Guidance system operations plan for manned CM earth orbital missions using program SKYLARK 1. Section 4: Operational modes

    NASA Technical Reports Server (NTRS)

    Dunbar, J. C.

    1972-01-01

    The operational modes for the guidance system operations plan for Program SKYLARK 1 are presented. The procedures control the guidance and navigation system interfaces with the flight crew and the mission control center. The guidance operational concept is designed to comprise a set of manually initiated programs and functions which may be arranged by the flight crew to implement a large class of flight plans. This concept will permit both a late flight plan definition and a capability for real time flight plan changes.

  10. Proceedings of the Mars Global Network Mission Workshop

    NASA Technical Reports Server (NTRS)

    Sturms, Francis M., Jr. (Editor)

    1990-01-01

    A workshop on the Mars Global Network Mission held at the Jet Propulsion Laboratory (JPL) on February 6 and 7, 1990, was attended by 68 people from JPL, National Aeronautics and Space Administration centers, universities, national laboratories, and industry. Three working sessions on science and exploration objectives, mission and system design concepts, and subsystem technology readiness each addressed three specific questions on implementation concepts for the mission. The workshop generated conclusions for each of the nine questions and also recommended several important science and engineering issues to be studied subsequent to the workshop.

  11. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing to Include Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2011-01-01

    This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations

  12. Composite Matrix Cooling Scheme for Small Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Paskin, Marc D.; Ross, Phillip T.; Mongia, Hukam C.; Acosta, Waldo A.

    1990-01-01

    The design, manufacture, and testing of a compliant metal/ceramic (CMC) wall cooling concept-implementing combustor for small gas turbine engines has been undertaken by a joint U.S. Army/NASA technology development program. CMC in principle promises greater wall cooling effectiveness than conventional designs and materials, thereby facilitating a substantial reduction in combustor cooling air requirements and furnishing greater airflow for the control of burner outlet temperature patterns as well as improving thermodynamic efficiency and reducing pollutant emissions and smoke levels. Rig test results have confirmed the projected benefits of the CMC concept at combustor outlet temperatures of the order of 2460 F, at which approximately 80 percent less cooling air than conventionally required was being employed by the CMC combustor.

  13. Compact time- and space-integrating SAR processor: design and development status

    NASA Astrophysics Data System (ADS)

    Haney, Michael W.; Levy, James J.; Christensen, Marc P.; Michael, Robert R., Jr.; Mock, Michael M.

    1994-06-01

    Progress toward a flight demonstration of the acousto-optic time- and space- integrating real-time SAR image formation processor program is reported. The concept overcomes the size and power consumption limitations of electronic approaches by using compact, rugged, and low-power analog optical signal processing techniques for the most computationally taxing portions of the SAR imaging problem. Flexibility and performance are maintained by the use of digital electronics for the critical low-complexity filter generation and output image processing functions. The results reported include tests of a laboratory version of the concept, a description of the compact optical design that will be implemented, and an overview of the electronic interface and controller modules of the flight-test system.

  14. Lightwave technology in microwave systems

    NASA Astrophysics Data System (ADS)

    Popa, A. E.; Gee, C. M.; Yen, H. W.

    1986-01-01

    Many advanced microwave system concepts such as active aperture phased array antennas use distributed topologies in which lightwave circuits are being proposed to interconnect both the analog and digital modules of the system. Lightwave components designed to implement these interconnects are reviewed and their performance analyzed. The impact of trends in component development are discussed.

  15. What Is Homework For? Hong Kong Primary School Teachers' Homework Conceptions

    ERIC Educational Resources Information Center

    Tam, Vicky C.; Chan, Raymond M. C.

    2016-01-01

    It is generally agreed that student homework has the potential to extend learning beyond the classroom. Teachers play a crucial role in the design and implementation of these assignments. Their beliefs and perceptions are important factors in determining the type and load of homework. This mixed methods study focuses on teachers' homework…

  16. CRM Implementation in Nonprofits: An Analysis of the Success Factors

    ERIC Educational Resources Information Center

    Grattan, Kelly E.

    2012-01-01

    Constituent Relationship Management ("CRM") is defined as an organization-wide strategy designed to enable the organization to better manage, track and steward its constituents. CRM has benefited for-profit enterprises for nearly three decades. In the nonprofit sector, the concept of CRM is fairly new. Despite the increase in CRM…

  17. Knowledge Management in Sustainability Research Projects: Concepts, Effective Models, and Examples in a Multi-Stakeholder Environment

    ERIC Educational Resources Information Center

    Kaiser, David Brian; Köhler, Thomas; Weith, Thomas

    2016-01-01

    This article aims to sketch a conceptual design for an information and knowledge management system in sustainability research projects. The suitable frameworks to implement knowledge transfer models constitute social communities, because the mutual exchange and learning processes among all stakeholders promote key sustainable developments through…

  18. Recycled material-based science instruments to support science education in rural area at Central Sulawesi District of Indonesia

    NASA Astrophysics Data System (ADS)

    Ali, M.; Supriyatman; Saehana, S.

    2018-03-01

    It has been successfully designing low cost of science experiment from recycled materials. The science instruments were produced to explain expansion concept and hydrostatic pressure inside the liquid. Science instruments were calibrated and then validated. It was also implemented in science learning.

  19. Design of an Integrated Team Project as Bachelor Thesis in Bioscience Engineering

    ERIC Educational Resources Information Center

    Peeters, Marie-Christine; Londers, Elsje; Van der Hoeven, Wouter

    2014-01-01

    Following the decision at the KU Leuven to implement the educational concept of guided independent learning and to encourage students to participate in scientific research, the Faculty of Bioscience Engineering decided to introduce a bachelor thesis. Competencies, such as communication, scientific research and teamwork, need to be present in the…

  20. Questioning for Controversial and Critical Thinking Dialogues in the Social Studies Classroom

    ERIC Educational Resources Information Center

    Lennon, Sean

    2017-01-01

    The design and implementation of questioning, specifically in regards towards a higher level of thinking, is a common practice in many secondary social science classrooms (Bickmore & Parker, 2012). Questioning can help the teacher develop critical thinking concepts, scaffold discussions, and prod students towards an elevated level of cognition…

  1. Implementation of Cooperative Learning Model in Preschool

    ERIC Educational Resources Information Center

    Akçay, Nilüfer Okur

    2016-01-01

    In this study, the effectivity of jigsaw method, one of the cooperative learning models, on teaching the concepts related to sense organs and their functions to four-five year-old children in nursery class was analyzed. The study is in the semi-experimental design consisting of experimental and control groups and pretest and posttest. The sample…

  2. Distance Learning and Skill Acquisition in Engineering Sciences: Present State and Prospects

    ERIC Educational Resources Information Center

    Potkonjak, Veljko; Jovanovic, Kosta; Holland, Owen; Uhomoibhi, James

    2013-01-01

    Purpose: The purpose of this paper is to present an improved concept of software-based laboratory exercises, namely a Virtual Laboratory for Engineering Sciences (VLES). Design/methodology/approach: The implementation of distance learning and e-learning in engineering sciences (such as Mechanical and Electrical Engineering) is still far behind…

  3. Performance Management: The Neglected Imperative of Accountability Systems in Education

    ERIC Educational Resources Information Center

    Mosoge, M. J.; Pilane, M. W.

    2014-01-01

    The first aim of this paper is to clarify the concept "performance management" as an aspect of the Integrated Quality Management System (IQMS). The second is to report on an exploration into the experiences and perceptions of management teams in the implementation of performance management. As part of the qualitative research design, the…

  4. Implementing Concepts of Pharmaceutical Engineering into High School Science Classrooms

    ERIC Educational Resources Information Center

    Kimmel, Howard; Hirsch, Linda S.; Simon, Laurent; Burr-Alexander, Levelle; Dave, Rajesh

    2009-01-01

    The Research Experience for Teachers was designed to help high school science teachers develop skills and knowledge in research, science and engineering with a focus on the area of pharmaceutical particulate and composite systems. The experience included time for the development of instructional modules for classroom teaching. Results of the…

  5. A Curriculum Package for Implementing Instruction in Electricity Fundamentals/House Wiring.

    ERIC Educational Resources Information Center

    Murphy, Brian P.

    This curriculum guide is designed for instructors of secondary industrial arts, vocational, and apprenticeship programs. The material is presented in two sections. Section I provides step-by-step instructions on how to present basic electrical circuit concepts with the use of a simply-made breadboard. Included in this section is the following…

  6. SWEEP: Sciencing with Watersheds, Environmental Education and Partnerships. Instructor's Guide to Implementation and Summer Institute Participant Notebook.

