Sample records for conceptual design includes

  1. Conceptual design of an in-space cryogenic fluid management facility, executive summary

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.

  2. Results from conceptual design study of potential early commercial MHD/steam power plants

    NASA Technical Reports Server (NTRS)

    Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.

    1981-01-01

    This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.

  3. FAST FLUX TEST FACILITY CONCEPTUAL FACILTY DESIGN DESCRIPTION FOR THE INERT GAS CELL EXAMINATION FACILITY NO. 71

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1968-12-12

    The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.

  4. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  5. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  6. Structural Analysis in a Conceptual Design Framework

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.

    2012-01-01

    Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.

  7. Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps

    ERIC Educational Resources Information Center

    Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa

    2013-01-01

    Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…

  8. CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY

    EPA Science Inventory

    The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...

  9. Conceptual designs study for a Personnel Launch System (PLS)

    NASA Technical Reports Server (NTRS)

    Wetzel, E. D.

    1990-01-01

    A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.

  10. AI applications to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Chalfan, Kathryn M.

    1990-01-01

    This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.

  11. Enabling Rapid and Robust Structural Analysis During Conceptual Design

    NASA Technical Reports Server (NTRS)

    Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu

    2015-01-01

    This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.

  12. The design of two sonic boom wind tunnel models from conceptual aircraft which cruise at Mach numbers of 2.0 and 3.0

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1990-01-01

    A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.

  13. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.

  14. Shuttle mission simulator software conceptual design

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.

  15. Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.

    2016-01-01

    The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.

  16. Conceptual Design of an In-Space Cryogenic Fluid Management Facility

    NASA Technical Reports Server (NTRS)

    Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.

    1981-01-01

    The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.

  17. Handling Qualities Optimization for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Lawrence, Ben; Theodore, Colin R.; Berger, Tom

    2016-01-01

    Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.

  18. Conceptual design of flapping-wing micro air vehicles.

    PubMed

    Whitney, J P; Wood, R J

    2012-09-01

    Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.

  19. Optomechanical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In

    2016-08-01

    We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.

  20. Conceptual design and issues of the laser inertial fusion test (LIFT) reactor—targets and chamber systems

    NASA Astrophysics Data System (ADS)

    Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team

    2017-11-01

    We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.

  1. Space station System Engineering and Integration (SE and I). Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A summary of significant study results that are products of the Phase B conceptual design task are contained. Major elements are addressed. Study results applicable to each major element or area of design are summarized and included where appropriate. Areas addressed include: system engineering and integration; customer accommodations; test and program verification; product assurance; conceptual design; operations and planning; technical and management information system (TMIS); and advanced development.

  2. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  3. The methodology of database design in organization management systems

    NASA Astrophysics Data System (ADS)

    Chudinov, I. L.; Osipova, V. V.; Bobrova, Y. V.

    2017-01-01

    The paper describes the unified methodology of database design for management information systems. Designing the conceptual information model for the domain area is the most important and labor-intensive stage in database design. Basing on the proposed integrated approach to design, the conceptual information model, the main principles of developing the relation databases are provided and user’s information needs are considered. According to the methodology, the process of designing the conceptual information model includes three basic stages, which are defined in detail. Finally, the article describes the process of performing the results of analyzing user’s information needs and the rationale for use of classifiers.

  4. Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.

  5. Enhanced capabilities and modified users manual for axial-flow compressor conceptual design code CSPAN

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Lavelle, Thomas M.

    1995-01-01

    Modifications made to the axial-flow compressor conceptual design code CSPAN are documented in this report. Endwall blockage and stall margin predictions were added. The loss-coefficient model was upgraded. Default correlations for rotor and stator solidity and aspect-ratio inputs and for stator-exit tangential velocity inputs were included in the code along with defaults for aerodynamic design limits. A complete description of input and output along with sample cases are included.

  6. Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2

    NASA Technical Reports Server (NTRS)

    Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott; hide

    2010-01-01

    This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,

  7. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.

    1992-01-01

    The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.

  8. Planning for a data base system to support satellite conceptual design

    NASA Technical Reports Server (NTRS)

    Claydon, C. R.

    1976-01-01

    The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.

  9. Conceptual design study of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    Knight, R. G.; Powell, W. V., Jr.; Prizlow, J. A.

    1973-01-01

    Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluation was also studied on the basis of direct-operating costs and route structure.

  10. Conceptual design of a V/STOL lift fan commercial short haul transport

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Conceptual designs of V/STOL lift-fan commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. Engine concepts studied included both integral remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance noise, and ride qualities evaluation. Economic evaluation was also studied on a basis of direct operating cost and route structure.

  11. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response and Actuator Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason; Crouse, Gilbert L., Jr.

    2014-01-01

    Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.

  12. High Energy Astronomy Observatory, Mission C, Phase A. Volume 2: Preliminary analyses and conceptual design

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.

  13. Innovating Method of Existing Mechanical Product Based on TRIZ Theory

    NASA Astrophysics Data System (ADS)

    Zhao, Cunyou; Shi, Dongyan; Wu, Han

    Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.

  14. Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft

    NASA Technical Reports Server (NTRS)

    Fabisinski, Leo L., III; Maples, Charlotte Dauphne

    2010-01-01

    Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.

  15. PEP solar array definition study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The conceptual design of a large, flexible, lightweight solar array is presented focusing on a solar array overview assessment, solar array blanket definition, structural-mechanical systems definition, and launch/reentry blanket protection features. The overview assessment includes a requirements and constraints review, the thermal environment assessment on the design selection, an evaluation of blanket integration sequence, a conceptual blanket/harness design, and a hot spot analysis considering the effects of shadowing and cell failures on overall array reliability. The solar array blanket definition includes the substrate design, hinge designs and blanket/harness flexibility assessment. The structural/mechanical systems definition includes an overall loads and deflection assessment, a frequency analysis of the deployed assembly, a components weights estimate, design of the blanket housing and tensioning mechanism. The launch/reentry blanket protection task includes assessment of solar cell/cover glass cushioning concepts during ascent and reentry flight condition.

  16. Conceptual design study of a 1985 commercial STOL tilt rotor transport

    NASA Technical Reports Server (NTRS)

    Widdison, C. A.; Magee, J. P.; Alexander, H. R.

    1974-01-01

    Results of conceptual engineering design studies of a STOL tilt rotor commercial aircraft for the 1985 time frame are presented. The details of aircraft size, performance, flying qualities, noise, and cost are included. The savings in terms of fuel economy resulting from STOL operations compared with VTOL vehicles are determined.

  17. Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): Conceptual Design Report. Volume 3: Long-Baseline Neutrino Facility for DUNE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strait, James; McCluskey, Elaine; Lundin, Tracy

    2016-01-21

    This volume of the LBNF/DUNE Conceptual Design Report covers the Long-Baseline Neutrino Facility for DUNE and describes the LBNF Project, which includes design and construction of the beamline at Fermilab, the conventional facilities at both Fermilab and SURF, and the cryostat and cryogenics infrastructure required for the DUNE far detector.

  18. Conceptual design of the MHD Engineering Test Facility

    NASA Technical Reports Server (NTRS)

    Bents, D. J.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Rigo, H. S.; Pearson, C. V.; Warinner, D. K.; Hatch, A. M.; Borden, M.; Giza, D. A.

    1981-01-01

    The reference conceptual design of the MHD engineering test facility, a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commerical feasibility of open cycle MHD is summarized. Main elements of the design are identified and explained, and the rationale behind them is reviewed. Major systems and plant facilities are listed and discussed. Construction cost and schedule estimates are included and the engineering issues that should be reexamined are identified.

  19. Conceptual design considerations and neutronics of lithium fall laser fusion target chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Thomson, W.B.

    1978-05-31

    Atomics International and Lawrence Livermore Laboratory are involved in the conceptual design of a laser fusion power plant incorporating the lithium fall target chamber. In this paper we discuss some of the more important design considerations for the target chamber and evaluate its nuclear performance. Sizing and configuration of the fall, hydraulic effects, and mechanical design considerations are addressed. The nuclear aspects examined include tritium breeding, energy deposition, and radiation damage.

  20. Conceptual design studies of candidate V/STOL lift fan commercial short haul transport for 1980 - 1985 V/STOL lift fan study

    NASA Technical Reports Server (NTRS)

    Eldridge, W. M.; Ferrell, J. A.; Mckee, J. W.; Wayne, J. E., Jr.; Zabinsky, J. M.

    1973-01-01

    Conceptual designs of V/STOL lift fan commercial short haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The engine concepts included both integral and remote fans. The scope of the study included definition of the hover control concept for each propulsion system, aircraft design, aircraft mass properties, cruise performance, noise and ride qualities evaluation. Economic evaluating was also studied on a basis of direct operating costs and route structure.

  1. MASCOT - MATLAB Stability and Control Toolbox

    NASA Technical Reports Server (NTRS)

    Kenny, Sean; Crespo, Luis

    2011-01-01

    MASCOT software was created to provide the conceptual aircraft designer accurate predictions of air vehicle stability and control characteristics. The code takes as input mass property data in the form of an inertia tensor, aerodynamic loading data, and propulsion (i.e. thrust) loading data. Using fundamental non-linear equations of motion, MASCOT then calculates vehicle trim and static stability data for any desired flight condition. Common predefined flight conditions are included. The predefined flight conditions include six horizontal and six landing rotation conditions with varying options for engine out, crosswind and sideslip, plus three takeoff rotation conditions. Results are displayed through a unique graphical interface developed to provide stability and control information to the conceptual design engineers using a qualitative scale indicating whether the vehicle has acceptable, marginal, or unacceptable static stability characteristics. This software allows the user to prescribe the vehicle s CG location, mass, and inertia tensor so that any loading configuration between empty weight and maximum take-off weight can be analyzed. The required geometric and aerodynamic data as well as mass and inertia properties may be entered directly, passed through data files, or come from external programs such as Vehicle Sketch Pad (VSP). The current version of MASCOT has been tested with VSP used to compute the required data, which is then passed directly into the program. In VSP, the vehicle geometry is created and manipulated. The aerodynamic coefficients, stability and control derivatives, are calculated using VorLax, which is now available directly within VSP. MASCOT has been written exclusively using the technical computing language MATLAB . This innovation is able to bridge the gap between low-fidelity conceptual design and higher-fidelity stability and control analysis. This new tool enables the conceptual design engineer to include detailed static stability and trim constraints in the conceptual design loop. The unique graphical interface developed for this tool presents the stability data in a format that is understandable by the conceptual designer, yet also provides the detailed quantitative results if desired.

  2. Conceptual design for a lunar-base CELSS

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Cullingford, Hatice S.

    1990-01-01

    Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.

  3. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  4. Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 1

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Alexander, H. R.

    1974-01-01

    Results of conceptual design studies of commercial rotary wing transport aircraft for the 1985 time period are presented. Two aircraft configurations, a tandem helicopter and a tilt rotor, were designed for a 200 nautical mile short haul mission with an upper limit of 100 passengers. In addition to the baseline aircraft two further designs of each configuration are included to assess the impact of external noise design criteria on the aircraft size, weight, and cost.

  5. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant Conceptual Design Engineering Report (CDER)

    NASA Astrophysics Data System (ADS)

    1981-09-01

    The reference conceptual design of the magnetohydrodynamic (MHD) Engineering Test Facility (ETF), a prototype 200 MWe coal-fired electric generating plant designed to demonstrate the commercial feasibility of open cycle MHD, is summarized. Main elements of the design, systems, and plant facilities are illustrated. System design descriptions are included for closed cycle cooling water, industrial gas systems, fuel oil, boiler flue gas, coal management, seed management, slag management, plant industrial waste, fire service water, oxidant supply, MHD power ventilating

  6. Research on conceptual/innovative design for the life cycle

    NASA Technical Reports Server (NTRS)

    Cagan, Jonathan; Agogino, Alice M.

    1990-01-01

    The goal of this research is developing and integrating qualitative and quantitative methods for life cycle design. The definition of the problem includes formal computer-based methods limited to final detailing stages of design; CAD data bases do not capture design intent or design history; and life cycle issues were ignored during early stages of design. Viewgraphs outline research in conceptual design; the SYMON (SYmbolic MONotonicity analyzer) algorithm; multistart vector quantization optimization algorithm; intelligent manufacturing: IDES - Influence Diagram Architecture; and 1st PRINCE (FIRST PRINciple Computational Evaluator).

  7. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  8. Air Brayton Solar Receiver, phase 1

    NASA Technical Reports Server (NTRS)

    Zimmerman, D. K.

    1979-01-01

    A six month analysis and conceptual design study of an open cycle Air Brayton Solar Receiver (ABSR) for use on a tracking, parabolic solar concentrator are discussed. The ABSR, which includes a buffer storage system, is designed to provide inlet air to a power conversion unit. Parametric analyses, conceptual design, interface requirements, and production cost estimates are described. The design features were optimized to yield a zero maintenance, low cost, high efficiency concept that will provide a 30 year operational life.

  9. Spent nuclear fuel canister storage building conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swenson, C.E.

    This Conceptual Design Report provides the technical basis for the Spent Nuclear Fuels Project, Canister Storage Building, and as amended by letter (correspondence number 9555700, M.E. Witherspoon to E.B. Sellers, ``Technical Baseline and Updated Cost Estimate for the Canister Storage Building``, dated October 24, 1995), includes the project cost baseline and Criteria to be used as the basis for starting detailed design in fiscal year 1995.

  10. Energy storage flywheel housing design concept development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coppa, A.P.

    1982-03-12

    A low cost vehicular flywheel housing conceptual design has been obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheetmore » metal components for automotive vehicles provided the following budgetary quotations for steel housings, including hardened steel containment rings, based on the conceptual design: housing for 15 in. OD, 0.25 kw. hr. rotor: $50; and housing for 18 in. OD, 0.25 kw. hr. rotor: $58. These prices are based on a production rate of 10/sup 6/ units per year and include tooling. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.« less

  11. An advanced technology space station for the year 2025, study and concepts

    NASA Technical Reports Server (NTRS)

    Queijo, M. J.; Butterfield, A. J.; Cuddihy, W. F.; King, C. B.; Garn, P. A.

    1987-01-01

    A survey was made of potential space station missions that might exist in the 2020 to 2030 time period. Also, a brief study of the current state-of-the-art of the major subsystems was undertaken, and trends in technologies that could impact the subsystems were reviewed. The results of the survey and study were then used to arrive at a conceptual design of a space station for the year 2025. Factors addressed in the conceptual design included requirements for artificial gravity, synergies between subsystems, and the use of robotics. Suggestions are made relative to more in-depth studies concerning the conceptual design and alternative configurations.

  12. System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO

    NASA Technical Reports Server (NTRS)

    Olds, John R.

    1994-01-01

    This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.

  13. Wide area detection system: Conceptual design study. [using television and microelectronic technology

    NASA Technical Reports Server (NTRS)

    Hilbert, E. E.; Carl, C.; Goss, W.; Hansen, G. R.; Olsasky, M. J.; Johnston, A. R.

    1978-01-01

    An integrated sensor for traffic surveillance on mainline sections of urban freeways is described. Applicable imaging and processor technology is surveyed and the functional requirements for the sensors and the conceptual design of the breadboard sensors are given. Parameters measured by the sensors include lane density, speed, and volume. The freeway image is also used for incident diagnosis.

  14. Earth radiation budget measurement from a spinning satellite: Conceptual design of detectors

    NASA Technical Reports Server (NTRS)

    Sromovsky, L. A.; Revercomb, H. E.; Suomi, V. E.

    1975-01-01

    The conceptual design, sensor characteristics, sensor performance and accuracy, and spacecraft and orbital requirements for a spinning wide-field-of-view earth energy budget detector were investigated. The scientific requirements for measurement of the earth's radiative energy budget are presented. Other topics discussed include the observing system concept, solar constant radiometer design, plane flux wide FOV sensor design, fast active cavity theory, fast active cavity design and error analysis, thermopile detectors as an alternative, pre-flight and in-flight calibration plane, system error summary, and interface requirements.

  15. Interactive Design and the Mythical "Intuitive User Interface."

    ERIC Educational Resources Information Center

    Bielenberg, Daniel R.

    1993-01-01

    Discusses the design of graphical user interfaces. Highlights include conceptual models, including user needs, content, and what multimedia can do; and tools for building the users' mental models, including metaphor, natural mappings, prompts, feedback, and user testing. (LRW)

  16. Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor

    NASA Astrophysics Data System (ADS)

    Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos

    2017-10-01

    A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.

  17. Developing a comprehensive conceptual arhictecture to support Earth sciences

    NASA Astrophysics Data System (ADS)

    Yang, C. P.; Xu, C.; Sun, M.; Li, Z.

    2014-12-01

    Global challenges require the comprehensive understanding of the earth system to make smarter descisions about scientific research, operational management, and educational activities. We conducted in the one and half year a comprehensive investigation about how to develop a comprehensive conceptual architecture for developing a cyberinfrastructure that can help address such global challenges. This includes three aspects of research and outreach: we first analyzed the conceptual architecture requirements from the earth science domains and the exisiting global and national systems from different agencies and organizations to consolidate a list of requirements from scientific, technological, and educational aspects. A conceptual design by considering these reqquirements and the latest development in enterprise arhictecture was conducted based on our past decade's investigation about cyberinfrastructure architecture for supporting different aspects. We also organized several levels of reviews by different levels of experts from different organizations and background to help us comment the completeness, reasonability, and practicality of the design. A comprehensive conceptual design will be released for public comments this spring to solicit the general comments for reaching a design as comprehensive as possible. The final design is scheduled to be published in 2015 to contribute to the general world wide scientists and CI builders in the geoscience domain and beyond.

  18. Concurrent engineering design and management knowledge capture

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The topics are presented in viewgraph form and include the following: real-time management, personnel management, project management, conceptual design and decision making; the SITRF design problem; and the electronic-design notebook.

  19. Conceptual design studies of lift/cruise fans for military transports

    NASA Technical Reports Server (NTRS)

    1974-01-01

    A study program for conceptual design studies of remote lift and lift/cruise fan systems to meet the requirements of military V/STOL aircraft was conducted. Parametric performance and design data are presented for fans covering a range of pressure ratios, including both single and two stage fan concepts. The gas generator selected for these fan systems was the J101-GE-100 engine. Noise generation and transient response were determined for selected fan systems.

  20. Conceptual Design of a Space-Based Multimegawatt MHD Power System, Task 1 Topical Report; Volume 1: Technical Discussion

    DTIC Science & Technology

    1988-01-01

    system requirements, design guidelines, and interface requirements has been prepared and included as Volume II of this Task 1 topical report. The Volume ...WAESD-TR-88-0002 Conceptual Design Of A Space-Based Multimegawatt MHD Power System ffA«kjjjjjTfc Task 1 Topical Report Volume I: Technical...Space-Based Multimegawatt MHD Power System: Task 1 Topical Report, Volume I: Technical Discussion Personal Author: Dana, RA. Corporate Author Or

  1. Issues and Design Drivers for Deep Space Habitats

    NASA Technical Reports Server (NTRS)

    Rucker, Michelle A.; Anderson, Molly

    2012-01-01

    A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.

  2. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  3. AFB/open cycle gas turbine conceptual design study

    NASA Astrophysics Data System (ADS)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  4. Defining and Building an Enriched Learning and Information Environment.

    ERIC Educational Resources Information Center

    Goodrum, David A.; And Others

    1993-01-01

    Discusses the development of an Enriched Learning and Information Environment (ELIE). Highlights include technology-based and theory-based frameworks for defining ELIEs; a socio-technical definition; a conceptual prototype; a participatory design process, including iterative design through rapid prototyping; and design issues for technology…

  5. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Astrophysics Data System (ADS)

    Hals, F. A.

    1981-03-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  6. Application of Recommended Design Practices for Conceptual Nuclear Fusion Space Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.

    2004-01-01

    An AIAA Special Project Report was recently produced by AIAA's Nuclear and Future Flight Propulsion Technical Committee and is currently in peer review. The Report provides recommended design practices for conceptual engineering studies of nuclear fusion space propulsion systems. Discussion and recommendations are made on key topics including design reference missions, degree of technological extrapolation and concomitant risk, thoroughness in calculating mass properties (nominal mass properties, weight-growth contingency and propellant margins, and specific impulse), and thoroughness in calculating power generation and usage (power-flow, power contingencies, specific power). The report represents a general consensus of the nuclear fusion space propulsion system conceptual design community and proposes 15 recommendations. This paper expands on the Report by providing specific examples illustrating how to apply each of the recommendations.

  7. Conceptual design study of potential early commercial MHD powerplant. Report of task 2 results

    NASA Technical Reports Server (NTRS)

    Hals, F. A.

    1981-01-01

    The conceptual design of one of the potential early commercial MHD power plants was studied. The plant employs oxygen enrichment of the combustion air and preheating of this oxygen enriched air to an intermediate temperature of 1200 F attainable with a tubular type recuperative heat exchanger. Conceptual designs of plant componets and equipment with performance, operational characteristics, and costs are reported. Plant economics and overall performance including full and part load operation are reviewed. The projected performance and estimated cost of this early MHD plant are compared to conventional power plants, although it does not offer the same high efficiency and low costs as the mature MHD power plant. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen are reviewed.

  8. ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft

    NASA Technical Reports Server (NTRS)

    Jayaram, S.; Myklebust, A.; Gelhausen, P.

    1992-01-01

    A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.

  9. Conceptual design of a piloted Mars sprint life support system

    NASA Technical Reports Server (NTRS)

    Cullingford, H. S.; Novara, M.

    1988-01-01

    This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.

  10. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey

    2009-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  11. Rotorcraft Conceptual Design Environment

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne; Sinsay, Jeffrey D.

    2010-01-01

    Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.

  12. A Conceptual Design for a Reliable Optical Bus (ROBUS)

    NASA Technical Reports Server (NTRS)

    Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo

    2002-01-01

    The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.

  13. Conceptual Design Optimization of an Augmented Stability Aircraft Incorporating Dynamic Response Performance Constraints

    NASA Technical Reports Server (NTRS)

    Welstead, Jason

    2014-01-01

    This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.

  14. Systems engineering aspects of a preliminary conceptual design of the space station environmental control and life support system

    NASA Technical Reports Server (NTRS)

    Lin, C. H.; Meyer, M. S.

    1983-01-01

    The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.

  15. Multidisciplinary Conceptual Design for Reduced-Emission Rotorcraft

    NASA Technical Reports Server (NTRS)

    Silva, Christopher; Johnson, Wayne; Solis, Eduardo

    2018-01-01

    Python-based wrappers for OpenMDAO are used to integrate disparate software for practical conceptual design of rotorcraft. The suite of tools which are connected thus far include aircraft sizing, comprehensive analysis, and parametric geometry. The tools are exercised to design aircraft with aggressive goals for emission reductions relative to fielded state-of-the-art rotorcraft. Several advanced reduced-emission rotorcraft are designed and analyzed, demonstrating the flexibility of the tools to consider a wide variety of potentially transformative vertical flight vehicles. To explore scale effects, aircraft have been sized for 5, 24, or 76 passengers in their design missions. Aircraft types evaluated include tiltrotor, single-main-rotor, coaxial, and side-by-side helicopters. Energy and drive systems modeled include Lithium-ion battery, hydrogen fuel cell, turboelectric hybrid, and turboshaft drive systems. Observations include the complex nature of the trade space for this simple problem, with many potential aircraft design and operational solutions for achieving significant emission reductions. Also interesting is that achieving greatly reduced emissions may not require exotic component technologies, but may be achieved with a dedicated design objective of reducing emissions.

  16. Geometric modeling for computer aided design

    NASA Technical Reports Server (NTRS)

    Schwing, James L.; Olariu, Stephen

    1995-01-01

    The primary goal of this grant has been the design and implementation of software to be used in the conceptual design of aerospace vehicles particularly focused on the elements of geometric design, graphical user interfaces, and the interaction of the multitude of software typically used in this engineering environment. This has resulted in the development of several analysis packages and design studies. These include two major software systems currently used in the conceptual level design of aerospace vehicles. These tools are SMART, the Solid Modeling Aerospace Research Tool, and EASIE, the Environment for Software Integration and Execution. Additional software tools were designed and implemented to address the needs of the engineer working in the conceptual design environment. SMART provides conceptual designers with a rapid prototyping capability and several engineering analysis capabilities. In addition, SMART has a carefully engineered user interface that makes it easy to learn and use. Finally, a number of specialty characteristics have been built into SMART which allow it to be used efficiently as a front end geometry processor for other analysis packages. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand-alone, analysis codes. Resulting in a streamlining of the exchange of data between programs reducing errors and improving the efficiency. EASIE provides both a methodology and a collection of software tools to ease the task of coordinating engineering design and analysis codes.

  17. Purpose and Pedagogy: A Conceptual Model for an ePortfolio

    ERIC Educational Resources Information Center

    Buyarski, Catherine A.; Aaron, Robert W.; Hansen, Michele J.; Hollingsworth, Cynthia D.; Johnson, Charles A.; Kahn, Susan; Landis, Cynthia M.; Pedersen, Joan S.; Powell, Amy A.

    2015-01-01

    This conceptual model emerged from the need to balance multiple purposes and perspectives associated with developing an ePortfolio designed to promote student development and success. A comprehensive review of literature from various disciplines, theoretical frameworks, and scholarship, including self-authorship, reflection, ePortfolio pedagogy,…

  18. Summary of Lift and Lift/Cruise Fan Powered Lift Concept Technology

    NASA Technical Reports Server (NTRS)

    Cook, Woodrow L.

    1993-01-01

    A summary is presented of some of the lift and lift/cruise fan technology including fan performance, fan stall, ground effects, ingestion and thrust loss, design tradeoffs and integration, control effectiveness and several other areas related to vertical short takeoff and landing (V/STOL) aircraft conceptual design. The various subjects addressed, while not necessarily pertinent to specific short takeoff/vertical landing (STOVL) supersonic designs being considered, are of interest to the general field of lift and lift/cruise fan aircraft designs and may be of importance in the future. The various wind tunnel and static tests reviewed are: (1) the Doak VZ-4 ducted fan, (2) the 0.57 scale model of the Bell X-22 ducted fan aircraft, (3) the Avrocar, (4) the General Electric lift/cruise fan, (5) the vertical short takeoff and landing (V/STOL) lift engine configurations related to ingestion and consequent thrust loss, (6) the XV-5 and other fan-in-wing stall consideration, (7) hybrid configurations such as lift fan and lift/cruise fan or engines, and (8) the various conceptual design studies by air-frame contractors. Other design integration problems related to small and large V/STOL transport aircraft are summarized including lessons learned during more recent conceptual design studies related to a small executive V/STOL transport aircraft.

  19. Using the science writing heuristic approach as a tool for assessing and promoting students' conceptual understanding and perceptions in the general chemistry laboratory

    NASA Astrophysics Data System (ADS)

    Mohammad, Elham Ghazi

    This thesis reports on a study that examined the impact of implementing SWH (inquiry-based approach) in a general chemistry lab on non-science-major students' understanding of chemistry concepts and students' perceptions toward writing in science and implementing SWH. This study was conducted in a large university in the Midwest of the United States in a college freshman chemistry laboratory for non-science-major students. The research framework is presented including the following: the qualitative research design with the observation as data collection method for this design and the criteria for teacher level of implementation and the ranking mechanism; and the quantitative research design with data collection and analysis methods including pre- and post-conceptual exams, lecture question, open-ended surveys. This research was based on a quasi-experimental mixed-method design a focus on student performance on higher order conceptual questions, and open-ended survey at the end of semester about their perception toward writing to learn ad implementing SWH. Results from the qualitative and quantitative component indicated that implementing SWH approach has notably enhanced both male and female conceptual understanding and perception toward chemistry and implementing SWH. It is known that there is gender gap in science, where female have lower perception and self confident toward science. Interestingly, my findings have showed that implementing SWH helped closing the gap between male and female who started the semester with a statistically significant lower level of conceptual understanding of chemistry concepts among females than males.

  20. Cryogenic On-Orbit Liquid Depot-Storage, Acquisition and Transfer (COLD-SAT) Experiment Conceptual Design and Feasibility Study

    NASA Technical Reports Server (NTRS)

    Kramer, Edward (Editor)

    1998-01-01

    The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.

  1. Science, education and industry information resources complementarity as a basis for design of knowledge management systems

    NASA Astrophysics Data System (ADS)

    Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.

    2017-01-01

    The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.

  2. Multidisciplinary design optimization - An emerging new engineering discipline

    NASA Technical Reports Server (NTRS)

    Sobieszczanski-Sobieski, Jaroslaw

    1993-01-01

    A definition of the multidisciplinary design optimization (MDO) is introduced, and functionality and relationship of the MDO conceptual components are examined. The latter include design-oriented analysis, approximation concepts, mathematical system modeling, design space search, an optimization procedure, and a humane interface.

  3. A Spherical Torus Nuclear Fusion Reactor Space Propulsion Vehicle Concept for Fast Interplanetary Travel

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Borowski, Stanley K.; Dudzinski, Leonard A.; Juhasz, Albert J.

    1998-01-01

    A conceptual vehicle design enabling fast outer solar system travel was produced predicated on a small aspect ratio spherical torus nuclear fusion reactor. Initial requirements were for a human mission to Saturn with a greater than 5% payload mass fraction and a one way trip time of less than one year. Analysis revealed that the vehicle could deliver a 108 mt crew habitat payload to Saturn rendezvous in 235 days, with an initial mass in low Earth orbit of 2,941 mt. Engineering conceptual design, analysis, and assessment was performed on all ma or systems including payload, central truss, nuclear reactor (including divertor and fuel injector), power conversion (including turbine, compressor, alternator, radiator, recuperator, and conditioning), magnetic nozzle, neutral beam injector, tankage, start/re-start reactor and battery, refrigeration, communications, reaction control, and in-space operations. Detailed assessment was done on reactor operations, including plasma characteristics, power balance, power utilization, and component design.

  4. Forest fire advanced system technology (FFAST) conceptual design study

    NASA Technical Reports Server (NTRS)

    Nichols, J. David; Warren, John R.

    1987-01-01

    The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  5. Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model

    ERIC Educational Resources Information Center

    Kim, Sooyoung

    2007-01-01

    Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…

  6. Update on HCDstruct - A Tool for Hybrid Wing Body Conceptual Design and Structural Optimization

    NASA Technical Reports Server (NTRS)

    Gern, Frank H.

    2015-01-01

    HCDstruct is a Matlab® based software tool to rapidly build a finite element model for structural optimization of hybrid wing body (HWB) aircraft at the conceptual design level. The tool uses outputs from a Flight Optimization System (FLOPS) performance analysis together with a conceptual outer mold line of the vehicle, e.g. created by Vehicle Sketch Pad (VSP), to generate a set of MSC Nastran® bulk data files. These files can readily be used to perform a structural optimization and weight estimation using Nastran’s® Solution 200 multidisciplinary optimization solver. Initially developed at NASA Langley Research Center to perform increased fidelity conceptual level HWB centerbody structural analyses, HCDstruct has grown into a complete HWB structural sizing and weight estimation tool, including a fully flexible aeroelastic loads analysis. Recent upgrades to the tool include the expansion to a full wing tip-to-wing tip model for asymmetric analyses like engine out conditions and dynamic overswings, as well as a fully actuated trailing edge, featuring up to 15 independently actuated control surfaces and twin tails. Several example applications of the HCDstruct tool are presented.

  7. Deep Borehole Field Test Conceptual Design Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, Ernest L.

    This report documents conceptual design development for the Deep Borehole Field Test (DBFT), including test packages (simulated waste packages, not containing waste) and a system for demonstrating emplacement and retrieval of those packages in the planned Field Test Borehole (FTB). For the DBFT to have demonstration value, it must be based on conceptualization of a deep borehole disposal (DBD) system. This document therefore identifies key options for a DBD system, describes an updated reference DBD concept, and derives a recommended concept for the DBFT demonstration. The objective of the DBFT is to confirm the safety and feasibility of the DBDmore » concept for long-term isolation of radioactive waste. The conceptual design described in this report will demonstrate equipment and operations for safe waste handling and downhole emplacement of test packages, while contributing to an evaluation of the overall safety and practicality of the DBD concept. The DBFT also includes drilling and downhole characterization investigations that are described elsewhere (see Section 1). Importantly, no radioactive waste will be used in the DBFT, nor will the DBFT site be used for disposal of any type of waste. The foremost performance objective for conduct of the DBFT is to demonstrate safe operations in all aspects of the test.« less

  8. Conceptual design of the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Paisner, Jeffrey A.; Boyes, John D.; Kumpan, Steven A.; Lowdermilk, W. Howard; Sorem, Michael S.

