Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
ERIC Educational Resources Information Center
Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi
2012-01-01
In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…
Extraction of a group-pair relation: problem-solving relation from web-board documents.
Pechsiri, Chaveevan; Piriyakul, Rapepun
2016-01-01
This paper aims to extract a group-pair relation as a Problem-Solving relation, for example a DiseaseSymptom-Treatment relation and a CarProblem-Repair relation, between two event-explanation groups, a problem-concept group as a symptom/CarProblem-concept group and a solving-concept group as a treatment-concept/repair concept group from hospital-web-board and car-repair-guru-web-board documents. The Problem-Solving relation (particularly Symptom-Treatment relation) including the graphical representation benefits non-professional persons by supporting knowledge of primarily solving problems. The research contains three problems: how to identify an EDU (an Elementary Discourse Unit, which is a simple sentence) with the event concept of either a problem or a solution; how to determine a problem-concept EDU boundary and a solving-concept EDU boundary as two event-explanation groups, and how to determine the Problem-Solving relation between these two event-explanation groups. Therefore, we apply word co-occurrence to identify a problem-concept EDU and a solving-concept EDU, and machine-learning techniques to solve a problem-concept EDU boundary and a solving-concept EDU boundary. We propose using k-mean and Naïve Bayes to determine the Problem-Solving relation between the two event-explanation groups involved with clustering features. In contrast to previous works, the proposed approach enables group-pair relation extraction with high accuracy.
NASA Astrophysics Data System (ADS)
McDaniel, Mark A.; Stoen, Siera M.; Frey, Regina F.; Markow, Zachary E.; Hynes, K. Mairin; Zhao, Jiuqing; Cahill, Michael J.
2016-12-01
The existing literature indicates that interactive-engagement (IE) based general physics classes improve conceptual learning relative to more traditional lecture-oriented classrooms. Very little research, however, has examined quantitative problem-solving outcomes from IE based relative to traditional lecture-based physics classes. The present study included both pre- and post-course conceptual-learning assessments and a new quantitative physics problem-solving assessment that included three representative conservation of energy problems from a first-semester calculus-based college physics course. Scores for problem translation, plan coherence, solution execution, and evaluation of solution plausibility were extracted for each problem. Over 450 students in three IE-based sections and two traditional lecture sections taught at the same university during the same semester participated. As expected, the IE-based course produced more robust gains on a Force Concept Inventory than did the lecture course. By contrast, when the full sample was considered, gains in quantitative problem solving were significantly greater for lecture than IE-based physics; when students were matched on pre-test scores, there was still no advantage for IE-based physics on gains in quantitative problem solving. Further, the association between performance on the concept inventory and quantitative problem solving was minimal. These results highlight that improved conceptual understanding does not necessarily support improved quantitative physics problem solving, and that the instructional method appears to have less bearing on gains in quantitative problem solving than does the kinds of problems emphasized in the courses and homework and the overlap of these problems to those on the assessment.
ERIC Educational Resources Information Center
Fuchs, Lynn S.; Fuchs, Douglas; Courey, Susan J.
2005-01-01
In this article, the authors explain how curriculum-based measurement (CBM) differs from other forms of classroom-based assessment. The development of CBM is traced from computation to concepts and applications to real-life problem solving, with examples of the assessments and illustrations of research to document technical features and utility…
Dyer, Joseph-Omer; Hudon, Anne; Montpetit-Tourangeau, Katherine; Charlin, Bernard; Mamede, Sílvia; van Gog, Tamara
2015-03-07
Example-based learning using worked examples can foster clinical reasoning. Worked examples are instructional tools that learners can use to study the steps needed to solve a problem. Studying worked examples paired with completion examples promotes acquisition of problem-solving skills more than studying worked examples alone. Completion examples are worked examples in which some of the solution steps remain unsolved for learners to complete. Providing learners engaged in example-based learning with self-explanation prompts has been shown to foster increased meaningful learning compared to providing no self-explanation prompts. Concept mapping and concept map study are other instructional activities known to promote meaningful learning. This study compares the effects of self-explaining, completing a concept map and studying a concept map on conceptual knowledge and problem-solving skills among novice learners engaged in example-based learning. Ninety-one physiotherapy students were randomized into three conditions. They performed a pre-test and a post-test to evaluate their gains in conceptual knowledge and problem-solving skills (transfer performance) in intervention selection. They studied three pairs of worked/completion examples in a digital learning environment. Worked examples consisted of a written reasoning process for selecting an optimal physiotherapy intervention for a patient. The completion examples were partially worked out, with the last few problem-solving steps left blank for students to complete. The students then had to engage in additional self-explanation, concept map completion or model concept map study in order to synthesize and deepen their knowledge of the key concepts and problem-solving steps. Pre-test performance did not differ among conditions. Post-test conceptual knowledge was higher (P < .001) in the concept map study condition (68.8 ± 21.8%) compared to the concept map completion (52.8 ± 17.0%) and self-explanation (52.2 ± 21.7%) conditions. Post-test problem-solving performance was higher (P < .05) in the self-explanation (63.2 ± 16.0%) condition compared to the concept map study (53.3 ± 16.4%) and concept map completion (51.0 ± 13.6%) conditions. Students in the self-explanation condition also invested less mental effort in the post-test. Studying model concept maps led to greater conceptual knowledge, whereas self-explanation led to higher transfer performance. Self-explanation and concept map study can be combined with worked example and completion example strategies to foster intervention selection.
NASA Astrophysics Data System (ADS)
Powers, Angela R.
2000-10-01
This study explored the relationship between secondary chemistry students' conceptual representations of acid-base chemistry, as shown in student-constructed concept maps, and their ability to solve acid-base problems, represented by their score on an 18-item paper and pencil test, the Acid-Base Concept Assessment (ABCA). The ABCA, consisting of both multiple-choice and short-answer items, was originally designed using a question-type by subtopic matrix, validated by a panel of experts, and refined through pilot studies and factor analysis to create the final instrument. The concept map task included a short introduction to concept mapping, a prototype concept map, a practice concept-mapping activity, and the instructions for the acid-base concept map task. The instruments were administered to chemistry students at two high schools; 108 subjects completed both instruments for this study. Factor analysis of ABCA results indicated that the test was unifactorial for these students, despite the intention to create an instrument with multiple "question-type" scales. Concept maps were scored both holistically and by counting valid concepts. The two approaches were highly correlated (r = 0.75). The correlation between ABCA score and concept-map score was 0.29 for holistically-scored concept maps and 0.33 for counted-concept maps. Although both correlations were significant, they accounted for only 8.8 and 10.2% of variance in ABCA scores, respectively. However, when the reliability of the instruments used is considered, more than 20% of the variance in ABCA scores may be explained by concept map scores. MANOVAs for ABCA and concept map scores by instructor, student gender, and year in school showed significant differences for both holistic and counted concept-map scores. Discriminant analysis revealed that the source of these differences was the instruction variable. Significant differences between classes receiving different instruction were found in the frequency of concepts listed by students for 9 of 10 concepts evaluated. Mean ABCA scores did not differ significantly between the two instruction groups. The results of this study failed to provide evidence of conceptual distinctions among different "types" of problem-solving items. The results suggested that several factors influence success in chemistry problem solving, including concept knowledge and organization. Further research into the nature of chemistry problems and problem solving is recommended.
ERIC Educational Resources Information Center
Chen, I-Ching; Hu, Shueh-Cheng
2013-01-01
The capability of solving fundamental mathematical problems is essential to elementary school students; however instruction based on ordinary narration usually perplexes students. Concept mapping is well known for its effectiveness on assimilating and organizing knowledge, which is essential to meaningful learning. A variety of concept map-based…
Threshold Concepts in the Development of Problem-Solving Skills
ERIC Educational Resources Information Center
Wismath, Shelly; Orr, Doug; MacKay, Bruce
2015-01-01
Problem-solving skills are often identified as a key component of 21st century education. This study collected data from students enrolled in a university-level Liberal Education science course called "Problems and Puzzles," which introduced students to the theory and practice of problem solving via puzzles. Based on classroom…
NASA Astrophysics Data System (ADS)
Thurmond, Brandi
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related to renewable energy technologies and students' problem solving skills. Two purposefully selected Advanced Placement (AP) Environmental Science teachers were included in the study. Each teacher taught one class about RET in a lecture-based environment (control) and another class in a DRL environment (treatment), for a total of four classes of students (n=128). This study utilized a quasi-experimental, pretest/posttest, control-group design. The initial hypothesis that the treatment group would have a significant gain in knowledge of STEM concepts related to RET and be better able to solve problems when compared to the control group was not supported by the data. Although students in the DRL environment had a significant gain in knowledge after instruction, posttest score comparisons of the control and treatment groups revealed no significant differences between the groups. Further, no significant differences were noted in students' problem solving abilities as measured by scores on a problem-based activity and self-reported abilities on a reflective questionnaire. This suggests that the DRL environment is at least as effective as the lecture-based learning environment in teaching AP Environmental Science students about RET and fostering the development of problem solving skills. As this was a small scale study, further research is needed to provide information about effectiveness of DRL environments in promoting students' knowledge of STEM concepts and problem-solving skills.
NASA Astrophysics Data System (ADS)
Parker, Mary Jo
This study investigated the effects of a shared, Intranet science environment on the academic behaviors of problem-solving and metacognitive reflection. Seventy-eight subjects included 9th and 10th grade male and female biology students. A quasi-experimental design with pre- and post-test data collection and randomization occurring through assignment of biology classes to traditional or shared, Intranet learning groups was employed. Pilot, web-based distance education software (CourseInfo) created the Intranet learning environment. A modified ecology curriculum provided contextualization and content for traditional and shared learning environments. The effect of this environment on problem-solving, was measured using the standardized Watson-Glaser Critical Thinking Appraisal test. Metacognitive reflection, was measured in three ways: (a) number of concepts used, (b) number of concept links noted, and (c) number of concept nodes noted. Visual learning software, Inspiration, generated concept maps. Secondary research questions evaluated the pilot CourseInfo software for (a) tracked user movement, (b) discussion forum findings, and (c) difficulties experienced using CourseInfo software. Analysis of problem-solving group means reached no levels of significance resulting from the shared, Intranet environment. Paired t-Test of individual differences in problem-solving reached levels of significance. Analysis of metacognitive reflection by number of concepts reached levels of significance. Metacognitive reflection by number of concept links noted also reach significance. No significance was found for metacognitive reflection by number of concept nodes. No gender differences in problem-solving ability and metacognitive reflection emerged. Lack of gender differences in the shared, Intranet environment strongly suggests an equalizing effect due to the cooperative, collaborative nature of Intranet environments. Such environments appeal to, and rank high with, the female gender. Tracking learner movements in web-based, science environments has metacognitive and problem-solving learner implications. CourseInfo software offers one method of informing instruction within web-based learning environments focusing on academic behaviors. A shared, technology-supported learning environment may pose one model which science classrooms can use to create equitable scientific study across gender. The lack of significant differences resulting from this environment presents one model for improvement of individual problem-solving ability and metacognitive reflection across gender.
NASA Astrophysics Data System (ADS)
Zuhaida, A.
2018-04-01
Implementation of the experiment have the three aspects of the goal: 1) develop basic skills of experimenting; 2) develop problem-solving skills with a scientific approach; 3) improve understanding of the subject matter. On the implementation of the experiment, students have some weaknesses include: observing, identifying problems, managing information, analyzing, and evaluating. This weakness is included in the metacognition indicator.The objective of the research is to implementation of Basic Chemistry Experiment based on metacognition to increase problem-solving skills and build concept understanding for students of Science Education Department. The method of this research is a quasi- experimental method with pretest-posttest control group design. Problem-solving skills are measured through performance assessments using rubrics from problem solving reports, and results presentation. The conceptual mastery is measured through a description test. The result of the research: (1) improve the problem solving skills of the students with very high category; (2) increase the students’ concept understanding better than the conventional experiment with the result of N-gain in medium category, and (3) increase student's response positively for learning implementation. The contribution of this research is to extend the implementation of practical learning for some subjects, and to improve the students' competence in science.
ERIC Educational Resources Information Center
Espinosa, Allen A.; Nueva España, Rebecca C.; Marasigan, Arlyne C.
2016-01-01
The present study investigated pre-service chemistry teachers' problem solving strategies and alternative conceptions in solving stoichiometric problems and later on formulate a teaching framework based from the result of the study. The pre-service chemistry teachers were given four stoichiometric problems with increasing complexity and they need…
Students' and Teachers' Conceptual Metaphors for Mathematical Problem Solving
ERIC Educational Resources Information Center
Yee, Sean P.
2017-01-01
Metaphors are regularly used by mathematics teachers to relate difficult or complex concepts in classrooms. A complex topic of concern in mathematics education, and most STEM-based education classes, is problem solving. This study identified how students and teachers contextualize mathematical problem solving through their choice of metaphors.…
ERIC Educational Resources Information Center
Huang, Yueh-Min; Liu, Ming-Chi; Chen, Nian-Shing; Kinshuk; Wen, Dunwei
2014-01-01
Web-based information problem-solving has been recognised as a critical ability for learners. However, the development of students' abilities in this area often faces several challenges, such as difficulty in building well-organised knowledge structures to support complex problems that require higher-order skills (e.g., system thinking). To…
Thai Grade 10 and 11 Students' Conceptual Understanding and Ability to Solve Stoichiometry Problems
ERIC Educational Resources Information Center
Dahsah, Chanyah; Coll, Richard K.
2007-01-01
Stoichiometry and related concepts are an important part of student learning in chemistry. In this interpretive-based inquiry, we investigated Thai Grade 10 and 11 students' conceptual understanding and ability to solve numerical problems for stoichiometry-related concepts. Ninety-seven participants completed a purpose-designed survey instrument…
Student’s scheme in solving mathematics problems
NASA Astrophysics Data System (ADS)
Setyaningsih, Nining; Juniati, Dwi; Suwarsono
2018-03-01
The purpose of this study was to investigate students’ scheme in solving mathematics problems. Scheme are data structures for representing the concepts stored in memory. In this study, we used it in solving mathematics problems, especially ratio and proportion topics. Scheme is related to problem solving that assumes that a system is developed in the human mind by acquiring a structure in which problem solving procedures are integrated with some concepts. The data were collected by interview and students’ written works. The results of this study revealed are students’ scheme in solving the problem of ratio and proportion as follows: (1) the content scheme, where students can describe the selected components of the problem according to their prior knowledge, (2) the formal scheme, where students can explain in construct a mental model based on components that have been selected from the problem and can use existing schemes to build planning steps, create something that will be used to solve problems and (3) the language scheme, where students can identify terms, or symbols of the components of the problem.Therefore, by using the different strategies to solve the problems, the students’ scheme in solving the ratio and proportion problems will also differ.
NASA Astrophysics Data System (ADS)
Yulindar, A.; Setiawan, A.; Liliawati, W.
2018-05-01
This study aims to influence the enhancement of problem solving ability before and after learning using Real Engagement in Active Problem Solving (REAPS) model on the concept of heat transfer. The research method used is quantitative method with 35 high school students in Pontianak as sample. The result of problem solving ability of students is obtained through the test in the form of 3 description questions. The instrument has tested the validity by the expert judgment and field testing that obtained the validity value of 0.84. Based on data analysis, the value of N-Gain is 0.43 and the enhancement of students’ problem solving ability is in medium category. This was caused of students who are less accurate in calculating the results of answers and they also have limited time in doing the questions given.
Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.
Musen, M. A.
1998-01-01
When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community. PMID:9929181
Modern architectures for intelligent systems: reusable ontologies and problem-solving methods.
Musen, M A
1998-01-01
When interest in intelligent systems for clinical medicine soared in the 1970s, workers in medical informatics became particularly attracted to rule-based systems. Although many successful rule-based applications were constructed, development and maintenance of large rule bases remained quite problematic. In the 1980s, an entire industry dedicated to the marketing of tools for creating rule-based systems rose and fell, as workers in medical informatics began to appreciate deeply why knowledge acquisition and maintenance for such systems are difficult problems. During this time period, investigators began to explore alternative programming abstractions that could be used to develop intelligent systems. The notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) domain-independent problem-solving methods-standard algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper will highlight how intelligent systems for diverse tasks can be efficiently automated using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.
Students’ Relational Understanding in Quadrilateral Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Safitri, A. N.; Juniati, D.; Masriyah
2018-01-01
The type of research is qualitative approach which aims to describe how students’ relational understanding of solving mathematic problem that was seen from Adversity Quotient aspect. Research subjects were three 7th grade students of Junior High School. They were taken by category of Adversity Quotient (AQ) such quitter, camper, and climber. Data collected based on problem solving and interview. The research result showed that (1) at the stage of understanding the problem, the subjects were able to state and write down what is known and asked, and able to mention the concepts associated with the quadrilateral problem. (2) The three subjects devise a plan by linking concepts relating to quadrilateral problems. (3) The three subjects were able to solve the problem. (4) The three subjects were able to look back the answers. The three subjects were able to understand the problem, devise a plan, carry out the plan and look back. However, the quitter and camper subjects have not been able to give a reason for the steps they have taken.
Students’ conceptions and problem-solving ability on topic chemical thermodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diawati, Chansyanah, E-mail: chansyanahd@yahoo.com
The enthalpy concept and its change were introduced to describe the forms of internal energy transfer in chemical reactions. Likewise, the concepts of exothermic and endothermic reactions introduced as a consequence of heat transfer form. In the heat measurement process at constant pressure, work is often ignored. The exothermic or endothermic reactions, usually only based on the increase or decrease of the reaction temperature, without associated with the internal energy. Depictions of enthalpy and its change assumed closely related to students’ problem-solving ability. Therefore, the study to describe pre-service chemistry teacher student’s conceptions and problem-solving ability on topic chemical thermodynamicsmore » has been done. This research was a case study of chemical education course in Provinsi Lampung. The subjects of this study were 42 students who attend the chemical thermodynamics course. Questions about exothermic and endothermic reactions, enthalpy and its change, as well as internal energy and its change were given in the form of an essay exam questions. Answers related to conception qualitatively categorized, while problem solving answers were scored and assessed. The results showed that, in general, students were having problems in enthalpy and describe the changes in the form of heat and work. The highest value of problem solving ability obtained 26.67 from the maximum value of 100. The lowest value was 0, and the average value was 14.73. These results show that the problem-solving ability of pre-service chemistry teacher students was low. The results provide insight to researchers, and educators to develop learning or lab work on this concept.« less
The Impact of Concept Mapping on the Process of Problem-Based Learning
ERIC Educational Resources Information Center
Zwaal, Wichard; Otting, Hans
2012-01-01
A concept map is a graphical tool to activate and elaborate on prior knowledge, to support problem solving, promote conceptual thinking and understanding, and to organize and memorize knowledge. The aim of this study is to determine if the use of concept mapping (CM) in a problem-based learning (PBL) curriculum enhances the PBL process. The paper…
Problem-based learning on quantitative analytical chemistry course
NASA Astrophysics Data System (ADS)
Fitri, Noor
2017-12-01
This research applies problem-based learning method on chemical quantitative analytical chemistry, so called as "Analytical Chemistry II" course, especially related to essential oil analysis. The learning outcomes of this course include aspects of understanding of lectures, the skills of applying course materials, and the ability to identify, formulate and solve chemical analysis problems. The role of study groups is quite important in improving students' learning ability and in completing independent tasks and group tasks. Thus, students are not only aware of the basic concepts of Analytical Chemistry II, but also able to understand and apply analytical concepts that have been studied to solve given analytical chemistry problems, and have the attitude and ability to work together to solve the problems. Based on the learning outcome, it can be concluded that the problem-based learning method in Analytical Chemistry II course has been proven to improve students' knowledge, skill, ability and attitude. Students are not only skilled at solving problems in analytical chemistry especially in essential oil analysis in accordance with local genius of Chemistry Department, Universitas Islam Indonesia, but also have skilled work with computer program and able to understand material and problem in English.
Analytical derivation: An epistemic game for solving mathematically based physics problems
NASA Astrophysics Data System (ADS)
Bajracharya, Rabindra R.; Thompson, John R.
2016-06-01
Problem solving, which often involves multiple steps, is an integral part of physics learning and teaching. Using the perspective of the epistemic game, we documented a specific game that is commonly pursued by students while solving mathematically based physics problems: the analytical derivation game. This game involves deriving an equation through symbolic manipulations and routine mathematical operations, usually without any physical interpretation of the processes. This game often creates cognitive obstacles in students, preventing them from using alternative resources or better approaches during problem solving. We conducted hour-long, semi-structured, individual interviews with fourteen introductory physics students. Students were asked to solve four "pseudophysics" problems containing algebraic and graphical representations. The problems required the application of the fundamental theorem of calculus (FTC), which is one of the most frequently used mathematical concepts in physics problem solving. We show that the analytical derivation game is necessary, but not sufficient, to solve mathematically based physics problems, specifically those involving graphical representations.
Children's Problem-Solving in Serious Games: The "Fine-Tuning System (FTS)" Elaborated
ERIC Educational Resources Information Center
Obikwelu, Chinedu; Read, Janet; Sim, Gavin
2013-01-01
For a child to learn through Problem-Solving in Serious games, the game scaffolding mechanism has to be effective. Scaffolding is based on the Vygotzkian Zone of Proximal Development (ZPD) concept which refers to the distance between the actual development level as determined by independent problem solving and the level of potential development as…
Developing a Creativity and Problem Solving Course in Support of the Information Systems Curriculum
ERIC Educational Resources Information Center
Martz, Ben; Hughes, Jim; Braun, Frank
2016-01-01
This paper looks at and assesses the development and implementation of a problem solving and creativity class for the purpose of providing a basis for a Business Informatics curriculum. The development was fueled by the desire to create a broad based class that 1. Familiarized students to the underlying concepts of problem solving; 2. Introduced…
Video Analysis of a Plucked String: An Example of Problem-based Learning
NASA Astrophysics Data System (ADS)
Wentworth, Christopher D.; Buse, Eric
2009-11-01
Problem-based learning is a teaching methodology that grounds learning within the context of solving a real problem. Typically the problem initiates learning of concepts rather than simply being an application of the concept, and students take the lead in identifying what must be developed to solve the problem. Problem-based learning in upper-level physics courses can be challenging, because of the time and financial requirements necessary to generate real data. Here, we present a problem that motivates learning about partial differential equations and their solution in a mathematical methods for physics course. Students study a plucked elastic cord using high speed digital video. After creating video clips of the cord motion under different tensions they are asked to create a mathematical model. Ultimately, students develop and solve a model that includes damping effects that are clearly visible in the videos. The digital video files used in this project are available on the web at http://physics.doane.edu .
ERIC Educational Resources Information Center
Lin, Shih-Yin; Singh, Chandralekha
2015-01-01
It is well known that introductory physics students often have alternative conceptions that are inconsistent with established physical principles and concepts. Invoking alternative conceptions in the quantitative problem-solving process can derail the entire process. In order to help students solve quantitative problems involving strong…
Students' Usability Evaluation of a Web-Based Tutorial Program for College Biology Problem Solving
ERIC Educational Resources Information Center
Kim, H. S.; Prevost, L.; Lemons, P. P.
2015-01-01
The understanding of core concepts and processes of science in solving problems is important to successful learning in biology. We have designed and developed a Web-based, self-directed tutorial program, "SOLVEIT," that provides various scaffolds (e.g., prompts, expert models, visual guidance) to help college students enhance their…
Problem-Based Composition: The Practical Side
ERIC Educational Resources Information Center
Beckelhimer, Lisa; Hundemer, Ronald; Sharp, Judith; Zipfel, William
2007-01-01
For several years a number of instructors at the University of Cincinnati have experimented with the concept of problem-based learning (PBL) in their composition courses. The concept, rooted as it is in Socratic method and the hands-on problem-solving advocated by John Dewey, is not new, and though some of its applications may call for adjustments…
NASA Astrophysics Data System (ADS)
Nguyen, Dong-Hai
This research project investigates the difficulties students encounter when solving physics problems involving the integral and the area under the curve concepts and the strategies to facilitate students learning to solve those types of problems. The research contexts of this project are calculus-based physics courses covering mechanics and electromagnetism. In phase I of the project, individual teaching/learning interviews were conducted with 20 students in mechanics and 15 students from the same cohort in electromagnetism. The students were asked to solve problems on several topics of mechanics and electromagnetism. These problems involved calculating physical quantities (e.g. velocity, acceleration, work, electric field, electric resistance, electric current) by integrating or finding the area under the curve of functions of related quantities (e.g. position, velocity, force, charge density, resistivity, current density). Verbal hints were provided when students made an error or were unable to proceed. A total number of 140 one-hour interviews were conducted in this phase, which provided insights into students' difficulties when solving the problems involving the integral and the area under the curve concepts and the hints to help students overcome those difficulties. In phase II of the project, tutorials were created to facilitate students' learning to solve physics problems involving the integral and the area under the curve concepts. Each tutorial consisted of a set of exercises and a protocol that incorporated the helpful hints to target the difficulties that students expressed in phase I of the project. Focus group learning interviews were conducted to test the effectiveness of the tutorials in comparison with standard learning materials (i.e. textbook problems and solutions). Overall results indicated that students learning with our tutorials outperformed students learning with standard materials in applying the integral and the area under the curve concepts to physics problems. The results of this project provide broader and deeper insights into students' problem solving with the integral and the area under the curve concepts and suggest strategies to facilitate students' learning to apply these concepts to physics problems. This study also has significant implications for further research, curriculum development and instruction.
ERIC Educational Resources Information Center
Thieken, John
2012-01-01
A sample of 127 high school Advanced Placement (AP) Calculus students from two schools was utilized to study the effects of an engineering design-based problem solving strategy on student performance with AP style Related Rate questions and changes in conceptions, beliefs, and influences. The research design followed a treatment-control multiple…
NASA Astrophysics Data System (ADS)
Steen-Eibensteiner, Janice Lee
2006-07-01
A strong science knowledge base and problem solving skills have always been highly valued for employment in the science industry. Skills currently needed for employment include being able to problem solve (Overtoom, 2000). Academia also recognizes the need for effectively teaching students to apply problem solving skills in clinical settings. This thesis investigates how students solve complex science problems in an academic setting in order to inform the development of problem solving skills for the workplace. Students' use of problem solving skills in the form of learned concepts and procedural knowledge was studied as students completed a problem that might come up in real life. Students were taking a community college sophomore biology course, Human Anatomy & Physiology II. The problem topic was negative feedback inhibition of the thyroid and parathyroid glands. The research questions answered were (1) How well do community college students use a complex of conceptual knowledge when solving a complex science problem? (2) What conceptual knowledge are community college students using correctly, incorrectly, or not using when solving a complex science problem? (3) What problem solving procedural knowledge are community college students using successfully, unsuccessfully, or not using when solving a complex science problem? From the whole class the high academic level participants performed at a mean of 72% correct on chapter test questions which was a low average to fair grade of C-. The middle and low academic participants both failed (F) the test questions (37% and 30% respectively); 29% (9/31) of the students show only a fair performance while 71% (22/31) fail. From the subset sample population of 2 students each from the high, middle, and low academic levels selected from the whole class 35% (8/23) of the concepts were used effectively, 22% (5/23) marginally, and 43% (10/23) poorly. Only 1 concept was used incorrectly by 3/6 of the students and identified as a misconception. One of 21 (5%) problem-solving pathway characteristics was used effectively, 7 (33%) marginally, and 13 (62%) poorly. There were very few (0 to 4) problem-solving pathway characteristics used unsuccessfully most were simply not used.
Teaching genetics using hands-on models, problem solving, and inquiry-based methods
NASA Astrophysics Data System (ADS)
Hoppe, Stephanie Ann
Teaching genetics can be challenging because of the difficulty of the content and misconceptions students might hold. This thesis focused on using hands-on model activities, problem solving, and inquiry-based teaching/learning methods in order to increase student understanding in an introductory biology class in the area of genetics. Various activities using these three methods were implemented into the classes to address any misconceptions and increase student learning of the difficult concepts. The activities that were implemented were shown to be successful based on pre-post assessment score comparison. The students were assessed on the subjects of inheritance patterns, meiosis, and protein synthesis and demonstrated growth in all of the areas. It was found that hands-on models, problem solving, and inquiry-based activities were more successful in learning concepts in genetics and the students were more engaged than tradition styles of lecture.
Students' Problem-Solving in Mechanics: Preference of a Process Based Model.
ERIC Educational Resources Information Center
Stavy, Ruth; And Others
Research in science and mathematics education has indicated that students often use inappropriate models for solving problems because they tend to mentally represent a problem according to surface features instead of referring to scientific concepts and features. The objective of the study reported in this paper was to determine whether 34 Israeli…
Evaluating learning and teaching using the Force Concept Inventory
NASA Astrophysics Data System (ADS)
Zitzewitz, Paul
1997-04-01
Teaching methods used in the calculus-based mechanics course for engineers and scientists (P150) at the University of Michigan-Dearborn were markedly changed in September, 1996. Lectures emphasize active learning with Mazur's ConcepTests, Sokoloff's Interactive Demonstrations, and Van Heuvelen's ALPS Kit worksheets. Students solve context-rich problems using Van Heuvelen's multiple representation format in cooperative groups in discussion sections. Labs were changed to use MBL emphasizing concepts and Experiment Problems to learn lab-based problem solving. Pre- and post-testing of 400 students with the Force Concept Inventory has demonstrated considerable success. The average increase in score has been 35-45methods as defined by Hake. The methods and results will be discussed. Detailed analyses of the FCI results will look at success in teaching specific concepts and the effect of student preparation in mathematics and high school physics.
NASA Astrophysics Data System (ADS)
Hartatiek; Yudyanto; Haryoto, Dwi
2017-05-01
A Special Theory of Relativity handbook has been successfully arranged to guide students tutorial activity in the Modern Physics course. The low of students’ problem-solving ability was overcome by giving the tutorial in addition to the lecture class. It was done due to the limited time in the class during the course to have students do some exercises for their problem-solving ability. The explicit problem-solving based tutorial handbook was written by emphasizing to this 5 problem-solving strategies: (1) focus on the problem, (2) picture the physical facts, (3) plan the solution, (4) solve the problem, and (5) check the result. This research and development (R&D) consisted of 3 main steps: (1) preliminary study, (2) draft I. product development, and (3) product validation. The developed draft product was validated by experts to measure the feasibility of the material and predict the effect of the tutorial giving by means of questionnaires with scale 1 to 4. The students problem-solving ability in Special Theory of Relativity showed very good qualification. It implied that the tutorial giving with the help of tutorial handbook increased students problem-solving ability. The empirical test revealed that the developed handbook was significantly affected in improving students’ mastery concept and problem-solving ability. Both students’ mastery concept and problem-solving ability were in middle category with gain of 0.31 and 0.41, respectively.
Cognitive development in introductory physics: A research-based approach to curriculum reform
NASA Astrophysics Data System (ADS)
Teodorescu, Raluca Elena
This project describes the research on a classification of physics problems in the context of introductory physics courses. This classification, called the Taxonomy of Introductory Physics Problems (TIPP), relates physics problems to the cognitive processes required to solve them. TIPP was created for designing and clarifying educational objectives, for developing assessments that can evaluate individual component processes of the problem-solving process, and for guiding curriculum design in introductory physics courses, specifically within the context of a "thinking-skills" curriculum. TIPP relies on the following resources: (1) cognitive research findings adopted by physics education research, (2) expert-novice research discoveries acknowledged by physics education research, (3) an educational psychology taxonomy for educational objectives, and (4) various collections of physics problems created by physics education researchers or developed by textbook authors. TIPP was used in the years 2006--2008 to reform the first semester of the introductory algebra-based physics course (called Phys 11) at The George Washington University. The reform sought to transform our curriculum into a "thinking-skills" curriculum that trades "breadth for depth" by focusing on fewer topics while targeting the students' cognitive development. We employed existing research on the physics problem-solving expert-novice behavior, cognitive science and behavioral science findings, and educational psychology recommendations. Our pedagogy relies on didactic constructs such as the GW-ACCESS problem-solving protocol, learning progressions and concept maps that we have developed and implemented in our introductory physics course. These tools were designed based on TIPP. Their purpose is: (1) to help students build local and global coherent knowledge structures, (2) to develop more context-independent problem-solving abilities, (3) to gain confidence in problem solving, and (4) to establish connections between everyday phenomena and underlying physics concepts. We organize traditional and research-based physics problems such that students experience a gradual increase in complexity related to problem context, problem features and cognitive processes needed to solve the problem. The instructional environment that we designed allows for explicit monitoring, control and measurement of the cognitive processes exercised during the instruction period. It is easily adaptable to any kind of curriculum and can be readily adjusted throughout the semester. To assess the development of students' problem-solving abilities, we created rubrics that measure specific aspects of the thinking involved in physics problem solving. The Colorado Learning Attitudes about Science Survey (CLASS) was administered pre- and post-instruction to determine students' shift in dispositions towards learning physics. The Force Concept Inventory (FCI) was administered pre- and post-instruction to determine students' level of conceptual understanding. The results feature improvements in students' problem-solving abilities and in their attitudes towards learning physics.
Virtual manufacturing in reality
NASA Astrophysics Data System (ADS)
Papstel, Jyri; Saks, Alo
2000-10-01
SMEs play an important role in manufacturing industry. But from time to time there is a shortage in resources to complete the particular order in time. Number of systems is introduced to produce digital information in order to support product and process development activities. Main problem is lack of opportunity for direct data transition within design system modules when needed temporary extension of design capacity (virtuality) or to implement integrated concurrent product development principles. The planning experience in the field is weakly used as well. The concept of virtual manufacturing is a supporting idea to solve this problem. At the same time a number of practical problems should be solved like information conformity, data transfer, unified technological concepts acceptation etc. In the present paper the proposed ways to solve the practical problems of virtual manufacturing are described. General objective is to introduce the knowledge-based CAPP system as missing module for Virtual Manufacturing in the selected product domain. Surface-centered planning concept based on STEP- based modeling principles, and knowledge-based process planning methodology will be used to gain the objectives. As a result the planning module supplied by design data with direct access, and supporting advising environment is expected. Mould producing SME would be as test basis.
Engineering-Based Problem Solving in the Middle School: Design and Construction with Simple Machines
ERIC Educational Resources Information Center
English, Lyn D.; Hudson, Peter; Dawes, Les
2013-01-01
Incorporating engineering concepts into middle school curriculum is seen as an effective way to improve students' problem-solving skills. A selection of findings is reported from a science, technology, engineering and mathematics (STEM)-based unit in which students in the second year (grade 8) of a three-year longitudinal study explored…
NASA Astrophysics Data System (ADS)
Salta, Katerina; Tzougraki, Chryssa
2011-08-01
The students' performance in various types of problems dealing with the conservation of matter during chemical reactions has been investigated at different levels of schooling. The participants were 499 ninth grade (ages 14, 15 years) and 624 eleventh grade (ages 16, 17 years) Greek students. Data was collected using a written questionnaire concerning basic chemical concepts. Results of statistical factor and correlation analysis confirmed the classification of the problems used in three types: "algorithmic-type", "particulate-type", and "conceptual-type". All the students had a far better performance in "particulate-type" problems than in the others. Although students' ability in solving "algorithmic-type" problem increases as their school experience in chemistry progresses, their ability in solving "conceptual-type" problems decreases. Students' achievement in chemistry was measured by a Chemical Concepts Test (CCT) containing 57 questions of various forms. High-achievement students scored higher both on "algorithmic-type" and "particulate-type" problems than low achievers with the greatest difference observed in solving "algorithmic-type" problems. It is concluded that competence in "particulate-type" and "algorithmic-type" problem solving may be independent of competence in solving "conceptual-type" ones. Furthermore, it was found that students' misconceptions concerning chemical reactions and equivalence between mass and energy are impediments to their problem solving abilities. Finally, based on the findings, few suggestions concerning teaching practices are discussed.
Search Path Mapping: A Versatile Approach for Visualizing Problem-Solving Behavior.
ERIC Educational Resources Information Center
Stevens, Ronald H.
1991-01-01
Computer-based problem-solving examinations in immunology generate graphic representations of students' search paths, allowing evaluation of how organized and focused their knowledge is, how well their organization relates to critical concepts in immunology, where major misconceptions exist, and whether proper knowledge links exist between content…
Reversible Reasoning and the Working Backwards Problem Solving Strategy
ERIC Educational Resources Information Center
Ramful, Ajay
2015-01-01
Making sense of mathematical concepts and solving mathematical problems may demand different forms of reasoning. These could be either domain-based, such as algebraic, geometric or statistical reasoning, while others are more general such as inductive/deductive reasoning. This article aims at giving visibility to a particular form of reasoning…
NASA Astrophysics Data System (ADS)
Hidayati, H.; Ramli, R.
2018-04-01
This paper aims to provide a description of the implementation of Physic Problem Solving strategy combined with concept maps in General Physics learning at Department of Physics, Universitas Negeri Padang. Action research has been conducted in two cycles where each end of the cycle is reflected and improved for the next cycle. Implementation of Physics Problem Solving strategy combined with concept map can increase student activity in solving general physics problem with an average increase of 15% and can improve student learning outcomes from 42,7 in the cycle I become 62,7 in cycle II in general physics at the Universitas Negeri Padang. In the future, the implementation of Physic Problem Solving strategy combined with concept maps will need to be considered in Physics courses.
Acquiring an understanding of design: evidence from children's insight problem solving.
Defeyter, Margaret Anne; German, Tim P
2003-09-01
The human ability to make tools and use them to solve problems may not be zoologically unique, but it is certainly extraordinary. Yet little is known about the conceptual machinery that makes humans so competent at making and using tools. Do adults and children have concepts specialized for understanding human-made artifacts? If so, are these concepts deployed in attempts to solve novel problems? Here we present new data, derived from problem-solving experiments, which support the following. (i) The structure of the child's concept of artifact function changes profoundly between ages 5 and 7. At age 5, the child's conceptual machinery defines the function of an artifact as any goal a user might have; by age 7, its function is defined by the artifact's typical or intended use. (ii) This conceptual shift has a striking effect on problem-solving performance, i.e. the child's concept of artifact function appears to be deployed in problem solving. (iii) This effect on problem solving is not caused by differences in the amount of knowledge that children have about the typical use of a particular tool; it is mediated by the structure of the child's artifact concept (which organizes and deploys the child's knowledge). In two studies, children between 5 and 7 years of age were matched for their knowledge of what a particular artifact "is for", and then given a problem that can only be solved if that tool is used for an atypical purpose. All children performed well in a baseline condition. But when they were primed by a demonstration of the artifact's typical function, 5-year-old children solved the problem much faster than 6-7-year-old children. Because all children knew what the tools were for, differences in knowledge alone cannot explain the results. We argue that the older children were slower to solve the problem when the typical function was primed because (i) their artifact concept plays a role in problem solving, and (ii) intended purpose is central to their concept of artifact function, but not to that of the younger children.
NASA Astrophysics Data System (ADS)
Williams, Karen Ann
One section of college students (N = 25) enrolled in an algebra-based physics course was selected for a Piagetian-based learning cycle (LC) treatment while a second section (N = 25) studied in an Ausubelian-based meaningful verbal reception learning treatment (MVRL). This study examined the students' overall (concept + problem solving + mental model) meaningful understanding of force, density/Archimedes Principle, and heat. Also examined were students' meaningful understanding as measured by conceptual questions, problems, and mental models. In addition, students' learning orientations were examined. There were no significant posttest differences between the LC and MVRL groups for students' meaningful understanding or learning orientation. Piagetian and Ausubelian theories explain meaningful understanding for each treatment. Students from each treatment increased their meaningful understanding. However, neither group altered their learning orientation. The results of meaningful understanding as measured by conceptual questions, problem solving, and mental models were mixed. Differences were attributed to the weaknesses and strengths of each treatment. This research also examined four variables (treatment, reasoning ability, learning orientation, and prior knowledge) to find which best predicted students' overall meaningful understanding of physics concepts. None of these variables were significant predictors at the.05 level. However, when the same variables were used to predict students' specific understanding (i.e. concept, problem solving, or mental model understanding), the results were mixed. For forces and density/Archimedes Principle, prior knowledge and reasoning ability significantly predicted students' conceptual understanding. For heat, however, reasoning ability was the only significant predictor of concept understanding. Reasoning ability and treatment were significant predictors of students' problem solving for heat and forces. For density/Archimedes Principle, treatment was the only significant predictor of students' problem solving. None of the variables were significant predictors of mental model understanding. This research suggested that Piaget and Ausubel used different terminology to describe learning yet these theories are similar. Further research is needed to validate this premise and validate the blending of the two theories.
Managing Problems Before Problems Manage You.
Grigsby, Jim
2015-01-01
Every day we face problems, both personal and professional, and our initial reaction determines how well we solve those problems. Whether a problem is minor or major, short-term or lingering, there are techniques we can employ to help manage the problem and the problem-solving process. This article, based on my book Don't Tick Off The Gators! Managing Problems Before Problems Manage You, presents 12 different concepts for managing problems, not "cookie cutter" solutions, but different ideas that you can apply as they fit your circumstances.
A study of concept-based similarity approaches for recommending program examples
NASA Astrophysics Data System (ADS)
Hosseini, Roya; Brusilovsky, Peter
2017-07-01
This paper investigates a range of concept-based example recommendation approaches that we developed to provide example-based problem-solving support in the domain of programming. The goal of these approaches is to offer students a set of most relevant remedial examples when they have trouble solving a code comprehension problem where students examine a program code to determine its output or the final value of a variable. In this paper, we use the ideas of semantic-level similarity-based linking developed in the area of intelligent hypertext to generate examples for the given problem. To determine the best-performing approach, we explored two groups of similarity approaches for selecting examples: non-structural approaches focusing on examples that are similar to the problem in terms of concept coverage and structural approaches focusing on examples that are similar to the problem by the structure of the content. We also explored the value of personalized example recommendation based on student's knowledge levels and learning goal of the exercise. The paper presents concept-based similarity approaches that we developed, explains the data collection studies and reports the result of comparative analysis. The results of our analysis showed better ranking performance of the personalized structural variant of cosine similarity approach.
Concept Learning versus Problem Solving: Is There a Difference?
ERIC Educational Resources Information Center
Nurrenbern, Susan C.; Pickering, Miles
1987-01-01
Reports on a study into the relationship between a student's ability to solve problems in chemistry and his/her understanding of molecular concepts. Argues that teaching students to solve problems about chemistry is not equivalent to teaching about the nature of matter. (TW)
NASA Astrophysics Data System (ADS)
Jolly, Anju B.
The purpose of this study was to analyze the relationship of concept mapping to science problem solving in sixth grade elementary school children. The study proposes to determine whether the students' ability to perform higher cognitive processes was a predictor of students' performance in solving problems in science and whether gender and socioeconomic status are related to performance in solving problems. Two groups participated in the study. Both groups were given a pre-test of higher cognitive ability--the Ross Test of Higher Cognitive Ability. One group received instruction on a science unit of study in concept mapping format and the other group received instruction in traditional format. The instruction lasted approximately 4 weeks. Both groups were given a problem-solving post-test. A comparison of post-test means was done using Analysis of Covariance (ANCOVA) as the statistical procedure with scores on the test of higher cognitive ability as the covariate. Also, Multiple Regression was performed to analyze the influence of participants' gender and socioeconomic status on their performance in solving problems. Results from the analysis of covariance showed that the group receiving instruction in the concept mapping format performed significantly better than the group receiving instruction in traditional format. Also the Ross Test of Higher Cognitive Processes emerged to be a predictor of performance on problem solving. There was no significant difference in the analysis of the performance of males and females. No pattern emerged regarding the influence of socioeconomic status on problem solving performance. In conclusion, the study showed that concept mapping improved problem solving in the classroom, and that gender and socioeconomic status are not predictors of student success in problem solving.