    ERIC Educational Resources Information Center

    Bainer, Deb; Barron, Pat; Cantrell, Diane

    Sciencing with Watersheds, Environmental Education, and Partnerships (SWEEP) is a professional development program designed to help elementary teachers improve the way they teach science using partnerships among teachers and resource professionals. SWEEP follows a thematic approach using watersheds as the core concept of an integrated elementary…

  7. Knowledge Management Model: Practical Application for Competency Development

    ERIC Educational Resources Information Center

    Lustri, Denise; Miura, Irene; Takahashi, Sergio

    2007-01-01

    Purpose: This paper seeks to present a knowledge management (KM) conceptual model for competency development and a case study in a law service firm, which implemented the KM model in a competencies development program. Design/methodology/approach: The case study method was applied according to Yin (2003) concepts, focusing a six-professional group…

  8. 360 Degree Videos within a Climbing MOOC

    ERIC Educational Resources Information Center

    Gänsluckner, Michael; Ebner, Martin; Kamrat, Isidor

    2017-01-01

    In this research study a course, combining both computer-supported and face-to-face teaching using the concept of blended learning, has been designed. It is a beginners climbing course called "Klettern mit 360° Videos" (climbing with 360° videos) and the online part has been implemented as a Massive Open Online Course (MOOC). This…

  9. ADMINISTRATION AND INNOVATION, PAPERS FROM THE COMMUNITY COLLEGE PRESIDENTS' INSTITUTE (6TH, 1966).

    ERIC Educational Resources Information Center

    WEBER, JOHN

    AT THIS 1966 INSTITUTE, THE FOLLOWING PRESENTATIONS WERE GIVEN--(1) AN INTRODUCTION TO THE SYSTEMS APPROACH, A PROCESS OF PLANNING, DESIGN, DEVELOPMENT, IMPLEMENTATION, EVALUATION, AND REVISION OF THE INSTRUCTIONAL PROGRAM (OAKLAND COMMUNITY COLLEGE), (2) A DESCRIPTION OF MANAGEMENT AND METHOD IN THE USE OF THE SYSTEMS CONCEPT (OAKLAND COMMUNITY…

  10. Thermal imaging as a smartphone application: exploring and implementing a new concept

    NASA Astrophysics Data System (ADS)

    Yanai, Omer

    2014-06-01

    Today's world is going mobile. Smartphone devices have become an important part of everyday life for billions of people around the globe. Thermal imaging cameras have been around for half a century and are now making their way into our daily lives. Originally built for military applications, thermal cameras are starting to be considered for personal use, enabling enhanced vision and temperature mapping for different groups of professional individuals. Through a revolutionary concept that turns smartphones into fully functional thermal cameras, we have explored how these two worlds can converge by utilizing the best of each technology. We will present the thought process, design considerations and outcome of our development process, resulting in a low-power, high resolution, lightweight USB thermal imaging device that turns Android smartphones into thermal cameras. We will discuss the technological challenges that we faced during the development of the product, and what are the system design decisions taken during the implementation. We will provide some insights we came across during this development process. Finally, we will discuss the opportunities that this innovative technology brings to the market.

  11. A Taxonomy of Introductory Physics Concepts.

    NASA Astrophysics Data System (ADS)

    Mokaya, Fridah; Savkar, Amit; Valente, Diego

    We have designed and implemented a hierarchical taxonomic classification of physics concepts for our introductory physics for engineers course sequence taught at the University of Connecticut. This classification can be used to provide a mechanism to measure student progress in learning at the level of individual concepts or clusters of concepts, and also as part of a tool to measure effectiveness of teaching pedagogy. We examine our pre- and post-test FCI results broken down by topics using Hestenes et al.'s taxonomy classification for the FCI, and compare these results with those found using our own taxonomy classification. In addition, we expand this taxonomic classification to measure performance in our other course exams, investigating possible correlations in results achieved across different assessments at the individual topic level. UCONN CLAS(College of Liberal Arts and Science).

  12. Approved Clinical Instructors' Perspectives on Implementation Strategies in Evidence-Based Practice for Athletic Training Students

    PubMed Central

    Hankemeier, Dorice A.; Van Lunen, Bonnie L.

    2011-01-01

    Context: Understanding implementation strategies of Approved Clinical Instructors (ACIs) who use evidence-based practice (EBP) in clinical instruction will help promote the use of EBP in clinical practice. Objective: To examine the perspectives and experiences of ACIs using EBP concepts in undergraduate athletic training education programs to determine the importance of using these concepts in clinical practice, clinical EBP implementation strategies for students, and challenges of implementing EBP into clinical practice while mentoring and teaching their students. Design: Qualitative study. Setting: Telephone interviews. Patients or Other Participants: Sixteen ACIs (11 men, 5 women; experience as a certified athletic trainer = 10 ± 4.7 years, experience as an ACI = 6.8 ± 3.9 years) were interviewed. Data Collection and Analysis: We interviewed each participant by telephone. Interview transcripts were analyzed and coded for common themes and subthemes regarding implementation strategies. Established themes were triangulated through peer review and member checking to verify the data. Results: The ACIs identified EBP implementation as important for validation of the profession, changing paradigm shift, improving patient care, and improving student educational experiences. They promoted 3 methods of implementing EBP concepts with their students: self-discovery, promoting critical thinking, and sharing information. They assisted students with the steps of EBP and often faced challenges in implementation of the first 3 steps of EBP: defining a clinical question, literature searching, and literature appraisal. Finally, ACIs indicated that modeling the behavior of making clinical decisions based on evidence was the best way to encourage students to continue using EBP. Conclusions: Athletic training education program directors should encourage and recommend specific techniques for EBP implementation in the clinical setting. The ACIs believed that role modeling is a strategy that can be used to promote the use of EBP with students. Training of ACIs should include methods by which to address the steps of the EBP process while still promoting critical thinking. PMID:22488192

  13. The EVA space suit development in Europe.

    PubMed

    Skoog, A I

    1994-01-01

    The progress of the European EVA space suit predevelopment activities has resulted in an improved technical reference concept, which will form the basis for a start of the Phase C/D development work in 1992. Technology development work over the last 2 years has resulted in a considerable amount of test data and a better understanding of the characteristics and behaviour of individual parts of the space suit system, in particular in the areas of suits' mobility and life support functions. This information has enabled a consolidation of certain design features on the one hand, but also led to the challenging of some of the design solutions on the other hand. While working towards an improved situation with respect to the main design drivers mass and cost, the technical concept has been improved with respect to functional safety and ease of handling, taking the evolving Hermes spaceplane requirements into consideration. Necessary hardware and functional redundancies have been implemented taking the operational scenario with Hermes and Columbus servicing into consideration. This paper presents the latest design status of the European EVA space suit concept, with particular emphasis on crew safety, comfort and productivity, in the frame of the predevelopment work for the European Space Agency.

  14. Thread concept for automatic task parallelization in image analysis

    NASA Astrophysics Data System (ADS)

    Lueckenhaus, Maximilian; Eckstein, Wolfgang

    1998-09-01

    Parallel processing of image analysis tasks is an essential method to speed up image processing and helps to exploit the full capacity of distributed systems. However, writing parallel code is a difficult and time-consuming process and often leads to an architecture-dependent program that has to be re-implemented when changing the hardware. Therefore it is highly desirable to do the parallelization automatically. For this we have developed a special kind of thread concept for image analysis tasks. Threads derivated from one subtask may share objects and run in the same context but may process different threads of execution and work on different data in parallel. In this paper we describe the basics of our thread concept and show how it can be used as basis of an automatic task parallelization to speed up image processing. We further illustrate the design and implementation of an agent-based system that uses image analysis threads for generating and processing parallel programs by taking into account the available hardware. The tests made with our system prototype show that the thread concept combined with the agent paradigm is suitable to speed up image processing by an automatic parallelization of image analysis tasks.

  15. A system for the simulation and evaluation of satellite communication networks

    NASA Technical Reports Server (NTRS)

    Bagwell, J. W.

    1983-01-01

    With the emergence of a new era in satellite communications brought about by NASA's thrust into the Ka band with multibeam and onboard processing technologies, new and innovative techniques for evaluating these concepts and systems are required. To this end, NASA, in conjunction with its extensive program for advanced communications technology development, has undertaken to develop a concept for the simulation and evaluation of a complete communications network. Incorporated in this network will be proof of concept models of the latest technologies proposed for future satellite communications systems. These include low noise receivers, matrix switches, baseband processors, and solid state and tube type high power amplifiers. To accomplish this, numerous supporting technologies must be added to those aforementioned proof of concept models. These include controllers for synchronization, order wire, and resource allocation, gain compensation, signal leveling, power augmentation, and rain fade and range delay simulation. Taken together, these will be assembled to comprise a system capable of addressing numerous design and performance questions. The simulation and evaluation system as planned will be modular in design and implementation, capable of modification and updating to track and evaluate a continuum emerging concepts and technologies.

  16. Electrical Pressurization Concept for the Orion MPCV European Service Module Propulsion System

    NASA Technical Reports Server (NTRS)

    Meiss, Jan-Hendrik; Weber, Jorg; Ierardo, Nicola; Quinn, Frank D.; Paisley, Jonathan

    2015-01-01

    The paper presents the design of the pressurization system of the European Service Module (ESM) of the Orion Multi-Purpose Crew Vehicle (MPCV). Being part of the propulsion subsystem, an electrical pressurization concept is implemented to condition propellants according to the engine needs via a bang-bang regulation system. Separate pressurization for the oxidizer and the fuel tank permits mixture ratio adjustments and prevents vapor mixing of the two hypergolic propellants during nominal operation. In case of loss of pressurization capability of a single side, the system can be converted into a common pressurization system. The regulation concept is based on evaluation of a set of tank pressure sensors and according activation of regulation valves, based on a single-failure tolerant weighting of three pressure signals. While regulation is performed on ESM level, commanding of regulation parameters as well as failure detection, isolation and recovery is performed from within the Crew Module, developed by Lockheed Martin Space System Company. The overall design and development maturity presented is post Preliminary Design Review (PDR) and reflects the current status of the MPCV ESM pressurization system.

