Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George
2014-01-01
Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760
Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George
2014-01-01
The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.
Defining Support Requirements During Conceptual Design of Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, N. H.; Davis, W. T.; Ebeling, C. E.
1995-01-01
Current methods for defining the operational support requirements of new systems are data intensive and require significant design information. Methods are being developed to aid in the analysis process of defining support requirements for new launch vehicles during their conceptual design phase that work with the level of information available during this phase. These methods will provide support assessments based on the vehicle design and the operating scenarios. The results can be used both to define expected support requirements for new launch vehicle designs and to help evaluate the benefits of using new technologies. This paper describes the models, their current status, and provides examples of their use.
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
Conceptual design for a lunar-base CELSS
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Cullingford, Hatice S.
1990-01-01
Future human exploration is key to the United States National Space Policy goal of maintaining a world leadership position in space. In the past, spacecraft life support systems have used open-loop technologies that were simple and sufficiently reliable to demonstrate the feasibility of spaceflight. A critical technology area needing development in support of both long duration missions and the establishment of lunar or planetary bases is regenerative life support. The information presented in this paper describes a conceptual design of a Lunar Base Controlled Ecological Life Support System (LCELSS) which supports a crew size ranging from 4 to 100. The system includes, or incorporates interfaces with, eight primary subsystems. An initial description of the Lunar-Base CELSS subsystems is provided within the framework of the conceptual design. The system design includes both plant (algae and higher plant) and animal species as potential food sources.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
Lunar surface transportation systems conceptual design lunar base systems study Task 5.2
NASA Technical Reports Server (NTRS)
1988-01-01
Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
Conceptual design of a lunar oxygen pilot plant Lunar Base Systems Study (LBSS) task 4.2
NASA Technical Reports Server (NTRS)
1988-01-01
The primary objective was to develop conceptual designs of two pilot plants to produce oxygen from lunar materials. A lunar pilot plant will be used to generate engineering data necessary to support an optimum design of a larger scale production plant. Lunar oxygen would be of primary value as spacecraft propellant oxidizer. In addition, lunar oxygen would be useful for servicing nonregenerative fuel cell power systems, providing requirements for life support, and to make up oxygen losses from leakage and airlock cycling. Thirteen different lunar oxygen production methods are described. Hydrogen reduction of ilmenite and extraction of solar-wind hydrogen from bulk lunar soil were selected for conceptual design studies. Trades and sensitivity analyses were performed with these models.
SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO CA
2010-03-09
This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less
NASA Astrophysics Data System (ADS)
Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro
In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.
Developing a comprehensive conceptual arhictecture to support Earth sciences
NASA Astrophysics Data System (ADS)
Yang, C. P.; Xu, C.; Sun, M.; Li, Z.
2014-12-01
Global challenges require the comprehensive understanding of the earth system to make smarter descisions about scientific research, operational management, and educational activities. We conducted in the one and half year a comprehensive investigation about how to develop a comprehensive conceptual architecture for developing a cyberinfrastructure that can help address such global challenges. This includes three aspects of research and outreach: we first analyzed the conceptual architecture requirements from the earth science domains and the exisiting global and national systems from different agencies and organizations to consolidate a list of requirements from scientific, technological, and educational aspects. A conceptual design by considering these reqquirements and the latest development in enterprise arhictecture was conducted based on our past decade's investigation about cyberinfrastructure architecture for supporting different aspects. We also organized several levels of reviews by different levels of experts from different organizations and background to help us comment the completeness, reasonability, and practicality of the design. A comprehensive conceptual design will be released for public comments this spring to solicit the general comments for reaching a design as comprehensive as possible. The final design is scheduled to be published in 2015 to contribute to the general world wide scientists and CI builders in the geoscience domain and beyond.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey
2009-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey D.
2010-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
2017-10-01
to patient safety by addressing key methodological and conceptual gaps in healthcare simulation-based team training. The investigators are developing...primary outcome of Aim 1a is a conceptually and methodologically sound training design architecture that supports the development and integration of team...should be delivered. This subtask was delayed by approximately 1 month and is now completed. Completed Evaluation of existing experimental dataset to
NASA Astrophysics Data System (ADS)
Krause, Lee S.; Burns, Carla L.
2000-06-01
This paper discusses the research currently in progress to develop the Conceptual Federation Object Model Design Tool. The objective of the Conceptual FOM (C-FOM) Design Tool effort is to provide domain and subject matter experts, such as scenario developers, with automated support for understanding and utilizing available HLA simulation and other simulation assets during HLA Federation development. The C-FOM Design Tool will import Simulation Object Models from HLA reuse repositories, such as the MSSR, to populate the domain space that will contain all the objects and their supported interactions. In addition, the C-FOM tool will support the conversion of non-HLA legacy models into HLA- compliant models by applying proven abstraction techniques against the legacy models. Domain experts will be able to build scenarios based on the domain objects and interactions in both a text and graphical form and export a minimal FOM. The ability for domain and subject matter experts to effectively access HLA and non-HLA assets is critical to the long-term acceptance of the HLA initiative.
ERIC Educational Resources Information Center
de Velasco, Jorge Ruiz; Newman, Elizabeth; Borsato, Graciela
2016-01-01
This report proposes a conceptual framework for defining and implementing a system of integrated student supports that provides equitable access to college and career readiness via Linked Learning pathways in high schools. The framework emphasizes the central commitment of the Linked Learning approach to challenge prevailing norms of…
Conceptualizations of Professional Competencies in School Health Promotion
ERIC Educational Resources Information Center
Carlsson, Monica
2016-01-01
Purpose: The purpose of the paper is to contribute to the conceptualization and discussion of professional competencies needed for supporting the development of the whole-school approach in school health promotion (SHP). Design/methodology/approach: The paper is based on a conceptual synthesis of literature, guided by a theoretical perspective on…
The design of low cost structures for extensive ground arrays
NASA Technical Reports Server (NTRS)
Franklin, H. A.; Leonard, R. S.
1980-01-01
The development of conceptual designs of solar array support structures and their foundations including considerations of the use of concrete, steel, aluminum, or timber are reported. Some cost trends were examined by varying selected parameters to determine optimum configurations. Detailed civil/structural design criteria were developed. Using these criteria, eight detailed designs for support structures and foundations were developed and cost estimates were made. As a result of the study wind was identified as the major loading experienced by these low height structures, whose arrays are likely to extend over large tracts of land. Proper wind load estimating is considered essential to developing realistic structural designs and achieving minimum cost support structures. Wind tunnel testing of a conceptual array field was undertaken and some of the resulting wind design criteria are presented. The SPS rectenna system designs may be less sensitive to wind load estimates, but consistent design criteria remain important.
Design Oriented Structural Modeling for Airplane Conceptual Design Optimization
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.
ERIC Educational Resources Information Center
Kessler, Aaron M.; Stein, Mary Kay; Schunn, Christian D.
2015-01-01
Model tracing tutors represent a technology designed to mimic key elements of one-on-one human tutoring. We examine the situations in which such supportive computer technologies may devolve into mindless student work with little conceptual understanding or student development. To analyze the support of student intellectual work in the model…
Lunar base Controlled Ecological Life Support System (LCELSS): Preliminary conceptual design study
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.
1991-01-01
The objective of this study was to develop a conceptual design for a self-sufficient LCELSS. The mission need is for a CELSS with a capacity to supply the life support needs for a nominal crew of 30, and a capability for accommodating a range of crew sizes from 4 to 100 people. The work performed in this study was nominally divided into two parts. In the first part, relevant literature was assembled and reviewed. This review identified LCELSS performance requirements and the constraints and advantages confronting the design. It also collected information on the environment of the lunar surface and identified candidate technologies for the life support subsystems and the systems with which the LCELSS interfaced. Information on the operation and performance of these technologies was collected, along with concepts of how they might be incorporated into the LCELSS conceptual design. The data collected on these technologies was stored for incorporation into the study database. Also during part one, the study database structure was formulated and implemented, and an overall systems engineering methodology was developed for carrying out the study.
Conceptual design of a synchronous Mars telecommunications satellite
NASA Technical Reports Server (NTRS)
Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.
1989-01-01
Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.
Conceptual second-generation lunar equipment
NASA Technical Reports Server (NTRS)
1990-01-01
The spring 1990 Introduction to Design class was asked to conceptually design second-generation lunar vehicles and equipment as a semester design project. The basic assumption made in designing second-generation lunar vehicles and equipment was that a network of permanent lunar bases already existed. The designs were to facilitate the transportation of personnel and materials. The eight topics to choose from included flying vehicles, ground-based vehicles, robotic arms, and life support systems. Two teams of two or three members competed on each topic and results were exhibited at a formal presentation. A clean-propellant powered lunar flying transport vehicle, an extra-vehicular activity life support system, a pressurized lunar rover for greater distances, and a robotic arm design project are discussed.
Henderson, Rebecca J; Johnson, Andrew M; Moodie, Sheila T
2016-06-01
A scoping review of the literature was conducted, resulting in the development of a conceptual framework of parent-to-parent support for parents with children who are Deaf or hard of hearing. This is the 2nd stage of a dual-stage scoping review. This study sought stakeholder opinion and feedback with an aim to achieve consensus on the constructs, components, and design of the initial conceptual framework. A modified electronic Delphi study was completed with 21 handpicked experts from 7 countries who have experience in provision, research, or experience in the area of parent-to-parent support. Participants completed an online questionnaire using an 11-point Likert scale (strongly disagree to strongly agree) and open-ended questions to answer various questions related to the descriptor terms, definitions, constructs, components, and overall design of the framework. Participant responses led to the revision of the original conceptual framework. The findings from this dual-stage scoping review and electronic Delphi study provide a conceptual framework that defines the vital contribution of parents in Early Hearing Detection and Intervention programs that will be a useful addition to these programs.
Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning
ERIC Educational Resources Information Center
Morgan, Patricia; Abrahamson, Dor
2016-01-01
We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
Space station environmental control and life support systems conceptual studies
NASA Technical Reports Server (NTRS)
Humphries, W. R.; Powell, L. E.
1985-01-01
It is pointed out that the establishment of a permanent manned Space Station requires the development of a comprehensive approach which combines new technologies and existing spacecraft subsystem capabilities into an optimum design. The present paper is concerned with studies which were conducted in connection with the development of the regenerative Environmental Control and Life Support Systems (ECLSS) for the Space Station. Attention is given to the current state of the ECLSS subsystems and system level analytical selection and group studies related to the integrated system conceptual design.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
ERIC Educational Resources Information Center
Conant, Darcy Lynn
2013-01-01
Stochastic understanding of probability distribution undergirds development of conceptual connections between probability and statistics and supports development of a principled understanding of statistical inference. This study investigated the impact of an instructional course intervention designed to support development of stochastic…
Control/structure interaction conceptual design tool
NASA Technical Reports Server (NTRS)
Briggs, Hugh C.
1990-01-01
The JPL Control/Structure Interaction Program is developing new analytical methods for designing micro-precision spacecraft with controlled structures. One of these, the Conceptual Design Tool, will illustrate innovative new approaches to the integration of multi-disciplinary analysis and design methods. The tool will be used to demonstrate homogeneity of presentation, uniform data representation across analytical methods, and integrated systems modeling. The tool differs from current 'integrated systems' that support design teams most notably in its support for the new CSI multi-disciplinary engineer. The design tool will utilize a three dimensional solid model of the spacecraft under design as the central data organization metaphor. Various analytical methods, such as finite element structural analysis, control system analysis, and mechanical configuration layout, will store and retrieve data from a hierarchical, object oriented data structure that supports assemblies of components with associated data and algorithms. In addition to managing numerical model data, the tool will assist the designer in organizing, stating, and tracking system requirements.
A conceptual framework for the domain of evidence-based design.
Ulrich, Roger S; Berry, Leonard L; Quan, Xiaobo; Parish, Janet Turner
2010-01-01
The physical facilities in which healthcare services are performed play an important role in the healing process. Evidence-based design in healthcare is a developing field of study that holds great promise for benefiting key stakeholders: patients, families, physicians, and nurses, as well as other healthcare staff and organizations. In this paper, the authors present and discuss a conceptual framework intended to capture the current domain of evidence-based design in healthcare. In this framework, the built environment is represented by nine design variable categories: audio environment, visual environment, safety enhancement, wayfinding system, sustainability, patient room, family support spaces, staff support spaces, and physician support spaces. Furthermore, a series of matrices is presented that indicates knowledge gaps concerning the relationship between specific healthcare facility design variable categories and participant and organizational outcomes. From this analysis, the authors identify fertile research opportunities from the perspectives of key stakeholders.
NASA Technical Reports Server (NTRS)
1989-01-01
The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.
NASA Technical Reports Server (NTRS)
Nickol, Craig L.; Frederic, Peter
2013-01-01
A conceptual design and cost estimate for a subsonic flight research vehicle designed to support NASA's Environmentally Responsible Aviation (ERA) project goals is presented. To investigate the technical and economic feasibility of modifying an existing aircraft, a highly modified Boeing 717 was developed for maturation of technologies supporting the three ERA project goals of reduced fuel burn, noise, and emissions. This modified 717 utilizes midfuselage mounted modern high bypass ratio engines in conjunction with engine exhaust shielding structures to provide a low noise testbed. The testbed also integrates a natural laminar flow wing section and active flow control for the vertical tail. An eight year program plan was created to incrementally modify and test the vehicle, enabling the suite of technology benefits to be isolated and quantified. Based on the conceptual design and programmatic plan for this testbed vehicle, a full cost estimate of $526M was developed, representing then-year dollars at a 50% confidence level.
Blended Interaction Design: A Spatial Workspace Supporting HCI and Design Practice
NASA Astrophysics Data System (ADS)
Geyer, Florian
This research investigates novel methods and techniques along with tool support that result from a conceptual blend of human-computer interaction with design practice. Using blending theory with material anchors as a theoretical framework, we frame both input spaces and explore emerging structures within technical, cognitive, and social aspects. Based on our results, we will describe a framework of the emerging structures and will design and evaluate tool support within a spatial, studio-like workspace to support collaborative creativity in interaction design.
NASA Astrophysics Data System (ADS)
Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed
Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.
NASA Astrophysics Data System (ADS)
Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.
2018-05-01
Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.
Electromagnetic Compatibility in the Defense Systems of Future Years
2002-06-01
Technology activities. Its mission is to conduct and promote cooperative research and information exchange . The objective is to support the development...testing CLEARANCE PRODUCTION AND IN-SERVICE SUPPORT Modelling in support of conceptual design (structure & installation design) EMH Design guides for the... marketed by Advanced Electromagnetics [6-1]. Transmission Line Matrix Method The link between field theory and circuit theory, the major theories on
Government conceptual estimating for contracting and management
NASA Technical Reports Server (NTRS)
Brown, J. A.
1986-01-01
The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.
Modular biowaste monitoring system
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1975-01-01
The objective of the Modular Biowaste Monitoring System Program was to generate and evaluate hardware for supporting shuttle life science experimental and diagnostic programs. An initial conceptual design effort established requirements and defined an overall modular system for the collection, measurement, sampling and storage of urine and feces biowastes. This conceptual design effort was followed by the design, fabrication and performance evaluation of a flight prototype model urine collection, volume measurement and sampling capability. No operational or performance deficiencies were uncovered as a result of the performance evaluation tests.
NASA Technical Reports Server (NTRS)
1978-01-01
Low energy conceptual stage designs and adaptations to existing/planned shuttle upper stages were developed and their performance established. Selected propulsion modes and subsystems were used as a basis to develop airborne support equipment (ASE) design concepts. Orbiter installation and integration (both physical and electrical interfaces) were defined. Low energy stages were adapted to the orbiter and ASE interfaces. Selected low energy stages were then used to define and describe typical ground and flight operations.
Prospective Teacher Learning: Recognizing Evidence of Conceptual Understanding
ERIC Educational Resources Information Center
Bartell, Tonya Gau; Webel, Corey; Bowen, Brian; Dyson, Nancy
2013-01-01
This study examined prospective teachers' (PSTs) ability to recognize evidence of children's conceptual understanding of mathematics in three content areas before and after an instructional intervention designed to support this ability. It also investigates the role PSTs' content knowledge plays in their ability to recognize children's…
A Conceptual Framework for Evolving, Recommender Online Learning Systems
ERIC Educational Resources Information Center
Peiris, K. Dharini Amitha; Gallupe, R. Brent
2012-01-01
A comprehensive conceptual framework is developed and described for evolving recommender-driven online learning systems (ROLS). This framework describes how such systems can support students, course authors, course instructors, systems administrators, and policy makers in developing and using these ROLS. The design science information systems…
Conceptual and Methodological Shortcomings in Hypertext/Hypermedia Design and Research.
ERIC Educational Resources Information Center
Tergan, Sigmar-Olaf
1997-01-01
Some studies of hypertext/hypermedia systems have concluded that there is little evidence supporting its educational efficacy. After examining conceptual and methodological shortcomings of research, this article suggests that the educational potential of hypertext/hypermedia has been underestimated and argues that overcoming these shortcomings…
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
NASA Astrophysics Data System (ADS)
Ehlmann, Bryon K.
Current scientific experiments are often characterized by massive amounts of very complex data and the need for complex data analysis software. Object-oriented database (OODB) systems have the potential of improving the description of the structure and semantics of this data and of integrating the analysis software with the data. This dissertation results from research to enhance OODB functionality and methodology to support scientific databases (SDBs) and, more specifically, to support a nuclear physics experiments database for the Continuous Electron Beam Accelerator Facility (CEBAF). This research to date has identified a number of problems related to the practical application of OODB technology to the conceptual design of the CEBAF experiments database and other SDBs: the lack of a generally accepted OODB design methodology, the lack of a standard OODB model, the lack of a clear conceptual level in existing OODB models, and the limited support in existing OODB systems for many common object relationships inherent in SDBs. To address these problems, the dissertation describes an Object-Relationship Diagram (ORD) and an Object-oriented Database Definition Language (ODDL) that provide tools that allow SDB design and development to proceed systematically and independently of existing OODB systems. These tools define multi-level, conceptual data models for SDB design, which incorporate a simple notation for describing common types of relationships that occur in SDBs. ODDL allows these relationships and other desirable SDB capabilities to be supported by an extended OODB system. A conceptual model of the CEBAF experiments database is presented in terms of ORDs and the ODDL to demonstrate their functionality and use and provide a foundation for future development of experimental nuclear physics software using an OODB approach.
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
Planning for a data base system to support satellite conceptual design
NASA Technical Reports Server (NTRS)
Claydon, C. R.
1976-01-01
The conceptual design of an automated satellite design data base system is presented. The satellite catalog in the system includes data for all earth orbital satellites funded to the hardware stage for launch between 1970 and 1980, and provides a concise compilation of satellite capabilities and design parameters. The cost of satellite subsystems and components will be added to the base. Data elements are listed and discussed. Sensor and science and applications opportunities catalogs will be included in the data system. Capabilities of the BASIS storage, retrieval, and analysis system are used in the system design.
Designing a Decision-Support System for Enrollment Management. AIR 1985 Annual Forum Paper.
ERIC Educational Resources Information Center
Glover, Robert H.
University of Hartford's decision-support system for enrollment management, which uses fourth-generation software tools, is described, with attention to the conceptual framework, design and implementation plan, and progress to date. The university's planners, institutional researchers, and admissions and financial aid officers are cooperating in…
Support for Assessment Practice: Developing the Assessment Design Decisions Framework
ERIC Educational Resources Information Center
Bearman, Margaret; Dawson, Phillip; Boud, David; Bennett, Sue; Hall, Matt; Molloy, Elizabeth
2016-01-01
There are many excellent publications outlining features of assessment and feedback design in higher education. However, university educators often find these ideas challenging to realise in practice, as much of the literature focuses on institutional change rather than supporting academics. This paper describes the conceptual development of a…
Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan
NASA Astrophysics Data System (ADS)
Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.
2007-12-01
The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.
Addressing Children's Alternative Frameworks of the Moon's Phases and Eclipses.
ERIC Educational Resources Information Center
Barnett, Michael; Morran, Judy
2002-01-01
Analyzes a project-based space science curriculum designed to support elementary school students in understanding complex, inter-related astronomy concepts. Uses pre- and post-interviews, examines student work, and has students complete a pre- and post-astronomy conceptual survey to assess conceptual change. Points out that instruction should…
Designing Critique for Knowledge Integration
NASA Astrophysics Data System (ADS)
Sato, Mie Elissa
Generating explanations is central to science and has the potential to have a powerful impact on students' conceptual understanding in science instruction. However, improving conceptual understanding by generating explanations is a fraught affair: students may struggle with the sense of false clarity that may arise from generating explanations, fail to detect gaps in their understanding, and dismiss salient information that contradict their beliefs. Critiquing explanations has the potential to counteract these pitfalls by exposing students to alternative ideas to contrast with their own. This dissertation seeks to clarify how to design critique in technology-enhanced science instruction to support students in revising their explanations about scientific phenomena, and in doing so, refining their conceptual understanding. Using the Knowledge Integration framework, I revised two technology-enhanced curriculum units, Plate Tectonics and Global Climate Change, in a design partnership between teachers, researchers, and technologists. I conducted a series of studies with sixth-grade students to investigate the conditions under which guided critique of explanations can support revision. The pilot critique study investigated the impact of the revised Plate Tectonics unit on students' understanding of convection, as well as of a preliminary design of critique where students generated and applied their own criteria for what makes a good explanation in science. The guidance study explored how incorporating a complex selection task that features meta-explanatory criteria into critique supports students in distinguishing among different criteria, as well as how students use peer or expert guidance on their initial explanation during revision. The critique study investigated how designing critique with a complex selection task that features plausible alternative ideas and giving guidance on students' critiques support students in distinguishing among a range of relevant ideas and making productive revisions to their initial explanations. These studies clarify how critique can be designed to help students sort through various ideas in their conceptual repertoire, be they ideas about meta-explanatory criteria or science ideas about a specific phenomenon. The study findings illuminate the challenges of guiding students to examine or re-examine the full range of ideas for knowledge integration. Students struggle to identify salient, missing, or normative ideas in their own or another explanation, and to incorporate their insights in a coherent way through revision. The studies demonstrate that embedding complex selection tasks in critique encourages students to consider a broad range of ideas and supports them in making conceptual revisions of their explanations. The results have implications for the design of critique in technology-enhanced science instruction.
Conceptual Design of an In-Space Cryogenic Fluid Management Facility
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is presented. The proposed facility consisting of a supply tank, receiver tank, pressurization system, instrumentation, and supporting hardware, is described. The experimental objectives, the receiver tank to be modeled, and constraints imposed on the design by the space shuttle, Spacelab, and scaling requirements, are described. The conceptual design, including the general configurations, flow schematics, insulation systems, instrumentation requirements, and internal tank configurations for the supply tank and the receiver tank, is described. Thermal, structural, fluid, and safety and reliability aspects of the facility are analyzed. The facility development plan, including schedule and cost estimates for the facility, is presented. A program work breakdown structure and master program schedule for a seven year program are included.
A decision-based perspective for the design of methods for systems design
NASA Technical Reports Server (NTRS)
Mistree, Farrokh; Muster, Douglas; Shupe, Jon A.; Allen, Janet K.
1989-01-01
Organization of material, a definition of decision based design, a hierarchy of decision based design, the decision support problem technique, a conceptual model design that can be manufactured and maintained, meta-design, computer-based design, action learning, and the characteristics of decisions are among the topics covered.
Solar-C Conceptual Spacecraft Design Study: Final Review. Release 2
NASA Technical Reports Server (NTRS)
Hopkins, Randall; Baysinger, Mike; Thomas, Dan; Heaton, Andy; Stough, Rob; Hill, Spencer; Owens, Jerry; Young, Roy; Fabisinski, Leo; Thomas, Scott;
2010-01-01
This briefing package contains the conceptual spacecraft design completed by the Advanced Concepts Office (ED04) in support of the Solar-C Study. The mission is to succeed Hinode (Solar B), and is designed to study the polar regions of the sun. Included in the slide presentation are sections that review the payload data, and overall ground rules and assumptions, mission analysis and trajectory design, the conceptual spacecraft design section includes: (1) Integrated Systems Design, (2) Mass Properties (3) Cost, (4) Solar Sail Systems, (6) Propulsion, (7) Structures, (8) Thermal (9) Power (10) Avionics / GN&C. There are also conclusions and follow-up work that must be done. In the Back-up section there is information about the JAXA H-11A Launch Vehicle, scalability and spiral development, Mass Projections, a comparison of the TRL assessment for two potential vendors of solar sails, and a chart with the mass properties,
A Conceptual Level Design for a Static Scheduler for Hard Real-Time Systems
1988-03-01
The design of hard real - time systems is gaining a great deal of attention in the software engineering field as more and more real-world processes are...for these hard real - time systems . PSDL, as an executable design language, is supported by an execution support system consisting of a static scheduler, dynamic scheduler, and translator.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Sompayrac, Robert; Conger, Bruce; Chamberlain, Mateo
2009-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
NASA Technical Reports Server (NTRS)
Paul, Heather L.; Conger, Bruce; Sompyrac, Robert; Chamberlain, Mateo
2008-01-01
As development of the Constellation Space Suit Element progresses, designing the most effective and efficient life support systems is critical. The baseline schematic analysis for the Portable Life Support System (PLSS) indicates that the ventilation loop will need some method of heat exchange and humidification prior to entering the helmet. A trade study was initiated to identify the challenges associated with conditioning the spacesuit breathing gas stream for temperature and water vapor control, to survey technological literature and resources on heat exchanger and humidifiers to provide solutions to the problems of conditioning the spacesuit breathing gas stream, and to propose potential candidate technologies to perform the heat exchanger and humidifier functions. This paper summarizes the results of this trade study and also describes the conceptual designs that NASA developed to address these issues.
ACSYNT - A standards-based system for parametric, computer aided conceptual design of aircraft
NASA Technical Reports Server (NTRS)
Jayaram, S.; Myklebust, A.; Gelhausen, P.
1992-01-01
A group of eight US aerospace companies together with several NASA and NAVY centers, led by NASA Ames Systems Analysis Branch, and Virginia Tech's CAD Laboratory agreed, through the assistance of Americal Technology Initiative, in 1990 to form the ACSYNT (Aircraft Synthesis) Institute. The Institute is supported by a Joint Sponsored Research Agreement to continue the research and development in computer aided conceptual design of aircraft initiated by NASA Ames Research Center and Virginia Tech's CAD Laboratory. The result of this collaboration, a feature-based, parametric computer aided aircraft conceptual design code called ACSYNT, is described. The code is based on analysis routines begun at NASA Ames in the early 1970's. ACSYNT's CAD system is based entirely on the ISO standard Programmer's Hierarchical Interactive Graphics System and is graphics-device independent. The code includes a highly interactive graphical user interface, automatically generated Hermite and B-Spline surface models, and shaded image displays. Numerous features to enhance aircraft conceptual design are described.
A Conceptual Design for a Reliable Optical Bus (ROBUS)
NASA Technical Reports Server (NTRS)
Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo
2002-01-01
The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.
NASA Technical Reports Server (NTRS)
1979-01-01
Topics covered include growth options evaluation, mass properties, attitude control and structural dynamics, contamination evaluation, berthing concepts, orbit reboost options and growth kit concepts. Systems support elements and space support equipment are reviewed with emphasis on power module operations and technology planning.
Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Russell, Tiffany E.
2014-01-01
The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
Analysis of Shuttle Orbiter Reliability and Maintainability Data for Conceptual Studies
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, N. H.; Ebeling, C. E.
1996-01-01
In order to provide a basis for estimating the expected support required of new systems during their conceptual design phase, Langley Research Center has recently collected Shuttle Orbiter reliability and maintainability data from the various data base sources at Kennedy Space Center. This information was analyzed to provide benchmarks, trends, and distributions to aid in the analysis of new designs. This paper presents a summation of those results and an initial interpretation of the findings.
NASA Technical Reports Server (NTRS)
Polites, M. E.; Carrington, C. K.
1995-01-01
This paper presents a conceptual design for the attitude control and determination (ACAD) system for the Magnetosphere Imager (Ml) spacecraft. The MI is a small spin-stabilized spacecraft that has been proposed for launch on a Taurus-S expendable launch vehicle into a highly-ellipdcal polar Earth orbit. Presently, launch is projected for 1999. The paper describes the MI mission and ACAD requirements and then proposes an ACAD system for meeting these requirements. The proposed design is low-power, low-mass, very simple conceptually, highly passive, and consistent with the overall MI design philosophy, which is faster-better-cheaper. Still, the MI ACAD system is extremely robust and can handle a number of unexpected, adverse situations on orbit without impacting the mission as a whole. Simulation results are presented that support the soundness of the design approach.
A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate
NASA Astrophysics Data System (ADS)
El Dallal, Norhan; Visser, Florentine
2017-09-01
In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.
Conducting Design Experiments to Support Teachers' Learning: A Reflection from the Field
ERIC Educational Resources Information Center
Cobb, Paul; Zhao, Qing; Dean, Chrystal
2009-01-01
This article focuses on 3 conceptual challenges that we sought to address while conducting a design experiment in which we supported the learning of a group of middle school mathematics teachers. These challenges involved (a) situating teachers' activity in the institutional setting of the schools and district in which they worked, (b) developing…
A New Pedagogical Design for Geo-Informatics Courses Using an E-Training Support System
ERIC Educational Resources Information Center
Eldin, Ahmed Sharaf; ElNahry, Alaa H.; Elsayed, Adel; Ibrahim, Rania Elsayed
2014-01-01
The current study seeks to introduce a new pedagogical design for geo-informatics courses using an e-training support system. Laurillard's conversational approach based on conceptual representation for both instructor and learner was used to form the framework. As the current study specifically interested in training as a special form for…
OBO to UML: Support for the development of conceptual models in the biomedical domain.
Waldemarin, Ricardo C; de Farias, Cléver R G
2018-04-01
A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.
Conceptual design and structural analysis for an 8.4-m telescope
NASA Astrophysics Data System (ADS)
Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego
2004-09-01
This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.
Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base
NASA Technical Reports Server (NTRS)
Moon, Michael J.; McCleskey, Carey M.
2017-01-01
Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.
LifeSat engineering in-house vehicle design
NASA Technical Reports Server (NTRS)
Adkins, A.; Badhwar, G.; Bryant, L.; Caram, J.; Conley, G.; Crull, T.; Cuthbert, P.; Darcy, E.; Delaune, P.; Edeen, M.
1992-01-01
The LifeSat program was initiated to research the effects of microgravity and cosmic radiation on living organisms. The effects of long-term human exposure to free-space radiation fields over a range of gravitational environments has long been recognized as one of the primary design uncertainties for human space exploration. A critical design issue in the radiation biology requirements was the lack of definition of the minimum radiation absorbed dosage required to produce statistically meaningful data. The Phase A study produced a spacecraft conceptual design resembling a Discoverer configuration with a total weight of approximately 2800 pounds that would carry a 525-pound payload module (45 inches in diameter and 36 inches long) and support up to 12 rodents and a general biology module supporting lower life forms for an on-orbit duration of up to 60 days. The phase B conceptual designs focused on gravitational biology requirements and only briefly addressed the design impacts of the shift toward radiobiological science that occurred during the latter half of the Phase B studies.
A Functional Framework for Database Management Systems.
1980-02-01
Furctionat Approach 13 7.2. Objects in a 080S 14 ".2.1. ExternaL Objects 15 ;.2.2. Conceptual Objects 15 -. 2.3. Internal Objects 15 7.2.4. Externat...standpoint of their ’-efinitional and conceptual goals. 2. To make it posibLe to define arc specify the neeos as the ’irst phase cf the design process...methods. This ain is analogcus to the one in which programming language techrotogy has beer captured and supported through the conceptual lan;4age
Rapid Development of Custom Software Architecture Design Environments
1999-08-01
the tools themselves. This dissertation describes a new approach to capturing and using architectural design expertise in software architecture design environments...A language and tools are presented for capturing and encapsulating software architecture design expertise within a conceptual framework...of architectural styles and design rules. The design expertise thus captured is supported with an incrementally configurable software architecture
NASA Technical Reports Server (NTRS)
Jackson, J. K.; Yakut, M. M.
1976-01-01
An all-important first step in the development of the Spacelab Life Science Laboratory is the design of the Biological Specimen Holding Facility (BSHF) which will provide accommodation for living specimens for life science research in orbit. As a useful tool in the understanding of physiological and biomedical changes produced in the weightless environment, the BSHF will enable biomedical researchers to conduct in-orbit investigations utilizing techniques that may be impossible to perform on human subjects. The results of a comprehensive study for defining the BSHF, description of its experiment support capabilities, and the planning required for its development are presented. Conceptual designs of the facility, its subsystems and interfaces with the Orbiter and Spacelab are included. Environmental control, life support and data management systems are provided. Interface and support equipment required for specimen transfer, surgical research, and food, water and waste storage is defined. New and optimized concepts are presented for waste collection, feces and urine separation and sampling, environmental control, feeding and watering, lighting, data management and other support subsystems.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.
ERIC Educational Resources Information Center
Lu, Hui-Ping; Chen, Jun-Hong; Lee, Chang-Franw
2016-01-01
Inspiration is the primary element of good design. Designers, however, also risk not being able to find inspiration. Novice designers commonly find themselves to be depressed during the conceptual design phase when they fail to find inspiration and the information to be creative. Accordingly, under the graphic design parameter, we have developed…
ERIC Educational Resources Information Center
Cheng, Peter C-H.; Shipstone, David M.
2003-01-01
Describes an approach to the teaching of electricity that uses box and AVOW diagrams, novel representations of the properties of the electric circuit that portray current, voltage, resistance, and power. The diagrams were developed as aids in learning, understanding, and problem solving and to promote conceptual change by challenging a number of…
Ergonomics action research II: a framework for integrating HF into work system design.
Neumann, W P; Village, J
2012-01-01
This paper presents a conceptual framework that can support efforts to integrate human factors (HF) into the work system design process, where improved and cost-effective application of HF is possible. The framework advocates strategies of broad stakeholder participation, linking of performance and health goals, and process focussed change tools that can help practitioners engage in improvements to embed HF into a firm's work system design process. Recommended tools include business process mapping of the design process, implementing design criteria, using cognitive mapping to connect to managers' strategic goals, tactical use of training and adopting virtual HF (VHF) tools to support the integration effort. Consistent with organisational change research, the framework provides guidance but does not suggest a strict set of steps. This allows more adaptability for the practitioner who must navigate within a particular organisational context to secure support for embedding HF into the design process for improved operator wellbeing and system performance. There has been little scientific literature about how a practitioner might integrate HF into a company's work system design process. This paper proposes a framework for this effort by presenting a coherent conceptual framework, process tools, design tools and procedural advice that can be adapted for a target organisation.
ERIC Educational Resources Information Center
Mislevy, Robert J.; Behrens, John T.; Dicerbo, Kristen E.; Levy, Roy
2012-01-01
"Evidence-centered design" (ECD) is a comprehensive framework for describing the conceptual, computational and inferential elements of educational assessment. It emphasizes the importance of articulating inferences one wants to make and the evidence needed to support those inferences. At first blush, ECD and "educational data…
Designing Knowledge Scaffolds to Support Mathematical Problem Solving
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Koedinger, Kenneth R.
2005-01-01
We present a methodology for designing better learning environments. In Phase 1, 6th-grade students' (n = 223) prior knowledge was assessed using a difficulty factors assessment (DFA). The assessment revealed that scaffolds designed to elicit contextual, conceptual, or procedural knowledge each improved students' ability to add and subtract…
CONFIG: Integrated engineering of systems and their operation
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
This article discusses CONFIG 3, a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operations of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. CONFIG supports integration among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. CONFIG is designed to support integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems.