Computer-Based Assessment of Complex Problem Solving: Concept, Implementation, and Application
ERIC Educational Resources Information Center
Greiff, Samuel; Wustenberg, Sascha; Holt, Daniel V.; Goldhammer, Frank; Funke, Joachim
2013-01-01
Complex Problem Solving (CPS) skills are essential to successfully deal with environments that change dynamically and involve a large number of interconnected and partially unknown causal influences. The increasing importance of such skills in the 21st century requires appropriate assessment and intervention methods, which in turn rely on adequate…
ERIC Educational Resources Information Center
Noel, Kristine K.; Westby, Carol
2014-01-01
This study employed a multiple baseline, across-participants, single-subject design to investigate the feasibility of an individual, narrative-based, social problem-solving intervention on the social problem-solving, narrative, and theory of mind (ToM) abilities of 3 incarcerated adolescent youth offenders identified as having emotional…
NASA Astrophysics Data System (ADS)
Darma, I. K.
2018-01-01
This research is aimed at determining: 1) the differences of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) the differences of mathematical problem solving ability between the students facilitated with authentic and conventional assessment model, and 3) interaction effect between learning and assessment model on mathematical problem solving. The research was conducted in Bali State Polytechnic, using the 2x2 experiment factorial design. The samples of this research were 110 students. The data were collected using a theoretically and empirically-validated test. Instruments were validated by using Aiken’s approach of technique content validity and item analysis, and then analyzed using anova stylistic. The result of the analysis shows that the students facilitated with problem-based learning and authentic assessment models get the highest score average compared to the other students, both in the concept understanding and mathematical problem solving. The result of hypothesis test shows that, significantly: 1) there is difference of mathematical problem solving ability between the students facilitated with problem-based learning model and conventional learning model, 2) there is difference of mathematical problem solving ability between the students facilitated with authentic assessment model and conventional assessment model, and 3) there is interaction effect between learning model and assessment model on mathematical problem solving. In order to improve the effectiveness of mathematics learning, collaboration between problem-based learning model and authentic assessment model can be considered as one of learning models in class.
ERIC Educational Resources Information Center
Pape, Stephen J.
2004-01-01
Many children read mathematics word problems and directly translate them to arithmetic operations. More sophisticated problem solvers transform word problems into object-based or mental models. Subsequent solutions are often qualitatively different because these models differentially support cognitive processing. Based on a conception of problem…
NASA Astrophysics Data System (ADS)
Weidner, Jeanne Margaret O'malley
2000-10-01
This study was motivated by some of the claims that are found in the literature on Problem-Based Learning (PBL). This instructional technique, which uses case studies as its primary instructional tool, has been advanced as an alternative to traditional instruction in order to foster more meaningful, integrative learning of scientific concepts. Several of the advantages attributed to Problem-Based Learning are that it (1) is generally preferred by students because it appears to foster a more nurturing and enjoyable learning experience, (2) fosters greater retention of knowledge and concepts acquired, and (3) results in increased ability to apply this knowledge toward solving new problems. This study examines the differences that result when students learn neuroanatomy concepts under two instructional contexts: problem solving vs. information gathering. The technological resource provided to students to support learning under each of these contexts was the multimedia program BrainStorm: An Interactive Neuroanatomy Atlas (Coppa & Tancred, 1995). The study explores the influence of context with regard to subjects' performance on objective post-tests, organization of knowledge as measured by Pathfinder Networks, differential use of the multimedia software and discourse differences emerging from the transcripts. The findings support previous research in the literature that problem-solving results in less knowledge acquisition in the short term, greater retention of material over time, and a subjects' preference for the method. However, both the degree of retention and preference were influenced by subjects' prior knowledge of the material in the exercises, as there was a significant difference in performance between the two exercises: for the exercise about which subjects appeared to have greater background information, memory decay was less, and subject attitude toward the problem solving instructional format was more favorable, than for the exercise for which subjects had less prior knowledge. Subjects also used the software differently under each format with regard to modules accessed, time spent in modules, and types of information sought. In addition, analyses of the transcripts showed more numerous occurrences of explanations and summarizations in the problem-solving context, compared to the information gathering context. The attempts to show significant differences between the contexts by means of Pathfinder analyses were less than successful.
Design concepts for the development of cooperative problem-solving systems
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom
1992-01-01
There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal was two-fold. First, we were developing specific systems designs to help with this important practical problem. Second, we are using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These designs concepts are described.
Using Problem-Based Learning in Accounting
ERIC Educational Resources Information Center
Hansen, James D.
2006-01-01
In this article, the author describes the process of writing a problem-based learning (PBL) problem and shows how a typical end-of-chapter accounting problem can be converted to a PBL problem. PBL uses complex, real-world problems to motivate students to identify and research the concepts and principles they need to know to solve these problems.…
NASA Astrophysics Data System (ADS)
Iradat, R. D.; Alatas, F.
2017-09-01
Simple harmonic motion is considered as a relatively complex concept to be understood by students. This study attempts to implement laboratory activities that focus on solving contextual problems related to the concept. A group of senior high school students participated in this pre-experimental method from a group’s pretest-posttest research design. Laboratory activities have had a positive impact on improving students’ scientific skills, such as, formulating goals, conducting experiments, applying laboratory tools, and collecting data. Therefore this study has added to the theoretical and practical knowledge that needs to be considered to teach better complicated concepts in physics learning.
Students' Concept-Building Approaches: A Novel Predictor of Success in Chemistry Courses
ERIC Educational Resources Information Center
Frey, Regina F.; Cahill, Michael J.; McDaniel, Mark A.
2017-01-01
One primary goal of many science courses is for students to learn creative problem-solving skills; that is, integrating concepts, explaining concepts in a problem context, and using concepts to solve problems. However, what science instructors see is that many students, even those having excellent SAT/ACT and Advanced Placement scores, struggle in…
The Influence of Science Knowledge Structures on Children's Success in Solving Academic Problems.
ERIC Educational Resources Information Center
Champagne, Audrey B.; And Others
Presented is a study of eighth-grade students' academic problem-solving ability based on their knowledge structures, or their information stored in semantic or long-term memory. The authors describe a technique that they developed to probe knowledge structures with an extension of the card-sort method. The method, known as the Concept Structure…
ERIC Educational Resources Information Center
Kostic, V. Dj.; Jovanovic, V. P. Stankov; Sekulic, T. M.; Takaci, Dj. B.
2016-01-01
Problem solving in the field of quantitative composition of solutions (QCS), expressed as mass share and molar concentration, is essential for chemistry students. Since successful chemistry education is based on different mathematical contents, it is important to be proficient in both mathematical and chemistry concepts as well as interconnections…
ERIC Educational Resources Information Center
Lawrence, Virginia
No longer just a user of commercial software, the 21st century teacher is a designer of interactive software based on theories of learning. This software, a comprehensive study of straightline equations, enhances conceptual understanding, sketching, graphic interpretive and word problem solving skills as well as making connections to real-life and…
ERIC Educational Resources Information Center
Perry, Lee R.
2012-01-01
In response to the diverse requirements of 21st-century police work and the increasing emphasis on community-policing philosophy, the Los Angeles Police Department has implemented changes within its academy curricula and methods of instruction, including the use of adult-learning concepts, a community policing problem-solving model known as…
Instructional Strategies for Online Introductory College Physics Based on Learning Styles
ERIC Educational Resources Information Center
Ekwue, Eleazer U.
2013-01-01
The practical nature of physics and its reliance on mathematical presentations and problem solving pose a challenge toward presentation of the course in an online environment for effective learning experience. Most first-time introductory college physics students fail to grasp the basic concepts of the course and the problem solving skills if the…
Using Creative Problem Solving to Promote Students' Performance of Concept Mapping
ERIC Educational Resources Information Center
Tseng, Kuo-Hung; Chang, Chi-Cheng; Lou, Shi-Jer; Hsu, Pi-Shan
2013-01-01
The purpose of the study was to explore that using creative problem solving can promote students' performance of concept mapping (CMPING). Students were encouraged to use creative problem solving (CPS) in constructing nanometer knowledge structure, and then to promote the performance of CMPING. The knowledge structure was visualized through…
Students' Understanding and Application of the Area under the Curve Concept in Physics Problems
ERIC Educational Resources Information Center
Nguyen, Dong-Hai; Rebello, N. Sanjay
2011-01-01
This study investigates how students understand and apply the area under the curve concept and the integral-area relation in solving introductory physics problems. We interviewed 20 students in the first semester and 15 students from the same cohort in the second semester of a calculus-based physics course sequence on several problems involving…
NASA Astrophysics Data System (ADS)
Zou, Xueli
In the past three decades, physics education research has primarily focused on student conceptual understanding; little work has been conducted to investigate student difficulties in problem solving. In cognitive science and psychology, however, extensive studies have explored the differences in problem solving between experts and naive students. A major finding indicates that experts often apply qualitative representations in problem solving, but that novices use an equation-centered method. This dissertation describes investigations into the use of multiple representations and visualizations in student understanding and problem solving with the concepts of work and energy. A multiple-representation strategy was developed to help students acquire expertise in solving work-energy problems. In this approach, a typical work-energy problem is considered as a physical process. The process is first described in words-the verbal representation of the process. Next, a sketch or a picture, called a pictorial representation, is used to represent the process. This is followed by work-energy bar charts-a physical representation of the same processes. Finally, this process is represented mathematically by using a generalized work-energy equation. In terms of the multiple representations, the goal of solving a work- energy problem is to represent the physical process the more intuitive pictorial and diagrammatic physical representations. Ongoing assessment of student learning indicates that this multiple-representation technique is more effective than standard instruction methods in student problem solving. visualize this difficult-to-understand concept, a guided- inquiry learning activity using a pair of model carts and an experiment problem using a sandbag were developed. Assessment results have shown that these research-based materials are effective in helping students visualize this concept and give a pictorial idea of ``where the kinetic energy goes'' during inelastic collisions. The research and curriculum development was conducted in the context of the introductory calculus-based physics course. Investigations were carried out using common physics education research tools, including open-ended surveys, written test questions, and individual student interviews.
Assessing Cognitive Learning of Analytical Problem Solving
NASA Astrophysics Data System (ADS)
Billionniere, Elodie V.
Introductory programming courses, also known as CS1, have a specific set of expected outcomes related to the learning of the most basic and essential computational concepts in computer science (CS). However, two of the most often heard complaints in such courses are that (1) they are divorced from the reality of application and (2) they make the learning of the basic concepts tedious. The concepts introduced in CS1 courses are highly abstract and not easily comprehensible. In general, the difficulty is intrinsic to the field of computing, often described as "too mathematical or too abstract." This dissertation presents a small-scale mixed method study conducted during the fall 2009 semester of CS1 courses at Arizona State University. This study explored and assessed students' comprehension of three core computational concepts---abstraction, arrays of objects, and inheritance---in both algorithm design and problem solving. Through this investigation students' profiles were categorized based on their scores and based on their mistakes categorized into instances of five computational thinking concepts: abstraction, algorithm, scalability, linguistics, and reasoning. It was shown that even though the notion of computational thinking is not explicit in the curriculum, participants possessed and/or developed this skill through the learning and application of the CS1 core concepts. Furthermore, problem-solving experiences had a direct impact on participants' knowledge skills, explanation skills, and confidence. Implications for teaching CS1 and for future research are also considered.
Pre-Service Physics Teachers’ Problem-solving Skills in Projectile Motion Concept
NASA Astrophysics Data System (ADS)
Sutarno, S.; Setiawan, A.; Kaniawati, I.; Suhandi, A.
2017-09-01
This study is a preliminary research aiming at exploring pre-service physics teachers’ skills in applying the stage of problem-solving strategies. A total of 76 students of physics education study program at a college in Bengkulu Indonesia participated in the study. The skills on solving physics problems are being explored through exercises that demand the use of problem-solving strategies with several stages such as useful description, physics approach, specific application of physics, physics equation, mathematical procedures, and logical progression. Based on the results of data analysis, it is found that the pre-service physics teachers’ skills are in the moderate category for physics approach and mathematical procedural, and low category for the others. It was concluded that the pre-service physics teachers’ problem-solving skills are categorized low. It is caused by the learning of physics that has done less to practice problem-solving skills. The problems provided are only routine and poorly trained in the implementation of problem-solving strategies.The results of the research can be used as a reference for the importance of the development of physics learning based on higher order thinking skills.
Scalable software architectures for decision support.
Musen, M A
1999-12-01
Interest in decision-support programs for clinical medicine soared in the 1970s. Since that time, workers in medical informatics have been particularly attracted to rule-based systems as a means of providing clinical decision support. Although developers have built many successful applications using production rules, they also have discovered that creation and maintenance of large rule bases is quite problematic. In the 1980s, several groups of investigators began to explore alternative programming abstractions that can be used to build decision-support systems. As a result, the notions of "generic tasks" and of reusable problem-solving methods became extremely influential. By the 1990s, academic centers were experimenting with architectures for intelligent systems based on two classes of reusable components: (1) problem-solving methods--domain-independent algorithms for automating stereotypical tasks--and (2) domain ontologies that captured the essential concepts (and relationships among those concepts) in particular application areas. This paper highlights how developers can construct large, maintainable decision-support systems using these kinds of building blocks. The creation of domain ontologies and problem-solving methods is the fundamental end product of basic research in medical informatics. Consequently, these concepts need more attention by our scientific community.
NASA Technical Reports Server (NTRS)
Smith, Philip J.
1995-01-01
There are many problem-solving tasks that are too complex to fully automate given the current state of technology. Nevertheless, significant improvements in overall system performance could result from the introduction of well-designed computer aids. We have been studying the development of cognitive tools for one such problem-solving task, enroute flight path planning for commercial airlines. Our goal has been two-fold. First, we have been developing specific system designs to help with this important practical problem. Second, we have been using this context to explore general design concepts to guide in the development of cooperative problem-solving systems. These design concepts are described below, along with illustrations of their application.
Determining the Exchangeability of Concept Map and Problem-Solving Essay Scores
ERIC Educational Resources Information Center
Hollenbeck, Keith; Twyman, Todd; Tindal, Gerald
2006-01-01
This study investigated the score exchangeability of concept maps with problem-solving essays. Of interest was whether sixth-grade students' concept maps predicted their scores on essay responses that used concept map content. Concept maps were hypothesized to be alternatives to performance assessments for content-area domain knowledge in science.…
NASA Astrophysics Data System (ADS)
Rr Chusnul, C.; Mardiyana, S., Dewi Retno
2017-12-01
Problem solving is the basis of mathematics learning. Problem solving teaches us to clarify an issue coherently in order to avoid misunderstanding information. Sometimes there may be mistakes in problem solving due to misunderstanding the issue, choosing a wrong concept or misapplied concept. The problem-solving test was carried out after students were given treatment on learning by using cooperative learning of TTW type. The purpose of this study was to elucidate student problem regarding to problem solving errors after learning by using cooperative learning of TTW type. Newman stages were used to identify problem solving errors in this study. The new research used a descriptive method to find out problem solving errors in students. The subject in this study were students of Vocational Senior High School (SMK) in 10th grade. Test and interview was conducted for data collection. Thus, the results of this study suggested problem solving errors in students after learning by using cooperative learning of TTW type for Newman stages.
Improving performance through concept formation and conceptual clustering
NASA Technical Reports Server (NTRS)
Fisher, Douglas H.
1992-01-01
Research from June 1989 through October 1992 focussed on concept formation, clustering, and supervised learning for purposes of improving the efficiency of problem-solving, planning, and diagnosis. These projects resulted in two dissertations on clustering, explanation-based learning, and means-ends planning, and publications in conferences and workshops, several book chapters, and journals; a complete Bibliography of NASA Ames supported publications is included. The following topics are studied: clustering of explanations and problem-solving experiences; clustering and means-end planning; and diagnosis of space shuttle and space station operating modes.
ERIC Educational Resources Information Center
Erickson, H. Lynn; Lanning, Lois A.; French, Rachel
2017-01-01
Knowing the facts is not enough. If we want students to develop intellectually, creatively problem-solve, and grapple with complexity, the key is in "conceptual understanding." A Concept-Based curriculum recaptures students' innate curiosity about the world and provides the thrilling feeling of engaging one's mind. This updated edition…
A novel approach based on preference-based index for interval bilevel linear programming problem.
Ren, Aihong; Wang, Yuping; Xue, Xingsi
2017-01-01
This paper proposes a new methodology for solving the interval bilevel linear programming problem in which all coefficients of both objective functions and constraints are considered as interval numbers. In order to keep as much uncertainty of the original constraint region as possible, the original problem is first converted into an interval bilevel programming problem with interval coefficients in both objective functions only through normal variation of interval number and chance-constrained programming. With the consideration of different preferences of different decision makers, the concept of the preference level that the interval objective function is preferred to a target interval is defined based on the preference-based index. Then a preference-based deterministic bilevel programming problem is constructed in terms of the preference level and the order relation [Formula: see text]. Furthermore, the concept of a preference δ -optimal solution is given. Subsequently, the constructed deterministic nonlinear bilevel problem is solved with the help of estimation of distribution algorithm. Finally, several numerical examples are provided to demonstrate the effectiveness of the proposed approach.
Inquiry-based problem solving in introductory physics
NASA Astrophysics Data System (ADS)
Koleci, Carolann
What makes problem solving in physics difficult? How do students solve physics problems, and how does this compare to an expert physicist's strategy? Over the past twenty years, physics education research has revealed several differences between novice and expert problem solving. The work of Chi, Feltovich, and Glaser demonstrates that novices tend to categorize problems based on surface features, while experts categorize according to theory, principles, or concepts1. If there are differences between how problems are categorized, then are there differences between how physics problems are solved? Learning more about the problem solving process, including how students like to learn and what is most effective, requires both qualitative and quantitative analysis. In an effort to learn how novices and experts solve introductory electricity problems, a series of in-depth interviews were conducted, transcribed, and analyzed, using both qualitative and quantitative methods. One-way ANOVA tests were performed in order to learn if there are any significant problem solving differences between: (a) novices and experts, (b) genders, (c) students who like to answer questions in class and those who don't, (d) students who like to ask questions in class and those who don't, (e) students employing an interrogative approach to problem solving and those who don't, and (f) those who like physics and those who dislike it. The results of both the qualitative and quantitative methods reveal that inquiry-based problem solving is prevalent among novices and experts, and frequently leads to the correct physics. These findings serve as impetus for the third dimension of this work: the development of Choose Your Own Adventure Physics(c) (CYOAP), an innovative teaching tool in physics which encourages inquiry-based problem solving. 1Chi, M., P. Feltovich, R. Glaser, "Categorization and Representation of Physics Problems by Experts and Novices", Cognitive Science, 5, 121--152 (1981).
Education problems and Web-based teaching: how it impacts dental educators?
Clark, G T
2001-01-01
This article looks at six problems that vex educators and how web-based teaching might help solve them. These problems include: (1) limited access to educational content, (2) need for asynchronous access to educational content, (3) depth and diversity of educational content, (4) training in complex problem solving, (5) promotion of lifelong learning behaviors and (6) achieving excellence in education. The advantages and disadvantage of web-based educational content for each problem are discussed. The article suggests that when a poorly organized course with inaccurate and irrelevant content is placed online, it solves no problems. However some of the above issues can be partially or fully solved by hosting well-constructed teaching modules on the web. This article also reviews the literature investigating the efficacy of off-site education as compared to that provided on-site. The conclusion of this review is that teleconference-based and web-based delivery of educational content can be as effective as traditional classroom-based teaching assuming the technologic problems sometimes associated with delivering teaching content to off-site locations do not interfere in the learning process. A suggested hierarchy for rating and comparing e-learning concepts and methods is presented for consideration.
ERIC Educational Resources Information Center
Firdaus, Fery Muhamad; Wahyudin; Herman, Tatang
2017-01-01
This research was done on primary school students who are able to understand mathematical concepts, but unable to apply them in solving real life problems. Therefore, this study aims to improve primary school students' mathematical literacy through problem-based learning and direct instruction. In addition, the research was conducted to determine…
NASA Astrophysics Data System (ADS)
Henderson, Charles; Yerushalmi, Edit; Kuo, Vince H.; Heller, Kenneth; Heller, Patricia
2007-12-01
To identify and describe the basis upon which instructors make curricular and pedagogical decisions, we have developed an artifact-based interview and an analysis technique based on multilayered concept maps. The policy capturing technique used in the interview asks instructors to make judgments about concrete instructional artifacts similar to those they likely encounter in their teaching environment. The analysis procedure alternatively employs both an a priori systems view analysis and an emergent categorization to construct a multilayered concept map, which is a hierarchically arranged set of concept maps where child maps include more details than parent maps. Although our goal was to develop a model of physics faculty beliefs about the teaching and learning of problem solving in the context of an introductory calculus-based physics course, the techniques described here are applicable to a variety of situations in which instructors make decisions that influence teaching and learning.
Find the Dimensions: Students Solving a Tiling Problem
ERIC Educational Resources Information Center
Obara, Samuel
2018-01-01
Students learn mathematics by solving problems. Mathematics textbooks are full of problems, and mathematics teachers use these problems to test students' understanding of mathematical concepts. This paper discusses how problem-solving skills can be fostered with a geometric tiling problem.
Interference thinking in constructing students’ knowledge to solve mathematical problems
NASA Astrophysics Data System (ADS)
Jayanti, W. E.; Usodo, B.; Subanti, S.
2018-04-01
This research aims to describe interference thinking in constructing students’ knowledge to solve mathematical problems. Interference thinking in solving problems occurs when students have two concepts that interfere with each other’s concept. Construction of problem-solving can be traced using Piaget’s assimilation and accommodation framework, helping to know the students’ thinking structures in solving the problems. The method of this research was a qualitative method with case research strategy. The data in this research involving problem-solving result and transcripts of interviews about students’ errors in solving the problem. The results of this research focus only on the student who experience proactive interference, where student in solving a problem using old information to interfere with the ability to recall new information. The student who experience interference thinking in constructing their knowledge occurs when the students’ thinking structures in the assimilation and accommodation process are incomplete. However, after being given reflection to the student, then the students’ thinking process has reached equilibrium condition even though the result obtained remains wrong.
ERIC Educational Resources Information Center
Kapici, Hasan Ozgur; Akcay, Hakan; Yager, Robert E.
2017-01-01
It is important for students to learn concepts and using them for solving problems and further learning. Within this respect, the purpose of this study is to investigate students' abilities to apply science concepts that they have learned from Science-Technology-Society based approach or textbook oriented instruction. Current study is based on…
Effects of Variation and Prior Knowledge on Abstract Concept Learning
ERIC Educational Resources Information Center
Braithwaite, David W.; Goldstone, Robert L.
2015-01-01
Learning abstract concepts through concrete examples may promote learning at the cost of inhibiting transfer. The present study investigated one approach to solving this problem: systematically varying superficial features of the examples. Participants learned to solve problems involving a mathematical concept by studying either superficially…
Use of Concept Profile Analysis to Identify Difficulties in Solving Science Problems.
ERIC Educational Resources Information Center
Gorodetsky, Malka; Hoz, Ron
1980-01-01
Proposed is a new method for analyzing how concepts are used in the process of problem solving in science. Through the use of a "thinking aloud" interview technique, 21 tenth-grade students worked with a problem concerning the boiling point of water at the Dead Sea. Interview protocols were analyzed to develop students' concept profiles.…
Computer Graphics-aided systems analysis: application to well completion design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detamore, J.E.; Sarma, M.P.
1985-03-01
The development of an engineering tool (in the form of a computer model) for solving design and analysis problems related with oil and gas well production operations is discussed. The development of the method is based on integrating the concepts of ''Systems Analysis'' with the techniques of ''Computer Graphics''. The concepts behind the method are very general in nature. This paper, however, illustrates the application of the method in solving gas well completion design problems. The use of the method will save time and improve the efficiency of such design and analysis problems. The method can be extended to othermore » design and analysis aspects of oil and gas wells.« less
Identification and Analysis of Student Conceptions Used To Solve Chemical Equilibrium Problems.
ERIC Educational Resources Information Center
Voska, Kirk W.; Heikkinen, Henry W.
2000-01-01
Identifies and quantifies the chemistry conceptions used by students when solving chemical equilibrium problems requiring application of LeChatelier's Principle, and explores the feasibility of designing a paper and pencil test to accomplish these purposes. Eleven prevalent incorrect student conceptions about chemical equilibrium were identified…
Can Good Concept Mappers Be Good Problem Solvers in Science?
ERIC Educational Resources Information Center
Okebukola, Peter Akinsola
1992-01-01
Describes a study of concept mapping as a means of learning problem-solving skills. Concludes that the concept mapping subjects were significantly more successful at solving biological test questions than were the controls. Reports no significant differences between cooperative and individual mapping and mixed results for gender. (DK)
How to Teach Procedures, Problem Solving, and Concepts in Microbial Genetics
ERIC Educational Resources Information Center
Bainbridge, Brian W.
1977-01-01
Flow-diagrams, algorithms, decision logic tables, and concept maps are presented in detail as methods for teaching practical procedures, problem solving, and basic concepts in microbial genetics. It is suggested that the flexible use of these methods should lead to an improved understanding of microbial genetics. (Author/MA)
Using Students' Representations Constructed during Problem Solving to Infer Conceptual Understanding
ERIC Educational Resources Information Center
Domin, Daniel; Bodner, George
2012-01-01
The differences in the types of representations constructed during successful and unsuccessful problem-solving episodes were investigated within the context of graduate students working on problems that involve concepts from 2D-NMR. Success at problem solving was established by having the participants solve five problems relating to material just…
Analyzing Problem's Difficulty Based on Neural Networks and Knowledge Map
ERIC Educational Resources Information Center
Kuo, Rita; Lien, Wei-Peng; Chang, Maiga; Heh, Jia-Sheng
2004-01-01
This paper proposes a methodology to calculate both the difficulty of the basic problems and the difficulty of solving a problem. The method to calculate the difficulty of problem is according to the process of constructing a problem, including Concept Selection, Unknown Designation, and Proposition Construction. Some necessary measures observed…
Students using visual thinking to learn science in a Web-based environment
NASA Astrophysics Data System (ADS)
Plough, Jean Margaret
United States students' science test scores are low, especially in problem solving, and traditional science instruction could be improved. Consequently, visual thinking, constructing science structures, and problem solving in a web-based environment may be valuable strategies for improving science learning. This ethnographic study examined the science learning of fifteen fourth grade students in an after school computer club involving diverse students at an inner city school. The investigation was done from the perspective of the students, and it described the processes of visual thinking, web page construction, and problem solving in a web-based environment. The study utilized informal group interviews, field notes, Visual Learning Logs, and student web pages, and incorporated a Standards-Based Rubric which evaluated students' performance on eight science and technology standards. The Visual Learning Logs were drawings done on the computer to represent science concepts related to the Food Chain. Students used the internet to search for information on a plant or animal of their choice. Next, students used this internet information, with the information from their Visual Learning Logs, to make web pages on their plant or animal. Later, students linked their web pages to form Science Structures. Finally, students linked their Science Structures with the structures of other students, and used these linked structures as models for solving problems. Further, during informal group interviews, students answered questions about visual thinking, problem solving, and science concepts. The results of this study showed clearly that (1) making visual representations helped students understand science knowledge, (2) making links between web pages helped students construct Science Knowledge Structures, and (3) students themselves said that visual thinking helped them learn science. In addition, this study found that when using Visual Learning Logs, the main overall ideas of the science concepts were usually represented accurately. Further, looking for information on the internet may cause new problems in learning. Likewise, being absent, starting late, and/or dropping out all may negatively influence students' proficiency on the standards. Finally, the way Science Structures are constructed and linked may provide insights into the way individual students think and process information.
Solution mechanism guide: implementing innovation within a research & development organization.
Keeton, Kathryn E; Richard, Elizabeth E; Davis, Jeffrey R
2014-10-01
In order to create a culture more open to novel problem-solving mechanisms, NASA's Human Health and Performance Directorate (HH&P) created a strategic knowledge management tool that educates employees about innovative problem-solving techniques, the Solution Mechanism Guide (SMG). The SMG is a web-based, interactive guide that leverages existing and innovative problem-solving methods and presents this information as a unique user experience so that the employee is empowered to make the best decision about which problem-solving tool best meets their needs. By integrating new and innovative methods with existing problem solving tools, the SMG seamlessly introduces open innovation and collaboration concepts within HH&P to more effectively address human health and performance risks. This commentary reviews the path of creating a more open and innovative culture within HH&P and the process and development steps that were taken to develop the SMG.
Swinford, A E; McKeag, D B
1990-01-01
There has been recent interest in the development of problem-based human genetics curricula in U.S. medical schools. The College of Human Medicine at Michigan State University has had a problem-based curriculum since 1974. The vertical integration of genetics within the problem-based curriculum, called "Track II," has recently been revised. On first inspection, the curriculum appeared to lack a significant genetics component; however, on further analysis it was found that many genetics concepts were covered in the biochemistry, microbiology, pathology, and clinical science components. Both basic science concepts and clinical applications of genetics are covered in the curriculum by providing appropriate references for basic concepts and including inherited conditions within the differential diagnosis in the cases studied. Evaluations consist of a multiple-choice content exam and a modified essay exam based on a clinical case, allowing evaluation of both basic concepts and problem-solving ability. This curriculum prepares students to use genetics in a clinical context in their future careers. PMID:2220816
NASA Astrophysics Data System (ADS)
Mewhinney, Christina
A study was conducted to investigate the relationship of students' concept integration and achievement with time spent within a topic and across related topics in a large first semester guided inquiry organic chemistry class. Achievement was based on evidence of algorithmic problem solving; and concept integration was based on demonstrated performance explaining, applying, and relating concepts to each other. Twelve individual assessments were made of both variables over three related topics---acid/base, nucleophilic substitution and electrophilic addition reactions. Measurements included written, free response and ordered multiple answer questions using a classroom response system. Results demonstrated that students can solve problems without conceptual understanding. A second study was conducted to compare the students' learning approach at the beginning and end of the course. Students were scored on their preferences for a deep, strategic, or surface approach to learning based on their responses to a pre and post survey. Results suggest that students significantly decreased their preference for a surface approach during the semester. Analysis of the data collected was performed to determine the relationship between students' learning approach and their concept integration and achievement in this class. Results show a correlation between a deep approach and concept integration and a strong negative correlation between a surface approach and concept integration.
Identifying Threshold Concepts: Case Study of an Open Catchment Hydraulics Course
ERIC Educational Resources Information Center
Knight, D. B.; Callaghan, D. P.; Baldock, T. E.; Meyer, J. H. F.
2014-01-01
The Threshold Concept Framework is used to initiate a dialogue on an empirically supported pedagogy that focuses on students' conceptual understanding required for solving application-based problems. The present paper uses a triangulation approach to identify the threshold concept in a third-year undergraduate civil engineering course on open…
ERIC Educational Resources Information Center
DeMeo, Stephen
2007-01-01
Common examples of graphic organizers include flow diagrams, concept maps, and decision trees. The author has created a novel type of graphic organizer called a decision map. A decision map is a directional heuristic that helps learners solve problems within a generic framework. It incorporates questions that the user must answer and contains…
Conceptions of Efficiency: Applications in Learning and Problem Solving
ERIC Educational Resources Information Center
Hoffman, Bobby; Schraw, Gregory
2010-01-01
The purpose of this article is to clarify conceptions, definitions, and applications of learning and problem-solving efficiency. Conceptions of efficiency vary within the field of educational psychology, and there is little consensus as to how to define, measure, and interpret the efficiency construct. We compare three diverse models that differ…
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment
ERIC Educational Resources Information Center
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this…
ERIC Educational Resources Information Center
Chandrasegaran, A. L.; Treagust, David F.; Waldrip, Bruce G.; Chandrasegaran, Antonia
2009-01-01
A qualitative case study was conducted to investigate the understanding of the limiting reagent concept and the strategies used by five Year 11 students when solving four reaction stoichiometry problems. Students' written problem-solving strategies were studied using the think-aloud protocol during problem-solving, and retrospective verbalisations…
The Microcomputer--A Problem Solving Tool.
ERIC Educational Resources Information Center
Hoelscher, Karen J.
Designed to assist teachers in using the microcomputer as a tool to teach problem solving strategies, this document is divided into two sections: the first introduces the concept of problem solving as a thinking process, and suggests means by which a teacher can become an effective guide for the learning of problem solving skills; the second…
Teaching basic science to optimize transfer.
Norman, Geoff
2009-09-01
Basic science teachers share the concern that much of what they teach is soon forgotten. Although some evidence suggests that relatively little basic science is forgotten, it may not appear so, as students commonly have difficulty using these concepts to solve or explain clinical problems: This phenomenon, using a concept learned in one context to solve a problem in a different context, is known to cognitive psychologists as transfer. The psychology literature shows that transfer is difficult; typically, even though students may know a concept, fewer than 30% will be able to use it to solve new problems. However a number of strategies to improve transfer can be adopted at the time of initial teaching of the concept, in the use of exemplars to illustrate the concept, and in practice with additional problems. In this article, we review the literature in psychology to identify practical strategies to improve transfer. Critical review of psychology literature to identify factors that enhance or impede transfer. There are a number of strategies available to teachers to facilitate transfer. These include active problem-solving at the time of initial learning, imbedding the concept in a problem context, using everyday analogies, and critically, practice with multiple dissimilar problems. Further, mixed practice, where problems illustrating different concepts are mixed together, and distributed practice, spread out over time, can result in significant and large gains. Transfer is difficult, but specific teaching strategies can enhance this skill by factors of two or three.
NASA Technical Reports Server (NTRS)
Smith, Stephen F.; Pathak, Dhiraj K.
1991-01-01
In this paper, we report work aimed at applying concepts of constraint-based problem structuring and multi-perspective scheduling to an over-subscribed scheduling problem. Previous research has demonstrated the utility of these concepts as a means for effectively balancing conflicting objectives in constraint-relaxable scheduling problems, and our goal here is to provide evidence of their similar potential in the context of HST observation scheduling. To this end, we define and experimentally assess the performance of two time-bounded heuristic scheduling strategies in balancing the tradeoff between resource setup time minimization and satisfaction of absolute time constraints. The first strategy considered is motivated by dispatch-based manufacturing scheduling research, and employs a problem decomposition that concentrates local search on minimizing resource idle time due to setup activities. The second is motivated by research in opportunistic scheduling and advocates a problem decomposition that focuses attention on the goal activities that have the tightest temporal constraints. Analysis of experimental results gives evidence of differential superiority on the part of each strategy in different problem solving circumstances. A composite strategy based on recognition of characteristics of the current problem solving state is then defined and tested to illustrate the potential benefits of constraint-based problem structuring and multi-perspective scheduling in over-subscribe scheduling problems.
Characteristics of students in comparative problem solving
NASA Astrophysics Data System (ADS)
Irfan, M.; Sudirman; Rahardi, R.
2018-01-01
Often teachers provided examples and exercised to students with regard to comparative problems consisting of one quantity. In this study, the researchers gave the problem of comparison with the two quantities mixed. It was necessary to have a good understanding to solve this problem. This study aimed to determine whether students understand the comparison in depth and be able to solve the problem of non-routine comparison. This study used qualitative explorative methods, with researchers conducting in-depth interviews on subjects to explore the thinking process when solving comparative problems. The subject of this study was three students selected by purposive sampling of 120 students. From this research, researchers found there were three subjects with different characteristics, namely: subject 1, he did the first and second questions with methods of elimination and substitution (non-comparison); subject 2, he did the first question with the concept of comparison although the answer was wrong, and did the second question with the method of elimination and substitution (non-comparison); and subject 3, he did both questions with the concept of comparison. In the first question, he did wrong because he was unable to understand the problem, while on the second he did correctly. From the characteristics of the answers, the researchers divided into 3 groups based on thinking process, namely: blind-proportion, partial-proportion, and proportion thinking.
Towards lexicographic multi-objective linear programming using grossone methodology
NASA Astrophysics Data System (ADS)
Cococcioni, Marco; Pappalardo, Massimo; Sergeyev, Yaroslav D.
2016-10-01
Lexicographic Multi-Objective Linear Programming (LMOLP) problems can be solved in two ways: preemptive and nonpreemptive. The preemptive approach requires the solution of a series of LP problems, with changing constraints (each time the next objective is added, a new constraint appears). The nonpreemptive approach is based on a scalarization of the multiple objectives into a single-objective linear function by a weighted combination of the given objectives. It requires the specification of a set of weights, which is not straightforward and can be time consuming. In this work we present both mathematical and software ingredients necessary to solve LMOLP problems using a recently introduced computational methodology (allowing one to work numerically with infinities and infinitesimals) based on the concept of grossone. The ultimate goal of such an attempt is an implementation of a simplex-like algorithm, able to solve the original LMOLP problem by solving only one single-objective problem and without the need to specify finite weights. The expected advantages are therefore obvious.
Web-Based Problem-Solving Assignment and Grading System
NASA Astrophysics Data System (ADS)
Brereton, Giles; Rosenberg, Ronald
2014-11-01
In engineering courses with very specific learning objectives, such as fluid mechanics and thermodynamics, it is conventional to reinforce concepts and principles with problem-solving assignments and to measure success in problem solving as an indicator of student achievement. While the modern-day ease of copying and searching for online solutions can undermine the value of traditional assignments, web-based technologies also provide opportunities to generate individualized well-posed problems with an infinite number of different combinations of initial/final/boundary conditions, so that the probability of any two students being assigned identical problems in a course is vanishingly small. Such problems can be designed and programmed to be: single or multiple-step, self-grading, allow students single or multiple attempts; provide feedback when incorrect; selectable according to difficulty; incorporated within gaming packages; etc. In this talk, we discuss the use of a homework/exam generating program of this kind in a single-semester course, within a web-based client-server system that ensures secure operation.
NASA Astrophysics Data System (ADS)
Yusop, Nurhafizah Moziyana Mohd; Hasan, Mohammad Khatim; Wook, Muslihah; Amran, Mohd Fahmi Mohamad; Ahmad, Siti Rohaidah
2017-10-01
There are many benefits to improve Euler scheme for solving the Ordinary Differential Equation Problems. Among the benefits are simple implementation and low-cost computational. However, the problem of accuracy in Euler scheme persuade scholar to use complex method. Therefore, the main purpose of this research are show the construction a new modified Euler scheme that improve accuracy of Polygon scheme in various step size. The implementing of new scheme are used Polygon scheme and Harmonic mean concept that called as Harmonic-Polygon scheme. This Harmonic-Polygon can provide new advantages that Euler scheme could offer by solving Ordinary Differential Equation problem. Four set of problems are solved via Harmonic-Polygon. Findings show that new scheme or Harmonic-Polygon scheme can produce much better accuracy result.
ERIC Educational Resources Information Center
Dermitzaki, Irini; Leondari, Angeliki; Goudas, Marios
2009-01-01
This study aimed at investigating the relations between students' strategic behaviour during problem solving, task performance and domain-specific self-concept. A total of 167 first- and second-graders were individually examined in tasks involving cubes assembly and in academic self-concept in mathematics. Students' cognitive, metacognitive, and…
Problem solving with genetic algorithms and Splicer
NASA Technical Reports Server (NTRS)
Bayer, Steven E.; Wang, Lui
1991-01-01
Genetic algorithms are highly parallel, adaptive search procedures (i.e., problem-solving methods) loosely based on the processes of population genetics and Darwinian survival of the fittest. Genetic algorithms have proven useful in domains where other optimization techniques perform poorly. The main purpose of the paper is to discuss a NASA-sponsored software development project to develop a general-purpose tool for using genetic algorithms. The tool, called Splicer, can be used to solve a wide variety of optimization problems and is currently available from NASA and COSMIC. This discussion is preceded by an introduction to basic genetic algorithm concepts and a discussion of genetic algorithm applications.
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
Improving the learning of clinical reasoning through computer-based cognitive representation
Wu, Bian; Wang, Minhong; Johnson, Janice M.; Grotzer, Tina A.
2014-01-01
Objective Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Methods Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. Results A significant improvement was found in students’ learning products from the beginning to the end of the study, consistent with students’ report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. Conclusions The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction. PMID:25518871
Improving the learning of clinical reasoning through computer-based cognitive representation.
Wu, Bian; Wang, Minhong; Johnson, Janice M; Grotzer, Tina A
2014-01-01
Clinical reasoning is usually taught using a problem-solving approach, which is widely adopted in medical education. However, learning through problem solving is difficult as a result of the contextualization and dynamic aspects of actual problems. Moreover, knowledge acquired from problem-solving practice tends to be inert and fragmented. This study proposed a computer-based cognitive representation approach that externalizes and facilitates the complex processes in learning clinical reasoning. The approach is operationalized in a computer-based cognitive representation tool that involves argument mapping to externalize the problem-solving process and concept mapping to reveal the knowledge constructed from the problems. Twenty-nine Year 3 or higher students from a medical school in east China participated in the study. Participants used the proposed approach implemented in an e-learning system to complete four learning cases in 4 weeks on an individual basis. For each case, students interacted with the problem to capture critical data, generate and justify hypotheses, make a diagnosis, recall relevant knowledge, and update their conceptual understanding of the problem domain. Meanwhile, students used the computer-based cognitive representation tool to articulate and represent the key elements and their interactions in the learning process. A significant improvement was found in students' learning products from the beginning to the end of the study, consistent with students' report of close-to-moderate progress in developing problem-solving and knowledge-construction abilities. No significant differences were found between the pretest and posttest scores with the 4-week period. The cognitive representation approach was found to provide more formative assessment. The computer-based cognitive representation approach improved the learning of clinical reasoning in both problem solving and knowledge construction.
ERIC Educational Resources Information Center
Ellis, Robert A.; Goodyear, Peter; Brillant, Martha; Prosser, Michael
2008-01-01
This study investigates fourth-year pharmacy students' experiences of problem-based learning (PBL). It adopts a phenomenographic approach to the evaluation of problem-based learning, to shed light on the ways in which different groups of students conceive of, and approach, PBL. The study focuses on the way students approach solving problem…
ERIC Educational Resources Information Center
Crabtree, John; Zhang, Xihui
2015-01-01
Teaching advanced programming can be a challenge, especially when the students are pursuing different majors with diverse analytical and problem-solving capabilities. The purpose of this paper is to explore the efficacy of using a particular problem as a vehicle for imparting a broad set of programming concepts and problem-solving techniques. We…
A Rubric for Assessing Students' Experimental Problem-Solving Ability
ERIC Educational Resources Information Center
Shadle, Susan E.; Brown, Eric C.; Towns, Marcy H.; Warner, Don L.