  17. Flight Test Evaluation of the Airborne Information for Lateral Spacing (AILS) Concept

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2002-01-01

    The Airborne Information for Lateral Spacing (AILS) concept is designed to support independent parallel approach operations to runways spaced as close as 2,500 feet. This report briefly describes the AILS operational concept and the results of a flight test of one implementation of this concept. The focus of this flight test experiment was to validate a prior simulator study, evaluating pilot performance, pilot acceptability, and minimum miss-distances for the rare situation in which an aircraft on one approach intrudes into the path of an aircraft on the other approach. Although the flight data set was not meant to be a statistically valid sample, the trends acquired in flight followed those of the simulator and therefore met the intent of validating the findings from the simulator. Results from this study showed that the design-goal mean miss-distance of 1,200 feet to potential collision situations was surpassed with an actual mean miss-distance of 1,859 feet. Pilot reaction times to the alerting system, which was an operational concern, averaged 0.65 seconds, were well below the design goal reaction time of 2.0 seconds. From the results of both of these tests, it can be concluded that this operational concept, with supporting technology and procedures, may provide an operationally viable means for conducting simultaneous, independent instrument approaches to runways spaced as close as 2500 ft.

  18. Recursive Deadbeat Controller Design

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Phan, Minh Q.

    1997-01-01

    This paper presents a recursive algorithm for a deadbeat predictive controller design. The method combines together the concepts of system identification and deadbeat controller designs. It starts with the multi-step output prediction equation and derives the control force in terms of past input and output time histories. The formulation thus derived satisfies simultaneously system identification and deadbeat controller design requirements. As soon as the coefficient matrices are identified satisfying the output prediction equation, no further work is required to compute the deadbeat control gain matrices. The method can be implemented recursively just as any typical recursive system identification techniques.

  19. Reference Avionics Architecture for Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Somervill, Kevin M.; Lapin, Jonathan C.; Schmidt, Oron L.

    2010-01-01

    Developing and delivering infrastructure capable of supporting long-term manned operations to the lunar surface has been a primary objective of the Constellation Program in the Exploration Systems Mission Directorate. Several concepts have been developed related to development and deployment lunar exploration vehicles and assets that provide critical functionality such as transportation, habitation, and communication, to name a few. Together, these systems perform complex safety-critical functions, largely dependent on avionics for control and behavior of system functions. These functions are implemented using interchangeable, modular avionics designed for lunar transit and lunar surface deployment. Systems are optimized towards reuse and commonality of form and interface and can be configured via software or component integration for special purpose applications. There are two core concepts in the reference avionics architecture described in this report. The first concept uses distributed, smart systems to manage complexity, simplify integration, and facilitate commonality. The second core concept is to employ extensive commonality between elements and subsystems. These two concepts are used in the context of developing reference designs for many lunar surface exploration vehicles and elements. These concepts are repeated constantly as architectural patterns in a conceptual architectural framework. This report describes the use of these architectural patterns in a reference avionics architecture for Lunar surface systems elements.

  20. Improved Aerogel Vacuum Thermal Insulation

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren P.; Bue, Grant C.

    2009-01-01

    An improved design concept for aerogel vacuum thermal-insulation panels calls for multiple layers of aerogel sandwiched between layers of aluminized Mylar (or equivalent) poly(ethylene terephthalate), as depicted in the figure. This concept is applicable to both the rigid (brick) form and the flexible (blanket) form of aerogel vacuum thermal-insulation panels. Heretofore, the fabrication of a typical aerogel vacuum insulating panel has involved encapsulation of a single layer of aerogel in poly(ethylene terephthalate) and pumping of gases out of the aerogel-filled volume. A multilayer panel according to the improved design concept is fabricated in basically the same way: Multiple alternating layers of aerogel and aluminized poly(ethylene terephthalate) are assembled, then encapsulated in an outer layer of poly(ethylene terephthalate), and then the volume containing the multilayer structure is evacuated as in the single-layer case. The multilayer concept makes it possible to reduce effective thermal conductivity of a panel below that of a comparable single-layer panel, without adding weight or incurring other performance penalties. Implementation of the multilayer concept is simple and relatively inexpensive, involving only a few additional fabrication steps to assemble the multiple layers prior to evacuation. For a panel of the blanket type, the multilayer concept, affords the additional advantage of reduced stiffness.

  1. Developing an Onboard Traffic-Aware Flight Optimization Capability for Near-Term Low-Cost Implementation

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Ballin, Mark G.; Koczo, Stefan, Jr.; Vivona, Robert A.; Henderson, Jeffrey M.

    2013-01-01

    The concept of Traffic Aware Strategic Aircrew Requests (TASAR) combines Automatic Dependent Surveillance Broadcast (ADS-B) IN and airborne automation to enable user-optimal in-flight trajectory replanning and to increase the likelihood of Air Traffic Control (ATC) approval for the resulting trajectory change request. TASAR is designed as a near-term application to improve flight efficiency or other user-desired attributes of the flight while not impacting and potentially benefiting ATC. Previous work has indicated the potential for significant benefits for each TASAR-equipped aircraft. This paper will discuss the approach to minimizing TASAR's cost for implementation and accelerating readiness for near-term implementation.

  2. OPUS One: An Intelligent Adaptive Learning Environment Using Artificial Intelligence Support

    NASA Astrophysics Data System (ADS)

    Pedrazzoli, Attilio

    2010-06-01

    AI based Tutoring and Learning Path Adaptation are well known concepts in e-Learning scenarios today and increasingly applied in modern learning environments. In order to gain more flexibility and to enhance existing e-learning platforms, the OPUS One LMS Extension package will enable a generic Intelligent Tutored Adaptive Learning Environment, based on a holistic Multidimensional Instructional Design Model (PENTHA ID Model), allowing AI based tutoring and adaptation functionality to existing Web-based e-learning systems. Relying on "real time" adapted profiles, it allows content- / course authors to apply a dynamic course design, supporting tutored, collaborative sessions and activities, as suggested by modern pedagogy. The concept presented combines a personalized level of surveillance, learning activity- and learning path adaptation suggestions to ensure the students learning motivation and learning success. The OPUS One concept allows to implement an advanced tutoring approach combining "expert based" e-tutoring with the more "personal" human tutoring function. It supplies the "Human Tutor" with precise, extended course activity data and "adaptation" suggestions based on predefined subject matter rules. The concept architecture is modular allowing a personalized platform configuration.

  3. Continuous/Batch Mg/MgH2/H2O-Based Hydrogen Generator

    NASA Technical Reports Server (NTRS)

    Kindler, Andrew; Huang, Yuhong

    2010-01-01

    A proposed apparatus for generating hydrogen by means of chemical reactions of magnesium and magnesium hydride with steam would exploit the same basic principles as those discussed in the immediately preceding article, but would be designed to implement a hybrid continuous/batch mode of operation. The design concept would simplify the problem of optimizing thermal management and would help to minimize the size and weight necessary for generating a given amount of hydrogen.

  4. Building patient-centeredness: hospital design as an interpretive act.

    PubMed

    Bromley, Elizabeth

    2012-09-01

    Hospital designs reflect the sociocultural, economic, professional, and aesthetic priorities prevalent at a given time. As such, hospital buildings concretize assumptions about illness, care and healing, patienthood, and medical providers' roles. Trends in hospital design have been attributed to the increasing influence of consumerism on healthcare, the influx of business-oriented managers, and technological changes. This paper describes the impact of the concept of patient-centeredness on the design of a new hospital in the USA. Data come from 35 interviews with planners, administrators, and designers of the new hospital, as well as from public documents about the hospital design. Thematic content analysis was used to identify salient design principles and intents. For these designers, administrators, and planners, an interpretation of patient-centeredness served as a heuristic, guiding the most basic decisions about space, people, and processes in the hospital. I detail the particular interpretation of patient-centeredness used to build and manage the new hospital space and the roles and responsibilities of providers working within it. Three strategies were central to the implementation of patient-centeredness: an onstage/offstage layout; a concierge approach to patients; and the scripting of communication. I discuss that this interpretation of patient-centeredness may challenge medical professionals' roles, may construct medical care as a product that should sate the patient's desire, and may distance patients from the realities of medical care. By describing the ways in which hospital designs reflect and reinforce contemporary concepts of patienthood and caring, this paper raises questions about the implementation of patient-centeredness that deserve further empirical study by medical social scientists. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. The influence of project-based learning on the student conception about kinematics and critical thinking skills

    NASA Astrophysics Data System (ADS)

    Handhika, J.; Cari, C.; Sunarno, W.; Suparmi, A.; Kurniadi, E.

    2018-05-01

    This research revealed the influence of project-based learning (PjBL) to increasing the level of the conception. The research method used the pre-experimental design with one group pre-test post-test. PjBL applied to students of physics education program of IKIP PGRI Madiun (23 Students). The test used to determine the level of conception is multiple choice tests and index of certainty. Activities on PjBL described. Obtained that the PjBL model can increase the level of conception and Critical thinking skills with the average normalized gain 0.49 and 0.57 (Medium category). It can be concluded that the PjBL could improve the level of conception and critical thinking ability of the students. Implementation of each model phase following learning objectives and needs analysis is the key to improve both.

  6. Duct wall impedance control as an advanced concept for acoustic suppression enhancement. [engine noise reduction

    NASA Technical Reports Server (NTRS)

    Dean, P. D.