NASA Technical Reports Server (NTRS)
1972-01-01
The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.
NASA Technical Reports Server (NTRS)
Olds, John R.; Marcus, Leland
2002-01-01
This paper is written in support of the on-going research into conceptual space vehicle design conducted at the Space Systems Design Laboratory (SSDL) at the Georgia Institute of Technology. Research at the SSDL follows a sequence of a number of the traditional aerospace disciplines. The sequence of disciplines and interrelationship among them is shown in the Design Structure Matrix (DSM). The discipline of Weights and Sizing occupies a central location in the design of a new space vehicle. Weights and Sizing interact, either in a feed forward or feed back manner, with every other discipline in the DSM. Because of this principle location, accuracy in Weights and Sizing is integral to producing an accurate model of a space vehicle concept. Instead of using conceptual level techniques, a simplified Finite Element Analysis (FEA) technique is described as applied to the problem of the Liquid Oxygen (LOX) tank bending loads applied to the forward Liquid Hydrogen (LH2) tank of the Georgia Tech Air Breathing Launch Vehicle (ABLV).
Scahill, Shane; Fowler, Jane L; Hattingh, H Laetitia; Kelly, Fiona; Wheeler, Amanda J
2015-01-01
Objective: Mental health–related problems pose a serious issue for primary care, and community pharmacy could make a significant contribution, but there is a dearth of information. Methods: This article reports synthesis of the literature on mental health interventions across a range of pharmacy models, and pharmacy services in contexts beyond mental health. To best inform the design of a community pharmacy medication support intervention for mental health consumers, the literature was reported as a conceptual schema and subsequent recommendations for development, implementation and evaluation of the service. A broad conceptualisation was taken in this review. In addition to mental health and community pharmacy literature, policy/initiatives, organisational culture and change management principles, and evaluative processes were reviewed. Key words were selected and literature reviews undertaken using EMBASE, PubMed, CINAHL and Web of Science. Results: Recommendations were made around: medication support intervention design, consumer recruitment, implementation in community pharmacy and evaluation. Surprisingly, there is a scarce literature relating to mental health interventions in community pharmacy. Even so, findings from other pharmacy models and broader medicines management for chronic illness can inform development of a medication support service for mental health consumers. Key learnings include the need to expand medicines management beyond adherence with respect to both intervention design and evaluation. Conclusion: The conceptual framework is grounded in the need for programmes to be embedded within pharmacies that are part of the health system as a whole. PMID:26770802
Conceptual design and evaluation of selected Space Station concepts, volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
The partially closed cycle environmental control and Life Support Subsystems is examined. Components of the system include air pressure control, heat control, water management, air and water quality monitors, fire detection and suppression, personnel escape, and EVA support subsystems.
The Impact of Stress and Support on Direct Care Workers' Job Satisfaction
ERIC Educational Resources Information Center
Ejaz, Farida K.; Noelker, Linda S.; Menne, Heather L.; Bagaka's, Joshua G.
2008-01-01
Purpose: This research applies a stress and support conceptual model to investigate the effects of background characteristics, personal and job-related stressors, and workplace support on direct care workers' (DCW) job satisfaction. Design and Methods: Researchers collected survey data from 644 DCWs in 49 long-term care (LTC) organizations. The…
ERIC Educational Resources Information Center
Auerbach, Randy Patrick; Bigda-Peyton, Joseph S.; Eberhart, Nicole K.; Webb, Christian A.; Ho, Moon-Ho Ringo
2011-01-01
The goal of the current study is to examine the relationship amongst social support, stress, and depressive symptoms within a transactional and diathesis-stress framework using a multi-wave, longitudinal design. At the initial assessment, adolescents (n = 258) completed self-report measures assessing social support (peer, classmate, parent, and…
ERIC Educational Resources Information Center
Hammer, Leslie B.; Kossek, Ellen Ernst; Anger, W. Kent; Bodner, Todd; Zimmerman, Kristi L.
2011-01-01
Drawing on a conceptual model integrating research on training, work-family interventions, and social support, we conducted a quasi-experimental field study to assess the impact of a supervisor training and self-monitoring intervention designed to increase supervisors' use of family-supportive supervisor behaviors. Pre- and postintervention…
Collaboration on Procedural Problems May Support Conceptual Knowledge More than You May Think
ERIC Educational Resources Information Center
Olsen, Jennifer K.; Belenky, Daniel M.; Aleven, Vincent; Rummel, Nikol
2014-01-01
While collaborative Intelligent Tutoring Systems (ITSs) have been designed for older students and have been shown to support sense-making behaviors, there has not been as much work on creating systems to support collaboration between elementary school students. We have developed and tested, with 84 students, individual and collaborative versions…
Launch Vehicle Design and Optimization Methods and Priority for the Advanced Engineering Environment
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Korte, John J.
2003-01-01
NASA's Advanced Engineering Environment (AEE) is a research and development program that will improve collaboration among design engineers for launch vehicle conceptual design and provide the infrastructure (methods and framework) necessary to enable that environment. In this paper, three major technical challenges facing the AEE program are identified, and three specific design problems are selected to demonstrate how advanced methods can improve current design activities. References are made to studies that demonstrate these design problems and methods, and these studies will provide the detailed information and check cases to support incorporation of these methods into the AEE. This paper provides background and terminology for discussing the launch vehicle conceptual design problem so that the diverse AEE user community can participate in prioritizing the AEE development effort.
Concurrent Design used in the Design of Space Instruments
NASA Technical Reports Server (NTRS)
Oxnevad, Knut I.
1998-01-01
At the Project Design Center at the Jet Propulsion Laboratory, a concurrent design environment is under development for supporting development and analyses of space instruments in the early, conceptual design phases. This environment is being utilized by a Team I, a multidisciplinary group of experts. Team I is providing study and proposal support. To provide the required support, the Team I concurrent design environment features effectively interconnected high-end optics, CAD, and thermal design and analysis tools. Innovative approaches for linking tools, and for transferring files between applications have been implemented. These approaches together with effective sharing of geometry between the optics, CAD, and thermal tools are already showing significant timesavings.
Life cycle cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1993-01-01
This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.
NASA Technical Reports Server (NTRS)
Dang, Victor; Rucker, Michelle
2013-01-01
NASA's ultimate goal is the human exploration of Mars. Among the many difficult aspects of a trip to Mars is the return mission that would transport the astronauts from the Martian surface back into Mars orbit. One possible conceptual design to accomplish this task is a two-stage Mars Ascent Vehicle (MAV). In order to assess this design, a general layout and configuration for the spacecraft must be developed. The objective of my internship was to model a conceptual MAV design to support NASA's latest human Mars mission architecture trade studies, technology prioritization decisions, and mass, cost, and schedule estimates.
Conceptual design and analysis of a large antenna utilizing electrostatic membrane management
NASA Technical Reports Server (NTRS)
Brooks, A. L.; Coyner, J. V.; Gardner, W. J.; Mihora, D. J.
1982-01-01
Conceptual designs and associated technologies for deployment 100 m class radiometer antennas were developed. An electrostatically suspended and controlled membrane mirror and the supporting structure are discussed. The integrated spacecraft including STS cargo bay stowage and development were analyzed. An antenna performance evaluation was performed as a measure of the quality of the membrane/spacecraft when used as a radiometer in the 1 GHz to 5 GHz region. Several related LSS structural dynamic models differing by their stiffness property (and therefore, lowest modal frequencies) are reported. Control system whose complexity varies inversely with increasing modal frequency regimes are also reported. Interactive computer-aided-design software is discussed.
NASA Technical Reports Server (NTRS)
Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.
ERIC Educational Resources Information Center
Chen, Hsin-liang; Doty, Philip
2005-01-01
This article is the first of two that present a six-part conceptual framework for the design and evaluation of digital libraries meant to support mathematics education in K-12 settings (see also pt. 2). This first article concentrates on (1) information organization, (2) information literacy, and (3) integrated learning with multimedia materials.…
Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems
NASA Technical Reports Server (NTRS)
Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.
2016-01-01
Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.
Mathematical Making in Teacher Preparation: What Knowledge Is Brought to Bear?
ERIC Educational Resources Information Center
Greenstein, Steven; Seventko, Justin
2017-01-01
In this paper, we describe an experience within mathematics teacher preparation that engages preservice teachers (PSTs) in Making and design practices that we hypothesized would inform their conceptual and pedagogical thinking. With a focus on the design of new tools to support mathematics teaching and learning, this Learning by Design experience…
Air cushion vehicles: A briefing
NASA Technical Reports Server (NTRS)
Anderson, J. L.; Finnegan, P. M.
1971-01-01
Experience and characteristics; the powering, uses, and implications of large air cushion vehicles (ACV); and the conceptual design and operation of a nuclear powered ACV freighter and supporting facilities are described.
Advanced Technology Inlet Design, NRA 8-21 Cycle II: DRACO Flowpath Hypersonic Inlet Design
NASA Technical Reports Server (NTRS)
Sanders, Bobby W.; Weir, Lois J.
1999-01-01
The report outlines work performed in support of the flowpath development for the DRACO engine program. The design process initiated to develop a hypersonic axisymmetric inlet for a Mach 6 rocket-based combined cycle (RBCC) engine is discussed. Various design parametrics were investigated, including design shock-on-lip Mach number, cone angle, throat Mach number, throat angle. length of distributed compression, and subsonic diffuser contours. Conceptual mechanical designs consistent with installation into the D-21 vehicle were developed. Additionally, program planning for an intensive inlet development program to support a Critical Design Review in three years was performed. This development program included both analytical and experimental elements and support for a flight-capable inlet mechanical design.
The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy
Gervais, Mathieu-Joël; Hunt, Matthew
2015-01-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959
Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew
2015-04-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
PC Software graphics tool for conceptual design of space/planetary electrical power systems
NASA Technical Reports Server (NTRS)
Truong, Long V.
1995-01-01
This paper describes the Decision Support System (DSS), a personal computer software graphics tool for designing conceptual space and/or planetary electrical power systems. By using the DSS, users can obtain desirable system design and operating parameters, such as system weight, electrical distribution efficiency, and bus power. With this tool, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. The DSS is a user-friendly, menu-driven tool with online help and a custom graphical user interface. An example design and results are illustrated for a typical space power system with multiple types of power sources, frequencies, energy storage systems, and loads.
Heuristic Programming Project: October 1979-September 1982
1985-03-27
the research on ROGET focused on acquiring the initial conceptual structure needed to design the knowedge base in the first place. ROGET’s special...the user in constructing and specifying the details of the components. A component is a collection of functions and variables that support conceptual ...other framwork , called the Backchain framework, is for building programs that use backward-chaind production rules as the primary mechanism of generating
ERIC Educational Resources Information Center
Dickey, Michele D.
2006-01-01
The purpose of this conceptual analysis is to investigate how contemporary video and computer games might inform instructional design by looking at how narrative devices and techniques support problem solving within complex, multimodal environments. Specifically, this analysis presents a brief overview of game genres and the role of narrative in…
NASA Technical Reports Server (NTRS)
Moses, Robert W.; Averill, Robert D.
1992-01-01
The conceptual design and structural analysis for the Spectroscopy of the Atmosphere using Far Infrared Emission (SAFIRE) Instrument are provided. SAFIRE, which is an international effort, is proposed for the Earth Observing Systems (EOS) program for atmospheric ozone studies. A concept was developed which meets mission requirements and is the product of numerous parametric studies and design/analysis iterations. Stiffness, thermal stability, and weight constraints led to a graphite/epoxy composite design for the optical bench and supporting struts. The structural configuration was determined by considering various mounting arrangements of the optical, cryo, and electronic components. Quasi-static, thermal, modal, and dynamic response analyses were performed, and the results are presented for the selected configuration.
NASA Astrophysics Data System (ADS)
Mansour, Nasser; Wegerif, Rupert; Skinner, Nigel; Postlethwaite, Keith; Hetherington, Lindsay
2016-10-01
The purpose of this study is to explore how an online-structured dialogue environment supported (OSDE) collaborative learning about the nature of science among a group of trainee science teachers in the UK. The software used (InterLoc) is a linear text-based tool, designed to support structured argumentation with openers and `dialogue moves'. A design-based research approach was used to investigate multiple sessions using InterLoc with 65 trainee science teachers. Five participants who showed differential conceptual change in terms of their Nature of Science (NOS) views were purposively selected and closely followed throughout the study by using key event recall interviews. Initially, the majority of participants held naïve views of NOS. Substantial and favourable changes in these views were evident as a result of the OSDE. An examination of the development of the five participants' NOS views indicated that the effectiveness of the InterLoc discussions was mediated by cultural, cognitive, and experiential factors. The findings suggest that InterLoc can be effective in promoting reflection and conceptual change.
Conceptual analyses of extensible booms to support a solar sail
NASA Technical Reports Server (NTRS)
Crawford, R. F.; Benton, M. D.
1977-01-01
Extensible booms which could function as the diagonal spars and central mast of an 800 meter square, non-rotating Solar Sailing Vehicle were conceptually designed and analyzed. The boom design concept that was investigated is an extensible lattice boom which is stowed and deployed by elastically coiling and uncoiling its continuous longerons. The seven different free-span lengths in each spar which would minimize the total weights of the spars and mast were determined. Boom weights were calculated by using a semi-empirical formulation which related the overall weight of a boom to the weight of its longerons.
Lunar lander conceptual design: Lunar base systems study task 2.2
NASA Technical Reports Server (NTRS)
1988-01-01
This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.
Operations and support cost modeling of conceptual space vehicles
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1994-01-01
The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.
Controlled Ecological Life Support Systems (CELSS) conceptual design option study
NASA Technical Reports Server (NTRS)
Oleson, Melvin; Olson, Richard L.
1986-01-01
Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.
USDA-ARS?s Scientific Manuscript database
Video games are a popular form of entertainment. Serious video games for health attempt to use entertainment to promote health behavior change. When designed within a framework informed by behavioral science and supported by commercial game-design principles, serious video games for health have the ...
An introduction to the multisystem model of knowledge integration and translation.
Palmer, Debra; Kramlich, Debra
2011-01-01
Many nurse researchers have designed strategies to assist health care practitioners to move evidence into practice. While many have been identified as "models," most do not have a conceptual framework. They are unidirectional, complex, and difficult for novice research users to understand. These models have focused on empirical knowledge and ignored the importance of practitioners' tacit knowledge. The Communities of Practice conceptual framework allows for the integration of tacit and explicit knowledge into practice. This article describes the development of a new translation model, the Multisystem Model of Knowledge Integration and Translation, supported by the Communities of Practice conceptual framework.
C-130 Advanced Technology Center wing box conceptual design/cost study
NASA Technical Reports Server (NTRS)
Whitehead, R. S.; Foreman, C. R.; Silva, K.
1992-01-01
A conceptual design was developed by Northrop/LTV for an advanced C-130 Center Wing Box (CWB) which could meet the severe mission requirements of the SOF C-130 aircraft. The goals for the advanced technology CWB relative to the current C-130H CWB were: (1) the same acquisition cost; (2) lower operating support costs; (3) equal or lower weight; (4) a 30,000 hour service life for the SOF mission; and (5) minimum impact on the current maintenance concept. Initially, the structural arrangement, weight, external and internal loads, fatigue spectrum, flutter envelope and design criteria for the SOF C-130 aircraft CWB were developed. An advanced materials assessment was then conducted to determine the suitability of advanced materials for a 1994 production availability and detailed trade studies were performed on candidate CWB conceptual designs. Finally, a life-cycle cost analysis was performed on the advanced CWB. The study results showed that a hybrid composite/metallic CWB could meet the severe SOF design requirements, reduce the CWB weight by 14 pct., and was cost effective relative to an all metal beefed up C-130H CWB.
Conceptual design study Science and Application Space Platform SASP. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Runge, F. C.
1980-01-01
The system design philosphy applied in the development of this platform concept is summarized. The system is to provide for simple, low cost, initial capability of accommodating Spacelab payloads that are modified for long duration flight. The supporting research and technology are also summarized.
ERIC Educational Resources Information Center
Denham, A. R.
2015-01-01
There has been a steady rise in the support for games as learning environments. This support is largely based on the strong levels of engagement and motivation observed during gameplay. What has proven difficult is the ability to consistently design and develop learning games that are both engaging and educationally viable. Those in the game-based…
Computerized Design Synthesis (CDS), A database-driven multidisciplinary design tool
NASA Technical Reports Server (NTRS)
Anderson, D. M.; Bolukbasi, A. O.
1989-01-01
The Computerized Design Synthesis (CDS) system under development at McDonnell Douglas Helicopter Company (MDHC) is targeted to make revolutionary improvements in both response time and resource efficiency in the conceptual and preliminary design of rotorcraft systems. It makes the accumulated design database and supporting technology analysis results readily available to designers and analysts of technology, systems, and production, and makes powerful design synthesis software available in a user friendly format.
Conceptualizing and Exemplifying Science Teachers' Assessment Expertise
NASA Astrophysics Data System (ADS)
Geaney Lyon, Edward
2013-05-01
Although research in science education has led to new assessment forms and functions, the reality is that little work has been done to unpack and capture what it means for a teacher to develop expertise at assessing science. The purpose of this paper is two-fold. First, I suggest a conceptualization of assessment expertise that is organized around three dimensions: (a) designing aligned and theoretically cohesive assessment (Design), (b) using assessment to support students' science learning (Use), and (c) equitably assessing language minorities (Equity). The second purpose is to suggest and exemplify various levels of teaching expertise across the three conceptual dimensions using written assessment plans gathered from a study on secondary science pre-service teachers' assessment growth. The contribution of this paper lies in its further conceptual development of assessment expertise, instantiated in a rubric, which can spark discussion about how to capture the range of assessment practices that might be found in science classrooms as well as move toward a potential learning progression of assessment expertise.
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
Conceptual Design and Analysis of Cold Mass Support of the CS3U Feeder for the ITER
NASA Astrophysics Data System (ADS)
Zhu, Yinfeng; Song, Yuntao; Zhang, Yuanbin; Wang, Zhongwei
2013-06-01
In the International Thermonuclear Experimental Reactor (ITER) project, the feeders are one of the most important and critical systems. To convey the power supply and the coolant for the central solenoid (CS) magnet, 6 sets of CS feeders are employed, which consist mainly of an in-cryostat feeder (ICF), a cryostat feed-through (CFT), an S-bend box (SBB), and a coil terminal box (CTB). To compensate the displacements of the internal components of the CS feeders during operation, sliding cold mass supports consisting of a sled plate, a cylindrical support, a thermal shield, and an external ring are developed. To check the strength of the developed cold mass supports of the CS3U feeder, electromagnetic analysis of the two superconducting busbars is performed by using the CATIA V5 and ANSYS codes based on parametric technology. Furthermore, the thermal-structural coupling analysis is performed based on the obtained results, except for the stress concentration, and the max. stress intensity is lower than the allowable stress of the selected material. It is found that the conceptual design of the cold mass support can satisfy the required functions under the worst case of normal working conditions. All these performed activities will provide a firm technical basis for the engineering design and development of cold mass supports.
ERIC Educational Resources Information Center
Edsall, Al; Kyros, William
This paper proposes concepts for the data inputs and informational outputs for the Instructional Support System for Occupational Education (ISSOE), which is a subsystem of the Comprehensive Instructional Management System for Occupational Education (CIMS/OE) currently being developed by the New York State Education Department for the purpose of…
ERIC Educational Resources Information Center
Lan, Chung-Hsien; Chao, Stefan; Kinshuk; Chao, Kuo-Hung
2013-01-01
This study presents a conceptual framework for supporting mobile peer assessment by incorporating augmented reality technology to eliminate limitation of reviewing and assessing. According to the characteristics of mobile technology and augmented reality, students' work can be shown in various ways by considering the locations and situations. This…
Onboard experiment data support facility, task 1 report. [space shuttles
NASA Technical Reports Server (NTRS)
1975-01-01
The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.
Implementation Blueprint and Self-Assessment: Positive Behavioral Interventions and Supports
ERIC Educational Resources Information Center
Technical Assistance Center on Positive Behavioral Interventions and Supports, 2010
2010-01-01
A "blueprint" is a guide designed to improve large-scale implementations of a specific systems or organizational approach, like School-Wide Positive Behavior Support (SWPBS). This blueprint is intended to make the conceptual theory, organizational models, and practices of SWPBS more accessible for those involved in enhancing how schools,…
The StarView intelligent query mechanism
NASA Technical Reports Server (NTRS)
Semmel, R. D.; Silberberg, D. P.
1993-01-01
The StarView interface is being developed to facilitate the retrieval of scientific and engineering data produced by the Hubble Space Telescope. While predefined screens in the interface can be used to specify many common requests, ad hoc requests require a dynamic query formulation capability. Unfortunately, logical level knowledge is too sparse to support this capability. In particular, essential formulation knowledge is lost when the domain of interest is mapped to a set of database relation schemas. Thus, a system known as QUICK has been developed that uses conceptual design knowledge to facilitate query formulation. By heuristically determining strongly associated objects at the conceptual level, QUICK is able to formulate semantically reasonable queries in response to high-level requests that specify only attributes of interest. Moreover, by exploiting constraint knowledge in the conceptual design, QUICK assures that queries are formulated quickly and will execute efficiently.
Loads specification and embedded plate definition for the ITER cryoline system
NASA Astrophysics Data System (ADS)
Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.
2015-12-01
ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.
Larizgoitia, Itziar; Izarzugaza, Isabel; Markez, Iñaki; Fernández, Itziar; Iraurgi, Ioseba; Larizgoitia, Arantza; Ballesteros, Javier; Fernández-Liria, Alberto; Moreno, Florentino; Retolaza, Ander; Páez, Darío; Martín-Beristaín, Carlos; Alonso, Jordi
2011-01-01
Epidemiologic research on collective violence (violence exerted by and within groups in pursuit of political, social or economic goals) is very scarce despite its growing recognition as a major public health issue. This paper describes the conceptual model and design of one of the first research studies conducted in Spain aiming to assess the impact of collective violence in the health status of its victims (study known as ISAVIC, based on its Spanish title Impacto en la SAlud de la VIolencia Colectiva). Starting with a comprehensive but non-systematic review of the literature, the authors describe the sequelae likely produced by collective violence and propose a conceptual model to explain the nature of the relationships between collective violence and health status. The conceptual model informed the ISAVIC study design and its measurement instruments. The possible sequelae of collective violence, in the physical, emotional and social dimensions of health, are described. Also, the review distinguishes the likely impact in primary and secondary victims, as well as the interplay with the social environment. The mixed methodological design of the ISAVIC study supports the coherence of the conceptual model described. The ISAVIC study suggests that collective violence may affect the main dimensions of the health status of its victims, in intimate relation to the societal factors where it operates. It is necessary to validate these results with new studies. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.
Plant Growth Module (PGM) conceptual design
NASA Technical Reports Server (NTRS)
Schwartzkopf, Steven H.; Rasmussen, Daryl
1987-01-01
The Plant Growth Module for the Controlled Ecological Life Support System (CELSS), designed to answer basic science questions related to growing plants in closed systems, is described functionally with artist's conception drawings. Subsystems are also described, including enclosure and access; data acquisition and control; gas monitor and control; heating, ventilation, and air conditioning; air delivery; nutrient monitor and control; microbial monitoring and control; plant support and nutrient delivery; illumination; and internal operations. The hardware development plan is outlined.
2002-01-01
behaviors are influenced by social interactions, and to how modern IT sys- tems should be designed to support these group technical activities. The...engineering disciplines to behavior, decision, psychology, organization, and the social sciences. “Conflict manage- ment activity in collaborative...Researchers instead began to search for an entirely new paradigm, starting from a theory in social science, to construct a conceptual framework to describe
NASA Technical Reports Server (NTRS)
1979-01-01
Candidate power module confugurations which will directly support an evolutionary scenario allowing growth from 25 kW to 100 kW are described. The growth rationale is structured to support a nominal scenario for sortie mission support to the POrbiter and to free-flying payloads during the 1983 to 1990 era.
ERIC Educational Resources Information Center
Wals, Arjen E. J.
2010-01-01
Purpose: The purpose of this paper is to identify components and educational design principles for strengthening sustainability competence in and through higher education. Design/methodology/approach: This is a conceptual paper that uses an exemplary autobiographical empirical case study in order to illustrate and support a line of reasoning.…
Design of a fifth generation air superiority fighter
NASA Astrophysics Data System (ADS)
Atique, Md. Saifuddin Ahmed; Barman, Shuvrodeb; Nafi, Asif Shahriar; Bellah, Masum; Salam, Md. Abdus
2016-07-01
Air Superiority Fighter is considered to be an effective dogfighter which is stealthy & highly maneuverable to surprise enemy along with improve survivability against the missile fire. This new generation fighter aircraft requires fantastic aerodynamics design, low wing loading (W/S), high thrust to weight ratio (T/W) with super cruise ability. Conceptual design is the first step to design an aircraft. In this paper conceptual design of an Air Superiority Fighter Aircraft is proposed to carry 1 crew member (pilot) that can fly at maximum Mach No of 2.3 covering a range of 1500 km with maximum ceiling of 61,000 ft. Payload capacity of this proposed aircraft is 6000 lb that covers two advanced missiles & one advanced gun. The Air Superiority Fighter Aircraft was designed to undertake all the following missions like: combat air petrol, air to air combat, maritime attack, close air support, suppression, destruction of enemy air defense and reconnaissance.
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsia; Brown, Cheryl; Jeng, Frank
2012-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem.
Case-Based Capture and Reuse of Aerospace Design Rationale
NASA Technical Reports Server (NTRS)
Leake, David B.
2001-01-01
The goal of this project was to apply artificial intelligence techniques to facilitate capture and reuse of aerospace design rationale. The project combined case-based reasoning (CBR) and concept maps (CMaps) to develop methods for capturing, organizing, and interactively accessing records of experiences encapsulating the methods and rationale underlying expert aerospace design, in order to bring the captured knowledge to bear to support future reasoning. The project's results contribute both principles and methods for effective design-aiding systems that aid capture and access of useful design knowledge. The project has been guided by the tenets that design-aiding systems must: (1) Leverage a designer's knowledge, rather than attempting to replace it; (2) Be able to reflect different designers' differing conceptualizations of the design task, and to clarify those conceptualizations to others; (3) Include capabilities to capture information both by interactive knowledge modeling and during normal use; and (4) Integrate into normal designer tasks as naturally and unobtrusive as possible.
Communications and radar-supported transportation operations and planning : final report.
DOT National Transportation Integrated Search
2017-03-01
This project designs a conceptual framework to harness and mature wireless technology to improve : transportation safety, with a focus on frontal collision warning/collision avoidance (CW/CA) systems. The : framework identifies components of the tech...
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
Nature-based supportive care opportunities: a conceptual framework.
Blaschke, Sarah; O'Callaghan, Clare C; Schofield, Penelope
2018-03-22
Given preliminary evidence for positive health outcomes related to contact with nature for cancer populations, research is warranted to ascertain possible strategies for incorporating nature-based care opportunities into oncology contexts as additional strategies for addressing multidimensional aspects of cancer patients' health and recovery needs. The objective of this study was to consolidate existing research related to nature-based supportive care opportunities and generate a conceptual framework for discerning relevant applications in the supportive care setting. Drawing on research investigating nature-based engagement in oncology contexts, a two-step analytic process was used to construct a conceptual framework for guiding nature-based supportive care design and future research. Concept analysis methodology generated new representations of understanding by extracting and synthesising salient concepts. Newly formulated concepts were transposed to findings from related research about patient-reported and healthcare expert-developed recommendations for nature-based supportive care in oncology. Five theoretical concepts (themes) were formulated describing patients' reasons for engaging with nature and the underlying needs these interactions address. These included: connecting with what is genuinely valued, distancing from the cancer experience, meaning-making and reframing the cancer experience, finding comfort and safety, and vital nurturance. Eight shared patient and expert recommendations were compiled, which address the identified needs through nature-based initiatives. Eleven additional patient-reported recommendations attend to beneficial and adverse experiential qualities of patients' nature-based engagement and complete the framework. The framework outlines salient findings about helpful nature-based supportive care opportunities for ready access by healthcare practitioners, designers, researchers and patients themselves. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Developing Tools for Mission Engineering Analysis During Hurricane Preparation and Operations
2017-06-01
Reserve Headquarters to help their MFRHTCs prepare, the Naval PostgraduateSchool and the Center for Educational Design , Development, and Distribution...types of information and resources necessary for hurricanepreparations operations and form a conceptual design for a database support system (DBSS...preparation for a hurricane. The results of this thesis detail aconceptual design , functional baseline for the DBSS, specify the information and
NASA Astrophysics Data System (ADS)
Ülen, Simon; Gerlič, Ivan; Slavinec, Mitja; Repnik, Robert
2017-04-01
To provide a good understanding of many abstract concepts in the field of electricity above that of their students is often a major challenge for secondary school teachers. Many educational researchers promote conceptual learning as a teaching approach that can help teachers to achieve this goal. In this paper, we present Physlet-based materials for supporting conceptual learning about electricity. To conduct research into the effectiveness of these materials, we designed two different physics courses: one group of students, the experimental group, was taught using Physlet-based materials and the second group of students, the control group, was taught using expository instruction without using Physlets. After completion of the teaching, we assessed students' thinking skills and analysed the materials with an independent t test, multiple regression analyses and one-way analysis of covariance. The test scores were significantly higher in the experimental group than in the control group ( p < 0.05). The results of this study confirmed the effectiveness of conceptual learning about electricity with the help of Physlet-based materials.
A closed-loop air revitalization process technology demonstrator
NASA Astrophysics Data System (ADS)
Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark
Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.
NASA Technical Reports Server (NTRS)
1979-01-01
Program elements of the power module (PM) system, are identified, structured, and defined according to the planned work breakdown structure. Efforts required to design, develop, manufacture, test, checkout, launch and operate a protoflight assembled 25 kW, 50 kW and 100 kW PM include the preparation and delivery of related software, government furnished equipment, space support equipment, ground support equipment, launch site verification software, orbital verification software, and all related data items.
Winged cargo return vehicle. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
1990-01-01
The Advanced Design Project (ADP) allows an opportunity for students to work in conjunction with NASA and other aerospace companies on NASA Advanced Design Projects. The following volumes represent the design report: Volume 1 Conceptual Design; Volume 2 Wind Tunnel Tests; Volume 3 Structural Analysis; and Volume 4 Water Tunnel Tests. The project chosen by the University of Minnesota in conjunction with NASA Marshall Space Flight Center for this year is a Cargo Return Vehicle (CRV) to support the Space Station Freedom. The vehicle is the third generation of vehicles to be built by NASA, the first two being the Apollo program, and the Space Shuttle program. The CRV is to work in conjunction with a personnel launch system (PLS) to further subdivide and specialize the vehicles that NASA will operate in the year 2000. The cargo return vehicle will carry payload to and from the Space Station Freedom (SSF).
NASA Technical Reports Server (NTRS)
1974-01-01
The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
... ensure that each is conceptually sound. Stress tests usually vary in design and complexity, including the... quantitative tests supported by high-quality data, employ a certain amount of expert or business judgment that... generally, enterprise-wide stress testing involves robust scenario design and effective translation of...
Tokamak experimental power reactor conceptual design. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1976-08-01
Volume II contains the following appendices: (1) summary of EPR design parameters, (2) impurity control, (3) plasma computational models, (4) structural support system, (5) materials considerations for the primary energy conversion system, (6) magnetics, (7) neutronics penetration analysis, (8) first wall stress analysis, (9) enrichment of isotopes of hydrogen by cryogenic distillation, and (10) noncircular plasma considerations. (MOW)
Designing Professional Learning for Effecting Change: Partnerships for Local and System Networks
ERIC Educational Resources Information Center
Wyatt-Smith, Claire; Bridges, Susan; Hedemann, Maree; Neville, Mary
2008-01-01
This paper presents (i) a purpose-built conceptual model for professional learning and (ii) a leadership framework designed to support a large-scale project involving diverse sites across the state of Queensland, Australia. The project had as its focus teacher-capacity building and ways to improve literacy and numeracy outcomes for students at…
Towards a General-Purpose Belief Maintenance System.
1987-04-01
reason using normal two or three-valued logic or using probabilistic values to represent partial belief. The design of the Belief Maintenance System is...as simply a generalization of Truth Maintenance Systems. whose possible reasoning tasks are a superset of those for a TMS. 2. DESIGN The design of...become support links in that they provide partial evidence in favor of a node. The basic design consists of three parts: (1) the conceptual control
Supporting user-defined granularities in a spatiotemporal conceptual model
Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.
2002-01-01
Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.
A Mission Concept to Study Multigenerational Mammalian Reproduction in Partial Gravity
NASA Technical Reports Server (NTRS)
Rodgers, Erica M.; Simon, Matthew A.; Chai, Patrick R.; Neilan, James H.; Stillwagen, Fred H.; Williams, Phillip A.; Lewis, Weston
2016-01-01
A team at NASA Langley Research Center conducted a study during which a conceptual space mission was designed. In this study, rodents are used as human analogs to gather biological and systems data in a relevant environment applicable to future settlements on Mars. The mission concept uniquely addresses the combined effects of long-durations (one-year or greater), autonomous and robotic operations, and biological responses to partial gravity with an emphasis on reproduction. The objectives of this study were to 1) understand challenges associated with designing an artificial gravity habitat that supports the reproduction and maturation of a large animal colony, 2) identify mission architectures and operational concepts to transport and maintain such a facility, and 3) identify fundamental science considerations for mammalian reproduction studies to inform vehicle design. A model demonstration unit was developed to visualize and test certain design concepts that resulted from these considerations. Three versions of this demonstration unit were built over the course of the study, each taking into account lessons learned from the previous version. This paper presents the updated baseline mission and spacecraft design concepts to achieve these objectives, with a specific emphasis on updates since publication in previous works. Analyses of the integrated system trades among the elements which make up the conceptual vehicle are described to address overall feasibility and identify potential integrated design opportunities. The latest iteration of the habitat robotics design and a conceptual design example for autonomous care of crew and systems are also presented. Finally, the conclusion of this conceptual design study, necessary future analyses to enable such a facility, and comments upon other applications of a similar exploration-focused research facilities are addressed.
NASA Technical Reports Server (NTRS)
1989-01-01
The Simulation Computer System (SCS) is the computer hardware, software, and workstations that will support the Payload Training Complex (PTC) at Marshall Space Flight Center (MSFC). The PTC will train the space station payload scientists, station scientists, and ground controllers to operate the wide variety of experiments that will be onboard the Space Station Freedom. In the first step of this task, a methodology was developed to ensure that all relevant design dimensions were addressed, and that all feasible designs could be considered. The development effort yielded the following method for generating and comparing designs in task 4: (1) Extract SCS system requirements (functions) from the system specification; (2) Develop design evaluation criteria; (3) Identify system architectural dimensions relevant to SCS system designs; (4) Develop conceptual designs based on the system requirements and architectural dimensions identified in step 1 and step 3 above; (5) Evaluate the designs with respect to the design evaluation criteria developed in step 2 above. The results of the method detailed in the above 5 steps are discussed. The results of the task 4 work provide the set of designs which two or three candidate designs are to be selected by MSFC as input to task 5-refine SCS conceptual designs. The designs selected for refinement will be developed to a lower level of detail, and further analyses will be done to begin to determine the size and speed of the components required to implement these designs.
van Rensburg, Elsie S Janse; Poggenpoel, Marie; Myburgh, Chris
2015-11-25
Student nurses (SNs) experience emotional discomfort during placement in the clinical psychiatric learning environment. This may negatively influence their mental health. Limited support is available to assist both SNs working with persons with intellectual disabilities and nurse educators during clinical accompaniment. This article aims to discuss the generation of this framework to enhance student support. A theory-generative, qualitative, exploratory, descriptive, contextual design was utilised to develop the framework by applying four steps. In step 1 concept analysis identified the central concept through field work. Data were collected from 13 SNs purposively selected from a specific higher educational institution in Gauteng through two focus group interviews, reflective journals, a reflective letter, naïve sketches, drawings and field notes and analysed with thematic coding. The central concept was identified from the results, supported by a literature review and defined by essential attributes. The central concept was classified through a survey list and demonstrated in a model case. In step 2 the central concepts were placed into relationships with each other. The conceptual framework was described and evaluated in step 3 and guidelines for implementation were described in step 4. The focus of this article will be on generating the conceptual framework. The central concept was 'the facilitation of engagement on a deeper emotional level of SNs'. The conceptual framework was described and evaluated. The conceptual framework can enhance the educational practices of nurse educators and can SN's practices of care for persons with intellectual disabilities.
Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs
NASA Technical Reports Server (NTRS)
Booske, John H.; Kory, Carol L.; Gallagher, D.; van der Weide, Daniel W.; Limbach, S; Gustafson, P; Lee, W.-J.; Gallagher, S.; Jain, K.
2001-01-01
Summary form only given. The Terahertz (THz) region of the electromagnetic spectrum (approx.300-3000 GHz) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.01-10.0 W continuous wave), efficient (>1 %), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and relatively inexpensive. Micro-machined Vacuum Electron Devices (micro-VEDs) represent a promising solution. We describe prospects for miniature, THz-regime TWTs fabricated using micromachining techniques. Several approx.600 GHz conceptual designs are compared. Their expected performance has been analyzed using SD, 2.51), and 3D TWT codes. A folded waveguide (FWG) TWT forward-wave amplifier design is presented based on a Northrop Grumman (NGC) optimized design procedure. This conceptual device is compared to the simulated performance of a novel, micro-VED helix TWT. Conceptual FWG TWT backward-wave amplifiers and oscillators are also discussed. A scaled (100 GHz) FWG TWT operating at a relatively low voltage (-12 kV) is under development at NGC. Also, actual-size micromachining experiments are planned to evaluate the feasibility of arrays of micro-VED TWTs. Progress and results of these efforts are described. This work was supported, in part by AFOSR, ONR, and NSF.
O’Carroll Bantum, Erin; Owen, Jason; Bakken, Suzanne; Elhadad, Noémie
2017-01-01
Objectives: The Internet and social media are revolutionizing how social support is exchanged and perceived, making online health communities (OHCs) one of the most exciting research areas in health informatics. This paper aims to provide a framework for organizing research of OHCs and help identify questions to explore for future informatics research. Based on the framework, we conceptualize OHCs from a social support standpoint and identify variables of interest in characterizing community members. For the sake of this tutorial, we focus our review on online cancer communities. Target audience: The primary target audience is informaticists interested in understanding ways to characterize OHCs, their members, and the impact of participation, and in creating tools to facilitate outcome research of OHCs. OHC designers and moderators are also among the target audience for this tutorial. Scope: The tutorial provides an informatics point of view of online cancer communities, with social support as their leading element. We conceptualize OHCs according to 3 major variables: type of support, source of support, and setting in which the support is exchanged. We summarize current research and synthesize the findings for 2 primary research questions on online cancer communities: (1) the impact of using online social support on an individual's health, and (2) the characteristics of the community, its members, and their interactions. We discuss ways in which future research in informatics in social support and OHCs can ultimately benefit patients. PMID:27402140
Zhang, Shaodian; O'Carroll Bantum, Erin; Owen, Jason; Bakken, Suzanne; Elhadad, Noémie
2017-03-01
The Internet and social media are revolutionizing how social support is exchanged and perceived, making online health communities (OHCs) one of the most exciting research areas in health informatics. This paper aims to provide a framework for organizing research of OHCs and help identify questions to explore for future informatics research. Based on the framework, we conceptualize OHCs from a social support standpoint and identify variables of interest in characterizing community members. For the sake of this tutorial, we focus our review on online cancer communities. The primary target audience is informaticists interested in understanding ways to characterize OHCs, their members, and the impact of participation, and in creating tools to facilitate outcome research of OHCs. OHC designers and moderators are also among the target audience for this tutorial. The tutorial provides an informatics point of view of online cancer communities, with social support as their leading element. We conceptualize OHCs according to 3 major variables: type of support, source of support, and setting in which the support is exchanged. We summarize current research and synthesize the findings for 2 primary research questions on online cancer communities: (1) the impact of using online social support on an individual's health, and (2) the characteristics of the community, its members, and their interactions. We discuss ways in which future research in informatics in social support and OHCs can ultimately benefit patients. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association.
Conceptual design of a water treatment system to support a manned Mars colony
NASA Technical Reports Server (NTRS)
1988-01-01
The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.
NASA Technical Reports Server (NTRS)
Kramer, Edward (Editor)
1998-01-01
The cryogenic fluid management technologies required for the exploration of the solar system can only be fully developed via space-based experiments. A dedicated spacecraft is the most efficient way to perform these experiments. This report documents the extended conceptual design of the COLD-SAT spacecraft, capable of meeting these experimental requirements. All elements, including the spacecraft, ground segment, launch site modifications and launch vehicle operations, and flight operations are included. Greatly expanded coverage is provided for those areas unique to this cryogenic spacecraft, such as the experiment system, attitude control system, and spacecraft operations. Supporting analyses are included as are testing requirements, facilities surveys, and proposed project timelines.
Conceptual design for the space station Freedom modular combustion facility
NASA Technical Reports Server (NTRS)
1989-01-01
A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.
Using Virtual Reality Computer Models to Support Student Understanding of Astronomical Concepts
ERIC Educational Resources Information Center
Barnett, Michael; Yamagata-Lynch, Lisa; Keating, Tom; Barab, Sasha A.; Hay, Kenneth E.
2005-01-01
The purpose of this study was to examine how 3-dimensional (3-D) models of the Solar System supported student development of conceptual understandings of various astronomical phenomena that required a change in frame of reference. In the course described in this study, students worked in teams to design and construct 3-D virtual reality computer…
Axisymmetric inlet minimum weight design method
NASA Technical Reports Server (NTRS)
Nadell, Shari-Beth
1995-01-01
An analytical method for determining the minimum weight design of an axisymmetric supersonic inlet has been developed. The goal of this method development project was to improve the ability to predict the weight of high-speed inlets in conceptual and preliminary design. The initial model was developed using information that was available from inlet conceptual design tools (e.g., the inlet internal and external geometries and pressure distributions). Stiffened shell construction was assumed. Mass properties were computed by analyzing a parametric cubic curve representation of the inlet geometry. Design loads and stresses were developed at analysis stations along the length of the inlet. The equivalent minimum structural thicknesses for both shell and frame structures required to support the maximum loads produced by various load conditions were then determined. Preliminary results indicated that inlet hammershock pressures produced the critical design load condition for a significant portion of the inlet. By improving the accuracy of inlet weight predictions, the method will improve the fidelity of propulsion and vehicle design studies and increase the accuracy of weight versus cost studies.
Waste Handeling Building Conceptual Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
G.W. Rowe
2000-11-06
The objective of the ''Waste Handling Building Conceptual Study'' is to develop proposed design requirements for the repository Waste Handling System in sufficient detail to allow the surface facility design to proceed to the License Application effort if the proposed requirements are approved by DOE. Proposed requirements were developed to further refine waste handling facility performance characteristics and design constraints with an emphasis on supporting modular construction, minimizing fuel inventory, and optimizing facility maintainability and dry handling operations. To meet this objective, this study attempts to provide an alternative design to the Site Recommendation design that is flexible, simple, reliable,more » and can be constructed in phases. The design concept will be input to the ''Modular Design/Construction and Operation Options Report'', which will address the overall program objectives and direction, including options and issues associated with transportation, the subsurface facility, and Total System Life Cycle Cost. This study (herein) is limited to the Waste Handling System and associated fuel staging system.« less
The interactive learning toolkit: technology and the classroom
NASA Astrophysics Data System (ADS)
Lukoff, Brian; Tucker, Laura
2011-04-01
Peer Instruction (PI) and Just-in-Time-Teaching (JiTT) have been shown to increase both students' conceptual understanding and problem-solving skills. However, the time investment for the instructor to prepare appropriate conceptual questions and manage student JiTT responses is one of the main implementation hurdles. To overcome this we have developed the Interactive Learning Toolkit (ILT), a course management system specifically designed to support PI and JiTT. We are working to integrate the ILT with a fully interactive classroom system where students can use their laptops and smartphones to respond to ConcepTests in class. The goal is to use technology to engage students in conceptual thinking both in and out of the classroom.
Spacelab cryogenic propellant management experiment
NASA Technical Reports Server (NTRS)
Cady, E. C.
1976-01-01
The conceptual design of a Spacelab cryogen management experiment was performed to demonstrate toe desirability and feasibility of subcritical cryogenic fluid orbital storage and supply. A description of the experimental apparatus, definition of supporting requirements, procedures, data analysis, and a cost estimate are included.
NASA Technical Reports Server (NTRS)
Willis, N. C., Jr.; Neel, J. M.
1972-01-01
Design concepts and test philosophies which may contribute to the development of a low-cost maintainable environmental control/life support system are examined. It is shown that the concept of producing flight prototype equipment during a developmental program can reduce the eventual cost of a flight system by incorporating realistic flight-type design requirements without imposing exacting design features and stringent controls. A flight prototype design is one that can be converted readily into an actual flight design without any conceptual change. Modularity of subsystems provides the system and the program a degree of flexibility relative to the eventual vehicle configuration and technological improvements.
O/S analysis of conceptual space vehicles. Part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1995-01-01
The application of recently developed computer models in determining operational capabilities and support requirements during the conceptual design of proposed space systems is discussed. The models used are the reliability and maintainability (R&M) model, the maintenance simulation model, and the operations and support (O&S) cost model. In the process of applying these models, the R&M and O&S cost models were updated. The more significant enhancements include (1) improved R&M equations for the tank subsystems, (2) the ability to allocate schedule maintenance by subsystem, (3) redefined spares calculations, (4) computing a weighted average of the working days and mission days per month, (5) the use of a position manning factor, and (6) the incorporation into the O&S model of new formulas for computing depot and organizational recurring and nonrecurring training costs and documentation costs, and depot support equipment costs. The case study used is based upon a winged, single-stage, vertical-takeoff vehicle (SSV) designed to deliver to the Space Station Freedom (SSF) a 25,000 lb payload including passengers without a crew.
Smith, Chris; Vannak, Uk; Sokhey, Ly; Ngo, Thoai D; Gold, Judy; Free, Caroline
2016-01-05
The objective of this paper is to outline the formative research process used to develop the MOTIF mobile phone-based (mHealth) intervention to support post-abortion family planning in Cambodia. The formative research process involved literature reviews, interviews and focus group discussions with clients, and consultation with clinicians and organisations implementing mHealth activities in Cambodia. This process led to the development of a conceptual framework and the intervention. Key findings from the formative research included identification of the main reasons for non-use of contraception and patterns of mobile phone use in Cambodia. We drew on components of existing interventions and behaviour change theory to develop a conceptual framework. A multi-faceted voice-based intervention was designed to address health concerns and other key determinants of contraception use. Formative research was essential in order to develop an appropriate mHealth intervention to support post-abortion contraception in Cambodia. Each component of the formative research contributed to the final intervention design.
NASA Astrophysics Data System (ADS)
Czupalla, M.; Horneck, G.; Blome, H. J.
This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study.
Czupalla, M; Horneck, G; Blome, H J
2005-01-01
This report summarizes a trade study of different options of a bioregenerative Life Support System (LSS) and a subsequent conceptual design of a hybrid LSS. The evaluation was based mainly on the terrestrial testbed projects MELISSA (ESA) and BIOS (Russia). In addition, some methods suggested by the Advanced Life Support Project (NASA) were considered. Computer models, including mass flows were established for each of the systems with the goal of closing system loops to the extent possible. In order to cope with the differences in the supported crew size and provided nutrition, all systems were scaled for supporting a crew of six for a 780 day Mars mission (180 days transport to Mars; 600 days surface period) as given in the NASA Design Reference Mission Scenario [Hoffman, S.J., Kaplan, D.L. Human exploration of Mars: the Reference Mission of the NASA Mars Exploratory Study, 1997]. All models were scaled to provide the same daily allowances, as of calories, to the crew. Equivalent System Mass (ESM) analysis was used to compare the investigated system models against each other. Following the comparison of the terrestrial systems, the system specific subsystem options for Food Supply, Solid Waste Processing, Water Management and Atmosphere Revitalization were evaluated in a separate trade study. The best subsystem technologies from the trade study were integrated into an overall design solution based on mass flow relationships. The optimized LSS is mainly a bioregenerative system, complemented by a few physico-chemical elements, with a total ESM of 18,088 kg, which is about 4 times higher than that of a pure physico-chemical LSS, as designed in an earlier study. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Estimating Logistics Support of Reusable Launch Vehicles During Conceptual Design
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, N. H.; Davies, W. T.; Ebeling, C. E.
1997-01-01
Methods exist to define the logistics support requirements for new aircraft concepts but are not directly applicable to new launch vehicle concepts. In order to define the support requirements and to discriminate among new technologies and processing choices for these systems, NASA Langley Research Center (LaRC) is developing new analysis methods. This paper describes several methods under development, gives their current status, and discusses the benefits and limitations associated with their use.
A New Method for Conceptual Modelling of Information Systems
NASA Astrophysics Data System (ADS)
Gustas, Remigijus; Gustiene, Prima
Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.
Structural concept studies for a horizontal cylindrical lunar habitat and a lunar guyed tower
NASA Technical Reports Server (NTRS)
Yin, Paul K.
1990-01-01
A conceptual structural design of a horizontal cylindrical lunar habitat is presented. The design includes the interior floor framing, the exterior support structure, the foundation mat, and the radiation shielding. Particular attention was given on its efficiency in shipping and field erection, and on selection of structural materials. Presented also is a conceptual design of a 2000-foot lunar guyed tower. A special field erection scheme is implemented in the design. In order to analyze the over-all column buckling of the mast, where its axial compression includes its own body weight, a simple numerical procedure is formulated in a form ready for coding in FORTRAN. Selection of structural materials, effect of temperature variations, dynamic response of the tower to moonquake, and guy anchoring system are discussed. Proposed field erection concepts for the habitat and for the guyed tower are described.
Conceptual design and analysis of orbital cryogenic liquid storage and supply systems
NASA Technical Reports Server (NTRS)
Eberhardt, R. N.; Cunnington, G. R.; Johns, W. A.
1981-01-01
A wide variety of orbital cryogenic liquid storage and supply systems are defined in NASA and DOD long-range plans. These systems include small cooling applications, large chemical and electrical orbit transfer vehicles and supply tankers. All have the common requirements of low-g fluid management to accomplish gas-free liquid expulsion and efficient thermal control to manage heat leak and tank pressure. A preliminary design study was performed to evaluate tanks ranging from 0.6 to 37.4 cu m (22 to 1320 cu ft). Liquids of interest were hydrogen, oxygen, methane, argon and helium. Conceptual designs were generated for each tank system and fluid dynamic, thermal and structural analyses were performed for Shuttle compatible operations. Design trades considered the paradox of conservative support structure and minimum thermal input. Orbital performance and weight data were developed, and a technology evaluation was completed.
NASA Technical Reports Server (NTRS)
1989-01-01
Phase 2 of a conceptual design of an integrated water treatment system to support a space colony is presented. This includes a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use. The system is to supply quality water for biological consumption, farming, residential and industrial use and the water source is assumed to be artesian or subsurface and on Mars. Design criteria and major assumptions are itemized. A general block diagram of the expected treatment system is provided. The design capacity of the system is discussed, including a summary of potential users and the level of treatment required; and, finally, various treatment technologies are described.
Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa
2014-01-01
A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or “elements” (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user’s environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs. PMID:24905070
Mohr, David C; Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa
2014-06-05
A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or "elements" (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user's environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs.
The impact of CmapTools utilization towards students' conceptual change on optics topic
NASA Astrophysics Data System (ADS)
Rofiuddin, Muhammad Rifqi; Feranie, Selly
2017-05-01
Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.
ERIC Educational Resources Information Center
Kruse, Rebecca; Howes, Elaine V.; Carlson, Janet; Roth, Kathleen; Bourdelat-Parks, Brooke
2013-01-01
AAAS and BSCS are collaborating to develop and study a curriculum unit that supports students' ability to explain a variety of biological processes such as growth in chemical terms. The unit provides conceptual coherence between chemical processes in nonliving and living systems through the core idea of atom rearrangement and conservation during…
Argumentation as a Strategy for Conceptual Learning of Dynamics
NASA Astrophysics Data System (ADS)
Eskin, Handan; Ogan-Bekiroglu, Feral
2013-10-01
Researchers have emphasized the importance of promoting argumentation in science classrooms for various reasons. However, the study of argumentation is still a young field and more research needs to be carried out on the tools and pedagogical strategies that can assist teachers and students in both the construction and evaluation of scientific arguments. Thus, the aim of this study was to evaluate the impact of argumentation on students' conceptual learning in dynamics. True-experimental design using quantitative research methods was carried out for the study. The participants of the study were tenth graders studying in two classes in an urban all-girls school. There were 26 female students in each class. Five argumentations promoted in the different contexts were embedded through the dynamics unit over a 10-week duration. The study concludes that engaging in the argumentative process that involves making claims, using data to support these claims, warranting the claims with scientific evidence, and using backings, rebuttals, and qualifiers to further support the reasoning, reinforces students' understanding of science, and promotes conceptual change. The results suggest that argumentation should be employed during instruction as a way to enable conceptual learning.
Design of internal support structures for an inflatable lunar habitat
NASA Technical Reports Server (NTRS)
Cameron, Elizabeth A.; Duston, John A.; Lee, David D.
1990-01-01
NASA has a long range goal of constructing a fully equipped, manned lunar outpost on the near side of the moon by the year 2015. The proposed outpost includes an inflatable lunar habitat to support crews during missions longer that 12 months. A design for the internal support structures of the inflatable habitat is presented. The design solution includes material selection, substructure design, assembly plan development, and concept scale model construction. Alternate designs and design solutions for each component of the design are discussed. Alternate materials include aluminum, titanium, and reinforced polymers. Vertical support alternates include column systems, truss systems, suspension systems, and lunar lander supports. Horizontal alternates include beams, trusses, floor/truss systems, and expandable trusses. Feasibility studies on each alternate showed that truss systems and expandable trusses were the most feasible candidates for conceptual design. The team based the designs on the properties of 7075 T73 aluminum. The substructure assembly plan, minimizes assembly time and allows crews to construct the habitat without the use of EVA suits. In addition to the design solutions, the report gives conclusions and recommendations for further study of the inflatable habitat design.
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
High tech cognitive and acoustic enrichment for captive elephants.
French, Fiona; Mancini, Clara; Sharp, Helen
2018-04-15
This paper investigates the potential for using technology to support the development of sensory and cognitive enrichment activities for captive elephants. It explores the usefulness of applying conceptual frameworks from interaction design and game design to the problem of developing species-specific smart toys that promote natural behaviours and provide stimulation. We adopted a Research through Design approach, and describe how scientific inquiry supported our design process, while the creation of artefacts guided our investigations into possible future solutions. Our fieldwork resulted in the development of an interactive prototype of an acoustic toy that elephants are able to control using interface elements constructed from a range of natural materials. Copyright © 2017 Elsevier B.V. All rights reserved.
Learning with Hypertext Learning Environments: Theory, Design, and Research.
ERIC Educational Resources Information Center
Jacobson, Michael J.; And Others
1996-01-01
Studied 69 undergraduates who used conceptually-indexed hypertext learning environments with differently structured thematic criss-crossing (TCC) treatments: guided and learner selected. Found that students need explicit modeling and scaffolding support to learn complex knowledge from these learning environments, and considers implications for…
Designing Effective Supports for Causal Reasoning
ERIC Educational Resources Information Center
Jonassen, David H.; Ionas, Ioan Gelu
2008-01-01
Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…
2012-03-22
world’s first powered and controlled flying machine. Numerous flight designs and tests were done by scientists, engineers, and flight enthusiasts...conceptual flight and preliminary designs before they could control the craft with three-axis control and the correct airfoil design . These pioneers...analysis support. Although wind tunnel testing can provide data to predict and develop control surface designs , few SUAV operators opt to utilize wind
NASA Technical Reports Server (NTRS)
Parnell, Gregory S.; Rowell, William F.; Valusek, John R.
1987-01-01
In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.
Transportation node space station conceptual design
NASA Technical Reports Server (NTRS)
1988-01-01
A number of recent studies have addressed the problem of a transportation node space station. How things would change or what addition facilities would be needed to support a major lunar or Mars initiative is a much often asked question. The support of a lunar base, requiring stacks on the order of 200 metric tons each to land 25 m tons on the lunar surface with reusable vehicles is addressed. The problem of maintaining and reusing large single stage Orbit Transfer Vehicles (OTVs) and single stage lander/launchers in space are examined. The required people and equipment needed, to maintain these vehicles are only vaguely known at present. The people and equipment needed depend on how well the OTV and lander/launcher can be designed for easy reuse. Since the OTV and lander/launcher are only conceptually defined at present, the real maintenance and refurbishment requirements are unobtainable. An estimate of what is needed, based on previous studies and obvious requirements was therefore made. An attempt was made to err on the conservative side.
Understanding genetics: Analysis of secondary students' conceptual status
NASA Astrophysics Data System (ADS)
Tsui, Chi-Yan; Treagust, David F.
2007-02-01
This article explores the conceptual change of students in Grades 10 and 12 in three Australian senior high schools when the teachers included computer multimedia to a greater or lesser extent in their teaching of a genetics course. The study, underpinned by a multidimensional conceptual-change framework, used an interpretive approach and a case-based design with multiple data collection methods. Over 4-8 weeks, the students learned genetics in classroom lessons that included BioLogica activities, which feature multiple representations. Results of the online tests and interview tasks revealed that most students improved their understanding of genetics as evidenced in the development of genetics reasoning. However, using Thorley's (1990) status analysis categories, a cross-case analysis of the gene conceptions of 9 of the 26 students interviewed indicated that only 4 students' postinstructional conceptions were intelligible-plausible-fruitful. Students' conceptual change was consistent with classroom teaching and learning. Findings suggested that multiple representations supported conceptual understanding of genetics but not in all students. It was also shown that status can be a viable hallmark enabling researchers to identify students' conceptual change that would otherwise be less accessible. Thorley's method for analyzing conceptual status is discussed.
ERIC Educational Resources Information Center
Hunt, Leslie; Karl, Rita
This paper provides an account of the instructional design and development process used by a team of students enrolled in a graduate level course in distance education as the team members conceptualized and created two prototype World Wide Web-based instructional modules, aimed at grades 5 through 12, for the Lunar and Planetary Institute's Mars…
NASA Technical Reports Server (NTRS)
Richardson, David
2018-01-01
Model-Based Systems Engineering (MBSE) is the formalized application of modeling to support system requirements, design, analysis, verification and validation activities beginning in the conceptual design phase and continuing throughout development and later life cycle phases . This presentation will discuss the value proposition that MBSE has for Systems Engineering, and the associated culture change needed to adopt it.
Thermal protection system repair kit program
NASA Technical Reports Server (NTRS)
1979-01-01
The feasibility and conceptual design aspects of repair materials and procedures for in orbit repair of the space shuttle orbiter TPS tiles are investigated. Material studies to investigate cure in place materials are described including catalyst and cure studies, ablation tests and evaluations, and support mixing and applicator design. The feasibility of the repair procedures, the storage of the TPS, dispensing, and cure problems are addressed.
Hasni, Abdelkrim
2009-01-01
Understanding real-life issues such as influenza epidemiology may be of particular interest to the development of scientific knowledge and initiation of conceptual changes about viruses and their life cycles for high school students. The goal of this research project was to foster the development of adolescents' conceptual understanding of viruses and influenza biology. Thus, the project included two components: 1) pre- and posttests to determine students' conceptions about influenza biology, epidemics/pandemics, and vaccination; and 2) design an intervention that supports conceptual change to promote improvements in influenza knowledge based on these primary conceptions. Thirty-five female students from a high school biology class participated in a series of instructional activities and pre- and posttest assessments. Results from the pretest indicated that high school students exhibit a limited understanding of concepts related to viruses. Six weeks after an intervention that promoted active learning, results from a posttest showed that conceptions about influenza are more accurately related to the provided scientific knowledge. Although adolescents have nonscientific models to explain influenza biology, we showed that a carefully designed intervention can affect students' knowledge as well as influence the implementation of health education programs in secondary schools. PMID:19255137
Conceptual design of a data reduction system
NASA Technical Reports Server (NTRS)
1983-01-01
A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.
Analysis of the TREAT LEU Conceptual Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connaway, H. M.; Kontogeorgakos, D. C.; Papadias, D. D.
2016-03-01
Analyses were performed to evaluate the performance of the low enriched uranium (LEU) conceptual design fuel for the conversion of the Transient Reactor Test Facility (TREAT) from its current highly enriched uranium (HEU) fuel. TREAT is an experimental nuclear reactor designed to produce high neutron flux transients for the testing of reactor fuels and other materials. TREAT is currently in non-operational standby, but is being restarted under the U.S. Department of Energy’s Resumption of Transient Testing Program. The conversion of TREAT is being pursued in keeping with the mission of the Department of Energy National Nuclear Security Administration’s Material Managementmore » and Minimization (M3) Reactor Conversion Program. The focus of this study was to demonstrate that the converted LEU core is capable of maintaining the performance of the existing HEU core, while continuing to operate safely. Neutronic and thermal hydraulic simulations have been performed to evaluate the performance of the LEU conceptual-design core under both steady-state and transient conditions, for both normal operation and reactivity insertion accident scenarios. In addition, ancillary safety analyses which were performed for previous LEU design concepts have been reviewed and updated as-needed, in order to evaluate if the converted LEU core will function safely with all existing facility systems. Simulations were also performed to evaluate the detailed behavior of the UO 2-graphite fuel, to support future fuel manufacturing decisions regarding particle size specifications. The results of these analyses will be used in conjunction with work being performed at Idaho National Laboratory and Los Alamos National Laboratory, in order to develop the Conceptual Design Report project deliverable.« less
DOT National Transportation Integrated Search
1978-08-01
The second volume of this final report presents conceptual and empirical findings which support the development of a theory of traveler attitude-behavior interrelationships. Such a theory will be useful in the design of transport systems and operatin...
Manned orbital facility: A user's guide
NASA Technical Reports Server (NTRS)
1975-01-01
The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.
Creating Interactive Teaching Methods for ASTRO 101 That Really Work
NASA Astrophysics Data System (ADS)
Prather, E. E.; Adams, J. P.; Bailey, J. M.; Huggins, D.; Jones, L. V.; Slater, T. F.
2004-05-01
Acknowledging that lecture-based teaching methods are insufficient at promoting significant conceptual gains for students in the introductory astronomy course for non-science majors (ASTRO 101) is only the first step. But then, what can you do besides lecture? The Conceptual Astronomy and Physics Education Research (CAPER) Team at the University of Arizona has been developing and conducting research on the effectiveness of learner-centered instructional materials that put students in an active role in the classroom. With the support of an NSF CCLI (9952232) and NSF Geosciences Education (9907755) awards, we have designed and field-tested a set of innovative instructional materials called Lecture Tutorials. These Lecture Tutorial activities are intended for use with collaborative student learning groups and are designed specifically to be easily integrated into existing conventional lecture-based courses. As such, these instructional materials directly address the needs of heavily loaded teaching faculty in that they offer effective, learner-centered, classroom-ready activities that do not require any outside equipment/staffing or a drastic course revision for implementation. Each 15-minute Lecture-Tutorial poses a carefully crafted sequence of conceptually challenging, Socratic-dialogue driven questions, along with graphs and data tables, all designed to encourage students to reason critically about conceptually challenging and commonly taught topics in astronomy. The materials are based on research into student beliefs and reasoning difficulties and make use of a conceptual change instructional framework that promotes the intellectual engagement of students. Our research into the effectiveness of the Lecture Tutorials illustrates that traditional lectures alone make unsatisfactory gains on student understanding; however, supplementing traditional instruction with the lecture tutorials helps students make impressive conceptual gains over traditional instruction. In addition to the Lecture Tutorials we will discuss our current development of another set of engaging conceptual exercises that may have special benefit in the ASTRO 101 classroom known as Ranking Tasks.
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2012-01-01
Objective To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. Design A process evaluation study based on a systematic conceptual model. Setting Five middle schools in New York City. Participants 562 students in 20 classes and their science teachers (n=8). Main Outcome Measures Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers’ curriculum evaluation, and satisfaction with teaching the curriculum. Analysis Descriptive statistics and Spearman’s Rho Correlation for quantitative analysis and content analysis for qualitative data were used. Results Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teachers’ satisfaction with teaching the curriculum was highly correlated with students’ satisfaction (p <.05). Teachers’ perception of amount of student work was negatively correlated with implementation and with student satisfaction (p<.05). Conclusions and implications Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. PMID:23321021
NASA Technical Reports Server (NTRS)
1976-01-01
The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
Munthe, John; Brorström-Lundén, Eva; Rahmberg, Magnus; Posthuma, Leo; Altenburger, Rolf; Brack, Werner; Bunke, Dirk; Engelen, Guy; Gawlik, Bernd Manfred; van Gils, Jos; Herráez, David López; Rydberg, Tomas; Slobodnik, Jaroslav; van Wezel, Annemarie
2017-01-01
This paper describes a conceptual framework for solutions-focused management of chemical contaminants built on novel and systematic approaches for identifying, quantifying and reducing risks of these substances. The conceptual framework was developed in interaction with stakeholders representing relevant authorities and organisations responsible for managing environmental quality of water bodies. Stakeholder needs were compiled via a survey and dialogue. The content of the conceptual framework was thereafter developed with inputs from relevant scientific disciplines. The conceptual framework consists of four access points: Chemicals, Environment, Abatement and Society, representing different aspects and approaches to engaging in the issue of chemical contamination of surface waters. It widens the scope for assessment and management of chemicals in comparison to a traditional (mostly) perchemical risk assessment approaches by including abatement- and societal approaches as optional solutions. The solution-focused approach implies an identification of abatement- and policy options upfront in the risk assessment process. The conceptual framework was designed for use in current and future chemical pollution assessments for the aquatic environment, including the specific challenges encountered in prioritising individual chemicals and mixtures, and is applicable for the development of approaches for safe chemical management in a broader sense. The four access points of the conceptual framework are interlinked by four key topics representing the main scientific challenges that need to be addressed, i.e.: identifying and prioritising hazardous chemicals at different scales; selecting relevant and efficient abatement options; providing regulatory support for chemicals management; predicting and prioritising future chemical risks. The conceptual framework aligns current challenges in the safe production and use of chemicals. The current state of knowledge and implementation of these challenges is described. The use of the conceptual framework, and addressing the challenges, is intended to support: (1) forwarding sustainable use of chemicals, (2) identification of pollutants of priority concern for cost-effective management, (3) the selection of optimal abatement options and (4) the development and use of optimised legal and policy instruments.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Payne, Philip R.O.; Borlawsky, Tara B.; Rice, Robert; Embi, Peter J.
2010-01-01
With the growing prevalence of large-scale, team science endeavors in the biomedical and life science domains, the impetus to implement platforms capable of supporting asynchronous interaction among multidisciplinary groups of collaborators has increased commensurately. However, there is a paucity of literature describing systematic approaches to identifying the information needs of targeted end-users for such platforms, and the translation of such requirements into practicable software component design criteria. In previous studies, we have reported upon the efficacy of employing conceptual knowledge engineering (CKE) techniques to systematically address both of the preceding challenges in the context of complex biomedical applications. In this manuscript we evaluate the impact of CKE approaches relative to the design of a clinical and translational science collaboration portal, and report upon the preliminary qualitative users satisfaction as reported for the resulting system. PMID:21347146
Fostering Organizational Performance: The Role of Learning and Intrapreneurship
ERIC Educational Resources Information Center
Molina, Carlos; Callahan, Jamie L.
2009-01-01
Purpose: The purpose of this paper is to explore the connections between individual learning, intrapreneurship, and organizational learning to create an alternative model of how learning facilitates performance in organizations. Design/methodology/approach: This is a conceptual paper selecting targeted scholarly works that provide support for the…
Distance Education: A Program and Facility Study.
ERIC Educational Resources Information Center
Holt, Malcolm; And Others
This publication provides both a review of the different technology modes that may be used for distance education and a set of guidelines for planning and developing conceptual designs for educational facilities capable of supporting technologically enhanced educational delivery systems in a variety of settings. The Distance Learning in Small…
The Practical Enactment of Adventure Learning: Where Will You AL@?
ERIC Educational Resources Information Center
Miller, Brant G.; Hougham, R. Justin; Eitel, Karla Bradley
2013-01-01
The Adventure Learning (AL) approach to designing and implementing learning experiences has great potential for practitioners. This manuscript delineates the practical enactment of AL to support the K-12 community, teacher educators, and residential environmental science program providers in the conceptualization and delivery of their own AL…
Supporting Effective Collaboration: Using a Rearview Mirror to Look Forward
ERIC Educational Resources Information Center
McManus, Margaret M.; Aiken, Robert M.
2016-01-01
Our original research, to design and develop an Intelligent Collaborative Learning System (ICLS), yielded the creation of a Group Leader Tutor software system which utilizes a Collaborative Skills Network to monitor students working collaboratively in a networked environment. The Collaborative Skills Network was a conceptualization of…
10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions
Code of Federal Regulations, 2010 CFR
2010-01-01
... research and development A1Routine actions necessary to support the normal conduct of agency business, such... (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modelling), document preparation (such as conceptual design or feasibility studies, analytical energy supply...
10 CFR Appendix A to Subpart D of... - Categorical Exclusions Applicable to General Agency Actions
Code of Federal Regulations, 2011 CFR
2011-01-01
... research and development A1Routine actions necessary to support the normal conduct of agency business, such... (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modelling), document preparation (such as conceptual design or feasibility studies, analytical energy supply...
The Prepared Environment and Its Relationship to Learning.
ERIC Educational Resources Information Center
Loeffler, Margaret Howard
A "prepared environment" is a planned learning facility for young children which offers a supportive and stimulating environment. Current thinking on early learning and the resultant implications for the design of a physical environment which would encourage conceptual development are examined in this book. Each section considers a particular…
Intercultural Simulation Games: A Review (of the United States and beyond)
ERIC Educational Resources Information Center
Fowler, Sandra M.; Pusch, Margaret D.
2010-01-01
Intercultural simulations are instructional activities that engage and challenge participants with experiences integral to encounters between people of more than one cultural group. Simulations designed specifically to support intercultural encounters have been in use since the 1970s. This article examines the conceptual bases for intercultural…
Barrier or Benefit? Emotion in Life-Career Design
ERIC Educational Resources Information Center
Hartung, Paul J.
2011-01-01
Emotion permeates human life, yet receives little attention in career theory and intervention. Long seen as a barrier to avoid, recent conceptual and empirical work indicate that emotion benefits human behavior and development. Advances in the interdisciplinary science of emotion support examining the construct across differential, developmental,…
Turnaround Time Modeling for Conceptual Rocket Engines
NASA Technical Reports Server (NTRS)
Nix, Michael; Staton, Eric J.