    1995-12-01

    The Secretary of the U.S. Department of Energy (DOE) commissioned a conceptual design report (CDR) for the National Ignition Facility (NIF) in January 1993 as part of a key decision zero (KD0), justification of mission need. Motivated by the progress to date by the inertial confinement fusion (ICF) program in meeting the Nova technical contract goals established by the National Academy of Sciences in 1989, the Secretary requested a design using a solid-state laser driver operating at the third harmonic (0.35 micrometer) of neodymium (Nd) glass. The participating ICF laboratories signed a memorandum of agreement in August 1993, and established a project organization, including a technical team from the Lawrence Livermore National Laboratory (LLNL), Los Alamos National Laboratory (LANL), Sandia National Laboratories (SNL), and the Laboratory for Laser Energetics at the University of Rochester. Since then, we completed the NIF conceptual design, based on standard construction at a generic DOE defense program's site, and issued a 7,000-page, 27-volume CDR in May 1994. Over the course of the conceptual design study, several other key documents were generated, including a facilities requirements document, a conceptual design scope and plan, a target physics design document, a laser design cost basis document, a functional requirements document, an experimental plan for indirect drive ignition, and a preliminary hazards analysis (PHA) document. DOE used the PHA to categorize the NIF as a low-hazard, non-nuclear facility. On October 21, 1994 the Secretary of Energy issued a key decision one (KD1) for the NIF, which approved the project and authorized DOE to request Office of Management and Budget-approval for congressional line-item FY 1996 NIF funding for preliminary engineering design and for National Environmental Policy Act activities. In addition, the Secretary declared Livermore as the preferred site for constructing the NIF. In February 1995, the NIF Project was formally submitted to Congress as part of the President's FY 1996 budget. If funded as planned, the Project will cost approximately $1.1 billion and will be completed at the end of FY 2002.

  9. Living in the Real World: So You Want to Build a Building? Dancing with Architects and Other Developmental Experiences--Part 3: Designing the Building.

    ERIC Educational Resources Information Center

    Greenman, Jim

    1992-01-01

    The process of designing a child care center is described. This process includes the conceptual and schematic design, schematic pricing, design development, and construction documents. Overall design criteria, and interior program components, are discussed. (LB)

  10. SNAP-8 power conversion system design review

    NASA Technical Reports Server (NTRS)

    Lopez, L. P.

    1970-01-01

    The conceptual design of the SNAP-8 electrical generating system configurations are reviewed including the evolution of the PCS configuration, and the current concepts. The reliabilities of two alternative PCS-G heat rejection loop configurations with two radiator design concepts are also reviewed. A computer program for calculating system pressure loss using multiple-loop flow analysis is included.

  11. Conceptual design of thermal energy storage systems for near-term electric utility applications

    NASA Technical Reports Server (NTRS)

    Hall, E. W.

    1980-01-01

    Promising thermal energy storage systems for midterm applications in conventional electric utilities for peaking power generation are evaluated. Conceptual designs of selected thermal energy storage systems integrated with conventional utilities are considered including characteristics of alternate systems for peaking power generation, viz gas turbines and coal fired cycling plants. Competitive benefit analysis of thermal energy storage systems with alternate systems for peaking power generation and recommendations for development and field test of thermal energy storage with a conventional utility are included. Results indicate that thermal energy storage is only marginally competitive with coal fired cycling power plants and gas turbines for peaking power generation.

  12. A conceptual design study for a two-dimensional, electronically scanned thinned array radiometer

    NASA Technical Reports Server (NTRS)

    Mutton, Philip; Chromik, Christopher C.; Dixon, Iain; Statham, Richard B.; Stillwagen, Frederic H.; Vontheumer, Alfred E.; Sasamoto, Washito A.; Garn, Paul A.; Cosgrove, Patrick A.; Ganoe, George G.

    1993-01-01

    A conceptual design for the Two-Dimensional, Electronically Steered Thinned Array Radiometer (ESTAR) is described. This instrument is a synthetic aperture microwave radiometer that operates in the L-band frequency range for the measurement of soil moisture and ocean salinity. Two auxiliary instruments, an 8-12 micron, scanning infrared radiometer and a 0.4-1.0 micron, charge coupled device (CCD) video camera, are included to provided data for sea surface temperature measurements and spatial registration of targets respectively. The science requirements were defined by Goddard Space Flight Center. Instrument and the spacecraft configurations are described for missions using the Pegasus and Taurus launch vehicles. The analyses and design trades described include: estimations of size, mass and power, instrument viewing coverage, mechanical design trades, structural and thermal analyses, data and communications performance assessments, and cost estimation.

  13. Life sciences payload definition and integration study. Volume 1: Executive summary. [carry-on laboratory for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The definition and integration tasks involved in the development of design concepts for a carry-on laboratory (COL), to be compatible with Spacelab operations, were divided into the following study areas: (1) identification of research and equipment requirements of the COL; (2) development of a number of conceptual layouts for COL based on the defined research of final conceptual designs; and (4) development of COL planning information for definition of COL/Spacelab interface data, cost data, and program cost schedules, including design drawings of a selected COL to permit fabrication of a functional breadboard.

  14. Permanent magnet motors

    NASA Astrophysics Data System (ADS)

    Richter, E.

    1984-09-01

    The work deals with the design and analysis study for the conceptual design of an economical high efficiency ac motor based on permanent magnets. The design and trade off studies have covered the material considerations, the design tradeoff options as well as transient and steady state performance considerations, and other options. The baseline comparison is the high efficiency induction motor. The permanent magnet (PM) motor must fit into the same frame size and surpass the induction motor on a life cost basis that includes 2.5 years of operation at a 50% duty cycle. It is shown that a motor based upon ferrite magnets does meet the objectives of the program in ratings of up to 25 hp. A 7.5 motor design is carried through the conceptual design stage.

  15. Conceptual second-generation lunar equipment

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The spring 1990 Introduction to Design class was asked to conceptually design second-generation lunar vehicles and equipment as a semester design project. The basic assumption made in designing second-generation lunar vehicles and equipment was that a network of permanent lunar bases already existed. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground-based vehicles, robotic arms, and life support systems. Two teams of two or three members competed on each topic and results were exhibited at a formal presentation. A clean-propellant powered lunar flying transport vehicle, an extra-vehicular activity life support system, a pressurized lunar rover for greater distances, and a robotic arm design project are discussed.

  16. Automating Structural Analysis of Spacecraft Vehicles

    NASA Technical Reports Server (NTRS)

    Hrinda, Glenn A.

    2004-01-01

    A major effort within NASA's vehicle analysis discipline has been to automate structural analysis and sizing optimization during conceptual design studies of advanced spacecraft. Traditional spacecraft structural sizing has involved detailed finite element analysis (FEA) requiring large degree-of-freedom (DOF) finite element models (FEM). Creation and analysis of these models can be time consuming and limit model size during conceptual designs. The goal is to find an optimal design that meets the mission requirements but produces the lightest structure. A structural sizing tool called HyperSizer has been successfully used in the conceptual design phase of a reusable launch vehicle and planetary exploration spacecraft. The program couples with FEA to enable system level performance assessments and weight predictions including design optimization of material selections and sizing of spacecraft members. The software's analysis capabilities are based on established aerospace structural methods for strength, stability and stiffness that produce adequately sized members and reliable structural weight estimates. The software also helps to identify potential structural deficiencies early in the conceptual design so changes can be made without wasted time. HyperSizer's automated analysis and sizing optimization increases productivity and brings standardization to a systems study. These benefits will be illustrated in examining two different types of conceptual spacecraft designed using the software. A hypersonic air breathing, single stage to orbit (SSTO), reusable launch vehicle (RLV) will be highlighted as well as an aeroshell for a planetary exploration vehicle used for aerocapture at Mars. By showing the two different types of vehicles, the software's flexibility will be demonstrated with an emphasis on reducing aeroshell structural weight. Member sizes, concepts and material selections will be discussed as well as analysis methods used in optimizing the structure. Analysis based on the HyperSizer structural sizing software will be discussed. Design trades required to optimize structural weight will be presented.

  17. METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS

    EPA Science Inventory

    The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...

  18. Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design

    DOE PAGES

    Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.

    2017-07-27

    We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less

  19. Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.

    We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less

  20. 48 CFR 2.101 - Definitions

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... research, planning, development, design, construction, alteration, or repair of real property; and (3..., evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and... whether a modification is minor include the value and size of the modification and the comparative value...

  1. Conceptual overview and preliminary risk assessment of cryogen use in deep underground mine production

    NASA Astrophysics Data System (ADS)

    Sivret, J.; Millar, D. L.; Lyle, G.

    2017-12-01

    This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.

  2. Structural concept studies for a horizontal cylindrical lunar habitat and a lunar guyed tower

    NASA Technical Reports Server (NTRS)

    Yin, Paul K.

    1990-01-01

    A conceptual structural design of a horizontal cylindrical lunar habitat is presented. The design includes the interior floor framing, the exterior support structure, the foundation mat, and the radiation shielding. Particular attention was given on its efficiency in shipping and field erection, and on selection of structural materials. Presented also is a conceptual design of a 2000-foot lunar guyed tower. A special field erection scheme is implemented in the design. In order to analyze the over-all column buckling of the mast, where its axial compression includes its own body weight, a simple numerical procedure is formulated in a form ready for coding in FORTRAN. Selection of structural materials, effect of temperature variations, dynamic response of the tower to moonquake, and guy anchoring system are discussed. Proposed field erection concepts for the habitat and for the guyed tower are described.

  3. Conceptual design and structural analysis for an 8.4-m telescope

    NASA Astrophysics Data System (ADS)

    Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego

    2004-09-01

    This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.

  4. Realizing "2001: A Space Odyssey": Piloted Spherical Torus Nuclear Fusion Propulsion

    NASA Technical Reports Server (NTRS)

    Williams, Craig H.; Dudzinski, Leonard A.; Borowski, Stanley K.; Juhasz, Albert J.

    2005-01-01

    A conceptual vehicle design enabling fast, piloted outer solar system travel was created predicated on a small aspect ratio spherical torus nuclear fusion reactor. The initial requirements were satisfied by the vehicle concept, which could deliver a 172 mt crew payload from Earth to Jupiter rendezvous in 118 days, with an initial mass in low Earth orbit of 1,690 mt. Engineering conceptual design, analysis, and assessment was performed on all major systems including artificial gravity payload, central truss, nuclear fusion reactor, power conversion, magnetic nozzle, fast wave plasma heating, tankage, fuel pellet injector, startup/re-start fission reactor and battery bank, refrigeration, reaction control, communications, mission design, and space operations. Detailed fusion reactor design included analysis of plasma characteristics, power balance/utilization, first wall, toroidal field coils, heat transfer, and neutron/x-ray radiation. Technical comparisons are made between the vehicle concept and the interplanetary spacecraft depicted in the motion picture 2001: A Space Odyssey.

  5. Cost projections for Redox Energy storage systems

    NASA Technical Reports Server (NTRS)

    Michaels, K.; Hall, G.

    1980-01-01

    A preliminary design and system cost analysis was performed for the redox energy storage system. A conceptual design and cost estimate was prepared for each of two energy applications: (1) electric utility 100-MWh requirement (10-MW for ten hours) for energy storage for utility load leveling application, and (2) a 500-kWh requirement (10-kW for 50 hours) for use with a variety of residential or commercial applications, including stand alone solar photovoltaic systems. The conceptual designs were based on cell performance levels, system design parameters, and special material costs. These data were combined with estimated thermodynamic and hydraulic analysis to provide preliminary system designs. Results indicate that the redox cell stack to be amenable to mass production techniques with a relatively low material cost.

  6. Closed cycle electric discharge laser design investigation

    NASA Technical Reports Server (NTRS)

    Baily, P. K.; Smith, R. C.

    1978-01-01

    Closed cycle CO2 and CO electric discharge lasers were studied. An analytical investigation assessed scale-up parameters and design features for CO2, closed cycle, continuous wave, unstable resonator, electric discharge lasing systems operating in space and airborne environments. A space based CO system was also examined. The program objectives were the conceptual designs of six CO2 systems and one CO system. Three airborne CO2 designs, with one, five, and ten megawatt outputs, were produced. These designs were based upon five minute run times. Three space based CO2 designs, with the same output levels, were also produced, but based upon one year run times. In addition, a conceptual design for a one megawatt space based CO laser system was also produced. These designs include the flow loop, compressor, and heat exchanger, as well as the laser cavity itself. The designs resulted in a laser loop weight for the space based five megawatt system that is within the space shuttle capacity. For the one megawatt systems, the estimated weight of the entire system including laser loop, solar power generator, and heat radiator is less than the shuttle capacity.

  7. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  8. Understanding genetics: Analysis of secondary students' conceptual status

    NASA Astrophysics Data System (ADS)

    Tsui, Chi-Yan; Treagust, David F.

    2007-02-01

    This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.

  9. Space Nuclear Power Plant Pre-Conceptual Design Report, For Information

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    B. Levine

    2006-01-27

    This letter transmits, for information, the Project Prometheus Space Nuclear Power Plant (SNPP) Pre-Conceptual Design Report completed by the Naval Reactors Prime Contractor Team (NRPCT). This report documents the work pertaining to the Reactor Module, which includes integration of the space nuclear reactor with the reactor radiation shield, energy conversion, and instrumentation and control segments. This document also describes integration of the Reactor Module with the Heat Rejection segment, the Power Conditioning and Distribution subsystem (which comprise the SNPP), and the remainder of the Prometheus spaceship.

  10. Robotic influence in the conceptual design of mechanical systems in space and vice versa - A survey

    NASA Technical Reports Server (NTRS)

    Sanger, George F.

    1988-01-01

    A survey of methods using robotic devices to construct structural elements in space is presented. Two approaches to robotic construction are considered: one in which the structural elements are designed using conventional aerospace techniques which tend to constrain the function aspects of robotics and one in which the structural elements are designed from the conceptual stage with built-in robotic features. Examples are presented of structural building concepts using robotics, including the construction of the SP-100 nuclear reactor power system, a multimirror large aperture IR space telescope concept, retrieval and repair in space, and the Flight Telerobotic Servicer.

  11. Conceptual design and analysis of a large antenna utilizing electrostatic membrane management

    NASA Technical Reports Server (NTRS)

    Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.

    1982-01-01

    Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.

  12. Lunar base launch and landing facilities conceptual design

    NASA Technical Reports Server (NTRS)

    Phillips, Paul G.; Simonds, Charles H.; Stump, William R.

    1992-01-01

    The purpose of this study was to perform a first look at the requirements for launch and landing facilities for early lunar bases and to prepared conceptual designs for some of these facilities. The emphasis of the study is on the facilities needed from the first manned landing until permanent occupancy, the Phase 2 lunar base. Factors including surface characteristics, navigation system, engine blast effects, and expected surface operations are used to develop landing pad designs, and definitions fo various other elements of the launch and landing facilities. Finally, the dependence of the use of these elements and the evolution of the facilities are established.

  13. Volatile Organic Compound and Particulate Emission Studies of AF (Air Force) Paint Booth Facilities. Phase 1.

    DTIC Science & Technology

    1988-07-01

    quantity of air which requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the...BACKGROUND AND PURPOSE .... ................ .... 57 B. DESIGN CONSIDERATIONS .... ............... .... 58 1. Safety Standards .......... ............... 58...65 5. Conceptual Design .... ................ ... 68 V CONCLUSIONS AND RECOMMENDATIONS ............... .. 72 A. CONCLUSIONS

  14. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  15. 48 CFR 2.101 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... research, planning, development, design, construction, alteration, or repair of real property; and (3..., evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and... include the value and size of the modification and the comparative value and size of the final product...

  16. 48 CFR 2.101 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... research, planning, development, design, construction, alteration, or repair of real property; and (3..., evaluations, consultations, comprehensive planning, program management, conceptual designs, plans and... minor include the value and size of the modification and the comparative value and size of the final...

  17. Thermal Optimization of an On-Orbit Long Duration Cryogenic Propellant Depot

    NASA Technical Reports Server (NTRS)

    Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Gary

    2012-01-01

    A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA's space exploration efforts. These benefits include elongation/extension of spacecraft missions and requirement reduction of launch vehicle up-mass. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with the new development of spacecraft hardware. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.

  18. Thermal Optimization and Assessment of a Long Duration Cryogenic Propellant Depot

    NASA Technical Reports Server (NTRS)

    Honour, Ryan; Kwas, Robert; O'Neil, Gary; Kutter, Bernard

    2012-01-01

    A Cryogenic Propellant Depot (CPD) operating in Low Earth Orbit (LEO) could provide many near term benefits to NASA space exploration efforts. These benefits include elongation/extension of spacecraft missions and reduction of launch vehicle up-mass requirements. Some of the challenges include controlling cryogenic propellant evaporation and managing the high costs and long schedules associated with new spacecraft hardware development. This paper describes a conceptual CPD design that is thermally optimized to achieve extremely low propellant boil-off rates. The CPD design is based on existing launch vehicle architecture, and its thermal optimization is achieved using current passive thermal control technology. Results from an integrated thermal model are presented showing that this conceptual CPD design can achieve propellant boil-off rates well under 0.05% per day, even when subjected to the LEO thermal environment.

  19. Conceptual Design of the ITER Plasma Control System

    NASA Astrophysics Data System (ADS)

    Snipes, J. A.

    2013-10-01

    The conceptual design of the ITER Plasma Control System (PCS) has been approved and the preliminary design has begun for the 1st plasma PCS. This is a collaboration of many plasma control experts from existing devices to design and test plasma control techniques applicable to ITER on existing machines. The conceptual design considered all phases of plasma operation, ranging from non-active H/He plasmas through high fusion gain inductive DT plasmas to fully non-inductive steady-state operation, to ensure that the PCS control functionality and architecture can satisfy the demands of the ITER Research Plan. The PCS will control plasma equilibrium and density, plasma heat exhaust, a range of MHD instabilities (including disruption mitigation), and the non-inductive current profile required to maintain stable steady-state scenarios. The PCS architecture requires sophisticated shared actuator management and event handling systems to prioritize control goals, algorithms, and actuators according to dynamic control needs and monitor plasma and plant system events to trigger automatic changes in the control algorithms or operational scenario, depending on real-time operating limits and conditions.

  20. Positioning Design Epistemology and Its Applications in Education Technology

    ERIC Educational Resources Information Center

    Tsai, Chin-Chung; Chai, Ching Sing; Wong, Benjamin Koon Siak; Hong, Huang-Yao; Tan, Seng Chee

    2013-01-01

    This position paper proposes to broaden the conception of personal epistemology to include design epistemology that foregrounds the importance of creativity, collaboration, and design thinking. Knowledge creation process, we argue, can be explicated using Popper's ontology of three worlds of objects. In short, conceptual artifacts (World 3)…

  1. A conceptual ground-water-quality monitoring network for San Fernando Valley, California

    USGS Publications Warehouse

    Setmire, J.G.

    1985-01-01

    A conceptual groundwater-quality monitoring network was developed for San Fernando Valley to provide the California State Water Resources Control Board with an integrated, basinwide control system to monitor the quality of groundwater. The geology, occurrence and movement of groundwater, land use, background water quality, and potential sources of pollution were described and then considered in designing the conceptual monitoring network. The network was designed to monitor major known and potential point and nonpoint sources of groundwater contamination over time. The network is composed of 291 sites where wells are needed to define the groundwater quality. The ideal network includes four specific-purpose networks to monitor (1) ambient water quality, (2) nonpoint sources of pollution, (3) point sources of pollution, and (4) line sources of pollution. (USGS)

  2. Measuring Conceptual Gains and Benefits of Student Problem Designs

    NASA Astrophysics Data System (ADS)

    Mandell, Eric; Snyder, Rachel; Oswald, Wayne

    2011-10-01

    Writing assignments can be an effective way of getting students to practice higher-order learning skills in physics. One example of such an assignment is that of problem design. One version of the problem design assignment asks the student to evaluate the material from a chapter, after all instruction and other activities are complete. The student is to decide what concepts and ideas are most central, or critical in the chapter, and construct a problem that he or she feels best encompasses the major themes. Here, we use two concept surveys (FCI and EMCS) to measure conceptual gains for students completing the problem design assignment and present the preliminary results, comparing across several categories including gender, age, degree program, and class standing.

  3. The design of low cost structures for extensive ground arrays

    NASA Technical Reports Server (NTRS)

    Franklin, H. A.; Leonard, R. S.

    1980-01-01

    The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.

  4. Modification and Validation of Conceptual Design Aerodynamic Prediction Method HASC95 With VTXCHN

    NASA Technical Reports Server (NTRS)

    Albright, Alan E.; Dixon, Charles J.; Hegedus, Martin C.

    1996-01-01

    A conceptual/preliminary design level subsonic aerodynamic prediction code HASC (High Angle of Attack Stability and Control) has been improved in several areas, validated, and documented. The improved code includes improved methodologies for increased accuracy and robustness, and simplified input/output files. An engineering method called VTXCHN (Vortex Chine) for prediciting nose vortex shedding from circular and non-circular forebodies with sharp chine edges has been improved and integrated into the HASC code. This report contains a summary of modifications, description of the code, user's guide, and validation of HASC. Appendices include discussion of a new HASC utility code, listings of sample input and output files, and a discussion of the application of HASC to buffet analysis.

  5. PRA and Conceptual Design

    NASA Technical Reports Server (NTRS)

    DeMott, Diana; Fuqua, Bryan; Wilson, Paul

    2013-01-01

    Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.

  6. Conceptual Design of the ITER ECE Diagnostic - An Update

    NASA Astrophysics Data System (ADS)

    Austin, M. E.; Pandya, H. K. B.; Beno, J.; Bryant, A. D.; Danani, S.; Ellis, R. F.; Feder, R.; Hubbard, A. E.; Kumar, S.; Ouroua, A.; Phillips, P. E.; Rowan, W. L.

    2012-09-01

    The ITER ECE diagnostic has recently been through a conceptual design review for the entire system including front end optics, transmission line, and back-end instruments. The basic design of two viewing lines, each with a single ellipsoidal mirror focussing into the plasma near the midplane of the typical operating scenarios is agreed upon. The location and design of the hot calibration source and the design of the shutter that directs its radiation to the transmission line are issues that need further investigation. In light of recent measurements and discussion, the design of the broadband transmission line is being revisited and new options contemplated. For the instruments, current systems for millimeter wave radiometers and broad-band spectrometers will be adequate for ITER, but the option for employing new state-of-the-art techniques will be left open.

  7. Development of a dome Fresnel lens/gallium arsenide photovoltaic concentrator for space applications

    NASA Technical Reports Server (NTRS)

    O'Neill, Mark J.; Piszczor, Michael F.

    1987-01-01

    A novel photovoltaic concentrator system is currently being developed. Phase I of the program, completed in late 1986, produced a conceptual design for the concentrator system, including an array weight and performance estimates based on optical, electrical, and thermal analyses. Phase II of the program, just underway, concerns the fabrication and testing of prototype concentrator panels of the design. The concentrator system uses dome Fresnel lenses for optical concentration; gallium arsenide concentrator cells for power generation; prismatic cell covers to eliminate gridline obscuration losses; a backplane radiator for heat rejection; and a honeycomb structure for the deployable panel assembly. The conceptual design of the system, its anticipated performance, and its estimated weight are reported.

  8. Mechanically scanned deployable antenna study

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The conceptual design of a Mechanically Scanned Deployable Antenna which is launched by the STS (Space Shuttle) to provide radiometric brightness temperature maps of the Earth and oceans at selected frequency bands in the frequency range of 1.4 GHz to 11 GHz is presented. Unlike previous scanning radiometric systems, multiple radiometers for each frequency are required in order to fill in the resolution cells across the swath created by the 15 meter diameter spin stabilized system. This multiple beam radiometric system is sometimes designated as a ""whiskbroom'' system in that it combines the techniques of the scanning and ""pushbroom'' type systems. The definition of the feed system including possible feed elements and location, determination of the fundamental reflector feed offset geometry including offset angles and f/D ratio, preliminary estimates of the beam efficiency of the feed reflector system, a summary of reflector mesh losses at the proposed radiometric frequency bands, an overall conceptual configuration design and preliminary structural and thermal analyses are included.

  9. A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project

    NASA Technical Reports Server (NTRS)

    Theodore, Colin R.

    2018-01-01

    The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.

  10. The role of right and left parietal lobes in the conceptual processing of numbers.

    PubMed

    Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D; Price, Cathy J

    2010-02-01

    Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention, and response-selection processes. To dissociate parietal activation that is number-selective from parietal activation related to other stimulus or response-selection processes, we used fMRI to compare numbers and object names during exactly the same conceptual and perceptual tasks while factoring out activations correlating with response times. We found that right parietal activation was higher for conceptual decisions on numbers relative to the same tasks on object names, even when response time effects were fully factored out. In contrast, left parietal activation for numbers was equally involved in conceptual processing of object names. We suggest that left parietal activation for numbers reflects a range of processes, including the retrieval of learnt facts that are also involved in conceptual decisions on object names. In contrast, number selectivity in right parietal cortex reflects processes that are more involved in conceptual decisions on numbers than object names. Our results generate a new set of hypotheses that have implications for the design of future behavioral and functional imaging studies of patients with left and right parietal damage.

  11. Conceptualization and application of an approach for designing healthcare software interfaces.

    PubMed

    Kumar, Ajit; Maskara, Reena; Maskara, Sanjeev; Chiang, I-Jen

    2014-06-01

    The aim of this study is to conceptualize a novel approach, which facilitates us to design prototype interfaces for healthcare software. Concepts and techniques from various disciplines were used to conceptualize an interface design approach named MORTARS (Map Original Rhetorical To Adapted Rhetorical Situation). The concepts and techniques included in this approach are (1) rhetorical situation - a concept of philosophy provided by Bitzer (1968); (2) move analysis - an applied linguistic technique provided by Swales (1990) and Bhatia (1993); (3) interface design guidelines - a cognitive and computer science concept provided by Johnson (2010); (4) usability evaluation instrument - an interface evaluation questionnaire provided by Lund (2001); (5) user modeling via stereotyping - a cognitive and computer science concept provided by Rich (1979). A prototype interface for outpatient clinic software was designed to introduce the underlying concepts of MORTARS. The prototype interface was evaluated by thirty-two medical informaticians. The medical informaticians found the designed prototype interface to be useful (73.3%), easy to use (71.9%), easy to learn (93.1%), and satisfactory (53.2%). MORTARS approach was found to be effective in designing the prototype user interface for the outpatient clinic software. This approach might be further used to design interfaces for various software pertaining to healthcare and other domains. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Decoding the "CoDe": A Framework for Conceptualizing and Designing Help Options in Computer-Based Second Language Listening

    ERIC Educational Resources Information Center

    Cardenas-Claros, Monica Stella; Gruba, Paul A.

    2013-01-01

    This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…

  13. Multiparadigm Design Environments

    DTIC Science & Technology

    1992-01-01

    following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual

  14. Data on conceptual design of cryogenic energy storage system combined with liquefied natural gas regasification process.

    PubMed

    Lee, Inkyu; Park, Jinwoo; Moon, Il

    2017-12-01

    This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.

  15. Incorporating Risk Assessment and Inherently Safer Design Practices into Chemical Engineering Education

    ERIC Educational Resources Information Center

    Seay, Jeffrey R.; Eden, Mario R.

    2008-01-01

    This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…

  16. Osiris and SOMBRERO inertial confinement fusion power plant designs. Volume 2, Designs, assessments, and comparisons, Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W.R.; Bieri, R.L.; Monsler, M.J.

    1992-03-01

    The primary objective of the of the IFE Reactor Design Studies was to provide the Office of Fusion Energy with an evaluation of the potential of inertial fusion for electric power production. The term reactor studies is somewhat of a misnomer since these studies included the conceptual design and analysis of all aspects of the IFE power plants: the chambers, heat transport and power conversion systems, other balance of plant facilities, target systems (including the target production, injection, and tracking systems), and the two drivers. The scope of the IFE Reactor Design Studies was quite ambitious. The majority of ourmore » effort was spent on the conceptual design of two IFE electric power plants, one using an induction linac heavy ion beam (HIB) driver and the other using a Krypton Fluoride (KrF) laser driver. After the two point designs were developed, they were assessed in terms of their (1) environmental and safety aspects; (2) reliability, availability, and maintainability; (3) technical issues and technology development requirements; and (4) economics. Finally, we compared the design features and the results of the assessments for the two designs.« less

  17. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Conceptual Design Engineering Report (CDER) supplement. Magnet system special investigations

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.

  18. Open Vehicle Sketch Pad Aircraft Modeling Strategies

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2013-01-01

    Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.

  19. Feasibility and systems definition study for Microwave Multi-Application Payload (MMAP)

    NASA Technical Reports Server (NTRS)

    Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.; Swana, J.; Afifi, M.

    1977-01-01

    Work completed on three Shuttle/Spacelab experiments is examined: the Adaptive Multibeam Phased Array Antenna (AMPA) Experiment, Electromagnetic Environment Experiment (EEE) and Millimeter Wave Communications Experiment (MWCE). Results included the definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Conceptual hardware designs, Spacelab interfaces, data handling methods, experiment testing and verification studies were included. The MWCE-MOD I was defined conceptually for a steerable high gain antenna.

  20. Creative conceptual expansion: A combined fMRI replication and extension study to examine individual differences in creativity.

    PubMed

    Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane

    2018-05-05

    The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Trench fast reactor design using the microcomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohach, A.F.; Sankoorikal, J.T.; Schmidt, R.R.

    1987-01-01

    This project is a study of alternative liquid-metal-cooled fast power reactor system concepts. Specifically, an unconventional primary system is being conceptually designed and evaluated. The project design is based primarily on microcomputer analysis through the use of computational modules. The reactor system concept is a long, narrow pool with a long, narrow reactor called a trench-type pool reactor in it. The reactor consists of five core-blanket modules in a line. Specific power is to be modest, permitting long fuel residence time. Two fuel cycles are currently being considered. The reactor design philosophy is that of the inherently safe concept. Thismore » requires transient analysis dependent on reactivity coefficients: prompt fuel, including Doppler and expansion, fuel expansion, sodium temperature and void, and core expansion. Conceptual reactor design is done on a microcomputer. A part of the trench reactor project is to develop a microcomputer-based system that can be used by the user for scoping studies and design. Current development includes the neutronics and fuel management aspects of the design. Thermal-hydraulic analysis and economics are currently being incorporated into the microcomputer system. The system is menu-driven including preparation of program input data and of output data for displays in graphics form.« less

  2. Dutch Research on Knowledge-Based Instructional Systems: Introduction to the Special Issue.

    ERIC Educational Resources Information Center

    van Merrienboer, Jeroen J. G.

    1994-01-01

    Provides an overview of this issue that reviews Dutch research concerning knowledge-based instructional systems. Topics discussed include experimental research, conceptual models, design considerations, and guidelines; the design of student diagnostic modules, instructional modules, and interface modules; second-language teaching; intelligent…

  3. Conceptual design of cost-effective and environmentally-friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis.

    PubMed

    Sánchez, Óscar J; Cardona, Carlos A

    2012-01-01

    In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Implementation of MCA Method for Identification of Factors for Conceptual Cost Estimation of Residential Buildings

    NASA Astrophysics Data System (ADS)

    Juszczyk, Michał; Leśniak, Agnieszka; Zima, Krzysztof

    2013-06-01

    Conceptual cost estimation is important for construction projects. Either underestimation or overestimation of building raising cost may lead to failure of a project. In the paper authors present application of a multicriteria comparative analysis (MCA) in order to select factors influencing residential building raising cost. The aim of the analysis is to indicate key factors useful in conceptual cost estimation in the early design stage. Key factors are being investigated on basis of the elementary information about the function, form and structure of the building, and primary assumptions of technological and organizational solutions applied in construction process. The mentioned factors are considered as variables of the model which aim is to make possible conceptual cost estimation fast and with satisfying accuracy. The whole analysis included three steps: preliminary research, choice of a set of potential variables and reduction of this set to select the final set of variables. Multicriteria comparative analysis is applied in problem solution. Performed analysis allowed to select group of factors, defined well enough at the conceptual stage of the design process, to be used as a describing variables of the model.

  5. Application of the generalized reduced gradient method to conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Gabriele, G. A.

    1984-01-01

    The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.