    1978-01-01

    A systems concept procedure is described for the optimization of acoustic duct liner design for both uniform and multisegment types. The concept was implemented by the use of a double reverberant chamber flow duct facility coupled with sophisticated computer control and acoustic analysis systems. The optimization procedure for liner insertion loss was based on the concept of variable liner impedance produced by bias air flow through a multilayer, resonant cavity liner. A multiple microphone technique for in situ wall impedance measurements was used and successfully adapted to produce automated measurements for all liner configurations tested. The complete validation of the systems concept was prevented by the inability to optimize the insertion loss using bias flow induced wall impedance changes. This inability appeared to be a direct function of the presence of a higher order energy carrying modes which were not influenced significantly by the wall impedance changes.

  7. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases. Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission. Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an advanced design methods (ADM) based approach. This approach applies the concepts of design of experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development effort. In order to fit a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful application of an ADM approach to an ACO design study. Following the overview of the tool set automation, an example problem will be given to illustrate the implementation of the ADM approach. The example problem will first cover the inclusion of ground rules and assumptions (GR&A) for a study. The GR&A are very important to the study as they determine the constraints within which a trade study can be conducted. These trades must ultimately reconcile with the customer's desired output and any anticipated "what if" questions. The example problem will then illustrate the setup and execution of a DOE through the automated ACO tools. This process is accomplished more efficiently in this work by splitting the tools into two separate environments. The first environment encompasses the structural optimization and mass estimation tools, while the second is focused on trajectory optimization. Surrogate models are fit to the outputs of each environment and are "integrated" via connection of the surrogate equations. Throughout this process, checks are implemented to compare the output of the surrogates to the output of manually run cases to ensure that the error of the final surrogates is at an acceptable level. The conclusion of the example problem demonstrates the utility of the ADM based approach. Using surrogate models gives the ACO team the ability to visualize vehicle sensitivities to various design parameters and identify regions of interest within the design space. The ADM approach can thus be used to inform concept down selection and isolate promising vehicle configurations to be explored in more detail through the manual design process. In addition it provides the customer with an almost instantaneous turnaround on any ''what if" questions that may arise within the bounds of the surrogate model. This approach ultimately expands the ability of the ACO team to provide its customer with broad and rapid turnaround trade studies for launch vehicle conceptual design. The ability to identify a selection of designs which can meet the customer requirements will help ensure lower LCC of launch vehicle designs originating from ACO.

  8. Application of Design of Experiments and Surrogate Modeling within the NASA Advanced Concepts Office, Earth-to-Orbit Design Process

    NASA Technical Reports Server (NTRS)

    Zwack, Mathew R.; Dees, Patrick D.; Holt, James B.

    2016-01-01

    Decisions made during early conceptual design have a large impact upon the expected life-cycle cost (LCC) of a new program. It is widely accepted that up to 80% of such cost is committed during these early design phases.1 Therefore, to help minimize LCC, decisions made during conceptual design must be based upon as much information as possible. To aid in the decision making for new launch vehicle programs, the Advanced Concepts Office (ACO) at NASA Marshall Space Flight Center (MSFC) provides rapid turnaround pre-phase A and phase A concept definition studies. The ACO team utilizes a proven set of tools to provide customers with a full vehicle mass breakdown to tertiary subsystems, preliminary structural sizing based upon worst-case flight loads, and trajectory optimization to quantify integrated vehicle performance for a given mission.2 Although the team provides rapid turnaround for single vehicle concepts, the scope of the trade space can be limited due to analyst availability and the manpower requirements for manual execution of the analysis tools. In order to enable exploration of a broader design space, the ACO team has implemented an Advanced Design Methods (ADM) based approach. This approach applies the concepts of Design of Experiments (DOE) and surrogate modeling to more exhaustively explore the trade space and provide the customer with additional design information to inform decision making. This paper will first discuss the automation of the ACO tool set, which represents a majority of the development e ort. In order to t a surrogate model within tolerable error bounds a number of DOE cases are needed. This number will scale with the number of variable parameters desired and the complexity of the system's response to those variables. For all but the smallest design spaces, the number of cases required cannot be produced within an acceptable timeframe using a manual process. Therefore, automation of the tools was a key enabler for the successful application of an ADM approach to an ACO design study. Following the overview of the tool set automation, an example problem will be given to illustrate the implementation of the ADM approach. The example problem will first cover the inclusion of Ground Rules and Assumptions (GR&A) for a study. The GR&A are very important to the study as they determine the constraints within which a trade study can be conducted. These trades must ultimately reconcile with the customer's desired output and any anticipated \\what if" questions. The example problem will then illustrate the setup and execution of a DOE through the automated ACO tools. This process is accomplished more efficiently in this work by splitting the tools into two separate environments. The first environment encompasses the structural optimization and mass estimation tools, while the second is focused on trajectory optimization. Surrogate models are t to the outputs of each environment and are integrated via connection of the surrogate equations. Throughout this process, checks are implemented to compare the output of the surrogates to the output of manually run cases to ensure that the error of the final surrogates is at an acceptable level. The conclusion of the example problem demonstrates the utility of the ADM based approach. Using surrogate models gives the ACO team the ability to visualize vehicle sensitivities to various design parameters and identify regions of interest within the design space. The ADM approach can thus be used to inform concept down selection and isolate promising vehicle configurations to be explored in more detail through the manual design process. In addition it provides the customer with an almost instantaneous turnaround on any \\what if" questions that may arise within the bounds of the surrogate model. This approach ultimately expands the ability of the ACO team to provide its customer with broad and rapid turnaround trade studies for launch vehicle conceptual design. The ability to identify a selection of designs which can meet the customer requirements will have the potential to lower LCC of launch vehicle designs originating from ACO.

  9. De-implementation: A concept analysis.

    PubMed

    Upvall, Michele J; Bourgault, Annette M

    2018-04-25

    The purpose of this concept analysis is to explore the meaning of de-implementation and provide a definition that can be used by researchers and clinicians to facilitate evidence-based practice. De-implementation is a relatively unknown process overshadowed by the novelty of introducing new ideas and techniques into practice. Few studies have addressed the challenge of de-implementation and the cognitive processes involved when terminating harmful or unnecessary practices. Also, confusion exists regarding the myriad of terms used to describe de-implementation processes. Walker and Avant's method (2011) for describing concepts was used to clarify de-implementation. A database search limited to academic journals yielded 281 publications representing basic research, study protocols, and editorials/commentaries from implementation science experts. After applying exclusion criterion of English language only and eliminating overlap between databases, 41 articles were selected for review. Literature review and synthesis provided a concept analysis and a distinct definition of de-implementation. De-implementation was defined as the process of identifying and removing harmful, non-cost-effective, or ineffective practices based on tradition and without adequate scientific support. The analysis provided further refinement of de-implementation as a significant concept for ongoing theory development in implementation science and clinical practice. © 2018 Wiley Periodicals, Inc.

  10. Laser Atmospheric Wind Sounder (LAWS) phase 1. Volume 2

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This report summarizes and documents the results of the 12-month phase 1 work effort. The objective of phase 1 was to establish the conceptional definition of the laser atmospheric wind sounder (LAWS) sensor system, including accommodations analyses to ensure compatibility with the Space Station Freedom (SSF) and the Earth Observing System (EOS) Polar Orbiting Platform (POP). Various concepts were investigated with trade studies performed to select the configuration to be carried forward to the phase 2 Preliminary Design Definition. A summary of the LAWS system and subsystem trade studies that were performed leading to the baseline design configuration is presented in the appendix. The overall objective of the LAWS Project is to define, design, and implement an operational space based facility, LAWS, for accurate measurement of Earth wind profiles. Phase 1 addressed three major areas: (1) requirements definition; (2) instrument concepts and configurations; and (3) performance analysis. For the LAWS instrument concepts and configurations, the issues which press the technological state of the art are reliable detector lifetime and laser performance and lifetime. Lag angle compensation, pointing accuracy, satellite navigation, and telescope design are significant technical issues, but they are considered to be currently state of the art. The primary issues for performance analysis concern interaction with the atmosphere in terms of backscatter and attenuation, wind variance, and cloud blockage. The phase 1 tasks were formulated to address these significant technical issues and demonstrate the technical feasibility of the LAWS concept. Primary emphasis was placed on analysis/trade and identification of candidate concepts. Promising configurations were evaluated for performance, sensitivities, risks, and budgetary costs. Lockheed's baseline LAWS configuration is presented.

  11. A computer simulator for development of engineering system design methodologies

    NASA Technical Reports Server (NTRS)

    Padula, S. L.; Sobieszczanski-Sobieski, J.

    1987-01-01

    A computer program designed to simulate and improve engineering system design methodology is described. The simulator mimics the qualitative behavior and data couplings occurring among the subsystems of a complex engineering system. It eliminates the engineering analyses in the subsystems by replacing them with judiciously chosen analytical functions. With the cost of analysis eliminated, the simulator is used for experimentation with a large variety of candidate algorithms for multilevel design optimization to choose the best ones for the actual application. Thus, the simulator serves as a development tool for multilevel design optimization strategy. The simulator concept, implementation, and status are described and illustrated with examples.