2004-01-01
Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.
NASA Astrophysics Data System (ADS)
Pennington, D. D.; Gandara, A.; Gris, I.
2012-12-01
The Virtual Learning Commons (VLC), funded by the National Science Foundation Office of Cyberinfrastructure CI-Team Program, is a combination of Semantic Web, mash up, and social networking tools that supports knowledge sharing and innovation across scientific disciplines in research and education communities and networks. The explosion of scientific resources (data, models, algorithms, tools, and cyberinfrastructure) challenges the ability of researchers to be aware of resources that might benefit them. Even when aware, it can be difficult to understand enough about those resources to become potential adopters or re-users. Often scientific data and emerging technologies have little documentation, especially about the context of their use. The VLC tackles this challenge by providing mechanisms for individuals and groups of researchers to organize Web resources into virtual collections, and engage each other around those collections in order to a) learn about potentially relevant resources that are available; b) design research that leverages those resources; and c) develop initial work plans. The VLC aims to support the "fuzzy front end" of innovation, where novel ideas emerge and there is the greatest potential for impact on research design. It is during the fuzzy front end that conceptual collisions across disciplines and exposure to diverse perspectives provide opportunity for creative thinking that can lead to inventive outcomes. The VLC integrates Semantic Web functionality for structuring distributed information, mash up functionality for retrieving and displaying information, and social media for discussing/rating information. We are working to provide three views of information that support researchers in different ways: 1. Innovation Marketplace: supports users as they try to understand what research is being conducted, who is conducting it, where they are located, and who they collaborate with; 2. Conceptual Mapper: supports users as they organize their thinking about their own and related research; 3. Workflow Designer: supports users as they generate task-level analytical designs and consider data/methods/tools that could be relevant. This presentation will discuss the innovation theories that have informed design of the VLC, hypotheses about the use of emerging technologies to support the process of innovation, and will include a brief demonstration of these capabilities.
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
An investigation and conceptual design of a holographic starfield and landmark tracker
NASA Technical Reports Server (NTRS)
Welch, J. D.
1973-01-01
The analysis, experiments, and design effort of this study have supported the feasibility of the basic holographic tracker concept. Image intensifiers and photoplastic recording materials were examined, along with a Polaroid rapid process silver halide material. Two reference beam, coherent optical matched filter technique was used for multiplexing spatial frequency filters for starfields. A 1 watt HeNe laser and an electro-optical readout are also considered.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
Conceptual model of iCAL4LA: Proposing the components using comparative analysis
NASA Astrophysics Data System (ADS)
Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul
2016-08-01
This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.
LANDSAT/MMS propulsion module design. Tas4.4: Concept design
NASA Technical Reports Server (NTRS)
Mansfield, J. M.; Etheridge, F. G.; Indrikis, J.
1976-01-01
Evaluations are presented of alternative LANDSAT follow-on launch configurations to derive the propulsion requirements for the multimission modular spacecraft (MMS). Two basic types were analyzed including use of conventional launch vehicles and shuttle supported missions. It was concluded that two sizes of modular hydrazine propulsion modules would provide the most cost-effective combination for future missions of this spacecraft. Conceptual designs of the selected propulsion modules were performed to the depth permitting determination of mass properties and estimated costs.
Integrating post-manufacturing issues into design and manufacturing decisions
NASA Technical Reports Server (NTRS)
Eubanks, Charles F.
1996-01-01
An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.
Cost estimates and economic evaluations for conceptual LLRW disposal facility designs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baird, R.D.; Chau, N.; Breeds, C.D.
1995-12-31
Total life-cycle costs were estimated in support of the New York LLRW Siting Commission`s project to select a disposal method from four near-surface LLRW disposal methods (namely, uncovered above-grade vaults, covered above-grade vaults, below-grade vaults, and augered holes) and two mined methods (namely, vertical shaft mines and drift mines). Conceptual designs for the disposal methods were prepared and used as the basis for the cost estimates. Typical economic performance of each disposal method was assessed. Life-cycle costs expressed in 1994 dollars ranged from $ 1,100 million (for below-grade vaults and both mined disposal methods) to $2,000 million (for augered holes).more » Present values ranged from $620 million (for below-grade vaults) to $ 1,100 million (for augered holes).« less
Human Factors Evaluations of Two-Dimensional Spacecraft Conceptual Layouts
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne
2010-01-01
Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the Cooper- Harper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts. Keywords: Constellation, human factors, tools, processes, habitat, outpost, Net Habitable Volume, Cooper-Harper.
Environmentally Responsible Aviation N plus 2 Advanced Vehicle Study
NASA Technical Reports Server (NTRS)
Drake, Aaron; Harris, Christopher A.; Komadina, Steven C.; Wang, Donny P.; Bender, Anne M.
2013-01-01
This is the Northrop Grumman final report for the Environmentally Responsible Aviation (ERA) N+2 Advanced Vehicle Study performed for the National Aeronautics and Space Administration (NASA). Northrop Grumman developed advanced vehicle concepts and associated enabling technologies with a high potential for simultaneously achieving significant reductions in emissions, airport area noise, and fuel consumption for transport aircraft entering service in 2025. A Preferred System Concept (PSC) conceptual design has been completed showing a 42% reduction in fuel burn compared to 1998 technology, and noise 75dB below Stage 4 for a 224- passenger, 8,000 nm cruise transport aircraft. Roadmaps have been developed for the necessary technology maturation to support the PSC. A conceptual design for a 55%-scale demonstrator aircraft to reduce development risk for the PSC has been completed.
ERIC Educational Resources Information Center
Rittle-Johnson, Bethany; Schneider, Michael; Star, Jon R.
2015-01-01
There is a long-standing and ongoing debate about the relations between conceptual and procedural knowledge (i.e., knowledge of concepts and procedures). Although there is broad consensus that conceptual knowledge supports procedural knowledge, there is controversy over whether procedural knowledge supports conceptual knowledge and how instruction…
Learning in Earth and space science: a review of conceptual change instructional approaches
NASA Astrophysics Data System (ADS)
Mills, Reece; Tomas, Louisa; Lewthwaite, Brian
2016-03-01
In response to calls for research into effective instruction in the Earth and space sciences, and to identify directions for future research, this systematic review of the literature explores research into instructional approaches designed to facilitate conceptual change. In total, 52 studies were identified and analyzed. Analysis focused on the general characteristics of the research, the conceptual change instructional approaches that were used, and the methods employed to evaluate the effectiveness of these approaches. The findings of this review support four assertions about the existing research: (1) astronomical phenomena have received greater attention than geological phenomena; (2) most studies have viewed conceptual change from a cognitive perspective only; (3) data about conceptual change were generated pre- and post-intervention only; and (4) the interventions reviewed presented limited opportunities to involve students in the construction and manipulation of multiple representations of the phenomenon being investigated. Based upon these assertions, the authors recommend that new research in the Earth and space science disciplines challenges traditional notions of conceptual change by exploring the role of affective variables on learning, focuses on the learning of geological phenomena through the construction of multiple representations, and employs qualitative data collection throughout the implementation of an instructional approach.
Teaching and Learning about Force with a Representational Focus: Pedagogy and Teacher Change
NASA Astrophysics Data System (ADS)
Hubber, Peter; Tytler, Russell; Haslam, Filocha
2010-01-01
A large body of research in the conceptual change tradition has shown the difficulty of learning fundamental science concepts, yet conceptual change schemes have failed to convincingly demonstrate improvements in supporting significant student learning. Recent work in cognitive science has challenged this purely conceptual view of learning, emphasising the role of language, and the importance of personal and contextual aspects of understanding science. The research described in this paper is designed around the notion that learning involves the recognition and development of students’ representational resources. In particular, we argue that conceptual difficulties with the concept of force are fundamentally representational in nature. This paper describes a classroom sequence in force that focuses on representations and their negotiation, and reports on the effectiveness of this perspective in guiding teaching, and in providing insight into student learning. Classroom sequences involving three teachers were videotaped using a combined focus on the teacher and groups of students. Video analysis software was used to capture the variety of representations used, and sequences of representational negotiation. Stimulated recall interviews were conducted with teachers and students. The paper reports on the nature of the pedagogies developed as part of this representational focus, its effectiveness in supporting student learning, and on the pedagogical and epistemological challenges negotiated by teachers in implementing this approach.
NASA Astrophysics Data System (ADS)
Wilder, Anna
The purpose of this study was to investigate the effects of a visualization-centered curriculum, Hemoglobin: A Case of Double Identity, on conceptual understanding and representational competence in high school biology. Sixty-nine students enrolled in three sections of freshman biology taught by the same teacher participated in this study. Online Chemscape Chime computer-based molecular visualizations were incorporated into the 10-week curriculum to introduce students to fundamental structure and function relationships. Measures used in this study included a Hemoglobin Structure and Function Test, Mental Imagery Questionnaire, Exam Difficulty Survey, the Student Assessment of Learning Gains, the Group Assessment of Logical Thinking, the Attitude Toward Science in School Assessment, audiotapes of student interviews, students' artifacts, weekly unit activity surveys, informal researcher observations and a teacher's weekly questionnaire. The Hemoglobin Structure and Function Test, consisting of Parts A and B, was administered as a pre and posttest. Part A used exclusively verbal test items to measure conceptual understanding, while Part B used visual-verbal test items to measure conceptual understanding and representational competence. Results of the Hemoglobin Structure and Function pre and posttest revealed statistically significant gains in conceptual understanding and representational competence, suggesting the visualization-centered curriculum implemented in this study was effective in supporting positive learning outcomes. The large positive correlation between posttest results on Part A, comprised of all-verbal test items, and Part B, using visual-verbal test items, suggests this curriculum supported students' mutual development of conceptual understanding and representational competence. Evidence based on student interviews, Student Assessment of Learning Gains ratings and weekly activity surveys indicated positive attitudes toward the use of Chemscape Chime software and the computer-based molecular visualization activities as learning tools. Evidence from these same sources also indicated that students felt computer-based molecular visualization activities in conjunction with other classroom activities supported their learning. Implications for instructional design are discussed.
A Conceptual Framework for the Evaluation of Emergency Risk Communications
Lin, Leesa; Gamhewage, Gaya M.
2017-01-01
Objectives. To articulate a conceptual framework in support of evaluation activities in emergency risk communications (ERC). Methods. The framework proposed is based on a systematic review of the scientific literature (2001–2016) combined with data derived from a series of semistructured interviews with experts and practitioners in ERC, and it is designed to support local, national, and international public health organizations in implementing evaluation studies in ERC. Results. We identified a list of ERC outcomes from the full-text review of 152 articles and categorized these into 3 groups, depending upon the level at which the outcome was measured: (1) information environment, (2) population, and (3) public health system. We analyzed interviewees’ data from 18 interviews to identify practices and processes related to the effectiveness of ERC and included these as key structural components and processes in the developed evaluation framework. Conclusions. Researchers and public health practitioners interested in the evaluation of ERC can use the conceptual framework described in this article to guide the development of evaluation studies and methods for assessing communication outcomes related to public health emergencies. PMID:28892436
A Conceptual Framework for the Evaluation of Emergency Risk Communications.
Savoia, Elena; Lin, Leesa; Gamhewage, Gaya M
2017-09-01
To articulate a conceptual framework in support of evaluation activities in emergency risk communications (ERC). The framework proposed is based on a systematic review of the scientific literature (2001-2016) combined with data derived from a series of semistructured interviews with experts and practitioners in ERC, and it is designed to support local, national, and international public health organizations in implementing evaluation studies in ERC. We identified a list of ERC outcomes from the full-text review of 152 articles and categorized these into 3 groups, depending upon the level at which the outcome was measured: (1) information environment, (2) population, and (3) public health system. We analyzed interviewees' data from 18 interviews to identify practices and processes related to the effectiveness of ERC and included these as key structural components and processes in the developed evaluation framework. Researchers and public health practitioners interested in the evaluation of ERC can use the conceptual framework described in this article to guide the development of evaluation studies and methods for assessing communication outcomes related to public health emergencies.
Evaluation of Conceptual Frameworks Applicable to the Study of Isolation Precautions Effectiveness
Crawford, Catherine; Shang, Jingjing
2015-01-01
Aims A discussion of conceptual frameworks applicable to the study of isolation precautions effectiveness according to Fawcett and DeSanto-Madeya’s (2013) evaluation technique and their relative merits and drawbacks for this purpose Background Isolation precautions are recommended to control infectious diseases with high morbidity and mortality, but effectiveness is not established due to numerous methodological challenges. These challenges, such as identifying empirical indicators and refining operational definitions, could be alleviated though use of an appropriate conceptual framework. Design Discussion paper Data Sources In mid-April 2014, the primary author searched five electronic, scientific literature databases for conceptual frameworks applicable to study isolation precautions, without limiting searches by publication date. Implications for Nursing By reviewing promising conceptual frameworks to support isolation precautions effectiveness research, this paper exemplifies the process to choose an appropriate conceptual framework for empirical research. Hence, researchers may build on these analyses to improve study design of empirical research in multiple disciplines, which may lead to improved research and practice. Conclusion Three frameworks were reviewed: the epidemiologic triad of disease, Donabedian’s healthcare quality framework and the Quality Health Outcomes model. Each has been used in nursing research to evaluate health outcomes and contains concepts relevant to nursing domains. Which framework can be most useful likely depends on whether the study question necessitates testing multiple interventions, concerns pathogen-specific characteristics and yields cross-sectional or longitudinal data. The Quality Health Outcomes model may be slightly preferred as it assumes reciprocal relationships, multi-level analysis and is sensitive to cultural inputs. PMID:26179813
Operator Station Design System - A computer aided design approach to work station layout
NASA Technical Reports Server (NTRS)
Lewis, J. L.
1979-01-01
The Operator Station Design System is resident in NASA's Johnson Space Center Spacecraft Design Division Performance Laboratory. It includes stand-alone minicomputer hardware and Panel Layout Automated Interactive Design and Crew Station Assessment of Reach software. The data base consists of the Shuttle Transportation System Orbiter Crew Compartment (in part), the Orbiter payload bay and remote manipulator (in part), and various anthropometric populations. The system is utilized to provide panel layouts, assess reach and vision, determine interference and fit problems early in the design phase, study design applications as a function of anthropometric and mission requirements, and to accomplish conceptual design to support advanced study efforts.
Woodward, Andrea; Beever, Erik A.
2011-01-01
More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the Unified Ecoregions of Alaska. Ecoregional models were then developed to illustrate resources and processes that operate at spatial scales larger than individual refuges within each ecoregion. Conceptual models also were developed for adjacent marine areas, designated as the North Pacific, Bering Sea, and Beaufort-Chukchi Sea Marine Ecoregions. Although many more conceptual models will be required to support development of a regional monitoring program, these definitions of ecoregions and associated conceptual models are an important foundation.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to result in a database of engineering information which is easier both to maintain and to extend.
Conceptual Design of a Synoptic Interplanetary Monitor Platform at L sub 1 (SIMPL).
1985-11-01
solar events. -159- . . . .. . 105 II1II" -I .5 year mission at Earth-Sun- libration point plus transfer orbit eDashed line is approximate true dose as...Design .. ...................................... 27 4.1 The L Libration Point .......................... 27 4.2 L Orbit Options...34) to provide power, attitude control, communications, and other support to maintain the instruments in a halo orbit around the L libration point ; 4. a
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy
2016-03-01
The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of pollination/fertilization, and the interrelationship between animals and plants, more than students' use of traditional means of data collection. For this purpose, we designed a pre-post experimental design study with two conditions: one in which participants used a mobile device for data collection and another using traditional means (e.g. sketching and note-taking). The sample comprised 48 fourth graders (24 in each condition), who studied the flower, its parts, and their functions. A conceptual test was administered to assess students' understanding before and after instruction. Moreover, the students' science notebooks and accompanying artifacts were used as a data source for examining students' progress during the study's intervention. The conceptual test and notebook data were analyzed statistically, whereas we used open coding for the artifacts. Findings revealed that using mobile devices for data collection enhanced students' conceptual understanding more than using traditional means of data collection.
ERIC Educational Resources Information Center
Turcotte, Sandrine
2012-01-01
This article describes in detail a conversation analysis of conceptual change in a computer-supported collaborative learning environment. Conceptual change is an essential learning process in science education that has yet to be fully understood. While many models and theories have been developed over the last three decades, empirical data to…
Tryon Trekkers: An Evaluation of a STEM Based Afterschool Program for At-Risk Youth
NASA Astrophysics Data System (ADS)
Eckels Anderson, Chessa
This study contributed to the body of research that supports a holistic model of afterschool learning through the design of an afterschool intervention that benefits elementary school students of low socioeconomic status. This qualitative study evaluated a science focused afterschool curriculum that was designed using principles from Risk and Resiliency Theory, academic motivation theories, science core ideas from the Next Generation Science Standards, and used environmental education philosophy. The research question of this study is: how does an outdoor and STEM based afterschool program impact at-risk students' self-efficacy, belonging and engagement and ability to apply conceptual knowledge of environmental science topics? The study collected information about the participants' affective experiences during the intervention using structured and ethnographic observations and semi-structured interviews. Observations and interviews were coded and analyzed to find patterns in participants' responses. Three participant profiles were developed using the structured observations and ethnographic observations to provide an in depth understanding of the participant experience. The study also assessed the participants' abilities to apply conceptual understanding of the program's science topics by integrating an application of conceptual knowledge task into the curriculum. This task in the form of a participant project was assessed using an adapted version of the Portland Metro STEM Partnership's Application of Conceptual Knowledge Rubric. Results in the study showed that participants demonstrated self-efficacy, a sense of belonging and engagement during the program. Over half of the participants in the study demonstrated a proficient understanding of program concepts. Overall, this holistic afterschool program demonstrated that specific instructional practices and a multi-modal science curriculum helped to support the social and emotional needs of at-risk children.
A Social Network Supported CAI Model for Tacit Knowledge Acquisition
ERIC Educational Resources Information Center
Chen, S. N.; Luh, D. B.
2018-01-01
Freehand sketching is one of the most important and commonly used methods of generating and sharing budding ideas during the conceptual development portion of the preliminary phase of design. To develop one's skills, prolonged practice, acquiring instant feedback and suggestions while practicing are invaluable. The two key and indispensable parts…
MCD Process Model: A Systematic Approach to Curriculum Development in Black Studies.
ERIC Educational Resources Information Center
Miller, Howard J.
1986-01-01
Holds that Black Studies programs have had problems surviving because of (1) resistance to curriculum change in colleges and universities, (2) their lack of supporters in positions of administrative power, and (3) lack of an organized, conceptual approach to developing and implementing a Black Studies curriculum. Presents a model designed to…
ERIC Educational Resources Information Center
Maul, Andrew
2015-01-01
Briggs and Peck [in "Using Learning Progressions to Design Vertical Scales That Support Coherent Inferences about Student Growth"] call for greater care in the conceptualization of the target attributes of students, or "what it is that is growing from grade to grade." In particular, they argue that learning progressions can…
An Analytic Framework to Support E.Learning Strategy Development
ERIC Educational Resources Information Center
Marshall, Stephen J.
2012-01-01
Purpose: The purpose of this paper is to discuss and demonstrate the relevance of a new conceptual framework for leading and managing the development of learning and teaching to e.learning strategy development. Design/methodology/approach: After reviewing and discussing the research literature on e.learning in higher education institutions from…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamm, L.L.
1998-10-07
This report is one of a series of reports documenting accident scenario simulations for the Accelerator Production of Tritium (APT) blanket heat removal systems. The simulations were performed in support of the Preliminary Safety Analysis Report (PSAR) for the APT.
ERIC Educational Resources Information Center
Bae, Kyoung-Il; Kim, Jung-Hyun; Huh, Soon-Young
2003-01-01
Discusses process information sharing among participating organizations in a virtual enterprise and proposes a federated process framework and system architecture that provide a conceptual design for effective implementation of process information sharing supporting the autonomy and agility of the organizations. Develops the framework using an…
Maintenance and supply options
NASA Technical Reports Server (NTRS)
1988-01-01
The object of the Maintenance and Supply Option was to develop a high level operational philosophy related to maintenance and supply operations and incorporate these concepts into the Lunar Base Study. Specific products to be generated during this task were three trade studies and a conceptual design of the Logistic Supply Module. The crew size study was performed to evaluate crew sizes from the baseline size of four to a crew size of eight and determine the preferred crew size. The second trade study was to determine the impact of extending surface stay times and recommend a preferred duration of stay time as a function of crew, consumables, and equipment support capabilities. The third trade study was an evaluation of packaging and storage methods to determine the preferred logistics approach to support the lunar base. A modified scenario was developed and served as the basis of the individual trade studies. Assumptions and guidelines were also developed from experience with Apollo programs, Space Shuttle operations, and Space Station studies. With this information, the trade studies were performed and a conceptual design for the Logistic Supply Module was developed.
A taxometric study of hypochondriasis symptoms.
Longley, Susan L; Broman-Fulks, Joshua J; Calamari, John E; Noyes, Russell; Wade, Michael; Orlando, Carissa M
2010-12-01
Hypochondriasis has been conceptualized as both a distinct category that is characterized by a disabling illness preoccupation and as a continuum of health concerns. Empirical support for one of these theoretical models will clarify inconsistent assessment approaches and study designs that have impeded theory and research. To facilitate progress, taxometric analyses were conducted to determine whether hypochondriasis is best understood as a discrete category, consistent with the DSM, or as a dimensional entity, consistent with prevailing opinion and most self-report measures. Data from a large undergraduate sample that completed 3 hypochondriasis symptom measures were factor analyzed. The 4 factor analytically derived symptom indicators were then used in these taxometric analyses. Consistent with our hypotheses and existing theory, results supported a dimensional structure for hypochondriasis. Implications for the conceptualization of hypochondriasis and directions for future study are discussed. Copyright © 2010. Published by Elsevier Ltd.
Advanced Spacesuit Portable Life Support System Packaging Concept Mock-Up Design & Development
NASA Technical Reports Server (NTRS)
O''Connell, Mary K.; Slade, Howard G.; Stinson, Richard G.
1998-01-01
A concentrated development effort was begun at NASA Johnson Space Center to create an advanced Portable Life Support System (PLSS) packaging concept. Ease of maintenance, technological flexibility, low weight, and minimal volume are targeted in the design of future micro-gravity and planetary PLSS configurations. Three main design concepts emerged from conceptual design techniques and were carried forth into detailed design, then full scale mock-up creation. "Foam", "Motherboard", and "LEGOtm" packaging design concepts are described in detail. Results of the evaluation process targeted maintenance, robustness, mass properties, and flexibility as key aspects to a new PLSS packaging configuration. The various design tools used to evolve concepts into high fidelity mock ups revealed that no single tool was all encompassing, several combinations were complimentary, the devil is in the details, and, despite efforts, many lessons were learned only after working with hardware.
Translating Vision into Design: A Method for Conceptual Design Development
NASA Technical Reports Server (NTRS)
Carpenter, Joyce E.
2003-01-01
One of the most challenging tasks for engineers is the definition of design solutions that will satisfy high-level strategic visions and objectives. Even more challenging is the need to demonstrate how a particular design solution supports the high-level vision. This paper describes a process and set of system engineering tools that have been used at the Johnson Space Center to analyze and decompose high-level objectives for future human missions into design requirements that can be used to develop alternative concepts for vehicles, habitats, and other systems. Analysis and design studies of alternative concepts and approaches are used to develop recommendations for strategic investments in research and technology that support the NASA Integrated Space Plan. In addition to a description of system engineering tools, this paper includes a discussion of collaborative design practices for human exploration mission architecture studies used at the Johnson Space Center.
NASA Technical Reports Server (NTRS)
Ebeling, Charles
1991-01-01
The primary objective is to develop a methodology for predicting operational and support parameters and costs of proposed space systems. The first phase consists of: (1) the identification of data sources; (2) the development of a methodology for determining system reliability and maintainability parameters; (3) the implementation of the methodology through the use of prototypes; and (4) support in the development of an integrated computer model. The phase 1 results are documented and a direction is identified to proceed to accomplish the overall objective.
NASA Technical Reports Server (NTRS)
Proctor, B. W.; Reysa, R. P.; Russell, D. J.
1975-01-01
Viable crew appliance concepts were identified by means of a thorough literature search. Studies were made of the food management, personal hygiene, housekeeping, and off-duty habitability functions to determine which concepts best satisfy the Space Shuttle Orbiter and Modular Space Station mission requirements. Models of selected appliance concepts not currently included in the generalized environmental-thermal control and life support systems computer program were developed and validated. Development plans of selected concepts were generated for future reference. A shuttle freezer conceptual design was developed and a test support activity was provided for regenerative environmental control life support subsystems.
Space transportation node - The Atrium Facility
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.
1990-01-01
A conceptual design for a space transportation node is presented with a view to the fulfilment of assembly platform support requirements associated with a lunar transportation system. This 'Atrium Facility', which will support lunar base activities before, during, and after the lunar base buildup phase, encompasses a central assembly area surrounded by hangars and workstation platforms; six permanent crewmembers will be supported, as well as four to six transient lunar and Space Shuttle crewmembers. The Atrium Facility dry mass of nearly 320,000 kg excludes cryogenic propellant stowage and the traslunar vehicle envisioned for transportation.
Conceptual design of an in-space cryogenic fluid management facility, executive summary
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.
ERIC Educational Resources Information Center
Cardenas-Claros, Monica Stella; Gruba, Paul A.
2013-01-01
This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
Designing for students' science learning using argumentation and classroom debate
NASA Astrophysics Data System (ADS)
Bell, Philip Laverne
1998-12-01
This research investigates how to design and introduce an educational innovation into a classroom setting to support learning. The research yields cognitive design principles for instruction involving scientific argumentation and debate. Specifically, eighth-grade students used a computer learning environment to construct scientific arguments and to participate in a classroom debate. The instruction was designed to help students integrate their science understanding by debating: How far does light go, does light die out over distance or go forever until absorbed? This research explores the tension between focusing students' conceptual change on specific scientific phenomena and their development of integrated understanding. I focus on the importance of connecting students' everyday experiences and intuitions to their science learning. The work reported here characterizes how students see the world through a filter of their own understanding. It explores how individual and social mechanisms in instruction support students as they expand the range of ideas under consideration and distinguish between these ideas using scientific criteria. Instruction supported students as they engaged in argumentation and debate on a set of multimedia evidence items from the World-Wide-Web. An argument editor called SenseMaker was designed and studied with the intent of making individual and group thinking visible during instruction. Over multiple classroom trials, different student cohorts were increasingly supported in scientific argumentation involving systematic coordination of evidence with theoretical ideas about light. Students' knowledge representations were used as mediating "learning artifacts" during classroom debate. Two argumentation conditions were investigated. The Full Scope group prepared to defend either theoretical position in the debate. These students created arguments that included more theoretical conjectures and made more conceptual progress in understanding light. The Personal Scope group prepared to defend their original opinion about the debate. These students produced more acausal descriptions of evidence and theorized less in their arguments. Regardless of students' prior knowledge of light, the Full Scope condition resulted in a more integrated understanding. Results from the research were synthesized in design principles geared towards helping future designers. Sharing and refining cognitive design principles offers a productive focus for developing a design science for education.
NASA Technical Reports Server (NTRS)
1981-01-01
The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
Fuel Crime Conceptualization through Specialization of Ontology for Investigation Management System
NASA Astrophysics Data System (ADS)
Cybulka, Jolanta
We undertook the task of building the conceptual model of a particular economic offense, called "a fuel crime". This model is thought of as a part of a larger conceptualization, which comprises consensual semantics underlying the knowledge base of a system, aimed at supporting the teamwork of investigators of economic crimes. Because such a knowledge-based system represents a perspective on economic crimes, it should be carefully modeled. This can be done with the help of an expressive enough ontology. To achieve our goal we use the constructive descriptions and situations (c.DnS) design pattern, which enables us to construct an extensible, layered ontology in a top-down manner: c.DnS top layer is specialized by the reference ontology for investigation management system, that in turn, is specialized by the ontology of the fuel crime.
NASA Technical Reports Server (NTRS)
1972-01-01
Study efforts directed at defining all TDRS system elements are summarized. Emphasis was placed on synthesis of a space segment design optimized to support low and medium data rate user spacecraft and launched with Delta 2914. A preliminary design of the satellite was developed and conceptual designs of the user spacecraft terminal and TDRS ground station were defined. As a result of the analyses and design effort it was determined that (1) a 3-axis-stabilized tracking and data relay satellite launched on a Delta 2914 provides telecommunications services considerably in excess of that required by the study statement; and (2) the design concept supports the needs of the space shuttle and has sufficient growth potential and flexibility to provide telecommunications services to high data rate users. Recommendations for further study are included.
Mars mission effects on Space Station evolution
NASA Technical Reports Server (NTRS)
Askins, Barbara S.; Cook, Stephen G.
1989-01-01
The permanently manned Space Station scheduled to be operational in low earth by the mid 1990's, will provide accommodations for science, applications, technology, and commercial users, and will develop enabling capabilities for future missions. A major aspect of the baseline Space Station design is that provisions for evolution to greater capabilities are included in the systems and subsystems designs. User requirements are the basis for conceptual evolution modes or infrastructure to support the paths. Four such modes are discussed in support of a Human to Mars mission, along with some of the near term actions protecting the future of supporting Mars missions on the Space Station. The evolution modes include crew and payload transfer, storage, checkout, assembly, maintenance, repair, and fueling.
Optimization of 3D Field Design
NASA Astrophysics Data System (ADS)
Logan, Nikolas; Zhu, Caoxiang
2017-10-01
Recent progress in 3D tokamak modeling is now leveraged to create a conceptual design of new external 3D field coils for the DIII-D tokamak. Using the IPEC dominant mode as a target spectrum, the Finding Optimized Coils Using Space-curves (FOCUS) code optimizes the currents and 3D geometry of multiple coils to maximize the total set's resonant coupling. The optimized coils are individually distorted in space, creating toroidal ``arrays'' containing a variety of shapes that often wrap around a significant poloidal extent of the machine. The generalized perturbed equilibrium code (GPEC) is used to determine optimally efficient spectra for driving total, core, and edge neoclassical toroidal viscosity (NTV) torque and these too provide targets for the optimization of 3D coil designs. These conceptual designs represent a fundamentally new approach to 3D coil design for tokamaks targeting desired plasma physics phenomena. Optimized coil sets based on plasma response theory will be relevant to designs for future reactors or on any active machine. External coils, in particular, must be optimized for reliable and efficient fusion reactor designs. Work supported by the US Department of Energy under DE-AC02-09CH11466.
NASA Astrophysics Data System (ADS)
Milana; Khan, M. K.; Munive, J. E.
2014-07-01
The importance of maintenance has escalated significantly by the increasing of automation in manufacturing process. This condition switches traditional maintenance perspective of inevitable cost into the business competitive driver. Consequently, maintenance strategy and operation decision needs to be synchronized to business and manufacturing concerns. This paper shows the development of conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO). The framework of KBIMSO is elaborated to show the process of how the KBIMSO works to reach the maintenance decision. By considering the multi-criteria of maintenance decision making, the KB system embedded with GAP and AHP to support integrated maintenance strategy and operation which is novel in this area. The KBIMSO is useful to review the existing maintenance system and give reasonable recommendation of maintenance decisions in respect to business and manufacturing perspective.
NASA Technical Reports Server (NTRS)
1985-01-01
Conceptual designs and programmatics of the space station accommodations for the Life Sciences Research Facilities (LSRF) are presented. The animal ECLSS system for the LSRF provides temperature-humidity control, air circulation, and life support functions for experimental subjects. Three ECLSS were studied. All configurations presented satisfy the science requirements for: animal holding facilities with bioisolation; facilities interchangeable to hold rodents, small primates, and plants; metabolic cages interchangeable with standard holding cages; holding facilities adaptable to restrained large primates and rodent breeding/nesting cages; volume for the specified instruments; enclosed ferm-free workbench for manipulation of animals and chemical procedures; freezers for specimen storage until return; and centrifuge to maintain animals and plants at fractional g to 1 g or more, with potential for accommodating humans for short time intervals.
A methodology and supply chain management inspired reference ontology for modeling healthcare teams.
Kuziemsky, Craig E; Yazdi, Sara
2011-01-01
Numerous studies and strategic plans are advocating more team based healthcare delivery that is facilitated by information and communication technologies (ICTs). However before we can design ICTs to support teams we need a solid conceptual model of team processes and a methodology for using such a model in healthcare settings. This paper draws upon success in the supply chain management domain to develop a reference ontology of healthcare teams and a methodology for modeling teams to instantiate the ontology in specific settings. This research can help us understand how teams function and how we can design ICTs to support teams.
Object-oriented design and programming in medical decision support.
Heathfield, H; Armstrong, J; Kirkham, N
1991-12-01
The concept of object-oriented design and programming has recently received a great deal of attention from the software engineering community. This paper highlights the realisable benefits of using the object-oriented approach in the design and development of clinical decision support systems. These systems seek to build a computational model of some problem domain and therefore tend to be exploratory in nature. Conventional procedural design techniques do not support either the process of model building or rapid prototyping. The central concepts of the object-oriented paradigm are introduced, namely encapsulation, inheritance and polymorphism, and their use illustrated in a case study, taken from the domain of breast histopathology. In particular, the dual roles of inheritance in object-oriented programming are examined, i.e., inheritance as a conceptual modelling tool and inheritance as a code reuse mechanism. It is argued that the use of the former is not entirely intuitive and may be difficult to incorporate into the design process. However, inheritance as a means of optimising code reuse offers substantial technical benefits.
Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.
2012-01-01
The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shott, G.; Yucel, V.; Desotell, L.
2006-07-01
The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of environmental monitoring programs. (authors)« less
A conceptual framework for the study of social capital in new destination immigrant communities.
Bernosky de Flores, Catherine H
2010-07-01
Mexican immigration to the United States is an intragenerational phenomenon. Young adult Mexicans leave their families of origin in search of employment opportunities that pull them to new destination communities. A conceptual framework that defines and relates the concepts of human capital, personal networks, social capital, and resources is introduced. The influence of social capital on the capacity of immigrants to access resources is described. The framework informed the design of a study to examine the approaches used by Mexican immigrant women to access resources for healthy childbearing in the absence of traditional family support systems in a new destination community.
Empowering Older Patients to Engage in Self Care: Designing an Interactive Robotic Device
Tiwari, Priyadarshi; Warren, Jim; Day, Karen
2011-01-01
Objectives: To develop and test an interactive robot mounted computing device to support medication management as an example of a complex self-care task in older adults. Method: A Grounded Theory (GT), Participatory Design (PD) approach was used within three Action Research (AR) cycles to understand design requirements and test the design configuration addressing the unique task requirements. Results: At the end of the first cycle a conceptual framework was evolved. The second cycle informed architecture and interface design. By the end of third cycle residents successfully interacted with the dialogue system and were generally satisfied with the robot. The results informed further refinement of the prototype. Conclusion: An interactive, touch screen based, robot-mounted information tool can be developed to support healthcare needs of older people. Qualitative methods such as the hybrid GT-PD-AR approach may be particularly helpful for innovating and articulating design requirements in challenging situations. PMID:22195203
Empowering older patients to engage in self care: designing an interactive robotic device.