  6. Space station experiment definition: Long-term cryogenic fluid storage

    NASA Technical Reports Server (NTRS)

    Jetley, R. L.; Scarlotti, R. D.

    1987-01-01

    The conceptual design of a space station Technology Development Mission (TDM) experiment to demonstrate and evaluate cryogenic fluid storage and transfer technologies is presented. The experiment will be deployed on the initial operational capability (IOC) space station for a four-year duration. It is modular in design, consisting of three phases to test the following technologies: passive thermal technologies (phase 1), fluid transfer (phase 2), and active refrigeration (phase 3). Use of existing hardware was a primary consideration throughout the design effort. A conceptual design of the experiment was completed, including configuration sketches, system schematics, equipment specifications, and space station resources and interface requirements. These requirements were entered into the NASA Space Station Mission Data Base. A program plan was developed defining a twelve-year development and flight plan. Program cost estimates are given.

  7. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  8. Rapid Assessment of Aircraft Structural Topologies for Multidisciplinary Optimization and Weight Estimation

    NASA Technical Reports Server (NTRS)

    Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.

    2006-01-01

    Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.

  9. Technology needs of advanced Earth observation spacecraft

    NASA Technical Reports Server (NTRS)

    Herbert, J. J.; Postuchow, J. R.; Schartel, W. A.

    1984-01-01

    Remote sensing missions were synthesized which could contribute significantly to the understanding of global environmental parameters. Instruments capable of sensing important land and sea parameters are combined with a large antenna designed to passively quantify surface emitted radiation at several wavelengths. A conceptual design for this large deployable antenna was developed. All subsystems required to make the antenna an autonomous spacecraft were conceptually designed. The entire package, including necessary orbit transfer propulsion, is folded to package within the Space Transportation System (STS) cargo bay. After separation, the antenna, its integral feed mast, radiometer receivers, power system, and other instruments are automatically deployed and transferred to the operational orbit. The design resulted in an antenna with a major antenna dimension of 120 meters, weighing 7650 kilograms, and operating at an altitude of 700 kilometers.

  10. Hot conditioning equipment conceptual design report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradshaw, F.W., Westinghouse Hanford

    1996-08-06

    This report documents the conceptual design of the Hot Conditioning System Equipment. The Hot conditioning System will consist of two separate designs: the Hot Conditioning System Equipment; and the Hot Conditioning System Annex. The Hot Conditioning System Equipment Design includes the equipment such as ovens, vacuum pumps, inert gas delivery systems, etc.necessary to condition spent nuclear fuel currently in storage in the K Basins of the Hanford Site. The Hot Conditioning System Annex consists of the facility of house the Hot Conditioning System. The Hot Conditioning System will be housed in an annex to the Canister Storage Building. The Hotmore » Conditioning System will consist of pits in the floor which contain ovens in which the spent nuclear will be conditioned prior to interim storage.« less

  11. Case-Based Capture and Reuse of Aerospace Design Rationale

    NASA Technical Reports Server (NTRS)

    Leake, David B.

    2001-01-01

    The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.

  12. The Behavioral Intervention Technology Model: An Integrated Conceptual and Technological Framework for eHealth and mHealth Interventions

    PubMed Central

    Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-01-01

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or “elements” (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user’s environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs. PMID:24905070

  13. The behavioral intervention technology model: an integrated conceptual and technological framework for eHealth and mHealth interventions.

    PubMed

    Mohr, David C; Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-06-05

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or "elements" (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user's environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs.

  14. Conceptual Chemical Process Design for Sustainability. ...

    EPA Pesticide Factsheets

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyses throughout the conceptual design. Hierarchical and short-cut decision-making methods will be used to approach sustainability. An example showing a sustainability-based evaluation of chlor-alkali production processes is presented with economic analysis and five pollutants described as emissions. These emissions are analyzed according to their human toxicity potential by ingestion using the Waste Reduction Algorithm and a method based on US Environmental Protection Agency reference doses, with the addition of biodegradation for suitable components. Among the emissions, mercury as an element will not biodegrade, and results show the importance of this pollutant to the potential toxicity results and therefore the sustainability of the process design. The dominance of mercury in determining the long-term toxicity results when energy use is included suggests that all process system evaluations should (re)consider the role of mercury and other non-/slow-degrading pollutants in sustainability analyses. The cycling of nondegrading pollutants through the biosphere suggests the need for a complete analysis based on the economic, environmental, and social aspects of sustainability. Chapter reviews

  15. Conceptual Design and Neutronics Analyses of a Fusion Reactor Blanket Simulation Facility

    DTIC Science & Technology

    1986-01-01

    Laboratory (LLL) ORNL Oak Ridge National Laboratory PPPL Princeton Plasma Physics Laboratory RSIC Reactor Shielding Information Center (at ORNL) SS...Module (LBM) to be placed in the TFTR at PPPL . Jassby et al. describe the program, including design, manufacturing techniques. neutronics analyses, and

  16. Brownfields Green Avenue Sites: Technical Memorandum - Conceptual Design for Sustainable Redevelopment

    EPA Pesticide Factsheets

    This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations

  17. SCHOOLS OF PRESTRESSED CONCRETE. PLANNING, DESIGN AND CONSTRUCTION OF EDUCATIONAL FACILITIES FOR SCHOOLS AND COLLEGES.

    ERIC Educational Resources Information Center

    LYMAN, ROBERT J.

    THE USE OF PRESTRESSED CONCRETE IS EMPHASIZED IN THE AREAS OF SCHOOL PLANNING, DESIGN, AND CONSTRUCTION. THE PLANNING SECTION INCLUDES--(1) ROLES OF ACTIVE PARTIES AND RELATED ORGANIZATIONS, (2) PROCEDURES, AND (3) CONCEPTUAL DATA FOR SITE AND BUILDING. THE DESIGN SECTION CONTAINS--(1) DEVELOPMENT OF CONSTRUCTION SYSTEMS, (2) INTEGRATION OF…

  18. Design and implementation of monitoring studies to evaluate the success of ecological restoration on wildlife

    Treesearch

    William M. Block; Alan B. Franklin; James P. Ward; Joseph L. Ganey; Gary C. White

    2001-01-01

    Restoration projects are often developed with little consideration for understanding their effects on wildlife. We contend, however, that monitoring treatment effects on wildlife should be an integral component of the design and execution of any management activity, including restoration. Thus, we provide a conceptual framework for the design and implementation of...

  19. 47 CFR 2.803 - Marketing of radio frequency devices prior to equipment authorization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... device that is in the conceptual, developmental, design or pre-production stage may be offered for sale...) The following notice is included with the kit: FCC NOTICE: This kit is designed to allow: (1) Product... stations and that this product accept harmful interference. Unless the assembled kit is designed to operate...

  20. 47 CFR 2.803 - Marketing of radio frequency products prior to equipment authorization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... device that is in the conceptual, developmental, design or pre-production stage may be offered for sale...) The following notice is included with the kit: FCC NOTICE: This kit is designed to allow: (1) Product... stations and that this product accept harmful interference. Unless the assembled kit is designed to operate...

  1. Controlled Ecological Life Support Systems (CELSS) conceptual design option study

    NASA Technical Reports Server (NTRS)

    Oleson, Melvin; Olson, Richard L.

    1986-01-01

    Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.

  2. Prediction of forces and moments for flight vehicle control effectors. Part 1: Validation of methods for predicting hypersonic vehicle controls forces and moments

    NASA Technical Reports Server (NTRS)

    Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.

    1990-01-01

    Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.

  3. A conceptual curriculum framework designed to ensure quality student health visitor training in practice.

    PubMed

    Hollinshead, Jayne; Stirling, Linda

    2014-07-01

    This paper describes the challenges faced by a trust in England following the introduction of the Health Visitor Implementation Plan. Two practice education facilitators designed a conceptual curriculum framework to ensure quality student health visitor education in practice. This curriculum complimented the excellent academic course already delivered by the University. A justification is provided for the design of the curriculum framework, including a rationale for the introduction of specific training sessions. Student and practice teacher feedback demonstrate the success of the introduction of this programme to ensure the development of student health visitors fit for practice. The conclusion places emphasis on the importance of continuous evaluation of the training programme to meet the needs of the students and the service.

  4. The Use of Conceptual Change Text toward Students’ Argumentation Skills in Learning Sound

    NASA Astrophysics Data System (ADS)

    Sari, B. P.; Feranie, S.; Winarno, N.

    2017-09-01

    This research aim is to investigate the effect of Conceptual Change Text toward students’ argumentation skills in learning sound concept. The participant comes from one of International school in Bandung, Indonesia. The method that used in this research is a quasi-experimental design with one control group (N=21) and one experimental group (N=21) were involves in this research. The learning model that used in both classes is demonstration model which included teacher explanation and examples, the difference only in teaching materials. In experiment group learn with Conceptual Change Text, while control group learn with conventional book which is used in school. The results showed that Conceptual Change Text instruction was better than the conventional book to improved students’ argumentation skills of sound concept. Based on this results showed that Conceptual Change Text instruction can be an alternative tool to improve students’ argumentation skills significantly.

  5. MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design

    NASA Technical Reports Server (NTRS)

    Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.

    1988-01-01

    The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.

  6. Conceptual Model Learning Objects and Design Recommendations for Small Screens

    ERIC Educational Resources Information Center

    Churchill, Daniel

    2011-01-01

    This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…

  7. Matematicas: Nivel A (Mathematics: Level A).

    ERIC Educational Resources Information Center

    Duron, Dolores; And Others

    A teacher's manual was developed for an elementary level mathematics course in Spanish as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. Teaching procedures, conceptual objectives, vocabulary, and structures are included. Activities are designed to teach either…

  8. Matematicas: Nivel E (Mathematics: Level E).

    ERIC Educational Resources Information Center

    Duron, Dolores, Ed.; And Others

    A teacher's manual was developed for an elementary level mathematics course in Spanish as part of an immersion program for English speaking children. The Level E manual is designed for grade 4 pupils. Teaching procedures, conceptual and language objectives, vocabulary, structures, and learning activities are included. Activities are designed to…

  9. Matematicas: Nivel F (Mathematics: Level F).

    ERIC Educational Resources Information Center

    Duron, Dolores, Ed.; And Others

    A teacher's manual was developed for an elementary level mathematics course in Spanish as part of an immersion program for English speaking children. The Level F manual is designed for grade 5 pupils. Teaching procedures, conceptual and language objectives, vocabulary, structures, and learning activities are included. Activities are designed to…

  10. Designing a Language Study.

    ERIC Educational Resources Information Center

    Brown, James Dean

    Some issues in the design of classroom research on second language teaching are discussed, with the intention of helping the researcher avoid conceptual pitfalls that may cripple the study later in the process. This begins with an examination of concerns in sampling, including definition of a population to be studied, alternative sampling…

  11. The Teaching Assistant Training Handbook: How To Prepare TAs for Their Responsibilities.

    ERIC Educational Resources Information Center

    Prieto, Loreto R., Ed.; Meyers, Steven A., Ed.

    This book is designed for college faculty, staff, and administrators who train and supervise teaching assistants (TAs). It presents a collection of papers with information on designing, implementing, and improving TA training programs. Section 1, "The Training and Preparation of Graduate Teaching Assistants," includes (1) "Conceptualizing and…

  12. Faith Moves Mountains: an Appalachian cervical cancer prevention program.

    PubMed

    Schoenberg, Nancy E; Hatcher, Jennifer; Dignan, Mark B; Shelton, Brent; Wright, Sherry; Dollarhide, Kaye F

    2009-01-01

    To provide a conceptual description of Faith Moves Mountains (FMM), an intervention designed to reduce the disproportionate burden of cervical cancer among Appalachian women. FMM, a community-based participatory research program designed and implemented in collaboration with churches in rural, southeastern Kentucky, aims to increase cervical cancer screening (Pap tests) through a multiphase process of educational programming and lay health counseling. We provide a conceptual overview to key elements of the intervention, including programmatic development, theoretical basis, intervention approach and implementation, and evaluation procedures. After numerous modifications, FMM has recruited and retained over 400 women, 30 churches, and has become a change agent in the community.

  13. Enhanced analysis and users manual for radial-inflow turbine conceptual design code RTD

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1995-01-01

    Modeling enhancements made to a radial-inflow turbine conceptual design code are documented in this report. A stator-endwall clearance-flow model was added for use with pivoting vanes. The rotor calculations were modified to account for swept blades and splitter blades. Stator and rotor trailing-edge losses and a vaneless-space loss were added to the loss model. Changes were made to the disk-friction and rotor-clearance loss calculations. The loss model was then calibrated based on experimental turbine performance. A complete description of code input and output along with sample cases are included in the report.

  14. Conceptual design optimization study

    NASA Technical Reports Server (NTRS)

    Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.

    1990-01-01

    The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.

  15. The 5-kwe reactor thermoelectric system summary

    NASA Technical Reports Server (NTRS)

    Vanosdol, J. H. (Editor)

    1973-01-01

    Design of the 5-kwe reactor thermoelectric system was initiated in February 1972 and extended through the conceptual design phase into the preliminary design phase. Design effort was terminated in January, 1973. This report documents the system and component requirements, design approaches, and performance and design characteristics for the 5-kwe system. Included is summary information on the reactor, radiation shields, power conversion systems, thermoelectric pump, radiator/structure, liquid metal components, and the control system.

  16. Conceptual design study of the moderate size superconducting spherical tokamak power plant

    NASA Astrophysics Data System (ADS)

    Gi, Keii; Ono, Yasushi; Nakamura, Makoto; Someya, Youji; Utoh, Hiroyasu; Tobita, Kenji; Ono, Masayuki

    2015-06-01

    A new conceptual design of the superconducting spherical tokamak (ST) power plant was proposed as an attractive choice for tokamak fusion reactors. We reassessed a possibility of the ST as a power plant using the conservative reactor engineering constraints often used for the conventional tokamak reactor design. An extensive parameters scan which covers all ranges of feasible superconducting ST reactors was completed, and five constraints which include already achieved plasma magnetohydrodynamic (MHD) and confinement parameters in ST experiments were established for the purpose of choosing the optimum operation point. Based on comparison with the estimated future energy costs of electricity (COEs) in Japan, cost-effective ST reactors can be designed if their COEs are smaller than 120 mills kW-1 h-1 (2013). We selected the optimized design point: A = 2.0 and Rp = 5.4 m after considering the maintenance scheme and TF ripple. A self-consistent free-boundary MHD equilibrium and poloidal field coil configuration of the ST reactor were designed by modifying the neutral beam injection system and plasma profiles. The MHD stability of the equilibrium was analysed and a ramp-up scenario was considered for ensuring the new ST design. The optimized moderate-size ST power plant conceptual design realizes realistic plasma and fusion engineering parameters keeping its economic competitiveness against existing energy sources in Japan.

  17. Feasibility and systems definition study for microwave multi-application payload (MMAP)

    NASA Technical Reports Server (NTRS)

    Horton, J. B.; Allen, C. C.; Massaro, M. J.; Zemany, J. L.; Murrell, J. W.; Stanhouse, R. W.; Condon, G. P.; Stone, R. F.

    1977-01-01

    There were three Shuttle/Spacelab experiments: adaptive multibeam phased array antenna (AMPA) experiment, electromagnetic environment experiment (EEE), and millimeter wave communications experiment (MWCE). Work on the AMPA experiment was completed. Results included are definition of operating modes, sequence of operation, radii of operation about several ground stations, signal format, foot prints of typical orbits and preliminary definition of ground and user terminals. Definition of the MOD I EEE included conceptual hardware designs, spacelab interfaces, preliminary data handling methods, experiment tests and verification, and EMC studies. The MWCE was defined conceptually for a steerable high gain antenna.

  18. QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study

    NASA Astrophysics Data System (ADS)

    Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa

    2016-10-01

    Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.

  19. NDARC-NASA Design and Analysis of Rotorcraft Theoretical Basis and Architecture

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2010-01-01

    The theoretical basis and architecture of the conceptual design tool NDARC (NASA Design and Analysis of Rotorcraft) are described. The principal tasks of NDARC are to design (or size) a rotorcraft to satisfy specified design conditions and missions, and then analyze the performance of the aircraft for a set of off-design missions and point operating conditions. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated. The aircraft attributes are obtained from the sum of the component attributes. NDARC provides a capability to model general rotorcraft configurations, and estimate the performance and attributes of advanced rotor concepts. The software has been implemented with low-fidelity models, typical of the conceptual design environment. Incorporation of higher-fidelity models will be possible, as the architecture of the code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis and optimization.

  20. When is a randomised controlled trial health equity relevant? Development and validation of a conceptual framework

    PubMed Central

    Jull, J; Whitehead, M; Petticrew, M; Kristjansson, E; Gough, D; Petkovic, J; Volmink, J; Weijer, C; Taljaard, M; Edwards, S; Mbuagbaw, L; Cookson, R; McGowan, J; Lyddiatt, A; Boyer, Y; Cuervo, L G; Armstrong, R; White, H; Yoganathan, M; Pantoja, T; Shea, B; Pottie, K; Norheim, O; Baird, S; Robberstad, B; Sommerfelt, H; Asada, Y; Wells, G; Tugwell, P; Welch, V

    2017-01-01

    Background Randomised controlled trials can provide evidence relevant to assessing the equity impact of an intervention, but such information is often poorly reported. We describe a conceptual framework to identify health equity-relevant randomised trials with the aim of improving the design and reporting of such trials. Methods An interdisciplinary and international research team engaged in an iterative consensus building process to develop and refine the conceptual framework via face-to-face meetings, teleconferences and email correspondence, including findings from a validation exercise whereby two independent reviewers used the emerging framework to classify a sample of randomised trials. Results A randomised trial can usefully be classified as ‘health equity relevant’ if it assesses the effects of an intervention on the health or its determinants of either individuals or a population who experience ill health due to disadvantage defined across one or more social determinants of health. Health equity-relevant randomised trials can either exclusively focus on a single population or collect data potentially useful for assessing differential effects of the intervention across multiple populations experiencing different levels or types of social disadvantage. Trials that are not classified as ‘health equity relevant’ may nevertheless provide information that is indirectly relevant to assessing equity impact, including information about individual level variation unrelated to social disadvantage and potentially useful in secondary modelling studies. Conclusion The conceptual framework may be used to design and report randomised trials. The framework could also be used for other study designs to contribute to the evidence base for improved health equity. PMID:28951402

  1. Energy-storage-flywheel housing-design-concept development

    NASA Astrophysics Data System (ADS)

    Coppa, A. P.

    1981-09-01

    A low cost vehicular flywheel housing conceptual design was obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheet metal components for automotive vehicles provided budgetary quotations for steel housings. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.

  2. The Devil is in the Concepts: Lessons Learned from World War II Planning Staffs for Transitioning from Conceptual to Detailed Planning

    DTIC Science & Technology

    2017-05-25

    the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual

  3. Life sciences payload definition and integration study. Volume 2: Requirements, design, and planning studies for the carry-on laboratories. [for Spacelab

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.

  4. Social norms of "good" design: Interdisciplinary perspectives from a survey of engineers and clinicians in bioengineering.

    PubMed

    Johnson, Angela N

    2016-08-01

    In bioengineering training for new researchers and engineers, a great deal of time is spent discussing what constitutes "good" design. Conceptualization of good design, however, varies widely across interdisciplinary team members, with potential to both foster innovation or lead to unproductive conflict. To explore how groups central to bioengineering teams (physicians/clinicians and engineers/physicists) conceptualize good design, we asked 176 professionals in bioengineering to complete a comprehensive online survey including items designed to assess cognitive and moral foundations (validated MFQ30 tool) and custom items assessing perceptions on good design in three areas (good design characteristics, reputation of design approvers, and perceived design patient/consumer suitability). Of those that responded, 82 completed all quantitative survey sections and were included in this preliminary analysis. Correlations between response areas were examined to explore the possible links between cognitive and moral biases and perspectives on good design. The survey results indicated that both groups were more conservative than average Americans based on previous reports, and clinicians scored higher on average for all MFQ30 domains. Numerous significant correlations with good design were observed among clinicians, while engineers/physicists most closely correlated good design with prescriber approval and scientific/technical literature. The exploratory analysis demonstrated the potential utility of sociological frameworks to explore relationships in design thinking with potential utility to stimulate thriving conversation on team-based design thinking in bioengineering education and practice.

  5. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  6. A 15kWe (nominal) solar thermal electric power conversion concept definition study: Steam Rankine reheat reciprocator system

    NASA Technical Reports Server (NTRS)

    Fuller, H.; Demler, R.; Poulin, E.; Dantowitz, P.

    1979-01-01

    An evaluation was made of the potential of a steam Rankine reheat reciprocator engine to operate at high efficiency in a point-focusing distributed receiver solar thermal-electric power system. The scope of the study included the engine system and electric generator; not included was the solar collector/mirror or the steam generator/receiver. A parametric analysis of steam conditions was completed leading to the selection of 973 K 12.1 MPa as the steam temperature/pressure for a conceptual design. A conceptual design was completed for a two cylinder/ opposed engine operating at 1800 rpm directly coupled to a commercially available induction generator. A unique part of the expander design is the use of carbon/graphite piston rings to eliminate the need for using oil as an upper cylinder lubricant. The evaluation included a system weight estimate of 230 kg at the mirror focal point with the condenser mounted separately on the ground. The estimated cost of the overall system is $1932 or $90/kW for the maximum 26 kW output.

  7. Conceptual design of a thermal control system for an inflatable lunar habitat module

    NASA Technical Reports Server (NTRS)

    Gadkari, Ketan; Goyal, Sanjay K.; Vanniasinkam, Joseph

    1991-01-01

    NASA is considering the establishment of a manned lunar base within the next few decades. To house and protect the crew from the harsh lunar environment, a habitat is required. A proposed habitat is an spherical, inflatable module. Heat generated in the module must be rejected to maintain a temperature suitable for human habitation. This report presents a conceptual design of a thermal control system for an inflatable lunar module. The design solution includes heat acquisition, heat transport, and heat rejection subsystems. The report discusses alternative designs and design solutions for each of the three subsystems mentioned above. Alternative subsystems for heat acquisition include a single water-loop, a single air-loop, and a double water-loop. The vapor compression cycle, vapor absorption cycle, and metal hydride absorption cycle are the three alternative transport subsystems. Alternative rejection subsystems include flat plate radiators, the liquid droplet radiator, and reflux boiler radiators. Feasibility studies on alternatives of each subsystem showed that the single water-loop, the vapor compression cycle, and the reflux boiler radiator were the most feasible alternatives. The design team combined the three subsystems to come up with an overall system design. Methods of controlling the system to adapt it for varying conditions within the module and in the environment are presented. Finally, the report gives conclusions and recommendations for further study of thermal control systems for lunar applications.

  8. Conceptual Green Infrastructure Design for Washington Street, City of Sanford

    EPA Pesticide Factsheets

    Summary of the Sanford Mill Yard Complex presents an opportunity to include green infrastructure practices in a land redevelopment initiative with relative ease while providing multiple benefits to the surrounding community.

  9. Laser-heated rocket thruster

    NASA Technical Reports Server (NTRS)

    Shoji, J. M.

    1977-01-01

    A space vehicle application using 5,000-kw input laser power was conceptually evaluated. A detailed design evaluation of a 10-kw experimental thruster including plasma size, chamber size, cooling, and performance analyses, was performed for 50 psia chamber pressure and using hydrogen as a propellant. The 10-kw hardware fabricated included a water cooled chamber, an uncooled copper chamber, an injector, igniters, and a thrust stand. A 10-kw optical train was designed.

  10. Building the BIKE: Development and Testing of the Biotechnology Instrument for Knowledge Elicitation (BIKE)

    NASA Astrophysics Data System (ADS)

    Witzig, Stephen B.; Rebello, Carina M.; Siegel, Marcelle A.; Freyermuth, Sharyn K.; Izci, Kemal; McClure, Bruce

    2014-10-01

    Identifying students' conceptual scientific understanding is difficult if the appropriate tools are not available for educators. Concept inventories have become a popular tool to assess student understanding; however, traditionally, they are multiple choice tests. International science education standard documents advocate that assessments should be reform based, contain diverse question types, and should align with instructional approaches. To date, no instrument of this type targeting student conceptions in biotechnology has been developed. We report here the development, testing, and validation of a 35-item Biotechnology Instrument for Knowledge Elicitation (BIKE) that includes a mix of question types. The BIKE was designed to elicit student thinking and a variety of conceptual understandings, as opposed to testing closed-ended responses. The design phase contained nine steps including a literature search for content, student interviews, a pilot test, as well as expert review. Data from 175 students over two semesters, including 16 student interviews and six expert reviewers (professors from six different institutions), were used to validate the instrument. Cronbach's alpha on the pre/posttest was 0.664 and 0.668, respectively, indicating the BIKE has internal consistency. Cohen's kappa for inter-rater reliability among the 6,525 total items was 0.684 indicating substantial agreement among scorers. Item analysis demonstrated that the items were challenging, there was discrimination among the individual items, and there was alignment with research-based design principles for construct validity. This study provides a reliable and valid conceptual understanding instrument in the understudied area of biotechnology.

  11. Using an interdisciplinary approach to identify factors that affect clinicians' compliance with evidence-based guidelines.

    PubMed

    Gurses, Ayse P; Marsteller, Jill A; Ozok, A Ant; Xiao, Yan; Owens, Sharon; Pronovost, Peter J

    2010-08-01

    Our objective was to identify factors that affect clinicians' compliance with the evidence-based guidelines using an interdisciplinary approach and develop a conceptual framework that can provide a comprehensive and practical guide for designing effective interventions. A literature review and a brainstorming session with 11 researchers from a variety of scientific disciplines were used to identify theoretical and conceptual models describing clinicians' guideline compliance. MEDLINE, EMBASE, CINAHL, and the bibliographies of the papers identified were used as data sources for identifying the relevant theoretical and conceptual models. Thirteen different models that originated from various disciplines including medicine, rural sociology, psychology, human factors and systems engineering, organizational management, marketing, and health education were identified. Four main categories of factors that affect compliance emerged from our analysis: clinician characteristics, guideline characteristics, system characteristics, and implementation characteristics. Based on these findings, we developed an interdisciplinary conceptual framework that specifies the expected interrelationships among these four categories of factors and their impact on clinicians' compliance. An interdisciplinary approach is needed to improve clinicians' compliance with evidence-based guidelines. The conceptual framework from this research can provide a comprehensive and systematic guide to identify barriers to guideline compliance and design effective interventions to improve patient safety.

  12. Waste Handeling Building Conceptual Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G.W. Rowe

    2000-11-06

    The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less

  13. Architectural design of an Algol interpreter

    NASA Technical Reports Server (NTRS)

    Jackson, C. K.

    1971-01-01

    The design of a syntax-directed interpreter for a subset of Algol is described. It is a conceptual design with sufficient details and completeness but as much independence of implementation as possible. The design includes a detailed description of a scanner, an analyzer described in the Floyd-Evans productions, a hash-coded symbol table, and an executor. Interpretation of sample programs is also provided to show how the interpreter functions.

  14. Towards Risk Based Design for NASA's Missions

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; Barrientos, Francesca; Meshkat, Leila

    2004-01-01

    This paper describes the concept of Risk Based Design in the context of NASA s low volume, high cost missions. The concept of accounting for risk in the design lifecycle has been discussed and proposed under several research topics, including reliability, risk analysis, optimization, uncertainty, decision-based design, and robust design. This work aims to identify and develop methods to enable and automate a means to characterize and optimize risk, and use risk as a tradeable resource to make robust and reliable decisions, in the context of the uncertain and ambiguous stage of early conceptual design. This paper first presents a survey of the related topics explored in the design research community as they relate to risk based design. Then, a summary of the topics from the NASA-led Risk Colloquium is presented, followed by current efforts within NASA to account for risk in early design. Finally, a list of "risk elements", identified for early-phase conceptual design at NASA, is presented. The purpose is to lay the foundation and develop a roadmap for future work and collaborations for research to eliminate and mitigate these risk elements in early phase design.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goetsch, D.; Bieniussa, K.; Schulz, H.

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branchingmore » pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.« less

  16. Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition

    NASA Technical Reports Server (NTRS)

    Zamel, James M.

    1993-01-01

    This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).

  17. Lunar surface transportation systems conceptual design lunar base systems study Task 5.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.

  18. The 25 kW power module evolution study. Part 3: Conceptual designs for power module evolution. Volume 4: Design analyses

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.

  19. Computer Code Aids Design Of Wings

    NASA Technical Reports Server (NTRS)

    Carlson, Harry W.; Darden, Christine M.

    1993-01-01

    AERO2S computer code developed to aid design engineers in selection and evaluation of aerodynamically efficient wing/canard and wing/horizontal-tail configurations that includes simple hinged-flap systems. Code rapidly estimates longitudinal aerodynamic characteristics of conceptual airplane lifting-surface arrangements. Developed in FORTRAN V on CDC 6000 computer system, and ported to MS-DOS environment.

  20. Conceptual design and feasibility evaluation model of a 10 to the 8th power bit oligatomic mass memory. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Recksiedler, A. L.; Lutes, C. L.

    1972-01-01

    The oligatomic (mirror) thin film memory technology is a suitable candidate for general purpose spaceborne applications in the post-1975 time frame. Capacities of around 10 to the 8th power bits can be reliably implemented with systems designed around a 335 million bit module. The recommended mode was determined following an investigation of implementation sizes ranging from an 8,000,000 to 100,000,000 bits per module. Cost, power, weight, volume, reliability, maintainability and speed were investigated. The memory includes random access, NDRO, SEC-DED, nonvolatility, and dual interface characteristics. The applications most suitable for the technology are those involving a large capacity with high speed (no latency), nonvolatility, and random accessing.

  1. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1988-01-01

    A proposed conceptual design to increase the output power of an existing X-band radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is described. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  2. Conceptual design of a 1-MW CW X-band transmitter for planetary radar

    NASA Technical Reports Server (NTRS)

    Bhanji, A. M.; Hoppe, D. J.; Conroy, B. L.; Freiley, A. J.

    1990-01-01

    A proposed conceptual design to increase the output power of an existing X-band planetary radar transmitter used for planetary radar exploration from 365 kW to 1 MW CW is presented. The basic transmitter system requirements as dictated by the specifications for the radar are covered. The characteristics and expected performance of the high-power klystrons are considered, and the transmitter power amplifier system is discussed. Also included is the design of all of the associated high-power microwave components, the feed system, and the phase-stable exciter. The expected performance of the beam supply, heat exchanger, and monitor and control devices is also presented. Finally, an assessment of the state-of-the-art technology needed to meet system requirements is given and possible areas of difficulty are summarized.

  3. Small Transfer Point On the Example in Opole, Poland

    NASA Astrophysics Data System (ADS)

    Kozłowski, Wojciech

    2017-10-01

    The paper presents the conceptual design of Small Transfer Point in Opole in Poland. The location on a triangle with an area of about 70 ares along with the whole 1 Maja Str. to the junction with Wladyslaw Reymont Str. There were introduction the current situations in this part of Opole City with problems and their solutions. The problems in creating the conceptual design include: very small area to be developed, non-functional location, dense traffic, large number of travellers, difficult planning of MZK (Municipal Communication Association) lines. Upon analysing the current situation, it becomes necessary to reorganize the vehicle movement from scratch, which we dealt with in the project. The Transfer Point has been designed focusing on modifying the traffic around it, taking into account the transformation of bicycle traffic.

  4. Design Features in Games for Health: Disciplinary and Interdisciplinary Expert Perspectives.

    PubMed

    Kelley, Christina; Wilcox, Lauren; Ng, Wendy; Schiffer, Jade; Hammer, Jessica

    2017-06-01

    Games for health (G4H) aim to improve health outcomes and encourage behavior change. While existing theoretical frameworks describe features of both games and health interventions, there has been limited systematic investigation into how disciplinary and interdisciplinary stakeholders understand design features in G4H. We recruited 18 experts from the fields of game design, behavioral health, and games for health, and prompted them with 16 sample games. Applying methods including open card sorting and triading, we elicited themes and features (e.g., real-world interaction, game mechanics) around G4H. We found evidence of conceptual differences suggesting that a G4H perspective is not simply the sum of game and health perspectives. At the same time, we found evidence of convergence in stakeholder views, including areas where game experts provided insights about health and vice versa. We discuss how this work can be applied to provide conceptual tools, improve the G4H design process, and guide approaches to encoding G4H-related data for large-scale empirical analysis.