2012-01-01
The ability to couple problem solving both to the understanding of chemical concepts and to laboratory practices is an essential skill for undergraduate chemistry programs to foster in our students. Therefore, chemistry programs must offer opportunities to answer real problems that require use of problem-solving processes used by practicing…
NASA Astrophysics Data System (ADS)
Haili, Hasnawati; Maknun, Johar; Siahaan, Parsaoran
2017-08-01
Physics is a lessons that related to students' daily experience. Therefore, before the students studying in class formally, actually they have already have a visualization and prior knowledge about natural phenomenon and could wide it themselves. The learning process in class should be aimed to detect, process, construct, and use students' mental model. So, students' mental model agree with and builds in the right concept. The previous study held in MAN 1 Muna informs that in learning process the teacher did not pay attention students' mental model. As a consequence, the learning process has not tried to build students' mental modelling ability (MMA). The purpose of this study is to describe the improvement of students' MMA as a effect of problem solving based learning model with multiple representations approach. This study is pre experimental design with one group pre post. It is conducted in XI IPA MAN 1 Muna 2016/2017. Data collection uses problem solving test concept the kinetic theory of gasses and interview to get students' MMA. The result of this study is clarification students' MMA which is categorized in 3 category; High Mental Modelling Ability (H-MMA) for 7
ERIC Educational Resources Information Center
Rubiah, Musriadi
2016-01-01
Problem based learning is a training strategy, students work together in groups, and take responsibility for solving problems in a professional manner. Instructional materials such as textbooks become the main reference of students in study of mushrooms, especially the material is considered less effective in responding to the information needs of…
On Meaningful Measurement: Concepts, Technology and Examples.
ERIC Educational Resources Information Center
Cheung, K. C.
This paper discusses how concepts and procedural skills in problem-solving tasks, as well as affects and emotions, can be subjected to meaningful measurement (MM), based on a multisource model of learning and a constructivist information-processing theory of knowing. MM refers to the quantitative measurement of conceptual and procedural knowledge…
NASA Astrophysics Data System (ADS)
Azila Che Musa, Nor; Mahmud, Zamalia; Baharun, Norhayati
2017-09-01
One of the important skills that is required from any student who are learning statistics is knowing how to solve statistical problems correctly using appropriate statistical methods. This will enable them to arrive at a conclusion and make a significant contribution and decision for the society. In this study, a group of 22 students majoring in statistics at UiTM Shah Alam were given problems relating to topics on testing of hypothesis which require them to solve the problems using confidence interval, traditional and p-value approach. Hypothesis testing is one of the techniques used in solving real problems and it is listed as one of the difficult concepts for students to grasp. The objectives of this study is to explore students’ perceived and actual ability in solving statistical problems and to determine which item in statistical problem solving that students find difficult to grasp. Students’ perceived and actual ability were measured based on the instruments developed from the respective topics. Rasch measurement tools such as Wright map and item measures for fit statistics were used to accomplish the objectives. Data were collected and analysed using Winsteps 3.90 software which is developed based on the Rasch measurement model. The results showed that students’ perceived themselves as moderately competent in solving the statistical problems using confidence interval and p-value approach even though their actual performance showed otherwise. Item measures for fit statistics also showed that the maximum estimated measures were found on two problems. These measures indicate that none of the students have attempted these problems correctly due to reasons which include their lack of understanding in confidence interval and probability values.
Computer Systems for Teaching Complex Concepts.
ERIC Educational Resources Information Center
Feurzeig, Wallace
Four Programing systems--Mentor, Stringcomp, Simon, and Logo--were designed and implemented as integral parts of research into the various ways computers may be used for teaching problem-solving concepts and skills. Various instructional contexts, among them medicine, mathematics, physics, and basic problem-solving for elementary school children,…
Concept mapping improves academic performance in problem solving questions in biochemistry subject.
Baig, Mukhtiar; Tariq, Saba; Rehman, Rehana; Ali, Sobia; Gazzaz, Zohair J
2016-01-01
To assess the effectiveness of concept mapping (CM) on the academic performance of medical students' in problem-solving as well as in declarative knowledge questions and their perception regarding CM. The present analytical and questionnaire-based study was carried out at Bahria University Medical and Dental College (BUMDC), Karachi, Pakistan. In this analytical study, students were assessed with problem-solving questions (A-type MCQs), and declarative knowledge questions (short essay questions), and 50% of the questions were from the topics learned by CM. Students also filled a 10-item, 3-point Likert scale questionnaire about their perception regarding the effectiveness of the CM approach, and two open-ended questions were also asked. There was a significant difference in the marks obtained in those problem-solving questions, which were learned by CM as compared to those topics which were taught by the traditional lectures (p<0.001), while no significant difference was observed in marks in declarative knowledge questions (p=0.704). Analysis of students' perception regarding CM showed that majority of the students perceive that CM is a helpful technique and it is enjoyed by the students. In open-ended questions, the majority of the students commented positively about the effectiveness of CM. Our results indicate that CM improves academic performance in problem solving but not in declarative knowledge questions. Students' perception about the effectiveness of CM was overwhelmingly positive.
Metaphor and analogy in everyday problem solving.
Keefer, Lucas A; Landau, Mark J
2016-11-01
Early accounts of problem solving focused on the ways people represent information directly related to target problems and possible solutions. Subsequent theory and research point to the role of peripheral influences such as heuristics and bodily states. We discuss how metaphor and analogy similarly influence stages of everyday problem solving: Both processes mentally map features of a target problem onto the structure of a relatively more familiar concept. When individuals apply this structure, they use a well-known concept as a framework for reasoning about real world problems and candidate solutions. Early studies found that analogy use helped people gain insight into novel problems. More recent research on metaphor goes further to show that activating mappings has subtle, sometimes surprising effects on judgment and reasoning in everyday problem solving. These findings highlight situations in which mappings can help or hinder efforts to solve problems. WIREs Cogn Sci 2016, 7:394-405. doi: 10.1002/wcs.1407 For further resources related to this article, please visit the WIREs website. © 2016 Wiley Periodicals, Inc.
Multiple representations and free-body diagrams: Do students benefit from using them?
NASA Astrophysics Data System (ADS)
Rosengrant, David R.
2007-12-01
Introductory physics students have difficulties understanding concepts and solving problems. When they solve problems, they use surface features of the problems to find an equation to calculate a numerical answer often not understanding the physics in the problem. How do we help students approach problem solving in an expert manner? A possible answer is to help them learn to represent knowledge in multiple ways and then use these different representations for conceptual understanding and problem solving. This solution follows from research in cognitive science and in physics education. However, there are no studies in physics that investigate whether students who learn to use multiple representations are in fact better problem solvers. This study focuses on one specific representation used in physics--a free body diagram. A free-body diagram is a graphical representation of forces exerted on an object of interest by other objects. I used the free-body diagram to investigate five main questions: (1) If students are in a course where they consistently use free body diagrams to construct and test concepts in mechanics, electricity and magnetism and to solve problems in class and in homework, will they draw free-body diagrams on their own when solving exam problems? (2) Are students who use free-body diagrams to solve problems more successful then those who do not? (3) Why do students draw free-body diagrams when solving problems? (4) Are students consistent in constructing diagrams for different concepts in physics and are they consistent in the quality of their diagrams? (5) What are possible relationships between features of a problem and how likely a student will draw a free body diagram to help them solve the problem? I utilized a mixed-methods approach to answer these questions. Questions 1, 2, 4 and 5 required a quantitative approach while question 3 required a qualitative approach, a case study. When I completed my study, I found that if students are in an environment which fosters the use of representations for problem solving and for concept development, then the majority of students will consistently construct helpful free-body diagrams and use them on their own to solve problems. Additionally, those that construct correct free-body diagrams are significantly more likely to successfully solve the problem. Finally, those students that are high achieving tend to use diagrams more and for more reasons then students who have low course grades. These findings will have major impacts on how introductory physics instructors run their classes and how curriculums are designed. These results favor a problem solving strategy that is rich with representations.
Duda, Piotr; Jaworski, Maciej; Rutkowski, Leszek
2018-03-01
One of the greatest challenges in data mining is related to processing and analysis of massive data streams. Contrary to traditional static data mining problems, data streams require that each element is processed only once, the amount of allocated memory is constant and the models incorporate changes of investigated streams. A vast majority of available methods have been developed for data stream classification and only a few of them attempted to solve regression problems, using various heuristic approaches. In this paper, we develop mathematically justified regression models working in a time-varying environment. More specifically, we study incremental versions of generalized regression neural networks, called IGRNNs, and we prove their tracking properties - weak (in probability) and strong (with probability one) convergence assuming various concept drift scenarios. First, we present the IGRNNs, based on the Parzen kernels, for modeling stationary systems under nonstationary noise. Next, we extend our approach to modeling time-varying systems under nonstationary noise. We present several types of concept drifts to be handled by our approach in such a way that weak and strong convergence holds under certain conditions. Finally, in the series of simulations, we compare our method with commonly used heuristic approaches, based on forgetting mechanism or sliding windows, to deal with concept drift. Finally, we apply our concept in a real life scenario solving the problem of currency exchange rates prediction.
Problem Solving, Scaffolding and Learning
ERIC Educational Resources Information Center
Lin, Shih-Yin
2012-01-01
Helping students to construct robust understanding of physics concepts and develop good solving skills is a central goal in many physics classrooms. This thesis examine students' problem solving abilities from different perspectives and explores strategies to scaffold students' learning. In studies involving analogical problem solving…
ERIC Educational Resources Information Center
Clariana, Roy B.; Engelmann, Tanja; Yu, Wu
2013-01-01
Problem solving likely involves at least two broad stages, problem space representation and then problem solution (Newell and Simon, Human problem solving, 1972). The metric centrality that Freeman ("Social Networks" 1:215-239, 1978) implemented in social network analysis is offered here as a potential measure of both. This development research…
NASA Astrophysics Data System (ADS)
Shoop, Glenda Hostetter
Attention in medical education is turning toward instruction that not only focuses on knowledge acquisition, but on developing the medical students' clinical problem-solving skills, and their ability to critically think through complex diseases. Metacognition is regarded as an important consideration in how we teach medical students these higher-order, critical thinking skills. This study used a mixed-methods research design to investigate if concept mapping as an artifact may engender metacognitive thinking in the medical student population. Specifically the purpose of the study is twofold: (1) to determine if concept mapping, functioning as an artifact during problem-based learning, improves learning as measured by scores on test questions; and (2) to explore if the process of concept mapping alters the problem-based learning intragroup discussion in ways that show medical students are engaged in metacognitive thinking. The results showed that students in the problem-based learning concept-mapping groups used more metacognitive thinking patterns than those in the problem-based learning discussion-only group, particularly in the monitoring component. These groups also engaged in a higher level of cognitive thinking associated with reasoning through mechanisms-of-action and breaking down complex biochemical and physiologic principals. The students disclosed in focus-group interviews that concept mapping was beneficial to help them understand how discrete pieces of information fit together in a bigger structure of knowledge. They also stated that concept mapping gave them some time to think through these concepts in a larger conceptual framework. There was no significant difference in the exam-question scores between the problem-based learning concept-mapping groups and the problem-based learning discussion-only group.
On supporting students' understanding of solving linear equation by using flowchart
NASA Astrophysics Data System (ADS)
Toyib, Muhamad; Kusmayadi, Tri Atmojo; Riyadi
2017-05-01
The aim of this study was to support 7th graders to gradually understand the concepts and procedures of solving linear equation. Thirty-two 7th graders of a Junior High School in Surakarta, Indonesia were involved in this study. Design research was used as the research approach to achieve the aim. A set of learning activities in solving linear equation with one unknown were designed based on Realistic Mathematics Education (RME) approach. The activities were started by playing LEGO to find a linear equation then solve the equation by using flowchart. The results indicate that using the realistic problems, playing LEGO could stimulate students to construct linear equation. Furthermore, Flowchart used to encourage students' reasoning and understanding on the concepts and procedures of solving linear equation with one unknown.
ERIC Educational Resources Information Center
Grenier-Boley, Nicolas
2014-01-01
Certain mathematical concepts were not introduced to solve a specific open problem but rather to solve different problems with the same tools in an economic formal way or to unify several approaches: such concepts, as some of those of linear algebra, are presumably difficult to introduce to students as they are potentially interwoven with many…
NASA Astrophysics Data System (ADS)
Aurora, Tarlok
2005-04-01
In a calculus-based introductory physics course, students were assigned to write the statements of word problems (along with the accompanying diagrams if any), analyze these, identify important concepts/equations and try to solve these end-of- chapter homework problems. They were required to bring to class their written assignment until the chapter was completed in lecture. These were quickly checked at the beginning of the class. In addition, re-doing selected solved examples in the textbook were assigned as homework. Where possible, students were asked to look for similarities between the solved-examples and the end-of-the-chapter problems, or occasionally these were brought to the students' attention. It was observed that many students were able to solve several of the solved-examples on the test even though the instructor had not solved these in class. This was seen as an improvement over the previous years. It made the students more responsible for their learning. Another benefit was that it alleviated the problems previously created by many students not bringing the textbooks to class. It allowed more time for problem solving/discussions in class.
An investigation of successful and unsuccessful students' problem solving in stoichiometry
NASA Astrophysics Data System (ADS)
Gulacar, Ozcan
In this study, I investigated how successful and unsuccessful students solve stoichiometry problems. I focus on three research questions: (1) To what extent do the difficulties in solving stoichiometry problems stem from poor understanding of pieces (domain-specific knowledge) versus students' inability to link those pieces together (conceptual knowledge)? (2) What are the differences between successful and unsuccessful students in knowledge, ability, and practice? (3) Is there a connection between students' (a) cognitive development levels, (b) formal (proportional) reasoning abilities, (c) working memory capacities, (d) conceptual understanding of particle nature of matter, (e) understanding of the mole concept, and their problem-solving achievement in stoichiometry? In this study, nine successful students and eight unsuccessful students participated. Both successful and unsuccessful students were selected among the students taking a general chemistry course at a mid-western university. The students taking this class were all science, non-chemistry majors. Characteristics of successful and unsuccessful students were determined through tests, audio and videotapes analyses, and subjects' written works. The Berlin Particle Concept Inventory, the Mole Concept Achievement Test, the Test of Logical Thinking, the Digits Backward Test, and the Longeot Test were used to measure students' conceptual understanding of particle nature of matter and mole concept, formal (proportional) reasoning ability, working memory capacity, and cognitive development, respectively. Think-aloud problem-solving protocols were also used to better explore the differences between successful and unsuccessful students' knowledge structures and behaviors during problem solving. Although successful students did not show significantly better performance on doing pieces (domain-specific knowledge) and solving exercises than unsuccessful counterparts did, they appeared to be more successful in linking the pieces (conceptual knowledge) and solving complex problems than the unsuccessful student did. Successful students also appeared to be different in how they approach problems, what strategies they use, and in making fewer algorithmic mistakes when compared to unsuccessful students. Successful students, however, did not seem to be statistically significantly different from the unsuccessful students in terms of quantitatively tested cognitive abilities except formal (proportional) reasoning ability and in the understanding of mole concept.
Constraint Programming to Solve Maximal Density Still Life
NASA Astrophysics Data System (ADS)
Chu, Geoffrey; Petrie, Karen Elizabeth; Yorke-Smith, Neil
The Maximum Density Still Life problem fills a finite Game of Life board with a stable pattern of cells that has as many live cells as possible. Although simple to state, this problem is computationally challenging for any but the smallest sizes of board. Especially difficult is to prove that the maximum number of live cells has been found. Various approaches have been employed. The most successful are approaches based on Constraint Programming (CP). We describe the Maximum Density Still Life problem, introduce the concept of constraint programming, give an overview on how the problem can be modelled and solved with CP, and report on best-known results for the problem.
Student’s Critical Thinking in Solving Open-Ended Problems Based on Their Personality Type
NASA Astrophysics Data System (ADS)
Fitriana, L. D.; Fuad, Y.; Ekawati, R.
2018-01-01
Critical thinking plays an important role for students in solving open-ended problems. This research aims at describing student’s critical thinking in solving open-ended problems based on Keirsey’s personality types, namely rational, idealist, guardian, and artisan. Four students, with the higher rank in the mathematics’ test and representing each type of Keirsey personality, were selected as the research subjects. The data were collected from the geometry problem and interviews. The student’s critical thinking is described based on the FRISCO criteria. The result underlines that rational and idealist students fulfilled all FRISCO criteria, and but not for guardian and artisan students. Related to the inference criteria, guardian and artisan students could not make reasonable conclusions and connect the concepts. Related to the reason of criteria, rational student performed critical thinking by providing logical reason that supported his strategy to solve the problem. In contrast, the idealist student provided subjective reason. This results suggest that teachers should frequently train the students’ logical thinkingin every lesson and activity to develop student’s critical thinking and take the student’s personality character into account, especially for guardian and artisan students.
Students' understandings of electrochemistry
NASA Astrophysics Data System (ADS)
O'Grady-Morris, Kathryn
Electrochemistry is considered by students to be a difficult topic in chemistry. This research was a mixed methods study guided by the research question: At the end of a unit of study, what are students' understandings of electrochemistry? The framework of analysis used for the qualitative and quantitative data collected in this study was comprised of three categories: types of knowledge used in problem solving, levels of representation of knowledge in chemistry (macroscopic, symbolic, and particulate), and alternative conceptions. Although individually each of the three categories has been reported in previous studies, the contribution of this study is the inter-relationships among them. Semi-structured, task-based interviews were conducted while students were setting up and operating electrochemical cells in the laboratory, and a two-tiered, multiple-choice diagnostic instrument was designed to identify alternative conceptions that students held at the end of the unit. For familiar problems, those involving routine voltaic cells, students used a working-forwards problem-solving strategy, two or three levels of representation of knowledge during explanations, scored higher on both procedural and conceptual knowledge questions in the diagnostic instrument, and held fewer alternative conceptions related to the operation of these cells. For less familiar problems, those involving non-routine voltaic cells and electrolytic cells, students approached problem-solving with procedural knowledge, used only one level of representation of knowledge when explaining the operation of these cells, scored higher on procedural knowledge than conceptual knowledge questions in the diagnostic instrument, and held a greater number of alternative conceptions. Decision routines that involved memorized formulas and procedures were used to solve both quantitative and qualitative problems and the main source of alternative conceptions in this study was the overgeneralization of theory related to the particulate level of representation of knowledge. The findings from this study may contribute further to our understanding of students' conceptions in electrochemistry. Furthermore, understanding the influence of the three categories in the framework of analysis and their inter-relationships on how students make sense of this field may result in a better understanding of classroom practice that could promote the acquisition of conceptual knowledge --- knowledge that is "rich in relationships".
Team-based learning in therapeutics workshop sessions.
Beatty, Stuart J; Kelley, Katherine A; Metzger, Anne H; Bellebaum, Katherine L; McAuley, James W
2009-10-01
To implement team-based learning in the workshop portion of a pathophysiology and therapeutics sequence of courses to promote integration of concepts across the pharmacy curriculum, provide a consistent problem-solving approach to patient care, and determine the impact on student perceptions of professionalism and teamwork. Team-based learning was incorporated into the workshop portion of 3 of 6 pathophysiology and therapeutics courses. Assignments that promoted team-building and application of key concepts were created. Readiness assurance tests were used to assess individual and team understanding of course materials. Students consistently scored 20% higher on team assessments compared with individual assessments. Mean professionalism and teamwork scores were significantly higher after implementation of team-based learning; however, this improvement was not considered educationally significant. Approximately 91% of students felt team-based learning improved understanding of course materials and 93% of students felt teamwork should continue in workshops. Team-based learning is an effective teaching method to ensure a consistent approach to problem-solving and curriculum integration in workshop sessions for a pathophysiology and therapeutics course sequence.
NASA Astrophysics Data System (ADS)
Azizov, E. A.; Gladush, G. G.; Dokuka, V. N.; Khayrutdinov, R. R.
2015-12-01
On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of 233U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket based on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.
ERIC Educational Resources Information Center
Mwei, Philip K.
2017-01-01
The concept of mathematical problem solving is an important mathematical process in mathematics curricula of education systems worldwide. These math curricula demand that learners are exposed to authentic problems that foster successful problem solving. To attain this very important goal, there must be mathematics teachers well versed in content…
Sio, Ut Na; Kotovsky, Kenneth; Cagan, Jonathan
2017-05-01
Fixation on inappropriate concepts is a key barrier to problem solving. Previous research has shown that continuous work is likely to cause repeated retrieval of those concepts, resulting in increased fixation. Accordingly, distributing effort across problems through multiple, brief, and interlaced sessions (distributed effort) should prevent such fixation and in turn enhance problem solving. This study examined whether distributed effort can provide an advantage for problem solving, particularly for problems that can induce fixation (Experiment 1), and whether and how incubation can be combined with distributed effort to further enhance performance (Experiment 2). Remote Associates Test (RAT) problems were used as the problem-solving tasks. Half of them (i.e., misleading RAT) were more likely to mislead individuals to fixate on incorrect associates than the other half. Experiments revealed a superiority of distributed over massed effort on misleading RAT performance and a differing time course of incubation for the massed and distributed groups. We conclude that distributed effort facilitates problem solving, most likely via overcoming fixation. Cognitive mechanisms other than the commonly posited forgetting of inappropriate ideas may occur during incubation to facilitate problem solving. The experiments in this article offer support for the occurrence of spreading activation during incubation.
Could HPS Improve Problem-Solving?
ERIC Educational Resources Information Center
Coelho, Ricardo Lopes
2013-01-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem…
Developing Legal Problem-Solving Skills.
ERIC Educational Resources Information Center
Nathanson, Stephen
1994-01-01
A law professor explains how he came to view legal problem solving as the driving concept in law school curriculum design and draws on personal experience and a survey of students concerning teaching methods in a commercial law course. He outlines six curriculum design principles for teaching legal problem solving. (MSE)
Successful Strategies for Marketing School Levies. Fastback No. 310.
ERIC Educational Resources Information Center
Graham, Glenn T.; And Others
The use of modern marketing concepts to assist public school districts in the passage of school levies and bond issues is presented in this guidebook. The modern marketing concept is based on maximizing customer satisfaction and solving the problem of the consumer. Strategies are presented for conducting market analysis; financing, organizing, and…
Problem Solving Learning Environments and Assessment: A Knowledge Space Theory Approach
ERIC Educational Resources Information Center
Reimann, Peter; Kickmeier-Rust, Michael; Albert, Dietrich
2013-01-01
This paper explores the relation between problem solving learning environments (PSLEs) and assessment concepts. The general framework of evidence-centered assessment design is used to describe PSLEs in terms of assessment concepts, and to identify similarities between the process of assessment design and of PSLE design. We use a recently developed…
Addressing Students' Difficulties with Faraday's Law: A Guided Problem Solving Approach
ERIC Educational Resources Information Center
Zuza, Kristina; Almudí, José-Manuel; Leniz, Ane; Guisasola, Jenaro
2014-01-01
In traditional teaching, the fundamental concepts of electromagnetic induction are usually quickly analyzed, spending most of the time solving problems in a more or less rote manner. However, physics education research has shown that the fundamental concepts of the electromagnetic induction theory are barely understood by students. This article…
An empirical evaluation of graphical interfaces to support flight planning
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, Elaine; Layton, Chuck; Bihari, Tom
1995-01-01
Whether optimization techniques or expert systems technologies are used, the underlying inference processes and the model or knowledge base for a computerized problem-solving system are likely to be incomplete for any given complex, real-world task. To deal with the resultant brittleness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of people and the computer system when working in partnership to solve problems. This study evaluates the impact of alternative design concepts on the performance of airline pilots interacting with such a cooperative system designed to support enroute flight planning. Thirty pilots were studied using three different versions of the system. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes of users. Indeed, one of the designs studied caused four times as many pilots to accept a poor flight amendment. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision-making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.
Using isomorphic problems to learn introductory physics
NASA Astrophysics Data System (ADS)
Lin, Shih-Yin; Singh, Chandralekha
2011-12-01
In this study, we examine introductory physics students’ ability to perform analogical reasoning between two isomorphic problems which employ the same underlying physics principles but have different surface features. Three hundred sixty-two students from a calculus-based and an algebra-based introductory physics course were given a quiz in the recitation in which they had to first learn from a solved problem provided and take advantage of what they learned from it to solve another problem (which we call the quiz problem) which was isomorphic. Previous research suggests that the multiple-concept quiz problem is challenging for introductory students. Students in different recitation classes received different interventions in order to help them discern and exploit the underlying similarities of the isomorphic solved and quiz problems. We also conducted think-aloud interviews with four introductory students in order to understand in depth the difficulties they had and explore strategies to provide better scaffolding. We found that most students were able to learn from the solved problem to some extent with the scaffolding provided and invoke the relevant principles in the quiz problem. However, they were not necessarily able to apply the principles correctly. Research suggests that more scaffolding is needed to help students in applying these principles appropriately. We outline a few possible strategies for future investigation.
Advanced control concepts. [for shuttle ascent vehicles
NASA Technical Reports Server (NTRS)
Sharp, J. B.; Coppey, J. M.
1973-01-01
The problems of excess control devices and insufficient trim control capability on shuttle ascent vehicles were investigated. The trim problem is solved at all time points of interest using Lagrangian multipliers and a Simplex based iterative algorithm developed as a result of the study. This algorithm has the capability to solve any bounded linear problem with physically realizable constraints, and to minimize any piecewise differentiable cost function. Both solution methods also automatically distribute the command torques to the control devices. It is shown that trim requirements are unrealizable if only the orbiter engines and the aerodynamic surfaces are used.
Problem Solving in Social Studies: Concepts and Critiques.
ERIC Educational Resources Information Center
Van Sickle, Ronald L.; Hoge, John D.
Recent developments in the field of cognitive psychology, particularly in the area of information processing, have shed light on the way people think in order to make decisions and solve problems. In addition, cooperative learning research has provided evidence of the effectiveness of cooperatively structured group work aimed at problem solving.…
Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation
NASA Technical Reports Server (NTRS)
Layton, Charles; Smith, Philip J.; Mc Coy, C. Elaine
1994-01-01
Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support en-route flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.
Design of a cooperative problem-solving system for en-route flight planning: An empirical evaluation
NASA Technical Reports Server (NTRS)
Layton, Charles; Smith, Philip J.; McCoy, C. Elaine
1994-01-01
Both optimization techniques and expert systems technologies are popular approaches for developing tools to assist in complex problem-solving tasks. Because of the underlying complexity of many such tasks, however, the models of the world implicitly or explicitly embedded in such tools are often incomplete and the problem-solving methods fallible. The result can be 'brittleness' in situations that were not anticipated by the system designers. To deal with this weakness, it has been suggested that 'cooperative' rather than 'automated' problem-solving systems be designed. Such cooperative systems are proposed to explicitly enhance the collaboration of the person (or a group of people) and the computer system. This study evaluates the impact of alternative design concepts on the performance of 30 airline pilots interacting with such a cooperative system designed to support enroute flight planning. The results clearly demonstrate that different system design concepts can strongly influence the cognitive processes and resultant performances of users. Based on think-aloud protocols, cognitive models are proposed to account for how features of the computer system interacted with specific types of scenarios to influence exploration and decision making by the pilots. The results are then used to develop recommendations for guiding the design of cooperative systems.
Robust penalty method for structural synthesis
NASA Technical Reports Server (NTRS)
Kamat, M. P.
1983-01-01
The Sequential Unconstrained Minimization Technique (SUMT) offers an easy way of solving nonlinearly constrained problems. However, this algorithm frequently suffers from the need to minimize an ill-conditioned penalty function. An ill-conditioned minimization problem can be solved very effectively by posing the problem as one of integrating a system of stiff differential equations utilizing concepts from singular perturbation theory. This paper evaluates the robustness and the reliability of such a singular perturbation based SUMT algorithm on two different problems of structural optimization of widely separated scales. The report concludes that whereas conventional SUMT can be bogged down by frequent ill-conditioning, especially in large scale problems, the singular perturbation SUMT has no such difficulty in converging to very accurate solutions.
ERIC Educational Resources Information Center
Lakin, Joni M.; Wallace, Carolyn S.
2015-01-01
Inquiry-based teaching promotes students' engagement in problem-solving and investigation as they learn science concepts. Current practice in science teacher education promotes the use of inquiry in the teaching of science. However, the literature suggests that many science teachers hold incomplete or incorrect conceptions of inquiry.…
ERIC Educational Resources Information Center
Lin, Kuen-Yi; Williams, P. John
2017-01-01
This paper discusses the implementation of a two-stage hands-on technology learning activity, based on Dewey's learning experience theory that is designed to enhance preservice teachers' primary and secondary experiences in developing their competency to solve hands-on problems that apply science and mathematics concepts. The major conclusions…
ERIC Educational Resources Information Center
Cetinkaya, Bulent; Kertil, Mahmut; Erbas, Ayhan Kursat; Korkmaz, Himmet; Alacaci, Cengiz; Cakiroglu, Erdinc
2016-01-01
Adopting a multitiered design-based research perspective, this study examines pre-service secondary mathematics teachers' developing conceptions about (a) the nature of mathematical modeling in simulations of "real life" problem solving, and (b) pedagogical principles and strategies needed to teach mathematics through modeling. Unlike…
Textbook and Course Materials for 21-127 "Concepts of Mathematics"
ERIC Educational Resources Information Center
Sullivan, Brendan W.
2013-01-01
Concepts of Mathematics (21-127 at CMU) is a course designed to introduce students to the world of abstract mathematics, guiding them from more calculation-based math (that one learns in high school) to higher mathematics, which focuses more on abstract thinking, problem solving, and writing "proofs." This transition tends to be a shock:…
A fuzzy-ontology-oriented case-based reasoning framework for semantic diabetes diagnosis.
El-Sappagh, Shaker; Elmogy, Mohammed; Riad, A M
2015-11-01
Case-based reasoning (CBR) is a problem-solving paradigm that uses past knowledge to interpret or solve new problems. It is suitable for experience-based and theory-less problems. Building a semantically intelligent CBR that mimic the expert thinking can solve many problems especially medical ones. Knowledge-intensive CBR using formal ontologies is an evolvement of this paradigm. Ontologies can be used for case representation and storage, and it can be used as a background knowledge. Using standard medical ontologies, such as SNOMED CT, enhances the interoperability and integration with the health care systems. Moreover, utilizing vague or imprecise knowledge further improves the CBR semantic effectiveness. This paper proposes a fuzzy ontology-based CBR framework. It proposes a fuzzy case-base OWL2 ontology, and a fuzzy semantic retrieval algorithm that handles many feature types. This framework is implemented and tested on the diabetes diagnosis problem. The fuzzy ontology is populated with 60 real diabetic cases. The effectiveness of the proposed approach is illustrated with a set of experiments and case studies. The resulting system can answer complex medical queries related to semantic understanding of medical concepts and handling of vague terms. The resulting fuzzy case-base ontology has 63 concepts, 54 (fuzzy) object properties, 138 (fuzzy) datatype properties, 105 fuzzy datatypes, and 2640 instances. The system achieves an accuracy of 97.67%. We compare our framework with existing CBR systems and a set of five machine-learning classifiers; our system outperforms all of these systems. Building an integrated CBR system can improve its performance. Representing CBR knowledge using the fuzzy ontology and building a case retrieval algorithm that treats different features differently improves the accuracy of the resulting systems. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.
1998-01-01
A key challenge in designing the new High Speed Civil Transport (HSCT) aircraft is determining a good match between the airframe and engine. Multidisciplinary design optimization can be used to solve the problem by adjusting parameters of both the engine and the airframe. Earlier, an example problem was presented of an HSCT aircraft with four mixed-flow turbofan engines and a baseline mission to carry 305 passengers 5000 nautical miles at a cruise speed of Mach 2.4. The problem was solved by coupling NASA Lewis Research Center's design optimization testbed (COMETBOARDS) with NASA Langley Research Center's Flight Optimization System (FLOPS). The computing time expended in solving the problem was substantial, and the instability of the FLOPS analyzer at certain design points caused difficulties. In an attempt to alleviate both of these limitations, we explored the use of two approximation concepts in the design optimization process. The two concepts, which are based on neural network and linear regression approximation, provide the reanalysis capability and design sensitivity analysis information required for the optimization process. The HSCT aircraft optimization problem was solved by using three alternate approaches; that is, the original FLOPS analyzer and two approximate (derived) analyzers. The approximate analyzers were calibrated and used in three different ranges of the design variables; narrow (interpolated), standard, and wide (extrapolated).
Representations in Problem Solving: A Case Study with Optimization Problems
ERIC Educational Resources Information Center
Villegas, Jose L.; Castro, Enrique; Gutierrez, Jose
2009-01-01
Introduction: Representations play an essential role in mathematical thinking. They favor the understanding of mathematical concepts and stimulate the development of flexible and versatile thinking in problem solving. Here our focus is on their use in optimization problems, a type of problem considered important in mathematics teaching and…
ERIC Educational Resources Information Center
Chapaev, Nikolay K.; Akimova, Olga B.; Selivanov, Andrey V.; Shaforostova, Tatiana V.
2016-01-01
The relevance of the problem under study is based on the necessity to solve the permanent problem of the unity of theory and practice in the content of students' cognitive activity in the modern conditions. The purpose of the article is to analyze and to generalize the main concepts of pedagogy by N.F. Talyzina for implementation of the…
Focus group discussion in mathematical physics learning
NASA Astrophysics Data System (ADS)
Ellianawati; Rudiana, D.; Sabandar, J.; Subali, B.
2018-03-01
The Focus Group Discussion (FGD) activity in Mathematical Physics learning has helped students perform the stages of problem solving reflectively. The FGD implementation was conducted to explore the problems and find the right strategy to improve the students' ability to solve the problem accurately which is one of reflective thinking component that has been difficult to improve. The research method used is descriptive qualitative by using single subject response in Physics student. During the FGD process, one student was observed of her reflective thinking development in solving the physics problem. The strategy chosen in the discussion activity was the Cognitive Apprenticeship-Instruction (CA-I) syntax. Based on the results of this study, it is obtained the information that after going through a series of stages of discussion, the students' reflective thinking skills is increased significantly. The scaffolding stage in the CA-I model plays an important role in the process of solving physics problems accurately. Students are able to recognize and formulate problems by describing problem sketches, identifying the variables involved, applying mathematical equations that accord to physics concepts, executing accurately, and applying evaluation by explaining the solution to various contexts.
NASA Astrophysics Data System (ADS)
Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan
2018-02-01
Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.
Knowledge-based control for robot self-localization
NASA Technical Reports Server (NTRS)
Bennett, Bonnie Kathleen Holte
1993-01-01
Autonomous robot systems are being proposed for a variety of missions including the Mars rover/sample return mission. Prior to any other mission objectives being met, an autonomous robot must be able to determine its own location. This will be especially challenging because location sensors like GPS, which are available on Earth, will not be useful, nor will INS sensors because their drift is too large. Another approach to self-localization is required. In this paper, we describe a novel approach to localization by applying a problem solving methodology. The term 'problem solving' implies a computational technique based on logical representational and control steps. In this research, these steps are derived from observing experts solving localization problems. The objective is not specifically to simulate human expertise but rather to apply its techniques where appropriate for computational systems. In doing this, we describe a model for solving the problem and a system built on that model, called localization control and logic expert (LOCALE), which is a demonstration of concept for the approach and the model. The results of this work represent the first successful solution to high-level control aspects of the localization problem.
Concept-Rich Mathematics Instruction: Building a Strong Foundation for Reasoning and Problem Solving
ERIC Educational Resources Information Center
Ben-Hur, Meir
2006-01-01
Fact-filled textbooks that stress memorization and drilling are not very good for teaching students how to think mathematically and solve problems. But this is a book that comes to the rescue with an instructional approach that helps students in every grade level truly understand math concepts so they can apply them on high-stakes assessments,…
ERIC Educational Resources Information Center
Huang, Hsin-Mei E.; Witz, Klaus G.
2013-01-01
This study investigated children's understanding of area measurement, including the concept of area and the area formula of a rectangle, as well as their strategic knowledge for solving area measurement problems. Twenty-two fourth-graders from three classes of a public elementary school in Taipei, Taiwan, participated in a one-on-one interview.…
ERIC Educational Resources Information Center
Gultepe, Nejla; Yalcin Celik, Ayse; Kilic, Ziya
2013-01-01
The purpose of the study was to examine the effects of students' conceptual understanding of chemical concepts and mathematical processing skills on algorithmic problem-solving skills. The sample (N = 554) included grades 9, 10, and 11 students in Turkey. Data were collected using the instrument "MPC Test" and with interviews. The MPC…
ERIC Educational Resources Information Center
Okoye, Nnamdi S.; Okechukwu, Rose N.
2010-01-01
The study examined the effect of concept-mapping and problem-solving teaching strategies on achievement in biology among Nigerian secondary school students. The method used for the study was a quasi-experimental pre-test treatment design. One hundred and thirteen senior secondary three (S.S. 111) students randomly selected from three mixed…
ERIC Educational Resources Information Center
Potgieter, Marietjie; Malatje, Esther; Gaigher, Estelle; Venter, Elsie
2010-01-01
This study investigated the use of performance-confidence relationships to signal the presence of alternative conceptions and inadequate problem-solving skills in mechanics. A group of 33 students entering physics at a South African university participated in the project. The test instrument consisted of 20 items derived from existing standardised…
A Software Laboratory Environment for Computer-Based Problem Solving.
ERIC Educational Resources Information Center
Kurtz, Barry L.; O'Neal, Micheal B.
This paper describes a National Science Foundation-sponsored project at Louisiana Technological University to develop computer-based laboratories for "hands-on" introductions to major topics of computer science. The underlying strategy is to develop structured laboratory environments that present abstract concepts through the use of…
STEM education and Fermi problems
NASA Astrophysics Data System (ADS)
Holubova, Renata
2017-01-01
One of the research areas of Physics education is the study of the educational process. Investigations in this area are aimed for example on the teaching and learning process and its results. The conception of STEM education (Science, Technology, Engineering, and Mathematics) is discussed - it is one possible approach to the preparation of the curriculum and the focus on the educational process at basic and secondary schools. At schools in the Czech Republic STEM is much more realized by the application of interdisciplinary relations between subjects Physics-Nature-Technique. In both conceptions the aim is to support pupils' creativity, critical thinking, cross-curricular links. In this context the possibility of using Fermi problems in teaching Physics was discussed (as an interdisciplinary and constructivist activity). The aim of our research was the analysis of Fermi problems solving strategies, the ability of pupils to solve Fermi problems. The outcome of our analysis was to find out methods and teaching strategies which are important to use in teaching - how to solve qualitative and interdisciplinary tasks in physics. In this paper the theoretical basis of STEM education and Fermi problems will be presented. The outcome of our findings based on the research activities will be discussed so as our experiences from 10 years of Fermi problems competition that takes place at the Science Faculty, Palacky University in Olomouc. Changes in competencies of solving tasks by our students (from the point of view in terms of modern, activating teaching methods recommended by theory of Physics education and other science subjects) will be identified.
[Forensic evidence-based medicine in computer communication networks].
Qiu, Yun-Liang; Peng, Ming-Qi
2013-12-01
As an important component of judicial expertise, forensic science is broad and highly specialized. With development of network technology, increasement of information resources, and improvement of people's legal consciousness, forensic scientists encounter many new problems, and have been required to meet higher evidentiary standards in litigation. In view of this, evidence-based concept should be established in forensic medicine. We should find the most suitable method in forensic science field and other related area to solve specific problems in the evidence-based mode. Evidence-based practice can solve the problems in legal medical field, and it will play a great role in promoting the progress and development of forensic science. This article reviews the basic theory of evidence-based medicine and its effect, way, method, and evaluation in the forensic medicine in order to discuss the application value of forensic evidence-based medicine in computer communication networks.
Behaviour of mathematics and physics students in solving problem of Vector-Physics context
NASA Astrophysics Data System (ADS)
Sardi; Rizal, M.; Mansyur, J.
2018-04-01
This research aimed to describe behaviors of mathematics and physics students in solving problem of the vector concept in physics context. The subjects of the research were students who enrolled in Mathematics Education Study Program and Physics Education Study Program of FKIP Universitas Tadulako. The selected participants were students who received the highest score in vector fundamental concept test in each study program. The data were collected through thinking-aloud activity followed by an interview. The steps of data analysis included data reduction, display, and conclusion drawing. The credibility of the data was tested using a triangulation method. Based on the data analysis, it can be concluded that the two groups of students did not show fundamental differences in problem-solving behavior, especially in the steps of understanding the problem (identifying, collecting and analyzing facts and information), planning (looking for alternative strategies) and conducting the alternative strategy. The two groups were differ only in the evaluation aspect. In contrast to Physics students who evaluated their answer, mathematics students did not conducted an evaluation activity on their work. However, the difference was not caused by the differences in background knowledge.
An improved genetic algorithm and its application in the TSP problem
NASA Astrophysics Data System (ADS)
Li, Zheng; Qin, Jinlei
2011-12-01
Concept and research actuality of genetic algorithm are introduced in detail in the paper. Under this condition, the simple genetic algorithm and an improved algorithm are described and applied in an example of TSP problem, where the advantage of genetic algorithm is adequately shown in solving the NP-hard problem. In addition, based on partial matching crossover operator, the crossover operator method is improved into extended crossover operator in order to advance the efficiency when solving the TSP. In the extended crossover method, crossover operator can be performed between random positions of two random individuals, which will not be restricted by the position of chromosome. Finally, the nine-city TSP is solved using the improved genetic algorithm with extended crossover method, the efficiency of whose solution process is much higher, besides, the solving speed of the optimal solution is much faster.
Naturally selecting solutions: the use of genetic algorithms in bioinformatics.
Manning, Timmy; Sleator, Roy D; Walsh, Paul
2013-01-01
For decades, computer scientists have looked to nature for biologically inspired solutions to computational problems; ranging from robotic control to scheduling optimization. Paradoxically, as we move deeper into the post-genomics era, the reverse is occurring, as biologists and bioinformaticians look to computational techniques, to solve a variety of biological problems. One of the most common biologically inspired techniques are genetic algorithms (GAs), which take the Darwinian concept of natural selection as the driving force behind systems for solving real world problems, including those in the bioinformatics domain. Herein, we provide an overview of genetic algorithms and survey some of the most recent applications of this approach to bioinformatics based problems.
Team-based Learning in Therapeutics Workshop Sessions
Kelley, Katherine A.; Metzger, Anne H.; Bellebaum, Katherine L.; McAuley, James W.
2009-01-01
Objectives To implement team-based learning in the workshop portion of a pathophysiology and therapeutics sequence of courses to promote integration of concepts across the pharmacy curriculum, provide a consistent problem-solving approach to patient care, and determine the impact on student perceptions of professionalism and teamwork. Design Team-based learning was incorporated into the workshop portion of 3 of 6 pathophysiology and therapeutics courses. Assignments that promoted team-building and application of key concepts were created. Assessment Readiness assurance tests were used to assess individual and team understanding of course materials. Students consistently scored 20% higher on team assessments compared with individual assessments. Mean professionalism and teamwork scores were significantly higher after implementation of team-based learning; however, this improvement was not considered educationally significant. Approximately 91% of students felt team-based learning improved understanding of course materials and 93% of students felt teamwork should continue in workshops. Conclusion Team-based learning is an effective teaching method to ensure a consistent approach to problem-solving and curriculum integration in workshop sessions for a pathophysiology and therapeutics course sequence. PMID:19885069
Problem Solving in Genetics: Conceptual and Procedural Difficulties
ERIC Educational Resources Information Center
Karagoz, Meryem; Cakir, Mustafa
2011-01-01
The purpose of this study was to explore prospective biology teachers' understandings of fundamental genetics concepts and the association between misconceptions and genetics problem solving abilities. Specifically, the study describes conceptual and procedural difficulties which influence prospective biology teachers' genetics problem solving…
Paradigms and Problem-Solving: A Literature Review.
ERIC Educational Resources Information Center
Berner, Eta S.