Tiwari, Priyadarshi; Warren, Jim; Day, Karen
2011-01-01
To develop and test an interactive robot mounted computing device to support medication management as an example of a complex self-care task in older adults. A Grounded Theory (GT), Participatory Design (PD) approach was used within three Action Research (AR) cycles to understand design requirements and test the design configuration addressing the unique task requirements. At the end of the first cycle a conceptual framework was evolved. The second cycle informed architecture and interface design. By the end of third cycle residents successfully interacted with the dialogue system and were generally satisfied with the robot. The results informed further refinement of the prototype. An interactive, touch screen based, robot-mounted information tool can be developed to support healthcare needs of older people. Qualitative methods such as the hybrid GT-PD-AR approach may be particularly helpful for innovating and articulating design requirements in challenging situations.
Conceptual design of an orbital propellant transfer experiment. Volume 2: Study results
NASA Technical Reports Server (NTRS)
Drake, G. L.; Bassett, C. E.; Merino, F.; Siden, L. E.; Bradley, R. E.; Carr, E. J.; Parker, R. E.
1980-01-01
The OTV configurations, operations and requirements planned for the period from the 1980's to the 1990's were reviewed and a propellant transfer experiment was designed that would support the needs of these advanced OTV operational concepts. An overall integrated propellant management technology plan for all NASA centers was developed. The preliminary cost estimate (for planning purposes only) is $56.7 M, of which approximately $31.8 M is for shuttle user costs.
Self-unloading, unmanned, reusable lunar lander project
NASA Technical Reports Server (NTRS)
Cowan, Kevin; Lewis, Ron; Mislinski, Philip; Rivers, Donna; Smith, Solar; Vasicek, Clifford; Verona, Matt
1991-01-01
A payload delivery system will be required to support the buildup and operation of a manned lunar base. In response, a self-unloading, unmanned, reusable lunar lander was conceptually designed. The lander will deliver a 7000 kg payload, with the same dimensions as a space station logistics module, from low lunar orbit to any location on the surface of the moon. The technical aspects of the design is introduced as well as the management structure and project cost.
Conceptual Model of Quantities, Units, Dimensions, and Values
NASA Technical Reports Server (NTRS)
Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar
2011-01-01
JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.
Deep Borehole Disposal Concept: Development of Universal Canister Concept of Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rigali, Mark J.; Price, Laura L.
This report documents key elements of the conceptual design for deep borehole disposal of radioactive waste to support the development of a universal canister concept of operations. A universal canister is a canister that is designed to be able to store, transport, and dispose of radioactive waste without the canister having to be reopened to treat or repackage the waste. This report focuses on the conceptual design for disposal of radioactive waste contained in a universal canister in a deep borehole. The general deep borehole disposal concept consists of drilling a borehole into crystalline basement rock to a depth ofmore » about 5 km, emplacing WPs in the lower 2 km of the borehole, and sealing and plugging the upper 3 km. Research and development programs for deep borehole disposal have been ongoing for several years in the United States and the United Kingdom; these studies have shown that deep borehole disposal of radioactive waste could be safe, cost effective, and technically feasible. The design concepts described in this report are workable solutions based on expert judgment, and are intended to guide follow-on design activities. Both preclosure and postclosure safety were considered in the development of the reference design concept. The requirements and assumptions that form the basis for the deep borehole disposal concept include WP performance requirements, radiological protection requirements, surface handling and transport requirements, and emplacement requirements. The key features of the reference disposal concept include borehole drilling and construction concepts, WP designs, and waste handling and emplacement concepts. These features are supported by engineering analyses.« less
Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
Instrument for Analysis of Organic Compounds on Other Planets
NASA Technical Reports Server (NTRS)
Daulton, Riley M.; Hintze, Paul E.
2016-01-01
The goal of this project is to develop the Instrument for Solvent Extraction and Analysis of Extraterrestrial Bodies using In Situ Resources (ISEE). Specifically, ISEE will extract and characterize organic compounds from regolith which is found on the surface of other planets or asteroids. The techniques this instrument will use are supercritical fluid extraction (SFE) and supercritical fluid chromatography (SFC). ISEE aligns with NASA's goal to expand the frontiers of knowledge, capability, and opportunities in space in addition to supporting NASA's aim to search for life elsewhere by characterizing organic compounds. The outcome of this project will be conceptual designs of 2 components of the ISEE instrument as well as the completion of proof-of-concept extraction experiments to demonstrate the capabilities of SFE. The first conceptual design is a pressure vessel to be used for the extraction of the organic compounds from the regolith. This includes a comparison of different materials, geometry's, and a proposition of how to insert the regolith into the vessel. The second conceptual design identifies commercially available fluid pumps based on the requirements needed to generate supercritical CO2. The proof-of-concept extraction results show the percent mass lost during standard solvent extractions of regolith with organic compounds. This data will be compared to SFE results to demonstrate the capabilities of ISEE's approach.
Modular disposable can (MODCAN) crash cushion: A concept investigation
NASA Technical Reports Server (NTRS)
Knoell, A.; Wilson, A.
1976-01-01
A conceptual design investigation of an improved highway crash cushion system is presented. The system is referred to as a modular disposable can (MODCAN) crash system. It is composed of a modular arrangement of disposable metal beverage cans configured to serve as an effective highway impact attenuation system. Experimental data, design considerations, and engineering calculations supporting the design development are presented. Design performance is compared to that of a conventional steel drum system. It is shown that the MODCAN concepts offers the potential for smoother and safer occupant deceleration for a larger class of vehicle impact weights than the steel drum device.
Learning from Failures: Archiving and Designing with Failure and Risk
NASA Technical Reports Server (NTRS)
VanWie, Michael; Bohm, Matt; Barrientos, Francesca; Turner, Irem; Stone, Robert
2005-01-01
Identifying and mitigating risks during conceptual design remains an ongoing challenge. This work presents the results of collaborative efforts between The University of Missouri-Rolla and NASA Ames Research Center to examine how an early stage mission design team at NASA addresses risk, and, how a computational support tool can assist these designers in their tasks. Results of our observations are given in addition to a brief example of our implementation of a repository based computational tool that allows users to browse and search through archived failure and risk data as related to either physical artifacts or functionality.
NASA Technical Reports Server (NTRS)
Oleson, Steven R.; McGuire, Melissa L.
2011-01-01
The COllaborative Modeling and Parametric Assessment of Space Systems (COMPASS) team was approached by the NASA Glenn Research Center (GRC) In-Space Project to perform a design session to develop Radioisotope Electric Propulsion (REP) Spacecraft Conceptual Designs (with cost, risk, and reliability) for missions of three different classes: New Frontier s Class Centaur Orbiter (with Trojan flyby), Flagship, and Discovery. The designs will allow trading of current and future propulsion systems. The results will directly support technology development decisions. The results of the Flagship mission design are reported in this document
Conceptual design of the Space Station combustion module
NASA Technical Reports Server (NTRS)
Morilak, Daniel P.; Rohn, Dennis W.; Rhatigan, Jennifer L.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Combustion Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and through the use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. The SS FCF is scheduled to become operational on-orbit in 1999. The Combustion Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 1999. The objectives of this paper are to describe the history of the Combustion Module concept, the types of combustion science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Conceptual Design of the Space Station Fluids Module
NASA Technical Reports Server (NTRS)
Rohn, Dennis W.; Morilak, Daniel P.; Rhatigan, Jennifer L.; Peterson, Todd T.
1994-01-01
The purpose of this paper is to describe the conceptual design of the Fluids Module for the International Space Station Alpha (ISSA). This module is part of the Space Station Fluids/Combustion Facility (SS FCF) under development at the NASA Lewis Research Center. The Fluids/Combustion Facility is one of several science facilities which are being developed to support microgravity science investigations in the US Laboratory Module of the ISSA. The SS FCF will support a multitude of fluids and combustion science investigations over the lifetime of the ISSA and return state-of-the-art science data in a timely and efficient manner to the scientific communities. This will be accomplished through modularization of hardware, with planned, periodic upgrades; modularization of like scientific investigations that make use of common facility functions; and use of orbital replacement units (ORU's) for incorporation of new technology and new functionality. Portions of the SS FCF are scheduled to become operational on-orbit in 1999. The Fluids Module is presently scheduled for launch to orbit and integration with the Fluids/Combustion Facility in 2001. The objectives of this paper are to describe the history of the Fluids Module concept, the types of fluids science investigations which will be accommodated by the module, the hardware design heritage, the hardware concept, and the hardware breadboarding efforts currently underway.
Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.
1975-01-01
A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.
Creative brains: designing in the real world†
Goel, Vinod
2014-01-01
The process of designing artifacts is a creative activity. It is proposed that, at the cognitive level, one key to understanding design creativity is to understand the array of symbol systems designers utilize. These symbol systems range from being vague, imprecise, abstract, ambiguous, and indeterminate (like conceptual sketches), to being very precise, concrete, unambiguous, and determinate (like contract documents). The former types of symbol systems support associative processes that facilitate lateral (or divergent) transformations that broaden the problem space, while the latter types of symbol systems support inference processes facilitating vertical (or convergent) transformations that deepen of the problem space. The process of artifact design requires the judicious application of both lateral and vertical transformations. This leads to a dual mechanism model of design problem-solving comprising of an associative engine and an inference engine. It is further claimed that this dual mechanism model is supported by an interesting hemispheric dissociation in human prefrontal cortex. The associative engine and neural structures that support imprecise, ambiguous, abstract, indeterminate representations are lateralized in the right prefrontal cortex, while the inference engine and neural structures that support precise, unambiguous, determinant representations are lateralized in the left prefrontal cortex. At the brain level, successful design of artifacts requires a delicate balance between the two hemispheres of prefrontal cortex. PMID:24817846
Analyzing Data and Asking Questions at Shell School, Sea County Florida
ERIC Educational Resources Information Center
Vanover, Charles
2015-01-01
This case discusses early work to implement the Common Core State Standards at a fictitious school in Florida. The case is designed to support students' efforts to use school accountability data for inquiry and to conceptualize change in schools where previous leaders' efforts were not successful. Shell Elementary is an exurban school that serves…
"From Bricks to Clicks": Hybrid Commercial Spaces in the Landscape of Early Literacy and Learning
ERIC Educational Resources Information Center
Nixon, Helen
2011-01-01
In their quest for resources to support children's early literacy learning and development, parents encounter and traverse different spaces in which discourses and artifacts are produced and circulated. This paper uses conceptual tools from the field of geosemiotics to examine some commercial spaces designed for parents and children that…
ERIC Educational Resources Information Center
Tang, Kok-Sing
2016-01-01
This paper reports on the design and enactment of an instructional strategy aimed to support students in constructing scientific explanations. Informed by the philosophy of science and linguistic studies of science, a new instructional framework called premise--reasoning--outcome (PRO) was conceptualized, developed, and tested over two years in…
Adaptation Patterns as a Conceptual Tool for Designing the Adaptive Operation of CSCL Systems
ERIC Educational Resources Information Center
Karakostas, Anastasios; Demetriadis, Stavros
2011-01-01
While adaptive collaboration support has become the focus of increasingly intense research efforts in the CSCL domain, scarce, however, remain the research-based evidence on pedagogically useful ideas on what and how to adapt during the collaborative learning activity. Based principally on two studies, this work presents a compilation of…
ERIC Educational Resources Information Center
Liew, Chern Li; Chennupati, K. R.; Foo, Schubert
2001-01-01
Explores the potential and impact of an innovative information environment in enhancing user activities in using electronic documents for various tasks, and to support the value-adding of these e-documents. Discusses the conceptual design and prototyping of a proposed environment, PROPIE. Presents an empirical and formative evaluation of the…
ERIC Educational Resources Information Center
Mullinix, Bonnie B.
This paper describes the history of a 4-year evolution of the Namibian Trainer of Trainers (ToT) program from conceptualization to sustainable implementation. After 23 years of armed struggle, most Namibian adults were in need of skills and knowledge. The project had been designed to reach out to historically disadvantaged populations and support…
ERIC Educational Resources Information Center
Hauan, Nils Petter; DeWitt, Jennifer; Kolstø, Stein Dankert
2017-01-01
Materials designed for self-guided experiences such as worksheets and digital applications are widely used as tools to enable interactive science exhibitions to support students' progress towards conceptual understanding. However, there is a need to find expedient ways to evaluate the quality of educational experiences resulting from the use of…
Developing Multidisciplinary Teams to Assess Family Needs and Envision Services.
ERIC Educational Resources Information Center
Arms, Karen G.
This paper describes a graduate seminar designed to provide a multidisciplinary student group with the experience of using a team approach for assessing group family needs, conceptualizing a services and self-support model for meeting those needs, and articulating the model in a grant proposal. A summary of course goals and student requirements is…
ERIC Educational Resources Information Center
Chaves, Christopher A.
2009-01-01
The purpose of this article is to provide researchers and, in particular, practitioner-scholars of e-learning curricular designs and instructors with one conceptual model that supports more involvement and interaction within on-line courses. The "On-line Curriculum Interaction Model" posited by the author is informed by the foundational…
ERIC Educational Resources Information Center
Kirmse, Dale W.; Manyimo, Steve B.
This executive summary presents a brief analysis of findings and recommendations. The concept of the Integrated Utility System (IUS) is to consider the interaction and mutual support of five utility subsystems needed by a campus complex of buildings. The subsystems are: (1) Electric power service; (2) Heating - ventilating - air conditioning and…
ERIC Educational Resources Information Center
Panagiotakopoulos, Chris T.
2011-01-01
Mathematics is an area of study that particularly lacks student enthusiasm. Nevertheless, with the help of educational games, any phobias concerning mathematics can be considerably decreased and mathematics can become more appealing. In this study, an educational game addressing mathematics was designed, developed and evaluated by a sample of 33…
History of the Italian San Marco equatorial mobile range
NASA Technical Reports Server (NTRS)
Nesbitt, H. N.
1971-01-01
Events leading to the development of the San Marco Equatorial Range are presented. Included are background information leading to the cooperative space program between the United States and Italy, conceptual planning, training activities, equipment design and fabrication, and range utilization. The technical support provided the San Marco Program by Scout Project Office, and other NASA installations is described.
A Goal Oriented Approach for Modeling and Analyzing Security Trade-Offs
NASA Astrophysics Data System (ADS)
Elahi, Golnaz; Yu, Eric
In designing software systems, security is typically only one design objective among many. It may compete with other objectives such as functionality, usability, and performance. Too often, security mechanisms such as firewalls, access control, or encryption are adopted without explicit recognition of competing design objectives and their origins in stakeholder interests. Recently, there is increasing acknowledgement that security is ultimately about trade-offs. One can only aim for "good enough" security, given the competing demands from many parties. In this paper, we examine how conceptual modeling can provide explicit and systematic support for analyzing security trade-offs. After considering the desirable criteria for conceptual modeling methods, we examine several existing approaches for dealing with security trade-offs. From analyzing the limitations of existing methods, we propose an extension to the i* framework for security trade-off analysis, taking advantage of its multi-agent and goal orientation. The method was applied to several case studies used to exemplify existing approaches.
NASA Technical Reports Server (NTRS)
1993-01-01
Satellite systems to date have been mainly scientific in nature. Only a few systems have been of direct use to the public such as for telephone or television transmission. Space enterprises have remained a mystery to the general public and beyond the reach of the small business community. The result is a less than supportive public when it comes to space activities. The purpose of the ISAT-1 program is to develop a small and relatively inexpensive satellite that will serve the State of Iowa, primarily for educational purposes. It will provide products, services, and activities that will be educational, practical, and useful for a large number for people. The emphasis is on public awareness, 'space literacy', and routine practical applications rather than high technology. The initial conceptual design phase was complete when the current team took over the project. Some areas of the conceptual design were taken a little farther, but for the most part this team started at the detailed design stage.
This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
NASA Astrophysics Data System (ADS)
Alao, Solomon
The need to identify factors that contribute to students' understanding of ecological concepts has been widely expressed in recent literature. The purpose of this study was to investigate the relationship between fifth grade students' prior knowledge, learning strategies, interest, and learning goals and their conceptual understanding of ecological science concepts. Subject were 72 students from three fifth grade classrooms located in a metropolitan area of the eastern United States. Students completed the goal commitment, interest, and strategy use questionnaire (GISQ), and a knowledge test designed to assess their prior knowledge and conceptual understanding of ecological science concepts. The learning goals scale assessed intentions to try to learn and understand ecological concepts. The interest scale assessed the feeling and value-related valences that students ascribed to science and ecological science concepts. The strategy use scale assessed the use of two cognitive strategies (monitoring and elaboration). The knowledge test assessed students' understanding of ecological concepts (the relationship between living organisms and their environment). Scores on all measures were examined for gender differences; no significant gender differences were observed. The motivational and cognitive variables contributed to students' understanding of ecological concepts. After accounting for interest, learning goals, and strategy use, prior knowledge accounted for 28% of the total variance in conceptual understanding. After accounting for prior knowledge, interest, learning goals, and strategy use explained 7%, 6%, and 4% of the total variance in conceptual understanding, respectively. More importantly, these variables were interrelated to each other and to conceptual understanding. After controlling for prior knowledge, learning goals, and strategy use, interest did not predict the variance in conceptual understanding. After controlling for prior knowledge, interest, and strategy use, learning goals did not predict the variance in conceptual understanding. And, after controlling for prior knowledge, interest, and learning goals, strategy use did not predict the variance in conceptual understanding. Results of this study indicated that prior knowledge, interest, learning goals, and strategy use should be included in theoretical models design to explain and to predict fifth grade students' understanding of ecological concepts. Results of this study further suggested that curriculum developers and science teachers need to take fifth grade students' prior knowledge of ecological concepts, interest in science and ecological concepts; intentions to learn and understand ecological concepts, and use of cognitive strategies into account when designing instructional contexts to support these students' understanding of ecological concepts.
Space construction system analysis. Part 2: Platform definition
NASA Technical Reports Server (NTRS)
Hart, R. J.; Myers, H. L.; Abramson, R. D.; Dejong, P. N.; Donavan, R. D.; Greenberg, H. S.; Indrikis, J.; Jandrasi, J. S.; Manoff, M.; Mcbaine, C. K.
1980-01-01
The top level system requirements are summarized and the accompanying conceptual design for an engineering and technology verification platform (ETVP) system is presented. An encompassing statement of the system objectives which drive the system requirements is presented and the major mission and subsystem requirements are described with emphasis on the advanced communications technology mission payload. The platform design is defined and used as a reference configuration for an end to space construction analyses. The preferred construction methods and processes, the important interactions between the platform design and the construction system design and operation, and the technology development efforts required to support the design and space construction of the ETVP are outlined.
Reframing conceptual physics: Improving relevance to elementary education and sonography majors
NASA Astrophysics Data System (ADS)
LaFazia, David Gregory
This study outlines the steps taken to reframe the Waves and Periodicity unit within a conceptual physics course. Beyond this unit reframing process, this paper explores the activities that made up the reframed unit and how each was developed and revised. The unit was reframed to improve relevance of the activities to the Elementary Education and Diagnostic Medical Sonography majors who make up the bulk of the course roster. The unit was reframed around ten design principles that were built on best practices from the literature, survey responses, and focused interviews. These principles support the selection of a biology-integrated themed approach to teaching physics. This is done through active and highly kinesthetic learning across three realms of human experience: physical, social, and cognitive. The unit materials were designed around making connections to students' future careers while requiring students to take progressively more responsibility in activities and assessments. Several support strategies are employed across these activities and assessments, including an energy-first, guided-inquiry approach to concept scaffolding and accommodations for diverse learners. Survey responses were solicited from physics instructors experienced with this population, Elementary Education and Sonography program advisors, and curriculum design, learning strategies, and educational technology experts. The reframed unit was reviewed by doctoral-level science education experts and revised to further improve the depth and transparency with which the design principles reframe the unit activities. The reframed unit contains a full unit plan, lesson plans, and full unit materials. These include classroom and online activities, assessments, and templates for future unit and lesson planning. Additional supplemental materials are provided to support Elementary Education and Sonography students and program advisors and also further promote the reframed unit materials and design principles. The unit is designed to be educative in nature and serves as a model for the reframing of other units. A number of the design principles are highly transdisciplinary in nature and may be applied for reframing instructional units outside of the physics and science disciplines.
Reynolds, Julie A; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement.
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Conceptual design of flapping-wing micro air vehicles.
Whitney, J P; Wood, R J
2012-09-01
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.
Lee, Heewon; Contento, Isobel R; Koch, Pamela
2013-03-01
To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. A process evaluation study based on a systematic conceptual model. Five middle schools in New York City. Five hundred sixty-two students in 20 classes and their science teachers (n = 8). Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers' curriculum evaluation, and satisfaction with teaching the curriculum. Descriptive statistics and Spearman ρ correlation for quantitative analysis and content analysis for qualitative data were used. Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and the student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teacher satisfaction with teaching the curriculum was highly correlated with student satisfaction (P < .05). Teacher perception of amount of student work was negatively correlated with implementation and with student satisfaction (P < .05). Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
Supporting Teachers Learning Through the Collaborative Design of Technology-Enhanced Science Lessons
NASA Astrophysics Data System (ADS)
Kafyulilo, Ayoub C.; Fisser, Petra; Voogt, Joke
2015-12-01
This study used the Interconnected Model of Professional Growth (Clarke & Hollingsworth in Teaching and Teacher Education, 18, 947-967, 2002) to unravel how science teachers' technology integration knowledge and skills developed in a professional development arrangement. The professional development arrangement used Technological Pedagogical Content Knowledge as a conceptual framework and included collaborative design of technology-enhanced science lessons, implementation of the lessons and reflection on outcomes. Support to facilitate the process was offered in the form of collaboration guidelines, online learning materials, exemplary lessons and the availability of an expert. Twenty teachers participated in the intervention. Pre- and post-intervention results showed improvements in teachers' perceived and demonstrated knowledge and skills in integrating technology in science teaching. Collaboration guidelines helped the teams to understand the design process, while exemplary materials provided a picture of the product they had to design. The availability of relevant online materials simplified the design process. The expert was important in providing technological and pedagogical support during design and implementation, and reflected with teachers on how to cope with problems met during implementation.
In-space propellant logistics. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1972-01-01
The prephase A conceptual project planning data as it pertains to the development of the selected logistics module configuration transported into earth orbit by the space shuttle orbiter. The data represents the test, implementation, and supporting research and technology requirements for attaining the propellant transfer operational capability for early 1985. The plan is based on a propellant module designed to support the space-based tug with cryogenic oxygen-hydrogen propellants. A logical sequence of activities that is required to define, design, develop, fabricate, test, launch, and flight test the propellant logistics module is described. Included are the facility and ground support equipment requirements. The schedule of activities are based on the evolution and relationship between the R and T, the development issues, and the resultant test program.
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C. A.; Zielstorff, R. D.; Fox, R. L.; O'Connell, E. M.; Carroll, D. L.; Conley, K. A.; Fitzgerald, P.; Eng, T. K.; Martin, A.; Zidik, C. M.; Segal, M.
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring. PMID:11079970
A knowledge-based patient assessment system: conceptual and technical design.
Reilly, C A; Zielstorff, R D; Fox, R L; O'Connell, E M; Carroll, D L; Conley, K A; Fitzgerald, P; Eng, T K; Martin, A; Zidik, C M; Segal, M
2000-01-01
This paper describes the design of an inpatient patient assessment application that captures nursing assessment data using a wireless laptop computer. The primary aim of this system is to capture structured information for facilitating decision support and quality monitoring. The system also aims to improve efficiency of recording patient assessments, reduce costs, and improve discharge planning and early identification of patient learning needs. Object-oriented methods were used to elicit functional requirements and to model the proposed system. A tools-based development approach is being used to facilitate rapid development and easy modification of assessment items and rules for decision support. Criteria for evaluation include perceived utility by clinician users, validity of decision support rules, time spent recording assessments, and perceived utility of aggregate reports for quality monitoring.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.
1992-01-01
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward
1989-01-01
A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.
Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft
NASA Technical Reports Server (NTRS)
Fabisinski, Leo L., III; Maples, Charlotte Dauphne
2010-01-01
Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.
Hartman, Rosemary; Brown, Larry R.; Hobbs, Jim
2017-01-01
This chapter describes a general model of food webs within tidal wetlands and represents how physical features of the wetland affect the structure and function of the food web. This conceptual model focuses on how the food web provides support for (or may reduce support for) threatened fish species. This model is part of a suite of conceptual models designed to guide monitoring of restoration sites throughout the San Francisco Estuary (SFE), but particularly within the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh. The conceptual models have been developed based on the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) models, and are designed to aid in the identification and evaluation of monitoring metrics for tidal wetland restoration projects. Many tidal restoration sites in the Delta are being constructed to comply with environmental regulatory requirements associated with the operation of the Central Valley Project and State Water Project. These include the Biological Opinions for Delta Smelt (Hypomesus transpacificus) and salmonids (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009), and the Incidental Take Permit for Longfin Smelt (Spirinchus thaleichthyes) (California Department of Fish and Wildlife 2009). These regulatory requirements are based on the hypothesis that the decline of listed fish species is due in part to a decline in productivity of the food web (phytoplankton and zooplankton in particular) or alterations in the food web such that production is consumed by other species in the Estuary (Sommer et al. 2007; Baxter et al. 2010; Brown et al. 2016a). Intertidal wetlands and shallow subtidal habitat can be highly productive, so restoring areas of tidal wetlands may result in a net increase in productivity that will provide food web support for these fish species. However, other factors such as invasive bivalves that reduce phytoplankton and zooplankton biomass and invasive predatory fishes that may compete with or prey upon listed fishes can limit the utility of tidal wetlands for food web support (Lucas and Thompson 2012; Herbold et al. 2014). This model utilizes information from the previous DRERIP models for Delta food webs (Durand 2008) and tidal wetlands (Kneib et al. 2008), an updated DRERIP model (Durand 2015), and the State of BayDelta Science 2016 review of recent Delta food web literature (Brown et al. 2016a).
2017-05-25
the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
Conceptual design of a bioregenerative life support system containing crops and silkworms
NASA Astrophysics Data System (ADS)
Hu, Enzhu; Bartsev, Sergey I.; Liu, Hong
2010-04-01
This article summarizes a conceptual design of a bioregenerative life support system for permanent lunar base or planetary exploration. The system consists of seven compartments - higher plants cultivation, animal rearing, human habitation, water recovery, waste treatment, atmosphere management, and storages. Fifteen kinds of crops, such as wheat, rice, soybean, lettuce, and mulberry, were selected as main life support contributors to provide the crew with air, water, and vegetable food. Silkworms fed by crop leaves were designated to produce partial animal nutrition for the crew. Various physical-chemical and biological methods were combined to reclaim wastewater and solid waste. Condensate collected from atmosphere was recycled into potable water through granular activated carbon adsorption, iodine sterilization, and trace element supplementation. All grey water was also purified though multifiltration and ultraviolet sterilization. Plant residue, human excrement, silkworm feces, etc. were decomposed into inorganic substances which were finally absorbed by higher plants. Some meat, ingredients, as well as nitrogen fertilizer were prestored and resupplied periodically. Meanwhile, the same amount and chemical composition of organic waste was dumped to maintain the steady state of the system. A nutritional balanced diet was developed by means of the linear programming method. It could provide 2721 kcal of energy, 375.5 g of carbohydrate, 99.47 g of protein, and 91.19 g of fat per capita per day. Silkworm powder covered 12.54% of total animal protein intakes. The balance of material flows between compartments was described by the system of stoichiometric equations. Basic life support requirements for crews including oxygen, food, potable and hygiene water summed up to 29.68 kg per capita per day. The coefficient of system material closure reached 99.40%.
NASA Technical Reports Server (NTRS)
Edwards, C. L. W.
1974-01-01
An inviscid technique for designing forebodies which produce uniformly precompressed flows at the inlet entrance for bottom-mounted scramjets has been developed so that geometric constraints resulting from design trade-offs can be effectively evaluated. The flow fields resulting from several forebody designs generated in support of a hypersonic research airplane conceptual design study have been analyzed in detail with three-dimensional characteristics calculations to verify the uniform flow conditions. For the designs analyzed, uniform flow is maintained over a wide range of flight conditions (Mach number equals 4 to 10; angle of attack equals 6 deg to 10 deg) corresponding to scramjet operation flight envelope of the research airplane.
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
ERIC Educational Resources Information Center
Sun, Daner; Looi, Chee-Kit
2018-01-01
This paper explores the crossover between formal learning and learning in informal spaces supported by mobile technology, and proposes design principles for educators to carry out a science curriculum, namely Boundary Activity-based Science Curriculum (BAbSC). The conceptualization of the boundary object, and the principles of boundary activity as…
A Digital Tool Grows (and Keeps Growing) from the Work of a Community of Writers
ERIC Educational Resources Information Center
Roser, Nancy L.; Mosley Wetzel, Melissa; Martínez, Ramón Antonio; Price-Dennis, Detra
2015-01-01
This article reports on a collaborative inquiry into the use of a researcher-designed digital tool for the support of writing instruction in elementary classrooms. The digital tool in question is an online collection of original writing samples produced by elementary children that was conceptualized as a resource for coaching new writers using…
Rapid, Agile Modeling Support for Human-Computer Interface Conceptual Design
2008-12-01
12 5.6 COLIDES MODEL ...........................................................................................................12 5.7 LATENT...on the screen. This limitation is dealt with in the CoLiDeS model. 5.6 COLIDES MODEL CoLiDeS is an acronym for Comprehension-based Link model of...Deliberate Search (Blackmon, Kitajima, Polson, 2005; Blackmon, Kitajima, Polson, 2003; Blackmon, Polson, Kitajima , and Lewis, 2005). CoLideS is
ERIC Educational Resources Information Center
Rodriguez, Patricio; Nussbaum, Miguel; Dombrovskaia, Lioubov
2012-01-01
Currently, the use of information and communication technologies (ICT) in education does not conclusively demonstrate significant effects on learning. However, not all ICT usage models are designed to affect student outcomes. Therefore, to accurately study the impact of ICT, the concept of an educational programme supported by ICT must first be…
NASA Astrophysics Data System (ADS)
Frezzo, Dennis C.; Behrens, John T.; Mislevy, Robert J.
2010-04-01
Simulation environments make it possible for science and engineering students to learn to interact with complex systems. Putting these capabilities to effective use for learning, and assessing learning, requires more than a simulation environment alone. It requires a conceptual framework for the knowledge, skills, and ways of thinking that are meant to be developed, in order to design activities that target these capabilities. The challenges of using simulation environments effectively are especially daunting in dispersed social systems. This article describes how these challenges were addressed in the context of the Cisco Networking Academies with a simulation tool for computer networks called Packet Tracer. The focus is on a conceptual support framework for instructors in over 9,000 institutions around the world for using Packet Tracer in instruction and assessment, by learning to create problem-solving scenarios that are at once tuned to the local needs of their students and consistent with the epistemic frame of "thinking like a network engineer." We describe a layered framework of tools and interfaces above the network simulator that supports the use of Packet Tracer in the distributed community of instructors and students.
NASA Astrophysics Data System (ADS)
Sukaesih, S.; Sutrisno
2017-04-01
The aim of the study was to analyse the effect of the application of Conceptual Understanding Procedures (CUPs) learning to the students’ critical thinking skills in the matter of categorisaed in SMA Negeri 1 Larangan. This study was quasi-experimental design using nonequivalent control group design. The population in this study was entire class X. The samples that were taken by convenience sampling were class X MIA 1 and X MIA 2. Primary data in the study was the student’s critical thinking skills, which was supported by student activity, the level of adherence to the CUPs learning model, student opinion and teacher opinion. N-gain test results showed that the students’ critical thinking skills of experimental class increased by 89.32%, while the control group increased by 57.14%. Activity grade of experimental class with an average value of 72.37 was better than that of the control class with an average of only 22.69 student and teacher opinions to the learning were excellegoodnt. Based on this study concluded that the model of Conceptual Understanding Procedures (CUPs) had an effect on the student’s critical thinking skills in the matter of protest in SMA Negeri 1 Larangan.
NASA Astrophysics Data System (ADS)
Smith, Mike U.; Scharmann, Lawrence
2008-02-01
This investigation delineates a multi-year action research agenda designed to develop an instructional model for teaching the nature of science (NOS) to preservice science teachers. Our past research strongly supports the use of explicit reflective instructional methods, which includes Thomas Kuhn’s notion of learning by ostention and treating science as a continuum (i.e., comparing fields of study to one another for relative placement as less to more scientific). Instruction based on conceptual change precepts, however, also exhibits promise. Thus, the investigators sought to ascertain the degree to which conceptual change took place among students (n = 15) participating in the NOS instructional model. Three case studies are presented to illustrate successful conceptual changes that took place as a result of the NOS instructional model. All three cases represent students who claim a very conservative Christian heritage and for whom evolution was not considered a legitimate scientific theory prior to participating in the NOS instructional model. All three case study individuals, along with their twelve classmates, placed evolution as most scientific when compared to intelligent design and a fictional field of study called “Umbrellaology.”
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
NASA Astrophysics Data System (ADS)
Tao, Ying; Oliver, Mary; Venville, Grady
2013-06-01
The purpose of this study was to explore Chinese and Australian primary children's conceptual understandings of the Earth. The research was conducted in the interpretive paradigm and was designed to be descriptive with comparative and cross sectional elements. Participants were Year 3 and Year 6 children from three schools in Hunan Province, central south China ( n = 38) and Year 3 and Year 6 children from three schools in Western Australia ( n = 36). In-depth interviews including drawings were carried out to explore the participants' conceptual understandings of the Earth's shape, gravity, day/night cycle and seasons. The results showed that, regardless of different cultures, children from the same year group constructed similar concepts about the Earth. The Year 3 children were more likely than the Year 6 children to demonstrate intuitive conceptions of a round and flat Earth. The Year 6 children were more likely to demonstrate consistent understandings of a spherical Earth. The findings supported the universality of entrenched presuppositions hypothesis. Cultural mediation was found to have a subtle impact on children's understanding of the Earth. A model of conceptual development is proposed.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2011-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space system (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower earth orbit (BLEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular extravehicular activity system (MEVAS) that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs and define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suitport technologies.
Conceptual design of the cryostat for the new high luminosity (HL-LHC) triplet magnets
NASA Astrophysics Data System (ADS)
Ramos, D.; Parma, V.; Moretti, M.; Eymin, C.; Todesco, E.; Van Weelderen, R.; Prin, H.; Berkowitz Zamora, D.
2017-12-01
The High Luminosity LHC (HL-LHC) is a project to upgrade the LHC collider after 2020-2025 to increase the integrated luminosity by about one order of magnitude and extend the physics production until 2035. An upgrade of the focusing triplets insertion system for the ATLAS and CMS experiments is foreseen using superconducting magnets operating in a pressurised superfluid helium bath at 1.9 K. This will require the design and construction of four continuous cryostats, each about sixty meters in length and one meter in diameter, for the final beam focusing quadrupoles, corrector magnets and beam separation dipoles. The design is constrained by the dimensions of the existing tunnel and accessibility restrictions imposing the integration of cryogenic piping inside the cryostat, thus resulting in a very compact integration. As the alignment and position stability of the magnets is crucial for the luminosity performance of the machine, the magnet support system must be carefully designed in order to cope with parasitic forces and thermo-mechanical load cycles. In this paper, we present the conceptual design of the cryostat and discuss the approach to address the stringent and often conflicting requirements of alignment, integration and thermal aspects.