  5. Design Features in Games for Health: Disciplinary and Interdisciplinary Expert Perspectives

    PubMed Central

    Kelley, Christina; Wilcox, Lauren; Ng, Wendy; Schiffer, Jade; Hammer, Jessica

    2017-01-01

    Games for health (G4H) aim to improve health outcomes and encourage behavior change. While existing theoretical frameworks describe features of both games and health interventions, there has been limited systematic investigation into how disciplinary and interdisciplinary stakeholders understand design features in G4H. We recruited 18 experts from the fields of game design, behavioral health, and games for health, and prompted them with 16 sample games. Applying methods including open card sorting and triading, we elicited themes and features (e.g., real-world interaction, game mechanics) around G4H. We found evidence of conceptual differences suggesting that a G4H perspective is not simply the sum of game and health perspectives. At the same time, we found evidence of convergence in stakeholder views, including areas where game experts provided insights about health and vice versa. We discuss how this work can be applied to provide conceptual tools, improve the G4H design process, and guide approaches to encoding G4H–related data for large-scale empirical analysis. PMID:28868523

  6. An approach to design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Wechsler, D. B.; Crouse, K. R.

    1986-01-01

    The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  7. An Approach To Design Knowledge Capture For The Space Station

    NASA Astrophysics Data System (ADS)

    Wechsler, D. B.; Crouse, K. R.

    1987-02-01

    Design of NASA's Space Station has begun. During the design cycle, and after activation of the Space Station, the reoccuring need will exist to access not only designs; but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  8. An approach to design knowledge capture for the space station

    NASA Technical Reports Server (NTRS)

    Wechsler, D. B.; Crouse, K. R.

    1987-01-01

    The design of NASA's space station has begun. During the design cycle, and after activation of the space station, the reoccurring need will exist to access not only designs, but also deeper knowledge about the designs, which is only hinted in the design definition. Areas benefiting from this knowledge include training, fault management, and onboard automation. NASA's Artificial Intelligence Office at Johnson Space Center and The MITRE Corporation have conceptualized an approach for capture and storage of design knowledge.

  9. DRACO Flowpath Performance and Environments

    NASA Technical Reports Server (NTRS)

    Komar, D. R.; McDonald, Jon

    1999-01-01

    The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.

  10. 10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... research and development A1Routine actions necessary to support the normal conduct of agency business, such... (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modelling), document preparation (such as conceptual design or feasibility studies, analytical energy supply...

  11. 10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... agreements for energy research and development A1Routine DOE business actions Routine actions necessary to... dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visits... (including, but not limited to, conceptual design, feasibility studies, and analytical energy supply and...

  12. 10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... International agreements for energy research and development A1 Routine DOE business actions Routine actions... dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visits... (including, but not limited to, conceptual design, feasibility studies, and analytical energy supply and...

  13. 10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... agreements for energy research and development A1Routine DOE business actions Routine actions necessary to... dissemination Information gathering (including, but not limited to, literature surveys, inventories, site visits... (including, but not limited to, conceptual design, feasibility studies, and analytical energy supply and...

  14. 10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... research and development A1Routine actions necessary to support the normal conduct of agency business, such... (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modelling), document preparation (such as conceptual design or feasibility studies, analytical energy supply...

  15. Conceptual Design of a Supersonic Business Jet Propulsion System

    NASA Technical Reports Server (NTRS)

    Bruckner, Robert J.

    2002-01-01

    NASA's Ultra-Efficient Engine Technology Program (UEETP) is developing a suite of technology to enhance the performance of future aircraft propulsion systems. Areas of focus for this suite of technology include: Highly Loaded Turbomachinery, Emissions Reduction, Materials and Structures, Controls, and Propulsion-Airframe Integration. The two major goals of the UEETP are emissions reduction of both landing and take-off nitrogen oxides (LTO-NO(x)) and mission carbon dioxide (CO2) through fuel burn reductions. The specific goals include a 70 percent reduction in the current LTO-NO(x) rule and an 8 percent reduction in mission CO2 emissions. In order to gain insight into the potential applications and benefits of these technologies on future aircraft, a set of representative flight vehicles was selected for systems level conceptual studies. The Supersonic Business Jet (SBJ) is one of these vehicles. The particular SBJ considered in this study has a capacity of 6 passengers, cruise Mach Number of 2.0, and a range of 4,000 nautical miles. Without the current existence of an SBJ the study of this vehicle requires a two-phased approach. Initially, a hypothetical baseline SBJ is designed which utilizes only current state of the art technology. Finally, an advanced SBJ propulsion system is designed and optimized which incorporates the advanced technologies under development within the UEETP. System benefits are then evaluated and compared to the program and design requirements. Although the program goals are only concerned with LTO-NO(x) and CO2 emissions, it is acknowledged that additional concerns for an SBJ include take-off noise, overland supersonic flight, and cruise NO(x) emissions at high altitudes. Propulsion system trade-offs in the conceptual design phase acknowledge these issues as well as the program goals. With the inclusion of UEETP technologies a propulsion system is designed which performs at 81% below the LTO-NO(x) rule, and reduces fuel burn by 23 percent compared to the current technology.

  16. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  17. Conceptual design study for an advanced cab and visual system, volume 2

    NASA Technical Reports Server (NTRS)

    Rue, R. J.; Cyrus, M. L.; Garnett, T. A.; Nachbor, J. W.; Seery, J. A.; Starr, R. L.

    1980-01-01

    The performance, design, construction and testing requirements are defined for developing an advanced cab and visual system. The rotorcraft system integration simulator is composed of the advanced cab and visual system and the rotorcraft system motion generator, and is part of an existing simulation facility. User's applications for the simulator include rotorcraft design development, product improvement, threat assessment, and accident investigation.

  18. Airbreathing hypersonic vehicle design and analysis methods

    NASA Technical Reports Server (NTRS)

    Lockwood, Mary Kae; Petley, Dennis H.; Hunt, James L.; Martin, John G.

    1996-01-01

    The design, analysis, and optimization of airbreathing hypersonic vehicles requires analyses involving many highly coupled disciplines at levels of accuracy exceeding those traditionally considered in a conceptual or preliminary-level design. Discipline analysis methods including propulsion, structures, thermal management, geometry, aerodynamics, performance, synthesis, sizing, closure, and cost are discussed. Also, the on-going integration of these methods into a working environment, known as HOLIST, is described.

  19. Faith Moves Mountains: An Appalachian Cervical Cancer Prevention Program

    PubMed Central

    Schoenberg, Nancy E.; Hatcher, Jennifer; Dignan, Mark B.; Shelton, Brent; Wright, Sherry; Dollarhide, Kaye F.

    2009-01-01

    Objective To provide a conceptual description of Faith Moves Mountains (FMM), an intervention designed to reduce the disproportionate burden of cervical cancer among Appalachian women. Methods FMM, a community-based participatory research program designed and implemented in collaboration with churches in rural, southeastern Kentucky, aims to increase cervical cancer screening (Pap tests) through a multiphase process of educational programming and lay health counseling. Results We provide a conceptual overview to key elements of the intervention, including programmatic development, theoretical basis, intervention approach and implementation, and evaluation procedures. Conclusions After numerous modifications, FMM has recruited and retained over 400 women, 30 churches, and has become a change agent in the community. PMID:19320612

  20. Phase A conceptual design study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The 12 month Phase A Conceptual Design Study of the Atmospheric, Magnetospheric and Plasmas in Space (AMPS) payload performed within the Program Development Directorate of the Marshall Space Flight Center is presented. The AMPS payload makes use of the Spacelab pressurized module and pallet, is launched by the space shuttle, and will have initial flight durations of 7 days. Scientific instruments including particle accelerators, high power transmitters, optical instruments, and chemical release devices are mounted externally on the Spacelab pallet and are controlled by the experimenters from within the pressurized module. The capability of real-time scientist interaction on-orbit with the experiment is a major characteristic of AMPS.

  1. Conceptual design studies of a V/STOL civil lift fan transport including effect of size and fan pressure ratio

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Conceptual design studies of V/STOL Lift Fan Commercial short-haul transport aircraft for the 1980-85 time period were studied to determine their technical and economic feasibility. The remote lift fan configurations with a variation in fan pressure ratio from 1.2 to 1.5 were investigated. Also studied were variation in stage length from 200 nautical miles to 800 nautical miles and cruise Mach numbers of 0.75 and 0.85. These results indicate a four engine configuration was feasible. The 95 PNdb noise footprint would be approximately 45 acres and the DOC's would be about 60% greater than conventional transports.

  2. The Atomic Intrinsic Integration Approach: A Structured Methodology for the Design of Games for the Conceptual Understanding of Physics

    ERIC Educational Resources Information Center

    Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra

    2012-01-01

    Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…

  3. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 2: Study results, attachment 2. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    Wiley, Lowell F.

    1985-01-01

    The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.

  4. Conceptual design report for the project to install leak detection in FAST-FT-534/548/549

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galloway, K.J.

    1992-07-01

    This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which ismore » already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.« less

  5. Conceptual design and analysis of orbital cryogenic liquid storage and supply systems

    NASA Technical Reports Server (NTRS)

    Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.

    1981-01-01

    A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.

  6. A conceptual design study of point focusing thin-film solar concentrators

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Candidates for reflector panel design concepts, including materials and configurations, were identified. The large list of candidates was screened and reduced to the five most promising ones. Cost and technical factors were used in making the final choices for the panel conceptual design, which was a stiffened steel skin substrate with a bonded, acrylic overcoated, aluminized polyester film reflective surface. Computer simulations were run for the concentrator optics using the selected panel design, and experimentally determined specularity and reflectivity values. Intercept factor curves and energy to the aperture curves were produced. These curves indicate that surface errors of 2 mrad (milliradians) or less would be required to capture the desired energy for a Brayton cycle 816 C case. Two test panels were fabricated to demonstrate manufacturability and optically tested for surface error. Surface errors in the range of 1.75 mrad and 2.2 mrad were measured.

  7. Development of Lightweight Material Composites to Insulate Cryogenic Tanks for 30-Day Storage in Outer Space

    NASA Technical Reports Server (NTRS)

    Krause, D. R.

    1972-01-01

    A conceptual design was developed for an MLI system which will meet the design constraints of an ILRV used for 7- to 30-day missions. The ten tasks are briefly described: (1) material survey and procurement, material property tests, and selection of composites to be considered; (2) definition of environmental parameters and tooling requirements, and thermal and structural design verification test definition; (3) definition of tanks and associated hardware to be used, and definition of MLI concepts to be considered; (4) thermal analyses, including purge, evacuation, and reentry repressurization analyses; (5) structural analyses (6) thermal degradation tests of composite and structural tests of fastener; (7) selection of MLI materials and system; (8) definition of a conceptual MLI system design; (9) evaluation of nondestructive inspection techniques and definition of procedures for repair of damaged areas; and (10) preparation of preliminary specifications.

  8. Data management in an object-oriented distributed aircraft conceptual design environment

    NASA Astrophysics Data System (ADS)

    Lu, Zhijie

    In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.

  9. Computer-aided operations engineering with integrated models of systems and operations

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.; Ryan, Dan; Fleming, Land

    1994-01-01

    CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.

  10. Space station Simulation Computer System (SCS) study for NASA/MSFC. Volume 3: Refined conceptual design report

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.

  11. A comparative study of Soviet versus Western helicopters. Part 1: General comparison of designs

    NASA Technical Reports Server (NTRS)

    Stepniewski, W. Z.

    1983-01-01

    This document provides a general comparison of the state of the art of Soviet helicopter design vs. that of the West (U.S. in particular). It includes both commonalities and differences in conceptual design philosophies by addressing design parameters and design effectiveness according to accepted criteria. The baseline for comparison is by design gross weight which is presented in four categories: under 12,000 lb, 30-100,000 lb, and greater than 100,000 lb.

  12. The opportunities and challenges of guided inquiry science for students with special needs

    NASA Astrophysics Data System (ADS)

    Miller, Marianne

    Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.

  13. Design for Safety - The Ares Launch Vehicles Paradigm Change

    NASA Technical Reports Server (NTRS)

    Safie, Fayssal M.; Maggio, Gaspare

    2010-01-01

    The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.

  14. When is a randomised controlled trial health equity relevant? Development and validation of a conceptual framework.

    PubMed

    Jull, J; Whitehead, M; Petticrew, M; Kristjansson, E; Gough, D; Petkovic, J; Volmink, J; Weijer, C; Taljaard, M; Edwards, S; Mbuagbaw, L; Cookson, R; McGowan, J; Lyddiatt, A; Boyer, Y; Cuervo, L G; Armstrong, R; White, H; Yoganathan, M; Pantoja, T; Shea, B; Pottie, K; Norheim, O; Baird, S; Robberstad, B; Sommerfelt, H; Asada, Y; Wells, G; Tugwell, P; Welch, V

    2017-09-25

    Randomised controlled trials can provide evidence relevant to assessing the equity impact of an intervention, but such information is often poorly reported. We describe a conceptual framework to identify health equity-relevant randomised trials with the aim of improving the design and reporting of such trials. An interdisciplinary and international research team engaged in an iterative consensus building process to develop and refine the conceptual framework via face-to-face meetings, teleconferences and email correspondence, including findings from a validation exercise whereby two independent reviewers used the emerging framework to classify a sample of randomised trials. A randomised trial can usefully be classified as 'health equity relevant' if it assesses the effects of an intervention on the health or its determinants of either individuals or a population who experience ill health due to disadvantage defined across one or more social determinants of health. Health equity-relevant randomised trials can either exclusively focus on a single population or collect data potentially useful for assessing differential effects of the intervention across multiple populations experiencing different levels or types of social disadvantage. Trials that are not classified as 'health equity relevant' may nevertheless provide information that is indirectly relevant to assessing equity impact, including information about individual level variation unrelated to social disadvantage and potentially useful in secondary modelling studies. The conceptual framework may be used to design and report randomised trials. The framework could also be used for other study designs to contribute to the evidence base for improved health equity. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Space station electric power system requirements and design

    NASA Technical Reports Server (NTRS)

    Teren, Fred

    1987-01-01

    An overview of the conceptual definition and design of the space station Electric Power System (EPS) is given. Responsibilities for the design and development of the EPS are defined. The EPS requirements are listed and discussed, including average and peak power requirements, contingency requirements, and fault tolerance. The most significant Phase B trade study results are summarized, and the design selections and rationale are given. Finally, the power management and distribution system architecture is presented.

  16. Use of theoretical and conceptual frameworks in qualitative research.

    PubMed

    Green, Helen Elise

    2014-07-01

    To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.

  17. Cammp Team

    NASA Technical Reports Server (NTRS)

    Evertt, Shonn F.; Collins, Michael; Hahn, William

    2008-01-01

    The International Space Station (ISS) Configuration Analysis Modeling and Mass Properties (CAMMP) Team is presenting a demo of certain CAMMP capabilities at a Booz Allen Hamilton conference in San Antonio. The team will be showing pictures of low fidelity, simplified ISS models, but no dimensions or technical data. The presentation will include a brief description of the contract and task, description and picture of the Topology, description of Generic Ground Rules and Constraints (GGR&C), description of Stage Analysis with constraints applied, and wrap up with description of other tasks such as Special Studies, Cable Routing, etc. The models include conceptual Crew Exploration Vehicle (CEV) and Lunar Lander images and animations created for promotional purposes, which are based entirely on public domain conceptual images from public NASA web sites and publicly available magazine articles and are not based on any actual designs, measurements, or 3D models. Conceptual Mars rover and lander are completely conceptual and are not based on any NASA designs or data. The demonstration includes High Fidelity Computer Aided Design (CAD) models of ISS provided by the ISS 3D CAD Team which will be used in a visual display to demonstrate the capabilities of the Teamcenter Visualization software. The demonstration will include 3D views of the CAD models including random measurements that will be taken to demonstrate the measurement tool. A 3D PDF file will be demonstrated of the Blue Book fidelity assembly complete model with no vehicles attached. The 3D zoom and rotation will be displayed as well as random measurements from the measurement tool. The External Configuration Analysis and Tracking Tool (ExCATT) Microsoft Access Database will be demonstrated to show its capabilities to organize and track hardware on ISS. The data included will be part numbers, serial numbers, historical, current, and future locations, of external hardware components on station. It includes dates of all external ISS events and flights and the associated hardware changes for each event. The hardware location information does not always reveal the exact location of the hardware, only the general location. In some cases the location is a module or carrier, in other cases it is a WIF socket, handrail, or attach point. Only small portions of the data will be displayed for demonstration purposes.

  18. High School Intervention for Influenza Biology and Epidemics/Pandemics: Impact on Conceptual Understanding among Adolescents

    PubMed Central

    Hasni, Abdelkrim

    2009-01-01

    Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137

  19. 76 FR 35072 - Proposed Guidance on Stress Testing for Banking Organizations With More Than $10 Billion in Total...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ... ensure that each is conceptually sound. Stress tests usually vary in design and complexity, including the... quantitative tests supported by high-quality data, employ a certain amount of expert or business judgment that... generally, enterprise-wide stress testing involves robust scenario design and effective translation of...

  20. Artemis: Results of the engineering feasibility study

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Information is given in viewgraph form for the Engineering Feasibility Study of the Artemis Project, a plan to establish a permanent base on the Moon. Topics covered include the Common Lunar Lander (CLL), lunar lander engineering study results, lunar lander trajectory analysis, lunar lander conceptual design and mass properties, the lunar lander communication subsystem design, and product assurance.

  1. Elementary Anatomy: Activities Designed to Teach Preschool Children about the Human Body

    ERIC Educational Resources Information Center

    Raven, Sara

    2016-01-01

    Studies show that children may not be able to conceptualize some of the topics associated with anatomy, including internal organs and involuntary muscles, because the concepts are too abstract and are not easily visualized. Thus, this article presents activities that incorporate a variety of models and hands-on activities designed to provide…

  2. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  3. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  4. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  5. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  6. 48 CFR 970.2204-1-1 - Administrative controls and criteria for application of the Davis-Bacon Act in operational or...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...

  7. Conceptual Design of an APT Reusable Spaceplane

    NASA Astrophysics Data System (ADS)

    Corpino, S.; Viola, N.

    This paper concerns the conceptual design of an Aerial Propellant Transfer reusable spaceplane carried out during our PhD course under the supervision of prof. Chiesa. The new conceptual design methodology employed in order to develop the APT concept and the main characteristics of the spaceplane itself will be presented and discussed. The methodology for conceptual design has been worked out during the last three years. It was originally thought for atmospheric vehicle design but, thanks to its modular structure which makes it very flexible, it has been possible to convert it to space transportation systems design by adding and/or modifying a few modules. One of the major improvements has been for example the conception and development of the mission simulation and trajectory optimisation module. The methodology includes as main characteristics and innovations the latest techniques of geometric modelling and logistic, operational and cost aspects since the first stages of the project. Computer aided design techniques are used to obtain a better definition of the product at the end of the conceptual design phase and virtual reality concepts are employed to visualise three-dimensional installation and operational aspects, at least in part replacing full-scale mock- ups. The introduction of parametric three-dimensional CAD software integrated into the conceptual design methodology represents a great improvement because it allows to carry out different layouts and to assess them immediately. It is also possible to link the CAD system to a digital prototyping software which combines 3D visualisation and assembly analysis, useful to define the so-called Digital Mock-Up at Conceptual Level (DMUCL) which studies the integration between the on board systems, sized with simulation algorithms, and the airframe. DMUCL represents a very good means to integrate the conceptual design with a methodology turned towards dealing with Reliability, Availability, Maintainability and Safety characteristics. Several applications of this conceptual design methodology have been carried out in order to validate it. Here we will show one of the most challenging case studies: the APT73 spaceplane. Today the demand for getting access to space is increasing and fully reusable launch vehicles are likely to play a key role in future space activities, but up until now this kind of space system has not been successfully developed. The ideal reusable launcher should be a vehicle able to maintain physical integrity during its mission, to takeoff and land at any conventional airport, to be operated with a minimum maintenance effort and to guarantee an adequate safety level. Thanks to its flexibility it should be able to enter the desired orbital plane and to abort its mission any time in case of mishap. Moreover considerable cost reduction could be expected only by having extremely high launch rates comparable to today's aircraft fleets in the commercial airlines business. In our opinion the solution which better meets these specifications is the Aerial Propellant Transfer spaceplane concept, the so called "one stage and a half" space vehicle, which takes off and climbs to meet a tanker aircraft to be aerially re-fuelled and then, after disconnecting from the tanker, it flies to reach the orbit. The APT73 has been designed to reach the Low Earth Orbit to perform two kinds of mission: 1) to release payloads; 2) to be flown as crew return vehicle from the ISS. The concept has emerged from a set of preliminary choices established at the beginning of the project: Possible variants to the basic plan have been investigated and a trade off analysis has been carried out in order to obtain the optimum configuration. Listed below are the options that have been evaluated: This paper provides a technical description of the APT73 and illustrates the design challenges encountered in the development of the project.

  8. Lunar base launch and landing facility conceptual design, 2nd edition

    NASA Technical Reports Server (NTRS)

    1988-01-01

    This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.

  9. Comparative analysis of the conceptual design studies of potential early commercial MHD power plants (CSPEC)

    NASA Technical Reports Server (NTRS)

    Sovie, R. J.; Winter, J. M.; Juhasz, A. J.; Berg, R. D.

    1982-01-01

    A conceptual design study of the MHD/steam plant that incorporates the use of oxygen enriched air preheated in a metallic heat exchanger as the combustor oxidant showed that this plant is the most attractive for early commercial applications. The variation of performance and cost was investigated as a function of plant size. The contractors' results for the overall efficiencies are in reasonable agreement considering the slight differences in their plant designs. NASA LeRC is reviewing cost and performance results for consistency with those of previous studies, including studies of conventional steam plants. LeRC in house efforts show that there are still many tradeoffs to be considered for these oxygen enriched plants and considerable variations can be made in channel length and level of oxygen enrichment with little change in overall plant efficiency.

  10. Space station experiment definition: Advanced power system test bed

    NASA Technical Reports Server (NTRS)

    Pollard, H. E.; Neff, R. E.

    1986-01-01

    A conceptual design for an advanced photovoltaic power system test bed was provided and the requirements for advanced photovoltaic power system experiments better defined. Results of this study will be used in the design efforts conducted in phase B and phase C/D of the space station program so that the test bed capabilities will be responsive to user needs. Critical PV and energy storage technologies were identified and inputs were received from the idustry (government and commercial, U.S. and international) which identified experimental requirements. These inputs were used to develop a number of different conceptual designs. Pros and cons of each were discussed and a strawman candidate identified. A preliminary evolutionary plan, which included necessary precursor activities, was established and cost estimates presented which would allow for a successful implementation to the space station in the 1994 time frame.

  11. Conceptual design of a divertor Thomson scattering diagnostic for NSTX-U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLean, A. G., E-mail: mclean@fusion.gat.com; Soukhanovskii, V. A.; Allen, S. L.

    2014-11-15

    A conceptual design for a divertor Thomson scattering (DTS) diagnostic has been developed for the NSTX-U device to operate in parallel with the existing multipoint Thomson scattering system. Higher projected peak heat flux in NSTX-U will necessitate application of advanced magnetics geometries and divertor detachment. Interpretation and modeling of these divertor scenarios will depend heavily on local measurement of electron temperature, T{sub e}, and density, n{sub e}, which DTS provides in a passive manner. The DTS design for NSTX-U adopts major elements from the successful DIII-D DTS system including 7-channel polychromators measuring T{sub e} to 0.5 eV. If implemented onmore » NSTX-U, the divertor TS system would provide an invaluable diagnostic for the boundary program to characterize the edge plasma.« less

  12. Fostering creativity in product and service development: validation in the domain of information technology.

    PubMed

    Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel

    2011-06-01

    This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.

  13. Mod-5A Wind Turbine Generator Program Design Report. Volume 2: Conceptual and Preliminary Design, Book 1

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.

  14. Two conceptual designs of helical fusion reactor FFHR-d1A based on ITER technologies and challenging ideas

    NASA Astrophysics Data System (ADS)

    Sagara, A.; Miyazawa, J.; Tamura, H.; Tanaka, T.; Goto, T.; Yanagi, N.; Sakamoto, R.; Masuzaki, S.; Ohtani, H.; The FFHR Design Group

    2017-08-01

    The Fusion Engineering Research Project (FERP) at the National Institute for Fusion Science (NIFS) is conducting conceptual design activities for the LHD-type helical fusion reactor FFHR-d1A. This paper newly defines two design options, ‘basic’ and ‘challenging.’ Conservative technologies, including those that will be demonstrated in ITER, are chosen in the basic option in which two helical coils are made of continuously wound cable-in-conduit superconductors of Nb3Sn strands, the divertor is composed of water-cooled tungsten monoblocks, and the blanket is composed of water-cooled ceramic breeders. In contrast, new ideas that would possibly be beneficial for making the reactor design more attractive are boldly included in the challenging option in which the helical coils are wound by connecting high-temperature REBCO superconductors using mechanical joints, the divertor is composed of a shower of molten tin jets, and the blanket is composed of molten salt FLiNaBe including Ti powers to increase hydrogen solubility. The main targets of the challenging option are early construction and easy maintenance of a large and three-dimensionally complicated helical structure, high thermal efficiency, and, in particular, realistic feasibility of the helical reactor.

  15. AVID - A design system for technology studies of advanced transportation concepts. [Aerospace Vehicle Interactive Design

    NASA Technical Reports Server (NTRS)

    Wilhite, A. W.; Rehder, J. J.

    1979-01-01

    The basic AVID (Aerospace Vehicle Interactive Design) is a general system for conceptual and preliminary design currently being applied to a broad range of future space transportation and spacecraft vehicle concepts. AVID hardware includes a minicomputer allowing rapid designer interaction. AVID software includes (1) an executive program and communication data base which provide the automated capability to couple individual programs, either individually in an interactive mode or chained together in an automatic sequence mode; and (2) the individual technology and utility programs which provide analysis capability in areas such as graphics, aerodynamics, propulsion, flight performance, weights, sizing, and costs.

  16. Mars Ascent Vehicle Design for Human Exploration

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Thomas, Dan; Sutherlin, Steven; Stephens, Walter; Rucker, Michelle

    2015-01-01

    In NASA's evolvable Mars campaign, transportation architectures for human missions to Mars rely on a combination of solar electric propulsion and chemical propulsion systems. Minimizing the Mars ascent vehicle (MAV) mass is critical in reducing the overall lander mass and also eases the requirements placed on the transportation stages. This paper presents the results of a conceptual design study to obtain a minimal MAV configuration, including subsystem designs and mass summaries.

  17. The design of a tactical situation display

    NASA Astrophysics Data System (ADS)

    Kuperman, Gilbert G.; Wilson, Denise L.

    The design and demonstration of a dynamic tactical situation display applicable to an advanced conceptual bomber crew system is discussed. The display is the primary source of mission pacing and situational awareness information in the Strategic Avionics Battle-Management Evaluation and Research (SABER) simulator. Aspects of the display design are described, including primary data items, horizontal situation display, point of interest indication, terrain data, graphics overlay, text window, and presentation modes.

  18. Conceptual Design Oriented Wing Structural Analysis and Optimization

    NASA Technical Reports Server (NTRS)

    Lau, May Yuen

    1996-01-01

    Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.

  19. The 25 kWe solar thermal Stirling hydraulic engine system: Conceptual design

    NASA Technical Reports Server (NTRS)

    White, Maurice; Emigh, Grant; Noble, Jack; Riggle, Peter; Sorenson, Torvald

    1988-01-01

    The conceptual design and analysis of a solar thermal free-piston Stirling hydraulic engine system designed to deliver 25 kWe when coupled to a 11 meter test bed concentrator is documented. A manufacturing cost assessment for 10,000 units per year was made. The design meets all program objectives including a 60,000 hr design life, dynamic balancing, fully automated control, more than 33.3 percent overall system efficiency, properly conditioned power, maximum utilization of annualized insolation, and projected production costs. The system incorporates a simple, rugged, reliable pool boiler reflux heat pipe to transfer heat from the solar receiver to the Stirling engine. The free-piston engine produces high pressure hydraulic flow which powers a commercial hydraulic motor that, in turn, drives a commercial rotary induction generator. The Stirling hydraulic engine uses hermetic bellows seals to separate helium working gas from hydraulic fluid which provides hydrodynamic lubrication to all moving parts. Maximum utilization of highly refined, field proven commercial components for electric power generation minimizes development cost and risk.

  20. Hybrid Propulsion Technology Program, phase 1. Volume 2: Technical discussion

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Information on hybrid propulsion system concepts is given largely in the form of outlines, charts and graphs. Included are the concept definition, trade study data generation, concept evaluation and selection, conceptual design definition, and technology definition.

  1. Introductory Statistics Students' Conceptual Understanding of Study Design and Conclusions

    NASA Astrophysics Data System (ADS)

    Fry, Elizabeth Brondos

    Recommended learning goals for students in introductory statistics courses include the ability to recognize and explain the key role of randomness in designing studies and in drawing conclusions from those studies involving generalizations to a population or causal claims (GAISE College Report ASA Revision Committee, 2016). The purpose of this study was to explore introductory statistics students' understanding of the distinct roles that random sampling and random assignment play in study design and the conclusions that can be made from each. A study design unit lasting two and a half weeks was designed and implemented in four sections of an undergraduate introductory statistics course based on modeling and simulation. The research question that this study attempted to answer is: How does introductory statistics students' conceptual understanding of study design and conclusions (in particular, unbiased estimation and establishing causation) change after participating in a learning intervention designed to promote conceptual change in these areas? In order to answer this research question, a forced-choice assessment called the Inferences from Design Assessment (IDEA) was developed as a pretest and posttest, along with two open-ended assignments, a group quiz and a lab assignment. Quantitative analysis of IDEA results and qualitative analysis of the group quiz and lab assignment revealed that overall, students' mastery of study design concepts significantly increased after the unit, and the great majority of students successfully made the appropriate connections between random sampling and generalization, and between random assignment and causal claims. However, a small, but noticeable portion of students continued to demonstrate misunderstandings, such as confusion between random sampling and random assignment.

  2. Complex multidisciplinary systems decomposition for aerospace vehicle conceptual design and technology acquisition

    NASA Astrophysics Data System (ADS)

    Omoragbon, Amen

    Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.

  3. Optical design concept for the Giant Magellan Telescope Multi-object Astronomical and Cosmological Spectrograph (GMACS)

    NASA Astrophysics Data System (ADS)

    Schmidt, Luke M.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Prochaska, Travis; DePoy, Darren L.; Marshall, Jennifer L.; Cook, Erika; Froning, Cynthia; Ji, Tae-Geun; Lee, Hye-In; Mendes de Oliveira, Claudia; Pak, Soojong; Papovich, Casey

    2016-08-01

    We present a preliminary conceptual optical design for GMACS, a wide field, multi-object, optical spectrograph currently being developed for the Giant Magellan Telescope (GMT). We include details of the optical design requirements derived from the instrument scientific and technical objectives and demonstrate how these requirements are met by the current design. Detector specifications, field acquisition/alignment optics, and optical considerations for the active flexure control system are also discussed.

  4. Conceptual Chemical Process Design for Sustainability.

    EPA Science Inventory

    This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...

  5. Development of Conceptual Design Support Tool Founded on Formalization of Conceptual Design Process for Regenerative Life Support Systems

    NASA Astrophysics Data System (ADS)

    Miyajima, Hiroyuki; Yuhara, Naohiro

    Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.

  6. Task 6 -- Advanced turbine systems program conceptual design and product development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-01-10

    The Allison Engine Company has completed the Task 6 Conceptual Design and Analysis of Phase 2 of the Advanced Turbine System (ATS) contract. At the heart of Allison`s system is an advanced simple cycle gas turbine engine. This engine will incorporate components that ensure the program goals are met. Allison plans to commercialize the ATS demonstrator and market a family of engines incorporating this technology. This family of engines, ranging from 4.9 MW to 12 MW, will be suitable for use in all industrial engine applications, including electric power generation, mechanical drive, and marine propulsion. In the field of electricmore » power generation, the engines will be used for base load, standby, cogeneration, and distributed generation applications.« less

  7. Contemporary research on parenting: conceptual, methodological, and translational issues.

    PubMed

    Power, Thomas G; Sleddens, Ester F C; Berge, Jerica; Connell, Lauren; Govig, Bert; Hennessy, Erin; Liggett, Leanne; Mallan, Kimberley; Santa Maria, Diane; Odoms-Young, Angela; St George, Sara M

    2013-08-01

    Researchers over the last decade have documented the association between general parenting style and numerous factors related to childhood obesity (e.g., children's eating behaviors, physical activity, and weight status). Many recent childhood obesity prevention programs are family focused and designed to modify parenting behaviors thought to contribute to childhood obesity risk. This article presents a brief consideration of conceptual, methodological, and translational issues that can inform future research on the role of parenting in childhood obesity. They include: (1) General versus domain specific parenting styles and practices; (2) the role of ethnicity and culture; (3) assessing bidirectional influences; (4) broadening assessments beyond the immediate family; (5) novel approaches to parenting measurement; and (6) designing effective interventions. Numerous directions for future research are offered.