  12. A Protocol for Evaluating Contextual Design Principles

    PubMed Central

    Stamps, Arthur

    2014-01-01

    This paper explains how scientific data can be incorporated into urban design decisions, such as evaluating contextual design principles. The recommended protocols are based on the Cochrane Reviews that have been widely used in medical research. The major concepts of a Cochrane Review are explained, as well as the underlying mathematics. The underlying math is meta-analysis. Data are reported for three applications and seven contextual design policies. It is suggested that use of the Cochrane protocols will be of great assistance to planners by providing scientific data that can be used to evaluate the efficacies of contextual design policies prior to implementing those policies. PMID:25431448

  13. PLASMA-field barrier sentry (PFBS)

    NASA Astrophysics Data System (ADS)

    Gonzaga, Ernesto A.; Cossette, Harold James

    2013-06-01

    This paper describes the concept and method in designing and developing a unique security system apparatus that will counter unauthorized personnel: to deny access to or occupy an area or facility, to control or direct crowd or large groups, and to incapacitate individuals or small groups until they can be secured by military or law enforcement personnel. The system exploits Tesla coil technology. Application of basic engineering circuit analysis and principle is demonstrated. Transformation from classical spark gap method to modern solid state design was presented. The analysis shows how the optimum design can be implemented to maximize performance of the apparatus. Discussion of the hazardous effects of electrical elements to human physiological conditions was covered. This serves to define guidelines in implementing safety limits and precautions on the performance of the system. The project is strictly adhering towards non-lethal technologies and systems.

  14. Design feasibility study of a divertor component reinforced with fibrous metal matrix composite laminate

    NASA Astrophysics Data System (ADS)

    You, Jeong-Ha

    2005-01-01

    Fibrous metal matrix composites possess advanced mechanical properties compared to conventional alloys. It is expected that the application of these composites to a divertor component will enhance the structural reliability. A possible design concept would be a system consisting of tungsten armour, copper composite interlayer and copper heat sink where the composite interlayer is locally inserted into the highly stressed domain near the bond interface. For assessment of the design feasibility of the composite divertor concept, a non-linear multi-scale finite element analysis was performed. To this end, a micro-mechanics algorithm was implemented into a finite element code. A reactor-relevant heat flux load was assumed. Focus was placed on the evolution of stress state, plastic deformation and ductile damage on both macro- and microscopic scales. The structural response of the component and the micro-scale stress evolution of the composite laminate were investigated.

  15. Design of a cooperative problem-solving system for enroute flight planning: An empirical study of its use by airline dispatchers

    NASA Technical Reports Server (NTRS)

    Smith, Philip J.; Mccoy, C. Elaine; Layton, Charles; Orasanu, Judith; Chappel, Sherry; Palmer, EV; Corker, Kevin

    1993-01-01

    In a previous report, an empirical study of 30 pilots using the Flight Planning Testbed was reported. An identical experiment using the Flight Planning Testbed (FPT), except that 27 airline dispatchers were studied, is described. Five general questions were addressed in this study: (1) under what circumstances do the introduction of computer-generated suggestions (flight plans) influence the planning behavior of dispatchers (either in a beneficial or adverse manner); (2) what is the nature of such influences (i.e., how are the person's cognitive processes changed); (3) how beneficial are the general design concepts underlying FPT (use of a graphical interface, embedding graphics in a spreadsheet, etc.); (4) how effective are the specific implementation decisions made in realizing these general design concepts; and (5) how effectively do dispatchers evaluate situations requiring replanning, and how effectively do they identify appropriate solutions to these situations.

  16. Implementation of real-time digital signal processing systems

    NASA Technical Reports Server (NTRS)

    Narasimha, M.; Peterson, A.; Narayan, S.

    1978-01-01

    Special purpose hardware implementation of DFT Computers and digital filters is considered in the light of newly introduced algorithms and IC devices. Recent work by Winograd on high-speed convolution techniques for computing short length DFT's, has motivated the development of more efficient algorithms, compared to the FFT, for evaluating the transform of longer sequences. Among these, prime factor algorithms appear suitable for special purpose hardware implementations. Architectural considerations in designing DFT computers based on these algorithms are discussed. With the availability of monolithic multiplier-accumulators, a direct implementation of IIR and FIR filters, using random access memories in place of shift registers, appears attractive. The memory addressing scheme involved in such implementations is discussed. A simple counter set-up to address the data memory in the realization of FIR filters is also described. The combination of a set of simple filters (weighting network) and a DFT computer is shown to realize a bank of uniform bandpass filters. The usefulness of this concept in arriving at a modular design for a million channel spectrum analyzer, based on microprocessors, is discussed.

  17. A Collective Study on Modeling and Simulation of Resistive Random Access Memory

    NASA Astrophysics Data System (ADS)

    Panda, Debashis; Sahu, Paritosh Piyush; Tseng, Tseung Yuen

    2018-01-01

    In this work, we provide a comprehensive discussion on the various models proposed for the design and description of resistive random access memory (RRAM), being a nascent technology is heavily reliant on accurate models to develop efficient working designs and standardize its implementation across devices. This review provides detailed information regarding the various physical methodologies considered for developing models for RRAM devices. It covers all the important models reported till now and elucidates their features and limitations. Various additional effects and anomalies arising from memristive system have been addressed, and the solutions provided by the models to these problems have been shown as well. All the fundamental concepts of RRAM model development such as device operation, switching dynamics, and current-voltage relationships are covered in detail in this work. Popular models proposed by Chua, HP Labs, Yakopcic, TEAM, Stanford/ASU, Ielmini, Berco-Tseng, and many others have been compared and analyzed extensively on various parameters. The working and implementations of the window functions like Joglekar, Biolek, Prodromakis, etc. has been presented and compared as well. New well-defined modeling concepts have been discussed which increase the applicability and accuracy of the models. The use of these concepts brings forth several improvements in the existing models, which have been enumerated in this work. Following the template presented, highly accurate models would be developed which will vastly help future model developers and the modeling community.

  18. Sparse matrix-vector multiplication on network-on-chip

    NASA Astrophysics Data System (ADS)

    Sun, C.-C.; Götze, J.; Jheng, H.-Y.; Ruan, S.-J.

    2010-12-01

    In this paper, we present an idea for performing matrix-vector multiplication by using Network-on-Chip (NoC) architecture. In traditional IC design on-chip communications have been designed with dedicated point-to-point interconnections. Therefore, regular local data transfer is the major concept of many parallel implementations. However, when dealing with the parallel implementation of sparse matrix-vector multiplication (SMVM), which is the main step of all iterative algorithms for solving systems of linear equation, the required data transfers depend on the sparsity structure of the matrix and can be extremely irregular. Using the NoC architecture makes it possible to deal with arbitrary structure of the data transfers; i.e. with the irregular structure of the sparse matrices. So far, we have already implemented the proposed SMVM-NoC architecture with the size 4×4 and 5×5 in IEEE 754 single float point precision using FPGA.

  19. Multipurpose Crew Restraints for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; Baggerman, Susan; Ortiz, M. R.; Hua, L.; Sinnott, P.; Webb, L.

    2004-01-01

    With permanent human presence onboard the International Space Station (ISS), a crew will be living and working in microgravity, interfacing with their physical environment. Without optimum restraints and mobility aids (R&MA' s), the crewmembers may be handicapped for perfonning some of the on-orbit tasks. In addition to weightlessness, the confined nature of a spacecraft environment results in ergonomic challenges such as limited visibility and access to the activity area and may cause prolonged periods of unnatural postures. Thus, determining the right set of human factors requirements and providing an ergonomically designed environment are crucial to astronauts' well-being and productivity. The purpose of this project is to develop requirements and guidelines, and conceptual designs, for an ergonomically designed multi-purpose crew restraint. In order to achieve this goal, the project would involve development of functional and human factors requirements, design concept prototype development, analytical and computer modeling evaluations of concepts, two sets of micro gravity evaluations and preparation of an implementation plan. It is anticipated that developing functional and design requirements for a multi-purpose restraint would facilitate development of ergonomically designed restraints to accommodate the off-nominal but repetitive tasks, and minimize the performance degradation due to lack of optimum setup for onboard task performance. In addition, development of an ergonomically designed restraint concept prototype would allow verification and validation of the requirements defined. To date, we have identified "unique" tasks and areas of need, determine characteristics of "ideal" restraints, and solicit ideas for restraint and mobility aid concepts. Focus group meetings with representatives from training, safety, crew, human factors, engineering, payload developers, and analog environment representatives were key to assist in the development of a restraint concept based on previous flight experiences, the needs of future tasks, and crewmembers' preferences. Also, a catalog with existing IVA/EVA restraint and mobility aids has been developed. Other efforts included the ISS crew debrief data on restraints, compilation of data from MIR, Skylab and ISS on restraints, and investigating possibility of an in-flight evaluation of current restraint systems. Preliminary restraint concepts were developed and presented to long duration crewmembers and focus groups for feedback. Currently, a selection criterion is being refined for prioritizing the candidate concepts. Next steps include analytical and computer modeling evaluations of the selected candidate concepts, prototype development, and microgravity evaluations.

  20. Design of Helical Capacitance Sensor for Holdup Measurement in Two-Phase Stratified Flow: A Sinusoidal Function Approach

    PubMed Central

    Lim, Lam Ghai; Pao, William K. S.; Hamid, Nor Hisham; Tang, Tong Boon

    2016-01-01

    A 360° twisted helical capacitance sensor was developed for holdup measurement in horizontal two-phase stratified flow. Instead of suppressing nonlinear response, the sensor was optimized in such a way that a ‘sine-like’ function was displayed on top of the linear function. This concept of design had been implemented and verified in both software and hardware. A good agreement was achieved between the finite element model of proposed design and the approximation model (pure sinusoidal function), with a maximum difference of ±1.2%. In addition, the design parameters of the sensor were analysed and investigated. It was found that the error in symmetry of the sinusoidal function could be minimized by adjusting the pitch of helix. The experiments of air-water and oil-water stratified flows were carried out and validated the sinusoidal relationship with a maximum difference of ±1.2% and ±1.3% for the range of water holdup from 0.15 to 0.85. The proposed design concept therefore may pose a promising alternative for the optimization of capacitance sensor design. PMID:27384567

  1. Control/structure interaction design methodology

    NASA Technical Reports Server (NTRS)

    Briggs, Hugh C.; Layman, William E.