1984-01-01
Thomas Kuhn's conceptions of the influence of paradigms on the progress of science form the framework for analyzing how medical educators have approached research on medical problem solving. A new paradigm emphasizing multiple types of problems with varied solution strategies is proposed. (Author/MLW)
Students' Application of Chemical Concepts When Solving Chemistry Problems in Different Contexts
ERIC Educational Resources Information Center
Broman, Karolina; Parchmann, Ilka
2014-01-01
Context-based learning approaches have been implemented in school science over the last 40 years as a way to enhance students' interest in, as well as learning outcomes from, science. Contexts are used to connect science with the students' lives and to provide a frame in which concepts can be learned and applied on a…
Problem Solving in a Natural Language Environment.
1979-07-21
another mapping that can map the "values" of those slots onto each other. 11.2 Kowledge Reoresentation Systems Several general knowledge...Hirach Frames The problem solving frames are general descriptions of problems (and solutions). Much more power could be milked from the concept of...general and powerful matching routines can be seen if the problem solving frames are going to work. The matcher must find matches between an element
I Can Problem Solve (ICPS): A Cognitive Approach to Preventing Early High Risk Behaviors.
ERIC Educational Resources Information Center
Shure, Myrna B.; And Others
This outline presents a program designed to teach children "how" to think, not what to think--so as to help them solve typical interpersonal problems with peers and adults. Through games, stories, puppets, illustrations, and role plays, children learn a pre-problem solving vocabulary, feeling word concepts, and ways to arrive at solutions to…
Beyond rules: The next generation of expert systems
NASA Technical Reports Server (NTRS)
Ferguson, Jay C.; Wagner, Robert E.
1987-01-01
The PARAGON Representation, Management, and Manipulation system is introduced. The concepts of knowledge representation, knowledge management, and knowledge manipulation are combined in a comprehensive system for solving real world problems requiring high levels of expertise in a real time environment. In most applications the complexity of the problem and the representation used to describe the domain knowledge tend to obscure the information from which solutions are derived. This inhibits the acquisition of domain knowledge verification/validation, places severe constraints on the ability to extend and maintain a knowledge base while making generic problem solving strategies difficult to develop. A unique hybrid system was developed to overcome these traditional limitations.
The impact of problem solving strategy with online feedback on students’ conceptual understanding
NASA Astrophysics Data System (ADS)
Pratiwi, H. Y.; Winarko, W.; Ayu, H. D.
2018-04-01
The study aimed to determine the impact of the implementation of problem solving strategy with online feedback towards the students’ concept understanding. This study used quasi experimental design with post-test only control design. The participants were all Physics Education students of Kanjuruhan University year 2015. Then, they were divided into two different groups; 30 students belong to experiment class and the remaining 30 students belong to class of control. The students’ concept understanding was measured by the concept understanding test on multiple integral lesson. The result of the concept understanding test was analyzed by prerequisite test and stated to be normal and homogenic distributed, then the hypothesis was examined by T-test. The result of the study shows that there is difference in the concept understanding between experiment class and control class. Next, the result also shows that the students’ concept understanding which was taught using problem solving strategy with online feedback was higher than those using conventional learning; with average score of 72,10 for experiment class and 52,27 for control class.
ERIC Educational Resources Information Center
Niaz, Mansoor
2001-01-01
Illustrates how a novel problem of chemical equilibrium based on a closely related sequence of items can facilitate students' conceptual understanding. Students were presented with a chemical reaction in equilibrium to which a reactant was added as an external effect. Three studies were conducted to assess alternative conceptions. (Author/SAH)
Asad, Munazza; Iqbal, Khadija; Sabir, Mohammad
2015-01-01
Problem based learning (PBL) is an instructional approach that utilizes problems or cases as a context for students to acquire problem solving skills. It promotes communication skills, active learning, and critical thinking skills. It encourages peer teaching and active participation in a group. It was a cross-sectional study conducted at Al Nafees Medical College, Isra University, Islamabad, in one month duration. This study was conducted on 193 students of both 1st and 2nd year MBBS. Each PBL consists of three sessions, spaced by 2-3 days. In the first session students were provided a PBL case developed by both basic and clinical science faculty. In Session 2 (group discussion), they share, integrate their knowledge with the group and Wrap up (third session), was concluded at the end. A questionnaire based survey was conducted to find out overall effectiveness of PBL sessions. Teaching through PBLs greatly improved the problem solving and critical reasoning skills with 60% students of first year and 71% of 2nd year agreeing that the acquisition of knowledge and its application in solving multiple choice questions (MCQs) was greatly improved by these sessions. They observed that their self-directed learning, intrinsic motivation and skills to relate basic concepts with clinical reasoning which involves higher order thinking have greatly enhanced. Students found PBLs as an effective strategy to promote teamwork and critical thinking skills. PBL is an effective method to improve critical thinking and problem solving skills among medical students.
ERIC Educational Resources Information Center
Panaoura, Areti; Michael-Chrysanthou, Paraskevi; Gagatsis, Athanasios; Elia, Iliada; Philippou, Andreas
2017-01-01
This article focuses on exploring students' understanding of the concept of function concerning three main aspects: secondary students' ability to (1) define the concept of function and present examples of functions, (2) solve tasks which asked them to recognize and interpret the concept of function presented in different forms of representation,…
NASA Astrophysics Data System (ADS)
MacGowan, Catherine Elizabeth
The overall objective of this research project was to provide an insight into students' conceptual understanding of acid/base principles as it relates to the comprehension and correct application of scientific concepts during a problem-solving activity. The difficulties experienced learning science and in developing appropriate problem-solving strategies most likely are predetermined by students' existing conceptual and procedural knowledge constructs; with the assimilation of newly acquired knowledge hindering or aiding the learning process. Learning chemistry requires a restructuring of content knowledge which will allow the individual to assemble and to integrate his/her own perception of science with instructional knowledge. The epistemology of constructivism, the theoretical grounding for this research project, recognizes the student's role as an active participant in the learning process. The study's design was exploratory in nature and descriptive in design. The problem-solving activity, the preparation of a chemical buffer solution at pH of 9, was selected and modified to reflect and meet the study's objective. Qualitative research methods (i.e., think aloud protocols, retrospective interviews, survey questionnaires such as the Scale of Intellectual Development (SID), and archival data sources) were used in the collection and assessment of data. Given its constructivist grounding, simplicity, and interpretative view of knowledge acquisition and learning of collegiate aged individuals, the Perry Intellectual and Ethical Development Model (1970) was chosen as the applied model for evaluation student cognition. The study's participants were twelve traditional college age students from a small, private liberal arts college. All participants volunteered for the project and had completed or were completing a general college chemistry course at the time of the project. Upon analysis of the data the following observations and results were noted: (1) students' overall comprehension level of key acid/base principles was at the misconception/miscued level of understanding; (2) the level of a student's conceptual knowledge effected their problem-solving performance and influenced their use of problem-solving tactics; (3) students casual use of the terms "acid" and/or "base" played a significant role in the misuse and misunderstanding of the principles of acid/base chemistry; (4) as assessed from their think aloud protocols and described by the Perry Scheme positions of intellect the study's participants' overall level of cognition were ranked as dualistic/relativistic thinkers; and (5) the SID questionnaire survey rankings did not seem to assess or reflect the participants' cognitive ability to learn or correctly use acid/base concepts as they preformed the study's problem-solving activity--the preparation of buffer solution having a pH of 9.
A cross-disciplinary introduction to quantum annealing-based algorithms
NASA Astrophysics Data System (ADS)
Venegas-Andraca, Salvador E.; Cruz-Santos, William; McGeoch, Catherine; Lanzagorta, Marco
2018-04-01
A central goal in quantum computing is the development of quantum hardware and quantum algorithms in order to analyse challenging scientific and engineering problems. Research in quantum computation involves contributions from both physics and computer science; hence this article presents a concise introduction to basic concepts from both fields that are used in annealing-based quantum computation, an alternative to the more familiar quantum gate model. We introduce some concepts from computer science required to define difficult computational problems and to realise the potential relevance of quantum algorithms to find novel solutions to those problems. We introduce the structure of quantum annealing-based algorithms as well as two examples of this kind of algorithms for solving instances of the max-SAT and Minimum Multicut problems. An overview of the quantum annealing systems manufactured by D-Wave Systems is also presented.
Different Procedures for Solving Mathematical Word Problems in High School
ERIC Educational Resources Information Center
Gasco, Javier; Villarroel, Jose Domingo; Zuazagoitia, Dani
2014-01-01
The teaching and learning of mathematics cannot be understood without considering the resolution of word problems. These kinds of problems not only connect mathematical concepts with language (and therefore with reality) but also promote the learning related to other scientific areas. In primary school, problems are solved by using basic…
Using Problem Solving to Assess Young Children's Mathematics Knowledge
ERIC Educational Resources Information Center
Charlesworth, Rosalind; Leali, Shirley A.
2012-01-01
Mathematics problem solving provides a means for obtaining a view of young children's understanding of mathematics as they move through the early childhood concept development sequence. Assessment information can be obtained through observations and interviews as children develop problem solutions. Examples of preschool, kindergarten, and primary…
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.
Development of weighting value for ecodrainage implementation assessment criteria
NASA Astrophysics Data System (ADS)
Andajani, S.; Hidayat, D. P. A.; Yuwono, B. E.
2018-01-01
This research aim to generate weighting value for each factor and find out the most influential factor for identify implementation of ecodrain concept using loading factor and Cronbach Alpha. The drainage problem especially in urban areas are getting more complex and need to be handled as soon as possible. Flood and drought problem can’t be solved by the conventional paradigm of drainage (to drain runoff flow as faster as possible to the nearest drainage area). The new paradigm of drainage that based on environmental approach called “ecodrain” can solve both of flood and drought problems. For getting the optimal result, ecodrain should be applied in smallest scale (domestic scale), until the biggest scale (city areas). It is necessary to identify drainage condition based on environmental approach. This research implement ecodrain concept by a guidelines that consist of parameters and assessment criteria. It was generating the 2 variables, 7 indicators and 63 key factors from previous research and related regulations. the conclusion of the research is the most influential indicator on technical management variable is storage system, while on non-technical management variable is government role.
ERIC Educational Resources Information Center
Davids, Mogamat Razeen; Chikte, Usuf M. E.; Halperin, Mitchell L.
2011-01-01
This article reports on the development and evaluation of a Web-based application that provides instruction and hands-on practice in managing electrolyte and acid-base disorders. Our teaching approach, which focuses on concepts rather than details, encourages quantitative analysis and a logical problem-solving approach. Identifying any dangers to…
ERIC Educational Resources Information Center
Watters, Dianne J.; Watters, James J.
2006-01-01
In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve…
Extending the Regular Curriculum through Creative Problem Solving.
ERIC Educational Resources Information Center
Bohan, Harry; Bohan, Susan
1993-01-01
Uses ancient Egyptian numeration system in a new setting to extend the concepts of base, place value, and correspondence. Discusses similarities and differences between the Egyptian and decimal systems. Students are asked to propose changes to make the Egyptian system easier. (LDR)
A System for Generating Instructional Computer Graphics.
ERIC Educational Resources Information Center
Nygard, Kendall E.; Ranganathan, Babusankar
1983-01-01
Description of the Tektronix-Based Interactive Graphics System for Instruction (TIGSI), which was developed for generating graphics displays in computer-assisted instruction materials, discusses several applications (e.g., reinforcing learning of concepts, principles, rules, and problem-solving techniques) and presents advantages of the TIGSI…
NASA Astrophysics Data System (ADS)
Soderberg, Patti; Price, Frank
2003-01-01
This study describes a lesson in which students engaged in inquiry in evolutionary biology in order to develop a better understanding of the concepts and reasoning skills necessary to support knowledge claims about changes in the genetic structure of populations, also known as microevolution. This paper describes how a software simulation called EVOLVE can be used to foster discussions about the conceptual knowledge used by advanced secondary or introductory college students when investigating the effects of natural selection on hypothetical populations over time. An experienced professor's use and rationale of a problem-based lesson using the simulation is examined. Examples of student misconceptions and naïve (incomplete) conceptions are described and an analysis of the procedural knowledge for experimenting with the computer model is provided. The results of this case study provide a model of how EVOLVE can be used to engage students in a complex problem-solving experience that encourages student meta-cognitive reflection about their understanding of evolution at the population level. Implications for teaching are provided and ways to improve student learning and problem solving in population genetics are suggested.
ERIC Educational Resources Information Center
Shore, Felice S.; Pascal, Matthew
2008-01-01
This article describes several distinct approaches taken by preservice elementary teachers to solving a classic rate problem. Their approaches incorporate a variety of mathematical concepts, ranging from proportions to infinite series, and illustrate the power of all five NCTM Process Standards. (Contains 8 figures.)
Using Clickers to Facilitate Development of Problem-Solving Skills
ERIC Educational Resources Information Center
Levesque, Aime A.
2011-01-01
Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and…
Computer Assisted Problem Solving in an Introductory Statistics Course. Technical Report No. 56.
ERIC Educational Resources Information Center
Anderson, Thomas H.; And Others
The computer assisted problem solving system (CAPS) described in this booklet administered "homework" problem sets designed to develop students' computational, estimation, and procedural skills. These skills were related to important concepts in an introductory statistics course. CAPS generated unique data, judged student performance,…
Cognitive Development, Genetics Problem Solving, and Genetics Instruction: A Critical Review.
ERIC Educational Resources Information Center
Smith, Mike U.; Sims, O. Suthern, Jr.
1992-01-01
Review of literature concerning problem solving in genetics and Piagetian stage theory. Authors conclude the research suggests that formal-operational thought is not strictly required for the solution of the majority of classical genetics problems; however, some genetic concepts are difficult for concrete operational students to understand.…
Mathematical Problem Solving for Youth with ADHD, with and without Learning Disabilities.
ERIC Educational Resources Information Center
Zentall, Sydney S.; Ferkis, Mary Ann
1993-01-01
This review of research finds that, when IQ and reading ability are controlled, "true" math deficits of students with learning disabilities, attention deficit disorders, and attention deficit hyperactive disorders (ADHD) are specific to mathematical concepts and problem types. Slow computation affects problem solving by increasing attentional…
Application of a Modal Approach in Solving the Static Stability Problem for Electric Power Systems
NASA Astrophysics Data System (ADS)
Sharov, J. V.
2017-12-01
Application of a modal approach in solving the static stability problem for power systems is examined. It is proposed to use the matrix exponent norm as a generalized transition function of the power system disturbed motion. Based on the concept of a stability radius and the pseudospectrum of Jacobian matrix, the necessary and sufficient conditions for existence of the static margins were determined. The capabilities and advantages of the modal approach in designing centralized or distributed control and the prospects for the analysis of nonlinear oscillations and rendering the dynamic stability are demonstrated.
The Role of Guidance in Computer-Based Problem Solving for the Development of Concepts of Logic.
ERIC Educational Resources Information Center
Eysink, Tessa H. S.; Dijkstra, Sanne; Kuper, Jan
2002-01-01
Describes a study at the University of Twente (Netherlands) that investigated the effect of two instructional variables, manipulation of objects and guidance, in learning to use the logical connective, conditional with a computer-based learning environment, Tarski's World, designed to teach first-order logic. Discusses results of…
NASA Astrophysics Data System (ADS)
Agustan, S.; Juniati, Dwi; Yuli Eko Siswono, Tatag
2017-10-01
Nowadays, reflective thinking is one of the important things which become a concern in learning mathematics, especially in solving a mathematical problem. The purpose of this paper is to describe how the student used reflective thinking when solved an algebra problem. The subject of this research is one female student who has field independent cognitive style. This research is a descriptive exploratory study with data analysis using qualitative approach to describe in depth reflective thinking of prospective teacher in solving an algebra problem. Four main categories are used to analyse the reflective thinking in solving an algebra problem: (1) formulation and synthesis of experience, (2) orderliness of experience, (3) evaluating the experience and (4) testing the selected solution based on the experience. The results showed that the subject described the problem by using another word and the subject also found the difficulties in making mathematical modelling. The subject analysed two concepts used in solving problem. For instance, geometry related to point and line while algebra is related to algebra arithmetic operation. The subject stated that solution must have four aspect to get effective solution, specifically the ability to (a) understand the meaning of every words; (b) make mathematical modelling; (c) calculate mathematically; (d) interpret solution obtained logically. To test the internal consistency or error in solution, the subject checked and looked back related procedures and operations used. Moreover, the subject tried to resolve the problem in a different way to compare the answers which had been obtained before. The findings supported the assertion that reflective thinking provides an opportunity for the students in improving their weakness in mathematical problem solving. It can make a grow accuracy and concentration in solving a mathematical problem. Consequently, the students will get the right and logic answer by reflective thinking.
Errors Analysis of Students in Mathematics Department to Learn Plane Geometry
NASA Astrophysics Data System (ADS)
Mirna, M.
2018-04-01
This article describes the results of qualitative descriptive research that reveal the locations, types and causes of student error in answering the problem of plane geometry at the problem-solving level. Answers from 59 students on three test items informed that students showed errors ranging from understanding the concepts and principles of geometry itself to the error in applying it to problem solving. Their type of error consists of concept errors, principle errors and operational errors. The results of reflection with four subjects reveal the causes of the error are: 1) student learning motivation is very low, 2) in high school learning experience, geometry has been seen as unimportant, 3) the students' experience using their reasoning in solving the problem is very less, and 4) students' reasoning ability is still very low.
With a Little Help from My Friends: Scaffolding Techniques in Problem Solving
ERIC Educational Resources Information Center
Frederick, Michelle L.; Courtney, Scott; Caniglia, Joanne
2014-01-01
The purpose of this study was to explore middle grade mathematics students' uses of scaffolding and its effectiveness in helping students solve non-routine problems. Students were given two different types of scaffolds to support their learning of sixth grade geometry concepts. First, students solved a math task by using a four square graphic…
Problem solving and decisionmaking: An integration
NASA Technical Reports Server (NTRS)
Dieterly, D. L.
1980-01-01
An attempt was made to redress a critical fault of decisionmaking and problem solving research-a lack of a standard method to classify problem or decision states or conditions. A basic model was identified and expanded to indicate a possible taxonomy of conditions which may be used in reviewing previous research or for systematically pursuing new research designs. A generalization of the basic conditions was then made to indicate that the conditions are essentially the same for both concepts, problem solving and decisionmaking.
Modelling Problem-Solving Situations into Number Theory Tasks: The Route towards Generalisation
ERIC Educational Resources Information Center
Papadopoulos, Ioannis; Iatridou, Maria
2010-01-01
This paper examines the way two 10th graders cope with a non-standard generalisation problem that involves elementary concepts of number theory (more specifically linear Diophantine equations) in the geometrical context of a rectangle's area. Emphasis is given on how the students' past experience of problem solving (expressed through interplay…
Evidence-based ergonomics: a model and conceptual structure proposal.
Silveira, Dierci Marcio
2012-01-01
In Human Factors and Ergonomics Science (HFES), it is difficult to identify what is the best approach to tackle the workplace and systems design problems which needs to be solved, and it has been also advocated as transdisciplinary and multidisciplinary the issue of "How to solve the human factors and ergonomics problems that are identified?". The proposition on this study is to combine the theoretical approach for Sustainability Science, the Taxonomy of the Human Factors and Ergonomics (HFE) discipline and the framework for Evidence-Based Medicine in an attempt to be applied in Human Factors and Ergonomics. Applications of ontologies are known in the field of medical research and computer science. By scrutinizing the key requirements for the HFES structuring of knowledge, it was designed a reference model, First, it was identified the important requirements for HFES Concept structuring, as regarded by Meister. Second, it was developed an evidence-based ergonomics framework as a reference model composed of six levels based on these requirements. Third, it was devised a mapping tool using linguistic resources to translate human work, systems environment and the complexities inherent to their hierarchical relationships to support future development at Level 2 of the reference model and for meeting the two major challenges for HFES, namely, identifying what problems should be addressed in HFE as an Autonomous Science itself and proposing solutions by integrating concepts and methods applied in HFES for those problems.
NASA Astrophysics Data System (ADS)
Mukherjee, Sathi; Basu, Kajla
2010-10-01
In this paper we develop a methodology to solve the multiple attribute assignment problems where the attributes are considered to be Intuitionistic Fuzzy Sets (IFS). We apply the concept of similarity measures of IFS to solve the Intuitionistic Fuzzy Multi-Attribute Assignment Problem (IFMAAP). The weights of the attributes are determined from expert opinion. An illustrative example is solved to verify the developed approach and to demonstrate its practicality.
ERIC Educational Resources Information Center
Kuchinke, K. Peter
1999-01-01
Presents three views of adult development: (1) person-centered, focused on self-realization and based on humanistic psychology and liberalism; (2) production-centered, focused on organizational goals and based on behaviorism and libertarianism; and (3) principled problem solving, based on cognitive psychology, progressivism, and pragmatism.…
Facilitating Problem Solving in High School Chemistry.
ERIC Educational Resources Information Center
Gabel, Dorothy L.; Sherwood, Robert D.
1983-01-01
Investigated superiority of instructional strategies (factor-label method, proportionality, use of analogies, use of diagrams) in teaching problem-solving related to mole concept, gas laws, stoichiometry, and molarity. Also investigated effectiveness of strategies for students (N=609) with different verbal-visual preferences, proportional…
Universal Design Problem Solving
ERIC Educational Resources Information Center
Sterling, Mary C.
2004-01-01
Universal design is made up of four elements: accessibility, adaptability, aesthetics, and affordability. This article addresses the concept of universal design problem solving through experiential learning for an interior design studio course in postsecondary education. Students' experiences with clients over age 55 promoted an understanding of…
The Problem-Solving Nemesis: Mindless Manipulation.
ERIC Educational Resources Information Center
Hawkins, Vincent J.
1987-01-01
Indicates that only 21% of respondents (secondary school math teachers) used computer-assisted instruction for tutorial work, physical models to interpret abstract concepts, or real-life application of the arithmetic or algebraic manipulation. Recommends that creative teaching methods be applied to problem solving. (NKA)
Investigating adaptive reasoning and strategic competence: Difference male and female
NASA Astrophysics Data System (ADS)
Syukriani, Andi; Juniati, Dwi; Siswono, Tatag Yuli Eko
2017-08-01
The series of adaptive reasoning and strategic competencies represent the five components of mathematical proficiency to describe the students' mathematics learning success. Gender contribute to the problem-solving process. This qualitative research approach investigated the adaptive reasoning and strategic competence aspects of a male student and a female student when they solved mathematical problem. They were in the eleventh grade of high school in Makassar. Both also had similar mathematics ability and were in the highest category. The researcher as the main instrument used secondary instrument to obtain the appropriate subject and to investigate the aspects of adaptive reasoning and strategic competence. Test of mathematical ability was used to locate the subjects with similar mathematical ability. The unstructured guideline interview was used to investigate aspects of adaptive reasoning and strategic competence when the subject completed the task of mathematical problem. The task of mathematical problem involves several concepts as the right solution, such as the circle concept, triangle concept, trigonometry concept, and Pythagoras concept. The results showed that male and female subjects differed in applying a strategy to understand, formulate and represent the problem situation. Furthermore, both also differed in explaining the strategy used and the relationship between concepts and problem situations.
NASA Technical Reports Server (NTRS)
Metzger, Philip T.; Lane, John E.; Youngquist, Robert C.
2004-01-01
The radiation problem is a serious obstacle to solar system exploration. Electrostatic shielding was previously dismissed as unworkable. This was based on the false assumption that radial symmetry is needed to provide isotropic protection. KSC recently demonstrated the feasibility of asymmetric, multipole electrostatic shielding. Combined with passive shielding it might solve the radiation problem
A Flipped Pedagogy for Expert Problem Solving
NASA Astrophysics Data System (ADS)
Pritchard, David
The internet provides free learning opportunities for declarative (Wikipedia, YouTube) and procedural (Kahn Academy, MOOCs) knowledge, challenging colleges to provide learning at a higher cognitive level. Our ``Modeling Applied to Problem Solving'' pedagogy for Newtonian Mechanics imparts strategic knowledge - how to systematically determine which concepts to apply and why. Declarative and procedural knowledge is learned online before class via an e-text, checkpoint questions, and homework on edX.org (see http://relate.mit.edu/physicscourse); it is organized into five Core Models. Instructors then coach students on simple ``touchstone problems'', novel exercises, and multi-concept problems - meanwhile exercising three of the four C's: communication, collaboration, critical thinking and problem solving. Students showed 1.2 standard deviations improvement on the MIT final exam after three weeks instruction, a significant positive shift in 7 of the 9 categories in the CLASS, and their grades improved by 0.5 standard deviation in their following physics course (Electricity and Magnetism).
NASA Astrophysics Data System (ADS)
Kuncoro, K. S.; Junaedi, I.; Dwijanto
2018-03-01
This study aimed to reveal the effectiveness of Project Based Learning with Resource Based Learning approach computer-aided program and analyzed problem-solving abilities in terms of problem-solving steps based on Polya stages. The research method used was mixed method with sequential explanatory design. The subject of this research was the students of math semester 4. The results showed that the S-TPS (Strong Top Problem Solving) and W-TPS (Weak Top Problem Solving) had good problem-solving abilities in each problem-solving indicator. The problem-solving ability of S-MPS (Strong Middle Problem Solving) and (Weak Middle Problem Solving) in each indicator was good. The subject of S-BPS (Strong Bottom Problem Solving) had a difficulty in solving the problem with computer program, less precise in writing the final conclusion and could not reflect the problem-solving process using Polya’s step. While the Subject of W-BPS (Weak Bottom Problem Solving) had not been able to meet almost all the indicators of problem-solving. The subject of W-BPS could not precisely made the initial table of completion so that the completion phase with Polya’s step was constrained.
A case study of analyzing 11th graders’ problem solving ability on heat and temperature topic
NASA Astrophysics Data System (ADS)
Yulianawati, D.; Muslim; Hasanah, L.; Samsudin, A.
2018-05-01
Problem solving ability must be owned by students after the process of physics learning so that the concept of physics becomes meaningful. Consequently, the research aims to describe their problem solving ability. Metacognition is contributed to physics learning to the success of students in solving problems. This research has already been implemented to 37 science students (30 women and 7 men) of eleventh grade from one of the secondary schools in Bandung. The research methods utilized the single case study with embedded research design. The instrument is Heat and Temperature Problem Solving Ability Test (HT-PSAT) which consists of twelve questions from three context problems. The result shows that the average value of the test is 8.27 out of the maximum total value of 36. In conclusion, eleventh graders’ problem-solving ability is still under expected. The implication of the findings is able to create learning situations which are probably developing students to embrace better problem solving ability.
Conceptual problem solving in high school physics
NASA Astrophysics Data System (ADS)
Docktor, Jennifer L.; Strand, Natalie E.; Mestre, José P.; Ross, Brian H.
2015-12-01
Problem solving is a critical element of learning physics. However, traditional instruction often emphasizes the quantitative aspects of problem solving such as equations and mathematical procedures rather than qualitative analysis for selecting appropriate concepts and principles. This study describes the development and evaluation of an instructional approach called Conceptual Problem Solving (CPS) which guides students to identify principles, justify their use, and plan their solution in writing before solving a problem. The CPS approach was implemented by high school physics teachers at three schools for major theorems and conservation laws in mechanics and CPS-taught classes were compared to control classes taught using traditional problem solving methods. Information about the teachers' implementation of the approach was gathered from classroom observations and interviews, and the effectiveness of the approach was evaluated from a series of written assessments. Results indicated that teachers found CPS easy to integrate into their curricula, students engaged in classroom discussions and produced problem solutions of a higher quality than before, and students scored higher on conceptual and problem solving measures.
School-University Partnerships in Action: Concepts, Cases,
ERIC Educational Resources Information Center
Sirotnik, Kenneth A., Ed.; Goodlad, John I., Ed.
A general paradigm for ideal collaboration between schools and universities is proposed. It is based on a mutually collaborative arrangement between equal partners working together to meet self-interests while solving common problems. It is suggested that reasonable approximations to this ideal have great potential to effect significant…
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them. PMID:26819585
Lim, Wee Loon; Wibowo, Antoni; Desa, Mohammad Ishak; Haron, Habibollah
2016-01-01
The quadratic assignment problem (QAP) is an NP-hard combinatorial optimization problem with a wide variety of applications. Biogeography-based optimization (BBO), a relatively new optimization technique based on the biogeography concept, uses the idea of migration strategy of species to derive algorithm for solving optimization problems. It has been shown that BBO provides performance on a par with other optimization methods. A classical BBO algorithm employs the mutation operator as its diversification strategy. However, this process will often ruin the quality of solutions in QAP. In this paper, we propose a hybrid technique to overcome the weakness of classical BBO algorithm to solve QAP, by replacing the mutation operator with a tabu search procedure. Our experiments using the benchmark instances from QAPLIB show that the proposed hybrid method is able to find good solutions for them within reasonable computational times. Out of 61 benchmark instances tested, the proposed method is able to obtain the best known solutions for 57 of them.
Workflow Agents vs. Expert Systems: Problem Solving Methods in Work Systems Design
NASA Technical Reports Server (NTRS)
Clancey, William J.; Sierhuis, Maarten; Seah, Chin
2009-01-01
During the 1980s, a community of artificial intelligence researchers became interested in formalizing problem solving methods as part of an effort called "second generation expert systems" (2nd GES). How do the motivations and results of this research relate to building tools for the workplace today? We provide an historical review of how the theory of expertise has developed, a progress report on a tool for designing and implementing model-based automation (Brahms), and a concrete example how we apply 2nd GES concepts today in an agent-based system for space flight operations (OCAMS). Brahms incorporates an ontology for modeling work practices, what people are doing in the course of a day, characterized as "activities." OCAMS was developed using a simulation-to-implementation methodology, in which a prototype tool was embedded in a simulation of future work practices. OCAMS uses model-based methods to interactively plan its actions and keep track of the work to be done. The problem solving methods of practice are interactive, employing reasoning for and through action in the real world. Analogously, it is as if a medical expert system were charged not just with interpreting culture results, but actually interacting with a patient. Our perspective shifts from building a "problem solving" (expert) system to building an actor in the world. The reusable components in work system designs include entire "problem solvers" (e.g., a planning subsystem), interoperability frameworks, and workflow agents that use and revise models dynamically in a network of people and tools. Consequently, the research focus shifts so "problem solving methods" include ways of knowing that models do not fit the world, and ways of interacting with other agents and people to gain or verify information and (ultimately) adapt rules and procedures to resolve problematic situations.
Facilitating problem solving in high school chemistry
NASA Astrophysics Data System (ADS)
Gabel, Dorothy L.; Sherwood, Robert D.
The major purpose for conducting this study was to determine whether certain instructional strategies were superior to others in teaching high school chemistry students problem solving. The effectiveness of four instructional strategies for teaching problem solving to students of various proportional reasoning ability, verbal and visual preference, and mathematics anxiety were compared in this aptitude by treatment interaction study. The strategies used were the factor-label method, analogies, diagrams, and proportionality. Six hundred and nine high school students in eight schools were randomly assigned to one of four teaching strategies within each classroom. Students used programmed booklets to study the mole concept, the gas laws, stoichiometry, and molarity. Problem-solving ability was measured by a series of immediate posttests, delayed posttests and the ACS-NSTA Examination in High School Chemistry. Results showed that mathematics anxiety is negatively correlated with science achievement and that problem solving is dependent on students' proportional reasoning ability. The factor-label method was found to be the most desirable method and proportionality the least desirable method for teaching the mole concept. However, the proportionality method was best for teaching the gas laws. Several second-order interactions were found to be significant when mathematics anxiety was one of the aptitudes involved.
NASA Astrophysics Data System (ADS)
Zirconia, A.; Supriyanti, F. M. T.; Supriatna, A.
2018-04-01
This study aims to determine generic science skills enhancement of students through implementation of IDEAL problem-solving model on genetic information course. Method of this research was mixed method, with pretest-posttest nonequivalent control group design. Subjects of this study were chemistry students enrolled in biochemistry course, consisted of 22 students in the experimental class and 19 students in control class. The instrument in this study was essayed involves 6 indicators generic science skills such as indirect observation, causality thinking, logical frame, self-consistent thinking, symbolic language, and developing concept. The results showed that genetic information course using IDEAL problem-solving model have been enhancing generic science skills in low category with
NASA Astrophysics Data System (ADS)
Sauer, Tim Allen
The purpose of this study was to evaluate the effectiveness of utilizing student constructed theoretical math models when teaching acceleration to high school introductory physics students. The goal of the study was for the students to be able to utilize mathematical modeling strategies to improve their problem solving skills, as well as their standardized scientific and conceptual understanding. This study was based on mathematical modeling research, conceptual change research and constructivist theory of learning, all of which suggest that mathematical modeling is an effective way to influence students' conceptual connectiveness and sense making of formulaic equations and problem solving. A total of 48 students in two sections of high school introductory physics classes received constructivist, inquiry-based, cooperative learning, and conceptual change-oriented instruction. The difference in the instruction for the 24 students in the mathematical modeling treatment group was that they constructed every formula they needed to solve problems from data they collected. In contrast, the instructional design for the control group of 24 students allowed the same instruction with assigned problems solved with formulas given to them without explanation. The results indicated that the mathematical modeling students were able to solve less familiar and more complicated problems with greater confidence and mental flexibility than the control group students. The mathematical modeling group maintained fewer alternative conceptions consistently in the interviews than did the control group. The implications for acceleration instruction from these results were discussed.
NASA Astrophysics Data System (ADS)
Kotelnikov, E. V.; Milov, V. R.
2018-05-01
Rule-based learning algorithms have higher transparency and easiness to interpret in comparison with neural networks and deep learning algorithms. These properties make it possible to effectively use such algorithms to solve descriptive tasks of data mining. The choice of an algorithm depends also on its ability to solve predictive tasks. The article compares the quality of the solution of the problems with binary and multiclass classification based on the experiments with six datasets from the UCI Machine Learning Repository. The authors investigate three algorithms: Ripper (rule induction), C4.5 (decision trees), In-Close (formal concept analysis). The results of the experiments show that In-Close demonstrates the best quality of classification in comparison with Ripper and C4.5, however the latter two generate more compact rule sets.
Alternative Constraint Handling Technique for Four-Bar Linkage Path Generation
NASA Astrophysics Data System (ADS)
Sleesongsom, S.; Bureerat, S.
2018-03-01
This paper proposes an extension of a new concept for path generation from our previous work by adding a new constraint handling technique. The propose technique was initially designed for problems without prescribed timing by avoiding the timing constraint, while remain constraints are solving with a new constraint handling technique. The technique is one kind of penalty technique. The comparative study is optimisation of path generation problems are solved using self-adaptive population size teaching-learning based optimization (SAP-TLBO) and original TLBO. In this study, two traditional path generation test problem are used to test the proposed technique. The results show that the new technique can be applied with the path generation problem without prescribed timing and gives better results than the previous technique. Furthermore, SAP-TLBO outperforms the original one.
Gender Differences in Both Force Concept Inventory and Introductory Physics Performance
NASA Astrophysics Data System (ADS)
Docktor, Jennifer; Heller, Kenneth
2008-10-01
We present data from a decade of introductory calculus-based physics courses for science and engineering students at the University of Minnesota taught using cooperative group problem solving. The data include 40 classes with more than 5500 students taught by 22 different professors. The average normalized gain for males is 0.4 for these large classes that emphasized problem solving. Female students made up approximately 20% of these classes. We present relationships between pre and post Force Concept Inventory (FCI) scores, course grades, and final exam scores for females and males. We compare our results with previous studies from Harvard [2] and the University of Colorado [3,4]. Our data show there is a significant gender gap in pre-test FCI scores that persists post-instruction although there is essentially no gender difference in course performance as determined by course grade.
NASA Astrophysics Data System (ADS)
Prismana, R. D. E.; Kusmayadi, T. A.; Pramudya, I.
2018-04-01
The ability of solving problem is a part of the mathematic curriculum that is very important. Problem solving prefers the process and strategy that is done by students in solving a problem rather than the result. This learning concept in accordance with the stages on the revised bloom’s taxonomy. The revised Bloom’s Taxonomy has two dimensions, namely the dimension of cognitive process and the dimension of knowledge. Dimension of knowledge has four categories, but this study only restricted on two knowledge, conceptual knowledge and procedural knowledge. Dimensions of cognitive processes are categorized into six kinds, namely remembering, understanding, applying, analyzing, evaluating, and creating. Implementation of learning more emphasis on the role of students. Students must have their own belief in completing tasks called self-efficacy. This research is a qualitative research. This research aims to know the site of the students’ difficulty based on revised Bloom’s Taxonomy viewed from high self-efficacy. The results of the study stated the students with high self efficacy have difficulties site. They are evaluating conceptual knowledge, evaluating procedural knowledge, creating conceptual knowledge, and creating procedural knowledge. It could be the consideration of teachers in the teaching, so as to reduce the difficulties of learning in students.
NASA Astrophysics Data System (ADS)
Novikov, A. E.
1993-10-01
There are several methods of solving the problem of the flow distribution in hydraulic networks. But all these methods have no mathematical tools for forming joint systems of equations to solve this problem. This paper suggests a method of constructing joint systems of equations to calculate hydraulic circuits of the arbitrary form. The graph concept, according to Kirchhoff, has been introduced.
Nash equilibrium and multi criterion aerodynamic optimization
NASA Astrophysics Data System (ADS)
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Robotics Projects and Learning Concepts in Science, Technology and Problem Solving
ERIC Educational Resources Information Center
Barak, Moshe; Zadok, Yair
2009-01-01
This paper presents a study about learning and the problem solving process identified among junior high school pupils participating in robotics projects in the Lego Mindstorm environment. The research was guided by the following questions: (1) How do pupils come up with inventive solutions to problems in the context of robotics activities? (2)…
ERIC Educational Resources Information Center
Dogru, Mustafa
2008-01-01
Helping students to improve their problems solving skills is the primary target of science teacher trainees. In modern science, for training the students, methods should be used for improving their thinking skills, making connections with events and concepts and scientific operations skills rather than information and definition giving. One of…
ERIC Educational Resources Information Center
Berge, Maria; Danielsson, Anna T.
2013-01-01
The purpose of this article is to explore how a group of four university physics students addressed mechanics problems, in terms of student direction of attention, problem solving strategies and their establishment of and ways of interacting. Adapted from positioning theory, the concepts "positioning" and "storyline" are used to describe and to…
Rate Problems: Thinking across the Curriculum
ERIC Educational Resources Information Center
Kimani, Patrick; Engelke, Nicole
2012-01-01
An important concept in mathematics, yet one that is often elusive for students, is the concept of rate. For many real-life situations--those involving work, distance and speed, interest, and density--reasoning by using rate can be an efficient strategy for problem solving. Students struggle with the concept of rate, despite the many possible…
NASA Astrophysics Data System (ADS)
Ramalingam, Srikumar
2001-11-01
A highly secure mobile agent system is very important for a mobile computing environment. The security issues in mobile agent system comprise protecting mobile hosts from malicious agents, protecting agents from other malicious agents, protecting hosts from other malicious hosts and protecting agents from malicious hosts. Using traditional security mechanisms the first three security problems can be solved. Apart from using trusted hardware, very few approaches exist to protect mobile code from malicious hosts. Some of the approaches to solve this problem are the use of trusted computing, computing with encrypted function, steganography, cryptographic traces, Seal Calculas, etc. This paper focuses on the simulation of some of these existing techniques in the designed mobile language. Some new approaches to solve malicious network problem and agent tampering problem are developed using public key encryption system and steganographic concepts. The approaches are based on encrypting and hiding the partial solutions of the mobile agents. The partial results are stored and the address of the storage is destroyed as the agent moves from one host to another host. This allows only the originator to make use of the partial results. Through these approaches some of the existing problems are solved.
Liquid disinfection using power impulse laser
NASA Astrophysics Data System (ADS)
Gribin, S.; Assaoul, Viktor; Markova, Elena; Gromova, Ludmila P.; Spesivtsev, Boris; Bazanov, V.
1996-05-01
The presented method is based on the bactericidal effect of micro-blast induced by various sources (laser breakdown, electrohydraulic effect...). Using elaborated conception of physical phenomena providing liquid disinfection it is possible to determine optimal conditions of water treatment. The problem of optimization is solved using methods of mathematical modeling and special experiments.
The Effect of Eliciting Repair of Mathematics Explanations of Students with Learning Disabilities
ERIC Educational Resources Information Center
Liu, Jia; Xin, Yan Ping
2017-01-01
Mathematical reasoning is important in conceptual understanding and problem solving. In current reform-based, discourse-oriented mathematics classrooms, students with learning disabilities (LD) encounter challenges articulating or explaining their reasoning processes. Enlightened by the concept of conversational repair borrowed from the field of…
Linking Action Learning and Inter-Organisational Learning: The Learning Journey Approach
ERIC Educational Resources Information Center
Schumacher, Thomas
2015-01-01
The article presents and illustrates the learning journey (LJ)--a new management development approach to inter-organisational learning based on observation, reflection and problem-solving. The LJ involves managers from different organisations and applies key concepts of action learning and systemic organisational development. Made up of…
Liquid disinfection using power impulse laser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gribin, S.; Assaoul, V.; Markova, E.
1996-12-31
The presented method is based on the bactericidal effect of micro-blast induced by various sources (laser breakdown, electrohydraulic effect ... ). Using elaborated conception of physical phenomena providing liquid disinfection it is possible to determine optimal conditions of water treatment. The problem of optimization is solved using methods of mathematical modeling and special experiments.
ERIC Educational Resources Information Center
Thurmond, Brandi
2011-01-01
This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…
Step by Step: Biology Undergraduates’ Problem-Solving Procedures during Multiple-Choice Assessment
Prevost, Luanna B.; Lemons, Paula P.
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. PMID:27909021
Problem-based writing with peer review improves academic performance in physiology.
Pelaez, Nancy J
2002-12-01
The aim of this study was to determine whether problem-based writing with peer review (PW-PR) improves undergraduate student performance on physiology exams. Didactic lectures were replaced with assignments to give students practice explaining their reasoning while solving qualitative problems, thus transferring the responsibility for abstraction and generalization to the students. Performance on exam items about concepts taught using PW-PR was compared with performance on concepts taught using didactic lectures followed by group work. Calibrated Peer Review, a Web-delivered program, was used to collect student essays and to manage anonymous peer review after students "passed" three calibration peer reviews. Results show that the students had difficulty relating concepts. Relationship errors were categorized as (1) problems recognizing levels of organization, (2) problems with cause/effect, and (3) overgeneralizations. For example, some described cells as molecules; others thought that vesicles transport materials through the extracellular fluid. With PW-PR, class discussion was used to confront and resolve such difficulties. Both multiple-choice and essay exam results were better with PW-PR instead of lecture.
A Monte-Carlo game theoretic approach for Multi-Criteria Decision Making under uncertainty
NASA Astrophysics Data System (ADS)
Madani, Kaveh; Lund, Jay R.
2011-05-01
Game theory provides a useful framework for studying Multi-Criteria Decision Making problems. This paper suggests modeling Multi-Criteria Decision Making problems as strategic games and solving them using non-cooperative game theory concepts. The suggested method can be used to prescribe non-dominated solutions and also can be used as a method to predict the outcome of a decision making problem. Non-cooperative stability definitions for solving the games allow consideration of non-cooperative behaviors, often neglected by other methods which assume perfect cooperation among decision makers. To deal with the uncertainty in input variables a Monte-Carlo Game Theory (MCGT) approach is suggested which maps the stochastic problem into many deterministic strategic games. The games are solved using non-cooperative stability definitions and the results include possible effects of uncertainty in input variables on outcomes. The method can handle multi-criteria multi-decision-maker problems with uncertainty. The suggested method does not require criteria weighting, developing a compound decision objective, and accurate quantitative (cardinal) information as it simplifies the decision analysis by solving problems based on qualitative (ordinal) information, reducing the computational burden substantially. The MCGT method is applied to analyze California's Sacramento-San Joaquin Delta problem. The suggested method provides insights, identifies non-dominated alternatives, and predicts likely decision outcomes.