  8. SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    CARRO CA

    2010-03-09

    This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less

  9. Participatory Design of an Integrated Information System Design to Support Public Health Nurses and Nurse Managers

    PubMed Central

    Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George

    2014-01-01

    Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760

  10. Advanced thermionic energy conversion

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Developments towards space and terrestrial applications of thermionic energy conversion are presented. Significant accomplishments for the three month period include: (1) devised a blade-type distributed lead design with many advantages compared to the stud-type distributed lead; (2) completed design of Marchuk tube test apparatus; (3) concluded, based on current understanding, that residual hydrogen should not contribute to a negative space charge barrier at the collector; (4) modified THX design program to include series-coupled designs as well as inductively-coupled designs; (5) initiated work on the heat transfer technology, THX test module, output power transfer system, heat transfer system, and conceptual plant design tasks; and (6) reached 2200 hours of operation in JPL-5 cylindrical converter envelope test.

  11. DEMONSTRATION OF FUEL CELLS TO RECOVER ENERGY FROM LANDFILL GAS - PHASE I FINAL REPORT: CONCEPTUAL STUDY

    EPA Science Inventory

    The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...

  12. Design and Validation of the Quantum Mechanics Conceptual Survey

    ERIC Educational Resources Information Center

    McKagan, S. B.; Perkins, K. K.; Wieman, C. E.

    2010-01-01

    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…

  13. Conceptual design of a laser fusion power plant. Part I. An integrated facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less

  14. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portionsmore » of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has benefited greatly from review principally by Steve Pye, and also by Paul Eslinger, Dave Sevougian and Jiann Su.« less

  15. Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design

    NASA Technical Reports Server (NTRS)

    Sanders, Bobby W.; Weir, Lois J.

    1999-01-01

    The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.

  16. 7 CFR Exhibit C to Subpart C of... - Checklist of Visual Exhibits and Documentation for RRH, RCH, and LH Proposals

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... E of part 1944 of this chapter. This may include but is not limited to: 1. Schematic design drawings..., lot layouts, major drainageways, and other development planned. Preliminary sections and details shall... decisions regarding the conceptual design of the proposed project should be made prior to this submission...

  17. Participatory design of an integrated information system design to support public health nurses and nurse managers.

    PubMed

    Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George

    2014-01-01

    The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.

  18. Conceptual Strategies for Operationalizing Multicultural Curricula.

    ERIC Educational Resources Information Center

    Belay, Getinet

    1992-01-01

    Discusses the trends in multiculturalism research, the importance of cultural diversity in the curriculum, and strategies for operationalizing a multicultural curriculum in library and information science education. Topics addressed include pedagogical methodology, leaning style, and course and program design. (97 references) (EA)

  19. Spacelab cryogenic propellant management experiment

    NASA Technical Reports Server (NTRS)

    Cady, E. C.

    1976-01-01

    The conceptual design of a Spacelab cryogen management experiment was performed to demonstrate toe desirability and feasibility of subcritical cryogenic fluid orbital storage and supply. A description of the experimental apparatus, definition of supporting requirements, procedures, data analysis, and a cost estimate are included.

  20. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  1. Issues in developing valid assessments of speech pathology students' performance in the workplace.

    PubMed

    McAllister, Sue; Lincoln, Michelle; Ferguson, Alison; McAllister, Lindy

    2010-01-01

    Workplace-based learning is a critical component of professional preparation in speech pathology. A validated assessment of this learning is seen to be 'the gold standard', but it is difficult to develop because of design and validation issues. These issues include the role and nature of judgement in assessment, challenges in measuring quality, and the relationship between assessment and learning. Valid assessment of workplace-based performance needs to capture the development of competence over time and account for both occupation specific and generic competencies. This paper reviews important conceptual issues in the design of valid and reliable workplace-based assessments of competence including assessment content, process, impact on learning, measurement issues, and validation strategies. It then goes on to share what has been learned about quality assessment and validation of a workplace-based performance assessment using competency-based ratings. The outcomes of a four-year national development and validation of an assessment tool are described. A literature review of issues in conceptualizing, designing, and validating workplace-based assessments was conducted. Key factors to consider in the design of a new tool were identified and built into the cycle of design, trialling, and data analysis in the validation stages of the development process. This paper provides an accessible overview of factors to consider in the design and validation of workplace-based assessment tools. It presents strategies used in the development and national validation of a tool COMPASS, used in an every speech pathology programme in Australia, New Zealand, and Singapore. The paper also describes Rasch analysis, a model-based statistical approach which is useful for establishing validity and reliability of assessment tools. Through careful attention to conceptual and design issues in the development and trialling of workplace-based assessments, it has been possible to develop the world's first valid and reliable national assessment tool for the assessment of performance in speech pathology.

  2. Design Studios in Instructional Design and Technology: What Are the Possibilities?

    ERIC Educational Resources Information Center

    Knowlton, Dave S.

    2016-01-01

    Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…

  3. Geographic information system/watershed model interface

    USGS Publications Warehouse

    Fisher, Gary T.

    1989-01-01

    Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.

  4. Coal-Based Fuel-Cell Powerplants

    NASA Technical Reports Server (NTRS)

    Ferral, J. F.; Pappano, A. W.; Jennings, C. N.

    1986-01-01

    Report assesses advanced technologyy design alternatives for integrated coal-gasifier/fuel-cell powerplants. Various gasifier, cleanup, and fuelcell options evaluated. Evaluation includes adjustments to assumed performances and costs of proposed technologies where required. Analysis identifies uncertainties remaining in designs and most promising alternatives and research and development required to develop these technologies. Bulk of report summary and detailed analysis of six major conceptual designs and variations of each. All designs for plant that uses Illinois No. 6 coal and produces 675 MW of net power.

  5. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  6. Learning to Deflect: Conceptual Change in Physics during Digital Game Play

    ERIC Educational Resources Information Center

    Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.

    2015-01-01

    How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…

  7. Engineering performance metrics

    NASA Astrophysics Data System (ADS)

    Delozier, R.; Snyder, N.

    1993-03-01

    Implementation of a Total Quality Management (TQM) approach to engineering work required the development of a system of metrics which would serve as a meaningful management tool for evaluating effectiveness in accomplishing project objectives and in achieving improved customer satisfaction. A team effort was chartered with the goal of developing a system of engineering performance metrics which would measure customer satisfaction, quality, cost effectiveness, and timeliness. The approach to developing this system involved normal systems design phases including, conceptual design, detailed design, implementation, and integration. The lessons teamed from this effort will be explored in this paper. These lessons learned may provide a starting point for other large engineering organizations seeking to institute a performance measurement system accomplishing project objectives and in achieving improved customer satisfaction. To facilitate this effort, a team was chartered to assist in the development of the metrics system. This team, consisting of customers and Engineering staff members, was utilized to ensure that the needs and views of the customers were considered in the development of performance measurements. The development of a system of metrics is no different than the development of any type of system. It includes the steps of defining performance measurement requirements, measurement process conceptual design, performance measurement and reporting system detailed design, and system implementation and integration.

  8. Investigation into the impact of agility on conceptual fighter design

    NASA Technical Reports Server (NTRS)

    Engelbeck, R. M.

    1995-01-01

    The Agility Design Study was performed by the Boeing Defense and Space Group for the NASA Langley Research Center. The objective of the study was to assess the impact of agility requirements on new fighter configurations. Global trade issues investigated were the level of agility, the mission role of the aircraft (air-to-ground, multi-role, or air-to-air), and whether the customer is Air force, Navy, or joint service. Mission profiles and design objectives were supplied by NASA. An extensive technology assessment was conducted to establish the available technologies to industry for the aircraft. Conceptual level methodology is presented to assess the five NASA-supplied agility metrics. Twelve configurations were developed to address the global trade issues. Three-view drawings, inboard profiles, and performance estimates were made and are included in the report. A critical assessment and lessons learned from the study are also presented.

  9. A Generic Guidance and Control Structure for Six-Degree-of-Freedom Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Cotting, M. Christopher; Cox, Timothy H.

    2005-01-01

    A control system framework is presented for both real-time and batch six-degree-of-freedom simulation. This framework allows stabilization and control with multiple command options, from body rate control to waypoint guidance. Also, pilot commands can be used to operate the simulation in a pilot-in-the-loop environment. This control system framework is created by using direct vehicle state feedback with nonlinear dynamic inversion. A direct control allocation scheme is used to command aircraft effectors. Online B-matrix estimation is used in the control allocation algorithm for maximum algorithm flexibility. Primary uses for this framework include conceptual design and early preliminary design of aircraft, where vehicle models change rapidly and a knowledge of vehicle six-degree-of-freedom performance is required. A simulated airbreathing hypersonic vehicle and a simulated high performance fighter are controlled to demonstrate the flexibility and utility of the control system.

  10. Conceptual design study: Forest Fire Advanced System Technology (FFAST)

    NASA Technical Reports Server (NTRS)

    Nichols, J. D.; Warren, J. R.

    1986-01-01

    An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.

  11. A conceptual design study for the secondary mirror drive of the shuttle infrared telescope facility (SIRTF)

    NASA Technical Reports Server (NTRS)

    Sager, R. E.; Cox, D. W.

    1983-01-01

    Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.

  12. Space station accommodations for life sciences research facilities: Phase A conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.

  13. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  14. Use of clickers and sustainable reform in upper-division physics courses

    NASA Astrophysics Data System (ADS)

    Dubson, Michael

    2008-03-01

    At the University of Colorado at Boulder, successful reforms of our freshmen and sophomore-level physics courses are now being extended to upper-division courses, including Mechanics, Math Methods, QM, E&M, and Thermal Physics. Our course reforms include clicker questions (ConcepTests) in lecture, peer instruction, and an added emphasis on conceptual understanding and qualitative reasoning on homework assignments and exams. Student feedback has been strongly positive, and I will argue that such conceptual training improves rather than dilutes, traditional, computationally-intensive problem-solving skills. In order for these reforms to be sustainable, reform efforts must begin with department-wide consensus and agreed-upon measures of success. I will discuss the design of good clicker questions and effective incorporation into upper-level courses, including examples from materials science. Condensed matter physics, which by nature involve intelligent use of approximation, particularly lends itself to conceptual training. I will demonstrate the use of a clicker system (made by iClicker) with audience-participation questions. Come prepared to think and interact, rather than just sit there!

  15. An expanded conceptual framework for solution-focused management of chemical pollution in European waters.

    PubMed

    Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie

    2017-01-01

    This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.

  16. Conceptual design and evaluation of selected Space Station concepts, volume 2

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The partially closed cycle environmental control and Life Support Subsystems is examined. Components of the system include air pressure control, heat control, water management, air and water quality monitors, fire detection and suppression, personnel escape, and EVA support subsystems.

  17. Modular biowaste monitoring system conceptual design

    NASA Technical Reports Server (NTRS)

    Fogal, G. L.

    1974-01-01

    The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.

  18. Conceptual design of free-piston Stirling conversion system for solar power units

    NASA Astrophysics Data System (ADS)

    Loktionov, Iu. V.

    A conversion system has been conceptually designed for solar power units of the dish-Stirling type. The main design objectives were to demonstrate the possibility of attaining such performance characteristics as low manufacturing and life cycle costs, high reliability, long life, high efficiency, power output stability, self-balance, automatic (or self-) start-up, and easy maintenance. The system design includes a heat transfer and utilization subsystem with a solar receiver, a free-piston engine, an electric power generation subsystem, and a control subsystem. The working fluid is helium. The structural material is stainless steel for hot elements, aluminum alloys and plastics for others. The electric generation subunit can be fabricated in three options: with an induction linear alternator, with a permanent magnet linear alternator, and with a serial rotated induction generator and a hydraulic drive subsystem. The heat transfer system is based on heat pipes or the reflux boiler principle. Several models of heat transfer units using a liquid metal (Na or Na-K) have been created and demonstrated.

  19. Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.

  20. Mechanical conceptual design of 6.5 meter telescope: Telescopio San Pedro Mártir (TSPM)

    NASA Astrophysics Data System (ADS)

    Uribe, Jorge; Bringas, Vicente; Reyes, Noe; Tovar, Carlos; López, Aldo; Caballero, Xóchitl; Martínez, César; Toledo, Gengis; Lee, William; Carramiñana, Alberto; González, Jesús; Richer, Michael; Sánchez, Beatriz; Lucero, Diana; Manuel, Rogelio; Rubio, Saúl; González, Germán.; Hernández, Obed; Segura, José; Macias, Eduardo; García, Mary; Lazaro, José; Rosales, Fabián.; del Llano, Luis

    2016-07-01

    Telescopio San Pedro Mártir (TSPM) project intends to build a 6.5 meters telescope with alt-azimuth design, currently at the conceptual design. The project is an association between Instituto de Astronomía de la Universidad Nacional Autónoma de México (IA-UNAM) and the Instituto Nacional de Astrofísica, Óptica Electrónica (INAOE) in partnership with department of Astronomy and Steward Observatory of University of Arizona and Smithsonian Astrophysical Observatory of Harvard University. Conceptual design of the telescope is lead and developed by the Centro de Ingeniería y Desarrollo Industrial (CIDESI). An overview of the feasibility study and the structural conceptual design are summarized in this paper. The telescope concept is based on telescopes already commissioned such as MMT and the Baade and Clay Magellan telescopes, building up on these proven concepts. The main differences relative to the Magellan pair are; the elevation axis is located 1 meter above the primary mirror vertex, allowing for a similar field of view at the Cassegrain and both Nasmyth focal stations; instead of using a vane ends to position the secondary mirror TSPM considers an Steward platform like MMT; finally TSPM has a larger floor distance to m1 cell than Magellans and MMT. Initially TSPM will operate with an f/5 Cassegrain station, but the design considers further Nasmyth configurations from a Cassegrain f/5 up to a Gregorian f/11. The telescope design includes 7 focal stations: 1 Cassegrain; 2 Nasmyth; and 4 folded-Cassegrain. The telescope will be designed and manufactured in Mexico, will be design in Queretaro by CIDESI and built between Queretaro and Michoacán manufacturing facilities; it will be preassembled in these facilities and disassembled to send it to the San Pedro Mártir Observatory for final integration. The azimuth and altitude structure is planned to be constructed in modules and transported by truck and shipped to Ensenada and finally to the OAN where is going to be finally assembled, verified and tested.

  1. Integrating between-session interventions (homework) in therapy: the importance of the therapeutic relationship and cognitive case conceptualization.

    PubMed

    Cronin, Timothy J; Lawrence, Katherine A; Taylor, Kate; Norton, Peter J; Kazantzis, Nikolaos

    2015-05-01

    Between-session interventions, or homework, are crucial to a range of psychological therapies, including cognitive behavior therapy (CBT). Therapeutic interventions often involve experiencing emotions and situations, or examining strongly held views about their problems, that clients can find distressing. Hence, the clinician faces a particular challenge in collaborating with the client to carry out these interventions between sessions. In this article, we convey how this process in CBT requires not only a consideration of the theoretically meaningful determinants of adherence behavior but also a sophisticated cognitive case conceptualization. Using case material, we illustrate the interplay between in-session design, planning, and review of between-session interventions and the conceptualization. We also include a distinction between generic elements of the therapeutic relationship and CBT-specific elements. The case material also attends to the person of the therapist, and his or her own cognitive and emotional reactions occurring throughout the process of discussing between-session interventions. © 2015 Wiley Periodicals, Inc.

  2. Predicting fifth-grade students' understanding of ecological science concepts with motivational and cognitive variables

    NASA Astrophysics Data System (ADS)

    Alao, Solomon

    The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.

  3. Configuration optimization of space structures

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos; Crivelli, Luis A.; Vandenbelt, David

    1991-01-01

    The objective is to develop a computer aid for the conceptual/initial design of aerospace structures, allowing configurations and shape to be apriori design variables. The topics are presented in viewgraph form and include the following: Kikuchi's homogenization method; a classical shape design problem; homogenization method steps; a 3D mechanical component design example; forming a homogenized finite element; a 2D optimization problem; treatment of volume inequality constraint; algorithms for the volume inequality constraint; object function derivatives--taking advantage of design locality; stiffness variations; variations of potential; and schematics of the optimization problem.

  4. Shuttle/tethered satellite system conceptual design study

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.

  5. Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Li, Wu; Robinson, Jay

    2016-01-01

    This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.

  6. Function-based design process for an intelligent ground vehicle vision system

    NASA Astrophysics Data System (ADS)

    Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.

    2010-10-01

    An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.

  7. Conceptual and Preliminary Design of a Low-Cost Precision Aerial Delivery System

    DTIC Science & Technology

    2016-06-01

    test results. It includes an analysis of the failure modes encountered during flight experimentation , methodology used for conducting coordinate...and experimentation . Additionally, the current and desired end state of the research is addressed. Finally, this chapter outlines the methodology ...preliminary design phases are utilized to investigate and develop a potentially low-cost alternative to existing systems. Using an Agile methodology

  8. Thermal protection system repair kit program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility and conceptual design aspects of repair materials and procedures for in orbit repair of the space shuttle orbiter TPS tiles are investigated. Material studies to investigate cure in place materials are described including catalyst and cure studies, ablation tests and evaluations, and support mixing and applicator design. The feasibility of the repair procedures, the storage of the TPS, dispensing, and cure problems are addressed.

  9. Using a Systematic Conceptual Model for a Process Evaluation of a Middle School Obesity Risk-Reduction Nutrition Curriculum Intervention: "Choice, Control & Change"

    ERIC Educational Resources Information Center

    Lee, Heewon; Contento, Isobel R.; Koch, Pamela

    2013-01-01

    Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…

  10. Conceptual design of a synchronous Mars telecommunications satellite

    NASA Technical Reports Server (NTRS)

    Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.

    1989-01-01

    Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.

  11. Augmenting Parametric Optimal Ascent Trajectory Modeling with Graph Theory

    NASA Technical Reports Server (NTRS)

    Dees, Patrick D.; Zwack, Matthew R.; Edwards, Stephen; Steffens, Michael

    2016-01-01

    It has been well documented that decisions made in the early stages of Conceptual and Pre-Conceptual design commit up to 80% of total Life-Cycle Cost (LCC) while engineers know the least about the product they are designing [1]. Once within Preliminary and Detailed design however, making changes to the design becomes far more difficult to enact in both cost and schedule. Primarily this has been due to a lack of detailed data usually uncovered later during the Preliminary and Detailed design phases. In our current budget-constrained environment, making decisions within Conceptual and Pre-Conceptual design which minimize LCC while meeting requirements is paramount to a program's success. Within the arena of launch vehicle design, optimizing the ascent trajectory is critical for minimizing the costs present within such concerns as propellant, aerodynamic, aeroheating, and acceleration loads while meeting requirements such as payload delivered to a desired orbit. In order to optimize the vehicle design its constraints and requirements must be known, however as the design cycle proceeds it is all but inevitable that the conditions will change. Upon that change, the previously optimized trajectory may no longer be optimal, or meet design requirements. The current paradigm for adjusting to these updates is generating point solutions for every change in the design's requirements [2]. This can be a tedious, time-consuming task as changes in virtually any piece of a launch vehicle's design can have a disproportionately large effect on the ascent trajectory, as the solution space of the trajectory optimization problem is both non-linear and multimodal [3]. In addition, an industry standard tool, Program to Optimize Simulated Trajectories (POST), requires an expert analyst to produce simulated trajectories that are feasible and optimal [4]. In a previous publication the authors presented a method for combatting these challenges [5]. In order to bring more detailed information into Conceptual and Pre-Conceptual design, knowledge of the effects originating from changes to the vehicle must be calculated. In order to do this, a model capable of quantitatively describing any vehicle within the entire design space under consideration must be constructed. This model must be based upon analysis of acceptable fidelity, which in this work comes from POST. Design space interrogation can be achieved with surrogate modeling, a parametric, polynomial equation representing a tool. A surrogate model must be informed by data from the tool with enough points to represent the solution space for the chosen number of variables with an acceptable level of error. Therefore, Design Of Experiments (DOE) is used to select points within the design space to maximize information gained on the design space while minimizing number of data points required. To represent a design space with a non-trivial number of variable parameters the number of points required still represent an amount of work which would take an inordinate amount of time via the current paradigm of manual analysis, and so an automated method was developed. The best practices of expert trajectory analysts working within NASA Marshall's Advanced Concepts Office (ACO) were implemented within a tool called multiPOST. These practices include how to use the output data from a previous run of POST to inform the next, determining whether a trajectory solution is feasible from a real-world perspective, and how to handle program execution errors. The tool was then augmented with multiprocessing capability to enable analysis on multiple trajectories simultaneously, allowing throughput to scale with available computational resources. In this update to the previous work the authors discuss issues with the method and solutions.

  12. Photovoltaic system criteria documents. Volume 4: Review criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    Guidelines are provided for the organization, preparation and conduct of program reviews for photovoltaic applications. These criteria apply to all photovoltaic applications. They include, but are not limited to, the following: (1) Conceptual design review; (2) Preliminary design review; (3) Critical design review; and (4) Operational readiness review. Contract goal's and objectives are met through program monitoring for cost, schedule, and performance for both managerial and technical elements for all PV applications activities.

  13. Users manual for updated computer code for axial-flow compressor conceptual design

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.

    1992-01-01

    An existing computer code that determines the flow path for an axial-flow compressor either for a given number of stages or for a given overall pressure ratio was modified for use in air-breathing engine conceptual design studies. This code uses a rapid approximate design methodology that is based on isentropic simple radial equilibrium. Calculations are performed at constant-span-fraction locations from tip to hub. Energy addition per stage is controlled by specifying the maximum allowable values for several aerodynamic design parameters. New modeling was introduced to the code to overcome perceived limitations. Specific changes included variable rather than constant tip radius, flow path inclination added to the continuity equation, input of mass flow rate directly rather than indirectly as inlet axial velocity, solution for the exact value of overall pressure ratio rather than for any value that met or exceeded it, and internal computation of efficiency rather than the use of input values. The modified code was shown to be capable of computing efficiencies that are compatible with those of five multistage compressors and one fan that were tested experimentally. This report serves as a users manual for the revised code, Compressor Spanline Analysis (CSPAN). The modeling modifications, including two internal loss correlations, are presented. Program input and output are described. A sample case for a multistage compressor is included.

  14. Conceptual design of the ITER fast-ion loss detector.

    PubMed

    Garcia-Munoz, M; Kocan, M; Ayllon-Guerola, J; Bertalot, L; Bonnet, Y; Casal, N; Galdon, J; Garcia Lopez, J; Giacomin, T; Gonzalez-Martin, J; Gunn, J P; Jimenez-Ramos, M C; Kiptily, V; Pinches, S D; Rodriguez-Ramos, M; Reichle, R; Rivero-Rodriguez, J F; Sanchis-Sanchez, L; Snicker, A; Vayakis, G; Veshchev, E; Vorpahl, Ch; Walsh, M; Walton, R

    2016-11-01

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cm outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.

  15. Field-Reversed Configuration Power Plant Critical-Issue Scoping Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santarius, J. F.; Mogahed, E. A.; Emmert, G. A.

    A team from the Universities of Wisconsin, Washington, and Illinois performed an engineering scoping study of critical issues for field-reversed configuration (FRC) power plants. The key tasks for this research were (1) systems analysis for deuterium-tritium (D-T) FRC fusion power plants, and (2) conceptual design of the blanket and shield module for an FRC fusion core. For the engineering conceptual design of the fusion core, the project team focused on intermediate-term technology. For example, one decision was to use steele structure. The FRC systems analysis led to a fusion power plant with attractive features including modest size, cylindrical symmetry, goodmore » thermal efficiency (52%), relatively easy maintenance, and a high ratio of electric power to fusion core mass, indicating that it would have favorable economics.« less

  16. Contemporary Research on Parenting: Conceptual, Methodological, and Translational Issues

    PubMed Central

    Sleddens, Ester F. C.; Berge, Jerica; Connell, Lauren; Govig, Bert; Hennessy, Erin; Liggett, Leanne; Mallan, Kimberley; Santa Maria, Diane; Odoms-Young, Angela; St. George, Sara M.

    2013-01-01

    Abstract Researchers over the last decade have documented the association between general parenting style and numerous factors related to childhood obesity (e.g., children's eating behaviors, physical activity, and weight status). Many recent childhood obesity prevention programs are family focused and designed to modify parenting behaviors thought to contribute to childhood obesity risk. This article presents a brief consideration of conceptual, methodological, and translational issues that can inform future research on the role of parenting in childhood obesity. They include: (1) General versus domain specific parenting styles and practices; (2) the role of ethnicity and culture; (3) assessing bidirectional influences; (4) broadening assessments beyond the immediate family; (5) novel approaches to parenting measurement; and (6) designing effective interventions. Numerous directions for future research are offered. PMID:23944927

  17. Technology Projections for Solar Dynamic Power

    NASA Technical Reports Server (NTRS)

    Mason, Lee S.

    1999-01-01

    Solar Dynamic power systems can offer many potential benefits to Earth orbiting satellites including high solar-to-electric efficiency, long life without performance degradation, and high power capability. A recent integrated system test of a 2 kilowatt SD power system in a simulated space environment has successfully demonstrated technology readiness for space flight. Conceptual design studies of SD power systems have addressed several potential mission applications: a 10 kilowatt LEO satellite, a low power Space Based Radar, and a 30 kilowatt GEO communications satellite. The studies show that with moderate component development, SD systems can exhibit excellent mass and deployed area characteristics. Using the conceptual design studies as a basis, a SD technology roadmap was generated which identifies the component advances necessary to assure SD systems a competitive advantage for future NASA, DOD, and commercial missions.

  18. Conceptual designs for in situ analysis of Mars soil

    NASA Technical Reports Server (NTRS)

    Mckay, C. P.; Zent, A. P.; Hartman, H.

    1991-01-01

    A goal of this research is to develop conceptual designs for instrumentation to perform in situ measurements of the Martian soil in order to determine the existence and nature of any reactive chemicals. Our approach involves assessment and critical review of the Viking biology results which indicated the presence of a soil oxidant, an investigation of the possible application of standard soil science techniques to the analysis of Martian soil, and a preliminary consideration of non-standard methods that may be necessary for use in the highly oxidizing Martian soil. Based on our preliminary analysis, we have developed strawman concepts for standard soil analysis on Mars, including pH, suitable for use on a Mars rover mission. In addition, we have devised a method for the determination of the possible strong oxidants on Mars.

  19. Potassium topping cycles for stationary power. [conceptual analysis

    NASA Technical Reports Server (NTRS)

    Rossbach, R. J.

    1975-01-01

    A design study was made of the potassium topping cycle powerplant for central station use. Initially, powerplant performance and economics were studied parametrically by using an existing steam plant as the bottom part of the cycle. Two distinct powerplants were identified which had good thermodynamic and economic performance. Conceptual designs were made of these two powerplants in the 1200 MWe size, and capital and operating costs were estimated for these powerplants. A technical evaluation of these plants was made including conservation of fuel resources, environmental impact, technology status, and degree of development risk. It is concluded that the potassium topping cycle could have a significant impact on national goals such as air and water pollution control and conservation of natural resources because of its higher energy conversion efficiency.

  20. Developing a cost effective environmental solution for produced water and creating a ''new'' water resource

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doran, Glenn; Leong, Lawrence Y.C.

    2000-05-01

    The project goal is to convert a currently usable by-product of oil production, produced water, into a valuable drinking water resource. The project was located at the Placate Oil Field in Santa Clarita, California, approximately 25 miles north of Los Angeles. The project included a literature review of treatment technologies; preliminary bench-scale studies to refine a planning level cost estimate; and a 10-100 gpm pilot study to develop the conceptual design and cost estimate for a 44,000 bpd treatment facility. A reverse osmosis system was constructed, pilot tested, and the data used to develop a conceptual design and operation ofmore » four operational scenarios, two industrial waters levels and two irrigation/potable water.« less

  1. Newman Unit 1 advanced solar repowering. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The five appendices give the selection process and system specification of the Newman Unit 1 solar repowering system, including the conceptual design drawings and diagrams; input data for the simulation program; and a review of the most important characteristics of the existing plant. (LEW)

  2. Conceptual and methodological issues in research on mindfulness and meditation.

    PubMed

    Davidson, Richard J; Kaszniak, Alfred W

    2015-10-01

    Both basic science and clinical research on mindfulness, meditation, and related constructs have dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first-person experience and how it can be best studied, the challenges posed by intervention research designs in which true double-blinding is not possible, the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions, issues in the adequate description of mindfulness and related trainings and interventions, the question of how mindfulness can be measured, questions regarding what can and cannot be inferred from self-report measures, and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. (c) 2015 APA, all rights reserved).

  3. Conceptual and Methodological Issues in Research on Mindfulness and Meditation

    PubMed Central

    Davidson, Richard J.; Kaszniak, Alfred W.

    2015-01-01

    Both basic science and clinical research on mindfulness, meditation, and related constructs has dramatically increased in recent years. However, interpretation of these research results has been challenging. The present article addresses unique conceptual and methodological problems posed by research in this area. Included among the key topics is the role of first person experience and how it can be best studied; the challenges posed by intervention research designs in which true double-blinding is not possible; the nature of control and comparison conditions for research that includes mindfulness or other meditation-based interventions; issues in the adequate description of mindfulness and related trainings and interventions; the question of how mindfulness can be measured; questions regarding what can and cannot be inferred from self-report measures; and considerations regarding the structure of study design and data analyses. Most of these topics are germane to both basic and clinical research studies and have important bearing on the future scientific understanding of mindfulness and meditation. PMID:26436310

  4. The Conceptual Design of the Magdalena Ridge Observatory Interferometer

    NASA Astrophysics Data System (ADS)

    Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.

    We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.

  5. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    PubMed

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  6. Design considerations for fiber composite structures

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1972-01-01

    An overview of the design methodology for designing structural components from fiber composites is presented. In particular, the need for new conceptual structural designs for the future is discussed and the evolution of conceptual design is illustrated. Sources of design data, analysis and design procedures, and the basic components of structural fiber composites are cited and described. Examples of tradeoff studies and optimum designs are discussed and a simple structure is described in some detail.

  7. Codevelopment of conceptual understanding and critical attitude: toward a systemic analysis of the survival blanket

    NASA Astrophysics Data System (ADS)

    Viennot, Laurence; Décamp, Nicolas

    2016-01-01

    One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.

  8. Toxics in My Home? You Bet! Curriculum on Household Toxics for Grades K-3.

    ERIC Educational Resources Information Center

    Purin, Gina; And Others

    This curriculum consists of a one-week course of study designed to introduce K-3 students to (or increase their awareness of) toxic substances commonly found in the home. It includes an introduction/conceptual framework and four learning activities for four concept areas (and an optional word puzzle). Each activity includes a statement of purpose,…

  9. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4%. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  10. Compressor Study to Meet Large Civil Tilt Rotor Engine Requirements

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2009-01-01

    A vehicle concept study has been made to meet the requirements of the Large Civil Tilt Rotorcraft vehicle mission. A vehicle concept was determined, and a notional turboshaft engine system study was conducted. The engine study defined requirements for the major engine components, including the compressor. The compressor design-point goal was to deliver a pressure ratio of 31:1 at an inlet weight flow of 28.4 lbm/sec. To perform a conceptual design of two potential compressor configurations to meet the design requirement, a mean-line compressor flow analysis and design code were used. The first configuration is an eight-stage axial compressor. Some challenges of the all-axial compressor are the small blade spans of the rear-block stages being 0.28 in., resulting in the last-stage blade tip clearance-to-span ratio of 2.4 percent. The second configuration is a seven-stage axial compressor, with a centrifugal stage having a 0.28-in. impeller-exit blade span. The compressors conceptual designs helped estimate the flow path dimensions, rotor leading and trailing edge blade angles, flow conditions, and velocity triangles for each stage.