    1989-01-01

    The Control Structure Interaction Program is a technology development program for spacecraft that exhibit interactions between the control system and structural dynamics. The program objectives include development and verification of new design concepts (such as active structure) and new tools (such as a combined structure and control optimization algorithm) and their verification in ground and possibly flight test. The new CSI design methodology is centered around interdisciplinary engineers using new tools that closely integrate structures and controls. Verification is an important CSI theme and analysts will be closely integrated to the CSI Test Bed laboratory. Components, concepts, tools and algorithms will be developed and tested in the lab and in future Shuttle-based flight experiments. The design methodology is summarized in block diagrams depicting the evolution of a spacecraft design and descriptions of analytical capabilities used in the process. The multiyear JPL CSI implementation plan is described along with the essentials of several new tools. A distributed network of computation servers and workstations was designed that will provide a state-of-the-art development base for the CSI technologies.

  2. Habitat Design Considerations for Implementing Solar Particle Event Radiation Protection

    NASA Technical Reports Server (NTRS)

    Simon, Mathew A.; Clowdsley, Martha S.; Walker, Steven A.

    2013-01-01

    Radiation protection is an important habitat design consideration for human exploration missions beyond Low Earth Orbit. Fortunately, radiation shelter concepts can effectively reduce astronaut exposure for the relatively low proton energies of solar particle events, enabling moderate duration missions of several months before astronaut exposure (galactic cosmic ray and solar particle event) approaches radiation exposure limits. In order to minimize habitat mass for increasingly challenging missions, design of radiation shelters must minimize dedicated, single-purpose shielding mass by leveraging the design and placement of habitat subsystems, accommodations, and consumables. NASA's Advanced Exploration Systems RadWorks Storm Shelter Team has recently designed and performed radiation analysis on several low dedicated mass shelter concepts for a year-long mission. This paper describes habitat design considerations identified during the study's radiation analysis. These considerations include placement of the shelter within a habitat for improved protection, integration of human factors guidance for sizing shelters, identification of potential opportunities for habitat subsystems to compromise on individual subsystem performances for overall vehicle mass reductions, and pre-configuration of shelter components for reduced deployment times.

  3. The importance of organizational climate and implementation strategy at the introduction of a new working tool in primary health care.

    PubMed

    Carlfjord, S; Andersson, A; Nilsen, P; Bendtsen, P; Lindberg, M

    2010-12-01

    The transmission of research findings into routine care is a slow and unpredictable process. Important factors predicting receptivity for innovations within organizations have been identified, but there is a need for further research in this area. The aim of this study was to describe contextual factors and evaluate if organizational climate and implementation strategy influenced outcome, when a computer-based concept for lifestyle intervention was introduced in primary health care (PHC). The study was conducted using a prospective intervention design. The computer-based concept was implemented at six PHC units. Contextual factors in terms of size, leadership, organizational climate and political environment at the units included in the study were assessed before implementation. Organizational climate was measured using the Creative Climate Questionnaire (CCQ). Two different implementation strategies were used: one explicit strategy, based on Rogers' theories about the innovation-decision process, and one implicit strategy. After 6 months, implementation outcome in terms of the proportion of patients who had been referred to the test, was measured. The CCQ questionnaire response rates among staff ranged from 67% to 91% at the six units. Organizational climate differed substantially between the units. Managers scored higher on CCQ than staff at the same unit. A combination of high CCQ scores and explicit implementation strategy was associated with a positive implementation outcome. Organizational climate varies substantially between different PHC units. High CCQ scores in combination with an explicit implementation strategy predict a positive implementation outcome when a new working tool is introduced in PHC. © 2010 Blackwell Publishing Ltd.

  4. Broad perspectives in radar for ocean measurements

    NASA Technical Reports Server (NTRS)

    Jain, A.

    1978-01-01

    The various active radar implementation options available for the measurement functions of interest for the SEASAT follow-on missions were evaluated. These functions include surface feature imaging, surface pressure and vertical profile, atmospheric sounding, surface backscatter and wind speed determination, surface current location, wavelength spectra, sea surface topography, and ice/snow thickness. Some concepts for the Synthetic Aperture Imaging Radar were examined that may be useful in the design and selection of the implementation options for these missions. The applicability of these instruments for the VOIR mission was also kept under consideration.

  5. A high gain antenna system for airborne satellite communication applications

    NASA Technical Reports Server (NTRS)

    Maritan, M.; Borgford, M.

    1990-01-01

    A high gain antenna for commercial aviation satellites communication is discussed. Electromagnetic and practical design considerations as well as candidate systems implementation are presented. An evaluation of these implementation schemes is given, resulting in the selection of a simple top mounted aerodynamic phased array antenna with a remotely located beam steering unit. This concept has been developed into a popular product known as the Canadian Marconi Company CMA-2100. A description of the technical details is followed by a summary of results from the first production antennas.

  6. Implementation of RF Circuitry for Real-Time Digital Beam-Forming SAR Calibration Schemes

    NASA Technical Reports Server (NTRS)

    Horst, Stephen J.; Hoffman, James P.; Perkovic-Martin, Dragana; Shaffer, Scott; Thrivikraman, Tushar; Yates, Phil; Veilleux, Louise

    2012-01-01

    The SweepSAR architecture for space-borne remote sensing applications is an enabling technology for reducing the temporal baseline of repeat-pass interferometers while maintaining near-global coverage. As part of this architecture, real-time digital beam-forming would be performed on the radar return signals across multiple channels. Preserving the accuracy of the combined return data requires real-time calibration of the transmit and receive RF paths on each channel. This paper covers several of the design considerations necessary to produce a practical implementation of this concept.

  7. NASA's Radioisotope Power Systems - Plans

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Mccallum, Peter W.; Sandifer, Carl E., II; Sutliff, Thomas J.; Zakrajsek, June F.

    2015-01-01

    NASA's Radioisotope Power Systems (RPS) Program continues to plan and implement content to enable planetary exploration where such systems could be needed, and to prepare more advanced RPS technology for possible infusion into future power systems. The 2014-2015 period saw significant changes, and strong progress. Achievements of near-term objectives have enabled definition of a clear path forward in which payoffs from research investments and other sustaining efforts can be applied. The future implementation path is expected to yield a higher-performing thermoelectric generator design, a more isotope-fuel efficient system concept design, and a robust RPS infrastructure maintained effectively within both NASA and the Department of Energy. This paper describes recent work with an eye towards the future plans that result from these achievements.

  8. Comparing Types of Student Placement and the Effect on Achievement for Students with Disabilities

    ERIC Educational Resources Information Center

    Mason, Patricia Lynn

    2013-01-01

    Since implementing No Child Left Behind, schools have improved student achievement while also preparing students for the 21st century. Schools continue to strive for 100% proficiency in all subgroups by 2014, but achievement gap exists for students with disabilities. This study used a causal comparative research design to test the concept of…

  9. Enhancing Children's Growth and Development. Training Guides for the Head Start Learning Community.

    ERIC Educational Resources Information Center

    Aspen Systems Corp., Rockville, MD.

    This training guide is designed to enhance the skills of Head Start education staff in applying knowledge of how children grow and develop to planning, implementing, and evaluating activities and experiences in the center, at home, and during group socialization sessions. Each of the guide's modules details module outcomes, key concepts, and…

  10. Effects of an Informal Energy Exhibit on Knowledge and Attitudes of Fourth- and Fifth-Grade Students

    ERIC Educational Resources Information Center

    Goodman, David Wayne

    2009-01-01

    This dissertation addresses the growing need for renewable energy education by looking at the design, development, and implementation of an informal energy education exhibit that was developed for placement into a regional science museum, school, and community center. This study examined several research questions related to the concept that an…

  11. Greening a Chemistry Teaching Methods Course at the School of Educational Studies, Universiti Sains Malaysia

    ERIC Educational Resources Information Center

    Karpudewan, Mageswary; Hj Ismail, Zurida; Mohamed, Norita

    2011-01-01

    Green chemistry is the design, development and implementation of chemical products and processes to reduce or eliminate the use of sub-stances hazardous to human health and the environment. This article reports on the integration of green chemistry and sustainable development concepts (SDCs) into an existing teaching methods course for chemistry…

  12. Learning Science through Creating a "Slowmation": A Case Study of Preservice Primary Teachers

    ERIC Educational Resources Information Center

    Hoban, Garry; Nielsen, Wendy

    2013-01-01

    Many preservice primary teachers have inadequate science knowledge, which often limits their confidence in implementing the subject. This paper proposes a new way for preservice teachers to learn science by designing and making a narrated stop-motion animation as an instructional resource to explain a science concept. In this paper, a simplified…

  13. Green is for growing: the Girl Scout experience with environmental programs

    Treesearch

    Mary A. Rhomberg

    1977-01-01

    With neighborhood organization, program flexibility, and child participation in the planning and implementation of activities, the Girl Scout program is designed to be highly responsive to the varying needs of individual groups of girls. There is no fixed agenda or focus on a single aspect of environmental education. Instead, the Girl Scout concept of total environment...