Mathematical Thinking and Creativity through Mathematical Problem Posing and Solving
ERIC Educational Resources Information Center
Ayllón, María F.; Gómez, Isabel A.; Ballesta-Claver, Julio
2016-01-01
This work shows the relationship between the development of mathematical thinking and creativity with mathematical problem posing and solving. Creativity and mathematics are disciplines that do not usually appear together. Both concepts constitute complex processes sharing elements, such as fluency (number of ideas), flexibility (range of ideas),…
Mesh and Time-Step Independent Computational Fluid Dynamics (CFD) Solutions
ERIC Educational Resources Information Center
Nijdam, Justin J.
2013-01-01
A homework assignment is outlined in which students learn Computational Fluid Dynamics (CFD) concepts of discretization, numerical stability and accuracy, and verification in a hands-on manner by solving physically realistic problems of practical interest to engineers. The students solve a transient-diffusion problem numerically using the common…
ERIC Educational Resources Information Center
Hwang, Jiwon; Riccomini, Paul J.
2016-01-01
Requirements for reasoning, explaining, and generalizing mathematical concepts increase as students advance through the educational system; hence, improving overall mathematical proficiency is critical. Mathematical proficiency requires students to interpret quantities and their corresponding relationships during problem-solving tasks as well as…
Facilitating Problem Solving in High School Chemistry.
ERIC Educational Resources Information Center
Gabel, Dorothy L.
The major purpose of this study was to determine whether certain types of instructional strategies (factor-label method, use of analogies, use of diagrams, and proportionality) were superior to others in teaching problem solving in four topics (mole concept, gas laws, stoichiometry, and molarity). Also of major interest was whether particular…
The Smarties-Box Challenge: Supporting Systematic Approaches to Problem Solving
ERIC Educational Resources Information Center
Russo, James
2016-01-01
The Smarties-Box Challenge encourages students to apply several different mathematical capabilities and concepts--such as, estimation, multiplication, and the notion of being systematic--to solve a complex, multistep problem. To effectively engage in the Smarties-Box Challenge, students are required to demonstrate aspects of all four proficiency…
Modified Use of Team-Based Learning in an Ophthalmology Course for Fifth-Year Medical Students
ERIC Educational Resources Information Center
Altintas, Levent; Altintas, Ozgul; Caglar, Yusuf
2014-01-01
Team-based learning (TBL) is an interactive and analytic teaching strategy. TBL is a learner-centered strategy that uses a very structured individual and group accountability process and requires small groups to work together to solve problems. This study served to investigate whether the TBL concept could be modified and adopted to the fifth-year…
Evolving neural networks for strategic decision-making problems.
Kohl, Nate; Miikkulainen, Risto
2009-04-01
Evolution of neural networks, or neuroevolution, has been a successful approach to many low-level control problems such as pole balancing, vehicle control, and collision warning. However, certain types of problems-such as those involving strategic decision-making-have remained difficult for neuroevolution to solve. This paper evaluates the hypothesis that such problems are difficult because they are fractured: The correct action varies discontinuously as the agent moves from state to state. A method for measuring fracture using the concept of function variation is proposed and, based on this concept, two methods for dealing with fracture are examined: neurons with local receptive fields, and refinement based on a cascaded network architecture. Experiments in several benchmark domains are performed to evaluate how different levels of fracture affect the performance of neuroevolution methods, demonstrating that these two modifications improve performance significantly. These results form a promising starting point for expanding neuroevolution to strategic tasks.
NASA Technical Reports Server (NTRS)
Smith, Philip J.; Mccoy, C. Elaine
1991-01-01
The goals of this research were to develop design concepts to support the task of enroute flight planning. And within this context, to explore and evaluate general design concepts and principles to guide the development of cooperative problem solving systems. A detailed model is to be developed of the cognitive processes involved in flight planning. Included in this model will be the identification of individual differences of subjects. Of particular interest will be differences between pilots and dispatchers. The effect will be studied of the effect on performance of tools that support planning at different levels of abstraction. In order to conduct this research, the Flight Planning Testbed (FPT) was developed, a fully functional testbed environment for studying advanced design concepts for tools to aid in flight planning.
NASA Astrophysics Data System (ADS)
Adams, Wendy Kristine
The purpose of my research was to produce a problem solving evaluation tool for physics. To do this it was necessary to gain a thorough understanding of how students solve problems. Although physics educators highly value problem solving and have put extensive effort into understanding successful problem solving, there is currently no efficient way to evaluate problem solving skill. Attempts have been made in the past; however, knowledge of the principles required to solve the subject problem are so absolutely critical that they completely overshadow any other skills students may use when solving a problem. The work presented here is unique because the evaluation tool removes the requirement that the student already have a grasp of physics concepts. It is also unique because I picked a wide range of people and picked a wide range of tasks for evaluation. This is an important design feature that helps make things emerge more clearly. This dissertation includes an extensive literature review of problem solving in physics, math, education and cognitive science as well as descriptions of studies involving student use of interactive computer simulations, the design and validation of a beliefs about physics survey and finally the design of the problem solving evaluation tool. I have successfully developed and validated a problem solving evaluation tool that identifies 44 separate assets (skills) necessary for solving problems. Rigorous validation studies, including work with an independent interviewer, show these assets identified by this content-free evaluation tool are the same assets that students use to solve problems in mechanics and quantum mechanics. Understanding this set of component assets will help teachers and researchers address problem solving within the classroom.
Tutoring electronic troubleshooting in a simulated maintenance work environment
NASA Technical Reports Server (NTRS)
Gott, Sherrie P.
1987-01-01
A series of intelligent tutoring systems, or intelligent maintenance simulators, is being developed based on expert and novice problem solving data. A graded series of authentic troubleshooting problems provides the curriculum, and adaptive instructional treatments foster active learning in trainees who engage in extensive fault isolation practice and thus in conditionalizing what they know. A proof of concept training study involving human tutoring was conducted as a precursor to the computer tutors to assess this integrated, problem based approach to task analysis and instruction. Statistically significant improvements in apprentice technicians' troubleshooting efficiency were achieved after approximately six hours of training.
Why do I need to know this? Optics/photonics problem-based learning in the math classroom
NASA Astrophysics Data System (ADS)
Donnelly, Matthew J.; Donnelly, Judith F.; Donnelly, Stephanie
2017-08-01
A common complaint of engineering managers is that new employees at all levels, technician through engineer, tend to have rote calculation ability but are unable to think critically and use structured problem solving techniques to apply mathematical concepts. Further, they often have poor written and oral communication skills and difficulty working in teams. Ironically, a common question of high school mathematics students is "Why do I need to know this?" In this paper we describe a project using optics/photonics and Problem Based Learning (PBL) to address these issues in a high school calculus classroom.
Intervention into a turbulent urban situation: A case study. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Caldwell, G. M., Jr.
1973-01-01
The application is reported of NASA management philosophy and techniques within New Castle County, Delaware, to meet actual problems of community violence. It resulted in restructuring the county approach to problems of this nature, and development of a comprehensive system for planning, based on the NASA planning process. The method involved federal, state, and local resources with community representatives in solving the problems. The concept of a turbulent environment is presented with parallels drawn between NASA management experience and problems of management within an urban arena.
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
Air-Sea Battle And The U.S. Rebalance To The Pacific
2016-03-28
based on capability, capacity and intent. Other potential adversaries such as Iran and Russia certainly pose a challenge to U.S. power projection but...such as China, Iran , and Russia. It is, therefore, necessary to understand the problem before developing an operational concept to solve it. While...the People’s Republic of China (PRC) and the Islamic Republic of Iran .20 Joint Concept for Access and Maneuver in the Global Commons (JAM-GC
Analysis Balance Parameter of Optimal Ramp metering
NASA Astrophysics Data System (ADS)
Li, Y.; Duan, N.; Yang, X.
2018-05-01
Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.
Development of geometry materials based on scientific approach for junior high school students
NASA Astrophysics Data System (ADS)
Nurafni; Siswanto, R. D.; Azhar, E.
2018-01-01
A scientific approach is a learning process designed so that learners can actively construct concepts, encourage learners to find out from various sources through observation, and not just be told. Therefore, learning by scientific approach offers a solution, because the goals, principles, and stages of the scientific approach allow for a good understanding of the students. Because of the absence of teaching materials “polyhedron geometry based on scientific approach” which is widely published in Indonesia, then we need to develop the teaching materials. The results obtained in this study are the tasks presented on teaching materials with a scientific approach both in defining the cube and the beam, identify and solve problems related to the properties and elements of cubes and beams, making cube and beam nets, solving problems related to cube and beam nets, solving problems related to cube and beam surface area. Beginning with the difficulties students face. Then, based on the results of interviews with teachers and analysis of student difficulties on each indicator, researchers revise the teaching materials as needed. Teaching materials that have not found any more student difficulties then the teaching materials are considered valid and ready for use by teachers and students.
NASA Astrophysics Data System (ADS)
Anku, Sitsofe E.
1997-09-01
Using the reform documents of the National Council of Teachers of Mathematics (NCTM) (NCTM, 1989, 1991, 1995), a theory-based multi-dimensional assessment framework (the "SEA" framework) which should help expand the scope of assessment in mathematics is proposed. This framework uses a context based on mathematical reasoning and has components that comprise mathematical concepts, mathematical procedures, mathematical communication, mathematical problem solving, and mathematical disposition.
ERIC Educational Resources Information Center
Nelson, Kristen J.
2007-01-01
This book provides a framework to help teachers connect brain-compatible learning, multiple intelligences, and the Internet to help students learn and understand critical concepts and skills. Educators will find internet-based activities that feature interpersonal exchange, problem-solving, and information gathering and analysis, plus…
Positive Steps for Marketing Higher Education.
ERIC Educational Resources Information Center
Fram, Eugene H.
The potential value of marketing principles to help solve educational problems in higher education is addressed. Four variables that are within the decision power of those in higher education and those in the commercial world are the product, distribution, promotion, and price. The marketing concept demands that policies be built on a base of…
ERIC Educational Resources Information Center
Butler, Lorna Michael; Coppedge, Robert O.
A guide for community leaders, extension staff, and community or rural development practitioners outlines the evolution of a regional training model for community-based problem solving in rural areas experiencing economic decline. The paper discusses the model's underlying concepts and implementation process and includes descriptions of four…
Light-Emitting Diodes: Solving Complex Problems
ERIC Educational Resources Information Center
Planinšic, Gorazd; Etkina, Eugenia
2015-01-01
This is the fourth paper in our Light-Emitting Diodes series. The series aims to create a systematic library of LED-based materials and to provide readers with the description of experiments and the pedagogical treatment that would help their students construct, test, and apply physics concepts and mathematical relations. The first paper provided…
Let's Teach How We Think Instead of What We Know
ERIC Educational Resources Information Center
Talanquer, Vincente; Pollard, John
2010-01-01
Despite multiple calls for reform, the curriculum for first-year college chemistry at many universities across the world is still mostly fact-based and encyclopedic, built upon a collection of isolated topics, oriented too much towards the perceived needs of chemistry majors, focused too much on abstract concepts and algorithmic problem solving,…
ERIC Educational Resources Information Center
Shin, Mikyung; Bryant, Diane P.
2017-01-01
Students with mathematics learning disabilities (MLD) have a weak understanding of fraction concepts and skills, which are foundations of algebra. Such students might benefit from computer-assisted instruction that utilizes evidence-based instructional components (cognitive strategies, feedback, virtual manipulatives). As a pilot study using a…
Science: Grade 6. Curriculum Bulletin, 1971-72 Series, No. 6.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Bureau of Curriculum Development.
This publication contains an extensive introduction for teachers covering such topics as questioning, reading in the science program, evaluation, and audiovisual materials. The book itself is a teacher's guide and is based on the concept that learning is best facilitated by providing meaningful problems which the learner is able to solve. Topics…
NASA Technical Reports Server (NTRS)
Wang, Lui; Bayer, Steven E.
1991-01-01
Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology.
Cooperation in Academic Negotiations: A Guide to Mutual Gains Bargaining.
ERIC Educational Resources Information Center
Birnbaum, Robert; And Others
A guide to mutual gains bargaining (MGB) is presented for faculty union leaders and college administrators, as well as school systems. MGB is based on applied behavioral sciences concepts and the use of bargaining teams and emphasizes problem-solving and improving communications and campus relationships. Two different uses of the mutual gains…
Finding a Good Fit: Using MCC in a "Third Space"
ERIC Educational Resources Information Center
Webster, Joan Parker; Wiles, Peter; Civil, Marta; Clark, Stacy
2005-01-01
Math in a Cultural Context (MCC) is based in traditional Yup'ik cultural values and ways of knowing and representing the world, which provide access to math concepts through hands-on exploration and active problem solving. This case illustrates how a novice and outsider teacher successfully implemented MCC in a classroom with predominantly…
School Psychology for the 21st Century: Foundations and Practices. Second Edition
ERIC Educational Resources Information Center
Merrell, Kenneth W.; Ervin, Ruth A.; Peacock, Gretchen Gimpel
2011-01-01
A leading introductory text, this authoritative volume comprehensively describes the school psychologist's role in promoting positive academic, behavioral, and emotional outcomes for all students. The book emphasizes a problem-solving-based, data-driven approach to practice in today's diverse schools. It grounds the reader in the concepts and…
ERIC Educational Resources Information Center
Ziems, Dietrich; Neumann, Gaby
1997-01-01
Discusses a methods kit for interactive problem-solving exercises in engineering education as well as a methodology for intelligent evaluation of solutions. The quality of a system teaching logistics thinking can be improved using artificial intelligence. Embedding a rule-based diagnosis module that evaluates the student's knowledge actively…
NASA Astrophysics Data System (ADS)
Butt, N.; Pidlisecky, A.; Ganshorn, H.; Cockett, R.
2015-12-01
The software company 3 Point Science has developed three interactive learning programs designed to teach, test and practice visualization skills and geoscience concepts. A study was conducted with 21 geoscience students at the University of Calgary who participated in 2 hour sessions of software interaction and written pre and post-tests. Computer and SMART touch table interfaces were used to analyze user interaction, problem solving methods and visualization skills. By understanding and pinpointing user problem solving methods it is possible to reconstruct viewpoints and thought processes. This could allow us to give personalized feedback in real time, informing the user of problem solving tips and possible misconceptions.
Parallel computation with molecular-motor-propelled agents in nanofabricated networks.
Nicolau, Dan V; Lard, Mercy; Korten, Till; van Delft, Falco C M J M; Persson, Malin; Bengtsson, Elina; Månsson, Alf; Diez, Stefan; Linke, Heiner; Nicolau, Dan V
2016-03-08
The combinatorial nature of many important mathematical problems, including nondeterministic-polynomial-time (NP)-complete problems, places a severe limitation on the problem size that can be solved with conventional, sequentially operating electronic computers. There have been significant efforts in conceiving parallel-computation approaches in the past, for example: DNA computation, quantum computation, and microfluidics-based computation. However, these approaches have not proven, so far, to be scalable and practical from a fabrication and operational perspective. Here, we report the foundations of an alternative parallel-computation system in which a given combinatorial problem is encoded into a graphical, modular network that is embedded in a nanofabricated planar device. Exploring the network in a parallel fashion using a large number of independent, molecular-motor-propelled agents then solves the mathematical problem. This approach uses orders of magnitude less energy than conventional computers, thus addressing issues related to power consumption and heat dissipation. We provide a proof-of-concept demonstration of such a device by solving, in a parallel fashion, the small instance {2, 5, 9} of the subset sum problem, which is a benchmark NP-complete problem. Finally, we discuss the technical advances necessary to make our system scalable with presently available technology.
Texas two-step: a framework for optimal multi-input single-output deconvolution.
Neelamani, Ramesh; Deffenbaugh, Max; Baraniuk, Richard G
2007-11-01
Multi-input single-output deconvolution (MISO-D) aims to extract a deblurred estimate of a target signal from several blurred and noisy observations. This paper develops a new two step framework--Texas Two-Step--to solve MISO-D problems with known blurs. Texas Two-Step first reduces the MISO-D problem to a related single-input single-output deconvolution (SISO-D) problem by invoking the concept of sufficient statistics (SSs) and then solves the simpler SISO-D problem using an appropriate technique. The two-step framework enables new MISO-D techniques (both optimal and suboptimal) based on the rich suite of existing SISO-D techniques. In fact, the properties of SSs imply that a MISO-D algorithm is mean-squared-error optimal if and only if it can be rearranged to conform to the Texas Two-Step framework. Using this insight, we construct new wavelet- and curvelet-based MISO-D algorithms with asymptotically optimal performance. Simulated and real data experiments verify that the framework is indeed effective.
Characteristics of Pre-Service Primary School Teachers' Configural Reasoning
ERIC Educational Resources Information Center
Llinares, Salvador; Clemente, Francisco
2014-01-01
The goal of this study is to identify the characteristics of pre-service primary teachers' configural reasoning, understood as the relationships between concepts and figures set to solve geometrical proof problems. Ninety-seven primary teachers were asked to solve two geometrical proof problems in which a geometrical figure was provided. The…
English Skills for Life Sciences: Problem Solving in Biology. Tutor Version [and] Student Version.
ERIC Educational Resources Information Center
California Univ., Los Angeles. Center for Language Education and Research.
This manual is part of a series of materials designed to reinforce essential concepts in physical science through interactive, language-sensitive, problem-solving exercises emphasizing cooperative learning. The materials are intended for limited-English-proficient (LEP) students in beginning physical science classes. The materials are for teams of…
Creating Alien Life Forms: Problem Solving in Biology.
ERIC Educational Resources Information Center
Grimnes, Karin A.
1996-01-01
Describes a project that helps students integrate biological concepts using both creativity and higher-order problem-solving skills. Involves students playing the roles of junior scientists aboard a starship in orbit around a class M planet and using a description of habitats, seasonal details, and a surface map of prominent geographic features to…
Preserving Pelicans with Models That Make Sense
ERIC Educational Resources Information Center
Moore, Tamara J.; Doerr, Helen M.; Glancy, Aran W.; Ntow, Forster D.
2015-01-01
Getting students to think deeply about mathematical concepts is not an easy job, which is why we often use problem-solving tasks to engage students in higher-level mathematical thinking. Mathematical modeling, one of the mathematical practices found in the Common Core State Standards for Mathematics (CCSSM), is a type of problem solving that can…
Accurate and Inaccurate Conceptions about Osmosis That Accompanied Meaningful Problem Solving.
ERIC Educational Resources Information Center
Zuckerman, June Trop
This study focused on the knowledge of six outstanding science students who solved an osmosis problem meaningfully. That is, they used appropriate and substantially accurate conceptual knowledge to generate an answer. Three generated a correct answer; three, an incorrect answer. This paper identifies both the accurate and inaccurate conceptions…
Circumference and Problem Solving.
ERIC Educational Resources Information Center
Blackburn, Katie; White, David
The concept of pi is one of great importance to all developed civilization and one that can be explored and mastered by elementary students through an inductive and problem-solving approach. Such an approach is outlined and discussed. The approach involves the following biblical quotation: "And he made a moltin sea ten cubits from one brim to…
Supporting Abstraction Processes in Problem Solving through Pattern-Oriented Instruction
ERIC Educational Resources Information Center
Muller, Orna; Haberman, Bruria
2008-01-01
Abstraction is a major concept in computer science and serves as a powerful tool in software development. Pattern-oriented instruction (POI) is a pedagogical approach that incorporates patterns in an introductory computer science course in order to structure the learning of algorithmic problem solving. This paper examines abstraction processes in…
Prospective Elementary Teachers' Misunderstandings in Solving Ratio and Proportion Problems
ERIC Educational Resources Information Center
Monteiro, Cecilia
2003-01-01
This study explores difficulties that prospective elementary mathematics teachers have with the concepts of ratio and proportion, mainly when they are engaged in solving problems using algorithm procedures. These difficulties can be traced back to earlier experiences when they were students of junior and high school. The reflection on these…
Restorative Justice Practice: Cooperative Problem-Solving in New Zealand's Schools
ERIC Educational Resources Information Center
Drewery, Wendy
2013-01-01
This article links capability for cooperative problem-solving with socially just global development. From the perspective of the United Nations Development Programme, the work of global development, founded on a concept of global justice, is capability-building. Following Kurasawa, the article proposes that this form of global justice is enacted…
Environmental problem-solving: Psychosocial factors
NASA Astrophysics Data System (ADS)
Miller, Alan
1982-11-01
This is a study of individual differences in environmental problem-solving, the probable roots of these differences, and their implications for the education of resource professionals. A group of student Resource Managers were required to elaborate their conception of a complex resource issue (Spruce Budworm management) and to generate some ideas on management policy. Of particular interest was the way in which subjects dealt with the psychosocial aspects of the problem. A structural and content analysis of responses indicated a predominance of relatively compartmentalized styles, a technological orientation, and a tendency to ignore psychosocial issues. A relationship between problem-solving behavior and personal (psychosocial) style was established which, in the context of other evidence, suggests that problem-solving behavior is influenced by more deep seated personality factors. The educational implication drawn was that problem-solving cannot be viewed simply as an intellectual-technical activity but one that involves, and requires the education of, the whole person.
NASA Astrophysics Data System (ADS)
Singh, Chandralekha
2009-07-01
One finding of cognitive research is that people do not automatically acquire usable knowledge by spending lots of time on task. Because students' knowledge hierarchy is more fragmented, "knowledge chunks" are smaller than those of experts. The limited capacity of short term memory makes the cognitive load high during problem solving tasks, leaving few cognitive resources available for meta-cognition. The abstract nature of the laws of physics and the chain of reasoning required to draw meaningful inferences makes these issues critical. In order to help students, it is crucial to consider the difficulty of a problem from the perspective of students. We are developing and evaluating interactive problem-solving tutorials to help students in the introductory physics courses learn effective problem-solving strategies while solidifying physics concepts. The self-paced tutorials can provide guidance and support for a variety of problem solving techniques, and opportunity for knowledge and skill acquisition.
ERIC Educational Resources Information Center
Milbourne, Jeffrey David
2016-01-01
The purpose of this dissertation study was to explore the experiences of high school physics students who were solving complex, ill-structured problems, in an effort to better understand how self-regulatory behavior mediated the project experience. Consistent with Voss, Green, Post, and Penner's (1983) conception of an ill-structured problem in…
Children's Understanding of the Arithmetic Concepts of Inversion and Associativity
ERIC Educational Resources Information Center
Robinson, Katherine M.; Ninowski, Jerilyn E.; Gray, Melissa L.
2006-01-01
Previous studies have shown that even preschoolers can solve inversion problems of the form a + b - b by using the knowledge that addition and subtraction are inverse operations. In this study, a new type of inversion problem of the form d x e [divided by] e was also examined. Grade 6 and 8 students solved inversion problems of both types as well…
NASA Astrophysics Data System (ADS)
Hong, Jianzhong
2000-11-01
This paper explores the process of workplace learning and problem solving by examining Western and local enterprises in South China. The paper addresses the subject on two levels. First, it examines the process of learning by solving problems on the shop floor. Second, it deals with certain managerial concepts embedded in Chinese culture and discusses whether these concepts help or impede collective learning. The article concludes that new ways of working and learning are emerging through the interaction of Western and Chinese culture.
NASA Astrophysics Data System (ADS)
Demigha, Souâd.
2016-03-01
The paper presents a Case-Based Reasoning Tool for Breast Cancer Knowledge Management to improve breast cancer screening. To develop this tool, we combine both concepts and techniques of Case-Based Reasoning (CBR) and Data Mining (DM). Physicians and radiologists ground their diagnosis on their expertise (past experience) based on clinical cases. Case-Based Reasoning is the process of solving new problems based on the solutions of similar past problems and structured as cases. CBR is suitable for medical use. On the other hand, existing traditional hospital information systems (HIS), Radiological Information Systems (RIS) and Picture Archiving Information Systems (PACS) don't allow managing efficiently medical information because of its complexity and heterogeneity. Data Mining is the process of mining information from a data set and transform it into an understandable structure for further use. Combining CBR to Data Mining techniques will facilitate diagnosis and decision-making of medical experts.
Protein sequence comparison based on K-string dictionary.
Yu, Chenglong; He, Rong L; Yau, Stephen S-T
2013-10-25
The current K-string-based protein sequence comparisons require large amounts of computer memory because the dimension of the protein vector representation grows exponentially with K. In this paper, we propose a novel concept, the "K-string dictionary", to solve this high-dimensional problem. It allows us to use a much lower dimensional K-string-based frequency or probability vector to represent a protein, and thus significantly reduce the computer memory requirements for their implementation. Furthermore, based on this new concept, we use Singular Value Decomposition to analyze real protein datasets, and the improved protein vector representation allows us to obtain accurate gene trees. © 2013.
Could HPS Improve Problem-Solving?
NASA Astrophysics Data System (ADS)
Coelho, Ricardo Lopes
2013-05-01
It is generally accepted nowadays that History and Philosophy of Science (HPS) is useful in understanding scientific concepts, theories and even some experiments. Problem-solving strategies are a significant topic, since students' careers depend on their skill to solve problems. These are the reasons for addressing the question of whether problem solving could be improved by means of HPS. Three typical problems in introductory courses of mechanics—the inclined plane, the simple pendulum and the Atwood machine—are taken as the object of the present study. The solving strategies of these problems in the eighteenth and nineteenth century constitute the historical component of the study. Its philosophical component stems from the foundations of mechanics research literature. The use of HPS leads us to see those problems in a different way. These different ways can be tested, for which experiments are proposed. The traditional solving strategies for the incline and pendulum problems are adequate for some situations but not in general. The recourse to apparent weights in the Atwood machine problem leads us to a new insight and a solving strategy for composed Atwood machines. Educational implications also concern the development of logical thinking by means of the variety of lines of thought provided by HPS.
NASA Astrophysics Data System (ADS)
McCrum, Daniel Patrick
2017-11-01
For a structural engineer, effective communication and interaction with architects cannot be underestimated as a key skill to success throughout their professional career. Structural engineers and architects have to share a common language and understanding of each other in order to achieve the most desirable architectural and structural designs. This interaction and engagement develops during their professional career but needs to be nurtured during their undergraduate studies. The objective of this paper is to present the strategies employed to engage higher order thinking in structural engineering students in order to help them solve complex problem-based learning (PBL) design scenarios presented by architecture students. The strategies employed were applied in the experimental setting of an undergraduate module in structural engineering at Queen's University Belfast in the UK. The strategies employed were active learning to engage with content knowledge, the use of physical conceptual structural models to reinforce key concepts and finally, reinforcing the need for hand sketching of ideas to promote higher order problem-solving. The strategies employed were evaluated through student survey, student feedback and module facilitator (this author) reflection. The strategies were qualitatively perceived by the tutor and quantitatively evaluated by students in a cross-sectional study to help interaction with the architecture students, aid interdisciplinary learning and help students creatively solve problems (through higher order thinking). The students clearly enjoyed this module and in particular interacting with structural engineering tutors and students from another discipline.
The method of abstraction in the design of databases and the interoperability
NASA Astrophysics Data System (ADS)
Yakovlev, Nikolay
2018-03-01
When designing the database structure oriented to the contents of indicators presented in the documents and communications subject area. First, the method of abstraction is applied by expansion of the indices of new, artificially constructed abstract concepts. The use of abstract concepts allows to avoid registration of relations many-to-many. For this reason, when built using abstract concepts, demonstrate greater stability in the processes. The example abstract concepts to address structure - a unique house number. Second, the method of abstraction can be used in the transformation of concepts by omitting some attributes that are unnecessary for solving certain classes of problems. Data processing associated with the amended concepts is more simple without losing the possibility of solving the considered classes of problems. For example, the concept "street" loses the binding to the land. The content of the modified concept of "street" are only the relations of the houses to the declared name. For most accounting tasks and ensure communication is enough.
Using Problem Solving to Teach a Programming Language.
ERIC Educational Resources Information Center
Milbrandt, George
1995-01-01
Computer studies courses should incorporate as many computer concepts and programming language experiences as possible. A gradual increase in problem difficulty will help the student to understand various computer concepts, and the programming language's syntax and structure. A sidebar provides two examples of how to establish a learning…
Teaching the tacit knowledge of programming to noviceswith natural language tutoring
NASA Astrophysics Data System (ADS)
Lane, H. Chad; Vanlehn, Kurt
2005-09-01
For beginning programmers, inadequate problem solving and planning skills are among the most salient of their weaknesses. In this paper, we test the efficacy of natural language tutoring to teach and scaffold acquisition of these skills. We describe ProPL (Pro-PELL), a dialogue-based intelligent tutoring system that elicits goal decompositions and program plans from students in natural language. The system uses a variety of tutoring tactics that leverage students' intuitive understandings of the problem, how it might be solved, and the underlying concepts of programming. We report the results of a small-scale evaluation comparing students who used ProPL with a control group who read the same content. Our primary findings are that students who received tutoring from ProPL seem to have developed an improved ability to solve the composition problem and displayed behaviors that suggest they were able to think at greater levels of abstraction than students in the read-only group.
The Semantic Retrieval of Spatial Data Service Based on Ontology in SIG
NASA Astrophysics Data System (ADS)
Sun, S.; Liu, D.; Li, G.; Yu, W.
2011-08-01
The research of SIG (Spatial Information Grid) mainly solves the problem of how to connect different computing resources, so that users can use all the resources in the Grid transparently and seamlessly. In SIG, spatial data service is described in some kinds of specifications, which use different meta-information of each kind of services. This kind of standardization cannot resolve the problem of semantic heterogeneity, which may limit user to obtain the required resources. This paper tries to solve two kinds of semantic heterogeneities (name heterogeneity and structure heterogeneity) in spatial data service retrieval based on ontology, and also, based on the hierarchical subsumption relationship among concept in ontology, the query words can be extended and more resource can be matched and found for user. These applications of ontology in spatial data resource retrieval can help to improve the capability of keyword matching, and find more related resources.
Bratsas, Charalampos; Koutkias, Vassilis; Kaimakamis, Evangelos; Bamidis, Panagiotis; Maglaveras, Nicos
2007-01-01
Medical Computational Problem (MCP) solving is related to medical problems and their computerized algorithmic solutions. In this paper, an extension of an ontology-based model to fuzzy logic is presented, as a means to enhance the information retrieval (IR) procedure in semantic management of MCPs. We present herein the methodology followed for the fuzzy expansion of the ontology model, the fuzzy query expansion procedure, as well as an appropriate ontology-based Vector Space Model (VSM) that was constructed for efficient mapping of user-defined MCP search criteria and MCP acquired knowledge. The relevant fuzzy thesaurus is constructed by calculating the simultaneous occurrences of terms and the term-to-term similarities derived from the ontology that utilizes UMLS (Unified Medical Language System) concepts by using Concept Unique Identifiers (CUI), synonyms, semantic types, and broader-narrower relationships for fuzzy query expansion. The current approach constitutes a sophisticated advance for effective, semantics-based MCP-related IR.
ERIC Educational Resources Information Center
Braune, Rolf; Foshay, Wellesley R.
1983-01-01
The proposed three-step strategy for research on human information processing--concept hierarchy analysis, analysis of example sets to teach relations among concepts, and analysis of problem sets to build a progressively larger schema for the problem space--may lead to practical procedures for instructional design and task analysis. Sixty-four…
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
The Art of Snaring Dragons. Artificial Intelligence Memo Number 338. Revised.
ERIC Educational Resources Information Center
Cohen, Harvey A.
Several models for problem solving are discussed, and the idea of a heuristic frame is developed. This concept provides a description of the evolution of problem-solving skills in terms of the growth of the number of algorithms available and increased sophistication in their use. The heuristic frame model is applied to two sets of physical…
ERIC Educational Resources Information Center
Greiff, Samuel; Wustenberg, Sascha; Molnar, Gyongyver; Fischer, Andreas; Funke, Joachim; Csapo, Beno
2013-01-01
Innovative assessments of cross-curricular competencies such as complex problem solving (CPS) have currently received considerable attention in large-scale educational studies. This study investigated the nature of CPS by applying a state-of-the-art approach to assess CPS in high school. We analyzed whether two processes derived from cognitive…
Viewing or Visualising Which Concept Map Strategy Works Best on Problem-Solving Performance?
ERIC Educational Resources Information Center
Lee, Youngmin; Nelson, David W.
2005-01-01
The purpose of this study was to investigate the effects of two types of maps (generative vs. completed) and the amount of prior knowledge (high vs. low) on well-structured and ill-structured problem-solving performance. Forty-four undergraduates who were registered in an introductory instructional technology course participated in the study.…
ERIC Educational Resources Information Center
Shields, C. J.
2007-01-01
Technology education (TE) has come to encompass many facets of curriculum, ranging from industrial arts (IA) to integrating problem-solving and engineering concepts into the curriculum. For technology educators who have chosen the pre-engineering problem-solving route there is a pre-engineering curriculum called Project Lead The Way (PLTW), that…
NASA Astrophysics Data System (ADS)
Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.
2017-12-01
The ability to solve physics problems that require multiple concepts from across the physics curriculum—"synthesis" problems—is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these instructional techniques, analogical comparison and self-explanation, have previously been studied primarily in the context of single-concept problems. Across three experiments with students from introductory calculus-based physics courses, both self-explanation and certain kinds of analogical comparison of worked examples significantly improved student performance on a target synthesis problem, with distinct improvements in recognition of the relevant concepts. More specifically, analogical comparison significantly improved student performance when the comparisons were invoked between worked synthesis examples. In contrast, similar comparisons between corresponding pairs of worked single-concept examples did not significantly improve performance. On a more complicated synthesis problem, self-explanation was significantly more effective than analogical comparison, potentially due to differences in how successfully students encoded the full structure of the worked examples. Finally, we find that the two techniques can be combined for additional benefit, with the trade-off of slightly more time on task.
Watters, Dianne J; Watters, James J
2006-07-01
In foundation biochemistry and biological chemistry courses, a major problem area that has been identified is students' lack of understanding of pH, acids, bases, and buffers and their inability to apply their knowledge in solving acid/base problems. The aim of this study was to explore students' conceptions of pH and their ability to solve problems associated with the behavior of biological acids to understand the source of student difficulties. The responses given by most students are characteristic of an atomistic approach in which they pay no attention to the structure of the problem and concentrate only on juggling the elements together until they get a solution. Many students reported difficulty in understanding what the question was asking and were unable to interpret a simple graph showing the pH activity profile of an enzyme. The most startling finding was the lack of basic understanding of logarithms and the inability of all except one student to perform a simple calculation on logs without a calculator. This deficiency in high school mathematical skills severely hampered their understanding of pH. This study has highlighted a widespread deficiency in basic mathematical skills among first year undergraduates and a fragmented understanding of acids and bases. Implications for the way in which the concepts of pH and buffers are taught are discussed. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Multiscale global identification of porous structures
NASA Astrophysics Data System (ADS)
Hatłas, Marcin; Beluch, Witold
2018-01-01
The paper is devoted to the evolutionary identification of the material constants of porous structures based on measurements conducted on a macro scale. Numerical homogenization with the RVE concept is used to determine the equivalent properties of a macroscopically homogeneous material. Finite element method software is applied to solve the boundary-value problem in both scales. Global optimization methods in form of evolutionary algorithm are employed to solve the identification task. Modal analysis is performed to collect the data necessary for the identification. A numerical example presenting the effectiveness of proposed attitude is attached.
Application of program generation technology in solving heat and flow problems
NASA Astrophysics Data System (ADS)
Wan, Shui; Wu, Bangxian; Chen, Ningning
2007-05-01
Based on a new DIY concept for software development, an automatic program-generating technology attached on a software system called as Finite Element Program Generator (FEPG) provides a platform of developing programs, through which a scientific researcher can submit his special physico-mathematical problem to the system in a more direct and convenient way for solution. For solving flow and heat problems by using finite element method, the stabilization technologies and fraction-step methods are adopted to overcome the numerical difficulties caused mainly due to the dominated convection. A couple of benchmark problems are given in this paper as examples to illustrate the usage and the superiority of the automatic program generation technique, including the flow in a lid-driven cavity, the starting flow in a circular pipe, the natural convection in a square cavity, and the flow past a circular cylinder, etc. They are also shown as the verification of the algorithms.
Lemoine, E; Merceron, D; Sallantin, J; Nguifo, E M
1999-01-01
This paper describes a new approach to problem solving by splitting up problem component parts between software and hardware. Our main idea arises from the combination of two previously published works. The first one proposed a conceptual environment of concept modelling in which the machine and the human expert interact. The second one reported an algorithm based on reconfigurable hardware system which outperforms any kind of previously published genetic data base scanning hardware or algorithms. Here we show how efficient the interaction between the machine and the expert is when the concept modelling is based on reconfigurable hardware system. Their cooperation is thus achieved with an real time interaction speed. The designed system has been partially applied to the recognition of primate splice junctions sites in genetic sequences.
Terra II--A Spaceship Earth Simulation for the Middle Grades
ERIC Educational Resources Information Center
Mastrude, Peggy
1972-01-01
The unit of study consists of four lessons based on the concept that the earth is a large system made up of many small systems (air, food, water, man, etc.). Complete procedures are included to study the environment, examine developing countries, determine interaction between peoples and nations. The problem solving excercise is an inquiry…
Example Based Pedagogical Strategies in a Computer Science Intelligent Tutoring System
ERIC Educational Resources Information Center
Green, Nicholas
2017-01-01
Worked-out examples are a common teaching strategy that aids learners in understanding concepts by use of step-by-step instruction. Literature has shown that they can be extremely beneficial, with a large body of material showing they can provide benefits over regular problem solving alone. This research looks into the viability of using this…
ERIC Educational Resources Information Center
Kim, Dong Joong; Cho, Jeong-il
2017-01-01
The purpose of this study is to investigate routines as guides for mathematical thinking. Four English-speaking and four Korean-speaking students were interviewed in English about the concepts of limit and infinity. Based on the communicational approach to cognition, which views mathematics as a discourse, we identified the primary characteristics…
Energy efficient LED layout optimization for near-uniform illumination
NASA Astrophysics Data System (ADS)
Ali, Ramy E.; Elgala, Hany
2016-09-01
In this paper, we consider the problem of designing energy efficient light emitting diodes (LEDs) layout while satisfying the illumination constraints. Towards this objective, we present a simple approach to the illumination design problem based on the concept of the virtual LED. We formulate a constrained optimization problem for minimizing the power consumption while maintaining a near-uniform illumination throughout the room. By solving the resulting constrained linear program, we obtain the number of required LEDs and the optimal output luminous intensities that achieve the desired illumination constraints.
NASA Astrophysics Data System (ADS)
Prayitno, S. H.; Suwarsono, St.; Siswono, T. Y. E.
2018-03-01
Conceptual comprehension in this research is the ability to use the procedures that are owned by pre-service teachers to solve problems by finding the relation of the concept to another, or can be done by identifying the type of problem and associating it with a troubleshooting procedures, or connect the mathematical symbols with mathematical ideas and incorporate them into a series of logical reasoning, or by using prior knowledge that occurred directly, through its conceptual knowledge. The goal of this research is to describe the profile of conceptual comprehensin of pre-service teachers with low emotional intelligence in mathematical problems solving. Through observation and in-depth interview with the research subject the conclusion was that: pre-service teachers with low emotional intelligence pertained to the level of formal understanding in understanding the issues, relatively to the level of intuitive understanding in planning problem solving, to the level of relational understanding in implementing the relational problem solving plan, and pertained to the level of formal understanding in looking back to solve the problem.
NASA Astrophysics Data System (ADS)
Conrad, Jon M.
2000-01-01
Resource Economics is a text for students with a background in calculus, intermediate microeconomics, and a familiarity with the spreadsheet software Excel. The book covers basic concepts, shows how to set up spreadsheets to solve dynamic allocation problems, and presents economic models for fisheries, forestry, nonrenewable resources, stock pollutants, option value, and sustainable development. Within the text, numerical examples are posed and solved using Excel's Solver. These problems help make concepts operational, develop economic intuition, and serve as a bridge to the study of real-world problems of resource management. Through these examples and additional exercises at the end of Chapters 1 to 8, students can make dynamic models operational, develop their economic intuition, and learn how to set up spreadsheets for the simulation of optimization of resource and environmental systems. Book is unique in its use of spreadsheet software (Excel) to solve dynamic allocation problems Conrad is co-author of a previous book for the Press on the subject for graduate students Approach is extremely student-friendly; gives students the tools to apply research results to actual environmental issues
Possible Solutions as a Concept in Behavior Change Interventions.
Mahoney, Diane E
2018-04-24
Nurses are uniquely positioned to implement behavior change interventions. Yet, nursing interventions have traditionally resulted from nurses problem-solving rather than allowing the patient to self-generate possible solutions for attaining specific health outcomes. The purpose of this review is to clarify the meaning of possible solutions in behavior change interventions. Walker and Avant's method on concept analysis serves as the framework for examination of the possible solutions. Possible solutions can be defined as continuous strategies initiated by patients and families to overcome existing health problems. As nurses engage in behavior change interventions, supporting patients and families in problem-solving will optimize health outcomes and transform clinical practice. © 2018 NANDA International, Inc.
Teaching the Mathematics of Radioactive Dating.
ERIC Educational Resources Information Center
Shea, James H.
2001-01-01
Describes a method used to teach the concept of radiometric dating using mathematical equations. Explores the lack of information in textbooks on how to solve radiometric dating problems using mathematical concepts. (SAH)
ERIC Educational Resources Information Center
Fang, Ning
2012-01-01
A concept pair is a pair of concepts that are fundamentally different but closely related. To develop a solid conceptual understanding in dynamics (a foundational engineering science course) and physics, students must understand the fundamental difference and relationship between two concepts that are included in each concept pair. However, all…
A genetic algorithm-based approach to flexible flow-line scheduling with variable lot sizes.
Lee, I; Sikora, R; Shaw, M J
1997-01-01
Genetic algorithms (GAs) have been used widely for such combinatorial optimization problems as the traveling salesman problem (TSP), the quadratic assignment problem (QAP), and job shop scheduling. In all of these problems there is usually a well defined representation which GA's use to solve the problem. We present a novel approach for solving two related problems-lot sizing and sequencing-concurrently using GAs. The essence of our approach lies in the concept of using a unified representation for the information about both the lot sizes and the sequence and enabling GAs to evolve the chromosome by replacing primitive genes with good building blocks. In addition, a simulated annealing procedure is incorporated to further improve the performance. We evaluate the performance of applying the above approach to flexible flow line scheduling with variable lot sizes for an actual manufacturing facility, comparing it to such alternative approaches as pair wise exchange improvement, tabu search, and simulated annealing procedures. The results show the efficacy of this approach for flexible flow line scheduling.
ERIC Educational Resources Information Center
ERIC Clearinghouse on Adult, Career, and Vocational Education, Columbus, OH.
The papers in this volume outline a vision for teacher education based on the concept of contextual teaching, defined as teaching that enables learning in a variety of in- and out-of-school contexts to solve simulated or real-world problems. They are based on the realization that the construction of knowledge is situated within, and greatly…
A Strategy for Improving US Middle School Student Mathematics Word Problem Solving Performance
NASA Technical Reports Server (NTRS)
Thomas, Valerie L.