  11. The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry

    ERIC Educational Resources Information Center

    Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz

    2015-01-01

    The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…

  12. Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design

    NASA Technical Reports Server (NTRS)

    Ordaz, Irian; Li, Wu

    2013-01-01

    Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.

  13. Developing a conceptual model for the application of patient and public involvement in the healthcare system in Iran.

    PubMed

    Azmal, Mohammad; Sari, Ali Akbari; Foroushani, Abbas Rahimi; Ahmadi, Batoul

    2016-06-01

    Patient and public involvement is engaging patients, providers, community representatives, and the public in healthcare planning and decision-making. The purpose of this study was to develop a model for the application of patient and public involvement in decision making in the Iranian healthcare system. A mixed qualitative-quantitative approach was used to develop a conceptual model. Thirty three key informants were purposely recruited in the qualitative stage, and 420 people (patients and their companions) were included in a protocol study that was implemented in five steps: 1) Identifying antecedents, consequences, and variables associated with the patient and the publics' involvement in healthcare decision making through a comprehensive literature review; 2) Determining the main variables in the context of Iran's health system using conceptual framework analysis; 3) Prioritizing and weighting variables by Shannon entropy; 4) designing and validating a tool for patient and public involvement in healthcare decision making; and 5) Providing a conceptual model of patient and the public involvement in planning and developing healthcare using structural equation modeling. We used various software programs, including SPSS (17), Max QDA (10), EXCEL, and LISREL. Content analysis, Shannon entropy, and descriptive and analytic statistics were used to analyze the data. In this study, seven antecedents variable, five dimensions of involvement, and six consequences were identified. These variables were used to design a valid tool. A logical model was derived that explained the logical relationships between antecedent and consequent variables and the dimensions of patient and public involvement as well. Given the specific context of the political, social, and innovative environments in Iran, it was necessary to design a model that would be compatible with these features. It can improve the quality of care and promote the patient and the public satisfaction with healthcare and legitimate the representative of people they served for. This model can provide a practical guide for managers and policy makers to involve people in making the decisions that influence their lives.

  14. Conceptual Learning in a Principled Design Problem Solving Environment

    ERIC Educational Resources Information Center

    Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.

    2013-01-01

    To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…

  15. Designing Public Library Websites for Teens: A Conceptual Model

    ERIC Educational Resources Information Center

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  16. Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package

    NASA Technical Reports Server (NTRS)

    Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred

    1986-01-01

    The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.

  17. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the Unified Ecoregions of Alaska. Ecoregional models were then developed to illustrate resources and processes that operate at spatial scales larger than individual refuges within each ecoregion. Conceptual models also were developed for adjacent marine areas, designated as the North Pacific, Bering Sea, and Beaufort-Chukchi Sea Marine Ecoregions. Although many more conceptual models will be required to support development of a regional monitoring program, these definitions of ecoregions and associated conceptual models are an important foundation.

  18. Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.

    The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less

  19. Mars orbiter conceptual systems design study

    NASA Technical Reports Server (NTRS)

    Dixon, W.; Vogl, J.

    1982-01-01

    Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.

  20. Instrument for Analysis of Organic Compounds on Other Planets

    NASA Technical Reports Server (NTRS)

    Daulton, Riley M.; Hintze, Paul E.

    2016-01-01

    The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.

  1. Matematiques: Niveau A (Mathematics: Level A).

    ERIC Educational Resources Information Center

    Duron, Dolores; And Others

    A teacher's manual was developed for an elementary level mathematics course in French as part of an immersion program for English speaking children. The Level A manual is designed for kindergarten and grade 1 pupils. Teaching procedures, conceptual and language objectives, vocabulary, structures, and learning activities are included. Activities…

  2. Ecology: A Teaching Module. Occasional Paper No. 94.

    ERIC Educational Resources Information Center

    Brehm, Shirley; And Others

    Designed to address conceptual problems associated with ecology, this module can be used with high school students or college nonscience majors including those in elementary education. The materials offer guidance to teachers in diagnosing student deficiencies, in creating dissatisfaction with misconceptions, and in providing opportunities for…

  3. Mindfulness in Academia: Considerations for Administrative Preparation

    ERIC Educational Resources Information Center

    Wells, Caryn M.

    2013-01-01

    This conceptual paper presents a synthesis of information about the workload stress of educational administrators. Currently, there are few programs designed to assist educational leaders to deal with stress (Hawk & Martin, 2011). Stress reduction programs may include mindfulness, a widely used practice of meditation. Mindfulness is used in…

  4. The Administration of Outdoor Education Programs.

    ERIC Educational Resources Information Center

    Lewis, Charles A., Jr.

    Designed for those interested in the mechanics of establishing outdoor education programs, this text is basically a guide to program development and includes examples of procedures, forms, conceptualizations, etc. Chapters deal with: (1) the contemporary education scene (an overview); (2) the basic concepts of outdoor education (17 concept…

  5. Conceptualizing a Comparative Educational Research Framework.

    ERIC Educational Resources Information Center

    Plomp, Tjeerd

    1992-01-01

    Presents reasons why nations should participate in international survey research. Reviews the mission and history of the International Association for the Evaluation of Educational Achievement (IEA). Discusses the design of a typical IEA study and includes five graphic figures and one table illustrating results of previous international surveys.…

  6. Comparative Demonstration of Active and Semi-Passive In Situ Bioremediation Approaches for Perchlorate Impacted Groundwater: Active In Situ Bioremediation Demonstration

    DTIC Science & Technology

    2013-04-01

    demonstration test . 5.1 CONCEPTUAL EXPERIMENTAL DESIGN In concept, the active biobarrier approach involved the use of alternating extraction and injection...16 4.3 GROUNDWATER CHEMISTRY ....................................................................... 18 5.0 TEST DESIGN...20 5.1 CONCEPTUAL EXPERIMENTAL DESIGN

  7. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  8. Conceptualization and design of a variable-gravity research facility

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The goal is to provide facilities for the study of the effects of variable-gravity levels in reducing the physiological stresses upon the humans of long-term stay time in zero-g. The designs studied include: twin-tethered two module system with a central despun module with docking port and winch gear; and rigid arm tube facility using shuttle external tanks. Topics examined included: despun central capsule configuration, docking clearances, EVA requirements, crew selection, crew scheduling, food supply and preparation, waste handling, leisure use, biomedical issues, and psycho-social issues.

  9. Design study LANDSAT follow-on mission unique communications system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Spacecraft subsystem design, performance evaluation, and system tradeoffs are presented for the LANDSAT follow-on mission (LF/O) spacecraft to TDRSS link for the transmission of thematic mapper (TM) and multispectral scanner (MSS) data and for the LF/O spacecraft to STDN and other direct users link for the transmission of TM data. Included are requirements definition, link analysis, subsystem and hardware tradeoffs, conceptual selection, hardware definition, and identification of required new technology. Cost estimates of the recommended communication system including both recurring and non recurring costs are discussed.

  10. A computer module used to calculate the horizontal control surface size of a conceptual aircraft design

    NASA Technical Reports Server (NTRS)

    Sandlin, Doral R.; Swanson, Stephen Mark

    1990-01-01

    The creation of a computer module used to calculate the size of the horizontal control surfaces of a conceptual aircraft design is discussed. The control surface size is determined by first calculating the size needed to rotate the aircraft during takeoff, and, second, by determining if the calculated size is large enough to maintain stability of the aircraft throughout any specified mission. The tail size needed to rotate during takeoff is calculated from a summation of forces about the main landing gear of the aircraft. The stability of the aircraft is determined from a summation of forces about the center of gravity during different phases of the aircraft's flight. Included in the horizontal control surface analysis are: downwash effects on an aft tail, upwash effects on a forward canard, and effects due to flight in close proximity to the ground. Comparisons of production aircraft with numerical models show good accuracy for control surface sizing. A modified canard design verified the accuracy of the module for canard configurations. Added to this stability and control module is a subroutine that determines one of the three design variables, for a stable vectored thrust aircraft. These include forward thrust nozzle position, aft thrust nozzle angle, and forward thrust split.

  11. Power System Trade Studies for the Lunar Surface Access Module

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa, L.

    2008-01-01

    A Lunar Lander Preparatory Study (LLPS) was undertaken for NASA's Lunar Lander Pre-Project in 2006 to explore a wide breadth of conceptual lunar lander designs. Civil servant teams from nearly every NASA center responded with dozens of innovative designs that addressed one or more specific lander technical challenges. Although none of the conceptual lander designs sought to solve every technical design issue, each added significantly to the technical database available to the Lunar Lander Project Office as it began operations in 2007. As part of the LLPS, a first order analysis was performed to identify candidate power systems for the ascent and descent stages of the Lunar Surface Access Module (LSAM). A power profile by mission phase was established based on LSAM subsystem power requirements. Using this power profile, battery and fuel cell systems were modeled to determine overall mass and volume. Fuel cell systems were chosen for both the descent and ascent stages due to their low mass. While fuel cells looked promising based on these initial results, several areas have been identified for further investigation in subsequent studies, including the identification and incorporation of peak power requirements into the analysis, refinement of the fuel cell models to improve fidelity and incorporate ongoing technology developments, and broadening the study to include solar power.

  12. Design requirements for SRB production control system. Volume 3: Package evaluation, modification and hardware

    NASA Technical Reports Server (NTRS)

    1981-01-01

    The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.

  13. Magnetohydrodynamics (MHD) Engineering Test Facility (ETF) 200 MWe power plant. Design Requirements Document (DRD)

    NASA Technical Reports Server (NTRS)

    Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.

    1981-01-01

    A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.

  14. LANDSAT/MMS propulsion module design. Tas4.4: Concept design

    NASA Technical Reports Server (NTRS)

    Mansfield, J. M.; Etheridge, F. G.; Indrikis, J.

    1976-01-01

    Evaluations are presented of alternative LANDSAT follow-on launch configurations to derive the propulsion requirements for the multimission modular spacecraft (MMS). Two basic types were analyzed including use of conventional launch vehicles and shuttle supported missions. It was concluded that two sizes of modular hydrazine propulsion modules would provide the most cost-effective combination for future missions of this spacecraft. Conceptual designs of the selected propulsion modules were performed to the depth permitting determination of mass properties and estimated costs.

  15. System analysis study of space platform and station accommodations for life sciences research facilities. Volume 1: Executive summary. Phase A: Conceptual design and programmatics

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The study was conducted in 3 parts over a 3 year period. The study schedule and the documentation associated with each study part is given. This document summarized selected study results from the conceptual design and programmatics segment of the effort. The objectives were: (1) to update requirements and tradeoffs and develop a detailed design and mission requirements document; (2) to develop conceptual designs and mission descriptions; and (3) to develop programmatic, i.e., work breakdown structure and work breakdown structure dictionary, estimated cost, and implementing plans and schedules.

  16. Risk factors for pressure ulcer development in critically Ill patients: a conceptual model to guide research.

    PubMed

    Benoit, Richard; Mion, Lorraine

    2012-08-01

    This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  17. Operator Station Design System - A computer aided design approach to work station layout

    NASA Technical Reports Server (NTRS)

    Lewis, J. L.

    1979-01-01

    The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.

  18. Guidelines for conceptual design and evaluation of aquifer thermal energy storage

    NASA Astrophysics Data System (ADS)

    Meyer, C. F.; Hauz, W.

    1980-10-01

    Guidelines are presented for use as a tool by those considering application of aquifer thermal energy storage (ATES) technology. The guidelines assist utilities, municipalities, industries, and other entities in the conceptual design and evaluation of systems employing ATES. The potential benefits of ATES are described, an overview is presented of the technology and its applications, and rules of thumb are provided for quickly judging whether a proposed project has sufficient promise to warrant detailed conceptual design and evaluation. The characteristics of sources and end uses of heat and chill which are seasonally mismatched and may benefit from ATES are discussed. Storage and transport subsystems and their expected performance and cost are described. A methodology is presented for conceptual design of an ATES system and evaluation of its technical and economic feasibility in terms of energy conservation, cost savings, fuel substitution, improved dependability of supply, and abatement of pollution.

  19. Performance and Fabrication Status of TREAT LEU Conversion Conceptual Design Concepts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    IJ van Rooyen; SR Morrell; AE Wright

    2014-10-01

    Resumption of transient testing at the TREAT facility was approved in February 2014 to meet U.S. Department of Energy (DOE) objectives. The National Nuclear Security Administration’s Global Threat Reduction Initiative Convert Program is evaluating conversion of TREAT from its existing highly enriched uranium (HEU) core to a new core containing low enriched uranium (LEU). This paper describes briefly the initial pre-conceptual designs screening decisions with more detailed discussions on current feasibility, qualification and fabrication approaches. Feasible fabrication will be shown for a LEU fuel element assembly that can meet TREAT design, performance, and safety requirements. The statement of feasibility recognizesmore » that further development, analysis, and testing must be completed to refine the conceptual design. Engineering challenges such as cladding oxidation, high temperature material properties, and fuel block fabrication along with neutronics performance, will be highlighted. Preliminary engineering and supply chain evaluation provided confidence that the conceptual designs can be achieved.« less

  20. Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.

  1. Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center

    NASA Technical Reports Server (NTRS)

    Slaby, J. G.

    1986-01-01

    An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.

  2. Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)

    NASA Technical Reports Server (NTRS)

    Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef

    2004-01-01

    To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.

  3. Genetic algorithms in conceptual design of a light-weight, low-noise, tilt-rotor aircraft

    NASA Technical Reports Server (NTRS)

    Wells, Valana L.

    1996-01-01

    This report outlines research accomplishments in the area of using genetic algorithms (GA) for the design and optimization of rotorcraft. It discusses the genetic algorithm as a search and optimization tool, outlines a procedure for using the GA in the conceptual design of helicopters, and applies the GA method to the acoustic design of rotors.

  4. Conceptual design of single turbofan engine powered light aircraft

    NASA Technical Reports Server (NTRS)

    Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.

    1977-01-01

    The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.

  5. Probing student reasoning approaches through the lens of dual-process theories: A case study in buoyancy

    NASA Astrophysics Data System (ADS)

    Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.

    2018-06-01

    A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the "five-block problem," which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing) and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.

  6. Training future doctors to be patient-centred: efficacy of a communication skills training (CST) programme in a Malaysian medical institution.

    PubMed

    Lukman, H; Beevi, Z; Yeap, R

    2009-03-01

    This study evaluates the efficacy of the preclinical communication skills training (CST) programme at the International Medical University in Malaysia. Efficacy indicators include students' (1) perceived competency (2) attitude (3) conceptual knowledge, and (4) performance with regard to patient-centred communication. A longitudinal study with a before-after design tracked a preclinical cohort's progress on the aforementioned indicators as they advance through the training. Results indicate that following the CST, students perceived themselves to be more competent in interpersonal communication, had more positive attitude towards patient-centred communication, and developed a better conceptual knowledge of doctor-patient communication. In addition, those with good conceptual knowledge tend to demonstrate better communication skills performance at the Objective Structure Clinical Examination 12 months following the initial CST.

  7. Symbol Sense Behavior in Digital Activities

    ERIC Educational Resources Information Center

    Bokhove, Christian; Drijvers, Paul

    2010-01-01

    The algebraic expertise that mathematics education is aiming for includes both procedural skills and conceptual understanding. To capture the latter, notions such as symbol sense, gestalt view and visual salience have been developed. We wonder if digital activities can be designed that not only require procedural algebraic skills, but also invite…

  8. Strategic Help in User Interfaces for Information Retrieval.

    ERIC Educational Resources Information Center

    Brajnik, Giorgio; Mizzaro, Stefano; Tasso, Carlo; Venuti, Fabio

    2002-01-01

    Discussion of search strategy in information retrieval by end users focuses on the role played by strategic reasoning and design principles for user interfaces. Highlights include strategic help based on collaborative coaching; a conceptual model for strategic help; and a prototype knowledge-based system named FIRE. (Author/LRW)

  9. An Integrative Conceptual Framework of Disability: New Directions for Research.

    ERIC Educational Resources Information Center

    Tate, Denise G.; Pledger, Constance

    2003-01-01

    Examines various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of people with disabilities. Recommends new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current…

  10. Kinship and Social Groups: A Modular Approach. Cultural Anthropology.

    ERIC Educational Resources Information Center

    Kassebaum, Peter

    Designed for use as supplementary instructional material in a cultural anthropology course, this learning module introduces commonly employed terms used in the study of kinship and social groups. Conceptual categories used to describe the social structures of society are defined first, including culture, material culture, nonmaterial culture,…

  11. Planning Curriculum Development: With Examples from Projects for the Mentally Retarded.

    ERIC Educational Resources Information Center

    Mayer, William V., Ed.

    Presented are guidelines based on five federally funded projects for planning and developing curriculum for the mentally retarded. Discussed are the initial steps of identifying the target population, needs, and objectives. Examples of curriculum design, including the rationale and conceptual framework, are provided. Considered are elements of…

  12. Teaching Multicultural Awareness and Mentoring Minority Students

    ERIC Educational Resources Information Center

    Pierce, Latoya Anderson

    2017-01-01

    Purpose: This paper includes a proposed model for working with diverse students both in the classroom and as faculty mentors. This paper aims to provide guidelines on creating a collaborative learning community, helping students engage in cultural self-awareness and mentoring minority students. Design/methodology/approach: As a conceptual piece,…

  13. Computer visualizations in engineering applications

    NASA Astrophysics Data System (ADS)

    Bills, K. C.

    The use of computerized simulations of various robotic tasks via IGRIP software is reported. The projects include underwater activities demonstrating clean up of a quarry; time study of methods to store waste drums inside a facility; design walk-through of a new facility; plant layout flyover; and conceptual development and layout of new mechanisms.

  14. A Proposed Conceptual Model to Measure Unwarranted Practice Variation

    DTIC Science & Technology

    2007-05-03

    its design. The AMEDD should be proud of its long history of clinical, educational, and technological innovation in the field of medicine. Its current...estimate or any other aspect of this collection ofinformation , including suggestions for reducing the burden, to Department of Defense. Washington...Strategy.................................................................. 11 Role of the Researcher

  15. Graphical Means for Inspecting Qualitative Models of System Behaviour

    ERIC Educational Resources Information Center

    Bouwer, Anders; Bredeweg, Bert

    2010-01-01

    This article presents the design and evaluation of a tool for inspecting conceptual models of system behaviour. The basis for this research is the Garp framework for qualitative simulation. This framework includes modelling primitives, such as entities, quantities and causal dependencies, which are combined into model fragments and scenarios.…

  16. Analyzing Students' Learning Progressions Throughout a Teaching Sequence on Acoustic Properties of Materials with a Model-Based Inquiry Approach

    NASA Astrophysics Data System (ADS)

    Hernández, María Isabel; Couso, Digna; Pintó, Roser

    2015-04-01

    The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.

  17. New Methods in Design Education: The Systemic Methodology and the Use of Sketch in the Conceptual Design Stage

    ERIC Educational Resources Information Center

    Westermeyer, Juan Carlos Briede; Ortuno, Bernabe Hernandis

    2011-01-01

    This study describes the application of a new product concurrent design methodologies in the context in the education of industrial design. The use of the sketch has been utilized many times as a tool of creative expression especially in the conceptual design stage, in an intuitive way and a little out of the context of the reality needs that the…

  18. Conceptual design of the ITER fast-ion loss detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia-Munoz, M., E-mail: mgm@us.es; Ayllon-Guerola, J.; Galdon, J.

    2016-11-15

    A conceptual design of a reciprocating fast-ion loss detector for ITER has been developed and is presented here. Fast-ion orbit simulations in a 3D magnetic equilibrium and up-to-date first wall have been carried out to revise the measurement requirements for the lost alpha monitor in ITER. In agreement with recent observations, the simulations presented here suggest that a pitch-angle resolution of ∼5° might be necessary to identify the loss mechanisms. Synthetic measurements including realistic lost alpha-particle as well as neutron and gamma fluxes predict scintillator signal-to-noise levels measurable with standard light acquisition systems with the detector aperture at ∼11 cmmore » outside of the diagnostic first wall. At measurement position, heat load on detector head is comparable to that in present devices.« less

  19. Development of an Expert Judgement Elicitation and Calibration Methodology for Risk Analysis in Conceptual Vehicle Design

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Keating, Charles; Conway, Bruce; Chytka, Trina

    2004-01-01

    A comprehensive expert-judgment elicitation methodology to quantify input parameter uncertainty and analysis tool uncertainty in a conceptual launch vehicle design analysis has been developed. The ten-phase methodology seeks to obtain expert judgment opinion for quantifying uncertainties as a probability distribution so that multidisciplinary risk analysis studies can be performed. The calibration and aggregation techniques presented as part of the methodology are aimed at improving individual expert estimates, and provide an approach to aggregate multiple expert judgments into a single probability distribution. The purpose of this report is to document the methodology development and its validation through application to a reference aerospace vehicle. A detailed summary of the application exercise, including calibration and aggregation results is presented. A discussion of possible future steps in this research area is given.

  20. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  1. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  2. Integrated Power/Attitude Control System (IPACS) study. Volume 1: Feasibility studies. [application of flywheels for power storage and generation

    NASA Technical Reports Server (NTRS)

    Notti, J. E.; Cormack, A., III; Schmill, W. C.

    1974-01-01

    An Integrated Power/Attitude Control System (IPACS) concept consisting of an array of spinning flywheels, with or without gimbals, capable of performing the dual function of power storage and generation, as well as attitude control has been investigated. This system provides attitude control through momentum storage, and replaces the storage batteries onboard the spacecraft. The results of the investigation are presented in two volumes. The trade-off studies performed to establish the feasibility, cost effectiveness, required level of development, and boundaries of application of IPACS to a wide variety of spacecraft are discussed. The conceptual designs for a free-flying research application module (RAM), and for a tracking and data relay satellite (TDRS) are presented. Results from dynamic analyses and simulations of the IPACS conceptual designs are included.

  3. Context and Deep Learning Design

    ERIC Educational Resources Information Center

    Boyle, Tom; Ravenscroft, Andrew

    2012-01-01

    Conceptual clarification is essential if we are to establish a stable and deep discipline of technology enhanced learning. The technology is alluring; this can distract from deep design in a surface rush to exploit the affordances of the new technology. We need a basis for design, and a conceptual unit of organization, that are applicable across…

  4. Update on the Solar Power Satellite transmitter design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, W.C.

    1986-01-01

    A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.

  5. Building a Framework for Engineering Design Experiences in High School

    ERIC Educational Resources Information Center

    Denson, Cameron D.; Lammi, Matthew

    2014-01-01

    In this article, Denson and Lammi put forth a conceptual framework that will help promote the successful infusion of engineering design experiences into high school settings. When considering a conceptual framework of engineering design in high school settings, it is important to consider the complex issue at hand. For the purposes of this…

  6. Modifications of ORNL's computer programs MSF-21 and VTE-21 for the evaluation and rapid optimization of multistage flash and vertical tube evaporators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glueckstern, P.; Wilson, J.V.; Reed, S.A.

    1976-06-01

    Design and cost modifications were made to ORNL's Computer Programs MSF-21 and VTE-21 originally developed for the rapid calculation and design optimization of multistage flash (MSF) and multieffect vertical tube evaporator (VTE) desalination plants. The modifications include additional design options to make possible the evaluation of desalting plants based on current technology (the original programs were based on conceptual designs applying advanced and not yet proven technological developments and design features) and new materials and equipment costs updated to mid-1975.

  7. Conceptual design study for a teleoperator visual system, phase 1

    NASA Technical Reports Server (NTRS)

    Adams, D.; Grant, C.; Johnson, C.; Meirick, R.; Polhemus, C.; Ray, A.; Rittenhouse, D.; Skidmore, R.

    1972-01-01

    Results are reported for work performed during the first phase of the conceptual design study for a teleoperator visual system. This phase consists of four tasks: General requirements, concept development, subsystem requirements and analysis, and concept evaluation.

  8. ARPA-E LITECAR Challenge

    ScienceCinema

    Liu, Ping; Salvi, Ashwin

    2018-01-16

    With more than 250 conceptual designs submitted, we are pleased to highlight the winners of the LIghtweighting Technologies Enabling Comprehensive Automotive Redesign (LITECAR) Challenge. These innovative conceptual designs seek to lightweight a vehicle while maintaining or exceeding current U.S. automotive safety standards.

  9. Revising a conceptual model of partnership and sustainability in global health.

    PubMed

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  10. Conceptual Design Report Cask Loadout Sys and Cask Drop Redesign for the Immersion Pail Support Structure and Operator Interface Platform at 105 K West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    LANGEVIN, A.S.

    1999-07-12

    This conceptual design report documents the redesign of the IPSS and the OIP in the 105 KW Basin south loadout pit due to a postulated cask drop accident, as part of Project A.5/A.6, Canister Transfer Facility Modifications. Project A.5/A.6 involves facility modifications needed to transfer fuel from the basin into the cask-MCO. The function of the IPSS is to suspend, guide, and position the immersion pail. The immersion pail protects the cask-MCO from contamination by basin water and acts as a lifting device for the cask-MCO. The OIP provides operator access to the south loadout pit. Previous analyses studied themore » effects of a cask-MCO drop on the south loadout pit concrete structure and on the IPSS. The most recent analysis considered the resulting loads at the pit slab/wall joint (Kanjilal, 1999). This area had not been modeled previously, and the analysis results indicate that the demand capacity exceeds the allowable at the slab/wall joint. The energy induced on the south loadout pit must be limited such that the safety class function of the basin is maintained. The solution presented in this CDR redesigns the IPSS and the OIP to include impact-absorbing features that will reduce the induced energy. The impact absorbing features of the new design include: Impact-absorbing material at the IPSS base and at the upper portion of the IPSS legs. A sleeve which provides a hydraulic means of absorbing energy. Designing the OIP to act as an impact absorber. The existing IPSS structure in 105 KW will be removed. This conceptual design considers only loads resulting from drops directly over the IPSS and south loadout pit area. Drops in other areas of the basin are not considered, and will be covered as part of a future revision to this CDR.« less

  11. Conceptual design of liquid droplet radiator shuttle-attached experiment

    NASA Technical Reports Server (NTRS)

    Pfeiffer, Shlomo L.

    1989-01-01

    The conceptual design of a shuttle-attached liquid droplet radiator (LDR) experiment is discussed. The LDR is an advanced, lightweight heat rejection concept that can be used to reject heat from future high-powered space platforms. In the LDR concept, submillimeter-sized droplets are generated, pass through space, radiate heat before they are collected, and recirculated back to the heat source. The LDR experiment is designed to be attached to the shuttle longeron and integrated into the shuttle bay using standard shuttle/experiment interfaces. Overall power, weight, and data requirements of the experiment are detailed. The conceptual designs of the droplet radiator, droplet collector, and the optical diagnostic system are discussed in detail. Shuttle integration and safety design issues are also discussed.

  12. Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.; Thurman, Douglas R.

    2010-01-01

    This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.

  13. Conceptual engineering design studies of 1985-era commercial VTOL and STOL transports that utilize rotors

    NASA Technical Reports Server (NTRS)

    Magee, J. P.; Clark, R. D.; Widdison, C. A.

    1975-01-01

    Conceptual design studies are summarized of tandem-rotor helicopter and tilt-rotor aircraft for a short haul transport mission in the 1985 time frame. Vertical takeoff designs of both configurations are discussed, and the impact of external noise criteria on the vehicle designs, performance, and costs are shown. A STOL design for the tilt-rotor configuration is reported, and the effect of removing the vertical takeoff design constraints on the design parameters, fuel economy, and operating cost is discussed.

  14. Government conceptual estimating for contracting and management

    NASA Technical Reports Server (NTRS)

    Brown, J. A.

    1986-01-01

    The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.

  15. A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Robertson, C. S.; Ehde, C. L.; Divakaruni, S. M.; Stacy, L. E.

    1979-01-01

    Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver.

  16. Ergonomics action research II: a framework for integrating HF into work system design.

    PubMed

    Neumann, W P; Village, J

    2012-01-01

    This paper presents a conceptual framework that can support efforts to integrate human factors (HF) into the work system design process, where improved and cost-effective application of HF is possible. The framework advocates strategies of broad stakeholder participation, linking of performance and health goals, and process focussed change tools that can help practitioners engage in improvements to embed HF into a firm's work system design process. Recommended tools include business process mapping of the design process, implementing design criteria, using cognitive mapping to connect to managers' strategic goals, tactical use of training and adopting virtual HF (VHF) tools to support the integration effort. Consistent with organisational change research, the framework provides guidance but does not suggest a strict set of steps. This allows more adaptability for the practitioner who must navigate within a particular organisational context to secure support for embedding HF into the design process for improved operator wellbeing and system performance. There has been little scientific literature about how a practitioner might integrate HF into a company's work system design process. This paper proposes a framework for this effort by presenting a coherent conceptual framework, process tools, design tools and procedural advice that can be adapted for a target organisation.

  17. Space station accommodations for life sciences research facilities. Phase 1: Conceptual design and programmatics studies for Missions SAAX0307, SAAX0302 and the transition from SAAX0307 to SAAX0302. Volume 2: Study results

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.

  18. Advances in the physics basis for the European DEMO design

    NASA Astrophysics Data System (ADS)

    Wenninger, R.; Arbeiter, F.; Aubert, J.; Aho-Mantila, L.; Albanese, R.; Ambrosino, R.; Angioni, C.; Artaud, J.-F.; Bernert, M.; Fable, E.; Fasoli, A.; Federici, G.; Garcia, J.; Giruzzi, G.; Jenko, F.; Maget, P.; Mattei, M.; Maviglia, F.; Poli, E.; Ramogida, G.; Reux, C.; Schneider, M.; Sieglin, B.; Villone, F.; Wischmeier, M.; Zohm, H.

    2015-06-01

    In the European fusion roadmap, ITER is followed by a demonstration fusion power reactor (DEMO), for which a conceptual design is under development. This paper reports the first results of a coherent effort to develop the relevant physics knowledge for that (DEMO Physics Basis), carried out by European experts. The program currently includes investigations in the areas of scenario modeling, transport, MHD, heating & current drive, fast particles, plasma wall interaction and disruptions.

  19. Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.

  20. Conceptual design of the AE481 Demon Remotely Piloted Vehicle (RPV)

    NASA Technical Reports Server (NTRS)

    Hailes, Chris; Kolver, Jill; Nestor, Julie; Patterson, Mike; Selow, Jan; Sagdeo, Pradip; Katz, Kenneth

    1994-01-01

    This project report presents a conceptual design for a high speed remotely piloted vehicle (RPV). The AE481 Demon RPV is capable of performing video reconnaissance missions and electronic jamming over hostile territory. The RPV cruises at a speed of Mach 0.8 and an altitude of 300 feet above the ground throughout its mission. It incorporates a rocket assisted takeoff and a parachute-airbag landing. Missions are preprogrammed, but in-flight changes are possible. The Demon is the answer to a military need for a high speed, low altitude RPV. The design methods, onboard systems, and avionics payload are discussed in this conceptual design report along with economic viability.

  1. Conceptual design studies of the 5 m terahertz antenna for Dome A, Antarctica

    NASA Astrophysics Data System (ADS)

    Yang, Ji; Zuo, Ying-Xi; Lou, Zheng; Cheng, Jing-Quan; Zhang, Qi-Zhou; Shi, Sheng-Cai; Huang, Jia-Sheng; Yao, Qi-Jun; Wang, Zhong

    2013-12-01

    As the highest, coldest and driest place in Antarctica, Dome A provides exceptionally good observing conditions for ground-based observations over terahertz wavebands. The 5 m Dome A Terahertz Explorer (DATE5) has been proposed to explore new terahertz windows, primarily over wavelengths between 350 and 200 μm. DATE5 will be an open-air, fully-steerable telescope that can function by unmanned operation with remote control. The telescope will be able to endure the harsh polar environment, including high altitude, very low temperature and very low air pressure. The unique specifications, including high accuracies for surface shape and pointing and fully automatic year-around remote operation, along with a stringent limit on the periods of on-site assembly, testing and maintenance, bring a number of challenges to the design, construction, assembly and operation of this telescope. This paper introduces general concepts related to the design of the DATE5 antenna. Beginning from an overview of the environmental and operational limitations, the design specifications and requirements of the DATE5 antenna are listed. From these, major aspects on the conceptual design studies, including the antenna optics, the backup structure, the panels, the subreflector, the mounting and the antenna base structure, are explained. Some critical issues of performance are justified through analyses that use computational fluid dynamics, thermal analysis and de-icing studies, and the proposed approaches for test operation and on-site assembly. Based on these studies, we conclude that the specifications of the DATE5 antenna can generally be met by using enhanced technological approaches.