  14. Word on the Street: Investigating Linguistic Landscapes with Urban Canadian Youth

    ERIC Educational Resources Information Center

    Burwell, Catherine; Lenters, Kimberly

    2015-01-01

    This article reports on a case study inspired by the concept of "linguistic landscapes." We collaborated with a group of Humanities teachers to design and implement the "Word on the Street" project, in which Grade 10 students took on the role of researchers to explore the linguistic, visual and spatial texts of their…

  15. Career Exploration and Specialization: A New Training Design for Adult and Youth Work Experience. Concept Paper [and Synopsis].

    ERIC Educational Resources Information Center

    Spann, Jerry

    To address the Comprehensive Employment and Training Act (CETA) client's need for career development experience and skills, the Affirmative Action Office of Dane County (Wisconsin) and the Adult Work Experience Program (AWEP) staff plan to implement a year-long training program aimed at job exploration, internship, and personalized decision…

  16. Intelligent Tutorial System Based on Personalized System of Instruction to Teach or Remind Mathematical Concepts

    ERIC Educational Resources Information Center

    Paiva, R. C.; Ferreira, M. S.; Frade, M. M.

    2017-01-01

    The growth of the higher education population and different school paths to access an academic degree has increased the heterogeneity of students inside the classroom. Consequently, the effectiveness of traditional teaching methods has reduced. This paper describes the design, development, implementation and evaluation of a tutoring system (TS) to…

  17. Institute for Defense Analysis. Annual Report 1994

    DTIC Science & Technology

    1994-01-01

    activities with engineering and rines in submarine-unique roles. However, we manufacturing development into a single identified a number of other...development efforts. In addition, and mine-laying capabilities, with roughly 25 the panel proposed increasing both the number nations manufacturing ...the engineering concepts and design, and for implementing Synthetic Aperture Radar flexible manufacturing procedures for focal Reconnaissance

  18. Improving Music Skills of Elementary Students with Notation-Reading and Sight-Singing.

    ERIC Educational Resources Information Center

    Harding, Mary H.

    A music educator designed for elementary school students who were musically unskilled a curriculum that was based on the methods of Kodaly and Orff, the philosophy of Warrener, and traditional music education concepts. A heterogeneous group of 606 second- through sixth-grade students in 4 schools participated in implementation of the curriculum.…

  19. Handbook of Information Relevant to Manpower Agencies: A Compilation of Practice Principles and Strategies for Manpower Operations.

    ERIC Educational Resources Information Center

    Erfurt, John C.; And Others

    Concepts of internal agency structure and operations, agency-company relations, and agency-enrollee relations, with recommendations for their implementation, form the three main sections of this handbook developed for manpower agency administrators, supervisory staffs and program planners. It is designed to aid those who organize and develop…

  20. An Operations Management System for the Space Station

    NASA Astrophysics Data System (ADS)

    Rosenthal, H. G.

    1986-09-01

    This paper presents an overview of the conceptual design of an integrated onboard Operations Management System (OMS). Both hardware and software concepts are presented and the integrated space station network is discussed. It is shown that using currently available software technology, an integrated software solution for Space Station management and control, implemented with OMS software, is feasible.

  1. Evolutionary Maps: A New Model for the Analysis of Conceptual Development, with Application to the Diurnal Cycle

    ERIC Educational Resources Information Center

    Navarro, Manuel

    2014-01-01

    This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology ("evolutionary maps" or "emaps"), whose implementation on certain domains unfolds the web of itineraries that children may follow in the…

  2. Knowledge Utilization Strategies in the Design and Implementation of New Schools--Symbolic Functions.

    ERIC Educational Resources Information Center

    Sieber, Sam D.

    An examination of case studies suggests that rational processes were not entirely at work in the planning and conception of new, innovative schools. The rational model that serves as the foundation of our information systems assumes that a compelling professional need triggers a search for solutions; and, therefore, school personnel are eager to…

  3. Defense Acquisition Structures and Capabilities Review

    DTIC Science & Technology

    2007-06-01

    systems to joint portfolio management Refinement of a human capital strategy Improvement of governance of the business transformation effort...Management, Senior- Level Tri-Chaired investment panel for the new Concept Decision process for major programs, and Defense Acquisition Executive Summary...establishment of centers of excellence. DLA reorganized to implement the Business Systems Modernization (BSM) initiative designed to improve end-to-end

  4. Middle School Science Curriculum Design and 8th Grade Student Achievement in Massachusetts Public Schools

    ERIC Educational Resources Information Center

    Clifford, Betsey A.

    2016-01-01

    The Massachusetts Department of Elementary and Secondary Education (DESE) released proposed Science and Technology/Engineering standards in 2013 outlining the concepts that should be taught at each grade level. Previously, standards were in grade spans and each district determined the method of implementation. There are two different methods used…

  5. A Desktop Virtual Reality Earth Motion System in Astronomy Education

    ERIC Educational Resources Information Center

    Chen, Chih Hung; Yang, Jie Chi; Shen, Sarah; Jeng, Ming Chang

    2007-01-01

    In this study, a desktop virtual reality earth motion system (DVREMS) is designed and developed to be applied in the classroom. The system is implemented to assist elementary school students to clarify earth motion concepts using virtual reality principles. A study was conducted to observe the influences of the proposed system in learning.…

  6. Integrated STEM Curriculum: Improving Educational Outcomes for Head Start Children

    ERIC Educational Resources Information Center

    Aldemir, Jale; Kermani, Hengameh

    2017-01-01

    In this study, the researchers aimed to design, plan and implement a Science, Technology, Engineering and Math (STEM) model to support Pre-K children's skills and knowledge in STEM as well as to improve Pre-K teachers' attitudes and professional skills to plan and integrate STEM concepts in their daily classroom activities. Four classrooms from a…

  7. Working with Our Publics. In-Service Education for Cooperative Extension. Module 2. The Extension Education Process.

    ERIC Educational Resources Information Center

    Mustian, R. David; And Others

    This module is the second in an inservice education series for extension professionals that consists of seven independent training modules. It is an introduction to, and guided practice in, the premises, concepts, and processes of nonformal extension education--planning, designing and implementing, and evaluating and accounting for extension…

  8. Cultivating Presence in Movement: Student Reflections on the Practice of Feldenkrais "Awareness through Movement[R]" in Dance Training

    ERIC Educational Resources Information Center

    Diaz, Heidi; Chatfield, Steven J.; Cox, Jan

    2008-01-01

    The purpose of this study was to design, implement, and evaluate an experimental course investigating the effect of Feldenkrais "Awareness Through Movement (ATM)" on students' self-image and its transference to concept related dance phrases, motif based improvisations, outside training and performance, and their daily lives. As a dancer…

  9. Designing for Teaching and Learning in an Open World: Task Supported Open Architecture Language Instruction

    ERIC Educational Resources Information Center

    Derderian, Ani

    2017-01-01

    Concepts about tasks have been considered as the major part of analysis in different teaching approaches. Instructors are being more interested in the use of task-based instruction in foreign and second language teaching. Task-based instruction and teaching strategies are implemented by emphasizing meaning. The purpose of this paper is to…

  10. The project organization as a policy tool in implementing welfare reforms in the public sector.

    PubMed

    Jensen, Christian; Johansson, Staffan; Löfström, Mikael

    2013-01-01

    Organizational design is considered in policy literature as a forceful policy tool to put policy to action. However, previous research has not analyzed the project organization as a specific form of organizational design and, hence, has not given much attention to such organizations as a strategic choice when selecting policy tools. The purpose of the article is to investigate the project as a policy tool; how do such temporary organizations function as a specific form of organization when public policy is implemented? The article is based on a framework of policy implementation and is illustrated with two welfare reforms in the Swedish public sector, which were organized and implemented as project organizations. The case studies and the analysis show that it is crucial that a project organization fits into the overall governance structure when used as a policy tool. If not, the project will remain encapsulated and will not have sufficient impact on the permanent organizational structure. The concept of encapsulation indicates a need to protect the project from a potential hostile environment. The implication of this is that organizational design as a policy tool is a matter that deserves more attention in the strategic discussion on implementing public policies and on the suitability of using certain policy tools. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Improving Students' Revision of Physics Concepts through ICT-Based Co-construction and Prescriptive Tutoring

    NASA Astrophysics Data System (ADS)

    Soong, Benson; Mercer, Neil

    2011-05-01

    In this paper, we describe and discuss an information and communication technology (ICT)-based intervention designed to improve secondary school students' revision (in contrast to learning) of physics concepts. We show that students' engagement in joint activities via our ICT-based intervention can provide them (and their teachers) with insights into their knowledge base and thought processes, thereby aiding a remedial process we call prescriptive tutoring. Utilising a design-based research methodology, our intervention is currently being implemented and evaluated in a public secondary school in Singapore. Statistical analysis of pre- and post-intervention test scores from the first iteration of our design experiment show that students in the experimental group significantly out-performed students in both the control and alternate intervention groups. In addition, qualitative data obtained from the students from a focus group session, individual interviews and responses to our survey questions reveal that they became more comfortable with the intervention only after they appreciated how the intervention was designed to help them.

  12. Development of a Mobile User Interface for Image-based Dietary Assessment

    PubMed Central

    Kim, SungYe; Schap, TusaRebecca; Bosch, Marc; Maciejewski, Ross; Delp, Edward J.; Ebert, David S.; Boushey, Carol J.