2004-01-01
U.S. middle school students have difficulty understanding and solving mathematics word problems. Their mathematics performance on the Third International Mathematics and Science Study (TIMMS) is far below their international peers, and minority students are less likely than high socioeconomic status (SES) White/Asian students to be exposed to higher-level mathematics concepts. Research literature also indicates that when students use both In-School and Out-of-School knowledge and experiences to create authentic mathematics word problems, student achievement improves. This researcher developed a Strategy for improving mathematics problem solving performance and a Professional Development Model (PDM) to effectively implement the Strategy.
Concept-oriented indexing of video databases: toward semantic sensitive retrieval and browsing.
Fan, Jianping; Luo, Hangzai; Elmagarmid, Ahmed K
2004-07-01
Digital video now plays an important role in medical education, health care, telemedicine and other medical applications. Several content-based video retrieval (CBVR) systems have been proposed in the past, but they still suffer from the following challenging problems: semantic gap, semantic video concept modeling, semantic video classification, and concept-oriented video database indexing and access. In this paper, we propose a novel framework to make some advances toward the final goal to solve these problems. Specifically, the framework includes: 1) a semantic-sensitive video content representation framework by using principal video shots to enhance the quality of features; 2) semantic video concept interpretation by using flexible mixture model to bridge the semantic gap; 3) a novel semantic video-classifier training framework by integrating feature selection, parameter estimation, and model selection seamlessly in a single algorithm; and 4) a concept-oriented video database organization technique through a certain domain-dependent concept hierarchy to enable semantic-sensitive video retrieval and browsing.
Facilitating Children's Self-Concept: A Rationale and Evaluative Study
ERIC Educational Resources Information Center
Hay, Ian
2005-01-01
This study reports on the design and effectiveness of the Exploring Self-Concept program for primary school children using self-concept as the outcome measure. The program aims to provide a procedure that incorporates organisation, elaboration, thinking, and problem-solving strategies and links these to children's multidimensional self-concept.…
ERIC Educational Resources Information Center
Orgill, MaryKay; Sutherland, Aynsley
2008-01-01
Both upper- and lower-level chemistry students struggle with understanding the concept of buffers and with solving corresponding buffer problems. While it might be reasonable to expect general chemistry students to struggle with this abstract concept, it is surprising that upper-level students in analytical chemistry and biochemistry continue to…
ERIC Educational Resources Information Center
Dündar, Sefa
2015-01-01
Using multiple representations of a problem can reveal the relationship between complex concepts by expressing the same mathematical condition differently and can contribute to the meaningful learning of mathematical concepts. The purpose of this study is to assess the performances of mathematics teacher-candidates on trigonometry problems…
Assessing problem-solving skills in construction education with the virtual construction simulator
NASA Astrophysics Data System (ADS)
Castronovo, Fadi
The ability to solve complex problems is an essential skill that a construction and project manager must possess when entering the architectural, engineering, and construction industry. Such ability requires a mixture of problem-solving skills, ranging from lower to higher order thinking skills, composed of cognitive and metacognitive processes. These skills include the ability to develop and evaluate construction plans and manage the execution of such plans. However, in a typical construction program, introducing students to such complex problems can be a challenge, and most commonly the learner is presented with only part of a complex problem. To support this challenge, the traditional methodology of delivering design, engineering, and construction instruction has been going through a technological revolution, due to the rise of computer-based technology. For example, in construction classrooms, and other disciplines, simulations and educational games are being utilized to support the development of problem-solving skills. Previous engineering education research has illustrated the high potential that simulations and educational games have in engaging in lower and higher order thinking skills. Such research illustrated their capacity to support the development of problem-solving skills. This research presents evidence supporting the theory that educational simulation games can help with the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems. The educational simulation game employed in this study is the Virtual Construction Simulator (VCS). The VCS is a game developed to provide students in an engaging learning activity that simulates the planning and managing phases of a construction project. Assessment of the third iteration of the VCS(3) game has shown pedagogical value in promoting students' motivation and a basic understanding of construction concepts. To further evaluate the benefits on problem-solving skills, a new version of the VCS(4) was developed, with new building modules and assessment framework. The design and development of the VCS4 leveraged research in educational psychology, multimedia learning, human-computer interaction, and Building Information Modeling. In this dissertation the researcher aimed to evaluate the pedagogical value of the VCS4 in fostering problem-solving skills. To answer the research questions, a crossover repeated measures quasi-experiment was designed to assess the educational gains that the VCS can provide to construction education. A group of 34 students, attending a fourth-year construction course at a university in the United States was chosen to participate in the experiment. The three learning modules of the VCS were used, which challenged the students to plan and manage the construction process of a wooden pavilion, the steel erection of a dormitory, and the concrete placement of the same dormitory. Based on the results the researcher was able to provide evidence supporting the hypothesis that the chosen sample of construction students were able to gain and retain problem-solving skills necessary to solve complex construction simulation problems, no matter what the sequence with which these modules were played. In conclusion, the presented results provide evidence supporting the theory that educational simulation games can help the learning and retention of transferable problem-solving skills, which are necessary to solve complex construction problems.
An Analysis of Categorical and Quantitative Methods for Planning Under Uncertainty
Langlotz, Curtis P.; Shortliffe, Edward H.
1988-01-01
Decision theory and logical reasoning are both methods for representing and solving medical decision problems. We analyze the usefulness of these two approaches to medical therapy planning by establishing a simple correspondence between decision theory and non-monotonic logic, a formalization of categorical logical reasoning. The analysis indicates that categorical approaches to planning can be viewed as comprising two decision-theoretic concepts: probabilities (degrees of belief in planning hypotheses) and utilities (degrees of desirability of planning outcomes). We present and discuss examples of the following lessons from this decision-theoretic view of categorical (nonmonotonic) reasoning: (1) Decision theory and artificial intelligence techniques are intended to solve different components of the planning problem. (2) When considered in the context of planning under uncertainty, nonmonotonic logics do not retain the domain-independent characteristics of classical logical reasoning for planning under certainty. (3) Because certain nonmonotonic programming paradigms (e.g., frame-based inheritance, rule-based planning, protocol-based reminders) are inherently problem-specific, they may be inappropriate to employ in the solution of certain types of planning problems. We discuss how these conclusions affect several current medical informatics research issues, including the construction of “very large” medical knowledge bases.
CometBoards Users Manual Release 1.0
NASA Technical Reports Server (NTRS)
Guptill, James D.; Coroneos, Rula M.; Patnaik, Surya N.; Hopkins, Dale A.; Berke, Lazlo
1996-01-01
Several nonlinear mathematical programming algorithms for structural design applications are available at present. These include the sequence of unconstrained minimizations technique, the method of feasible directions, and the sequential quadratic programming technique. The optimality criteria technique and the fully utilized design concept are two other structural design methods. A project was undertaken to bring all these design methods under a common computer environment so that a designer can select any one of these tools that may be suitable for his/her application. To facilitate selection of a design algorithm, to validate and check out the computer code, and to ascertain the relative merits of the design tools, modest finite element structural analysis programs based on the concept of stiffness and integrated force methods have been coupled to each design method. The code that contains both these design and analysis tools, by reading input information from analysis and design data files, can cast the design of a structure as a minimum-weight optimization problem. The code can then solve it with a user-specified optimization technique and a user-specified analysis method. This design code is called CometBoards, which is an acronym for Comparative Evaluation Test Bed of Optimization and Analysis Routines for the Design of Structures. This manual describes for the user a step-by-step procedure for setting up the input data files and executing CometBoards to solve a structural design problem. The manual includes the organization of CometBoards; instructions for preparing input data files; the procedure for submitting a problem; illustrative examples; and several demonstration problems. A set of 29 structural design problems have been solved by using all the optimization methods available in CometBoards. A summary of the optimum results obtained for these problems is appended to this users manual. CometBoards, at present, is available for Posix-based Cray and Convex computers, Iris and Sun workstations, and the VM/CMS system.
Using Clickers to Facilitate Development of Problem-Solving Skills
Levesque, Aime A.
2011-01-01
Classroom response systems, or clickers, have become pedagogical staples of the undergraduate science curriculum at many universities. In this study, the effectiveness of clickers in promoting problem-solving skills in a genetics class was investigated. Students were presented with problems requiring application of concepts covered in lecture and were polled for the correct answer. A histogram of class responses was displayed, and students were encouraged to discuss the problem, which enabled them to better understand the correct answer. Students were then presented with a similar problem and were again polled. My results indicate that those students who were initially unable to solve the problem were then able to figure out how to solve similar types of problems through a combination of trial and error and class discussion. This was reflected in student performance on exams, where there was a statistically significant positive correlation between grades and the percentage of clicker questions answered. Interestingly, there was no clear correlation between exam grades and the percentage of clicker questions answered correctly. These results suggest that students who attempt to solve problems in class are better equipped to solve problems on exams. PMID:22135374
NASA Astrophysics Data System (ADS)
Quílez-Pardo, Juan; Solaz-Portolés, Joan Josep
The aim of this article was to study the reasons, strategies, and procedures that both students and teachers use to solve some chemical equilibrium questions and problems. Inappropriate conceptions on teaching and a lack of knowledge regarding the limited usefulness of Le Chatelier's principle, with its vague and ambiguous formulation and textbook presentation, may be some of the sources of misconceptions about the prediction of the effect of changing conditions on chemical equilibrium. To diagnose misconceptions and their possible sources, a written test was developed and administered to 170 1st-year university chemistry students. A chemical equilibrium problem, relating to the students' test, was solved by 40 chemistry teachers. First, we ascertained that teacher's conceptions might influence the problem-solving strategies of the learner. Based on this first aspect, our discussion also concerns students' and teachers' misconceptions related to the Le Chatelier's principle. Misconceptions emerged through: (a) misapplication and misunderstanding of Le Chatelier's principle; (b) use of rote-learning recall and algorithmic procedures; (c) incorrect control of the variables involved; (d) limited use of the chemical equilibrium law; (e) a lack of mastery of chemical equilibrium principles and difficulty in transferring such principles to new situations. To avoid chemical equilibrium misconceptions, a specific pattern of conceptual and methodological change may be considered.Received: 16 November 1993; Revised: 21 September 1994;
Artificial intelligence in robot control systems
NASA Astrophysics Data System (ADS)
Korikov, A.
2018-05-01
This paper analyzes modern concepts of artificial intelligence and known definitions of the term "level of intelligence". In robotics artificial intelligence system is defined as a system that works intelligently and optimally. The author proposes to use optimization methods for the design of intelligent robot control systems. The article provides the formalization of problems of robotic control system design, as a class of extremum problems with constraints. Solving these problems is rather complicated due to the high dimensionality, polymodality and a priori uncertainty. Decomposition of the extremum problems according to the method, suggested by the author, allows reducing them into a sequence of simpler problems, that can be successfully solved by modern computing technology. Several possible approaches to solving such problems are considered in the article.
Genetics problem solving and worldview
NASA Astrophysics Data System (ADS)
Dale, Esther
The research goal was to determine whether worldview relates to traditional and real-world genetics problem solving. Traditionally, scientific literacy emphasized content knowledge alone because it was sufficient to solve traditional problems. The contemporary definition of scientific literacy is, "The knowledge and understanding of scientific concepts and processes required for personal decision-making, participation in civic and cultural affairs and economic productivity" (NRC, 1996). An expanded definition of scientific literacy is needed to solve socioscientific issues (SSI), complex social issues with conceptual, procedural, or technological associations with science. Teaching content knowledge alone assumes that students will find the scientific explanation of a phenomenon to be superior to a non-science explanation. Formal science and everyday ways of thinking about science are two different cultures (Palmer, 1999). Students address this rift with cognitive apartheid, the boxing away of science knowledge from other types of knowledge (Jedege & Aikenhead, 1999). By addressing worldview, cognitive apartheid may decrease and scientific literacy may increase. Introductory biology students at the University of Minnesota during fall semester 2005 completed a written questionnaire-including a genetics content-knowledge test, four genetic dilemmas, the Worldview Assessment Instrument (WAI) and some items about demographics and religiosity. Six students responded to the interview protocol. Based on statistical analysis and interview data, this study concluded the following: (1) Worldview, in the form of metaphysics, relates to solving traditional genetic dilemmas. (2) Worldview, in the form of agency, relates to solving traditional genetics problems. (3) Thus, worldview must be addressed in curriculum, instruction, and assessment.
Systematic Approaches to Experimentation: The Case of Pick's Theorem
ERIC Educational Resources Information Center
Papadopoulos, Ioannis; Iatridou, Maria
2010-01-01
In this paper two 10th graders having an accumulated experience on problem-solving ancillary to the concept of area confronted the task to find Pick's formula for a lattice polygon's area. The formula was omitted from the theorem in order for the students to read the theorem as a problem to be solved. Their working is examined and emphasis is…
ERIC Educational Resources Information Center
Chen, Chen-Yuan
2013-01-01
In recent years, researches had shown that the development of problem solving skill became important for education, and the educational robots are capable for promoting students not only understand the physical and mathematical concepts, but also have active and constructive learning. Meanwhile, the importance of situation in education is rising,…
ERIC Educational Resources Information Center
Chen, Yi-Chun; Yang, Fang-Ying
2014-01-01
There were two purposes in the study. One was to explore the cognitive activities during spatial problem solving and the other to probe the relationship between spatial ability and science concept learning. Twenty university students participated in the study. The Purdue Visualization of Rotations Test (PVRT) was used to assess the spatial…
Gender differences in algebraic thinking ability to solve mathematics problems
NASA Astrophysics Data System (ADS)
Kusumaningsih, W.; Darhim; Herman, T.; Turmudi
2018-05-01
This study aimed to conduct a gender study on students' algebraic thinking ability in solving a mathematics problem, polyhedron concept, for grade VIII. This research used a qualitative method. The data was collected using: test and interview methods. The subjects in this study were eight male and female students with different level of abilities. It was found that the algebraic thinking skills of male students reached high group of five categories. They were superior in terms of reasoning and quick understanding in solving problems. Algebraic thinking ability of high-achieving group of female students also met five categories of algebraic thinking indicators. They were more diligent, tenacious and thorough in solving problems. Algebraic thinking ability of male students in medium category only satisfied three categories of algebraic thinking indicators. They were sufficient in terms of reasoning and understanding in solving problems. Algebraic thinking ability group of female students in medium group also satisfied three categories of algebraic thinking indicators. They were fairly diligent, tenacious and meticulous on working on the problems.
NASA Astrophysics Data System (ADS)
de Astudillo, Luisa Rojas; Niaz, Mansoor
1996-06-01
Achievement in science depends on a series of factors that characterize the cognitive abilities of the students and the complex interactions between these factors and the environment that intervenes in the formation of students' background. The objective of this study is to: a) investigate reasoning strategies students use in solving stoichiometric problems; b) explore the relation between these strategies and alternative conceptions, prior knowledge and cognitive variables; and c) interpret the results within an epistemological framework. Results obtained show how stoichiometric relations produce conflicting situations for students, leading to conceptual misunderstanding of concepts, such as mass, atoms and moles. The wide variety of strategies used by students attest to the presence of competing and conflicting frameworks (progressive transitions, cf. Lakatos, 1970), leading to greater conceptual understanding. It is concluded that the methodology developed in this study (based on a series of closely related probing questions, generally requiring no calculations, that elicit student conceptual understanding to varying degrees within an intact classroom context) was influential in improving student performance. This improvement in performance, however, does not necessarily affect students' hard core of beliefs.
Transdisciplinary translational science and the case of preterm birth
Stevenson, D K; Shaw, G M; Wise, P H; Norton, M E; Druzin, M L; Valantine, H A; McFarland, D A
2013-01-01
Medical researchers have called for new forms of translational science that can solve complex medical problems. Mainstream science has made complementary calls for heterogeneous teams of collaborators who conduct transdisciplinary research so as to solve complex social problems. Is transdisciplinary translational science what the medical community needs? What challenges must the medical community overcome to successfully implement this new form of translational science? This article makes several contributions. First, it clarifies the concept of transdisciplinary research and distinguishes it from other forms of collaboration. Second, it presents an example of a complex medical problem and a concrete effort to solve it through transdisciplinary collaboration: for example, the problem of preterm birth and the March of Dimes effort to form a transdisciplinary research center that synthesizes knowledge on it. The presentation of this example grounds discussion on new medical research models and reveals potential means by which they can be judged and evaluated. Third, this article identifies the challenges to forming transdisciplines and the practices that overcome them. Departments, universities and disciplines tend to form intellectual silos and adopt reductionist approaches. Forming a more integrated (or ‘constructionist'), problem-based science reflective of transdisciplinary research requires the adoption of novel practices to overcome these obstacles. PMID:23079774
Transdisciplinary translational science and the case of preterm birth.
Stevenson, D K; Shaw, G M; Wise, P H; Norton, M E; Druzin, M L; Valantine, H A; McFarland, D A
2013-04-01
Medical researchers have called for new forms of translational science that can solve complex medical problems. Mainstream science has made complementary calls for heterogeneous teams of collaborators who conduct transdisciplinary research so as to solve complex social problems. Is transdisciplinary translational science what the medical community needs? What challenges must the medical community overcome to successfully implement this new form of translational science? This article makes several contributions. First, it clarifies the concept of transdisciplinary research and distinguishes it from other forms of collaboration. Second, it presents an example of a complex medical problem and a concrete effort to solve it through transdisciplinary collaboration: for example, the problem of preterm birth and the March of Dimes effort to form a transdisciplinary research center that synthesizes knowledge on it. The presentation of this example grounds discussion on new medical research models and reveals potential means by which they can be judged and evaluated. Third, this article identifies the challenges to forming transdisciplines and the practices that overcome them. Departments, universities and disciplines tend to form intellectual silos and adopt reductionist approaches. Forming a more integrated (or 'constructionist'), problem-based science reflective of transdisciplinary research requires the adoption of novel practices to overcome these obstacles.
Understanding catastrophizing from a misdirected problem-solving perspective.
Flink, Ida K; Boersma, Katja; MacDonald, Shane; Linton, Steven J
2012-05-01
The aim is to explore pain catastrophizing from a problem-solving perspective. The links between catastrophizing, problem framing, and problem-solving behaviour are examined through two possible models of mediation as inferred by two contemporary and complementary theoretical models, the misdirected problem solving model (Eccleston & Crombez, 2007) and the fear-anxiety-avoidance model (Asmundson, Norton, & Vlaeyen, 2004). In this prospective study, a general population sample (n= 173) with perceived problems with spinal pain filled out questionnaires twice; catastrophizing and problem framing were assessed on the first occasion and health care seeking (as a proxy for medically oriented problem solving) was assessed 7 months later. Two different approaches were used to explore whether the data supported any of the proposed models of mediation. First, multiple regressions were used according to traditional recommendations for mediation analyses. Second, a bootstrapping method (n= 1000 bootstrap resamples) was used to explore the significance of the indirect effects in both possible models of mediation. The results verified the concepts included in the misdirected problem solving model. However, the direction of the relations was more in line with the fear-anxiety-avoidance model. More specifically, the mediation analyses provided support for viewing catastrophizing as a mediator of the relation between biomedical problem framing and medically oriented problem-solving behaviour. These findings provide support for viewing catastrophizing from a problem-solving perspective and imply a need to examine and address problem framing and catastrophizing in back pain patients. ©2011 The British Psychological Society.
How to Solve Polyhedron Problem?
NASA Astrophysics Data System (ADS)
Wijayanti, A.; Kusumah, Y. S.; Suhendra
2017-09-01
The purpose of this research is to know the possible strategies to solve the problem in polyhedron topic with Knilsey’s Learning Model as scaffolding for the student. This research was conducted by using mixed method with sequential explanatory design. Researchers used purposive sampling technique to get two classes for Knisley class and conventional class and an extreme case sampling technique to get interview data. The instruments used are tests, observation sheets and interview guidelines. The result of the research shows that: (1) students’ strategies to solve polyhedron problem were grouped into two steps: by partitioning the problem to find out the solution and make a mathematical model of the mathematical sentence given and then connect it with the concept that the students already know; (2) students ‘mathematical problem solving ability in Knisley class is higher than those in conventional class.
Enhancing chemistry problem-solving achievement using problem categorization
NASA Astrophysics Data System (ADS)
Bunce, Diane M.; Gabel, Dorothy L.; Samuel, John V.
The enhancement of chemistry students' skill in problem solving through problem categorization is the focus of this study. Twenty-four students in a freshman chemistry course for health professionals are taught how to solve problems using the explicit method of problem solving (EMPS) (Bunce & Heikkinen, 1986). The EMPS is an organized approach to problem analysis which includes encoding the information given in a problem (Given, Asked For), relating this to what is already in long-term memory (Recall), and planning a solution (Overall Plan) before a mathematical solution is attempted. In addition to the EMPS training, treatment students receive three 40-minute sessions following achievement tests in which they are taught how to categorize problems. Control students use this time to review the EMPS solutions of test questions. Although problem categorization is involved in one section of the EMPS (Recall), treatment students who received specific training in problem categorization demonstrate significantly higher achievement on combination problems (those problems requiring the use of more than one chemical topic for their solution) at (p = 0.01) than their counterparts. Significantly higher achievement for treatment students is also measured on an unannounced test (p = 0.02). Analysis of interview transcripts of both treatment and control students illustrates a Rolodex approach to problem solving employed by all students in this study. The Rolodex approach involves organizing equations used to solve problems on mental index cards and flipping through them, matching units given when a new problem is to be solved. A second phenomenon observed during student interviews is the absence of a link in the conceptual understanding of the chemical concepts involved in a problem and the problem-solving skills employed to correctly solve problems. This study shows that explicit training in categorization skills and the EMPS can lead to higher achievement in complex problem-solving situations (combination problems and unannounced test). However, such achievement may be limited by the lack of linkages between students' conceptual understanding and improved problem-solving skill.
Step by Step: Biology Undergraduates' Problem-Solving Procedures during Multiple-Choice Assessment.
Prevost, Luanna B; Lemons, Paula P
2016-01-01
This study uses the theoretical framework of domain-specific problem solving to explore the procedures students use to solve multiple-choice problems about biology concepts. We designed several multiple-choice problems and administered them on four exams. We trained students to produce written descriptions of how they solved the problem, and this allowed us to systematically investigate their problem-solving procedures. We identified a range of procedures and organized them as domain general, domain specific, or hybrid. We also identified domain-general and domain-specific errors made by students during problem solving. We found that students use domain-general and hybrid procedures more frequently when solving lower-order problems than higher-order problems, while they use domain-specific procedures more frequently when solving higher-order problems. Additionally, the more domain-specific procedures students used, the higher the likelihood that they would answer the problem correctly, up to five procedures. However, if students used just one domain-general procedure, they were as likely to answer the problem correctly as if they had used two to five domain-general procedures. Our findings provide a categorization scheme and framework for additional research on biology problem solving and suggest several important implications for researchers and instructors. © 2016 L. B. Prevost and P. P. Lemons. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Search and Coherence-Building in Intuition and Insight Problem Solving.
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes.
Hallford, David John; Mellor, David
2016-11-01
Reminiscence-based psychotherapies have been demonstrated to have robust effects on a range of therapeutic outcomes. However, little research has been conducted on the immediate effects of guided activities they are composed of, or how these might differ dependent on the type of reminiscence. The current study utilised a controlled experimental design, whereby 321 young adults (mean age = 25.5 years, SD = 3.0) were randomised to one of four conditions of online reminiscence activity: problem-solving (successful coping experiences), identity (self-defining events contributing to a meaningful and continuous personal identity), bitterness revival (negative or adverse events), or a control condition (any memory from their past). Participants recalled autobiographical memories congruent with the condition, and answered questions to facilitate reflection on the memories. The results indicated that problem-solving and identity reminiscence activities caused significant improvements in self-esteem, meaning in life, self-efficacy and affect, whereas no effects were found in the bitterness revival and control conditions. Problem-solving reminiscence also caused a small effect in increasing perceptions of a life narrative/s. Differences between the conditions did not appear to be explained by the positive-valence of memories. These results provide evidence for the specific effects of adaptive types of problem-solving and identity reminiscence in young adults.
Search and Coherence-Building in Intuition and Insight Problem Solving
Öllinger, Michael; von Müller, Albrecht
2017-01-01
Coherence-building is a key concept for a better understanding of the underlying mechanisms of intuition and insight problem solving. There are several accounts that address certain aspects of coherence-building. However, there is still no proper framework defining the general principles of coherence-building. We propose a four-stage model of coherence-building. The first stage starts with spreading activation restricted by constraints. This dynamic is a well-defined rule based process. The second stage is characterized by detecting a coherent state. We adopted a fluency account assuming that the ease of information processing indicates the realization of a coherent state. The third stage is designated to evaluate the result of the coherence-building process and assess whether the given problem is solved or not. If the coherent state does not fit the requirements of the task, the process re-enters at stage 1. These three stages characterize intuition. For insight problem solving a fourth stage is necessary, which restructures the given representation after repeated failure, so that a new search space results. The new search space enables new coherent states. We provide a review of the most important findings, outline our model, present a large number of examples, deduce potential new paradigms and measures that might help to decipher the underlying cognitive processes. PMID:28611702
ERIC Educational Resources Information Center
Leikin, Roza; Waisman, Ilana; Leikin, Mark
2016-01-01
We asked: "What are the similarities and differences in mathematical processing associated with solving learning-based and insight-based problems?" To answer this question, the ERP research procedure was employed with 69 male adolescent subjects who solved specially designed insight-based and learning-based tests. Solutions of…
ERIC Educational Resources Information Center
Lynd-Balta, Eileen
2006-01-01
Science education reform initiatives emphasize (1) the value of concepts over facts; (2) the benefits of open-ended, inquiry-based problem-solving rather than protocols leading to a single correct answer; and (3) the importance of a multidisciplinary approach to teaching that is not confined by departmental boundaries. Neuroscientists should be at…
Practitioner Perceptions of the A3 Method for Process Improvement in Health Care
ERIC Educational Resources Information Center
Visich, John K.; Wicks, Angela M.; Zalila, Faiza
2010-01-01
The focus of this article is to present students' perceptions of the recently developed A3 method, a structured problem-solving approach based on lean concepts and tools that have been adapted to the health care environment. The students were all employees of a large health care provider and were enrolled in a customized health care executive MBA…
A proposal to encourage intuitive learning in a senior-level analogue electronics course
NASA Astrophysics Data System (ADS)
Berjano, E.; Lozano-Nieto, A.
2011-05-01
One of the most important issues in the reorganisation of engineering education is to consider new pedagogical techniques to help students develop skills and an adaptive expertise. This expertise consists of being able to recognise the nature of a problem intuitively, and also recognising recurring patterns in different types of problems. In the particular case of analogue electronics, an additional difficulty seems to be that understanding involves both analytic skills and an intuitive grasp of circuit characteristics. This paper presents a proposal to help senior students to think intuitively in order to identify the common issue involved in a group of problems of analogue electronics and build an abstract concept based on, for example, a theory or a mathematical model in order to use it to solve future problems. The preliminary results suggest that this proposal could be useful to promote intuitive reasoning in analogue electronics courses. The experience would later be useful to graduates in analytically solving new types of problems or in designing new electronic circuits.
ERIC Educational Resources Information Center
DeRosa, Bill
1986-01-01
Describes an activity designed to improve students' skills at solving mathematical word problems through an awareness of the pet overpopulation problem. Uses the concept of cumulative female offspring as a focal point in assisting students to analyze and work through word problems. (ML)
A Curriculum for Logical Thinking. NAAESC Occasional Papers, Volume 1, Number 4.
ERIC Educational Resources Information Center
Charuhas, Mary S.
The purpose of this paper is to demonstrate methods for developing cognitive processes in adult students. It discusses concept formation and concept attainment, problem solving (which involves concept formation and concept attainment), Bruner's three stages of learning (enactive, iconic, and symbolic modes), and visual thinking. A curriculum for…
Fuzzy Kernel k-Medoids algorithm for anomaly detection problems
NASA Astrophysics Data System (ADS)
Rustam, Z.; Talita, A. S.
2017-07-01
Intrusion Detection System (IDS) is an essential part of security systems to strengthen the security of information systems. IDS can be used to detect the abuse by intruders who try to get into the network system in order to access and utilize the available data sources in the system. There are two approaches of IDS, Misuse Detection and Anomaly Detection (behavior-based intrusion detection). Fuzzy clustering-based methods have been widely used to solve Anomaly Detection problems. Other than using fuzzy membership concept to determine the object to a cluster, other approaches as in combining fuzzy and possibilistic membership or feature-weighted based methods are also used. We propose Fuzzy Kernel k-Medoids that combining fuzzy and possibilistic membership as a powerful method to solve anomaly detection problem since on numerical experiment it is able to classify IDS benchmark data into five different classes simultaneously. We classify IDS benchmark data KDDCup'99 data set into five different classes simultaneously with the best performance was achieved by using 30 % of training data with clustering accuracy reached 90.28 percent.
Clinical Correlations as a Tool in Basic Science Medical Education
Klement, Brenda J.; Paulsen, Douglas F.; Wineski, Lawrence E.
2016-01-01
Clinical correlations are tools to assist students in associating basic science concepts with a medical application or disease. There are many forms of clinical correlations and many ways to use them in the classroom. Five types of clinical correlations that may be embedded within basic science courses have been identified and described. (1) Correlated examples consist of superficial clinical information or stories accompanying basic science concepts to make the information more interesting and relevant. (2) Interactive learning and demonstrations provide hands-on experiences or the demonstration of a clinical topic. (3) Specialized workshops have an application-based focus, are more specialized than typical laboratory sessions, and range in complexity from basic to advanced. (4) Small-group activities require groups of students, guided by faculty, to solve simple problems that relate basic science information to clinical topics. (5) Course-centered problem solving is a more advanced correlation activity than the others and focuses on recognition and treatment of clinical problems to promote clinical reasoning skills. Diverse teaching activities are used in basic science medical education, and those that include clinical relevance promote interest, communication, and collaboration, enhance knowledge retention, and help develop clinical reasoning skills. PMID:29349328
Social problem-solving in Chinese baccalaureate nursing students.
Fang, Jinbo; Luo, Ying; Li, Yanhua; Huang, Wenxia
2016-11-01
To describe social problem solving in Chinese baccalaureate nursing students. A descriptive cross-sectional study was conducted with a cluster sample of 681 Chinese baccalaureate nursing students. The Chinese version of the Social Problem-Solving scale was used. Descriptive analyses, independent t-test and one-way analysis of variance were applied to analyze the data. The final year nursing students presented the highest scores of positive social problem-solving skills. Students with experiences of self-directed and problem-based learning presented significantly higher scores in Positive Problem Orientation subscale. The group with Critical thinking training experience, however, displayed higher negative problem solving scores compared with nonexperience group. Social problem solving abilities varied based upon teaching-learning strategies. Self-directed and problem-based learning may be recommended as effective way to improve social problem-solving ability. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.
Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ
NASA Astrophysics Data System (ADS)
Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei
The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.
Enhancing Students' Problem-Solving Skills through Context-Based Learning
ERIC Educational Resources Information Center
Yu, Kuang-Chao; Fan, Szu-Chun; Lin, Kuen-Yi
2015-01-01
Problem solving is often challenging for students because they do not understand the problem-solving process (PSP). This study presents a three-stage, context-based, problem-solving, learning activity that involves watching detective films, constructing a context-simulation activity, and introducing a project design to enable students to construct…
Additional Crime Scenes for Projectile Motion Unit
NASA Astrophysics Data System (ADS)
Fullerton, Dan; Bonner, David
2011-12-01
Building students' ability to transfer physics fundamentals to real-world applications establishes a deeper understanding of underlying concepts while enhancing student interest. Forensic science offers a great opportunity for students to apply physics to highly engaging, real-world contexts. Integrating these opportunities into inquiry-based problem solving in a team environment provides a terrific backdrop for fostering communication, analysis, and critical thinking skills. One such activity, inspired jointly by the museum exhibit "CSI: The Experience"2 and David Bonner's TPT article "Increasing Student Engagement and Enthusiasm: A Projectile Motion Crime Scene,"3 provides students with three different crime scenes, each requiring an analysis of projectile motion. In this lesson students socially engage in higher-order analysis of two-dimensional projectile motion problems by collecting information from 3-D scale models and collaborating with one another on its interpretation, in addition to diagramming and mathematical analysis typical to problem solving in physics.
Automated Conflict Resolution, Arrival Management and Weather Avoidance for ATM
NASA Technical Reports Server (NTRS)
Erzberger, H.; Lauderdale, Todd A.; Chu, Yung-Cheng
2010-01-01
The paper describes a unified solution to three types of separation assurance problems that occur in en-route airspace: separation conflicts, arrival sequencing, and weather-cell avoidance. Algorithms for solving these problems play a key role in the design of future air traffic management systems such as NextGen. Because these problems can arise simultaneously in any combination, it is necessary to develop integrated algorithms for solving them. A unified and comprehensive solution to these problems provides the foundation for a future air traffic management system that requires a high level of automation in separation assurance. The paper describes the three algorithms developed for solving each problem and then shows how they are used sequentially to solve any combination of these problems. The first algorithm resolves loss-of-separation conflicts and is an evolution of an algorithm described in an earlier paper. The new version generates multiple resolutions for each conflict and then selects the one giving the least delay. Two new algorithms, one for sequencing and merging of arrival traffic, referred to as the Arrival Manager, and the other for weather-cell avoidance are the major focus of the paper. Because these three problems constitute a substantial fraction of the workload of en-route controllers, integrated algorithms to solve them is a basic requirement for automated separation assurance. The paper also reviews the Advanced Airspace Concept, a proposed design for a ground-based system that postulates redundant systems for separation assurance in order to achieve both high levels of safety and airspace capacity. It is proposed that automated separation assurance be introduced operationally in several steps, each step reducing controller workload further while increasing airspace capacity. A fast time simulation was used to determine performance statistics of the algorithm at up to 3 times current traffic levels.
A Study of Early Childhood Teachers' Conceptions of Creativity in Hong Kong
ERIC Educational Resources Information Center
Cheung, Rebecca Hun Ping; Mok, Magdalena Mo Ching
2013-01-01
The study aimed to uncover the conceptions of creativity among early childhood teachers in Hong Kong. The sample comprised 563 early childhood teachers. Factor analysis supported the multidimensional hypothesis of teachers' conceptions of creativity. Five dimensions were found: novelty, product, problem solving, cognitive processes and personal…
ERIC Educational Resources Information Center
Meyer, Jan H. F.; Knight, David B.; Callaghan, David P.; Baldock, Tom E.
2015-01-01
Threshold concepts are transformative, integrative, and provocative; understanding these difficult concepts allows students to be capable of solving advanced problems. This investigation and evaluation of a metacognitive curricular approach explore variation in students' and teachers' discernment of structural complexity of concepts and its…
Producing or reproducing reasoning? Socratic dialog is very effective, but only for a few.
Goldin, Andrea Paula; Pedroncini, Olivia; Sigman, Mariano
2017-01-01
Successful communication between a teacher and a student is at the core of pedagogy. A well known example of a pedagogical dialog is 'Meno', a socratic lesson of geometry in which a student learns (or 'discovers') how to double the area of a given square 'in essence, a demonstration of Pythagoras' theorem. In previous studies we found that after engaging in the dialog participants can be divided in two kinds: those who can only apply a rule to solve the problem presented in the dialog and those who can go beyond and generalize that knowledge to solve any square problems. Here we study the effectiveness of this socratic dialog in an experimental and a control high-school classrooms, and we explore the boundaries of what is learnt by testing subjects with a set of 9 problems of varying degrees of difficulty. We found that half of the adolescents did not learn anything from the dialog. The other half not only learned to solve the problem, but could abstract something more: the geometric notion that the diagonal can be used to solve diverse area problems. Conceptual knowledge is critical for achievement in geometry, and it is not clear whether geometric concepts emerge spontaneously on the basis of universal experience with space, or reflect intrinsic properties of the human mind. We show that, for half of the learners, an exampled-based Socratic dialog in lecture form can give rise to formal geometric knowledge that can be applied to new, different problems.
Thoma, Patrizia; Friedmann, Christine; Suchan, Boris
2013-03-01
Altered empathic responding in social interactions in concert with a reduced capacity to come up with effective solutions for interpersonal problems have been discussed as relevant factors contributing to the development and maintenance of psychiatric disorders. The aim of the current work was to review and evaluate 30 years of empirical evidence of impaired empathy and social problem solving skills in alcohol dependence, mood disorders and selected personality disorders (borderline, narcissistic, antisocial personality disorders/psychopathy), which have until now received considerably less attention than schizophrenia or autism in this realm. Overall, there is tentative evidence for dissociations of cognitive (e.g. borderline personality disorder) vs. emotional (e.g. depression, narcissism, psychopathy) empathy dysfunction in some of these disorders. However, inconsistencies in the definition of relevant concepts and their measurement, scarce neuroimaging data and rare consideration of comorbidities limit the interpretation of findings. Similarly, although impaired social problem solving appears to accompany all of these disorders, the concept has not been well integrated with empathy or other cognitive dysfunctions as yet. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rakkapao, S.; Pengpan, T.; Srikeaw, S.; Prasitpong, S.
2014-01-01
This study aims to investigate the use of the predict-observe-explain (POE) approach integrated into large lecture classes on forces and motion. It is compared to the instructor-led problem-solving method using model analysis. The samples are science (SC, N = 420) and engineering (EN, N = 434) freshmen, from Prince of Songkla University, Thailand. Research findings from the force and motion conceptual evaluation indicate that the multimedia-supported POE method promotes students’ learning better than the problem-solving method, in particular for the velocity and acceleration concepts. There is a small shift of the students’ model states after the problem-solving instruction. Moreover, by using model analysis instructors are able to investigate students’ misconceptions and evaluate teaching methods. It benefits instructors in organizing subsequent instructional materials.
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.
2015-01-01
This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem-solving and metacognitive…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.; Lein, Amy E.; Simonson, Gregory; Slater, Susan C.
2015-01-01
This experimental study evaluated the effectiveness of a research-based intervention, schema-based instruction (SBI), on students' proportional problem solving. SBI emphasizes the underlying mathematical structure of problems, uses schematic diagrams to represent information in the problem text, provides explicit problem solving and metacognitive…
NASA Astrophysics Data System (ADS)
Sun, Hai; Wang, Cheng; Ren, Bo
2007-06-01
Daily works of Law Enforcement Bureau are crucial in the urban management. However, with the development of the city, the information and data which are relative to Law Enforcement Bureau's daily work are increasing and updating. The increasing data result in that some traditional work is limited and inefficient in daily work. Analyzing the demands and obstacles of Law Enforcement Bureau, the paper proposes a new method to solve these problems. A web-GIS based information management system was produced for Bureau of Law Enforcement for Urban Management of Foshan. First part of the paper provides an overview of the system. Second part introduces the architecture of system and data organization. In the third part, the paper describes the design and implement of functional modules detailedly. In the end, this paper is concluded and proposes some strategic recommendations for the further development of the system. This paper focuses on the architecture and implementation of the system, solves the developing issues based on ArcServer, and introduces a new concept to the local government to solve the current problems. Practical application of this system showed that it played very important role in the Law Enforcement Bureau's work.
The earth as a problem: A curriculum inquiry into the nature of environmental education
NASA Astrophysics Data System (ADS)
Hammond, William Frank
1998-12-01
This thesis is a contribution to curriculum theory in environmental education. Its purpose is to analyze the concept of education as used by environmental educators and to examine how educational purposes are related to differing concepts of human-environment interactions and the environmental problematique. It examines three published written curricula using curriculum inquiry methodology as a means of examining two major claims. The first claim is that curricula in environmental education have been affected by a focus on environmental issues or problems, which has resulted in definitions, descriptions and curriculum proposals in the field having a syntax or narrative structure in the form of problem solving. The second claim of the thesis is that while different programs share the common underlying syntax they resolve issues concerning the nature of education, the concept of environment, the role of environmental action projects, and the nature of schooling in significantly different ways. The thesis critiques the curriculum writings of William B. Stapp, Harold R. Hungerford, and Michael J. Cohen. Each has published curriculum work in environmental education and has been active in the development of the field. Their works were chosen because of their publicly accessible form. The inquiry demonstrates that the three programs present analyses of current global environmental problems as serious and in need of urgent attention. All three focus on solving or preventing environmental problems as a major purpose of environmental education. In spite of the common emphasis on problem solving, the inquiry also reveals significant differences among the three programs in regard to concepts of education, views of the environment and the place and role of humans in it, approaches to environmental action projects as curricular elements, and ideas about the place of environmental education in schools. I conclude that although some environmental educators view the continuing debate about the nature and conceptualization of environmental education as needless repetition of issues which have been satisfactorily resolved, important questions remain to be addressed by curriculum theory in this field. In order for environmental education to nurture education as opposed to particular ideologies and beliefs curriculum writers should develop clear concepts of the nature of education and widen the focus of human environment relations beyond problem solving.
ERIC Educational Resources Information Center
Nersessian, Nancy J.
2012-01-01
As much research has demonstrated, novel scientific concepts do not arise fully formed in the head of a scientist but are created in problem-solving processes, which can extend for considerable periods and even span generations of scientists. To understand concept formation and conceptual change it is important to investigate these processes in…
ERIC Educational Resources Information Center
Kauffman, Douglas F.; Ge, Xun; Xie, Kui; Chen, Ching-Huei
2008-01-01
This study explored Metacognition and how automated instructional support in the form of problem-solving and self-reflection prompts influenced students' capacity to solve complex problems in a Web-based learning environment. Specifically, we examined the independent and interactive effects of problem-solving prompts and reflection prompts on…
NASA Astrophysics Data System (ADS)
Stefaneas, Petros; Vandoulakis, Ioannis M.
2015-12-01
This paper outlines a logical representation of certain aspects of the process of mathematical proving that are important from the point of view of Artificial Intelligence. Our starting-point is the concept of proof-event or proving, introduced by Goguen, instead of the traditional concept of mathematical proof. The reason behind this choice is that in contrast to the traditional static concept of mathematical proof, proof-events are understood as processes, which enables their use in Artificial Intelligence in such contexts, in which problem-solving procedures and strategies are studied. We represent proof-events as problem-centered spatio-temporal processes by means of the language of the calculus of events, which captures adequately certain temporal aspects of proof-events (i.e. that they have history and form sequences of proof-events evolving in time). Further, we suggest a "loose" semantics for the proof-events, by means of Kolmogorov's calculus of problems. Finally, we expose the intented interpretations for our logical model from the fields of automated theorem-proving and Web-based collective proving.
NASA Astrophysics Data System (ADS)
Olender, M.; Krenczyk, D.
2016-08-01
Modern enterprises have to react quickly to dynamic changes in the market, due to changing customer requirements and expectations. One of the key area of production management, that must continuously evolve by searching for new methods and tools for increasing the efficiency of manufacturing systems is the area of production flow planning and control. These aspects are closely connected with the ability to implement the concept of Virtual Enterprises (VE) and Virtual Manufacturing Network (VMN) in which integrated infrastructure of flexible resources are created. In the proposed approach, the players role perform the objects associated with the objective functions, allowing to solve the multiobjective production flow planning problems based on the game theory, which is based on the theory of the strategic situation. For defined production system and production order models ways of solving the problem of production route planning in VMN on computational examples for different variants of production flow is presented. Possible decision strategy to use together with an analysis of calculation results is shown.