  2. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  3. Parametric study of a canard-configured transport using conceptual design optimization

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. D.; Sliwa, S. M.

    1985-01-01

    Constrained-parameter optimization is used to perform optimal conceptual design of both canard and conventional configurations of a medium-range transport. A number of design constants and design constraints are systematically varied to compare the sensitivities of canard and conventional configurations to a variety of technology assumptions. Main-landing-gear location and canard surface high-lift performance are identified as critical design parameters for a statically stable, subsonic, canard-configured transport.

  4. Conceptual Design and Structural Optimization of NASA Environmentally Responsible Aviation (ERA) Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Simultaneously achieving the fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project requires innovative and unconventional aircraft concepts. In response, advanced hybrid wing body (HWB) aircraft concepts have been proposed and analyzed as a means of meeting these objectives. For the current study, several HWB concepts were analyzed using the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) analysis code. HCDstruct is a medium-fidelity finite element based conceptual design and structural optimization tool developed to fill the critical analysis gap existing between lower order structural sizing approaches and detailed, often finite element based sizing methods for HWB aircraft concepts. Whereas prior versions of the tool used a half-model approach in building the representative finite element model, a full wing-tip-to-wing-tip modeling capability was recently added to HCDstruct, which alleviated the symmetry constraints at the model centerline in place of a free-flying model and allowed for more realistic center body, aft body, and wing loading and trim response. The latest version of HCDstruct was applied to two ERA reference cases, including the Boeing Open Rotor Engine Integration On an HWB (OREIO) concept and the Boeing ERA-0009H1 concept, and results agreed favorably with detailed Boeing design data and related Flight Optimization System (FLOPS) analyses. Following these benchmark cases, HCDstruct was used to size NASA's ERA HWB concepts and to perform a related scaling study.

  5. Prevention of errors and user alienation in healthcare IT integration programmes.

    PubMed

    Benson, Tim

    2007-01-01

    The design, development and implementation stages of integrated computer projects require close collaboration between users and developers, but this is particularly difficult where there are multiple specialties, organisations and system suppliers. Users become alienated if they are not consulted, but consultation is meaningless if they cannot understand the specifications showing exactly what is proposed. We need stringent specifications that users and developers can review and check before most of the work is done. Avoidable errors lead to delays and cost over-runs. The number of errors is a function of the likelihood of misunderstanding any part of the specification, the number of individuals involved and the number of choices or options. One way to reduce these problems is to provide a conceptual design specification, comprising detailed Unified Modelling Language (UML) class and activity diagrams, data definitions and terminology, in addition to conventional technology-specific specifications. A conceptual design specification needs to be straightforward to understand and use, transparent and unambiguous. People find structured diagrams, such as maps, charts and blueprints, easier to use than reports or tables. Other desirable properties include being technology-independent, comprehensive, stringent, coherent, consistent, composed from reusable elements and computer-readable (XML). When users and developers share the same agreed conceptual design specification, this can be one of the master documents of a formal contract between the stakeholders. No extra meaning should be added during the later stages of the project life cycle.

  6. To Click or Not to Click

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina; Sadaghiani, Homeyra

    2009-03-01

    A comparison of clickers v. flashcards in a controlled setting was done to test a) whether clickers show an improvement over flashcards in students learning the following concepts: i) Coulomb's force law and ii) magnetic fields caused by currents, and b) if students using clickers are more open towards conceptual questions and the peer instruction method compared to students using flashcards. Two classes taught concurrently by the same instructor were taught identically, except that in one class the collection of answers to concept questions was done using clickers, and in the other using flashcards. To test which students learned the concepts better, a few multiple choice questions from a standard exam used in physics education were included in the final exam of both classes, and the performance of the two classes was compared. In addition, a questionnaire was given to each class to evaluate students' opinions about the benefits of lectures including conceptual TPS questions and the use of related conceptual questions on exams. The results of the survey were compared between the two classes. The experimental design and results of the study will be presented.

  7. Designing and Evaluating a Context-Based Lesson Sequence Promoting Conceptual Coherence in Biology

    ERIC Educational Resources Information Center

    Ummels, M. H. J.; Kamp, M. J. A.; de Kroon, H.; Boersma, K. Th.

    2015-01-01

    Context-based education, in which students deal with biological concepts in a meaningful way, is showing promise in promoting the development of students' conceptual coherence. However, literature gives little guidance about how this kind of education should be designed. Therefore, our study aims at designing and evaluating the practicability of a…

  8. A Strategic Approach to Curriculum Design for Information Literacy in Teacher Education--Implementing an Information Literacy Conceptual Framework

    ERIC Educational Resources Information Center

    Klebansky, Anna; Fraser, Sharon P.

    2013-01-01

    This paper details a conceptual framework that situates curriculum design for information literacy and lifelong learning, through a cohesive developmental information literacy based model for learning, at the core of teacher education courses at UTAS. The implementation of the framework facilitates curriculum design that systematically,…

  9. Design of internal support structures for an inflatable lunar habitat

    NASA Technical Reports Server (NTRS)

    Cameron, Elizabeth A.; Duston, John A.; Lee, David D.

    1990-01-01

    NASA has a long range goal of constructing a fully equipped, manned lunar outpost on the near side of the moon by the year 2015. The proposed outpost includes an inflatable lunar habitat to support crews during missions longer that 12 months. A design for the internal support structures of the inflatable habitat is presented. The design solution includes material selection, substructure design, assembly plan development, and concept scale model construction. Alternate designs and design solutions for each component of the design are discussed. Alternate materials include aluminum, titanium, and reinforced polymers. Vertical support alternates include column systems, truss systems, suspension systems, and lunar lander supports. Horizontal alternates include beams, trusses, floor/truss systems, and expandable trusses. Feasibility studies on each alternate showed that truss systems and expandable trusses were the most feasible candidates for conceptual design. The team based the designs on the properties of 7075 T73 aluminum. The substructure assembly plan, minimizes assembly time and allows crews to construct the habitat without the use of EVA suits. In addition to the design solutions, the report gives conclusions and recommendations for further study of the inflatable habitat design.

  10. OSIRIS and SOMBRERO Inertial Fusion Power Plant Designs, Volume 2: Designs, Assessments, and Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meier, W. R.; Bieri, R. L.; Monsler, M. J.

    1992-03-01

    This is a comprehensive design study of two Inertial Fusion Energy (IFE) electric power plants. Conceptual designs are presented for a fusion reactor (called Osiris) using an induction-linac heavy-ion beam driver, and another (called SOMBRERO) using a KrF laser driver. The designs covered all aspects of IFE power plants, including the chambers, heat transport and power conversion systems, balance-of-plant facilities, target fabrication, target injection and tracking, as well as the heavy-ion and KrF drivers. The point designs were assessed and compared in terms of their environmental & safety aspects, reliability and availability, economics, and technology development needs.

  11. Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter

    ERIC Educational Resources Information Center

    Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia

    2011-01-01

    This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…

  12. Personalizing knowledge delivery services: a conceptual framework

    NASA Technical Reports Server (NTRS)

    Majchrzak, Ann; Chelleppa, Ramnath K.; Cooper, Lynne P.; Hars, Alexander

    2003-01-01

    Consistent with the call of the Minnesota Symposium for new theory in knowledge management, we offer a new conceptualization of Knowledge Management Systems (KMS) as a portfolio of personalized knowledge delivery services. Borrowing from research on online consumer behavior, we describe the challenges imposed by personalized knowledge delivery services, and suggest design parameters that can help to overcome these challenges. We develop our design constructs through a set of hypotheses and discuss the research implications of our new conceptualization. Finally, we describe practical implications suggested by our conceptualization - practical suggestions that we hope to gain some experience with as part of an ongoing action research project at our partner organization.

  13. Development of the biology card sorting task to measure conceptual expertise in biology.

    PubMed

    Smith, Julia I; Combs, Elijah D; Nagami, Paul H; Alto, Valerie M; Goh, Henry G; Gourdet, Muryam A A; Hough, Christina M; Nickell, Ashley E; Peer, Adrian G; Coley, John D; Tanner, Kimberly D

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non-biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non-biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise.

  14. Conceptual Design and Performance Analysis for a Large Civil Compound Helicopter

    NASA Technical Reports Server (NTRS)

    Russell, Carl; Johnson, Wayne

    2012-01-01

    A conceptual design study of a large civil compound helicopter is presented. The objective is to determine how a compound helicopter performs when compared to both a conventional helicopter and a tiltrotor using a design mission that is shorter than optimal for a tiltrotor and longer than optimal for a helicopter. The designs are generated and analyzed using conceptual design software and are further evaluated with a comprehensive rotorcraft analysis code. Multiple metrics are used to determine the suitability of each design for the given mission. Plots of various trade studies and parameter sweeps as well as comprehensive analysis results are presented. The results suggest that the compound helicopter examined for this study would not be competitive with a tiltrotor or conventional helicopter, but multiple possibilities are identified for improving the performance of the compound helicopter in future research.

  15. NDARC NASA Design and Analysis of Rotorcraft. Appendix 5; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  16. NDARC: NASA Design and Analysis of Rotorcraft. Appendix 3; Theory

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet speci?ed requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft con?gurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates con?guration ?exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-?delity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy speci?ed design conditions and missions. The analysis tasks can include off-design mission performance calculation, ?ight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft con?gurations is facilitated, while retaining the capability to model novel and advanced concepts. Speci?c rotorcraft con?gurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-?delity attribute models for a component, as well as addition of new components.

  17. NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 2

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration exibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tilt-rotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  18. NDARC NASA Design and Analysis of Rotorcraft. Appendix 6; Input

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2017-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  19. NDARC NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne R.

    2009-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool intended to support both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility; a hierarchy of models; and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with lowfidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single main-rotor and tailrotor helicopter; tandem helicopter; coaxial helicopter; and tiltrotors. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  20. NDARC - NASA Design and Analysis of Rotorcraft

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2015-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  1. NDARC NASA Design and Analysis of Rotorcraft Theory Appendix 1

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2016-01-01

    The NASA Design and Analysis of Rotorcraft (NDARC) software is an aircraft system analysis tool that supports both conceptual design efforts and technology impact assessments. The principal tasks are to design (or size) a rotorcraft to meet specified requirements, including vertical takeoff and landing (VTOL) operation, and then analyze the performance of the aircraft for a set of conditions. For broad and lasting utility, it is important that the code have the capability to model general rotorcraft configurations, and estimate the performance and weights of advanced rotor concepts. The architecture of the NDARC code accommodates configuration flexibility, a hierarchy of models, and ultimately multidisciplinary design, analysis, and optimization. Initially the software is implemented with low-fidelity models, typically appropriate for the conceptual design environment. An NDARC job consists of one or more cases, each case optionally performing design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance calculation, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. For analysis tasks, the aircraft description can come from the sizing task, from a previous case or a previous NDARC job, or be independently generated (typically the description of an existing aircraft). The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. For each component, attributes such as performance, drag, and weight can be calculated; and the aircraft attributes are obtained from the sum of the component attributes. Description and analysis of conventional rotorcraft configurations is facilitated, while retaining the capability to model novel and advanced concepts. Specific rotorcraft configurations considered are single-main-rotor and tail-rotor helicopter, tandem helicopter, coaxial helicopter, and tiltrotor. The architecture of the code accommodates addition of new or higher-fidelity attribute models for a component, as well as addition of new components.

  2. Data base architecture for instrument characteristics critical to spacecraft conceptual design

    NASA Technical Reports Server (NTRS)

    Rowell, Lawrence F.; Allen, Cheryl L.

    1990-01-01

    Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.

  3. Advanced turbocharger design study program

    NASA Technical Reports Server (NTRS)

    Culy, D. G.; Heldenbrand, R. W.; Richardson, N. R.

    1984-01-01

    The advanced Turbocharger Design Study consisted of: (1) the evaluation of three advanced engine designs to determine their turbocharging requirements, and of technologies applicable to advanced turbocharger designs; (2) trade-off studies to define a turbocharger conceptual design and select the engine with the most representative requirements for turbocharging; (3) the preparation of a turbocharger conceptual design for the Curtiss Wright RC2-32 engine selected in the trade-off studies; and (4) the assessment of market impact and the preparation of a technology demonstration plan for the advanced turbocharger.

  4. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  5. Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis

    NASA Technical Reports Server (NTRS)

    Sexstone, Matthew G.

    1998-01-01

    This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.

  6. Commonality between Reduced Gravity and Microgravity Habitats for Long Duration Missions

    NASA Technical Reports Server (NTRS)

    Howard, Robert

    2014-01-01

    Many conceptual studies for long duration missions beyond Earth orbit have assumed unique habitat designs for each destination and for transit habitation. This may not be the most effective approach. A variable gravity habitat, one designed for use in microgravity, lunar, Martian, and terrestrial environments may provide savings that offset the loss of environment-specific optimization. However, a brief analysis of selected flown spacecraft and Constellation-era conceptual habitat designs suggests that one cannot simply lift a habitat from one environment and place it in another that it was not designed for without incurring significant human performance compromises. By comparison, a conceptual habitat based on the Skylab II framework but designed specifically to accommodate variable gravity environments can be shown to yield significant advantages while incurring only minimal human performance compromises.

  7. Self-organization versus Watchmaker: ambiguity of molecular recognition and design charts of cellular circuitry.

    PubMed

    Kurakin, Alexei

    2007-01-01

    A large body of experimental evidence indicates that the specific molecular interactions and/or chemical conversions depicted as links in the conventional diagrams of cellular signal transduction and metabolic pathways are inherently probabilistic, ambiguous and context-dependent. Being the inevitable consequence of the dynamic nature of protein structure in solution, the ambiguity of protein-mediated interactions and conversions challenges the conceptual adequacy and practical usefulness of the mechanistic assumptions and inferences embodied in the design charts of cellular circuitry. It is argued that the reconceptualization of molecular recognition and cellular organization within the emerging interpretational framework of self-organization, which is expanded here to include such concepts as bounded stochasticity, evolutionary memory, and adaptive plasticity offers a significantly more adequate representation of experimental reality than conventional mechanistic conceptions do. Importantly, the expanded framework of self-organization appears to be universal and scale-invariant, providing conceptual continuity across multiple scales of biological organization, from molecules to societies. This new conceptualization of biological phenomena suggests that such attributes of intelligence as adaptive plasticity, decision-making, and memory are enforced by evolution at different scales of biological organization and may represent inherent properties of living matter. (c) 2007 John Wiley & Sons, Ltd.

  8. A Multi-Year Program Developing an Explicit Reflective Pedagogy for Teaching Pre-service Teachers the Nature of Science by Ostention

    NASA Astrophysics Data System (ADS)

    Smith, Mike U.; Scharmann, Lawrence

    2008-02-01

    This investigation delineates a multi-year action research agenda designed to develop an instructional model for teaching the nature of science (NOS) to preservice science teachers. Our past research strongly supports the use of explicit reflective instructional methods, which includes Thomas Kuhn’s notion of learning by ostention and treating science as a continuum (i.e., comparing fields of study to one another for relative placement as less to more scientific). Instruction based on conceptual change precepts, however, also exhibits promise. Thus, the investigators sought to ascertain the degree to which conceptual change took place among students (n = 15) participating in the NOS instructional model. Three case studies are presented to illustrate successful conceptual changes that took place as a result of the NOS instructional model. All three cases represent students who claim a very conservative Christian heritage and for whom evolution was not considered a legitimate scientific theory prior to participating in the NOS instructional model. All three case study individuals, along with their twelve classmates, placed evolution as most scientific when compared to intelligent design and a fictional field of study called “Umbrellaology.”

  9. Gas-Grain Simulation Facility (GGSF). Volume 1: Stage 1 facility definition studies

    NASA Technical Reports Server (NTRS)

    Gat, Nahum

    1993-01-01

    The Gas-Grain Simulation Facility (GGSF) is a facility-type payload to be included in the Space Station Freedom (SSF). The GGSF is a multidisciplinary facility that will accommodate several classes of experiments, including exobiology, planetary science, atmospheric science, and astrophysics. The physical mechanisms envisioned to be investigated include crystal growth, aggregation, nucleation, coagulation, condensation, collisions, fractal growth, cycles of freezing and evaporation, scavenging, longevity of bacteria, and more. TRW performed a Phase A study that included analyses of the science and technical (S&T) requirements, the development of facility functional requirements, and a conceptual design of the facility. The work that was performed under Stage 1 of the Phase A study and the results to date are summarized. In this stage, facility definition studies were conducted in sufficient detail to establish the technical feasibility of the candidate strawman experiments. The studies identified technical difficulties, identified required facility subsystems, surveyed existing technology studies and established preliminary facility weight, volume, power consumption, data systems, interface definition, and crew time requirements. The results of this study served as the basis for Stage 2 of the Phase A study in which a conceptual design and a reference design were performed. The results also served as a basis for a related study for a Gas-Grain Simulation Experiment Module (GGSEM), which is an apparatus intended to perform a subset of the GGSF experiments on board a low-Earth-orbiting platform.

  10. Issues and recent advances in optimal experimental design for site investigation (Invited)

    NASA Astrophysics Data System (ADS)

    Nowak, W.

    2013-12-01

    This presentation provides an overview over issues and recent advances in model-based experimental design for site exploration. The addressed issues and advances are (1) how to provide an adequate envelope to prior uncertainty, (2) how to define the information needs in a task-oriented manner, (3) how to measure the expected impact of a data set that it not yet available but only planned to be collected, and (4) how to perform best the optimization of the data collection plan. Among other shortcomings of the state-of-the-art, it is identified that there is a lack of demonstrator studies where exploration schemes based on expert judgment are compared to exploration schemes obtained by optimal experimental design. Such studies will be necessary do address the often voiced concern that experimental design is an academic exercise with little improvement potential over the well- trained gut feeling of field experts. When addressing this concern, a specific focus has to be given to uncertainty in model structure, parameterizations and parameter values, and to related surprises that data often bring about in field studies, but never in synthetic-data based studies. The background of this concern is that, initially, conceptual uncertainty may be so large that surprises are the rule rather than the exception. In such situations, field experts have a large body of experience in handling the surprises, and expert judgment may be good enough compared to meticulous optimization based on a model that is about to be falsified by the incoming data. In order to meet surprises accordingly and adapt to them, there needs to be a sufficient representation of conceptual uncertainty within the models used. Also, it is useless to optimize an entire design under this initial range of uncertainty. Thus, the goal setting of the optimization should include the objective to reduce conceptual uncertainty. A possible way out is to upgrade experimental design theory towards real-time interaction with the ongoing site investigation, such that surprises in the data are immediately accounted for to restrict the conceptual uncertainty and update the optimization of the plan.

  11. Respiration and Photosynthesis: A Teaching Module. Occasional Paper No. 90.

    ERIC Educational Resources Information Center

    Bishop, Beth A.; And Others

    Designed to address the major conceptual problems associated with respiration and photosynthesis, this module can be used with high school students or college nonscience majors including those in elementary education. It is one in a series developed by the project Overcoming Critical Barriers to Learning in Nonmajors' Science Courses. The…

  12. Resource Manual on the Use of Computers in Schooling.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Technology Applications.

    This resource manual is designed to provide educators with timely information on the use of computers and related technology in schools. Section one includes a review of the new Bureau of Technology Applications' goal, functions, and major programs and activities; a description of the Model Schools Program, which has been conceptually derived from…

  13. La Ciutat Educadora = The Educating City. International Congress of Educating Cities (1st, Barcelona, Spain, November 26-30, 1990).

    ERIC Educational Resources Information Center

    Barcelona Council (Spain).

    This report presents 28 conference papers, which represent different thematic and scientific perspectives designed to create an educating city theory. The translated titles of the articles include the following: (1) "Foreword" (P. Maragall); (2) "Introduction" (J. Trilla Bernet); (3) "Conceptual Itinerary Through the…

  14. Neural Network Control of a Parallel Hybrid-Electric Propulsion System for a Small Unmanned Aerial Vehicle

    DTIC Science & Technology

    2004-01-01

    ion battery pack sized for endurance speed. The flexible optimization routine allows relative importance to be assigned between the use of gasoline...simulation results are provided. The two-point conceptual design includes an internal combustion engine sized for cruise and an electric motor and lithium

  15. The Impact of Telecommuting Intensity on Employee Perception Outcomes: Job Satisfaction, Productivity, and Organizational Commitment

    ERIC Educational Resources Information Center

    Nyaanga, Solomon G.

    2012-01-01

    This research investigates the impact of telecommuting intensity (hours worked/week from home) on worker perceived outcomes such as job satisfaction, productivity, organizational commitment. Data was collected and analyzed from a large U.S. Federal Department. The conceptual research model and design include three key mediating variables, one…

  16. Steam as Social Practice: Cultivating Creativity in Transdisciplinary Spaces

    ERIC Educational Resources Information Center

    Guyotte, Kelly W.; Sochacka, Nicki W.; Costantino, Tracie E.; Walther, Joachim; Kellam, Nadia N.

    2014-01-01

    Recently there have been calls to expandSTEM education to include the arts and design, transforming STEM into STEAM in the K-20 classroom (Maeda, 2013). Like STEM, STEAM education stresses making connections between disciplines that were previously perceived as disparate. This has been conceptualized in different ways, such as: focusing on the…

  17. Digital London: Creating a Searchable Web of Interlinked Sources on Eighteenth Century London

    ERIC Educational Resources Information Center

    Shoemaker, Robert

    2005-01-01

    Purpose: To outline the conceptual and technical difficulties encountered, as well as the opportunities created, when developing an interlinked collection of web-based digitised primary sources on eighteenth century London. Design/methodology/approach: As a pilot study for a larger project, a variety of primary sources, including the "Old…

  18. Onboard experiment data support facility, task 1 report. [space shuttles

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.

  19. O/S analysis of conceptual space vehicles. Part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1995-01-01

    The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.

  20. Goodyear aerospace conceptual design maritime patrol airship ZP3G. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, N.D.

    1979-04-01

    A Conceptual design of a modern technology airship with precision hover capability for use in maritime patrol is described. The size and major characteristics are established by a series of United States Coast Guard missions set forth by the contracting agency.

  1. Developing and Applying Synthesis Models of Emerging Space Systems

    DTIC Science & Technology

    2016-03-01

    enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed

  2. Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rigali, Mark J.; Price, Laura L.

    This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less

  3. The lift-fan aircraft: Lessons learned

    NASA Technical Reports Server (NTRS)

    Deckert, Wallace H.

    1995-01-01

    This report summarizes the highlights and results of a workshop held at NASA Ames Research Center in October 1992. The objective of the workshop was a thorough review of the lessons learned from past research on lift fans, and lift-fan aircraft, models, designs, and components. The scope included conceptual design studies, wind tunnel investigations, propulsion systems components, piloted simulation, flight of aircraft such as the SV-5A and SV-5B and a recent lift-fan aircraft development project. The report includes a brief summary of five technical presentations that addressed the subject The Lift-Fan Aircraft: Lessons Learned.

  4. Rapid Assessment of Agility for Conceptual Design Synthesis

    NASA Technical Reports Server (NTRS)

    Biezad, Daniel J.

    1996-01-01

    This project consists of designing and implementing a real-time graphical interface for a workstation-based flight simulator. It is capable of creating a three-dimensional out-the-window scene of the aircraft's flying environment, with extensive information about the aircraft's state displayed in the form of a heads-up-display (HUD) overlay. The code, written in the C programming language, makes calls to Silicon Graphics' Graphics Library (GL) to draw the graphics primitives. Included in this report is a detailed description of the capabilities of the code, including graphical examples, as well as a printout of the code itself

  5. Lunar Surface Habitat Configuration Assessment: Methodology and Observations

    NASA Technical Reports Server (NTRS)

    Carpenter, Amanda

    2008-01-01

    The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.

  6. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes these overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  7. Nuclear Cryogenic Propulsion Stage Fuel Design and Fabrication

    NASA Technical Reports Server (NTRS)

    Hickman, Robert; Broadway, Jeramie; Mireles, Omar; Webb, Jon; Qualls, Lou

    2012-01-01

    Nuclear Cryogenic Propulsion Stage (NCPS) is a game changing technology for space exploration. Goal of assessing the affordability and viability of an NCPS includes thses overall tasks: (1) Pre-conceptual design of the NCPS and architecture integration (2) NCPS Fuel Design and Testing (3) Nuclear Thermal Rocket Element Environmental Simulator (NTREES) (4) Affordable NCPS Development and Qualification Strategy (5) Second Generation NCPS Concepts. There is a critical need for fuels development. Fuel task objectives are to demonstrate capabilities and critical technologies using full scale element fabrication and testing.

  8. V/STOL tilt rotor aircraft study. Volume 5: Definition of stowed rotor research aircraft

    NASA Technical Reports Server (NTRS)

    Soule, V. A.

    1973-01-01

    The results of a study of folding tilt rotor (stowed rotor) aircraft are presented. The effects of design cruise speed on the gross weight of a conceptual design stowed rotor aircraft are shown and a comparison is made with a conventional (non-folding) tilt rotor aircraft. A flight research stowed rotor design is presented. The program plans, including costs and schedules, are shown for the research aircraft development and a wind tunnel plan is presented for a full scale test of the aircraft.

  9. Executive functions predict conceptual learning of science.

    PubMed

    Rhodes, Sinéad M; Booth, Josephine N; Palmer, Lorna Elise; Blythe, Richard A; Delibegovic, Mirela; Wheate, Nial J

    2016-06-01

    We examined the relationship between executive functions and both factual and conceptual learning of science, specifically chemistry, in early adolescence. Sixty-three pupils in their second year of secondary school (aged 12-13 years) participated. Pupils completed tasks of working memory (Spatial Working Memory), inhibition (Stop-Signal), attention set-shifting (ID/ED), and planning (Stockings of Cambridge), from the CANTAB. They also participated in a chemistry teaching session, practical, and assessment on the topic of acids and alkalis designed specifically for this study. Executive function data were related to (1) the chemistry assessment which included aspects of factual and conceptual learning and (2) a recent school science exam. Correlational analyses between executive functions and both the chemistry assessment and science grades revealed that science achievements were significantly correlated with working memory. Linear regression analysis revealed that visuospatial working memory ability was predictive of chemistry performance. Interestingly, this relationship was observed solely in relation to the conceptual learning condition of the assessment highlighting the role of executive functions in understanding and applying knowledge about what is learned within science teaching. © 2016 The British Psychological Society.

  10. Chinese and Australian children's understandings of the Earth: a cross cultural study of conceptual development

    NASA Astrophysics Data System (ADS)

    Tao, Ying; Oliver, Mary; Venville, Grady

    2013-06-01

    The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.

  11. Shuttle mission simulator hardware conceptual design report

    NASA Technical Reports Server (NTRS)

    Burke, J. F.

    1973-01-01

    The detailed shuttle mission simulator hardware requirements are discussed. The conceptual design methods, or existing technology, whereby those requirements will be fulfilled are described. Information of a general nature on the total design problem plus specific details on how these requirements are to be satisfied are reported. The configuration of the simulator is described and the capabilities for various types of training are identified.

  12. NASA/DOD (National Aeronautics and Space Administration/Department of Defense) Control/Structures Interaction Technology Conference (2nd) Held in Colorado Springs, Colorado on 17-19 November 1987.

    DTIC Science & Technology

    1988-06-01

    James McKelvy and Harold Tinsley *," . CONCEPTUAL DESIGN OF A SPACE STATION DYNAMIC SCALE MODEL ............. 87 Robert Letchworth, Paul E... CONCEPTUAL SYSTEM DESIGN FOR ANTENNA THERMAL AND DYNAMIC DISTORTION COMPENSATION USING A PHASED ARRAY FEED ................... 145 G. R. Sharp, R. J...to achieve somne desired state or trajectory. For conceptual purposes, however, an alternate view is useful in which the measurement reference against

  13. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    ERIC Educational Resources Information Center

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  14. Changing Attitudes, Changing Behaviors. Conceptual Change as a Model for Teaching Freedom of Religion or Belief

    ERIC Educational Resources Information Center

    Rea-Ramirez, Mary Anne; Ramirez, Tina M.

    2017-01-01

    Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…

  15. Initial conceptual design study of self-critical nuclear pumped laser systems

    NASA Technical Reports Server (NTRS)

    Rodgers, R. J.

    1979-01-01

    An analytical study of self-critical nuclear pumped laser system concepts was performed. Primary emphasis was placed on reactor concepts employing gaseous uranium hexafluoride (UF6) as the fissionable material. Relationships were developed between the key reactor design parameters including reactor power level, critical mass, neutron flux level, reactor size, operating pressure, and UF6 optical properties. The results were used to select a reference conceptual laser system configuration. In the reference configuration, the 3.2 m cubed lasing volume is surrounded by a graphite internal moderator and a region of heavy water. Results of neutronics calculations yield a critical mass of 4.9 U(235) in the form (235)UF6. The configuration appears capable of operating in a continuous steady-state mode. The average gas temperature in the core is 600 K and the UF6 partial pressure within the lasing volume is 0.34 atm.

  16. Applications of Response Surface-Based Methods to Noise Analysis in the Conceptual Design of Revolutionary Aircraft

    NASA Technical Reports Server (NTRS)

    Hill, Geoffrey A.; Olson, Erik D.

    2004-01-01

    Due to the growing problem of noise in today's air transportation system, there have arisen needs to incorporate noise considerations in the conceptual design of revolutionary aircraft. Through the use of response surfaces, complex noise models may be converted into polynomial equations for rapid and simplified evaluation. This conversion allows many of the commonly used response surface-based trade space exploration methods to be applied to noise analysis. This methodology is demonstrated using a noise model of a notional 300 passenger Blended-Wing-Body (BWB) transport. Response surfaces are created relating source noise levels of the BWB vehicle to its corresponding FAR-36 certification noise levels and the resulting trade space is explored. Methods demonstrated include: single point analysis, parametric study, an optimization technique for inverse analysis, sensitivity studies, and probabilistic analysis. Extended applications of response surface-based methods in noise analysis are also discussed.

  17. Optimization of an Advanced Hybrid Wing Body Concept Using HCDstruct Version 1.2

    NASA Technical Reports Server (NTRS)

    Quinlan, Jesse R.; Gern, Frank H.

    2016-01-01

    Hybrid Wing Body (HWB) aircraft concepts continue to be promising candidates for achieving the simultaneous fuel consumption and noise reduction goals set forth by NASA's Environmentally Responsible Aviation (ERA) project. In order to evaluate the projected benefits, improvements in structural analysis at the conceptual design level were necessary; thus, NASA researchers developed the Hybrid wing body Conceptual Design and structural optimization (HCDstruct) tool to perform aeroservoelastic structural optimizations of advanced HWB concepts. In this paper, the authors present substantial updates to the HCDstruct tool and related analysis, including: the addition of four inboard and eight outboard control surfaces and two all-movable tail/rudder assemblies, providing a full aeroservoelastic analysis capability; the implementation of asymmetric load cases for structural sizing applications; and a methodology for minimizing control surface actuation power using NASTRAN SOL 200 and HCDstruct's aeroservoelastic finite-element model (FEM).

  18. Solar Concentrator Advanced Development Program, Task 1

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Solar dynamic power generation has been selected by NASA to provide power for the space station. Solar dynamic concentrator technology has been demonstrated for terrestrial applications but has not been developed for space applications. The object of the Solar Concentrator Advanced Development program is to develop the technology of solar concentrators which would be used on the space station. The first task of this program was to develop conceptual concentrator designs and perform trade-off studies and to develop a materials data base and perform material selection. Three unique concentrator concepts; Truss Hex, Spline Radial Panel and Domed Fresnel, were developed and evaluated against weighted trade criteria. The Truss Hex concept was recommended for the space station. Materials data base development demonstrated that several material systems are capable of withstanding extended periods of atomic oxygen exposure without undesirable performance degradation. Descriptions of the conceptual designs and materials test data are included.

  19. Multidisciplinary conceptual design optimization of aircraft using a sound-matching-based objective function

    NASA Astrophysics Data System (ADS)

    Diez, Matteo; Iemma, Umberto

    2012-05-01

    The article presents a novel approach to include community noise considerations based on sound quality in the Multidisciplinary Conceptual Design Optimization (MCDO) of civil transportation aircraft. The novelty stems from the use of an unconventional objective function, defined as a measure of the difference between the noise emission of the aircraft under analysis and a reference 'weakly annoying' noise, the target sound. The minimization of such a merit factor yields an aircraft concept with a noise signature as close as possible to the given target. The reference sound is one of the outcomes of the European Research Project SEFA (Sound Engineering For Aircraft, VI Framework Programme, 2004-2007), and used here as an external input. The aim of the present work is to address the definition and the inclusion of the sound-matching-based objective function in the MCDO of aircraft.