Extravehicular mobility unit subcritical liquid oxygen storage and supply system
NASA Technical Reports Server (NTRS)
Anderson, John; Martin, Timothy; Hodgson, ED
1992-01-01
The storage of life support oxygen in the Extravehicular Mobility Unit in the liquid state offers some advantages over the current method of storing the oxygen as a high pressure gas. Storage volume is reduced because of the increased density associated with liquid. The lower storage and operating pressures also reduce the potential for leakage or bursting of the storage tank. The potential for combustion resulting from adiabatic combustion of the gas within lines and components is substantially reduced. Design constraints on components are also relaxed due to the lower system pressures. A design study was performed to determine the requirements for a liquid storage system and prepare a conceptual design. The study involved four tasks. The first was to identify system operating requirements that influence or direct the design of the system. The second was to define candidate storage system concepts that could possibly satisfy the requirements. An evaluation and comparison of the candidate concepts was conducted in the third task. The fourth task was devoted to preparing a conceptual design of the recommended storage system and to evaluate concerns with integration of the concept into the EMU. The results are presented.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Making Boundaries Great Again: Essentialism and Support for Boundary-Enhancing Initiatives.
Roberts, Steven O; Ho, Arnold K; Rhodes, Marjorie; Gelman, Susan A
2017-12-01
Psychological essentialism entails a focus on category boundaries (e.g., categorizing people as men or women) and an increase in the conceptual distance between those boundaries (e.g., accentuating the differences between men and women). Across eight studies, we demonstrate that essentialism additionally entails an increase in support for boundary-enhancing legislation, policies, and social services, and that it does so under conditions that disadvantage social groups, as well as conditions that benefit them. First, individual differences in essentialism were associated with support for legislation mandating that transgender people use restrooms corresponding with their biological sex, and with support for the boundary-enhancing policies of the 2016 then-presumptive Republican presidential nominee (i.e., Donald Trump). Second, essentialism was associated with support for same-gender classrooms designed to promote student learning, as well as support for services designed to benefit LGBTQ (lesbian, gay, bisexual, transgender, queer) individuals. These findings demonstrate the boundary-enhancing implications of essentialism and their social significance.
Conceptual design of a manned orbital transfer vehicle
NASA Technical Reports Server (NTRS)
Davis, Richard; Duquette, Miles; Fredrick, Rebecca; Schumacher, Daniel; Somers, Schaeffer; Stafira, Stanley; Williams, James; Zelinka, Mark
1988-01-01
With the advent of the manned space station, man now requires a spacecraft based on the space station with the ability to deploy, recover, and repair satellites quickly and economically. Such a craft would prolong and enhance the life and performance of many satellites. A basic design was developed for an orbital tansfer vehicle (OTV). The basic design criteria are discussed. The design of the OTV and systems were researched in the following areas: avionics, crew systems, electrical power systems, environmental control/life support systems, navigation and orbital maneuvers, propulsion systems, reaction control systems (RCS), servicing systems, and structures. The basic concepts in each of the areas are summarized.
Design concepts and cost studies for magnetic suspension and balance systems. [wind tunnel apparatus
NASA Technical Reports Server (NTRS)
Bloom, H. L.
1982-01-01
The application of superconducting magnets for suspension and balance of wind tunnel models was studied. Conceptual designs are presented for magnetic suspension and balance system (MSBS) configurations compatible with three high Reynolds number cases representing specified combinations of test conditions and model sizes. Concepts in general met initially specified performance requirements such as duty cycle, force and moment levels, model angular displacement and positioning accuracy with nominal design requirements for support subsystems. Other performance requirements, such as forced model sinusoidal oscillations, and control force magnitude and frequency, were modified so as to alleviate the magnitude of magnet, power, and cryogenic design requirements.
Sanocki, Thomas; Dyson, Mary C
2012-01-01
Letter identification is a critical front end of the reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading.
Culture, Interface Design, and Design Methods for Mobile Devices
NASA Astrophysics Data System (ADS)
Lee, Kun-Pyo
Aesthetic differences and similarities among cultures are obviously one of the very important issues in cultural design. However, ever since products became knowledge-supporting tools, the visible elements of products have become more universal so that the invisible parts of products such as interface and interaction are getting more important. Therefore, the cultural design should be extended to the invisible elements of culture like people's conceptual models beyond material and phenomenal culture. This chapter aims to explain how we address the invisible cultural elements in interface design and design methods by exploring the users' cognitive styles and communication patterns in different cultures. Regarding cultural interface design, we examined users' conceptual models while interacting with mobile phone and website interfaces, and observed cultural difference in performing tasks and viewing patterns, which appeared to agree with cultural cognitive styles known as Holistic thoughts vs. Analytic thoughts. Regarding design methods for culture, we explored how to localize design methods such as focus group interview and generative session for specific cultural groups, and the results of comparative experiments revealed cultural difference on participants' behaviors and performance in each design method and led us to suggest how to conduct them in East Asian culture. Mobile Observation Analyzer and Wi-Pro, user research tools we invented to capture user behaviors and needs especially in their mobile context, were also introduced.
Multiple-Purpose Subsonic Naval Aircraft (MPSNA) Multiple Application Propfan Study (MAPS)
NASA Technical Reports Server (NTRS)
Winkeljohn, D. M.; Mayrand, C. H.
1986-01-01
A conceptual design study compared a selected propfan-powered aircraft to a turbofan-powered aircraft for multiple Navy carrier-based support missions in the 1995 timeframe. Conventional takeoff and landing (CTOL) propfan and turbofan-powered designs and short takeoff/vertical landing (STOVL) propfan-powered designs are presented. Ten support mission profiles were defined and the aircraft were sized to be able to perform all ten missions. Emphasis was placed on efficient high altitude loiter for Airborne Early Warning (AEW) and low altitude high speed capability for various offensive and tactical support missions. The results of the study show that the propfan-powered designs have lighter gross weights, lower fuel fractions, and equal or greater performance capability than the turbofan-powered designs. Various sensitives were developed in the study, including the effect of using single-rotation versus counter-rotation propfans and the effect of AEW loiter altitude on vehicle gross weight and empty weight. A propfan technology development plan was presented which illustrates that the development of key components can be achieved without accelerated schedules through the extension of current and planned government and civil propfan programs.
Lunar Surface Habitat Configuration Assessment: Methodology and Observations
NASA Technical Reports Server (NTRS)
Carpenter, Amanda
2008-01-01
The Lunar Habitat Configuration Assessment evaluated the major habitat approaches that were conceptually developed during the Lunar Architecture Team II Study. The objective of the configuration assessment was to identify desired features, operational considerations, and risks to derive habitat requirements. This assessment only considered operations pertaining to the lunar surface and did not consider all habitat conceptual designs developed. To examine multiple architectures, the Habitation Focus Element Team defined several adequate concepts which warranted the need for a method to assess the various configurations. The fundamental requirement designed into each concept included the functional and operational capability to support a crew of four on a six-month lunar surface mission; however, other conceptual aspects were diverse in comparison. The methodology utilized for this assessment consisted of defining figure of merits, providing relevant information, and establishing a scoring system. In summary, the assessment considered the geometric configuration of each concept to determine the complexity of unloading, handling, mobility, leveling, aligning, mating to other elements, and the accessibility to the lunar surface. In theory, the assessment was designed to derive habitat requirements, potential technology development needs and identify risks associated with living and working on the lunar surface. Although the results were more subjective opposed to objective, the assessment provided insightful observations for further assessments and trade studies of lunar surface habitats. This overall methodology and resulting observations will be describe in detail and illustrative examples will be discussed.
Social Support and Well-Being: Research and Implications for Prevention Programs.
ERIC Educational Resources Information Center
Billings, Andrew G.; And Others
This paper addresses the need for a more systematic framework for conceptualizing and evaluating the health-related effects of support. A conceptual model of stress, support, and functioning is presented which clarifies the direct, interactive, and indirect effects of social support. Several paths representing relationships among life stressors,…
Hatzmann, Janneke; Maurice-Stam, Heleen; Heymans, Hugo S A; Grootenhuis, Martha A
2009-07-28
Parents of chronically ill children are at risk for a lower Health Related Quality of Life (HRQoL). Insight in the dynamics of factors influencing parental HRQoL is necessary for development of interventions. Aim of the present study was to explore the influence of demographic and disease related factors on parental HRQoL, mediated by employment, income, leisure time, holiday and emotional support in a comprehensive model. In a cross-sectional design, 543 parents of chronically ill children completed questionnaires. A conceptual model of parental HRQoL was developed. Structural equation modeling was performed to explore the relations in the conceptual model, and to test if the model fitted the data. The model fitted the data closely (CHISQ(14) = 11.37, p = 0.66; RMSEA = 0.0, 90%CI [0.00;0.034]. The effect of socio-demographic and medical data on HRQoL was mediated by days on holiday (MCS: beta = .21) and emotional support (PCS: beta = .14; MCS: beta = .28). Also, female gender (beta = -.10), age (beta = .10), being chronically ill as a parent (beta = -.34), and care dependency of the child (beta = -.14; beta = -.15) were directly related to parental HRQoL. The final model was slightly different from the conceptual model. Main factors explaining parental HRQoL seemed to be emotional support, care dependency, days on holiday and being chronically ill as a parent. Holiday and emotional support mediated the effect of demographic and disease-related factors on HRQoL. Hours of employment, leisure time and household income did not mediate between background characteristics and HRQoL, contrasting the hypotheses.
Exploring Life Support Architectures for Evolution of Deep Space Human Exploration
NASA Technical Reports Server (NTRS)
Anderson, Molly S.; Stambaugh, Imelda C.
2015-01-01
Life support system architectures for long duration space missions are often explored analytically in the human spaceflight community to find optimum solutions for mass, performance, and reliability. But in reality, many other constraints can guide the design when the life support system is examined within the context of an overall vehicle, as well as specific programmatic goals and needs. Between the end of the Constellation program and the development of the "Evolvable Mars Campaign", NASA explored a broad range of mission possibilities. Most of these missions will never be implemented but the lessons learned during these concept development phases may color and guide future analytical studies and eventual life support system architectures. This paper discusses several iterations of design studies from the life support system perspective to examine which requirements and assumptions, programmatic needs, or interfaces drive design. When doing early concept studies, many assumptions have to be made about technology and operations. Data can be pulled from a variety of sources depending on the study needs, including parametric models, historical data, new technologies, and even predictive analysis. In the end, assumptions must be made in the face of uncertainty. Some of these may introduce more risk as to whether the solution for the conceptual design study will still work when designs mature and data becomes available.
Study on light weight design of truss structures of spacecrafts
NASA Astrophysics Data System (ADS)
Zeng, Fuming; Yang, Jianzhong; Wang, Jian
2015-08-01
Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.
Innovation and design approaches within prospective ergonomics.
Liem, André; Brangier, Eric
2012-01-01
In this conceptual article the topic of "Prospective Ergonomics" will be discussed within the context of innovation, design thinking and design processes & methods. Design thinking is essentially a human-centred innovation process that emphasises observation, collaboration, interpretation, visualisation of ideas, rapid concept prototyping and concurrent business analysis, which ultimately influences innovation and business strategy. The objective of this project is to develop a roadmap for innovation, involving consumers, designers and business people in an integrative process, which can be applied to product, service and business design. A theoretical structure comprising of Innovation perspectives (1), Worldviews supported by rationalist-historicist and empirical-idealistic dimensions (2) and Models of "design" reasoning (3) precedes the development and classification of existing methods as well as the introduction of new ones.
Thom, David H.; Wolf, Jessica; Gardner, Heather; DeVore, Denise; Lin, Michael; Ma, Andy; Ibarra-Castro, Ana; Saba, George
2016-01-01
PURPOSE Although health coaches are a growing resource for supporting patients in making health decisions, we know very little about the experience of health. We undertook a qualitative study of how health coaches support patients in making decisions and implementing changes to improve their health. METHODS We conducted 6 focus groups (3 in Spanish and 3 in English) with 25 patients and 5 friends or family members, followed by individual interviews with 42 patients, 17 family members, 17 health coaches, and 20 clinicians. Audio recordings were transcribed and analyzed by at least 2 members of the study team in ATLAS.ti using principles of grounded theory to identify themes and the relationship between them. RESULTS We identified 7 major themes that were related to each other in the final conceptual model. Similarities between health coaches and patients and the time health coaches spent with patients helped establish the health coach–patient relationship. The coach-patient relationship allowed for, and was further strengthened by, 4 themes of key coaching activities: education, personal support, practical support, and acting as a bridge between patients and clinicians. CONCLUSIONS We identified a conceptual model that supports the development of a strong relationship, which in turn provides the basis for effective coaching. These results can be used to design health coach training curricula and to support health coaches in practice. PMID:28376437
NASA Astrophysics Data System (ADS)
Leuchter, Miriam; Saalbach, Henrik; Hardy, Ilonca
2014-07-01
Research on learning and instruction of science has shown that learning environments applied in preschool and primary school rarely makes use of structured learning materials in problem-based environments although these are decisive quality features for promoting conceptual change and scientific reasoning within early science learning. We thus developed and implemented a science learning environment for children in the first years of schooling which contains structured learning materials with the goal of supporting conceptual change concerning the understanding of the floating and sinking of objects and fostering students' scientific reasoning skills. In the present implementation study, we aim to provide a best-practice example of early science learning. The study was conducted with a sample of 15 classes of the first years of schooling and a total of 244 children. Tests were constructed to measure children's conceptual understanding before and after the implementation. Our results reveal a decrease in children's misconceptions from pretest to posttest. After the curriculum, the children were able to produce significantly more correct predictions about the sinking or floating of objects than before the curriculum and also relative to a control group. Moreover, due to the intervention, the explanations given for their predictions implied a more elaborated concept of material kinds. All in all, a well-structured curriculum promoting comparison and scientific reasoning by means of inquiry learning was shown to support children's conceptual change.
Li, Bingcan; Mao, Xinrui; Wang, Yujuan; Guo, Chunyan
2017-01-01
It is generally accepted that associative recognition memory is supported by recollection. In addition, recent research indicates that familiarity can support associative memory, especially when two items are unitized into a single item. Both perceptual and conceptual manipulations can be used to unitize items, but few studies have compared these two methods of unitization directly. In the present study, we investigated the effects of familiarity and recollection on successful retrieval of items that were unitized perceptually or conceptually. Participants were instructed to remember either a Chinese two-character compound or unrelated word-pairs, which were presented simultaneously or sequentially. Participants were then asked to recognize whether word-pairs were intact or rearranged. Event-related potential (ERP) recordings were performed during the recognition phase of the study. Two-character compounds were better discriminated than unrelated word-pairs and simultaneous presentation was found to elicit better discrimination than sequential presentation for unrelated word-pairs only. ERP recordings indicated that the early intact/rearranged effects (FN400), typically associated with familiarity, were elicited in compound word-pairs with both simultaneous and sequential presentation, and in simultaneously presented unrelated word-pairs, but not in sequentially presented unrelated word-pairs. In contrast, the late positive complex (LPC) effects associated with recollection were elicited in all four conditions. Together, these results indicate that while the engagement of familiarity in associative recognition is affected by both perceptual and conceptual unitization, conceptual unitization promotes a higher level of unitization (LOU). In addition, the engagement of recollection was not affected by unitized manipulations. It should be noted, however, that due to experimental design, the effects presented here may be due to semantic rather than episodic memory and future studies should take this into consideration when manipulating rearranged pairs. PMID:28400723
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
Application of the Hardman methodology to the Single Channel Ground-Airborne Radio System (SINCGARS)
NASA Technical Reports Server (NTRS)
1984-01-01
The HARDMAN methodology was applied to the various configurations of employment for an emerging Army multipurpose communications system. The methodology was used to analyze the manpower, personnel and training (MPT) requirements and associated costs, of the system concepts responsive to the Army's requirement for the Single Channel Ground-Airborne Radio System (SINCGARS). The scope of the application includes the analysis of two conceptual designs Cincinnati Electronics and ITT Aerospace/Optical Division for operating and maintenance support addressed through the general support maintenance echelon.
SAMICS support study. Volume 1: Cost account catalog
NASA Technical Reports Server (NTRS)
1977-01-01
The Jet Propulsion Laboratory (JPL) is examining the feasibility of a new industry to produce photovoltaic solar energy collectors similar to those used on spacecraft. To do this, a standardized costing procedure was developed. The Solar Array Manufacturing Industry Costing Standards (SAMICS) support study supplies the following information: (1) SAMICS critique; (2) Standard data base--cost account structure, expense item costs, inflation rates, indirect requirements relationships, and standard financial parameter values; (3) Facilities capital cost estimating relationships; (4) Conceptual plant designs; (5) Construction lead times; (6) Production start-up times; (7) Manufacturing price estimates.
Controlled Ecological Life Support Systems: CELSS '89 Workshop
NASA Technical Reports Server (NTRS)
Macelroy, Robert D. (Editor)
1990-01-01
Topics discussed at NASA's Controlled Ecological Life Support Systems (CELSS) workshop concerned the production of edible biomass. Specific areas of interest ranged from the efficiency of plant growth, to the conversion of inedible plant material to edible food, to the use of plant culture techniques. Models of plant growth and whole CELSS systems are included. The use of algae to supplement and improve dietary requirements is addressed. Flight experimentation is covered in topics ranging from a Salad Machine for use on the Space Station Freedom to conceptual designs for a lunar base CELSS.
ERIC Educational Resources Information Center
Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra
2012-01-01
Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
Data management in an object-oriented distributed aircraft conceptual design environment
NASA Astrophysics Data System (ADS)
Lu, Zhijie
In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.
Orbital assembly and maintenance study
NASA Technical Reports Server (NTRS)
Gorman, D.; Grant, C.; Kyrias, G.; Lord, C.; Rombach, J.; Salis, M.; Skidmore, R.; Thomas, R.
1975-01-01
The requirements, conceptual design, tradeoffs, procedures, and techniques for orbital assembly of the support structure of the microwave power transmission system and the radio astronomy telescope are described. Thermal and stress analyses, packaging, alignment, and subsystems requirements are included along with manned vs. automated and transportation tradeoffs. Technical and operational concepts for the manned and automated maintenance of satellites were investigated and further developed results are presented.
ERIC Educational Resources Information Center
Bigby, Christine; Anderson, Sian; Cameron, Nadine
2018-01-01
Background: Little progress has been made towards community participation of people with intellectual disability despite it being a policy aim since the 1980s. We aimed to identify the features of programmes designed to support community participation. Method: A scoping review was conducted of peer-reviewed literature between 2000 and 2015, about…
Uchino, Bert N.; Bowen, Kimberly; Carlisle, McKenzie; Birmingham, Wendy
2012-01-01
Contemporary models postulate the importance of psychological mechanisms linking perceived and received social support to physical health outcomes. In this review, we examine studies that directly tested the potential psychological mechanisms responsible for links between social support and health-relevant physiological processes (1980s to 2010). Inconsistent with existing theoretical models, no evidence was found that psychological mechanisms such as depression, perceived stress, and other affective processes are directly responsible for links between support and health. We discuss the importance of considering statistical/design issues, emerging conceptual perspectives, and limitations of our existing models for future research aimed at elucidating the psychological mechanisms responsible for links between social support and physical health outcomes. PMID:22326104
Use of theoretical and conceptual frameworks in qualitative research.
Green, Helen Elise
2014-07-01
To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.
NASA Technical Reports Server (NTRS)
Bagdigian, Robert M.
2008-01-01
NASA is engaged in early architectural analyses and trade studies aimed at identifying requirements, predicting performance and resource needs, characterizing mission constraints and sensitivities, and guiding technology development planning needed to conduct a successful human exploration campaign of the lunar surface. Conceptual designs and resource estimates for environmental control and life support systems (ECLSS) within pressurized lunar surface habitats and rovers have been considered and compared in order to support these lunar campaign studies. This paper will summarize those concepts and some of the more noteworthy considerations that will likely remain as key drivers in the evolution of the lunar surface ECLSS architecture.
NASA Astrophysics Data System (ADS)
khawaldeh, Salem A. Al
2013-07-01
Background and purpose: The purpose of this study was to investigate the comparative effects of a prediction/discussion-based learning cycle (HPD-LC), conceptual change text (CCT) and traditional instruction on 10th grade students' understanding of genetics concepts. Sample: Participants were 112 10th basic grade male students in three classes of the same school located in an urban area. The three classes taught by the same biology teacher were randomly assigned as a prediction/discussion-based learning cycle class (n = 39), conceptual change text class (n = 37) and traditional class (n = 36). Design and method: A quasi-experimental research design of pre-test-post-test non-equivalent control group was adopted. Participants completed the Genetics Concept Test as pre-test-post-test, to examine the effects of instructional strategies on their genetics understanding. Pre-test scores and Test of Logical Thinking scores were used as covariates. Results: The analysis of covariance showed a statistically significant difference between the experimental and control groups in the favor of experimental groups after treatment. However, no statistically significant difference between the experimental groups (HPD-LC versus CCT instruction) was found. Conclusions: Overall, the findings of this study support the use of the prediction/discussion-based learning cycle and conceptual change text in both research and teaching. The findings may be useful for improving classroom practices in teaching science concepts and for the development of suitable materials promoting students' understanding of science.
Overview of Conceptual Design of Early VentureStar(TM) Configurations
NASA Technical Reports Server (NTRS)
Lockwood, M. K.
2000-01-01
One of NASA's goals is to enable commercial access to space at a cost of $1000/lb (an order of magnitude less than today's cost) by approximately 2010. Based on results from the 1994 Congressionally mandated, NASA led, Access-to-Space Study, an all rocket-powered single-stage-to-orbit reusable launch vehicle was, selected as the best option for meeting the goal. To address the technology development issues and the follow-on development of an operational vehicle, NASA initiated the X-33 program. The focus of this paper is on the contributions made by the NASA Langley Research Center (LaRC), from 1997-1998, to the conceptual design of the Lockheed Martin Skunk Work's (LMSW) operational reusable single-stage-to-orbit VentureStar(sup TM) vehicle. The LaRC effort has been in direct support of LMSW and NASA Marshall Space Flight Center (MSFC). The primary objectives have been to reduce vehicle dry weight and improve flyability of the VentureStar(sup TM) concepts. This paper will briefly describe the analysis methods used and will present several of the concepts analyzed and design trades completed.
Performance evaluation approach for the supercritical helium cold circulators of ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaghela, H.; Sarkar, B.; Bhattacharya, R.
2014-01-29
The ITER project design foresees Supercritical Helium (SHe) forced flow cooling for the main cryogenic components, namely, the superconducting (SC) magnets and cryopumps (CP). Therefore, cold circulators have been selected to provide the required SHe mass flow rate to cope with specific operating conditions and technical requirements. Considering the availability impacts of such machines, it has been decided to perform evaluation tests of the cold circulators at operating conditions prior to the series production in order to minimize the project technical risks. A proposal has been conceptualized, evaluated and simulated to perform representative tests of the full scale SHe coldmore » circulators. The objectives of the performance tests include the validation of normal operating condition, transient and off-design operating modes as well as the efficiency measurement. A suitable process and instrumentation diagram of the test valve box (TVB) has been developed to implement the tests at the required thermodynamic conditions. The conceptual engineering design of the TVB has been developed along with the required thermal analysis for the normal operating conditions to support the performance evaluation of the SHe cold circulator.« less
Zeiaee, Amin; Soltani-Zarrin, Rana; Langari, Reza; Tafreshi, Reza
2017-07-01
This paper details the design process and features of a novel upper limb rehabilitation exoskeleton named CLEVER (Compact, Low-weight, Ergonomic, Virtual/Augmented Reality Enhanced Rehabilitation) ARM. The research effort is focused on designing a lightweight and ergonomic upper-limb rehabilitation exoskeleton capable of producing diverse and perceptually rich training scenarios. To this end, the knowledge available in the literature of rehabilitation robotics is used along with formal conceptual design techniques. This paper briefly reviews the systematic approach used for design of the exoskeleton, and elaborates on the specific details of the proposed design concept and its advantages over other design possibilities. The kinematic structure of CLEVER ARM has eight degrees of freedom supporting the motion of shoulder girdle, glenohumeral joint, elbow and wrist. Six degrees of freedom of the exoskeleton are active, and the two degrees of freedom supporting the wrist motion are passive. Kinematics of the proposed design is studied analytically and experimentally with the aid of a 3D printed prototype. The paper is concluded by some remarks on the optimization of the design, motorization of device, and the fabrication challenges.
Conceptual Basis of Educational Service Resource Support
ERIC Educational Resources Information Center
Ledyankina, Olga V.; Akimova, Olga B.; Fomin, Evgenii P.
2016-01-01
Topicality of the issue researched is preconditioned by the need to describe the conceptual basis and significance of educational service resource support of at the current development stage of Russian vocational education, classification of its main components as well as significance of the need to transform resource support from the factor that…
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Mathew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denton, Mark A.
Under Task Order 22 of the industry Advisory and Assistance Services (A&AS) Contract to the Department of Energy (DOE) DE-NE0000291, AREVA has been tasked with providing assistance with engineering, analysis, cost estimating, and design support of a system for disposal of radioactive wastes in deep boreholes (without the use of radioactive waste). As part of this task order, AREVA was requested, through a letter of technical direction, to evaluate Sandia National Laboratory’s (SNL’s) waste package borehole emplacement system concept recommendation using input from DOE and SNL. This summary review report (SRR) documents this evaluation, with its focus on the primarymore » input document titled: “Deep Borehole Field Test Specifications/M2FT-15SN0817091” Rev. 1 [1], hereafter referred to as the “M2 report.” The M2 report focuses on the conceptual design development for the Deep Borehole Field Test (DBFT), mainly the test waste packages (WPs) and the system for demonstrating emplacement and retrieval of those packages in the Field Test Borehole (FTB). This SRR follows the same outline as the M2 report, which allows for easy correlation between AREVA’s review comments, discussion, potential proposed alternatives, and path forward with information established in the M2 report. AREVA’s assessment focused on three primary elements of the M2 report: the conceptual design of the WPs proposed for deep borehole disposal (DBD), the mode of emplacement of the WP into DBD, and the conceptual design of the DBFT. AREVA concurs with the M2 report’s selection of the wireline emplacement mode specifically over the drill-string emplacement mode and generically over alternative emplacement modes. Table 5-1 of this SRR compares the pros and cons of each emplacement mode considered viable for DBD. The primary positive characteristics of the wireline emplacement mode include: (1) considered a mature technology; (2) operations are relatively simple; (3) probability of a radiological release due to off-normal events are relatively low; (4) costs are relatively low; and (5) maintenance activities are relatively simple. The primary drawback associated with the wireline emplacement mode for DBD is the number of emplacement trips-in to the borehole, which results in a relatively higher probability for a drop event. Fortunately, the WPs can be engineered with impact limiters that will minimize the likelihood of a breach of the WP due to a drop. The WP designs presented in the M2 report appear to be focused on compatibility with the drill-string emplacement mode (e.g., the threaded connections). With the recommendation that the wireline emplacement mode be utilized for the DBFT, some changes may be warranted to these WPs. For example, the development of a WP release connection that is more reliable than the currently credited connection, which is considered to have a high failure probability, and the integration of an impact limiter into its design. The M2 report states the engineering demonstration of the DBFT will occur in the FTB over a 4-year period. AREVA recommends development and testing of the WP emplacement handling equipment occur separately (but concurrently, if not earlier) from the FTB at a mock-up facility. The separation of this activity would prevent schedule interference between the science and engineering thrusts of the project. Performing tests in a mock-up facility would allow additional control and observation compared to the FTB. The mock-up facility could also be utilized as a training facility for future operations. Terminal velocity and impact limiter testing would require the FTB for testing, since these areas would be difficult to reproduce in a limited depth mock-up. Although only at the end of the conceptual stage of design development, DBD appears to be a viable solution for some waste forms produced by the nuclear industry. However, regulatory requirements have yet to be established for pre- and post-closure performance of DBD and should be established as soon as possible. Some of the main areas of focus from a regulatory perspective include: (1) establishing acceptable performance requirements for the long-term behavior of DBD; (2) determining acceptable borehole abandonment criteria; (3) establishing retrievability requirements; (4) developing a consensus on the factor of safety (FoS) for the emplacement mode and WP; and (5) establishing safety and safeguards performance requirements for DBD. Although conservative requirements have been utilized to provide the foundation for the conceptual design of DBD, regulatory requirements and feedback are necessary to confirm recommendations made herein and to ensure the long-term performance of DBD is acceptable. The combination of the M2 report and this SRR is intended to facilitate the completion of the conceptual design for DBD for the Cs and Sr capsules and calcined waste forms. Using the conceptual design, preliminary design activities (the second stage of a three-stage process described in the M2 report) can proceed and the DBFT utilized to support, demonstrate, and confirm engineering elements of this design.« less
NASA Astrophysics Data System (ADS)
Park-Martinez, Jayne Irene
The purpose of this study was to assess the effects of node-link mapping on students' meaningful learning and conceptual change in a 1-semester introductory life-science course. This study used node-link mapping to integrate and apply the National Research Council's (NRC, 2005) three principles of human learning: engaging students' prior knowledge, fostering their metacognition, and supporting their formulation of a scientific conceptual framework. The study was a quasi-experimental, pretest-posttest, control group design. The sample consisted of 68 primarily freshmen non-science majors enrolled in two intact sections of the targeted course. Both groups received the same teacher-centered instruction and student-centered activities designed to promote meaningful learning and conceptual change; however, the activity format differed. Control group activities were written; treatment group activities were node-link mapped. Prior to instruction, both groups demonstrated equivalent knowledge and misconceptions associated with genetics and evolution (GE), and ecology and environmental science (EE). Mean differences, pre-to-post instruction, on the GE and EE meaningful learning exam scores and the EE conceptual change inventory scores between the writing group (control) and the node-link mapping group (treatment) were analyzed using repeated measures MANOVAs. There were no significant mean pre-to-post differences between groups with respect to meaningful learning in the GE or EE units, or conceptual change in the EE unit. However, independent of group membership, the overall mean pre-to-post increases in meaningful learning and conceptual change were significant. These findings suggest that both node-link mapping and writing, when used in conjunction with the National Research Council's (NRC, 2005) three principles of human learning, can promote meaningful learning and conceptual change. The only significant interaction found with respect to meaningful learning, conceptual change, and learning styles (Kolb, 2005) was a positive effect of node-link mapping on converger's meaningful learning. However, that result was probably an artifact of small sample size rather than a true treatment effect. No other significant interactions were found. These results suggest that all students, regardless of their learning style, can benefit from either node-link mapping or writing to promote meaningful learning and conceptual change in general life-science courses.
NASA Technical Reports Server (NTRS)
Fuller, John; Ali, Warsame; Willis, Danette
1989-01-01
In a continued effort to design a surface based factory on Mars for the production of oxygen and water, a preliminary study was made of the surface and atmospheric composition on Mars and determined the mass densities of the various gases in the Martian atmosphere. Based on the initial studies, oxygen and water were determined to be the two products that could be produced economically under the Martian conditions. Studies were also made on present production techniques to obtain water and oxygen. Analyses were made to evaluate the current methods of production that were adaptable to the Martian conditions. Even though the initial effort was the production of oxygen and water, it was found necessary to produce some diluted gases that can be mixed with the oxygen produced to constitute 'breathable' air. The conceptual design of a breathable air manufacturing system, a means of drilling for underground water, and storage of water for future use were completed. The design objective was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
NASA Astrophysics Data System (ADS)
Seely, Brian J.
This study aims to advance learning outdoors with mobile devices. As part of the ongoing Tree Investigators design-based research study, this research investigated a mobile application to support observation, identification, and explanation of the tree life cycle within an authentic, outdoor setting. Recognizing the scientific and conceptual complexity of this topic for young children, the design incorporated technological and design scaffolds within a narrative-based learning environment. In an effort to support learning, 14 participants (aged 5-9) were guided through the mobile app on tree life cycles by a comic-strip pedagogical agent, "Nutty the Squirrel", as they looked to explore and understand through guided observational practices and artifact creation tasks. In comparison to previous iterations of this DBR study, the overall patterns of talk found in this study were similar, with perceptual and conceptual talk being the first and second most frequently coded categories, respectively. However, this study coded considerably more instances of affective talk. This finding of the higher frequency of affective talk could possibly be explained by the relatively younger age of this iteration's participants, in conjunction with the introduced pedagogical agent, who elicited playfulness and delight from the children. The results also indicated a significant improvement when comparing the pretest results (mean score of .86) with the posttest results (mean score of 4.07, out of 5). Learners were not only able to recall the phases of a tree life cycle, but list them in the correct order. The comparison reports a significant increase, showing evidence of increased knowledge and appropriation of scientific vocabulary. The finding suggests the narrative was effective in structuring the complex material into a story for sense making. Future research with narratives should consider a design to promote learner agency through more interactions with the pedagogical agent and a conditional branching scenario framework to further evoke interest and engagement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
Conceptual study of on orbit production of cryogenic propellants by water electrolysis
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
1991-01-01
The feasibility is assessed of producing cryogenic propellants on orbit by water electrolysis in support of NASA's proposed Space Exploration Initiative (SEI) missions. Using this method, water launched into low earth orbit (LEO) would be split into gaseous hydrogen and oxygen by electrolysis in an orbiting propellant processor spacecraft. The resulting gases would then be liquified and stored in cryogenic tanks. Supplying liquid hydrogen and oxygen fuel to space vehicles by this technique has some possible advantages over conventional methods. The potential benefits are derived from the characteristics of water as a payload, and include reduced ground handling and launch risk, denser packaging, and reduced tankage and piping requirements. A conceptual design of a water processor was generated based on related previous studies, and contemporary or near term technologies required. Extensive development efforts would be required to adapt the various subsystems needed for the propellant processor for use in space. Based on the cumulative results, propellant production by on orbit water electrolysis for support of SEI missions is not recommended.
The use of concept mapping for scale development and validation in evaluation.
Rosas, Scott R; Camphausen, Lauren C
2007-05-01
Evaluators often make key decisions about what content to include when designing new scales. However, without clear conceptual grounding, there is a risk these decisions may compromise the scale's validity. Techniques such as concept mapping are available to evaluators for the specification of conceptual frameworks, but have not been used as a fully integrated part of scale development. As part of a multi-site evaluation of family support programs, we integrated concept mapping with traditional scale-development processes to strengthen the creation of a scale for inclusion in an evaluation instrument. Using concept mapping, we engaged staff and managers in the development of a framework of intended benefits of program participation and used the information to systematically select the scale's content. The psychometric characteristics of the scale were then formally assessed using a sample of program participants. The implications of the approach for supporting construct validity, inclusion of staff and managers, and theory-driven evaluation are discussed.
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
Handling Qualities Optimization for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Theodore, Colin R.; Berger, Tom
2016-01-01
Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.
Tool for Sizing Analysis of the Advanced Life Support System
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsie Jannivine; Brown, Cheryl B.; Jeng, Frank J.
2005-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) is a computer model for sizing and analyzing designs of environmental-control and life support systems (ECLSS) for spacecraft and surface habitats involved in the exploration of Mars and Moon. It performs conceptual designs of advanced life support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water, and process wastes in order to reduce the need of resource resupply. By assuming steady-state operations, ALSSAT is a means of investigating combinations of such subsystems technologies and thereby assisting in determining the most cost-effective technology combination available. In fact, ALSSAT can perform sizing analysis of the ALS subsystems that are operated dynamically or steady in nature. Using the Microsoft Excel spreadsheet software with Visual Basic programming language, ALSSAT has been developed to perform multiple-case trade studies based on the calculated ECLSS mass, volume, power, and Equivalent System Mass, as well as parametric studies by varying the input parameters. ALSSAT s modular format is specifically designed for the ease of future maintenance and upgrades.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps
ERIC Educational Resources Information Center
Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa
2013-01-01
Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
The engineering design of the Tokamak Physics Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidt, J.A.