Quality in the Operational Air Force: A Case of Misplaced Emphasis
1994-05-01
other quality advocates of the era. These men included Joseph Juran, Armand Feigenbaum, Kaoru Ishikawa , and Genichi Taguchi. Juran contributed disciplined...planning theories, while Feigenbaum felt that producing quality could actually reduce production costs. In addition, Ishikawa and Taguchi lent...statistically based problem solving techniques, but the more modem approaches of Ishikawa , Taguchi and others. The operative concept of TQM is ’continuous
ERIC Educational Resources Information Center
Sullivan, Patrick
2013-01-01
The purpose of this study is to examine the nature of what students notice about symbols and use as they solve unfamiliar algebra problems based on familiar algebra concepts and involving symbolic inscriptions. The researcher conducted a study of students at three levels of algebra exposure: (a) students enrolled in a high school pre-calculus…
Developing a Gesture-Based Game for Mentally Disabled People to Teach Basic Life Skills
ERIC Educational Resources Information Center
Nazirzadeh, Mohammad Javad; Çagiltay, Kürsat; Karasu, Necdet
2017-01-01
It is understood that, for mentally disabled people, it is hard to generalize skills and concepts from one setting to another. One approach to teach generalization is solving the problems related to their daily lives, which helps them to reinforce some of their behaviors that would occur in the natural environment. The aim of this study is to…
Williams, Charlene; Perlis, Susan; Gaughan, John; Phadtare, Sangita
2018-05-06
Learner-centered pedagogical methods that are based on clinical application of basic science concepts through active learning and problem solving are shown to be effective for improving knowledge retention. As the clinical relevance of biochemistry is not always apparent to health-profession students, effective teaching of medical biochemistry should highlight the implications of biochemical concepts in pathology, minimize memorization, and make the concepts memorable for long-term retention. Here, we report the creation and successful implementation of a flipped jigsaw activity that was developed to stimulate interest in learning biochemistry among medical students. The activity combined the elements of a flipped classroom for learning concepts followed by a jigsaw activity to retrieve these concepts by solving clinical cases, answering case-based questions, and creating concept maps. The students' reception of the activity was very positive. They commented that the activity provided them an opportunity to review and synthesize information, helped to gage their learning by applying this information and work with peers. Students' improved performance especially for answering the comprehension-based questions correctly in the postquiz as well as the depth of information included in the postquiz concept maps suggested that the activity helped them to understand how different clinical scenarios develop owing to deviations in basic biochemical pathways. Although this activity was created for medical students, the format of this activity can also be useful for other health-professional students as well as undergraduate and graduate students. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.
NASA Technical Reports Server (NTRS)
Andrews, Alison E.
1987-01-01
An approach to analyzing CFD knowledge-based systems is proposed which is based, in part, on the concept of knowledge-level analysis. Consideration is given to the expert cooling fan design system, the PAN AIR knowledge system, grid adaptation, and expert zonal grid generation. These AI/CFD systems demonstrate that current AI technology can be successfully applied to well-formulated problems that are solved by means of classification or selection of preenumerated solutions.
Architecture studies and system demonstrations for optical parallel processor for AI and NI
NASA Astrophysics Data System (ADS)
Lee, Sing H.
1988-03-01
In solving deterministic AI problems the data search for matching the arguments of a PROLOG expression causes serious bottleneck when implemented sequentially by electronic systems. To overcome this bottleneck we have developed the concepts for an optical expert system based on matrix-algebraic formulation, which will be suitable for parallel optical implementation. The optical AI system based on matrix-algebraic formation will offer distinct advantages for parallel search, adult learning, etc.
Metaheuristic optimisation methods for approximate solving of singular boundary value problems
NASA Astrophysics Data System (ADS)
Sadollah, Ali; Yadav, Neha; Gao, Kaizhou; Su, Rong
2017-07-01
This paper presents a novel approximation technique based on metaheuristics and weighted residual function (WRF) for tackling singular boundary value problems (BVPs) arising in engineering and science. With the aid of certain fundamental concepts of mathematics, Fourier series expansion, and metaheuristic optimisation algorithms, singular BVPs can be approximated as an optimisation problem with boundary conditions as constraints. The target is to minimise the WRF (i.e. error function) constructed in approximation of BVPs. The scheme involves generational distance metric for quality evaluation of the approximate solutions against exact solutions (i.e. error evaluator metric). Four test problems including two linear and two non-linear singular BVPs are considered in this paper to check the efficiency and accuracy of the proposed algorithm. The optimisation task is performed using three different optimisers including the particle swarm optimisation, the water cycle algorithm, and the harmony search algorithm. Optimisation results obtained show that the suggested technique can be successfully applied for approximate solving of singular BVPs.
Engineering management of large scale systems
NASA Technical Reports Server (NTRS)
Sanders, Serita; Gill, Tepper L.; Paul, Arthur S.
1989-01-01
The organization of high technology and engineering problem solving, has given rise to an emerging concept. Reasoning principles for integrating traditional engineering problem solving with system theory, management sciences, behavioral decision theory, and planning and design approaches can be incorporated into a methodological approach to solving problems with a long range perspective. Long range planning has a great potential to improve productivity by using a systematic and organized approach. Thus, efficiency and cost effectiveness are the driving forces in promoting the organization of engineering problems. Aspects of systems engineering that provide an understanding of management of large scale systems are broadly covered here. Due to the focus and application of research, other significant factors (e.g., human behavior, decision making, etc.) are not emphasized but are considered.
The colloquial approach: An active learning technique
NASA Astrophysics Data System (ADS)
Arce, Pedro
1994-09-01
This paper addresses the very important problem of the effectiveness of teaching methodologies in fundamental engineering courses such as transport phenomena. An active learning strategy, termed the colloquial approach, is proposed in order to increase student involvement in the learning process. This methodology is a considerable departure from traditional methods that use solo lecturing. It is based on guided discussions, and it promotes student understanding of new concepts by directing the student to construct new ideas by building upon the current knowledge and by focusing on key cases that capture the essential aspects of new concepts. The colloquial approach motivates the student to participate in discussions, to develop detailed notes, and to design (or construct) his or her own explanation for a given problem. This paper discusses the main features of the colloquial approach within the framework of other current and previous techniques. Problem-solving strategies and the need for new textbooks and for future investigations based on the colloquial approach are also outlined.
Changing to Concept-Based Curricula: The Process for Nurse Educators.
Baron, Kristy A
2017-01-01
The complexity of health care today requires nursing graduates to use effective thinking skills. Many nursing programs are revising curricula to include concept-based learning that encourages problem-solving, effective thinking, and the ability to transfer knowledge to a variety of situations-requiring nurse educators to modify their teaching styles and methods to promote student-centered learning. Changing from teacher-centered learning to student-centered learning requires a major shift in thinking and application. The focus of this qualitative study was to understand the process of changing to concept-based curricula for nurse educators who previously taught in traditional curriculum designs. The sample included eight educators from two institutions in one Western state using a grounded theory design. The themes that emerged from participants' experiences consisted of the overarching concept, support for change, and central concept, finding meaning in the change. Finding meaning is supported by three main themes : preparing for the change, teaching in a concept-based curriculum, and understanding the teaching-learning process. Changing to a concept-based curriculum required a major shift in thinking and application. Through support, educators discovered meaning to make the change by constructing authentic learning opportunities that mirrored practice, refining the change process, and reinforcing benefits of teaching.
ERIC Educational Resources Information Center
Sukoriyanto; Nusantara, Toto; Subanji; Chandra, Tjang Daniel
2016-01-01
This article was written based on the results of a study evaluating students' errors in problem solving of permutation and combination in terms of problem solving steps according to Polya. Twenty-five students were asked to do four problems related to permutation and combination. The research results showed that the students still did a mistake in…
Case-based reasoning in design: An apologia
NASA Technical Reports Server (NTRS)
Pulaski, Kirt
1990-01-01
Three positions are presented and defended: the process of generating solutions in problem solving is viewable as a design task; case-based reasoning is a strong method of problem solving; and a synergism exists between case-based reasoning and design problem solving.
Analog Approach to Constraint Satisfaction Enabled by Spin Orbit Torque Magnetic Tunnel Junctions.
Wijesinghe, Parami; Liyanagedera, Chamika; Roy, Kaushik
2018-05-02
Boolean satisfiability (k-SAT) is an NP-complete (k ≥ 3) problem that constitute one of the hardest classes of constraint satisfaction problems. In this work, we provide a proof of concept hardware based analog k-SAT solver, that is built using Magnetic Tunnel Junctions (MTJs). The inherent physics of MTJs, enhanced by device level modifications, is harnessed here to emulate the intricate dynamics of an analog satisfiability (SAT) solver. In the presence of thermal noise, the MTJ based system can successfully solve Boolean satisfiability problems. Most importantly, our results exhibit that, the proposed MTJ based hardware SAT solver is capable of finding a solution to a significant fraction (at least 85%) of hard 3-SAT problems, within a time that has a polynomial relationship with the number of variables(<50).
ERIC Educational Resources Information Center
She, Hsiao-Ching; Cheng, Meng-Tzu; Li, Ta-Wei; Wang, Chia-Yu; Chiu, Hsin-Tien; Lee, Pei-Zon; Chou, Wen-Chi; Chuang, Ming-Hua
2012-01-01
This study investigates the effect of Web-based Chemistry Problem-Solving, with the attributes of Web-searching and problem-solving scaffolds, on undergraduate students' problem-solving task performance. In addition, the nature and extent of Web-searching strategies students used and its correlation with task performance and domain knowledge also…
Analysis of mathematical problem-solving ability based on metacognition on problem-based learning
NASA Astrophysics Data System (ADS)
Mulyono; Hadiyanti, R.
2018-03-01
Problem-solving is the primary purpose of the mathematics curriculum. Problem-solving abilities influenced beliefs and metacognition. Metacognition as superordinate capabilities can direct, regulate cognition and motivation and then problem-solving processes. This study aims to (1) test and analyzes the quality of problem-based learning and (2) investigate the problem-solving capabilities based on metacognition. This research uses mixed method study with The subject research are class XI students of Mathematics and Science at High School Kesatrian 2 Semarang which divided into tacit use, aware use, strategic use and reflective use level. The collecting data using scale, interviews, and tests. The data processed with the proportion of test, t-test, and paired samples t-test. The result shows that the students with levels tacit use were able to complete the whole matter given, but do not understand what and why a strategy is used. Students with aware use level were able to solve the problem, be able to build new knowledge through problem-solving to the indicators, understand the problem, determine the strategies used, although not right. Students on the Strategic ladder Use can be applied and adopt a wide variety of appropriate strategies to solve the issues and achieved re-examine indicators of process and outcome. The student with reflective use level is not found in this study. Based on the results suggested that study about the identification of metacognition in problem-solving so that the characteristics of each level of metacognition more clearly in a more significant sampling. Teachers need to know in depth about the student metacognitive activity and its relationship with mathematical problem solving and another problem resolution.
NASA Astrophysics Data System (ADS)
Traversa, Fabio L.; Di Ventra, Massimiliano
2017-02-01
We introduce a class of digital machines, we name Digital Memcomputing Machines, (DMMs) able to solve a wide range of problems including Non-deterministic Polynomial (NP) ones with polynomial resources (in time, space, and energy). An abstract DMM with this power must satisfy a set of compatible mathematical constraints underlying its practical realization. We prove this by making a connection with the dynamical systems theory. This leads us to a set of physical constraints for poly-resource resolvability. Once the mathematical requirements have been assessed, we propose a practical scheme to solve the above class of problems based on the novel concept of self-organizing logic gates and circuits (SOLCs). These are logic gates and circuits able to accept input signals from any terminal, without distinction between conventional input and output terminals. They can solve boolean problems by self-organizing into their solution. They can be fabricated either with circuit elements with memory (such as memristors) and/or standard MOS technology. Using tools of functional analysis, we prove mathematically the following constraints for the poly-resource resolvability: (i) SOLCs possess a global attractor; (ii) their only equilibrium points are the solutions of the problems to solve; (iii) the system converges exponentially fast to the solutions; (iv) the equilibrium convergence rate scales at most polynomially with input size. We finally provide arguments that periodic orbits and strange attractors cannot coexist with equilibria. As examples, we show how to solve the prime factorization and the search version of the NP-complete subset-sum problem. Since DMMs map integers into integers, they are robust against noise and hence scalable. We finally discuss the implications of the DMM realization through SOLCs to the NP = P question related to constraints of poly-resources resolvability.
NASA Astrophysics Data System (ADS)
Hobri; Suharto; Rifqi Naja, Ahmad
2018-04-01
This research aims to determine students’ creative thinking level in problem solving based on NCTM in function subject. The research type is descriptive with qualitative approach. Data collection methods which were used are test and interview. Creative thinking level in problem solving based on NCTM indicators consists of (1) Make mathematical model from a contextual problem and solve the problem, (2) Solve problem using various possible alternatives, (3) Find new alternative(s) to solve the problem, (4) Determine the most efficient and effective alternative for that problem, (5) Review and correct mistake(s) on the process of problem solving. Result of the research showed that 10 students categorized in very satisfying level, 23 students categorized in satisfying level and 1 students categorized in less satisfying level. Students in very satisfying level meet all indicators, students in satisfying level meet first, second, fourth, and fifth indicator, while students in less satisfying level only meet first and fifth indicator.
Dual methods and approximation concepts in structural synthesis
NASA Technical Reports Server (NTRS)
Fleury, C.; Schmit, L. A., Jr.
1980-01-01
Approximation concepts and dual method algorithms are combined to create a method for minimum weight design of structural systems. Approximation concepts convert the basic mathematical programming statement of the structural synthesis problem into a sequence of explicit primal problems of separable form. These problems are solved by constructing explicit dual functions, which are maximized subject to nonnegativity constraints on the dual variables. It is shown that the joining together of approximation concepts and dual methods can be viewed as a generalized optimality criteria approach. The dual method is successfully extended to deal with pure discrete and mixed continuous-discrete design variable problems. The power of the method presented is illustrated with numerical results for example problems, including a metallic swept wing and a thin delta wing with fiber composite skins.
Gravity, Magnetism, and "Down": Non-Physics College Students' Conceptions of Gravity
ERIC Educational Resources Information Center
Asghar, Anila; Libarkin, Julie C.
2010-01-01
This study investigates how students enrolled in entry-level geology, most of whom would graduate from college without university-level physics courses, thought about and applied the concept of gravity while solving problems concerning gravity. The repercussions of students' gravity concepts are then considered in the context of non-physics…
Integrating Six Sigma Concepts in an MBA Quality Management Class
ERIC Educational Resources Information Center
Weinstein, Larry B.; Petrick, Joseph; Castellano, Joseph; Vokurka, Robert J.
2008-01-01
Instructors face enormous challenges in presenting effective instruction on concepts and tools of quality management. Most textbooks focus on presenting individual concepts or tools and fail to address complex issues confronted in real-world problem-solving situations. The supplementary use of cases does not help students to understand the dynamic…
NASA Astrophysics Data System (ADS)
Burns-Childers, Annie; Vidakovic, Draga
2018-07-01
The purpose of this study was to gain insight into 30, first year calculus students' understanding of the relationship between the concept of vertex of a quadratic function and the concept of the derivative. APOS (action-process-object-schema) theory was applied as a guiding framework of analysis on student written work, think-aloud and follow up group interviews. Students' personal meanings of the vertex, including misconceptions, were explored, along with students' understanding to solve problems pertaining to the derivative of a quadratic function. Results give evidence of students' weak schema of the vertex, lack of connection between different problem types and the importance of linguistics in relation to levels of APOS theory. A preliminary genetic decomposition was developed based on the results. Future research is suggested as a continuation to improve student understanding of the relationship between the vertex of quadratic functions and the derivative.
NASA Astrophysics Data System (ADS)
Nizamutdinova, T.; Mukhlynin, N.
2017-06-01
A significant increasing energy efficiency of the full cycle of production, transmission and distribution of electricity in grids should be based on the management of separate consumers of electricity. The existing energy supply systems based on the concept of «smart things» do not allow to identify the technical structure of the electricity consumption in the load nodes from the grid side. It makes solving the tasks of energy efficiency more difficult. To solve this problem, the use of Wavelet transform to create a mathematical tool for monitoring the load composition in the nodes of the distribution grids of 6-10 kV, 0.4 kV is proposed in this paper. The authors have created a unique wavelet based functions for some consumers, based on their current consumption graphs of these power consumers. Possibility of determination of the characteristics of individual consumers of electricity in total nodal charts of load is shown in the test case. In future, creation of a unified technical and informational model of load control will allow to solve the problem of increasing the economic efficiency of not only certain consumers, but also the entire power supply system as a whole.
Ontological Problem-Solving Framework for Dynamically Configuring Sensor Systems and Algorithms
Qualls, Joseph; Russomanno, David J.
2011-01-01
The deployment of ubiquitous sensor systems and algorithms has led to many challenges, such as matching sensor systems to compatible algorithms which are capable of satisfying a task. Compounding the challenges is the lack of the requisite knowledge models needed to discover sensors and algorithms and to subsequently integrate their capabilities to satisfy a specific task. A novel ontological problem-solving framework has been designed to match sensors to compatible algorithms to form synthesized systems, which are capable of satisfying a task and then assigning the synthesized systems to high-level missions. The approach designed for the ontological problem-solving framework has been instantiated in the context of a persistence surveillance prototype environment, which includes profiling sensor systems and algorithms to demonstrate proof-of-concept principles. Even though the problem-solving approach was instantiated with profiling sensor systems and algorithms, the ontological framework may be useful with other heterogeneous sensing-system environments. PMID:22163793
Review on the administration and effectiveness of team-based learning in medical education.
Hur, Yera; Cho, A Ra; Kim, Sun
2013-12-01
Team-based learning (TBL) is an active learning approach. In recent years, medical educators have been increasingly using TBL in their classes. We reviewed the concepts of TBL and discuss examples of international cases. Two types of TBL are administered: classic TBL and adapted TBL. Combining TBL and problem-based learning (PBL) might be a useful strategy for medical schools. TBL is an attainable and efficient educational approach in preparing large classes with regard to PBL. TBL improves student performance, team communication skills, leadership skills, problem solving skills, and cognitive conceptual structures and increases student engagement and satisfaction. This study suggests recommendations for administering TBL effectively in medical education.
Representation in incremental learning
NASA Technical Reports Server (NTRS)
1993-01-01
Work focused on two areas in machine learning: representation for inductive learning and how to apply concept learning techniques to learning state preferences, which can represent search control knowledge for problem solving. Specifically, in the first area the issues of the effect of representation on learning, on how learning formalisms are biased, and how concept learning can benefit from the use of a hybrid formalism are addressed. In the second area, the issues of developing an agent to learn search control knowledge from the relative values of states, of the source of that qualitative information, and of the ability to use both quantitative and qualitative information in order to develop an effective problem-solving policy are examined.
Investigating middle school students’ difficulties in mathematical literacy problems level 1 and 2
NASA Astrophysics Data System (ADS)
Setiawati, S.; Herman, T.; Jupri, A.
2017-11-01
The background of this study is the lack of mathematical literacy skills of students. The proficiency of students’ mathematical literacy skills based on the results of the PISA 2015 study shows that Indonesian students at the proficiency level 1. This fact gave rise to this study which aims to investigate middle school students’ difficulties in mathematical literacy problems level 1 and 2. Qualitative research was used in this study. An individual written test on mathematical literacy problems was administered, followed by interviews. The subjects of the study were 61 students grade VII in Bandung and 26 of them were interviewed afterward. Data analysis revealed that students’ error in performing arithmetic most frequently observed. Other observed difficulties concerned understanding about algebra concept, applying arithmetic operation in algebraic expressions, and interpreting symbols to represent the unknown. In solving mathematical literacy problems, students use their prior knowledge, although sometimes not relevant to the questions. Based on the results, we suggest that mathematics learning in contextual learning and which invites students to participate in the processes of understanding the concepts.
Earth Trek...Explore Your Environment.
ERIC Educational Resources Information Center
Schneider, Gerald
This publication introduces children to water, air, and noise pollution, solid waste disposal, and pesticide use problems. Several pollution problems are explained and the importance of solving them is stressed. Some concepts such as recycling, closed systems, and environments that are related to pollution problems are also introduced. Each…
Lexical Problems in Large Distributed Information Systems.
ERIC Educational Resources Information Center
Berkovich, Simon Ya; Shneiderman, Ben
1980-01-01
Suggests a unified concept of a lexical subsystem as part of an information system to deal with lexical problems in local and network environments. The linguistic and control functions of the lexical subsystems in solving problems for large computer systems are described, and references are included. (Author/BK)
The Labeling Strategy: Moving beyond Order in Counting Problems
ERIC Educational Resources Information Center
CadwalladerOlsker, Todd
2013-01-01
Permutations and combinations are used to solve certain kinds of counting problems, but many students have trouble distinguishing which of these concepts applies to a given problem. An "order heuristic" is usually used to distinguish the two, but this heuristic can cause confusion when problems do not explicitly mention order. This…
ERIC Educational Resources Information Center
Badeau, Ryan; White, Daniel R.; Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.
2017-01-01
The ability to solve physics problems that require multiple concepts from across the physics curriculum--"synthesis" problems--is often a goal of physics instruction. Three experiments were designed to evaluate the effectiveness of two instructional methods employing worked examples on student performance with synthesis problems; these…
Electrodynamics; Problems and solutions
NASA Astrophysics Data System (ADS)
Ilie, Carolina C.; Schrecengost, Zachariah S.
2018-05-01
This book of problems and solutions is a natural continuation of Ilie and Schrecengost's first book Electromagnetism: Problems and Solutions. Aimed towards students who would like to work independently on more electrodynamics problems in order to deepen their understanding and problem-solving skills, this book discusses main concepts and techniques related to Maxwell's equations, conservation laws, electromagnetic waves, potentials and fields, and radiation.
ERIC Educational Resources Information Center
Webb, P. Taylor
2014-01-01
This article places Michel Foucault's concept of "problematization" in relation to educational policy research. My goal is to examine a key assumption of policy related to "solving problems" through such technologies. I discuss the potential problematization has to alter conceptions of policy research; and, through this…
ERIC Educational Resources Information Center
Carrier, Sarah J.; Thomas, Annie
2010-01-01
"Watch out, the stove will burn you," "Ooh, ice cream headache!" Students construct their conceptions about heat and temperature through their own intuitions about daily life experiences. As a result, misconceptions can be born from these constructed concepts. The activity described here addresses student misconceptions about thermal insulation…
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
Forms of Understanding in Mathematical Problem Solving.
1982-08-01
mathematical concepts, but more recent studies (e.g., Gelman & Gallistel , 1978) indicate that significant understanding of those concepts should be...Beranek, & Newman, 1980. Gelman, R., & Gallistel , C. R. The child’s understanding of number. Cambridge, Mass.: Harvard University Press, 1978. 43 Greeno
Focusing on the golden ball metaheuristic: an extended study on a wider set of problems.
Osaba, E; Diaz, F; Carballedo, R; Onieva, E; Perallos, A
2014-01-01
Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on one recently published technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems: the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem) have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results.
Focusing on the Golden Ball Metaheuristic: An Extended Study on a Wider Set of Problems
Osaba, E.; Diaz, F.; Carballedo, R.; Onieva, E.; Perallos, A.
2014-01-01
Nowadays, the development of new metaheuristics for solving optimization problems is a topic of interest in the scientific community. In the literature, a large number of techniques of this kind can be found. Anyway, there are many recently proposed techniques, such as the artificial bee colony and imperialist competitive algorithm. This paper is focused on one recently published technique, the one called Golden Ball (GB). The GB is a multiple-population metaheuristic based on soccer concepts. Although it was designed to solve combinatorial optimization problems, until now, it has only been tested with two simple routing problems: the traveling salesman problem and the capacitated vehicle routing problem. In this paper, the GB is applied to four different combinatorial optimization problems. Two of them are routing problems, which are more complex than the previously used ones: the asymmetric traveling salesman problem and the vehicle routing problem with backhauls. Additionally, one constraint satisfaction problem (the n-queen problem) and one combinatorial design problem (the one-dimensional bin packing problem) have also been used. The outcomes obtained by GB are compared with the ones got by two different genetic algorithms and two distributed genetic algorithms. Additionally, two statistical tests are conducted to compare these results. PMID:25165742
Developing Visualization Techniques for Semantics-based Information Networks
NASA Technical Reports Server (NTRS)
Keller, Richard M.; Hall, David R.
2003-01-01
Information systems incorporating complex network structured information spaces with a semantic underpinning - such as hypermedia networks, semantic networks, topic maps, and concept maps - are being deployed to solve some of NASA s critical information management problems. This paper describes some of the human interaction and navigation problems associated with complex semantic information spaces and describes a set of new visual interface approaches to address these problems. A key strategy is to leverage semantic knowledge represented within these information spaces to construct abstractions and views that will be meaningful to the human user. Human-computer interaction methodologies will guide the development and evaluation of these approaches, which will benefit deployed NASA systems and also apply to information systems based on the emerging Semantic Web.
Kreuzthaler, Markus; Miñarro-Giménez, Jose Antonio; Schulz, Stefan
2016-01-01
Big data resources are difficult to process without a scaled hardware environment that is specifically adapted to the problem. The emergence of flexible cloud-based virtualization techniques promises solutions to this problem. This paper demonstrates how a billion of lines can be processed in a reasonable amount of time in a cloud-based environment. Our use case addresses the accumulation of concept co-occurrence data in MEDLINE annotation as a series of MapReduce jobs, which can be scaled and executed in the cloud. Besides showing an efficient way solving this problem, we generated an additional resource for the scientific community to be used for advanced text mining approaches.
Cavagnaro, Daniel R; Myung, Jay I; Pitt, Mark A; Kujala, Janne V
2010-04-01
Discriminating among competing statistical models is a pressing issue for many experimentalists in the field of cognitive science. Resolving this issue begins with designing maximally informative experiments. To this end, the problem to be solved in adaptive design optimization is identifying experimental designs under which one can infer the underlying model in the fewest possible steps. When the models under consideration are nonlinear, as is often the case in cognitive science, this problem can be impossible to solve analytically without simplifying assumptions. However, as we show in this letter, a full solution can be found numerically with the help of a Bayesian computational trick derived from the statistics literature, which recasts the problem as a probability density simulation in which the optimal design is the mode of the density. We use a utility function based on mutual information and give three intuitive interpretations of the utility function in terms of Bayesian posterior estimates. As a proof of concept, we offer a simple example application to an experiment on memory retention.
An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026
[Problem-solving strategies and marital satisfaction].
Kriegelewicz, Olga
2006-01-01
This study investigated the relation between problem-solving strategies in the marital conflict and marital satisfaction. Four problem-solving strategies (Dialogue, Loyalty, Escalation of conflict and Withdrawal) were measured by the Problem-Solving Strategies Inventory, in two versions: self-report and report of partners' perceived behaviour. This measure refers to the concept of Rusbult, Johnson and Morrow, and meets high standards of reliability (alpha Cronbach from alpha = 0.78 to alpha = 0.94) and validity. Marital satisfaction was measured by Marriage Success Scale. The sample was composed of 147 marital couples. The study revealed that satisfied couples, in comparison with non-satisfied couples, tend to use constructive problem-solving strategies (Dialogue and Loyalty). They rarely use destructive strategies like Escalation of conflict or Withdrawal. Dialogue is the strategy connected with satisfaction in a most positive manner. These might be very important guidelines to couples' psychotherapy. Loyalty to oneself is a significant positive predictor of male satisfaction is also own Loyalty. The study shows that constructive attitudes are the most significant predictors of marriage satisfaction. It is therefore worth concentrating mostly on them in the psychotherapeutic process instead of eliminating destructive attitudes.
NASA Astrophysics Data System (ADS)
Main, June Dewey; Budd Rowe, Mary
This study investigated the relationship of locus-of-control orientations and task structure to the science problem-solving performance of 100 same-sex, sixth-grade student pairs. Pairs performed a four-variable problem-solving task, racing cylinders down a ramp in a series of trials to determine the 3 fastest of 18 different cylinders. The task was completed in one of two treatment conditions: the structured condition with moderate cuing and the unstructured condition with minimal cuing. Pairs completed an after-task assessment, predicting the results of proposed cylinder races, to measure the ability to understand and apply task concepts. Overall conclusions were: (1) There was no relationship between locus-of-control orientation and effectiveness of problem-solving strategy; (2) internality was significantly related to higher accuracy on task solutions and on after-task predictions; (3) there was no significant relationship between task structure and effectiveness of problem-solving strategy; (4) solutions to the task were more accurate in the unstructured task condition; (5) internality related to more accurate solutions in the unstructured task condition.
Study on Spacelab software development and integration concepts
NASA Technical Reports Server (NTRS)
1974-01-01
A study was conducted to define the complexity and magnitude of the Spacelab software challenge. The study was based on current Spacelab program concepts, anticipated flight schedules, and ground operation plans. The study was primarily directed toward identifying and solving problems related to the experiment flight application and tests and checkout software executing in the Spacelab onboard command and data management subsystem (CDMS) computers and electrical ground support equipment (EGSE). The study provides a conceptual base from which it is possible to proceed into the development phase of the Software Test and Integration Laboratory (STIL) and establishes guidelines for the definition of standards which will ensure that the total Spacelab software is understood prior to entering development.
NASA Astrophysics Data System (ADS)
Nasution, M. L.; Yerizon, Y.; Gusmiyanti, R.
2018-04-01
One of the purpose mathematic learning is to develop problem solving abilities. Problem solving is obtained through experience in questioning non-routine. Improving students’ mathematical problem-solving abilities required an appropriate strategy in learning activities one of them is models problem based learning (PBL). Thus, the purpose of this research is to determine whether the problem solving abilities of mathematical students’ who learn to use PBL better than on the ability of students’ mathematical problem solving by applying conventional learning. This research included quasi experiment with static group design and population is students class XI MIA SMAN 1 Lubuk Alung. Class experiment in the class XI MIA 5 and class control in the class XI MIA 6. The instrument of final test students’ mathematical problem solving used essay form. The result of data final test in analyzed with t-test. The result is students’ mathematical problem solving abilities with PBL better then on the ability of students’ mathematical problem solving by applying conventional learning. It’s seen from the high percentage achieved by the group of students who learn to use PBL for each indicator of students’ mathematical problem solving.
NASA Astrophysics Data System (ADS)
Roy, Satadru
Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.
Biologically Inspired Behavioral Strategies for Autonomous Aerial Explorers on Mars
NASA Technical Reports Server (NTRS)
Plice, Laura; Pisanich, Greg; Lau, Benton; Young, Larry A.
2002-01-01
The natural world is a rich source of problem- solving approaches. This paper discusses the feasibility and technical challenges underlying mimicking, or analogously adapting, biological behavioral strategies to mission/flight planning for aerial vehicles engaged in planetary exploration. Two candidate concepts based on natural resource utilization and searching behaviors are adapted io technological applications. Prototypes and test missions addressing the difficulties of implementation and their solutions are also described.
Fuel, environmental, and transmission pricing considerations in a deregulated environment
NASA Astrophysics Data System (ADS)
Obessis, Emmanouil Vlassios
The 1992 National Energy Policy Act drastically changed the traditional structure of the vertically integrated utility. To facilitate increased competition in the power utility sector, all markets related to power generation have been opened to free competition and trading. To survive in the new competitive environment, power producers need to reduce costs and increase efficiency. Fuel marketing strategies are thus, getting more aggressive and fuel markets are becoming more competitive, offering more options regarding fuel supplies and contracts. At the same time, the 1990 Clean Air Act Amendments are taking effect. Although tightening the emission standards, this legislation offers utilities a wider flexibility in choosing compliance strategies. It also set maximum annual allowable levels replacing the traditional uniform maximum emission rates. The bill also introduced the concept of marketable emission allowances and provided for the establishment of nationwide markets where allowances may be traded, sold, or purchased. Several fuel- and emission-constrained algorithms have been historically presented, but those two classes of constraints, in general, were handled independently. The multiobjective optimization model developed in this research work, concurrently satisfies sets of detailed fuel and emission limits, modeling in a more accurate way the fuel supply and environmental limitations and their complexities in the new deregulated operational environment. Development of the implementation software is an integral part of this research project. This software may be useful for both daily scheduling activities and short-term operational planning. A Lagrangian multipliers-based variant is used to solve the problem. Single line searches are used to update the multipliers, thus offering attractive execution times. This work also investigates the applicability of cooperative games to the problem of transmission cost allocation. Interest in game theory as a powerful tool to solve common property allocation problems has been renewed. A simple allocation framework is developed using capacity based costing rules. Different solution concepts are applied to solve small scale transmission pricing problems. Game models may render themselves useful in investigating "what if" scenarios.
Flippin' Fluid Mechanics - Quasi-experimental Pre-test and Post-test Comparison Using Two Groups
NASA Astrophysics Data System (ADS)
Webster, D. R.; Majerich, D. M.; Luo, J.
2014-11-01
A flipped classroom approach has been implemented in an undergraduate fluid mechanics course. Students watch short on-line videos before class, participate in active in-class problem solving (in dyads), and complete individualized on-line quizzes weekly. In-class activities are designed to achieve a trifecta of: 1. developing problem solving skills, 2. learning subject content, and 3. developing inquiry skills. The instructor and assistants provide critical ``just-in-time tutoring'' during the in-class problem solving sessions. Comparisons are made with a simultaneous section offered in a traditional mode by a different instructor. Regression analysis was used to control for differences among students and to quantify the effect of the flipped fluid mechanics course. The dependent variable was the students' combined final examination and post-concept inventory scores and the independent variables were pre-concept inventory score, gender, major, course section, and (incoming) GPA. The R-square equaled 0.45 indicating that the included variables explain 45% of the variation in the dependent variable. The regression results indicated that if the student took the flipped fluid mechanics course, the dependent variable (i.e., combined final exam and post-concept inventory scores) was raised by 7.25 points. Interestingly, the comparison group reported significantly more often that their course emphasized memorization than did the flipped classroom group.
NASA Astrophysics Data System (ADS)
Ceberio, Mikel; Almudí, José Manuel; Franco, Ángel
2016-08-01
In recent years, interactive computer simulations have been progressively integrated in the teaching of the sciences and have contributed significant improvements in the teaching-learning process. Practicing problem-solving is a key factor in science and engineering education. The aim of this study was to design simulation-based problem-solving teaching materials and assess their effectiveness in improving students' ability to solve problems in university-level physics. Firstly, we analyze the effect of using simulation-based materials in the development of students' skills in employing procedures that are typically used in the scientific method of problem-solving. We found that a significant percentage of the experimental students used expert-type scientific procedures such as qualitative analysis of the problem, making hypotheses, and analysis of results. At the end of the course, only a minority of the students persisted with habits based solely on mathematical equations. Secondly, we compare the effectiveness in terms of problem-solving of the experimental group students with the students who are taught conventionally. We found that the implementation of the problem-solving strategy improved experimental students' results regarding obtaining a correct solution from the academic point of view, in standard textbook problems. Thirdly, we explore students' satisfaction with simulation-based problem-solving teaching materials and we found that the majority appear to be satisfied with the methodology proposed and took on a favorable attitude to learning problem-solving. The research was carried out among first-year Engineering Degree students.
Powell, Laurie Ehlhardt; Wild, Michelle R; Glang, Ann; Ibarra, Summer; Gau, Jeff M; Perez, Amanda; Albin, Richard W; O'Neil-Pirozzi, Therese M; Wade, Shari L; Keating, Tom; Saraceno, Carolyn; Slocumb, Jody
2017-10-24
Cognitive impairments following brain injury, including difficulty with problem solving, can pose significant barriers to successful community reintegration. Problem-solving strategy training is well-supported in the cognitive rehabilitation literature. However, limitations in insurance reimbursement have resulted in fewer services to train such skills to mastery and to support generalization of those skills into everyday environments. The purpose of this project was to develop and evaluate an integrated, web-based programme, ProSolv, which uses a small number of coaching sessions to support problem solving in everyday life following brain injury. We used participatory action research to guide the iterative development, usability testing, and within-subject pilot testing of the ProSolv programme. The finalized programme was then evaluated in a between-subjects group study and a non-experimental single case study. Results were mixed across studies. Participants demonstrated that it was feasible to learn and use the ProSolv programme for support in problem solving. They highly recommended the programme to others and singled out the importance of the coach. Limitations in app design were cited as a major reason for infrequent use of the app outside of coaching sessions. Results provide mixed evidence regarding the utility of web-based mobile apps, such as ProSolv to support problem solving following brain injury. Implications for Rehabilitation People with cognitive impairments following brain injury often struggle with problem solving in everyday contexts. Research supports problem solving skills training following brain injury. Assistive technology for cognition (smartphones, selected apps) offers a means of supporting problem solving for this population. This project demonstrated the feasibility of a web-based programme to address this need.
Programmable hardware for reconfigurable computing systems
NASA Astrophysics Data System (ADS)
Smith, Stephen
1996-10-01
In 1945 the work of J. von Neumann and H. Goldstein created the principal architecture for electronic computation that has now lasted fifty years. Nevertheless alternative architectures have been created that have computational capability, for special tasks, far beyond that feasible with von Neumann machines. The emergence of high capacity programmable logic devices has made the realization of these architectures practical. The original ENIAC and EDVAC machines were conceived to solve special mathematical problems that were far from today's concept of 'killer applications.' In a similar vein programmable hardware computation is being used today to solve unique mathematical problems. Our programmable hardware activity is focused on the research and development of novel computational systems based upon the reconfigurability of our programmable logic devices. We explore our programmable logic architectures and their implications for programmable hardware. One programmable hardware board implementation is detailed.
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.
2016-01-01
This paper reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and their…
ERIC Educational Resources Information Center
Jitendra, Asha K.; Harwell, Michael R.; Dupuis, Danielle N.; Karl, Stacy R.
2017-01-01
This article reports results from a study investigating the efficacy of a proportional problem-solving intervention, schema-based instruction (SBI), in seventh grade. Participants included 806 students with mathematical difficulties in problem solving (MD-PS) from an initial pool of 1,999 seventh grade students in a larger study. Teachers and…
Problem-Solving Models for Computer Literacy: Getting Smarter at Solving Problems. Student Lessons.
ERIC Educational Resources Information Center
Moursund, David
This book is intended for use as a student guide. It is about human problem solving and provides information on how the mind works, placing a major emphasis on the role of computers as an aid in problem solving. The book is written with the underlying philosophy of discovery-based learning based on two premises: first, through the appropriate…
NASA Technical Reports Server (NTRS)
Wong, P. K.
1975-01-01
The closely-related problems of designing reliable feedback stabilization strategy and coordinating decentralized feedbacks are considered. Two approaches are taken. A geometric characterization of the structure of control interaction (and its dual) was first attempted and a concept of structural homomorphism developed based on the idea of 'similarity' of interaction pattern. The idea of finding classes of individual feedback maps that do not 'interfere' with the stabilizing action of each other was developed by identifying the structural properties of nondestabilizing and LQ-optimal feedback maps. Some known stability properties of LQ-feedback were generalized and some partial solutions were provided to the reliable stabilization and decentralized feedback coordination problems. A concept of coordination parametrization was introduced, and a scheme for classifying different modes of decentralization (information, control law computation, on-line control implementation) in control systems was developed.
Effect of problem type toward students’ conceptual understanding level on heat and temperature
NASA Astrophysics Data System (ADS)
Ratnasari, D.; Sukarmin; Suparmi, S.
2017-11-01
The aim of this research is to analyze the level of students’ understanding of heat and temperature concept and effect of problem type toward students’ conceptual understanding of heat and temperature. This research is descriptive research with the subjects of the research are 96 students from high, medium, and low categorized school in Surakarta. Data of level of students’ conceptual understanding is from students’ test result using essay instrument (arranged by researcher and arranged by the teacher) and interview. Before being tested in the samples, essay instrument is validated by the experts. Based on the result and the data analysis, students’ conceptual understanding level of 10th grade students on heat and temperature is as follows: (1) Most students have conceptual understanding level at Partial Understanding with a Specific Misconception (PUSM) with percentage 28,85%; (2) Most students are able to solve mathematic problem from teacher, but don’t understand the underlying concept.
NASA Astrophysics Data System (ADS)
Chakroun, Mahmoud; Gogu, Grigore; Pacaud, Thomas; Thirion, François
2014-09-01
This study proposes an eco-innovative design process taking into consideration quality and environmental aspects in prioritizing and solving technical engineering problems. This approach provides a synergy between the Life Cycle Assessment (LCA), the nonquality matrix, the Theory of Inventive Problem Solving (TRIZ), morphological analysis and the Analytical Hierarchy Process (AHP). In the sequence of these tools, LCA assesses the environmental impacts generated by the system. Then, for a better consideration of environmental aspects, a new tool is developed, the non-quality matrix, which defines the problem to be solved first from an environmental point of view. The TRIZ method allows the generation of new concepts and contradiction resolution. Then, the morphological analysis offers the possibility of extending the search space of solutions in a design problem in a systematic way. Finally, the AHP identifies the promising solution(s) by providing a clear logic for the choice made. Their usefulness has been demonstrated through their application to a case study involving a centrifugal spreader with spinning discs.
The Influence of Different Representations on Solving Concentration Problems at Elementary School
NASA Astrophysics Data System (ADS)
Liu, Chia-Ju; Shen, Ming-Hsun
2011-10-01
This study investigated the students' learning process of the concept of concentration at the elementary school level in Taiwan. The influence of different representational types on the process of proportional reasoning was also explored. The participants included nineteen third-grade and eighteen fifth-grade students. Eye-tracking technology was used in conducting the experiment. The materials were adapted from Noelting's (1980a) "orange juice test" experiment. All problems on concentration included three stages (the intuitive, the concrete operational, and the formal operational), and each problem was displayed in iconic and symbolic representations. The data were collected through eye-tracking technology and post-test interviews. The results showed that the representational types influenced students' solving of concentration problems. Furthermore, the data on eye movement indicated that students used different strategies or rules to solve concentration problems at the different stages of the problems with different representational types. This study is intended to contribute to the understanding of elementary school students' problem-solving strategies and the usability of eye-tracking technology in related studies.
ERIC Educational Resources Information Center
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-01-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking,…
Producing or reproducing reasoning? Socratic dialog is very effective, but only for a few
Goldin, Andrea Paula; Pedroncini, Olivia; Sigman, Mariano
2017-01-01
Successful communication between a teacher and a student is at the core of pedagogy. A well known example of a pedagogical dialog is ‘Meno’, a socratic lesson of geometry in which a student learns (or ‘discovers’) how to double the area of a given square ‘in essence, a demonstration of Pythagoras’ theorem. In previous studies we found that after engaging in the dialog participants can be divided in two kinds: those who can only apply a rule to solve the problem presented in the dialog and those who can go beyond and generalize that knowledge to solve any square problems. Here we study the effectiveness of this socratic dialog in an experimental and a control high-school classrooms, and we explore the boundaries of what is learnt by testing subjects with a set of 9 problems of varying degrees of difficulty. We found that half of the adolescents did not learn anything from the dialog. The other half not only learned to solve the problem, but could abstract something more: the geometric notion that the diagonal can be used to solve diverse area problems. Conceptual knowledge is critical for achievement in geometry, and it is not clear whether geometric concepts emerge spontaneously on the basis of universal experience with space, or reflect intrinsic properties of the human mind. We show that, for half of the learners, an exampled-based Socratic dialog in lecture form can give rise to formal geometric knowledge that can be applied to new, different problems. PMID:28333955
Students’ Covariational Reasoning in Solving Integrals’ Problems
NASA Astrophysics Data System (ADS)
Harini, N. V.; Fuad, Y.; Ekawati, R.