  20. Lunar lander conceptual design

    NASA Technical Reports Server (NTRS)

    Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.

    1992-01-01

    This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.

  1. High Efficiency Nuclear Power Plants Using Liquid Fluoride Thorium Reactor Technology

    NASA Technical Reports Server (NTRS)

    Juhasz, Albert J.; Rarick, Richard A.; Rangarajan, Rajmohan

    2009-01-01

    An overall system analysis approach is used to propose potential conceptual designs of advanced terrestrial nuclear power plants based on Oak Ridge National Laboratory (ORNL) Molten Salt Reactor (MSR) experience and utilizing Closed Cycle Gas Turbine (CCGT) thermal-to-electric energy conversion technology. In particular conceptual designs for an advanced 1 GWe power plant with turbine reheat and compressor intercooling at a 950 K turbine inlet temperature (TIT), as well as near term 100 MWe demonstration plants with TITs of 950 and 1200 K are presented. Power plant performance data were obtained for TITs ranging from 650 to 1300 K by use of a Closed Brayton Cycle (CBC) systems code which considered the interaction between major sub-systems, including the Liquid Fluoride Thorium Reactor (LFTR), heat source and heat sink heat exchangers, turbo-generator machinery, and an electric power generation and transmission system. Optional off-shore submarine installation of the power plant is a major consideration.

  2. [Satisfaction and perceived quality of people insured by the Social Health Protection in Mexico. Methodological foundations].

    PubMed

    Saturno-Hernández, Pedro J; Gutiérrez-Reyes, Juan Pablo; Vieyra-Romero, Waldo Ivan; Romero-Martínez, Martín; O'Shea-Cuevas, Gabriel Jaime; Lozano-Herrera, Javier; Tavera-Martínez, Sonia; Hernández-Ávila, Mauricio

    2016-01-01

    To describe the conceptual framework and methods for implementation and analysis of the satisfaction survey of the Mexican System for Social Protection in Health. We analyze the methodological elements of the 2013, 2014 and 2015 surveys, including the instrument, sampling method and study design, conceptual framework, and characteristics and indicators of the analysis. The survey captures information on perceived quality and satisfaction. Sampling has national and State representation. Simple and composite indicators (index of satisfaction and rate of reported quality problems) are built and described. The analysis is completed using Pareto diagrams, correlation between indicators and association with satisfaction by means of multivariate models. The measurement of satisfaction and perceived quality is a complex but necessary process to comply with regulations and to identify strategies for improvement. The described survey presents a design and rigorous analysis focused on its utility for improving.

  3. Conceptual phase A design of a cryogenic shutter mechanism for the SAFARI flight instrument

    NASA Astrophysics Data System (ADS)

    Eigenmann, Max; Wehmeier, Udo J.; Vuilleumier, Aurèle; Messina, Gabriele; Meyer, Michael R.

    2012-09-01

    We present a conceptual design for a cryogenic optical mechanism for the SAFARI instrument. SAFARI is a long wavelength (34-210 micron) Imaging Fourier Transform Spectrometer (FTS) to fly as an ESA instrument on the JAXA SPICA mission projected to launch in 2021. SPICA is a large 3m class space telescope which will have an operating temperature of less than 7K. The SAFARI shutter is a single point of failure flight mechanism designed to operate in space at a temperature of 4K which meets redundancy and reliability requirements of this challenging mission. The conceptual design is part of a phase A study led by ETH Institute for Astronomy and conducted by RUAG Space AG.

  4. Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.

  5. Altair Lunar Lander Consumables Management

    NASA Technical Reports Server (NTRS)

    Polsgrove, Tara; Button, Robert; Linne, Diane

    2009-01-01

    The Altair lunar lander is scheduled to return humans to the moon in the year 2020. Keeping the crew of 4 and the vehicle functioning at their best while minimizing lander mass requires careful budgeting and management of consumables and cooperation with other constellation elements. Consumables discussed here include fluids, gasses, and energy. This paper presents the lander's missions and constraints as they relate to consumables and the design solutions that have been employed in recent Altair conceptual designs.

  6. Plant Growth Module (PGM) conceptual design

    NASA Technical Reports Server (NTRS)

    Schwartzkopf, Steven H.; Rasmussen, Daryl

    1987-01-01

    The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.

  7. Servicers system demonstration plan and capability development

    NASA Technical Reports Server (NTRS)

    Bulboaca, M. A.; Cuseo, J. A.; Derocher, W. L., Jr.; Maples, R. W.; Reynolds, P. C.; Sterrett, R. A.

    1985-01-01

    A plan for the demonstration of the exchange of Multi-Mission Modular Spacecraft (MMS) modules using the servicer mechanism Engineering Test Unit (ETU) was prepared and executed. The plan included: establishment of requirements, conceptual design, selection of MMS spacecraft mockup configuration, selection of MMS module mockup configuration, evaluation of adequacy of ETU load capability, and selection of a stowage rack arrangement. The MMS module exchange demonstration mockup equipment was designed, fabricated, checked out, shipped, installed, and demonstrated.

  8. Development of an inflatable radiator system. [for space shuttles

    NASA Technical Reports Server (NTRS)

    Leach, J. W.

    1976-01-01

    Conceptual designs of an inflatable radiator system developed for supplying short duration supplementary cooling of space vehicles are described along with parametric trade studies, materials evaluation/selection studies, thermal and structural analyses, and numerous element tests. Fabrication techniques developed in constructing the engineering models and performance data from the model thermal vacuum tests are included. Application of these data to refining the designs of the flight articles and to constructing a full scale prototype radiator is discussed.

  9. Solar power satellite system definition study, volume 4, phase 2

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Results of an overall evaluation of the solar power satellite concept are reported. Specific topics covered include: solid state sandwich configuration; parametric development of reliability design; power distribution system for solid state solar power satellites; multibeam transmission; GEO base system configuration; suppression of the heavy lift launch vehicle trajectory; conceptual design of an offshore space center facility; solar power satellite development and operations scenario; and microwave power transmission technology, advancement, development, and facility requirements.

  10. Conceptualizing Youth Empowerment within Tobacco Control

    ERIC Educational Resources Information Center

    Holden, Debra J.; Messeri, Peter; Evans, W. Douglas; Crankshaw, Erik; Ben-Davies, Maureen

    2004-01-01

    This article presents a conceptual framework that was developed to guide a national evaluation of the American Legacy Foundation's (Legacy) Statewide Youth Movement Against Tobacco Use (SYMATU) program. This program was designed to develop youth-led, youth-directed initiatives within local communities. Two evaluation studies were designed and…

  11. Correction: Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities.

    PubMed

    Belosludov, Rodion V; Rhoda, Hannah M; Zhdanov, Ravil K; Belosludov, Vladimir R; Kawazoe, Yoshiyuki; Nemykin, Victor N

    2017-08-02

    Correction for 'Conceptual design of tetraazaporphyrin- and subtetraazaporphyrin-based functional nanocarbon materials: electronic structures, topologies, optical properties, and methane storage capacities' by Rodion V. Belosludov et al., Phys. Chem. Chem. Phys., 2016, 18, 13503-13518.

  12. FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT

    EPA Science Inventory

    The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....

  13. Conceptual design of a hybrid neutron-gamma detector for study of β-delayed neutrons at the RIB facility of RIKEN

    NASA Astrophysics Data System (ADS)

    Tarifeño-Saldivia, A.; Tain, J. L.; Domingo-Pardo, C.; Calviño, F.; Cortés, G.; Phong, V. H.; Riego, A.; Agramunt, J.; Algora, A.; Brewer, N.; Caballero-Folch, R.; Coleman-Smith, P. J.; Davinson, T.; Dillmann, I.; Estradé, A.; Griffin, C. J.; Grzywacz, R.; Harkness-Brennan, L. J.; Kiss, G. G.; Kogimtzis, M.; Labiche, M.; Lazarus, I. H.; Lorusso, G.; Matsui, K.; Miernik, K.; Montes, F.; Morales, A. I.; Nishimura, S.; Page, R. D.; Podolyák, Z. S.; Pucknell, V. F. E.; Rasco, B. C.; Regan, P.; Rubio, B.; Rykaczewski, K. P.; Saito, Y.; Sakurai, H.; Simpson, J.; Sokol, E.; Surman, R.; Svirkhin, A.; Thomas, S. L.; Tolosa, A.; Woods, P.

    2017-04-01

    The conceptual design of the BRIKEN neutron detector at the radioactive ion beam factory (RIBF) of the RIKEN Nishina Center is reported. The BRIKEN setup is a complex system aimed at detecting heavy-ion implants, β particles, γ rays and β-delayed neutrons. The whole setup includes the Advanced Implantation Detection Array (AIDA), two HPGe Clover detectors and up to 166 3He-filled counters embedded in a high-density polyethylene moderator. The design is quite complex due to the large number and different types of 3He-tubes involved and the additional constraints introduced by the ancillary detectors for charged particles and γ rays. This article reports on a novel methodology developed for the conceptual design and optimisation of the 3He-counter array, aiming for the best possible performance in terms of neutron detection. The algorithm is based on a geometric representation of two selected detector parameters of merit, namely, the average neutron detection efficiency and the efficiency flatness as a function of a reduced number of geometric variables. The response of the neutron detector is obtained from a systematic Monte Carlo simulation implemented in GEANT4. The robustness of the algorithm allowed us to design a versatile detection system, which operated in hybrid mode includes the full neutron counter and two clover detectors for high-precision gamma spectroscopy. In addition, the system can be reconfigured into a compact mode by removing the clover detectors and re-arranging the 3He tubes in order to maximize the neutron detection performance. Both operation modes shows a rather flat and high average efficiency. In summary, we have designed a system which shows an average efficiency for hybrid mode (3He tubes + clovers) of 68.6% and 64% for neutron energies up to 1 and 5 MeV, respectively. For compact mode (only 3He tubes), the average efficiency is 75.7% and 71% for neutron energies up to 1 and 5 MeV, respectively. The performance of the BRIKEN detection system has been also quantified by means of Monte Carlo simulations with different neutron energy distributions.

  14. Conceptual design of a thermalhydraulic loop for multiple test geometries at supercritical conditions named Supercritical Phenomena Experimental Test Apparatus (SPETA)

    NASA Astrophysics Data System (ADS)

    Adenariwo, Adepoju

    The efficiency of nuclear reactors can be improved by increasing the operating pressure of current nuclear reactors. Current CANDU-type nuclear reactors use heavy water as coolant at an outlet pressure of up to 11.5 MPa. Conceptual SuperCritical Water Reactors (SCWRs) will operate at a higher coolant outlet pressure of 25 MPa. Supercritical water technology has been used in advanced coal plants and its application proves promising to be employed in nuclear reactors. To better understand how supercritical water technology can be applied in nuclear power plants, supercritical water loops are used to study the heat transfer phenomena as it applies to CANDU-type reactors. A conceptual design of a loop known as the Supercritical Phenomena Experimental Apparatus (SPETA) has been done. This loop has been designed to fit in a 9 m by 2 m by 2.8 m enclosure that will be installed at the University of Ontario Institute of Technology Energy Research Laboratory. The loop include components to safely start up and shut down various test sections, produce a heat source to the test section, and to remove reject heat. It is expected that loop will be able to investigate the behaviour of supercritical water in various geometries including bare tubes, annulus tubes, and multi-element-type bundles. The experimental geometries are designed to match the fluid properties of Canadian SCWR fuel channel designs so that they are representative of a practical application of supercritical water technology in nuclear plants. This loop will investigate various test section orientations which are the horizontal, vertical, and inclined to investigate buoyancy effects. Frictional pressure drop effects and satisfactory methods of estimating hydraulic resistances in supercritical fluid shall also be estimated with the loop. Operating limits for SPETA have been established to be able to capture the important heat transfer phenomena at supercritical conditions. Heat balance and flow calculations have been done to appropriately size components in the loop. Sensitivity analysis has been done to find the optimum design for the loop.

  15. Conceptual design of a 500 watt solar AMTEC space power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ivanenok, J.F. III; Sievers, R.K.; Harty, R.B.

    1995-12-31

    Numerous design studies have been completed on Radioisotope powered Alkali Metal Thermal to Electric Converter (RAMTEC) power systems demonstrating their substantial increase in performance. Prior to recent advances in AMTEC technology and Thermal Energy Storage (TES), coupling AMTEC converters with a solar concentrator did not increase the performance of solar powered space power systems. This paper describes a conceptual design of an innovative, low cost, reliable, low mass, long life 500 watt Solar AMTEC (SAMTEC) power system, and the predicted system performance. The concept uses innovative, high voltage AMTEC cells, each containing 7 to 9 small electrolyte tubes, integrated withmore » an individual TES unit. These multi-tube AMTEC cells are identical to the AMTEC cells designed for radioisotope powered systems. The TES used in this conceptual design is the LiF-22%CaF{sub 2} unit currently being developed at NASA Lewis Research Center (LeRC) for the Solar Dynamic Ground Test Demonstration (SDGTD) Program. The system was designed to provide 500 watts of electrical power at 28 volts to a payload in Low Earth Orbit (LEO, 800 km, 28.5{degree} inclination) for a minimum lifetime of 5 years. The SAMTEC power system is predicted to have a specific power k of 5.3 to 8.9 W(e)/kg (including the concentrator, receiver, AMTEC cells, gimbals and drives, structure, power processing and control, and a 30% mass contingency) at the 500 watt power level, and 12 to 17 W(e)/kg at the 5,000 watt power level. The SAMTEC system, including all of the components listed above, is anticipated to cost $1,000/W(e) once development is complete and production begins. The SAMTEC system provides 92% of its Beginning of Life (BOL) power after a 5 year period in LEO, and SAMTEC systems should provide 10 to 15 years of life in LEO. Current AMTEC cells have demonstrated 18% efficiency in the laboratory and have been heated radiatively, with propane flames and electrical resistance heaters.« less

  16. A reliability and mass perspective of SP-100 Stirling cycle lunar-base powerplant designs

    NASA Technical Reports Server (NTRS)

    Bloomfield, Harvey S.

    1991-01-01

    The purpose was to obtain reliability and mass perspectives on selection of space power system conceptual designs based on SP-100 reactor and Stirling cycle power-generation subsystems. The approach taken was to: (1) develop a criterion for an acceptable overall reliability risk as a function of the expected range of emerging technology subsystem unit reliabilities; (2) conduct reliability and mass analyses for a diverse matrix of 800-kWe lunar-base design configurations employing single and multiple powerplants with both full and partial subsystem redundancy combinations; and (3) derive reliability and mass perspectives on selection of conceptual design configurations that meet an acceptable reliability criterion with the minimum system mass increase relative to reference powerplant design. The developed perspectives provided valuable insight into the considerations required to identify and characterize high-reliability and low-mass lunar-base powerplant conceptual design.

  17. Move-tecture: A Conceptual Framework for Designing Movement in Architecture

    NASA Astrophysics Data System (ADS)

    Yilmaz, Irem

    2017-10-01

    Along with the technological improvements in our age, it is now possible for the movement to become one of the basic components of the architectural space. Accordingly, architectural construction of movement changes both our architectural production practices and our understanding of architectural space. However, existing design concepts and approaches are insufficient to discuss and understand this change. In this respect, this study aims to form a conceptual framework on the relationship of architecture and movement. In this sense, the conceptualization of move-tecture is developed to research on the architectural construction of movement and the potentials of spatial creation through architecturally constructed movement. Move-tecture, is a conceptualization that treats movement as a basic component of spatial creation. It presents the framework of a qualitative categorization on the design of moving architectural structures. However, this categorization is a flexible one that can evolve in the direction of the expanding possibilities of the architectural design and the changing living conditions. With this understanding, six categories have been defined within the context of the article: Topological Organization, Choreographic Formation, Kinetic Structuring, Corporeal Constitution, Technological Configuration and Interactional Patterning. In line with these categories, a multifaceted perspective on the moving architectural structures is promoted. It is aimed that such an understanding constitutes a new initiative in the design practices carried out in this area and provides a conceptual basis for the discussions to be developed.

  18. Writing for understanding: The effect of using informational writing on student science achievement

    NASA Astrophysics Data System (ADS)

    Parson, Atiya

    The purpose of this quantitative study was to investigate whether or not informational writing in the science curriculum would impact fifth grade students' science achievement and conceptual understanding. The population of this study came from a metropolitan school district in the state of Georgia for school year 2012-2013. The quantitative data included students' pretest, posttest, and writing assessment scores. Examination approaches for this study included (a) examining theories and research on learning views for children, (b) determining how writing across the curriculum has worked, and (c) developing a research design for the present study that was based on findings from previous studies. The study was designed to find (a) whether there is a significant differences in science achievement between fifth-grade students who use informational writing weekly during science instruction and ones that do not, and (b) whether there is a significant differences in conceptual understanding of fifth-grade science content for students who use informational writing weekly and fifth-grade students who do not. To answer these questions, students pretest and posttest results were compared to determine if a statistical significance existed after informational writing was implemented in the experimental group for 10 weeks. The results indicate that there was no significant difference in test scores between students receiving the informational writing intervention and students without this intervention. However, this study found that students receiving informational writing intervention had better performance scores on conceptual writing assessment than the students without the intervention.

  19. OTEC riser cable system, Phase II: conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less

  20. A Conceptual Design Study of a High Temperature Solar Thermal Receiver

    NASA Technical Reports Server (NTRS)

    Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.

    1980-01-01

    A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.

  1. Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft

    NASA Technical Reports Server (NTRS)

    Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv

    2009-01-01

    This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.

  2. Knowledge-based environment for optical system design

    NASA Astrophysics Data System (ADS)

    Johnson, R. Barry

    1991-01-01

    Optical systems are extensively utilized by industry government and military organizations. The conceptual design engineering design fabrication and testing of these systems presently requires significant time typically on the order of 3-5 years. The Knowledge-Based Environment for Optical System Design (KB-OSD) Program has as its principal objectives the development of a methodology and tool(s) that will make a notable reduction in the development time of optical system projects reduce technical risk and overall cost. KB-OSD can be considered as a computer-based optical design associate for system engineers and design engineers. By utilizing artificial intelligence technology coupled with extensive design/evaluation computer application programs and knowledge bases the KB-OSD will provide the user with assistance and guidance to accomplish such activities as (i) develop system level and hardware level requirements from mission requirements (ii) formulate conceptual designs (iii) construct a statement of work for an RFP (iv) develop engineering level designs (v) evaluate an existing design and (vi) explore the sensitivity of a system to changing scenarios. The KB-OSD comprises a variety of computer platforms including a Stardent Titan supercomputer numerous design programs (lens design coating design thermal materials structural atmospherics etc. ) data bases and heuristic knowledge bases. An important element of the KB-OSD Program is the inclusion of the knowledge of individual experts in various areas of optics and optical system engineering. This knowledge is obtained by KB-OSD knowledge engineers performing

  3. Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design

    NASA Technical Reports Server (NTRS)

    Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.

    1975-01-01

    A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.

  4. A Proposed Conceptual Framework for Curriculum Design in Physical Fitness.

    ERIC Educational Resources Information Center

    Miller, Peter V.; Beauchamp, Larry S.

    A physical fitness curriculum, designed to provide cumulative benefits in a sequential pattern, is based upon a framework of a conceptual structure. The curriculum's ultimate goal is the achievement of greater physiological efficiency through a holistic approach that would strengthen circulatory-respiratory, mechanical, and neuro-muscular…

  5. Research on Product Conceptual Design Based on Integrated of TRIZ and HOQ

    NASA Astrophysics Data System (ADS)

    Xie, Jianmin; Tang, Xiaowo; Shao, Yunfei

    The conceptual design determines the success of the final product quality and competition of market. The determination of design parameters and the effective method to resolve parameters contradiction are the key to success. In this paper, the concept of HOQ products designed to determine the parameters, then using the TRIZ contradiction matrix and inventive principles of design parameters to solve the problem of contradictions. Facts have proved that the effective method is to obtain the product concept design parameters and to resolve contradictions line parameters.

  6. A flexible computer aid for conceptual design based on constraint propagation and component-modeling. [of aircraft in three dimensions

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1988-01-01

    The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.

  7. The potential of genetic algorithms for conceptual design of rotor systems

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Wells, Valana L.; Laananen, David H.

    1993-01-01

    The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.

  8. Conceptual design of a two stage to orbit spacecraft

    NASA Technical Reports Server (NTRS)

    Armiger, Scott C.; Kwarta, Jennifer S.; Horsley, Kevin B.; Snow, Glenn A.; Koe, Eric C.; Single, Thomas G.

    1993-01-01

    This project, undertaken through the Advanced Space Design Program, developed a 'Conceptual Design of a Two Stage To Orbit Spacecraft (TSTO).' The design developed utilizes a combination of air breathing and rocket propulsion systems and is fully reusable, with horizontal takeoff and landing capability. The orbiter is carried in an aerodynamically designed bay in the aft section of the booster vehicle to the staging altitude. This TSTO Spacecraft design meets the requirements of replacing the aging Space Shuttle system with a more easily maintained vehicle with more flexible mission capability.

  9. Conceptual Design Model of Instructional Interfaces: Courseware for Inclusive Education System (IID4C) Distance Learning

    ERIC Educational Resources Information Center

    Tosho, Abdulrauf; Mutalib, Ariffin Abdul; Abdul-Salam, Sobihatun Nur

    2016-01-01

    This paper describes an ongoing study related to a conceptual design model, which is specific to instructional interface design to enhance courseware usage. It was found that most of the existing courseware applications focus on the needs of certain target with most of the courseware offer too little to inclusive learners. In addition, the use of…

  10. Conceptual Design Study of Nb(3)Sn Low-beta Quadrupoles for 2nd Generation LHC IRs

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Ambrosio, G.; Andreev, N.; Barzi, E.; Bauer, P.

    2002-10-01

    Conceptual designs of 90-mm aperture high gradient quadrupoles based on the Nb3Sn superconductor, are being developed at Fermilab for possible 2nd generation IRs with the similar optics as in the current low-beta insertions. Magnet designs and results of magnetic, mechanical, thermal and quench protection analysis for these magnets are presented and discussed.

  11. Application of Deterministic and Probabilistic System Design Methods and Enhancements of Conceptual Design Tools for ERA Project

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri N.; Schutte, Jeff S.

    2016-01-01

    This report documents work done by the Aerospace Systems Design Lab (ASDL) at the Georgia Institute of Technology, Daniel Guggenheim School of Aerospace Engineering for the National Aeronautics and Space Administration, Aeronautics Research Mission Directorate, Integrated System Research Program, Environmentally Responsible Aviation (ERA) Project. This report was prepared under contract NNL12AA12C, "Application of Deterministic and Probabilistic System Design Methods and Enhancement of Conceptual Design Tools for ERA Project". The research within this report addressed the Environmentally Responsible Aviation (ERA) project goal stated in the NRA solicitation "to advance vehicle concepts and technologies that can simultaneously reduce fuel burn, noise, and emissions." To identify technology and vehicle solutions that simultaneously meet these three metrics requires the use of system-level analysis with the appropriate level of fidelity to quantify feasibility, benefits and degradations, and associated risk. In order to perform the system level analysis, the Environmental Design Space (EDS) [Kirby 2008, Schutte 2012a] environment developed by ASDL was used to model both conventional and unconventional configurations as well as to assess technologies from the ERA and N+2 timeframe portfolios. A well-established system design approach was used to perform aircraft conceptual design studies, including technology trade studies to identify technology portfolios capable of accomplishing the ERA project goal and to obtain accurate tradeoffs between performance, noise, and emissions. The ERA goal, shown in Figure 1, is to simultaneously achieve the N+2 benefits of a cumulative noise margin of 42 EPNdB relative to stage 4, a 75 percent reduction in LTO NOx emissions relative to CAEP 6 and a 50 percent reduction in fuel burn relative to the 2005 best in class aircraft. There were 5 research task associated with this research: 1) identify technology collectors, 2) model technology collectors in EDS, 3) model and assess ERA technologies, 4) LTO and cruise emission prediction, and 5) probabilistic analysis of technology collectors and portfolios.

  12. Second-generation mobile satellite system. A conceptual design and trade-off study

    NASA Technical Reports Server (NTRS)

    Sue, M. K.; Park, Y. H.

    1985-01-01

    In recent years, interest has grown in the mobile satellite (MSAT) system, a satellite-based communications system capable of providing integrated voice and data services to a large number of users. To explore the potential of a commercial mobile satellite system (MSS) beyond the horizon of the first generation, using technologies of the 1990's and to assist MSAT-X in directing its efforts, a conceptual design has been performed for a second-generation system to be launched around the mid-1990's. The design goal is to maximize the number of satellite channels and/or minimize the overall life-cycle cost, subject to the constraint of utilizing a commercial satellite bus with minimum modifications. To provide an optimal design, a series of trade-offs are performed, including antenna sizing, feed configurations, and interference analysis. Interference is a serious problem for MSAT and often an overlapping feed design is required to reduce interbeam interference. The trade-off studies will show that a simple non-overlapping feed is sufficient for the second-generation system, thus avoiding the need for the complicated beam-forming network that is associated with the overlapping feed designs. In addition, a system that operates at L-band, an alternative frequency band that is being considered by some for possible MSAT applications, is also presented.

  13. Design of an Indoor Sonic Boom Simulator at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Sullivan, Brenda M.; Shepherd, Kevin P.

    2008-01-01

    Construction of a simulator to recreate the soundscape inside residential buildings exposed to sonic booms is scheduled to start during the summer of 2008 at NASA Langley Research Center. The new facility should be complete by the end of the year. The design of the simulator allows independent control of several factors that create the indoor soundscape. Variables that will be isolated include such factors as boom duration, overpressure, rise time, spectral shape, level of rattle, level of squeak, source of rattle and squeak, level of vibration and source of vibration. Test subjects inside the simulator will be asked to judge the simulated soundscape, which will represent realistic indoor boom exposure. Ultimately, this simulator will be used to develop a functional relationship between human response and the sound characteristics creating the indoor soundscape. A conceptual design has been developed by NASA personnel, and is currently being vetted through small-scale risk reduction tests that are being performed in-house. The purpose of this document is to introduce the conceptual design, identify how the indoor response will be simulated, briefly outline some of the risk reduction tests that have been completed to vet the design, and discuss the impact of these tests on the simulator design.

  14. Low-Income Women's Conceptualizations of Food Craving and Food Addiction

    PubMed Central

    Malika, Nipher M.; Hayman, Lenwood W.; Miller, Alison L.; Lee, Hannah J.; Lumeng, Julie C.

    2015-01-01

    Food craving and food addiction have been proposed as targets for obesity focused interventions. However, individuals' conceptualizations of these constructs are not well understood and no studies have employed a qualitative approach. Therefore, we sought to understand how women conceptualize food craving and food addiction. Low-income women with preschool-aged children (2-5 years old) participated in either a semi-structured individual interview or focus group in which they were asked about their conceptualization of eating behaviors among adults and children. All responses were audio-recorded and transcribed. Themes were identified using the constant comparative method of qualitative analysis. Identified themes revealed that the women perceived food craving to be common, less severe and to a degree more humorous than food addiction. It was not felt that food cravings were something to be guarded against or resisted. Food addiction was described in a very “matter of fact” manner and was believed to be identifiable through its behavioral features including a compulsive need to have certain foods all the time. A more detailed understanding of how the general population perceives food craving and food addiction may enable more refined measurement of these constructs with questionnaire measures in the future. In addition, interventions may be designed to use the language most consistent with participants' conceptualizations of these constructs. PMID:25867800

  15. Investigation of the feasibility of optical diagnostic measurements at the exit of the SSME

    NASA Technical Reports Server (NTRS)

    Shirley, John A.; Boedeker, Laurence R.

    1993-01-01

    Under Contract NAS8-36861 sponsored by NASA Marshall Space Flight Center, the United Technologies Research Center is conducting an investigation of the feasibility of remote optical diagnostics to measure temperature, species concentration and velocity at the exit of the Space Shuttle Main Engine (SSME). This is a two phase study consisting of a conceptual design phase followed by a laboratory experimental investigation. The first task of the conceptual design studies is to screen and evaluate the techniques which can be used for the measurements. The second task is to select the most promising technique or techniques, if as expected, more than one type of measurement must be used to measure all the flow variables of interest. The third task is to examine in detail analytically the capabilities and limitations of the selected technique(s). The results of this study are described in the section of this report entitled Conceptual Design Investigations. The conceptual design studies identified spontaneous Raman scattering and photodissociative flow-tagging for measurements respectively of gas temperature and major species concentration and for velocity. These techniques and others that were considered are described in the section describing the conceptual design. The objective of the second phase of investigations was to investigate experimentally the techniques identified in the first phase. The first task of the experimental feasibility study is to design and assemble laboratory scale experimental apparatus to evaluate the best approaches for SSME exit optical diagnostics for temperature, species concentrations and velocity, as selected in the Phase I conceptual design study. The second task is to evaluate performance, investigate limitations, and establish actual diagnostic capabilities, accuracies and precision for the selected optical systems. The third task is to evaluate design requirements and system trade-offs of conceptual instruments. Spontaneous Raman scattering excited by a KrF excimer laser pulse was investigated for SSME exit plane temperature and major species concentration measurements. The relative concentrations of molecular hydrogen and water vapor would be determined by measuring the integrated Q-branch scattering signals through narrow bandpass filters in front of photomultipliers. The temperature would be determined by comparing the signal from a single hydrogen rotational Raman line to the total hydrogen Q-branch signal. The rotational Raman line would be isolated by a monochromator and detected with a PMT.

  16. Development of the Biology Card Sorting Task to Measure Conceptual Expertise in Biology

    PubMed Central

    Smith, Julia I.; Combs, Elijah D.; Nagami, Paul H.; Alto, Valerie M.; Goh, Henry G.; Gourdet, Muryam A. A.; Hough, Christina M.; Nickell, Ashley E.; Peer, Adrian G.; Coley, John D.; Tanner, Kimberly D.

    2013-01-01

    There are widespread aspirations to focus undergraduate biology education on teaching students to think conceptually like biologists; however, there is a dearth of assessment tools designed to measure progress from novice to expert biological conceptual thinking. We present the development of a novel assessment tool, the Biology Card Sorting Task, designed to probe how individuals organize their conceptual knowledge of biology. While modeled on tasks from cognitive psychology, this task is unique in its design to test two hypothesized conceptual frameworks for the organization of biological knowledge: 1) a surface feature organization focused on organism type and 2) a deep feature organization focused on fundamental biological concepts. In this initial investigation of the Biology Card Sorting Task, each of six analytical measures showed statistically significant differences when used to compare the card sorting results of putative biological experts (biology faculty) and novices (non–biology major undergraduates). Consistently, biology faculty appeared to sort based on hypothesized deep features, while non–biology majors appeared to sort based on either surface features or nonhypothesized organizational frameworks. Results suggest that this novel task is robust in distinguishing populations of biology experts and biology novices and may be an adaptable tool for tracking emerging biology conceptual expertise. PMID:24297290

  17. Fluidized-bed copper oxide process. Phase IV. Conceptual design and economic evaluation, Volume I. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-11-30

    Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less

  18. Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction

    NASA Technical Reports Server (NTRS)

    Olson, Erik D.; Mavris, Dimitri N.

    2006-01-01

    An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.

  19. Design and development of a structural mode control system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A program was conducted to compile and document some of the existing information about the conceptual design, development, and tests of the B-1 structural mode control system (SMCS) and its impact on ride quality. This report covers the following topics: (1) Rationale of selection of SMCS to meet ride quality criteria versus basic aircraft stiffening. (2) Key considerations in designing an SMCS, including vane geometry, rate and deflection requirements, power required, compensation network design, and fail-safe requirements. (3) Summary of key results of SMCS vane wind tunnel tests. (4) SMCS performance. (5) SMCS design details, including materials, bearings, and actuators. (6) Results of qualification testing of SMCS on the "Iron Bird" flight control simulator, and lab qualification testing of the actuators. (7) Impact of SMCS vanes on engine inlet characteristics from wind tunnel tests.

  20. Design of a surface-based factory for the production of life support and technology support products. Phase 2: Integrated water system for a space colony

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.

Top