    2011-01-01

    In this paper, we present a mobile user interface for image-based dietary assessment. The mobile user interface provides a front end to a client-server image recognition and portion estimation software. In the client-server configuration, the user interactively records a series of food images using a built-in camera on the mobile device. Images are sent from the mobile device to the server, and the calorie content of the meal is estimated. In this paper, we describe and discuss the design and development of our mobile user interface features. We discuss the design concepts, through initial ideas and implementations. For each concept, we discuss qualitative user feedback from participants using the mobile client application. We then discuss future designs, including work on design considerations for the mobile application to allow the user to interactively correct errors in the automatic processing while reducing the user burden associated with classical pen-and-paper dietary records. PMID:24455755

  13. Urban permeable pavement system design based on “sponge city” concept

    NASA Astrophysics Data System (ADS)

    Yu, M. M.; Zhu, J. W.; Gao, W. F.; Xu, D. P.; Zhao, M.

    2017-08-01

    Based on the “sponge city” concept, to implement the goal of building a city within the city to solve the sponge waterlogging, rational utilization of water resources, reduce water pollution this paper, combined with the city planning level in China, establishes the design system of city road flooding from the macro, medium and micro level, explore the design method of city water permeable pavement system, and has a practical significance the lower flood risk water ecological problems. On the macro level, we established an urban pavement sponge system under the regional ecological pattern by “spot permeable open space - low impact developing rain water road system - catchment area and catchment wetland”. On a medium level, this paper proposed the permeable suitability of pavement and the planning control indicators when combined with urban functional districts to conduct permeable pavement roads plans and controls. On micro level, the paper studied sponge technology design of permeable pavement from road structure, surface material, and other aspects aimed at the pavement permeability requirements.

  14. Implementing change in primary care practices using electronic medical records: a conceptual framework.

    PubMed

    Nemeth, Lynne S; Feifer, Chris; Stuart, Gail W; Ornstein, Steven M

    2008-01-16

    Implementing change in primary care is difficult, and little practical guidance is available to assist small primary care practices. Methods to structure care and develop new roles are often needed to implement an evidence-based practice that improves care. This study explored the process of change used to implement clinical guidelines for primary and secondary prevention of cardiovascular disease in primary care practices that used a common electronic medical record (EMR). Multiple conceptual frameworks informed the design of this study designed to explain the complex phenomena of implementing change in primary care practice. Qualitative methods were used to examine the processes of change that practice members used to implement the guidelines. Purposive sampling in eight primary care practices within the Practice Partner Research Network-Translating Researching into Practice (PPRNet-TRIP II) clinical trial yielded 28 staff members and clinicians who were interviewed regarding how change in practice occurred while implementing clinical guidelines for primary and secondary prevention of cardiovascular disease and strokes. A conceptual framework for implementing clinical guidelines into primary care practice was developed through this research. Seven concepts and their relationships were modelled within this framework: leaders setting a vision with clear goals for staff to embrace; involving the team to enable the goals and vision for the practice to be achieved; enhancing communication systems to reinforce goals for patient care; developing the team to enable the staff to contribute toward practice improvement; taking small steps, encouraging practices' tests of small changes in practice; assimilating the electronic medical record to maximize clinical effectiveness, enhancing practices' use of the electronic tool they have invested in for patient care improvement; and providing feedback within a culture of improvement, leading to an iterative cycle of goal setting by leaders. This conceptual framework provides a mental model which can serve as a guide for practice leaders implementing clinical guidelines in primary care practice using electronic medical records. Using the concepts as implementation and evaluation criteria, program developers and teams can stimulate improvements in their practice settings. Investing in collaborative team development of clinicians and staff may enable the practice environment to be more adaptive to change and improvement.

  15. Adaptive Modeling, Engineering Analysis and Design of Advanced Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek; Hsu, Su-Yuen; Mason, Brian H.; Hicks, Mike D.; Jones, William T.; Sleight, David W.; Chun, Julio; Spangler, Jan L.; Kamhawi, Hilmi; Dahl, Jorgen L.

    2006-01-01

    This paper describes initial progress towards the development and enhancement of a set of software tools for rapid adaptive modeling, and conceptual design of advanced aerospace vehicle concepts. With demanding structural and aerodynamic performance requirements, these high fidelity geometry based modeling tools are essential for rapid and accurate engineering analysis at the early concept development stage. This adaptive modeling tool was used for generating vehicle parametric geometry, outer mold line and detailed internal structural layout of wing, fuselage, skin, spars, ribs, control surfaces, frames, bulkheads, floors, etc., that facilitated rapid finite element analysis, sizing study and weight optimization. The high quality outer mold line enabled rapid aerodynamic analysis in order to provide reliable design data at critical flight conditions. Example application for structural design of a conventional aircraft and a high altitude long endurance vehicle configuration are presented. This work was performed under the Conceptual Design Shop sub-project within the Efficient Aerodynamic Shape and Integration project, under the former Vehicle Systems Program. The project objective was to design and assess unconventional atmospheric vehicle concepts efficiently and confidently. The implementation may also dramatically facilitate physics-based systems analysis for the NASA Fundamental Aeronautics Mission. In addition to providing technology for design and development of unconventional aircraft, the techniques for generation of accurate geometry and internal sub-structure and the automated interface with the high fidelity analysis codes could also be applied towards the design of vehicles for the NASA Exploration and Space Science Mission projects.

  16. Professional development of Russian HEIs' management and faculty in CDIO standards application

    NASA Astrophysics Data System (ADS)

    Chuchalin, Alexander; Malmqvist, Johan; Tayurskaya, Marina

    2016-07-01

    The paper presents the approach to complex training of managers and faculty staff for system modernisation of Russian engineering education. As a methodological basis of design and implementation of the faculty development programme, the CDIO (Conceive-Design-Implement-Operate) Approach was chosen due to compliance of its concept to the purposes and tasks of engineering education development in Russia. The authors describe the structure, the content and implementation technology of the programme designed by Tomsk Polytechnic University and Skolkovo Institute of Science and Technology with the assistance of Chalmers University of Technology and KTH Royal Institute of Technology and other members of the CDIO Initiative. The programme evaluation based on the questionnaire results showed that the programme content is relevant, has high practical value and high level of novelty for all categories of participants. Therefore, the CDIO approach was recommended for implementation to improve various elements of the engineering programme such as learning outcomes, content and structure, teaching, learning and assessment methods. Besides, the feedback results obtained through programme participants' survey contribute to identification of problems preventing development of engineering education in Russia and thus serve as milestones for further development of the programme.

  17. Advanced Vehicle Concepts and Implications for NextGen

    NASA Technical Reports Server (NTRS)

    Blake, Matt; Smith, Jim; Wright, Ken; Mediavilla Ricky; Kirby, Michelle; Pfaender, Holger; Clarke, John-Paul; Volovoi, Vitali; Dorbian, Christopher; Ashok, Akshay; hide

    2010-01-01

    This report presents the results of a major NASA study of advanced vehicle concepts and their implications for the Next Generation Air Transportation System (NextGen). Comprising the efforts of dozens of researchers at multiple institutions, the analyses presented here cover a broad range of topics including business-case development, vehicle design, avionics, procedure design, delay, safety, environmental impacts, and metrics. The study focuses on the following five new vehicle types: Cruise-efficient short takeoff and landing (CESTOL) vehicles Large commercial tiltrotor aircraft (LCTRs) Unmanned aircraft systems (UAS) Very light jets (VLJs) Supersonic transports (SST). The timeframe of the study spans the years 2025-2040, although some analyses are also presented for a 3X scenario that has roughly three times the number of flights as today. Full implementation of NextGen is assumed.

  18. PRSEUS Development for the Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Velicki, Alex; Jegley, Dawn

    2011-01-01

    NASA has created the Environmentally Responsible Aviation (ERA) Project to explore and document the feasibility, benefits and technical risk of advanced vehicle configurations and enabling technologies that will reduce the impact of aviation on the environment. A critical aspect of this pursuit is the development of a lighter, more robust airframe that will enable the introduction of unconventional aircraft configurations that have higher lift to drag ratios, reduced drag, and lower community noise. The primary structural concept being developed for the Hybrid Wing Body aircraft design under the ERA project in the Airframe Technology element is the PRSEUS concept. This paper describes how researchers at NASA and Boeing are working together to develop fundamental PRSEUS technologies that could someday be implemented on a transport size HWB airplane design.

  19. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  20. Development of a Tendon-Actuated Lightweight In-Space MANipulator (TALISMAN)

    NASA Technical Reports Server (NTRS)

    Doggett, William R.; Dorsey, John T.; Jones, Thomas C.; King, Bruce

    2014-01-01

    An invention of a new and novel space robotic manipulator is described. By using a combination of lightweight truss links, a novel hinge joint, tendon-articulation and passive tension stiffening, this new robotic manipulator architecture achieves compact packaging, high strength, stiffness and dexterity while being very lightweight compared to conventional manipulators. The manipulator is also very modular; easy to scale for different reach, load and stiffness requirements; enabling customization for a diverse set of applications. Novel features of the new manipulator concept are described as well as some of the approaches to implement these design features. Two diverse applications are presented to show the versatility of the concept. First generation prototype hardware was designed, manufactured and has been assembled into a working manipulator that is being used to refine and extend development efforts.

Top