A mission and supporting physics objectives have been developed, which establishes an important role for the Tokamak Physics Experiment (TPX) in developing the physic basis for a future fusion reactor. The design of TPX include advanced physics features, such as shaping and profile control, along with the capability of operating for very long pulses. The development of the superconducting magnets, actively cooled internal hardware, and remote maintenance will be an important technology contribution to future fusion projects, such as ITER. The Conceptual Design and Management Systems for TPX have been developed and reviewed, and the project is beginning Preliminary Design.more » If adequately funded the construction project should be completed in the year 2000.« less
Cryogenic Fluid Film Bearing Tester Development Study
NASA Technical Reports Server (NTRS)
Scharrer, Joseph K. (Editor); Murphy, Brian T.; Hawkins, Lawrence A.
1993-01-01
Conceptual designs were developed for the determination of rotordynamic coefficients of cryogenic fluid film bearings. The designs encompassed the use of magnetic and conventional excitation sources as well as the use of magnetic bearings as support bearings. Test article configurations reviewed included overhung, floating housing, and fixed housing. Uncertainty and forced response analyses were performed to assess quality of data and suitability of each for testing a variety of fluid film bearing designs. Development cost and schedule estimates were developed for each design. Facility requirements were reviewed and compared with existing MSFC capability. The recommended configuration consisted of a fixed test article housing centrally located between two magnetic bearings. The magnetic bearings would also serve as the excitation source.
Tan, Judy Y; Campbell, Chadwick K; Tabrisky, Alyssa P; Siedle-Khan, Robert; Conroy, Amy A
2018-02-20
Among Black men who have sex with men (MSM), HIV incidence is disproportionately high and HIV care engagement is disproportionately low. There may be important opportunities to leverage the primary relationship to improve engagement in HIV care and treatment among Black MSM couples. Using dyadic qualitative analysis of semi-structured, one-on-one interviews, we explored dyadic aspects of HIV care engagement among 14 Black MSM couples in which at least one partner was HIV-positive and identified as a Black cisgender man. Findings showed that men varied in how involved they were in their HIV-positive partner's care and treatment, and in how they reciprocated their partner's involvement. Patterns of dyadic HIV care engagement supported a conceptual model of dyadic coordination that describes Black MSM relationships in terms of two conceptual dimensions of dyadic HIV care engagement, and guides future intervention designs with Black MSM couples.
Writing-to-Learn in Undergraduate Science Education: A Community-Based, Conceptually Driven Approach
Reynolds, Julie A.; Thaiss, Christopher; Katkin, Wendy; Thompson, Robert J.
2012-01-01
Despite substantial evidence that writing can be an effective tool to promote student learning and engagement, writing-to-learn (WTL) practices are still not widely implemented in science, technology, engineering, and mathematics (STEM) disciplines, particularly at research universities. Two major deterrents to progress are the lack of a community of science faculty committed to undertaking and applying the necessary pedagogical research, and the absence of a conceptual framework to systematically guide study designs and integrate findings. To address these issues, we undertook an initiative, supported by the National Science Foundation and sponsored by the Reinvention Center, to build a community of WTL/STEM educators who would undertake a heuristic review of the literature and formulate a conceptual framework. In addition to generating a searchable database of empirically validated and promising WTL practices, our work lays the foundation for multi-university empirical studies of the effectiveness of WTL practices in advancing student learning and engagement. PMID:22383613
From conceptual modeling to a map
NASA Astrophysics Data System (ADS)
Gotlib, Dariusz; Olszewski, Robert
2018-05-01
Nowadays almost every map is a component of the information system. Design and production of maps requires the use of specific rules for modeling information systems: conceptual, application and data modelling. While analyzing various stages of cartographic modeling the authors ask the question: at what stage of this process a map occurs. Can we say that the "life of the map" begins even before someone define its form of presentation? This question is particularly important at the time of exponentially increasing number of new geoinformation products. During the analysis of the theory of cartography and relations of the discipline to other fields of knowledge it has been attempted to define a few properties of cartographic modeling which distinguish the process from other methods of spatial modeling. Assuming that the map is a model of reality (created in the process of cartographic modeling supported by domain-modeling) the article proposes an analogy of the process of cartographic modeling to the scheme of conceptual modeling presented in ISO 19101 standard.
A conceptual prototype for the next-generation national elevation dataset
Stoker, Jason M.; Heidemann, Hans Karl; Evans, Gayla A.; Greenlee, Susan K.
2013-01-01
In 2012 the U.S. Geological Survey's (USGS) National Geospatial Program (NGP) funded a study to develop a conceptual prototype for a new National Elevation Dataset (NED) design with expanded capabilities to generate and deliver a suite of bare earth and above ground feature information over the United States. This report details the research on identifying operational requirements based on prior research, evaluation of what is needed for the USGS to meet these requirements, and development of a possible conceptual framework that could potentially deliver the kinds of information that are needed to support NGP's partners and constituents. This report provides an initial proof-of-concept demonstration using an existing dataset, and recommendations for the future, to inform NGP's ongoing and future elevation program planning and management decisions. The demonstration shows that this type of functional process can robustly create derivatives from lidar point cloud data; however, more research needs to be done to see how well it extends to multiple datasets.
NASA Astrophysics Data System (ADS)
Omoragbon, Amen
Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.
Conceptual Chemical Process Design for Sustainability.
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...
CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY
The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...
A Competence-Based Service for Supporting Self-Regulated Learning in Virtual Environments
ERIC Educational Resources Information Center
Nussbaumer, Alexander; Hillemann, Eva-Catherine; Gütl, Christian; Albert, Dietrich
2015-01-01
This paper presents a conceptual approach and a Web-based service that aim at supporting self-regulated learning in virtual environments. The conceptual approach consists of four components: 1) a self-regulated learning model for supporting a learner-centred learning process, 2) a psychological model for facilitating competence-based…
Icing Research Tunnel (IRT) Force Measurement System (FMS)
NASA Technical Reports Server (NTRS)
Roberts, Paul W.
2012-01-01
An Electronics Engineer at the Glenn Research Center (GRC), requested the NASA Engineering and Safety Center (NESC) provide technical support for an evaluation of the existing force measurement system (FMS) at the GRC's Icing Research Tunnel (IRT) with the intent of developing conceptual designs to improve the tunnel's force measurement capability in order to better meet test customer needs. This report contains the outcome of the NESC technical review.
Conceptual design study. Science and Applications Space Platform (SASP). Final briefing
NASA Technical Reports Server (NTRS)
1980-01-01
The modularity, shape, and size of the recommended platform concept offers a low investment, early option to demonstrate the system; flexibility to conservative growth; adaptability to great variety of multi or dedicated payload groups; and good dispersion and viewing freedom for payloads. Platform configuration effectively supports 80 to 85% of the NASA/OSS and OSTA payloads. The subsystem approaches recommended are based on cost effective distribution of functions.
Balsells, M; Barroca, B; Amdal, J R; Diab, Y; Becue, V; Serre, D
2013-01-01
Recent changes in cities and their environments, caused by rapid urbanisation and climate change, have increased both flood probability and the severity of flooding. Consequently, there is a need for all cities to adapt to climate and socio-economic changes by developing new strategies for flood risk management. Following a risk paradigm shift from traditional to more integrated approaches, and considering the uncertainties of future urban development, one of the main emerging tasks for city managers becomes the development of resilient cities. However, the meaning of the resilience concept and its operability is still not clear. The goal of this research is to study how urban engineering and design disciplines can improve resilience to floods in urban neighbourhoods. This paper presents the conceptual Spatial Decision Support System (DS3) model which we consider a relevant tool to analyse and then implement resilience into neighbourhood design. Using this model, we analyse and discuss alternative stormwater management options at the neighbourhood scale in two specific areas: Rotterdam and New Orleans. The results obtained demonstrate that the DS3 model confirmed in its framework analysis that stormwater management systems can positively contribute to the improved flood resilience of a neighbourhood.
Magnetic nanoparticle-supported glutathione: a conceptually sustainable organocatalyst
A conceptually novel nanoparticle-supported and magnetically recoverable organocatalyst has been developed, which is readily prepared from inexpensive starting materials in a truly sustainable manner; which catalyzes Paal-Knorr reaction with high yield in pure aqueous medium that...
Zhang, Melvyn W B; Ho, Roger C M
2017-01-01
Smartphones and their accompanying applications are currently widely utilized in various healthcare interventions. Prior to the deployment of these tools for healthcare intervention, typically, proof of concept feasibility studies, as well as randomized trials are conducted to determine that these tools are efficacious prior to their actual implementation. In the field of psychiatry, most of the current interventions seek to compare smartphone based intervention against conventional care. There remains a paucity of research evaluating different forms of interventions using a single smartphone application. In the field of nutrition, there has been recent pioneering research demonstrating how a multi-phasic randomized controlled trial could be conducted using a single smartphone application. Despite the innovativeness of the previous smartphone conceptualization, there remains a paucity of technical information underlying the conceptualization that would support a multi-phasic interventional trial. It is thus the aim of the current technical note to share insights into an innovative server design that would enable the delivery of multi-phasic trials.
NASA Technical Reports Server (NTRS)
Bailey, William J.; Weiner, Stephen P.; Beekman, Douglas H.; Dennis, Mark F.; Martin, Timothy A.
1990-01-01
The Cryogenic On-Orbit Liquid Depot Storage, Acquisition, and Transfer Satellite (COLD-SAT) is an experimental spacecraft launched from an expendable launch vehicle which is designed to investigate the systems and technologies required for efficient, effective, and reliable management of cryogenic fluid in the reduced gravity space environment. The COLD-SAT program will provide the necessary data base and provide low-g proving of fluid and thermal models of cryogenic storage, transfer, and resupply concepts and processes. A conceptual approach was developed and an overview of the results of the 24 month COLD-SAT Phase A feasibility is described which includes: (1) a definition of the technology needs and the accompanying experimental 3 month baseline mission; (2) a description of the experiment subsystem, major features and rationale for satisfaction of primary and secondary experiment requirements using liquid hydrogen as the test fluid; and (3) a presentation of the conceptual design of the COLD-SAT spacecraft subsystems which support the on-orbit experiment with emphasis on areas of greatest challenge.
Conceptual design study of a Harrier V/STOL research aircraft
NASA Technical Reports Server (NTRS)
Bode, W. E.; Berger, R. L.; Elmore, G. A.; Lacey, T. R.
1978-01-01
MCAIR recently completed a conceptual design study to define modification approaches to, and derive planning prices for the conversion of a two place Harrier to a V/STOL control, display and guidance research aircraft. Control concepts such as rate damping, attitude stabilization, velocity command, and cockpit controllers are to be demonstrated. Display formats will also be investigated, and landing, navigation and guidance systems flight tested. The rear cockpit is modified such that it can be quickly adapted to faithfully simulate the controls, displays and handling qualities of a Type A or Type B V/STOL. The safety pilot always has take command capability. The modifications studied fall into two categories: basic modifications and optional modifications. Technical descriptions of the basic modifications and of the optional modifications are presented. The modification plan and schedule as well as the test plan and schedule are presented. The failure mode and effects analysis, aircraft performance, aircraft weight, and aircraft support are discussed.
Student Use of Scaffolding Software: Relationships with Motivation and Conceptual Understanding
NASA Astrophysics Data System (ADS)
Butler, Kyle A.; Lumpe, Andrew
2008-10-01
This study was designed to theoretically articulate and empirically assess the role of computer scaffolds. In this project, several examples of educational software were developed to scaffold the learning of students performing high level cognitive activities. The software used in this study, Artemis, focused on scaffolding the learning of students as they performed information seeking activities. As 5th grade students traveled through a project-based science unit on photosynthesis, researchers used a pre-post design to test for both student motivation and student conceptual understanding of photosynthesis. To measure both variables, a motivation survey and three methods of concept map analysis were used. The student use of the scaffolding features was determined using a database that tracked students' movement between scaffolding tools. The gain scores of each dependent variable was then correlated to the students' feature use (time and hits) embedded in the Artemis Interface. This provided the researchers with significant relationships between the scaffolding features represented in the software and student motivation and conceptual understanding of photosynthesis. There were a total of three significant correlations in comparing the scaffolding use by hits (clicked on) with the dependent variables and only one significant correlation when comparing the scaffold use in time. The first significant correlation ( r = .499, p < .05) was between the saving/viewing features hits and the students' task value. This correlation supports the assumption that there is a positive relationship between the student use of the saving/viewing features and the students' perception of how interesting, how important, and how useful the task is. The second significant correlation ( r = 0.553, p < 0.01) was between the searching features hits and the students' self-efficacy for learning and performance. This correlation supports the assumption that there is a positive relationship between the student use of the searching features and the students' perception of their ability to accomplish a task as well as their confidence in their skills to perform that task. The third significant correlation ( r = 0.519, p < 0.05) was between the collaborative features hits and the students' essay performance scores. This correlation supports the assumption that there is a positive relationship between the student use of the collaborative features and the students' ability to perform high cognitive tasks. Finally, the last significant correlation ( r = 0.576, p < 0.01) was between the maintenance features time and the qualitative analysis of the concept maps. This correlation supports the assumption that there is a positive relationship between the student use of the maintenance features and student conceptual understanding of photosynthesis.
The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Conceptual design of a laser fusion power plant. Part I. An integrated facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less
Roberts, Nia; Parker, Michael
2015-01-01
There is increasing support for sharing individual-level data generated by medical and public health research. This scoping review of empirical research and conceptual literature examined stakeholders’ perspectives of ethical best practices in data sharing, particularly in low- and middle-income settings. Sixty-nine empirical and conceptual articles were reviewed, of which, only five were empirical studies and eight were conceptual articles focusing on low- and middle-income settings. We conclude that support for sharing individual-level data is contingent on the development and implementation of international and local policies and processes to support ethical best practices. Further conceptual and empirical research is needed to ensure data sharing policies and processes in low- and middle-income settings are appropriately informed by stakeholders’ perspectives. PMID:26297745
Voldbjerg, Siri Lygum; Laugesen, Britt; Bahnsen, Iben Bøgh; Jørgensen, Lone; Sørensen, Ingrid Maria; Grønkjaer, Mette; Sørensen, Erik Elgaard
2018-06-01
To describe and discuss the process of integrating the Fundamentals of Care framework in a baccalaureate nursing education at a School of Nursing in Denmark. Nursing education plays an essential role in educating nurses to work within healthcare systems in which a demanding workload on nurses results in fundamental nursing care being left undone. Newly graduated nurses often lack knowledge and skills to meet the challenges of delivering fundamental care in clinical practice. To develop nursing students' understanding of fundamental nursing, the conceptual Fundamentals of Care framework has been integrated in nursing education at a School of Nursing in Denmark. Discursive paper using an adjusted descriptive case study design for describing and discussing the process of integrating the conceptual Fundamentals of Care Framework in nursing education. The process of integrating the Fundamentals of Care framework is illuminated through a description of the context, in which the process occurs including the faculty members, lectures, case-based work and simulation laboratory in nursing education. Based on this description, opportunities such as supporting a holistic approach to an evidence-based integrative patient care and challenges such as scepticism among the faculty are discussed. It is suggested how integration of Fundamentals of Care Framework in lectures, case-based work and simulation laboratory can make fundamental nursing care more explicit in nursing education, support critical thinking and underline the relevance of evidence-based practice. The process relies on a supportive context, a well-informed and engaged faculty, and continuous reflections on how the conceptual framework can be integrated. Integrating the Fundamentals of Care framework can support nursing students' critical thinking and reflection on what fundamental nursing care is and requires and eventually educate nurses in providing evidence-based fundamental nursing care. © 2018 John Wiley & Sons Ltd.
How to practice person-centred care: A conceptual framework.
Santana, Maria J; Manalili, Kimberly; Jolley, Rachel J; Zelinsky, Sandra; Quan, Hude; Lu, Mingshan
2018-04-01
Globally, health-care systems and organizations are looking to improve health system performance through the implementation of a person-centred care (PCC) model. While numerous conceptual frameworks for PCC exist, a gap remains in practical guidance on PCC implementation. Based on a narrative review of the PCC literature, a generic conceptual framework was developed in collaboration with a patient partner, which synthesizes evidence, recommendations and best practice from existing frameworks and implementation case studies. The Donabedian model for health-care improvement was used to classify PCC domains into the categories of "Structure," "Process" and "Outcome" for health-care quality improvement. The framework emphasizes the structural domain, which relates to the health-care system or context in which care is delivered, providing the foundation for PCC, and influencing the processes and outcomes of care. Structural domains identified include: the creation of a PCC culture across the continuum of care; co-designing educational programs, as well as health promotion and prevention programs with patients; providing a supportive and accommodating environment; and developing and integrating structures to support health information technology and to measure and monitor PCC performance. Process domains describe the importance of cultivating communication and respectful and compassionate care; engaging patients in managing their care; and integration of care. Outcome domains identified include: access to care and Patient-Reported Outcomes. This conceptual framework provides a step-wise roadmap to guide health-care systems and organizations in the provision PCC across various health-care sectors. © 2017 The Authors Health Expectations published by John Wiley & Sons Ltd.
Savini, Serenella; Buck, Harleah G; Dickson, Victoria Vaughan; Simeone, Silvio; Pucciarelli, Gianluca; Fida, Roberta; Matarese, Maria; Alvaro, Rosaria; Vellone, Ercole
2015-03-01
To describe a new conceptual framework and the research protocol of a study designed to examine the quality of life in stroke survivor-caregiver dyads. Stroke has a significant impact on the patient-caregiver dyad. Few studies have been guided by a specific conceptual framework which considers the interactions among pre-existing situations prior to stroke, the new situation caused by the stroke and the moderating effects of environmental and caregiver-related variables. Longitudinal study. A sample of stroke survivor-caregiver dyads will be enrolled at patient discharge from rehabilitation hospitals and will be surveyed every 3 months for 1-year. Hypotheses generated from the conceptual framework will test predictors, mediators and moderators of stroke survivor and caregiver quality of life from the pre-existing situation prior to the stroke, the new situation mediation poststroke and situation moderators. The study is supported by a grant from the Centre of Excellence for Nursing Scholarship, Rome, December 2013. This study seeks to identify variables in the pre-existing situation prior to the stroke (e.g. living condition), the new situation mediation poststroke (e.g. type of stroke and caregiver burden) as well as situation moderators (e.g. social support) that influence stroke survivor-caregiver dyad's quality of life across the stroke trajectory. Also, the study will inform clinical practice and research by identifying variables that are potentially modifiable and therefore amenable to intervention. The proposed framework will also be helpful for future research focused on stroke survivor-caregiver dyads. © 2014 John Wiley & Sons Ltd.
Aircraft Conceptual Design Using Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.
2010-01-01
Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.
Kastner, Monika; Li, Jamy; Lottridge, Danielle; Marquez, Christine; Newton, David; Straus, Sharon E
2010-07-22
Osteoporosis affects over 200 million people worldwide, and represents a significant cost burden. Although guidelines are available for best practice in osteoporosis, evidence indicates that patients are not receiving appropriate diagnostic testing or treatment according to guidelines. The use of clinical decision support systems (CDSSs) may be one solution because they can facilitate knowledge translation by providing high-quality evidence at the point of care. Findings from a systematic review of osteoporosis interventions and consultation with clinical and human factors engineering experts were used to develop a conceptual model of an osteoporosis tool. We conducted a qualitative study of focus groups to better understand physicians' perceptions of CDSSs and to transform the conceptual osteoporosis tool into a functional prototype that can support clinical decision making in osteoporosis disease management at the point of care. The conceptual design of the osteoporosis tool was tested in 4 progressive focus groups with family physicians and general internists. An iterative strategy was used to qualitatively explore the experiences of physicians with CDSSs; and to find out what features, functions, and evidence should be included in a working prototype. Focus groups were conducted using a semi-structured interview guide using an iterative process where results of the first focus group informed changes to the questions for subsequent focus groups and to the conceptual tool design. Transcripts were transcribed verbatim and analyzed using grounded theory methodology. Of the 3 broad categories of themes that were identified, major barriers related to the accuracy and feasibility of extracting bone mineral density test results and medications from the risk assessment questionnaire; using an electronic input device such as a Tablet PC in the waiting room; and the importance of including well-balanced information in the patient education component of the osteoporosis tool. Suggestions for modifying the tool included the addition of a percentile graph showing patients' 10-year risk for osteoporosis or fractures, and ensuring that the tool takes no more than 5 minutes to complete. Focus group data revealed the facilitators and barriers to using the osteoporosis tool at the point of care so that it can be optimized to aid physicians in their clinical decision making.
2010-01-01
Background Osteoporosis affects over 200 million people worldwide, and represents a significant cost burden. Although guidelines are available for best practice in osteoporosis, evidence indicates that patients are not receiving appropriate diagnostic testing or treatment according to guidelines. The use of clinical decision support systems (CDSSs) may be one solution because they can facilitate knowledge translation by providing high-quality evidence at the point of care. Findings from a systematic review of osteoporosis interventions and consultation with clinical and human factors engineering experts were used to develop a conceptual model of an osteoporosis tool. We conducted a qualitative study of focus groups to better understand physicians' perceptions of CDSSs and to transform the conceptual osteoporosis tool into a functional prototype that can support clinical decision making in osteoporosis disease management at the point of care. Methods The conceptual design of the osteoporosis tool was tested in 4 progressive focus groups with family physicians and general internists. An iterative strategy was used to qualitatively explore the experiences of physicians with CDSSs; and to find out what features, functions, and evidence should be included in a working prototype. Focus groups were conducted using a semi-structured interview guide using an iterative process where results of the first focus group informed changes to the questions for subsequent focus groups and to the conceptual tool design. Transcripts were transcribed verbatim and analyzed using grounded theory methodology. Results Of the 3 broad categories of themes that were identified, major barriers related to the accuracy and feasibility of extracting bone mineral density test results and medications from the risk assessment questionnaire; using an electronic input device such as a Tablet PC in the waiting room; and the importance of including well-balanced information in the patient education component of the osteoporosis tool. Suggestions for modifying the tool included the addition of a percentile graph showing patients' 10-year risk for osteoporosis or fractures, and ensuring that the tool takes no more than 5 minutes to complete. Conclusions Focus group data revealed the facilitators and barriers to using the osteoporosis tool at the point of care so that it can be optimized to aid physicians in their clinical decision making. PMID:20650007
Levesque, L; Cossette, S
1991-01-01
Many people suffering from dementia live at home, in spite of the demands that such a situation puts on those who care for them. The role of helper is usually assumed by a particular family member who is therefore more likely to feel the impact of the caregiving responsibility. Researchers are concerned with the relationship between the well-being of these helpers and their informal social support. This article presents a critical review of 21 studies of that relationship. The various dimensions of social support considered in the studies are analyzed, as are the methodological limits. A discussion of findings about the relationships between social support and well-being completes the analysis. It appears that researchers have a limited conception of social support and assess only a few of its many dimensions in a variety of ways. Very few authors explicitly specify underlying assumptions or a theory relevant to their conceptualization of social support. The weakness and the diversity of this conceptualization are reflected in the measurement tools which consist of a few ad hoc questions on social support in nearly 50% of the studies. Few studies consider the support availability, duration, conflict, and reciprocity. The buffering effect model of support is examined in one study. Inadequate sample size, unrepresentative samples, and lack of control in regard to confounding variables are among the methodological problems identified. When researchers use an evaluative approach to measure social support, the relationships between support and well-being are more often significant than when a descriptive approach is used. In future studies, researchers should be careful to better articulate the theoretical notions proposed in studies on caring for a family member with dementia at home with those coming from studies on social support in general. It is important for researchers to strengthen their study design and to carry out longitudinal studies; they must also try to understand how the influence of society works. From this perspective, one avenue for the future might involve studying the sequence of relationships between stress, support, coping strategies, and well-being. This is all the more important because at the present time certain studies on the caring of persons with dementia are based on a conceptual framework of stress. Such a framework considers support as a mediating factor.
The methodology of database design in organization management systems
NASA Astrophysics Data System (ADS)
Chudinov, I. L.; Osipova, V. V.; Bobrova, Y. V.
2017-01-01
The paper describes the unified methodology of database design for management information systems. Designing the conceptual information model for the domain area is the most important and labor-intensive stage in database design. Basing on the proposed integrated approach to design, the conceptual information model, the main principles of developing the relation databases are provided and user’s information needs are considered. According to the methodology, the process of designing the conceptual information model includes three basic stages, which are defined in detail. Finally, the article describes the process of performing the results of analyzing user’s information needs and the rationale for use of classifiers.
NASA Astrophysics Data System (ADS)
Fang, Su-Chi; Hsu, Ying-Shao; Hsu, Wei Hsiu
2016-07-01
The study explored how to best use scaffolds for supporting students' inquiry practices in computer-supported learning environments. We designed a series of inquiry units assisted with three versions of written inquiry prompts (generic and context-specific); that is, three scaffold-fading conditions: implicit, explicit, and fading. We then examined how the three scaffold-fading conditions influenced students' conceptual understanding, understanding of scientific inquiry, and inquiry abilities. Three grade-10 classes (N = 105) participated in this study; they were randomly assigned to and taught in the three conditions. Data-collection procedures included a pretest-posttest approach and in-depth observations of the target students. The findings showed that after these inquiry units, all of the students exhibited significant learning gains in conceptual knowledge and performed better inquiry abilities regardless of which condition was used. The explicit and fading conditions were more effective in enhancing students' understanding of scientific inquiry. The fading condition tended to better support the students' development of inquiry abilities and help transfer these abilities to a new setting involving an independent socioscientific task about where to build a dam. The results suggest that fading plays an essential role in enhancing the effectiveness of scaffolds.
Henderson, Rebecca J; Johnson, Andrew; Moodie, Sheila
2014-12-01
Parent-to-parent support for parents with children who are deaf or hard of hearing (D/HH) is identified as an important component of Early Hearing Detection and Intervention (EHDI) programs for children with hearing loss. The specific aim of this review was to identify the constructs and components of parent-to-parent support for parents of children who are D/HH. An extensive scoping literature review identified 39 peer-reviewed articles published from 2000 to 2014. Studies were selected and reviewed based on standardized procedures. Data were identified, extracted, and organized into libraries of thematic and descriptive content. A conceptual framework of parent-to-parent support for parents of children who are D/HH was developed and presented in a comprehensive, bidirectional informational graphic. The constructs and components of the conceptual framework are (a) well-being: parent, family, and child; (b) knowledge: advocacy, system navigation, and education; and (c) empowerment: confidence and competence. The findings from this scoping review led to the development of a structured conceptual framework of parent-to-parent support for parents of children who are D/HH. The conceptual framework provides an important opportunity to explore and clearly define the vital contribution of parents in EHDI programs.
NASA Astrophysics Data System (ADS)
Bottino, Rosa Maria; Ott, Michela; Tavella, Mauro
This paper reports on the research work carried out by the authors in the framework of the IAMEL project, supported by the Italian Ministry of Education. The project was mainly aimed at enhancing the teaching/learning of mathematics by providing teachers with specific e-learning platforms endowed with a number of dedicated tools supporting the setting-up and the carrying-out of specific in-field experiments. One of the main results of the project was the development of a methodology to carry out the design of educational interventions; such a methodology was based on a conceptual goal-oriented framework and on different authoring tools among which the IAMEL system, an online tool fully described in the paper that allows both the production and the sharing of pedagogical plans and consents the design and the modeling of educational interventions with different levels of granularity and scope.
Design Studios in Instructional Design and Technology: What Are the Possibilities?
ERIC Educational Resources Information Center
Knowlton, Dave S.
2016-01-01
Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…
ATHLETE as a Mobile ISRU and Regolith Construction Platform
NASA Technical Reports Server (NTRS)
Howe, A. Scott; Wilcox, Brian; Barmatz, Martin; Voecks, Gerald
2016-01-01
The All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) robotic mobility platform can provide precision positioning and mobility for site preparation and regolith construction needs. ATHLETE is a multi-use platform designed to use swap-out tools and implements that can be applied to any number of tasks that need precision limb manipulation or mobility. Major capabilities include off-loading habitats, transporting surface assets, robotically assembling outposts from multiple mission manifests, and supporting science and technology objectives. This paper describes conceptual approaches for supporting NASA regolith construction research, such as additive construction, modular brick and panel factory, and mobile ISRU platform.
NASA Technical Reports Server (NTRS)
1981-01-01
The objectives, procedures, accomplishments, plans, and ultimate uses of information from current projects at the Mississippi Remote Sensing Center are discussed for the following applications: (1) land use planning; (2) strip mine inventory and reclamation; (3) biological management for white tailed deer; (4) forest habitats in potential lignite areas; (5) change discrimination in gravel operations; (6) discrimination of freshwater wetlands for inventory and monitoring; and (7) remote sensing data analysis support systems. The initiation of a conceptual design for a LANDSAT based, state wide information system is proposed.
ERIC Educational Resources Information Center
Soenens, Bart; Vansteenkiste, Maarten; Lens, Willy; Luyckx, Koen; Goossens, Luc; Beyers, Wim; Ryan, Richard M.
2007-01-01
In current research on parenting, 2 ways of conceptualizing perceived parental autonomy support can be distinguished. Parental autonomy support can be defined in terms of promotion of independence (PI) or in terms of promotion of volitional functioning (PVF). This study aimed to establish the empirical distinctiveness of both conceptualizations…
AI applications to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Chalfan, Kathryn M.
1990-01-01
This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1992-01-01
The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
Weisman, David
2010-01-01
Face-to-face bioinformatics courses commonly include a weekly, in-person computer lab to facilitate active learning, reinforce conceptual material, and teach practical skills. Similarly, fully-online bioinformatics courses employ hands-on exercises to achieve these outcomes, although students typically perform this work offsite. Combining a face-to-face lecture course with a web-based virtual laboratory presents new opportunities for collaborative learning of the conceptual material, and for fostering peer support of technical bioinformatics questions. To explore this combination, an in-person lecture-only undergraduate bioinformatics course was augmented with a remote web-based laboratory, and tested with a large class. This study hypothesized that the collaborative virtual lab would foster active learning and peer support, and tested this hypothesis by conducting a student survey near the end of the semester. Respondents broadly reported strong benefits from the online laboratory, and strong benefits from peer-provided technical support. In comparison with traditional in-person teaching labs, students preferred the virtual lab by a factor of two. Key aspects of the course architecture and design are described to encourage further experimentation in teaching collaborative online bioinformatics laboratories. Copyright © 2010 International Union of Biochemistry and Molecular Biology, Inc.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef
2004-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.
NASA Technical Reports Server (NTRS)
Sager, R. E.; Cox, D. W.
1983-01-01
Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.
NASA Technical Reports Server (NTRS)
1986-01-01
The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.
Polymeric film application for phase change heat transfer
NASA Astrophysics Data System (ADS)
Bart, Hans-Jörg; Dreiser, Christian
2018-06-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
NASA Technical Reports Server (NTRS)
Bailey, Andrea; Kietzman, John; King, Shirlyn; Stover, Rae; Wegner, Torsten
1992-01-01
The objective of this project was to design an onboard operator station for the conceptual Lunar Work Vehicle (LWV). The LWV would be used in the colonization of a lunar outpost. The details that follow, however, are for an Earth-bound model. The operator station is designed to be dimensionally correct for an astronaut wearing the current space shuttle EVA suit (which include life support). The proposed operator station will support and restrain an astronaut as well as to provide protection from the hazards of vehicle rollover. The threat of suit puncture is eliminated by rounding all corners and edges. A step-plate, located at the front of the vehicle, provides excellent ease of entry and exit. The operator station weight requirements are met by making efficient use of rigid members, semi-rigid members, and woven fabrics.
Cost containment and KSC Shuttle facilities or cost containment and aerospace construction
NASA Technical Reports Server (NTRS)
Brown, J. A.
1985-01-01
This presentation has the objective to show examples of Cost Containment of Aerospace Construction at Kennedy Space Center (KSC), taking into account four major levels of Project Development of the Space Shuttle Facilities. The levels are related to conceptual criteria and site selection, the design of construction and ground support equipment, the construction of facilities and ground support equipment (GSE), and operation and maintenance. Examples of cost containment are discussed. The continued reduction of processing time from landing to launching represents a demonstration of the success of the cost containment methods. Attention is given to the factors which led to the selection of KSC, the use of Cost Engineering, the employment of the Construction Management Concept, and the use of Computer Aided Design/Drafting.
Polymeric film application for phase change heat transfer
NASA Astrophysics Data System (ADS)
Bart, Hans-Jörg; Dreiser, Christian
2018-01-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
A method for scenario-based risk assessment for robust aerospace systems
NASA Astrophysics Data System (ADS)
Thomas, Victoria Katherine
In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.
Buried waste integrated demonstration human engineered control station. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-09-01
This document describes the Human Engineered Control Station (HECS) project activities including the conceptual designs. The purpose of the HECS is to enhance the effectiveness and efficiency of remote retrieval by providing an integrated remote control station. The HECS integrates human capabilities, limitations, and expectations into the design to reduce the potential for human error, provides an easy system to learn and operate, provides an increased productivity, and reduces the ultimate investment in training. The overall HECS consists of the technology interface stations, supporting engineering aids, platform (trailer), communications network (broadband system), and collision avoidance system.
Statechart-based design controllers for FPGA partial reconfiguration
NASA Astrophysics Data System (ADS)
Łabiak, Grzegorz; Wegrzyn, Marek; Rosado Muñoz, Alfredo
2015-09-01
Statechart diagram and UML technique can be a vital part of early conceptual modeling. At the present time there is no much support in hardware design methodologies for reconfiguration features of reprogrammable devices. Authors try to bridge the gap between imprecise UML model and formal HDL description. The key concept in author's proposal is to describe the behavior of the digital controller by statechart diagrams and to map some parts of the behavior into reprogrammable logic by means of group of states which forms sequential automaton. The whole process is illustrated by the example with experimental results.
The transportation depot: An orbiting vehicle support facility
NASA Technical Reports Server (NTRS)
Kaszubowski, Martin J.; Ayers, J. Kirk
1992-01-01
This paper describes the details of an effort to produce conceptual designs for an orbiting platform, called a transportation depot, to handle assembly and processing of lunar, Martian, and related vehicles. High-level requirements for such a facility were established, and several concepts were developed to meet those requirements. By showing that the critical rigid-body momentum characteristics of each concept are similar to those of the dual-keel space station, some insight was gained about the controllability and utility of this type of facility. Finally, several general observations were made that highlight the advantages and disadvantages of particular design features.
ERIC Educational Resources Information Center
Baser, Mustafa; Durmus, Soner
2010-01-01
The purpose of this study was to compare the changes in conceptual understanding of Direct Current Electricity (DCE) in virtual (VLE) and real laboratory environment (RLE) among pre-service elementary school teachers. A pre- and post-test experimental design was used with two different groups. One of the groups was randomly assigned to VLE (n =…
Application of remote sensing to state and regional problems
NASA Technical Reports Server (NTRS)
Miller, W. F.; Clark, J. R.; Solomon, J. L.; Duffy, B.; Minchew, K.; Wright, L. H. (Principal Investigator)
1981-01-01
The objectives, accomplishments, and future plans of several LANDSAT applications projects in Mississippi are discussed. The applications include land use planning in Lowandes County, strip mine inventory and reclamation, white tailed deer habitat evaluation, data analysis support systems, discrimination of forest habitats in potential lignite areas, changes in gravel operations, and determination of freshwater wetlands for inventory and monitoring. In addition, a conceptual design for a LANDSAT based information system is discussed.