2018-01-01
Covariational reasoning plays an important role to indicate quantities vary in learning calculus. This study investigates students’ covariational reasoning during their studies concerning two covarying quantities in integral problem. Six undergraduate students were chosen to solve problems that involved interpreting and representing how quantities change in tandem. Interviews were conducted to reveal the students’ reasoning while solving covariational problems. The result emphasizes that undergraduate students were able to construct the relation of dependent variables that changes in tandem with the independent variable. However, students faced difficulty in forming images of continuously changing rates and could not accurately apply the concept of integrals. These findings suggest that learning calculus should be increased emphasis on coordinating images of two quantities changing in tandem about instantaneously rate of change and to promote conceptual knowledge in integral techniques.
ERIC Educational Resources Information Center
Lee, Chwee Beng; Ling, Keck Voon; Reimann, Peter; Diponegoro, Yudho Ahmad; Koh, Chia Heng; Chew, Derwin
2014-01-01
Purpose: The purpose of this paper is to argue for the need to develop pre-service teachers' problem solving ability, in particular, in the context of real-world complex problems. Design/methodology/approach: To argue for the need to develop pre-service teachers' problem solving skills, the authors describe a web-based problem representation…
Mapping Students' Spoken Conceptions of Equality
ERIC Educational Resources Information Center
Anakin, Megan
2013-01-01
This study expands contemporary theorising about students' conceptions of equality. A nationally representative sample of New Zealand students' were asked to provide a spoken numerical response and an explanation as they solved an arithmetic additive missing number problem. Students' responses were conceptualised as acts of communication and…
Utilizing a Micro in the Accounting Classroom.
ERIC Educational Resources Information Center
Wolverton, L. Craig
1982-01-01
The author discusses how to select microcomputer software for an accounting program and what types of instructional modes to use. The following modes are examined: problem solving, decision making, automated accounting functions, learning new accounting concepts, reinforcing concepts already learned, developing independent learning skills, and…
NASA Astrophysics Data System (ADS)
Han, Xiaobao; Li, Huacong; Jia, Qiusheng
2017-12-01
For dynamic decoupling of polynomial linear parameter varying(PLPV) system, a robust dominance pre-compensator design method is given. The parameterized precompensator design problem is converted into an optimal problem constrained with parameterized linear matrix inequalities(PLMI) by using the conception of parameterized Lyapunov function(PLF). To solve the PLMI constrained optimal problem, the precompensator design problem is reduced into a normal convex optimization problem with normal linear matrix inequalities (LMI) constraints on a new constructed convex polyhedron. Moreover, a parameter scheduling pre-compensator is achieved, which satisfies robust performance and decoupling performances. Finally, the feasibility and validity of the robust diagonal dominance pre-compensator design method are verified by the numerical simulation on a turbofan engine PLPV model.
Kwok, Sylvia Y C L; Yeung, Jerf W K; Low, Andrew Y T; Lo, Herman H M; Tam, Cherry H L
2015-06-01
The study investigated the relationship among physical abuse, positive psychological factors including emotional competence and social problem-solving, and suicidal ideation among adolescents in China. The possible moderating effects of emotional competence and social problem-solving in the association between physical abuse and adolescent suicidal ideation were also studied. A cross-sectional survey employing convenience sampling was conducted and self-administered questionnaires were collected from 527 adolescents with mean age of 14 years from the schools in Shanghai. Results showed that physical abuse was significantly and positively related to suicidal ideation in both male and female adolescents. Emotional competence was not found to be significantly associated with adolescent suicidal ideation, but rational problem-solving, a sub-scale of social problem-solving, was shown to be significantly and negatively associated with suicidal ideation for males, but not for females. However, emotional competence and rational problem-solving were shown to be a significant and a marginally significant moderator in the relationship between physical abuse and suicidal ideation in females respectively, but not in males. High rational problem-solving buffered the negative impact of physical abuse on suicidal ideation for females. Interestingly, females with higher empathy and who reported being physically abused by their parents have higher suicidal ideation. Findings are discussed and implications are stated. It is suggested to change the attitudes of parents on the concept of physical abuse, guide them on appropriate attitudes, knowledge and skills in parenting, and enhance adolescents' skills in rational problem-solving. Copyright © 2015 Elsevier Ltd. All rights reserved.
Problem Solvers' Conceptions about Osmosis.
ERIC Educational Resources Information Center
Zuckerman, June T.
1994-01-01
Discusses the scheme and findings of a study designed to identify the conceptual knowledge used by high school students to solve a significant problem related to osmosis. Useful tips are provided to teachers to aid students in developing constructs that maximize understanding. (ZWH)
Disciplinary Foundations for Solving Interdisciplinary Scientific Problems
ERIC Educational Resources Information Center
Zhang, Dongmei; Shen, Ji
2015-01-01
Problem-solving has been one of the major strands in science education research. But much of the problem-solving research has been conducted on discipline-based contexts; little research has been done on how students, especially individuals, solve interdisciplinary problems. To understand how individuals reason about interdisciplinary problems, we…
An Electronic Library-Based Learning Environment for Supporting Web-Based Problem-Solving Activities
ERIC Educational Resources Information Center
Tsai, Pei-Shan; Hwang, Gwo-Jen; Tsai, Chin-Chung; Hung, Chun-Ming; Huang, Iwen
2012-01-01
This study aims to develop an electronic library-based learning environment to support teachers in developing web-based problem-solving activities and analyzing the online problem-solving behaviors of students. Two experiments were performed in this study. In study 1, an experiment on 103 elementary and high school teachers (the learning activity…
The Creativity of Reflective and Impulsive Selected Students in Solving Geometric Problems
NASA Astrophysics Data System (ADS)
Shoimah, R. N.; Lukito, A.; Siswono, T. Y. E.
2018-01-01
This research purposed to describe the elementary students’ creativity with reflective and impulsive cognitive style in solving geometric problems. This research used qualitative research methods. The data was collected by written tests and task-based interviews. The subjects consisted of two 5th grade students that were measured by MFFT (Matching Familiar Figures Test). The data were analyzed based on the three main components of creativity; that is fluency, flexibility, and novelty. This results showed that subject with reflective cognitive style in solving geometric problems met all components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated more than two different ways to get problem solved, and novelty; subject generated new ideas and new ways that original and has never been used before). While subject with impulsive cognitive style in solving geometric problems met two components of creativity (fluency; subject generated more than three different right-ideas in solving problems, flexibility; subject generated two different ways to get problem solved). Thus, it could be concluded that reflective students are more creative in solving geometric problems. The results of this research can also be used as a guideline in the future assessment of creativity based on cognitive style.
Van Regenmortel, Marc H. V.
2018-01-01
Hypotheses and theories are essential constituents of the scientific method. Many vaccinologists are unaware that the problems they try to solve are mostly inverse problems that consist in imagining what could bring about a desired outcome. An inverse problem starts with the result and tries to guess what are the multiple causes that could have produced it. Compared to the usual direct scientific problems that start with the causes and derive or calculate the results using deductive reasoning and known mechanisms, solving an inverse problem uses a less reliable inductive approach and requires the development of a theoretical model that may have different solutions or none at all. Unsuccessful attempts to solve inverse problems in HIV vaccinology by reductionist methods, systems biology and structure-based reverse vaccinology are described. The popular strategy known as rational vaccine design is unable to solve the multiple inverse problems faced by HIV vaccine developers. The term “rational” is derived from “rational drug design” which uses the 3D structure of a biological target for designing molecules that will selectively bind to it and inhibit its biological activity. In vaccine design, however, the word “rational” simply means that the investigator is concentrating on parts of the system for which molecular information is available. The economist and Nobel laureate Herbert Simon introduced the concept of “bounded rationality” to explain why the complexity of the world economic system makes it impossible, for instance, to predict an event like the financial crash of 2007–2008. Humans always operate under unavoidable constraints such as insufficient information, a limited capacity to process huge amounts of data and a limited amount of time available to reach a decision. Such limitations always prevent us from achieving the complete understanding and optimization of a complex system that would be needed to achieve a truly rational design process. This is why the complexity of the human immune system prevents us from rationally designing an HIV vaccine by solving inverse problems. PMID:29387066
Experimentally Building a Qualitative Understanding of Newton's Second Law
NASA Astrophysics Data System (ADS)
Gates, Joshua
2014-12-01
Newton's second law is one of the cornerstones of the introductory physics curriculum, but it can still trouble a large number of students well after its introduction, hobbling their ability to apply the concept to problem solving1 and to related concepts, such as momentum, circular motion, and orbits. While there are several possibilities for lab activities addressing the functional relationship among net force, mass, and acceleration, the qualitative understanding of the connection between forces and acceleration can still be lacking,2 leading to poor performance in problem solving and in assessments such as the Force Concept Inventory3 and Force and Motion Conceptual Evaluation.4 There is a need for strong conceptual understanding of the relationships between net force and acceleration and between acceleration and velocity in order to effectively address common force-motion misconceptions;5 there is a large literature concerning student understanding of force and motion.6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azizov, E. A.; Gladush, G. G., E-mail: gladush@triniti.ru; Dokuka, V. N.
2015-12-15
On the basis of current understanding of physical processes in tokamaks and taking into account engineering constraints, it is shown that a low-cost facility of a moderate size can be designed within the adopted concept. This facility makes it possible to achieve the power density of neutron flux which is of interest, in particular, for solving the problem of {sup 233}U fuel production from thorium. By using a molten-salt blanket, the important task of ensuring the safe operation of such a reactor in the case of possible coolant loss is accomplished. Moreover, in a hybrid reactor with the blanket basedmore » on liquid salts, the problem of periodic refueling that is difficult to perform in solid blankets can be solved.« less
ERIC Educational Resources Information Center
van Velzen, Joke H.
2016-01-01
The mathematics curriculum often provides for relatively few mathematical thinking problems or non-routine problems that focus on a deepening of understanding mathematical concepts and the problem-solving process. To develop such problems, methods are required to evaluate their suitability. The purpose of this preliminary study was to find such an…
Toward Modeling the Intrinsic Complexity of Test Problems
ERIC Educational Resources Information Center
Shoufan, Abdulhadi
2017-01-01
The concept of intrinsic complexity explains why different problems of the same type, tackled by the same problem solver, can require different times to solve and yield solutions of different quality. This paper proposes a general four-step approach that can be used to establish a model for the intrinsic complexity of a problem class in terms of…
Teaching Fifth Grade Mathematical Concepts: Effects of Word Problems Used with Traditional Methods.
ERIC Educational Resources Information Center
Coy, Jessica
The view of the researcher is that students in the upper elementary to middle school range need to increase their problem-solving skills by making logical deductions and organizing and structuring their thoughts through the use of word problems. Giving children a daily word problem challenged and introduced them to the lesson. This activity…
NASA Astrophysics Data System (ADS)
Hafezalkotob, Arian; Hafezalkotob, Ashkan
2017-06-01
A target-based MADM method covers beneficial and non-beneficial attributes besides target values for some attributes. Such techniques are considered as the comprehensive forms of MADM approaches. Target-based MADM methods can also be used in traditional decision-making problems in which beneficial and non-beneficial attributes only exist. In many practical selection problems, some attributes have given target values. The values of decision matrix and target-based attributes can be provided as intervals in some of such problems. Some target-based decision-making methods have recently been developed; however, a research gap exists in the area of MADM techniques with target-based attributes under uncertainty of information. We extend the MULTIMOORA method for solving practical material selection problems in which material properties and their target values are given as interval numbers. We employ various concepts of interval computations to reduce degeneration of uncertain data. In this regard, we use interval arithmetic and introduce innovative formula for interval distance of interval numbers to create interval target-based normalization technique. Furthermore, we use a pairwise preference matrix based on the concept of degree of preference of interval numbers to calculate the maximum, minimum, and ranking of these numbers. Two decision-making problems regarding biomaterials selection of hip and knee prostheses are discussed. Preference degree-based ranking lists for subordinate parts of the extended MULTIMOORA method are generated by calculating the relative degrees of preference for the arranged assessment values of the biomaterials. The resultant rankings for the problem are compared with the outcomes of other target-based models in the literature.
Scaffolding Online Argumentation during Problem Solving
ERIC Educational Resources Information Center
Oh, S.; Jonassen, D. H.
2007-01-01
In this study, constraint-based argumentation scaffolding was proposed to facilitate online argumentation performance and ill-structured problem solving during online discussions. In addition, epistemological beliefs were presumed to play a role in solving ill-structured diagnosis-solution problems. Constraint-based discussion boards were…
Enhancing Multimedia Imbalanced Concept Detection Using VIMP in Random Forests.
Sadiq, Saad; Yan, Yilin; Shyu, Mei-Ling; Chen, Shu-Ching; Ishwaran, Hemant
2016-07-01
Recent developments in social media and cloud storage lead to an exponential growth in the amount of multimedia data, which increases the complexity of managing, storing, indexing, and retrieving information from such big data. Many current content-based concept detection approaches lag from successfully bridging the semantic gap. To solve this problem, a multi-stage random forest framework is proposed to generate predictor variables based on multivariate regressions using variable importance (VIMP). By fine tuning the forests and significantly reducing the predictor variables, the concept detection scores are evaluated when the concept of interest is rare and imbalanced, i.e., having little collaboration with other high level concepts. Using classical multivariate statistics, estimating the value of one coordinate using other coordinates standardizes the covariates and it depends upon the variance of the correlations instead of the mean. Thus, conditional dependence on the data being normally distributed is eliminated. Experimental results demonstrate that the proposed framework outperforms those approaches in the comparison in terms of the Mean Average Precision (MAP) values.
NASA Astrophysics Data System (ADS)
Son, Ji-Won; Hu, Qintong
2016-05-01
In order to provide insight into cross-national differences in students' achievement, this study compares the initial treatment of the concept of function sections of Chinese and US textbooks. The number of lessons, contents, and mathematical problems were analyzed. The results show that the US curricula introduce the concept of function one year earlier than the Chinese curriculum and provide strikingly more problems for students to work on. However, the Chinese curriculum emphasizes developing both concepts and procedures and includes more problems that require explanations, visual representations, and problem solving in worked-out examples that may help students formulate multiple solution methods. This result could indicate that instead of the number of problems and early introduction of the concept, the cognitive demands of textbook problems required for student thinking could be one reason for differences in American and Chinese students' performances in international comparative studies. Implications of these findings for curriculum developers, teachers, and researchers are discussed.
NASA Astrophysics Data System (ADS)
Manurung, Sondang; Demonta Pangabean, Deo
2017-05-01
The main purpose of this study is to produce needs analysis, literature review, and learning tools in the study of developmental of interactive multimedia based physic learning charged in problem solving to improve thinking ability of physic prospective student. The first-year result of the study is: result of the draft based on a needs analysis of the facts on the ground, the conditions of existing learning and literature studies. Following the design of devices and instruments performed as well the development of media. Result of the second study is physics learning device -based interactive multimedia charged problem solving in the form of textbooks and scientific publications. Previous learning models tested in a limited sample, then in the evaluation and repair. Besides, the product of research has an economic value on the grounds: (1) a virtual laboratory to offer this research provides a solution purchases physics laboratory equipment is expensive; (2) address the shortage of teachers of physics in remote areas as a learning tool can be accessed offline and online; (3). reducing material or consumables as tutorials can be done online; Targeted research is the first year: i.e story board learning physics that have been scanned in a web form CD (compact disk) and the interactive multimedia of gas Kinetic Theory concept. This draft is based on a needs analysis of the facts on the ground, the existing learning conditions, and literature studies. Previous learning models tested in a limited sample, then in the evaluation and repair.
NASA Astrophysics Data System (ADS)
Gupta, Tanya
Recent initiatives in the laboratory curriculum have encouraged an inquiry-based approach to learning and teaching in the laboratory. It has been argued that laboratory instruction should not just be hands-on, but it should portray the essence of inquiry through the process of experiential learning and reflective engagement in collaboration with peers and in facilitation by the instructor. A student-centered active learning approach may be an effective way to enhance student understanding of concepts in the laboratory. The dissertation research work explores the impact of laboratory instruction and its relevance for college-level chemistry. Each chapter is different from the preceding chapter in terms of the purpose of the study and the research questions asked. However, the overarching idea is to address the importance of guided-inquiry based laboratory instruction in chemistry and its relevance in helping students to make connections with the chemistry content and in imparting skills to students. Such skills include problem solving, collaborative group work and critical thinking. The first research study (Chapter 2) concerns the impact of first year co-requisite general chemistry laboratory instruction on the problem-solving skills of students. The second research study (Chapter 3) examines the impact of implementing student roles also known as Student-Led Instructor Facilitated Guided-Inquiry based Laboratories, SLIFGIL) by modifying the Science Writing Heuristic approach of laboratory instruction. In the third research study (Chapter 4), critical thinking skills of first semester general chemistry laboratory students were compared to advanced (third or fourth year) chemistry laboratory students based on the analysis of their laboratory reports.
Flexibility in Mathematics Problem Solving Based on Adversity Quotient
NASA Astrophysics Data System (ADS)
Dina, N. A.; Amin, S. M.; Masriyah
2018-01-01
Flexibility is an ability which is needed in problem solving. One of the ways in problem solving is influenced by Adversity Quotient (AQ). AQ is the power of facing difficulties. There are three categories of AQ namely climber, camper, and quitter. This research is a descriptive research using qualitative approach. The aim of this research is to describe flexibility in mathematics problem solving based on Adversity Quotient. The subjects of this research are climber student, camper student, and quitter student. This research was started by giving Adversity Response Profile (ARP) questioner continued by giving problem solving task and interviews. The validity of data measurement was using time triangulation. The results of this research shows that climber student uses two strategies in solving problem and doesn’t have difficulty. The camper student uses two strategies in solving problem but has difficulty to finish the second strategies. The quitter student uses one strategy in solving problem and has difficulty to finish it.
ERIC Educational Resources Information Center
Tedford, Rebecca; Warny, Sophie
2006-01-01
In this article, the authors offer a safe, fun, effective way to introduce geology concepts to elementary school children of all ages: "coring" layer cakes. This activity introduces the concepts and challenges that geologists face and at the same time strengthens students' inferential, observational, and problem-solving skills. It also addresses…
ERIC Educational Resources Information Center
Truxal, John G.
1987-01-01
Discusses some of the concepts that are central to the courses offered by the Department of Technology and Society at the State University of New York at Stony Brook. Emphasizes the integration of technology concepts into courses dealing with problem solving, space technology, military technology and environmental studies. (TW)
ERIC Educational Resources Information Center
Blackburn, J. Joey; Robinson, J. Shane
2016-01-01
The purpose of this experimental study was to assess the effects of cognitive style, problem complexity, and hypothesis generation on the problem solving ability of school-based agricultural education students. Problem solving ability was defined as time to solution. Kirton's Adaption-Innovation Inventory was employed to assess students' cognitive…
Using Invention to Change How Students Tackle Problems
Smith, Karen M.; van Stolk, Adrian P.; Spiegelman, George B.
2010-01-01
Invention activities challenge students to tackle problems that superficially appear unrelated to the course material but illustrate underlying fundamental concepts that are fundamental to material that will be presented. During our invention activities in a first-year biology class, students were presented with problems that are parallel to those that living cells must solve, in weekly sessions over a 13-wk term. We compared students who participated in the invention activities sessions with students who participated in sessions of structured problem solving and with students who did not participate in either activity. When faced with developing a solution to a challenging and unfamiliar biology problem, invention activity students were much quicker to engage with the problem and routinely provided multiple reasonable hypotheses. In contrast the other students were significantly slower in beginning to work on the problem and routinely produced relatively few ideas. We suggest that the invention activities develop a highly valuable skill that operates at the initial stages of problem solving. PMID:21123697
Representational task formats and problem solving strategies in kinematics and work
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Rebello, N. Sanjay
2012-06-01
Previous studies have reported that students employed different problem solving approaches when presented with the same task structured with different representations. In this study, we explored and compared students’ strategies as they attempted tasks from two topical areas, kinematics and work. Our participants were 19 engineering students taking a calculus-based physics course. The tasks were presented in linguistic, graphical, and symbolic forms and requested either a qualitative solution or a value. The analysis was both qualitative and quantitative in nature focusing principally on the characteristics of the strategies employed as well as the underlying reasoning for their applications. A comparison was also made for the same student’s approach with the same kind of representation across the two topics. Additionally, the participants’ overall strategies across the different tasks, in each topic, were considered. On the whole, we found that the students prefer manipulating equations irrespective of the representational format of the task. They rarely recognized the applicability of a “qualitative” approach to solve the problem although they were aware of the concepts involved. Even when the students included visual representations in their solutions, they seldom used these representations in conjunction with the mathematical part of the problem. Additionally, the students were not consistent in their approach for interpreting and solving problems with the same kind of representation across the two topical areas. The representational format, level of prior knowledge, and familiarity with a topic appeared to influence their strategies, their written responses, and their ability to recognize qualitative ways to attempt a problem. The nature of the solution does not seem to impact the strategies employed to handle the problem.
Encouraging Sixth-Grade Students' Problem-Solving Performance by Teaching through Problem Solving
ERIC Educational Resources Information Center
Bostic, Jonathan D.; Pape, Stephen J.; Jacobbe, Tim
2016-01-01
This teaching experiment provided students with continuous engagement in a problem-solving based instructional approach during one mathematics unit. Three sections of sixth-grade mathematics were sampled from a school in Florida, U.S.A. and one section was randomly assigned to experience teaching through problem solving. Students' problem-solving…
ERIC Educational Resources Information Center
Karatas, Ilhan; Baki, Adnan
2013-01-01
Problem solving is recognized as an important life skill involving a range of processes including analyzing, interpreting, reasoning, predicting, evaluating and reflecting. For that reason educating students as efficient problem solvers is an important role of mathematics education. Problem solving skill is the centre of mathematics curriculum.…
ERIC Educational Resources Information Center
Knaus, William
1977-01-01
Rational Emotive Education--an outgrowth of theories developed by Albert Ellis--is a teaching design of mental health concepts and problem-solving activities designed to help students to approach and cope with their problems through experiential learning, via a structured, thematic sequence of emotive education lessons. (MJB)
Engaging At-Risk Students with Technology.
ERIC Educational Resources Information Center
Duttweiler, Patricia Cloud
1992-01-01
Educational technology can be used to engage students in interesting activities through which teachers can present skills, concepts, and problems to be solved. At-risk students benefit from the investigation of relevant real world problems and the immediate feedback and privacy that technology affords. (EA)
Effect of case-based learning on the development of graduate nurses' problem-solving ability.
Yoo, Moon-Sook; Park, Jin-Hee
2014-01-01
Case-based learning (CBL) is a teaching strategy which promotes clinical problem-solving ability. This research was performed to investigate the effects of CBL on problem-solving ability of graduate nurses. This research was a quasi-experimental design using pre-test, intervention, and post-test with a non-synchronized, non-equivalent control group. The study population was composed of 190 new graduate nurses from university hospital A in Korea. Results of the research indicate that there was a statistically significant difference in objective problem-solving ability scores of CBL group demonstrating higher scores. Subjective problem-solving ability was also significantly higher in CBL group than in the lecture-based group. These results may suggest that CBL is a beneficial and effective instructional method of training graduate nurses to improve their clinical problem-solving ability. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
Learning Relative Motion Concepts in Immersive and Non-immersive Virtual Environments
NASA Astrophysics Data System (ADS)
Kozhevnikov, Michael; Gurlitt, Johannes; Kozhevnikov, Maria
2013-12-01
The focus of the current study is to understand which unique features of an immersive virtual reality environment have the potential to improve learning relative motion concepts. Thirty-seven undergraduate students learned relative motion concepts using computer simulation either in immersive virtual environment (IVE) or non-immersive desktop virtual environment (DVE) conditions. Our results show that after the simulation activities, both IVE and DVE groups exhibited a significant shift toward a scientific understanding in their conceptual models and epistemological beliefs about the nature of relative motion, and also a significant improvement on relative motion problem-solving tests. In addition, we analyzed students' performance on one-dimensional and two-dimensional questions in the relative motion problem-solving test separately and found that after training in the simulation, the IVE group performed significantly better than the DVE group on solving two-dimensional relative motion problems. We suggest that egocentric encoding of the scene in IVE (where the learner constitutes a part of a scene they are immersed in), as compared to allocentric encoding on a computer screen in DVE (where the learner is looking at the scene from "outside"), is more beneficial than DVE for studying more complex (two-dimensional) relative motion problems. Overall, our findings suggest that such aspects of virtual realities as immersivity, first-hand experience, and the possibility of changing different frames of reference can facilitate understanding abstract scientific phenomena and help in displacing intuitive misconceptions with more accurate mental models.
Wu, Jia-ting; Wang, Jian-qiang; Wang, Jing; Zhang, Hong-yu; Chen, Xiao-hong
2014-01-01
Based on linguistic term sets and hesitant fuzzy sets, the concept of hesitant fuzzy linguistic sets was introduced. The focus of this paper is the multicriteria decision-making (MCDM) problems in which the criteria are in different priority levels and the criteria values take the form of hesitant fuzzy linguistic numbers (HFLNs). A new approach to solving these problems is proposed, which is based on the generalized prioritized aggregation operator of HFLNs. Firstly, the new operations and comparison method for HFLNs are provided and some linguistic scale functions are applied. Subsequently, two prioritized aggregation operators and a generalized prioritized aggregation operator of HFLNs are developed and applied to MCDM problems. Finally, an illustrative example is given to illustrate the effectiveness and feasibility of the proposed method, which are then compared to the existing approach.
NASA Technical Reports Server (NTRS)
Atluri, Satya N.; Shen, Shengping
2002-01-01
In this paper, a very simple method is used to derive the weakly singular traction boundary integral equation based on the integral relationships for displacement gradients. The concept of the MLPG method is employed to solve the integral equations, especially those arising in solid mechanics. A moving Least Squares (MLS) interpolation is selected to approximate the trial functions in this paper. Five boundary integral Solution methods are introduced: direct solution method; displacement boundary-value problem; traction boundary-value problem; mixed boundary-value problem; and boundary variational principle. Based on the local weak form of the BIE, four different nodal-based local test functions are selected, leading to four different MLPG methods for each BIE solution method. These methods combine the advantages of the MLPG method and the boundary element method.
The semantic system is involved in mathematical problem solving.
Zhou, Xinlin; Li, Mengyi; Li, Leinian; Zhang, Yiyun; Cui, Jiaxin; Liu, Jie; Chen, Chuansheng
2018-02-01
Numerous studies have shown that the brain regions around bilateral intraparietal cortex are critical for number processing and arithmetical computation. However, the neural circuits for more advanced mathematics such as mathematical problem solving (with little routine arithmetical computation) remain unclear. Using functional magnetic resonance imaging (fMRI), this study (N = 24 undergraduate students) compared neural bases of mathematical problem solving (i.e., number series completion, mathematical word problem solving, and geometric problem solving) and arithmetical computation. Direct subject- and item-wise comparisons revealed that mathematical problem solving typically had greater activation than arithmetical computation in all 7 regions of the semantic system (which was based on a meta-analysis of 120 functional neuroimaging studies on semantic processing). Arithmetical computation typically had greater activation in the supplementary motor area and left precentral gyrus. The results suggest that the semantic system in the brain supports mathematical problem solving. Copyright © 2017 Elsevier Inc. All rights reserved.
Changing to Concept-Based Curricula: The Process for Nurse Educators
Baron, Kristy A.
2017-01-01
Background: The complexity of health care today requires nursing graduates to use effective thinking skills. Many nursing programs are revising curricula to include concept-based learning that encourages problem-solving, effective thinking, and the ability to transfer knowledge to a variety of situations—requiring nurse educators to modify their teaching styles and methods to promote student-centered learning. Changing from teacher-centered learning to student-centered learning requires a major shift in thinking and application. Objective: The focus of this qualitative study was to understand the process of changing to concept-based curricula for nurse educators who previously taught in traditional curriculum designs. Methods: The sample included eight educators from two institutions in one Western state using a grounded theory design. Results: The themes that emerged from participants’ experiences consisted of the overarching concept, support for change, and central concept, finding meaning in the change. Finding meaning is supported by three main themes: preparing for the change, teaching in a concept-based curriculum, and understanding the teaching-learning process. Conclusion: Changing to a concept-based curriculum required a major shift in thinking and application. Through support, educators discovered meaning to make the change by constructing authentic learning opportunities that mirrored practice, refining the change process, and reinforcing benefits of teaching. PMID:29399236
Differential geometric methods in system theory.
NASA Technical Reports Server (NTRS)
Brockett, R. W.
1971-01-01
Discussion of certain problems in system theory which have been or might be solved using some basic concepts from differential geometry. The problems considered involve differential equations, controllability, optimal control, qualitative behavior, stochastic processes, and bilinear systems. The main goal is to extend the essentials of linear theory to some nonlinear classes of problems.
Teachers Are Designers: Addressing Problems of Practice in Education
ERIC Educational Resources Information Center
Henriksen, Danah; Richardson, Carmen
2017-01-01
Teachers may be confused or put off by buzzwords like "design thinking," but the concept is a useful one: To solve stubborn, everyday problems of practice in schools, they should approach those problems strategically and systematically. Specifically, explain the authors, teachers gain new insights into challenges they face when they take…
How to Teach Programming Indirectly--Using Spreadsheet Application
ERIC Educational Resources Information Center
Tahy, Zsuzsanna Szalayné
2016-01-01
It is a question in many countries whether ICT and application usage should be taught. There are some problems with IT literacy: users do not understand the concepts of a software, they cannot solve problems, and moreover, using applications gives them more problems. Consequently, using ICT seems to slow work down. Experts suggest learning…
The Bobath concept in contemporary clinical practice.
Graham, Julie Vaughan; Eustace, Catherine; Brock, Kim; Swain, Elizabeth; Irwin-Carruthers, Sheena
2009-01-01
Future development in neurorehabilitation depends upon bringing together the endeavors of basic science and clinical practice. The Bobath concept is widely utilized in rehabilitation following stroke and other neurological conditions. This concept was first developed in the 1950s, based on the neuroscience knowledge of those times. The theoretical basis of the Bobath concept is redefined based on contemporary neuroscience and rehabilitation science. The framework utilized in the Bobath concept for the analysis of movement and movement dysfunction is described. This framework focuses on postural control for task performance, the ability to move selectively, the ability to produce coordinated sequences of movement and vary movement patterns to fit a task, and the role of sensory input in motor behaviour and learning. The article describes aspects of clinical practice that differentiate this approach from other models of practice. Contemporary practice in the Bobath concept utilizes a problem-solving approach to the individual's clinical presentation and personal goals. Treatment is focused toward remediation, where possible, and guiding the individual towards efficient movement strategies for task performance. The aim of this article is to provide a theoretical framework on which future research into the Bobath concept can be based.
Janice VanCleave's the Human Body for Every Kid: Easy Activities That Make Learning Science Fun.
ERIC Educational Resources Information Center
VanCleave, Janice
This book provides fun experiments that teach known concepts about the human body. It is designed to teach facts, concepts, and problem-solving strategies. The scientific concepts presented can be applied to many similar situations, and the exercises and activities were selected for their ability to be explained in basic terms with little…
Death and best interests: a response to the legal challenge
Baines, Paul
2010-01-01
In an earlier paper I argued that we do not have an objective conception of best interests and that this is a particular problem because the courts describe that they use an ‘…objective approach or test. That test is the best interests of the patient’ when choosing for children. I further argued that there was no obvious way in which we could hope to develop an objective notion of best interests. As well as this, I argued that a best-interest-based approach was a particular problem around the time of death of some children. A response from a legal perspective argued that, while there is not a clear conception of objective best interests, the courts have a well-described approach to finding a child's objective best interests. In this paper, I argue that without clear agreement on an objective conception of best interests, the courts are unable to locate an objective sense of best interests and that the solutions do not solve the problems that were identified in the initial paper ‘Death and best interests’. PMID:21666740
Use of multilevel modeling for determining optimal parameters of heat supply systems
NASA Astrophysics Data System (ADS)
Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.
2017-07-01
The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in St. Petersburg, the city of Bratsk, and the Magistral'nyi settlement.
The Role of Hellinger Processes in Mathematical Finance
NASA Astrophysics Data System (ADS)
Choulli, T.; Hurd, T. R.
2001-09-01
This paper illustrates the natural role that Hellinger processes can play in solving problems from ¯nance. We propose an extension of the concept of Hellinger process applicable to entropy distance and f-divergence distances, where f is a convex logarithmic function or a convex power function with general order q, 0 6= q < 1. These concepts lead to a new approach to Merton's optimal portfolio problem and its dual in general L¶evy markets.
Boundary value problems with incremental plasticity in granular media
NASA Technical Reports Server (NTRS)
Chung, T. J.; Lee, J. K.; Costes, N. C.
1974-01-01
Discussion of the critical state concept in terms of an incremental theory of plasticity in granular (soil) media, and formulation of the governing equations which are convenient for a computational scheme using the finite element method. It is shown that the critical state concept with its representation by the classical incremental theory of plasticity can provide a powerful means for solving a wide variety of boundary value problems in soil media.
Table-sized matrix model in fractional learning
NASA Astrophysics Data System (ADS)
Soebagyo, J.; Wahyudin; Mulyaning, E. C.
2018-05-01
This article provides an explanation of the fractional learning model i.e. a Table-Sized Matrix model in which fractional representation and its operations are symbolized by the matrix. The Table-Sized Matrix are employed to develop problem solving capabilities as well as the area model. The Table-Sized Matrix model referred to in this article is used to develop an understanding of the fractional concept to elementary school students which can then be generalized into procedural fluency (algorithm) in solving the fractional problem and its operation.
Nonlinearity measure and internal model control based linearization in anti-windup design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perev, Kamen
2013-12-18
This paper considers the problem of internal model control based linearization in anti-windup design. The nonlinearity measure concept is used for quantifying the control system degree of nonlinearity. The linearizing effect of a modified internal model control structure is presented by comparing the nonlinearity measures of the open-loop and closed-loop systems. It is shown that the linearization properties are improved by increasing the control system local feedback gain. However, it is emphasized that at the same time the stability of the system deteriorates. The conflicting goals of stability and linearization are resolved by solving the design problem in different frequencymore » ranges.« less
Problem solving strategies used by RN-to-BSN students in an online problem-based learning course.
Oldenburg, Nancy L; Hung, Wei-Chen
2010-04-01
It is essential that nursing students develop the problem solving and critical thinking skills required in the current health care environment. Problem-based learning has been promoted as a way to help students acquire those skills; however, gaps exist in the knowledge base of the strategies used by learners. The purpose of this case study was to gain insight into the problem solving experience of a group of six RN-to-BSN students in an online problem-based learning course. Data, including discussion transcripts, reflective papers, and interview transcripts, were analyzed using a qualitative approach. Students expanded their use of resources and resolved the cases, identifying relevant facts and clinical applications. They had difficulty communicating their findings, establishing the credibility of sources, and offering challenging feedback. Increased support and direction are needed to facilitate the development of problem solving abilities of students in the problem-based learning environment.
A Descriptive Study of a Building-Based Team Problem-Solving Process
ERIC Educational Resources Information Center
Brewer, Alexander B.
2010-01-01
The purpose of this study was to empirically evaluate Building-Based Teams for General Education Intervention or BBT for GEI. BBT for GEI is a team problem-solving process designed to assist schools in conducting research-based interventions in the general education setting. Problem-solving teams are part of general education and provide support…
ERIC Educational Resources Information Center
Korucu, Agâh Tugrul; Cakir, Hasan
2018-01-01
Some of the 21st century proficiencies expected from people are determined as collaborative working and problem solving. One way to gain these proficiencies is by using collaborative problem solving based on social constructivism theory. Collaborative problem solving is one of the methods allowing for social constructivism in the class. In…
ERIC Educational Resources Information Center
Kiliç, Çigdem
2017-01-01
This study examined pre-service primary school teachers' performance in posing problems that require knowledge of problem-solving strategies. Quantitative and qualitative methods were combined. The 120 participants were asked to pose a problem that could be solved by using the find-a-pattern a particular problem-solving strategy. After that,…
NASA Astrophysics Data System (ADS)
Tayebi, A.; Shekari, Y.; Heydari, M. H.
2017-07-01
Several physical phenomena such as transformation of pollutants, energy, particles and many others can be described by the well-known convection-diffusion equation which is a combination of the diffusion and advection equations. In this paper, this equation is generalized with the concept of variable-order fractional derivatives. The generalized equation is called variable-order time fractional advection-diffusion equation (V-OTFA-DE). An accurate and robust meshless method based on the moving least squares (MLS) approximation and the finite difference scheme is proposed for its numerical solution on two-dimensional (2-D) arbitrary domains. In the time domain, the finite difference technique with a θ-weighted scheme and in the space domain, the MLS approximation are employed to obtain appropriate semi-discrete solutions. Since the newly developed method is a meshless approach, it does not require any background mesh structure to obtain semi-discrete solutions of the problem under consideration, and the numerical solutions are constructed entirely based on a set of scattered nodes. The proposed method is validated in solving three different examples including two benchmark problems and an applied problem of pollutant distribution in the atmosphere. In all such cases, the obtained results show that the proposed method is very accurate and robust. Moreover, a remarkable property so-called positive scheme for the proposed method is observed in solving concentration transport phenomena.
The effect of multiple internal representations on context-rich instruction
NASA Astrophysics Data System (ADS)
Lasry, Nathaniel; Aulls, Mark W.
2007-11-01
We discuss n-coding, a theoretical model of multiple internal mental representations. The n-coding construct is developed from a review of cognitive and imaging data that demonstrates the independence of information processed along different modalities such as verbal, visual, kinesthetic, logico-mathematic, and social modalities. A study testing the effectiveness of the n-coding construct in classrooms is presented. Four sections differing in the level of n-coding opportunities were compared. Besides a traditional-instruction section used as a control group, each of the remaining three sections were given context-rich problems, which differed by the level of n-coding opportunities designed into their laboratory environment. To measure the effectiveness of the construct, problem-solving skills were assessed as conceptual learning using the force concept inventory. We also developed several new measures that take students' confidence in concepts into account. Our results show that the n-coding construct is useful in designing context-rich environments and can be used to increase learning gains in problem solving, conceptual knowledge, and concept confidence. Specifically, when using props in designing context-rich problems, we find n-coding to be a useful construct in guiding which additional dimensions need to be attended to.
NASA Astrophysics Data System (ADS)
Grafarend, E. W.; Heck, B.; Knickmeyer, E. H.
1985-03-01
Various formulations of the geodetic fixed and free boundary value problem are presented, depending upon the type of boundary data. For the free problem, boundary data of type astronomical latitude, astronomical longitude and a pair of the triplet potential, zero and first-order vertical gradient of gravity are presupposed. For the fixed problem, either the potential or gravity or the vertical gradient of gravity is assumed to be given on the boundary. The potential and its derivatives on the boundary surface are linearized with respect to a reference potential and a reference surface by Taylor expansion. The Eulerian and Lagrangean concepts of a perturbation theory of the nonlinear geodetic boundary value problem are reviewed. Finally the boundary value problems are solved by Hilbert space techniques leading to new generalized Stokes and Hotine functions. Reduced Stokes and Hotine functions are recommended for numerical reasons. For the case of a boundary surface representing the topography a base representation of the solution is achieved by solving an infinite dimensional system of equations. This system of equations is obtained by means of the product-sum-formula for scalar surface spherical harmonics with Wigner 3j-coefficients.
A four stage approach for ontology-based health information system design.
Kuziemsky, Craig E; Lau, Francis
2010-11-01
To describe and illustrate a four stage methodological approach to capture user knowledge in a biomedical domain area, use that knowledge to design an ontology, and then implement and evaluate the ontology as a health information system (HIS). A hybrid participatory design-grounded theory (GT-PD) method was used to obtain data and code them for ontology development. Prototyping was used to implement the ontology as a computer-based tool. Usability testing evaluated the computer-based tool. An empirically derived domain ontology and set of three problem-solving approaches were developed as a formalized model of the concepts and categories from the GT coding. The ontology and problem-solving approaches were used to design and implement a HIS that tested favorably in usability testing. The four stage approach illustrated in this paper is useful for designing and implementing an ontology as the basis for a HIS. The approach extends existing ontology development methodologies by providing an empirical basis for theory incorporated into ontology design. Copyright © 2010 Elsevier B.V. All rights reserved.
Epistemological Obstacles on the Topic of Ratio and Proportion among Junior High School Students
NASA Astrophysics Data System (ADS)
Wahyuningrum, A. S.; Suryadi, D.; Turmudi
2017-09-01
This study intends to investigate how students’ understanding of ratio and proportion concept indicates epistemological obstacles. It was part of Didactical Design Research which was conducted to 72 students of 8th grade who ever learned about ratio and proportion. Data were collected through the students’ answers and interview in solving ratio and proportion problems. The results show that students’ conception, the ways of applying other mathematical concepts, the ways of using the rules, and variety of contexts are factors influencing epistemological obstacles in teaching and learning of ratio and proportion. These conditions can affect the students’ understanding o f related mathematics topics. Based on analysis of the results, this study is expected to overcome or minimize the epistemological obstacles.
Facilitating Case Reuse during Problem Solving in Algebra-Based Physics
ERIC Educational Resources Information Center
Mateycik, Frances Ann
2010-01-01
This research project investigates students' development of problem solving schemata while using strategies that facilitate the process of using solved examples to assist with a new problem (case reuse). Focus group learning interviews were used to explore students' perceptions and understanding of several problem solving strategies. Individual…
Solving Complex Problems: A Convergent Approach to Cognitive Load Measurement
ERIC Educational Resources Information Center
Zheng, Robert; Cook, Anne
2012-01-01
The study challenged the current practices in cognitive load measurement involving complex problem solving by manipulating the presence of pictures in multiple rule-based problem-solving situations and examining the cognitive load resulting from both off-line and online measures associated with complex problem solving. Forty-eight participants…
ERIC Educational Resources Information Center
Kelly, Ronald R.
2003-01-01
Presents "Project Solve," a web-based problem-solving instruction and guided practice for mathematical word problems. Discusses implications for college students for whom reading and comprehension of mathematical word problem solving are difficult, especially learning disabled students. (Author/KHR)
Theoretical model to explain the problem-solving process in physics
NASA Astrophysics Data System (ADS)
Lopez, Carlos
2011-03-01
This work reports a theoretical model developed with the aim to explain the mental mechanisms of knowledge building during the problem-solving process in physics using a hybrid approach of assimilation- formation of concepts. The model has been termed conceptual chains and represents graphic diagrams of conceptual dependency, which have yielded information about the background knowledge required during the learning process, as well as about the formation of diverse structures that correspond to distinct forms of networking concepts Additionally, the conceptual constructs of the model have been classified according to five types of knowledge. Evidence was found about the influence of these structures, as well as of the distinct types of knowledge about the degree of difficulty of the problems. I want to be grateful to Laureate International Universities, Baltimore M.D., USA, for the financing granted for the accomplishment of this work.
Minimizing the Free Energy: A Computer Method for Teaching Chemical Equilibrium Concepts.
ERIC Educational Resources Information Center
Heald, Emerson F.
1978-01-01
Presents a computer method for teaching chemical equilibrium concepts using material balance conditions and the minimization of the free energy. Method for the calculation of chemical equilibrium, the computer program used to solve equilibrium problems and applications of the method are also included. (HM)
Rekindling Scientific Curiosity.
ERIC Educational Resources Information Center
Coble, Charles R.; Rice, Dale R.
1983-01-01
Active involvement in society-related issues can elevate junior high school students' interest not only in the problem being solved but also in related scientific concepts. Examples of how scientific concepts and society-related issues can be taught in the same class are presented, focusing on genetic engineering, water shortage, and others.…