Hu, Zhaolong; Ho, James C S; Nallani, Madhavan
2017-08-01
A plethora of polymer-based scaffolds have been designed to facilitate biochemical and biophysical investigation of membrane proteins, with a common goal to stabilize and present them in a functional format. In this review, an up-to-date account of such polymer-based supports and incorporation methodologies are presented. Furthermore, conceptual and imminent technological advances, with associated technical challenges are proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.
Crew systems and architectural considerations for first lunar surface return missions
NASA Astrophysics Data System (ADS)
Winisdoerffer, F.; Ximenes, S.
1992-08-01
The design requirements for the habitability of the pressurized volumes of a typical first manned lander are presented. Attention is given to providing dual habitation/exploration services (EVA/IVA), supporting the separation of the surface/flight functions, allowing growth potential based on site characteristics, and in situ resources utilization. Lunar lander conceptual diagrams are provided for the basic system architecture, automatic cargo delivery, the piloted crew module, and the pressurized volumes.
2014-11-01
Kullback , S., & Leibler , R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79...cognitive challenges of sensemaking only informally using conceptual notions like "framing" and "re-framing", which are not sufficient to support T&E in...appropriate frame(s) from memory. Assess the Frame: Evaluate the quality of fit between data and frame. Generate Hypotheses: Use the current
NASA Technical Reports Server (NTRS)
1979-01-01
A plan is presented for the evolutionary development and deployment of the power module system with performance capabilities required to support the 1983 to 1990 user requirements. Aspects summarized include program functional, operational, and hardware elements; program work breakdown and specification items; development plans and schedules for developmental and technology milestones; test concepts and timeliness; and ground and orbit operations concepts.
Self-Organized Terrorist-Counterterrorist Adaptive Coevolutions, Part 1: A Conceptual Design
2005-02-01
nodes. Imple- mented in Delphi, it runs in the Windows environment and is being developed by Vladimir Batagelj and Andrej Mrvar . Pajek supports all...Post, January 13, 2002. [22] J. M. Epstein and Robert L. Axtell, Growing Artificial Societies: Social Science from the Bottom Up, MIT Press, 1996 . [23...Mathematical Background and Technical Sourcebook, Center for Naval Analyses Information Manual CIM-461, Unclassified, 1996 . Available on-line, in Adobe’s
Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1
NASA Technical Reports Server (NTRS)
1986-01-01
Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.
Modular System to Enable Extravehicular Activity
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2012-01-01
The ability to perform extravehicular activity (EVA), both human and robotic, has been identified as a key component to space missions to support such operations as assembly and maintenance of space systems (e.g. construction and maintenance of the International Space Station), and unscheduled activities to repair an element of the transportation and habitation systems that can only be accessed externally and via unpressurized areas. In order to make human transportation beyond lower Earth orbit (LEO) practical, efficiencies must be incorporated into the integrated transportation systems to reduce system mass and operational complexity. Affordability is also a key aspect to be considered in space system development; this could be achieved through commonality, modularity and component reuse. Another key aspect identified for the EVA system was the ability to produce flight worthy hardware quickly to support early missions and near Earth technology demonstrations. This paper details a conceptual architecture for a modular EVA system that would meet these stated needs for EVA capability that is affordable, and that could be produced relatively quickly. Operational concepts were developed to elaborate on the defined needs, and to define the key capabilities, operational and design constraints, and general timelines. The operational concept lead to a high level design concept for a module that interfaces with various space transportation elements and contains the hardware and systems required to support human and telerobotic EVA; the module would not be self-propelled and would rely on an interfacing element for consumable resources. The conceptual architecture was then compared to EVA Systems used in the Space Shuttle Orbiter, on the International Space Station to develop high level design concepts that incorporate opportunities for cost savings through hardware reuse, and quick production through the use of existing technologies and hardware designs. An upgrade option was included to make use of the developing suit port technologies.
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
A Framework for Designing Scaffolds That Improve Motivation and Cognition
Belland, Brian R.; Kim, ChanMin; Hannafin, Michael J.
2013-01-01
A problematic, yet common, assumption among educational researchers is that when teachers provide authentic, problem-based experiences, students will automatically be engaged. Evidence indicates that this is often not the case. In this article, we discuss (a) problems with ignoring motivation in the design of learning environments, (b) problem-based learning and scaffolding as one way to help, (c) how scaffolding has strayed from what was originally equal parts motivational and cognitive support, and (d) a conceptual framework for the design of scaffolds that can enhance motivation as well as cognitive outcomes. We propose guidelines for the design of computer-based scaffolds to promote motivation and engagement while students are solving authentic problems. Remaining questions and suggestions for future research are then discussed. PMID:24273351
Assessment of Scaled Rotors for Wind Tunnel Experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maniaci, David Charles; Kelley, Christopher Lee; Chiu, Phillip
2015-07-01
Rotor design and analysis work has been performed to support the conceptualization of a wind tunnel test focused on studying wake dynamics. This wind tunnel test would serve as part of a larger model validation campaign that is part of the Department of Energy Wind and Water Power Program’s Atmosphere to electrons (A2e) initiative. The first phase of this effort was directed towards designing a functionally scaled rotor based on the same design process and target full-scale turbine used for new rotors for the DOE/SNL SWiFT site. The second phase focused on assessing the capabilities of an already available rotor,more » the G1, designed and built by researchers at the Technical University of München.« less
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
Fiore, Stephen M.; Wiltshire, Travis J.
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences. PMID:27774074
Fiore, Stephen M; Wiltshire, Travis J
2016-01-01
In this paper we advance team theory by describing how cognition occurs across the distribution of members and the artifacts and technology that support their efforts. We draw from complementary theorizing coming out of cognitive engineering and cognitive science that views forms of cognition as external and extended and integrate this with theorizing on macrocognition in teams. Two frameworks are described that provide the groundwork for advancing theory and aid in the development of more precise measures for understanding team cognition via focus on artifacts and the technologies supporting their development and use. This includes distinctions between teamwork and taskwork and the notion of general and specific competencies from the organizational sciences along with the concepts of offloading and scaffolding from the cognitive sciences. This paper contributes to the team cognition literature along multiple lines. First, it aids theory development by synthesizing a broad set of perspectives on the varied forms of cognition emerging in complex collaborative contexts. Second, it supports research by providing diagnostic guidelines to study how artifacts are related to team cognition. Finally, it supports information systems designers by more precisely describing how to conceptualize team-supporting technology and artifacts. As such, it provides a means to more richly understand process and performance as it occurs within sociotechnical systems. Our overarching objective is to show how team cognition can both be more clearly conceptualized and more precisely measured by integrating theory from cognitive engineering and the cognitive and organizational sciences.
Assessment of a Hospital Palliative Care Unit (HPCU) for Cancer Patients; A Conceptual Framework.
Rouhollahi, Mohammad Reza; Saghafinia, Masoud; Zandehdel, Kazem; Motlagh, Ali Ghanbari; Kazemian, Ali; Mohagheghi, Mohammad Ali; Tahmasebi, Mamak
2015-01-01
The first hospital palliative care unit (HPCU) in Iran (FARS-HPCU) has been established in 2008 in the Cancer Institute, which is the largest referral cancer center in the country. We attempted to assess the performance of the HPCU based on a comprehensive conceptual framework. The main aim of this study was to develop a conceptual framework for assessment of the HPCU performances through designing a value chain in line with the goals and the main processes (core and support). We collected data from a variety of sources, including international guidelines, international best practices, and expert opinions in the country and compared them with national policies and priorities. We also took into consideration the trend of the HPCU development in the Cancer Institute of Iran. Through benchmarking the gap area with the performance standards, some recommendations for better outcome are proposed. The framework for performance assessment consisted of 154 process indicators (PIs), based on which the main stakeholders of the HPCU (including staff, patients, and families) offered their scoring. The outcome revealed the state of the processes as well as the gaps. Despite a significant improvement in many processes and indicators, more development in the comprehensive and integrative aspects of FARS-HPCU performance is required. Consideration of all supportive and palliative requirements of the patients through interdisciplinary and collaborative approaches is recommended.
Hollands, Gareth J; Shemilt, Ian; Marteau, Theresa M; Jebb, Susan A; Kelly, Michael P; Nakamura, Ryota; Suhrcke, Marc; Ogilvie, David
2013-12-21
The idea that behaviour can be influenced at population level by altering the environments within which people make choices (choice architecture) has gained traction in policy circles. However, empirical evidence to support this idea is limited, especially its application to changing health behaviour. We propose an evidence-based definition and typology of choice architecture interventions that have been implemented within small-scale micro-environments and evaluated for their effects on four key sets of health behaviours: diet, physical activity, alcohol and tobacco use. We argue that the limitations of the evidence base are due not simply to an absence of evidence, but also to a prior lack of definitional and conceptual clarity concerning applications of choice architecture to public health intervention. This has hampered the potential for systematic assessment of existing evidence. By seeking to address this issue, we demonstrate how our definition and typology have enabled systematic identification and preliminary mapping of a large body of available evidence for the effects of choice architecture interventions. We discuss key implications for further primary research, evidence synthesis and conceptual development to support the design and evaluation of such interventions. This conceptual groundwork provides a foundation for future research to investigate the effectiveness of choice architecture interventions within micro-environments for changing health behaviour. The approach we used may also serve as a template for mapping other under-explored fields of enquiry.
Conceptual design studies of control and instrumentation systems for ignition experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholson, P.J.; Dewolf, J.B.; Heinemann, P.C.
1978-03-01
Studies at the Charles Stark Draper Laboratory in the past year were a continuation of prior studies of control and instrumentation systems for current and next generation Tokomaks. Specifically, the FY 77 effort has focused on the following two main efforts: (1) control requirements--(a) defining and evolving control requirements/concepts for a prototype experimental power reactor(s), and (b) defining control requirements for diverters and mirror machines, specifically the MX; and (2) defining requirements and scoping design for a functional control simulator. Later in the year, a small additional task was added: (3) providing analysis and design support to INESCO for itsmore » low cost fusion power system, FPC/DMT.« less
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defennse (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowell, B.S.; Fontana, M.H.; Krakowski, R.A.
1995-04-01
In preparation for and in support of a detailed R and D Plan for the Accelerator-Based Conversion (ABC) of weapons plutonium, an ABC Plant Layout Study was conducted at the level of a pre-conceptual engineering design. The plant layout is based on an adaptation of the Molten-Salt Breeder Reactor (MSBR) detailed conceptual design that was completed in the early 1070s. Although the ABC Plant Layout Study included the Accelerator Equipment as an essential element, the engineering assessment focused primarily on the Target; Primary System (blanket and all systems containing plutonium-bearing fuel salt); the Heat-Removal System (secondary-coolant-salt and supercritical-steam systems); Chemicalmore » Processing; Operation and Maintenance; Containment and Safety; and Instrumentation and Control systems. Although constrained primarily to a reflection of an accelerator-driven (subcritical) variant of MSBR system, unique features and added flexibilities of the ABC suggest improved or alternative approaches to each of the above-listed subsystems; these, along with the key technical issues in need of resolution through a detailed R&D plan for ABC are described on the bases of the ``strawman`` or ``point-of-departure`` plant layout that resulted from this study.« less
Overview of the 1986 free-piston Stirling SP-100 activities at the NASA Lewis Research Center
NASA Technical Reports Server (NTRS)
Slaby, J. G.
1986-01-01
An overview of the NASA Lewis Research Center SP-100 free-piston Stirling engine activities is presented. These activities include a free-piston Stirling space-power technology feasibility demonstration project as part of the SP-100 program being conducted in support of the Department of Defense (DOD), Department of Energy (DOE), and NASA. The space-power Stirling advanced technology effort, under SP-100, addresses the status of the 25 kWe Space Power Demonstrator Engine (SPDE) including test results. Future space-power projections are presented along with a description of a study that will investigate the feasibility of scaling a single-cylinder free-piston Stirling space-power module to the 150 kW power range. Design parameters and conceptual design features will be presented for a 25 kWe, single-cylinder free-piston Stirling space-power converter. A description of a hydrodynamic gas bearing concept is presented whereby the displacer of a 1 kWe free-piston Stirling engine is modified to demonstrate the bearing concept. And finally the goals of a conceptual design for a 25 kWe Solar Advanced Stirling Conversion System capable of delivering electric power to an electric utility grid are discussed.
The Conceptual Design of the Magdalena Ridge Observatory Interferometer
NASA Astrophysics Data System (ADS)
Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.
We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.
Relevance in the science classroom: A multidimensional analysis
NASA Astrophysics Data System (ADS)
Hartwell, Matthew F.
While perceived relevance is considered a fundamental component of adaptive learning, the experience of relevance and its conceptual definition have not been well described. The mixed-methods research presented in this dissertation aimed to clarify the conceptual meaning of relevance by focusing on its phenomenological experience from the students' perspective. Following a critical literature review, I propose an identity-based model of perceived relevance that includes three components: a contextual target, an identity target, and a connection type, or lens. An empirical investigation of this model that consisted of two general phases was implemented in four 9th grade-biology classrooms. Participants in Phase 1 (N = 118) completed a series of four open-ended writing activities focused on eliciting perceived personal connections to academic content. Exploratory qualitative content analysis of a 25% random sample of the student responses was used to identify the main meaning-units of the proposed model as well as different dimensions of student relevance perceptions. These meaning-units and dimensions provided the basis for the construction of a conceptual mapping sentence capturing students' perceived relevance, which was then applied in a confirmatory analysis to all other student responses. Participants in Phase 2 (N = 139) completed a closed survey designed based on the mapping sentence to assess their perceived relevance of a biology unit. The survey also included scales assessing other domain-level motivational processes. Exploratory factor analysis and non-metric multidimensional scaling indicated a coherent conceptual structure, which included a primary interpretive relevance dimension. Comparison of the conceptual structure across various groups (randomly-split sample, gender, academic level, domain-general motivational profiles) provided support for its ubiquity and insight into variation in the experience of perceived relevance among students of different groups. The findings combine to support a multidimensional perspective of relevance in the 9th grade biology classroom; offering researchers a useful model for future investigation and educators with insights into the students' classroom experience.
Design considerations for fiber composite structures
NASA Technical Reports Server (NTRS)
Chamis, C. C.
1972-01-01
An overview of the design methodology for designing structural components from fiber composites is presented. In particular, the need for new conceptual structural designs for the future is discussed and the evolution of conceptual design is illustrated. Sources of design data, analysis and design procedures, and the basic components of structural fiber composites are cited and described. Examples of tradeoff studies and optimum designs are discussed and a simple structure is described in some detail.
Shuttle mission simulator software conceptual design
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
Software conceptual designs (SCD) are presented for meeting the simulator requirements for the shuttle missions. The major areas of the SCD discussed include: malfunction insertion, flight software, applications software, systems software, and computer complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hays, Steve; Piekarz, Henryk; Pfeffer, Howie
2007-06-01
Recently proposed fast cycling accelerators for proton drivers (SF-SPS, CERN and SF-MR, SF-BOOSTER, FNAL) neutrino sources require development of new magnet technology. In support of this magnet development a power supply system will need to be developed that can support the high current and high rate of power swing required by the fast cycling (1 sec rise and fall in the SF-MR, 5Hz in Booster). This paper will outline a design concept for a +/- 2000 V and 100,000 A fast ramping power supply system. This power supply design is in support of a 6.44 km magnet system at 0.020more » H and 330 m 5 Hz, 0.00534 H superconducting loads. The design description will include the layout and plan for extending the present FNAL Main Injector style ramping power supply to the higher currents needed for this operation. This will also include the design for a harmonic filter and power factor corrector that will be needed to control the large power swings caused by the fast cycle time. A conceptual design for the current regulation system and control will also be outlined. The power circuit design will include the bridge, filter and transformer plan based on existing designs.« less
The Effects of Classic and Web-Designed Conceptual Change Texts on the Subject of Water Chemistry
ERIC Educational Resources Information Center
Tas, Erol; Gülen, Salih; Öner, Zeynep; Özyürek, Cengiz
2015-01-01
The purpose of this study is to research the effects of traditional and web-assisted conceptual change texts for the subject of water chemistry on the success, conceptual errors and permanent learning of students. A total of 37 8th graders in a secondary school of Samsun participated in this study which had a random experimental design with…
Vansteenkiste, Maarten; Simons, Joke; Lens, Willy; Soenens, Bart; Matos, Lennia
2005-01-01
The present experimental research examined whether framing early adolescents' (11- to 12-year-olds) learning activity in terms of the attainment of an extrinsic (i.e., physical attractiveness) versus intrinsic (i.e., health) goal and communicating these different goal contents in an internally controlling versus autonomy-supportive way affect performance. Both conceptual and rote learning were assessed. Three experimental field studies, 2 among obese and 1 among nonobese participants, confirmed the hypothesis that extrinsic goal framing and internal control undermine conceptual (but not rote) learning, even in comparison with a control group. Study 3 indicated that the positive effect of intrinsic goal framing on conceptual learning was mediated by task involvement, whereas the positive effect of autonomy-supportive communication style on conceptual learning was mediated by relative autonomous motivation.
Gabeza, R
1995-03-01
The dual nature of the Japanese writing system was used to investigate two assumptions of the processing view of memory transfer: (1) that both perceptual and conceptual processing can contribute to the same memory test (mixture assumption) and (2) that both can be broken into more specific processes (subdivision assumption). Supporting the mixture assumption, a word fragment completion test based on ideographic kanji characters (kanji fragment completion test) was affected by both perceptual (hiragana/kanji script shift) and conceptual (levels-of-processing) study manipulations kanji fragments, because it did not occur with the use of meaningless hiragana fragments. The mixture assumption is also supported by an effect of study script on an implicit conceptual test (sentence completion), and the subdivision assumption is supported by a crossover dissociation between hiragana and kanji fragment completion as a function of study script.
Supporting Learning from Illustrated Texts: Conceptualizing and Evaluating a Learning Strategy
ERIC Educational Resources Information Center
Schlag, Sabine; Ploetzner, Rolf
2011-01-01
Texts and pictures are often combined in order to improve learning. Many students, however, have difficulty to appropriately process text-picture combinations. We have thus conceptualized a learning strategy which supports learning from illustrated texts. By inducing the processes of information selection, organization, integration, and…
Androgyny and Leadership Style: Toward a Conceptual Synthesis.
ERIC Educational Resources Information Center
Korabik, Karen; Ayman, Roya
Although the idea of androgynous leadership has been discussed frequently in the management literature, little empirical evidence has been accumulated to support a conceptual integration. Results of preliminary research support the hypothesis that sex-role orientation is a better predictor of leadership behavior than is biological sex. This study…
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader. PMID:26914328
Liu, Sophia B.
2014-01-01
Crowdsourcing is not a new practice but it is a concept that has gained significant attention during recent disasters. Drawing from previous work in the crisis informatics, disaster sociology, and computer-supported cooperative work (CSCW) literature, the paper first explains recent conceptualizations of crowdsourcing and how crowdsourcing is a way of leveraging disaster convergence. The CSCW concept of “articulation work” is introduced as an interpretive frame for extracting the salient dimensions of “crisis crowdsourcing.” Then, a series of vignettes are presented to illustrate the evolution of crisis crowdsourcing that spontaneously emerged after the 2010 Haiti earthquake and evolved to more established forms of public engagement during crises. The best practices extracted from the vignettes clarified the efforts to formalize crisis crowdsourcing through the development of innovative interfaces designed to support the articulation work needed to facilitate spontaneous volunteer efforts. Extracting these best practices led to the development of a conceptual framework that unpacks the key dimensions of crisis crowdsourcing. The Crisis Crowdsourcing Framework is a systematic, problem-driven approach to determining the why, who, what, when, where, and how aspects of a crowdsourcing system. The framework also draws attention to the social, technological, organizational, and policy (STOP) interfaces that need to be designed to manage the articulation work involved with reducing the complexity of coordinating across these key dimensions. An example of how to apply the framework to design a crowdsourcing system is offered with with a discussion on the implications for applying this framework as well as the limitations of this framework. Innovation is occurring at the social, technological, organizational, and policy interfaces enabling crowdsourcing to be operationalized and integrated into official products and services.
The First Interlaced Continuum Robot, Devised to Intrinsically Follow the Leader.
Kang, Byungjeon; Kojcev, Risto; Sinibaldi, Edoardo
2016-01-01
Flexible probes that are safely deployed to hard-to-reach targets while avoiding critical structures are strategic in several high-impact application fields, including the biomedical sector and the sector of inspections at large. A critical problem for these tools is the best approach for deploying an entire tool body, not only its tip, on a sought trajectory. A probe that achieves this deployment is considered to follow the leader (or to achieve follow-the-leader deployment) because its body sections follow the track traced by its tip. Follow-the-leader deployment through cavities is complicated due to a lack of external supports. Currently, no definitive implementation for a probe that is intrinsically able to follow the leader, i.e., without relying on external supports, has been achieved. In this paper, we present a completely new device, namely the first interlaced continuum robot, devised to intrinsically follow the leader. We developed the interlaced configuration by pursuing a conceptual approach irrespective of application-specific constraints and assuming two flexible tools with controllable stiffness. We questioned the possibility of solving the previously mentioned deployment problem by harnessing probe symmetry during the design process. This study examines the entire development of the novel interlaced probe: model-based conceptual design, detailed design and prototyping, and preliminary experimental assessment. Our probe can build a track with a radius of curvature that is as small as twice the probe diameter, which enables it to outperform state-of-the-art tools that are aimed at follow-the-leader deployment. Despite the limitations that are inherently associated with its original character, this study provides a prototypical approach to the design of interlaced continuum systems and demonstrates the first interlaced continuum probe, which is intrinsically able to follow the leader.
Randhawa, Gurprit K
2017-01-01
A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.
Conceptual Learning in a Principled Design Problem Solving Environment
ERIC Educational Resources Information Center
Prusak, Naomi; Hershkowitz, Rina; Schwarz, Baruch B.
2013-01-01
To what extent can instructional design be based on principles for instilling a culture of problem solving and conceptual learning? This is the main focus of the study described in this paper, in which third grade students participated in a one-year course designed to foster problem solving and mathematical reasoning. The design relied on five…
Designing Public Library Websites for Teens: A Conceptual Model
ERIC Educational Resources Information Center
Naughton, Robin Amanda
2012-01-01
The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…
NASA Astrophysics Data System (ADS)
Prochaska, Travis; Sauseda, Marcus; Beck, James; Schmidt, Luke; Cook, Erika; DePoy, Darren L.; Marshall, Jennifer L.; Ribeiro, Rafael; Taylor, Keith; Jones, Damien; Froning, Cynthia; Pak, Soojong; Mendes de Oliveira, Claudia; Papovich, Casey; Ji, Tae-Geun; Lee, Hye-In
2016-08-01
We describe a preliminary conceptual optomechanical design for GMACS, a wide-field, multi-object, moderate resolution optical spectrograph for the Giant Magellan Telescope (GMT). This paper describes the details of the GMACS optomechanical conceptual design, including the requirements and considerations leading to the design, mechanisms, optical mounts, and predicted flexure performance.
Block 2 SRM conceptual design studies. Volume 1, Book 1: Conceptual design package
NASA Technical Reports Server (NTRS)
Smith, Brad; Williams, Neal; Miller, John; Ralston, Joe; Richardson, Jennifer; Moore, Walt; Doll, Dan; Maughan, Jeff; Hayes, Fred
1986-01-01
The conceptual design studies of a Block 2 Solid Rocket Motor (SRM) require the elimination of asbestos-filled insulation and was open to alternate designs, such as case changes, different propellants, modified burn rate - to improve reliability and performance. Limitations were placed on SRM changes such that the outside geometry should not impact the physical interfaces with other Space Shuttle elements and should have minimum changes to the aerodynamic and dynamic characteristics of the Space Shuttle vehicle. Previous Space Shuttle SRM experience was assessed and new design concepts combined to define a valid approach to assured flight success and economic operation of the STS. Trade studies, preliminary designs, analyses, plans, and cost estimates are documented.
Robertson, Michelle M; Huang, Yueng-Hsiang; Larson, Nancy
2016-01-01
The prevalence of work-related upper extremity musculoskeletal disorders and visual symptoms reported in the USA has increased dramatically during the past two decades. This study examined the factors of computer use, workspace design, psychosocial factors, and organizational ergonomics resources on musculoskeletal and visual discomfort and their impact on the safety and health of computer work employees. A large-scale, cross-sectional survey was administered to a US manufacturing company to investigate these relationships (n = 1259). Associations between these study variables were tested along with moderating effects framed within a conceptual model. Significant relationships were found between computer use and psychosocial factors of co-worker support and supervisory relations with visual and musculoskeletal discomfort. Co-worker support was found to be significantly related to reports of eyestrain, headaches, and musculoskeletal discomfort. Supervisor relations partially moderated the relationship between workspace design satisfaction and visual and musculoskeletal discomfort. This study provides guidance for developing systematic, preventive measures and recommendations in designing office ergonomics interventions with the goal of reducing musculoskeletal and visual discomfort while enhancing office and computer workers' performance and safety.
Apollo experience report: S-band system signal design and analysis
NASA Technical Reports Server (NTRS)
Rosenberg, H. R. (Editor)
1972-01-01
A description is given of the Apollo communications-system engineering-analysis effort that ensured the adequacy, performance, and interface compatibility of the unified S-band system elements for a successful lunar-landing mission. The evolution and conceptual design of the unified S-band system are briefly reviewed from a historical viewpoint. A comprehensive discussion of the unified S-band elements includes the salient design features of the system and serves as a basis for a better understanding of the design decisions and analyses. The significant design decisions concerning the Apollo communications-system signal design are discussed providing an insight into the role of systems analysis in arriving at the current configuration of the Apollo communications system. Analyses are presented concerning performance estimation (mathematical-model development through real-time mission support) and system deficiencies, modifications, and improvements.
NASA Astrophysics Data System (ADS)
Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan
2012-06-01
The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.
Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.
The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less
Crankshaw, Tamaryn L.; Matthews, Lynn T.; Giddy, Janet; Kaida, Angela; Ware, Norma C.; Smit, Jennifer A.; Bangsberg, David R.
2013-01-01
Integrated reproductive health services for people living with HIV must address their fertility intentions. For HIV-serodiscordant couples who want to conceive, attempted conception confers a substantial risk of HIV transmission to the uninfected partner. Behavioral and pharmacologic strategies may reduce HIV transmission risk among HIV-serodiscordant couples who seek to conceive. In order to develop effective pharmaco-behavioral programs, it is important to understand and address the contexts surrounding reproductive decision-making; perceived periconception HIV transmission risk; and periconception risk behaviors. We present a conceptual framework to describe the dynamics involved in periconception HIV risk behaviors in a South African setting. We adapt the Information-Motivation-Behavioral Skill Model of HIV Preventative Behavior to address the structural, individual and couple-level determinants of safer conception behavior. The framework is intended to identify factors that influence periconception HIV risk behavior among serodiscordant couples, and therefore to guide design and implementation of integrated and effective HIV, reproductive health and family planning services that support reproductive decision-making. PMID:23177680
Wedell, Douglas H; Moro, Rodrigo
2008-04-01
Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize misinterpretation of the base event. In both experiments, conjunction errors were reduced when likely events were conjoined. Conjunction errors were also reduced for estimations compared with choices, with this reduction greater for likely conjuncts, an interaction effect. Shifting conceptual focus from probabilities to frequencies did not affect conjunction error rates. Analyses of numerical estimates for a subset of the problems provided support for the use of three general models by participants for generating estimates. Strikingly, the order in which the two tasks were carried out did not affect the pattern of results, supporting the idea that the mode of responding strongly determines the mode of thinking about conjunctions and hence the occurrence of the conjunction fallacy. These findings were evaluated in terms of implications for rationality of human judgment and reasoning.
Mars orbiter conceptual systems design study
NASA Technical Reports Server (NTRS)
Dixon, W.; Vogl, J.
1982-01-01
Spacecraft system and subsystem designs at the conceptual level to perform either of two Mars Orbiter missions, a Climatology Mission and an Aeronomy Mission were developed. The objectives of these missions are to obtain and return data.
2013-04-01
demonstration test . 5.1 CONCEPTUAL EXPERIMENTAL DESIGN In concept, the active biobarrier approach involved the use of alternating extraction and injection...16 4.3 GROUNDWATER CHEMISTRY ....................................................................... 18 5.0 TEST DESIGN...20 5.1 CONCEPTUAL EXPERIMENTAL DESIGN
Sweeping the Floor or Putting a Man on the Moon: How to Define and Measure Meaningful Work.
Both-Nwabuwe, Jitske M C; Dijkstra, Maria T M; Beersma, Bianca
2017-01-01
Meaningful work is integral to well-being and a flourishing life. The construct of "meaningful work" is, however, consistently affected by conceptual ambiguity. Although there is substantial support for arguments to maintain the status of conceptual ambiguity, we make a case for the benefits of having consensus on a definition and scale of meaningful work in the context of paid work. The objective of this article, therefore, was twofold. Firstly, we wanted to develop a more integrative definition of meaningful work. Secondly, we wanted to establish a corresponding operationalization. We reviewed the literature on the existing definitions of meaningful work and the scales designed to measure it. We found 14 definitions of meaningful work. Based on these definitions, we identified four categories of definitions, which led us to propose an integrative and comprehensive definition of meaningful work. We identified two validated scales that were partly aligned with the proposed definition. Based on our review, we conclude that scholars in this field should coalesce rather than diverge their efforts to conceptualize and measure meaningful work.
Sweeping the Floor or Putting a Man on the Moon: How to Define and Measure Meaningful Work
Both-Nwabuwe, Jitske M. C.; Dijkstra, Maria T. M.; Beersma, Bianca
2017-01-01
Meaningful work is integral to well-being and a flourishing life. The construct of “meaningful work” is, however, consistently affected by conceptual ambiguity. Although there is substantial support for arguments to maintain the status of conceptual ambiguity, we make a case for the benefits of having consensus on a definition and scale of meaningful work in the context of paid work. The objective of this article, therefore, was twofold. Firstly, we wanted to develop a more integrative definition of meaningful work. Secondly, we wanted to establish a corresponding operationalization. We reviewed the literature on the existing definitions of meaningful work and the scales designed to measure it. We found 14 definitions of meaningful work. Based on these definitions, we identified four categories of definitions, which led us to propose an integrative and comprehensive definition of meaningful work. We identified two validated scales that were partly aligned with the proposed definition. Based on our review, we conclude that scholars in this field should coalesce rather than diverge their efforts to conceptualize and measure meaningful work. PMID:29033867
Knox, Lucy; Douglas, Jacinta M; Bigby, Christine
2017-11-01
Although adults who sustain a severe traumatic brain injury (TBI) require support to make decisions in their lives, little is known about their experience of this process. The aim of this study was to explore how participation in decision making contributes to self-conceptualization in adults with severe TBI. We used constructivist grounded theory methods. Data included 20 in-depth interviews with adults with severe TBI. Through a process of constant comparison, analysis involved open and focused coding until clear categories emerged and data saturation was achieved. Self-conceptualization emerged as a complex and multifaceted process, as individuals with TBI aimed to reestablish a sense of autonomy. We describe a recursive relationship in which decision-making participation assists the dynamic construction of self, and self-concept contributes to the experience of making decisions. The role of an individual's social support network in acting as a bridge between participation and self-conceptualization is presented. Findings emphasize that contributing to decisions about one's own goals across a range of life areas can reinforce a positive self-concept. It is vital that supporters understand that participation in decision making provides a pathway to conceptualizing self and aim to maximize the person's participation in the decision-making process. Implications for Rehabilitation Previous research has identified that the experience of sustaining TBI has a significant impact on a person's conceptualization of self. This study identified that decision-making experiences play an important role in the ongoing process of self-conceptualization after injury. Decision-making experiences can reinforce a person's self-concept or lead them to revise (positively or negatively) their sense of self. By maximizing the person's decision-making participation, those around them can support them to develop positive self-attributes and contribute to shaping their future goals.
U.S. Air Force Junior Officers: Changing Professional Identity and Commitment.
1982-06-01
their scruples and . . . if necessary to lie and cheat in order to remain successful and competitive. Dishonesty is across-the-board. 4 9 The results...provided just the right mixture of autonomy, guidance and support. Through them I have learned to be a sociologist. Charles C. Moskos, the Chairman, was an...designed the survey questionnaires. The solu- tions, from the outset have been conceptualized in management terms, that is, as a problem of economics
2010-12-01
strategy “to establish a net- centric environment that increasingly leverages shared services and SOAs that are: Supported by…a single set of common...component services. As mentioned previously, this is an important characteristic of SOA. Also noteworthy is set of shared services seen on the...transmit information products directly to the user(s). 6. Shared Services One of the key benefits of Service Oriented Architecture is the ability to
Personnel occupied woven envelope robot power
NASA Technical Reports Server (NTRS)
1987-01-01
The Human Occupied Space Teleoperator (HOST) system currently under development utilizes a flexible tunnel/Stewart table structure to provide crew access to a pressurized manned work station or POD on the space station without extravehicular activity (EVA). The HOST structure facilitates moving a work station to multiple space station locations. The system has applications to orbiter docking, space station assembly, satellite servicing, space station maintenance, and logistics support. The conceptual systems design behind HOST is described in detail.
Ascent Aerodynamic Pressure Distributions on WB001
NASA Technical Reports Server (NTRS)
Vu, B.; Ruf, J.; Canabal, F.; Brunty, J.
1996-01-01
To support the reusable launch vehicle concept study, the aerodynamic data and surface pressure for WB001 were predicted using three computational fluid dynamic (CFD) codes at several flow conditions between code to code and code to aerodynamic database as well as available experimental data. A set of particular solutions have been selected and recommended for use in preliminary conceptual designs. These computational fluid dynamic (CFD) results have also been provided to the structure group for wing loading analysis.
Conceptual designs study for a Personnel Launch System (PLS)
NASA Technical Reports Server (NTRS)
Wetzel, E. D.
1990-01-01
A series of conceptual designs for a manned, Earth to Low Earth Orbit transportation system was developed. Non-winged, low L/D vehicle shapes are discussed. System and subsystem trades emphasized safety, operability, and affordability using near-term technology. The resultant conceptual design includes lessons learned from commercial aviation that result in a safe, routine, operationally efficient system. The primary mission for this Personnel Launch System (PLS) would be crew rotation to the SSF; other missions, including satellite servicing, orbital sortie, and space rescue were also explored.
Integrating O/S models during conceptual design, part 2
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
This report documents the procedures for utilizing and maintaining the Reliability & Maintainability Model (RAM) developed by the University of Dayton for the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) under NASA research grant NAG-1-1327. The purpose of the grant is to provide support to NASA in establishing operational and support parameters and costs of proposed space systems. As part of this research objective, the model described here was developed. Additional documentation concerning the development of this model may be found in Part 1 of this report. This is the 2nd part of a 3 part technical report.
Aerospace Power Systems Design and Analysis (APSDA) Tool
NASA Technical Reports Server (NTRS)
Truong, Long V.
1998-01-01
The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.
Hamilton, Maryellen; Geraci, Lisa
2006-01-01
According to leading theories, the picture superiority effect is driven by conceptual processing, yet this effect has been difficult to obtain using conceptual implicit memory tests. We hypothesized that the picture superiority effect results from conceptual processing of a picture's distinctive features rather than a picture's semantic features. To test this hypothesis, we used 2 conceptual implicit general knowledge tests; one cued conceptually distinctive features (e.g., "What animal has large eyes?") and the other cued semantic features (e.g., "What animal is the figurehead of Tootsie Roll?"). Results showed a picture superiority effect only on the conceptual test using distinctive cues, supporting our hypothesis that this effect is mediated by conceptual processing of a picture's distinctive features.