NASA Astrophysics Data System (ADS)
Curland, Matthew; Halpin, Terry; Stirewalt, Kurt
A conceptual schema of an information system specifies the fact structures of interest as well as related business rules that are either constraints or derivation rules. Constraints restrict the possible or permitted states or state transitions, while derivation rules enable some facts to be derived from others. Graphical languages are commonly used to specify conceptual schemas, but often need to be supplemented by more expressive textual languages to capture additional business rules, as well as conceptual queries that enable conceptual models to be queried directly. This paper describes research to provide a role calculus to underpin textual languages for Object-Role Modeling (ORM), to enable business rules and queries to be formulated in a language intelligible to business users. The role-based nature of this calculus, which exploits the attribute-free nature of ORM, appears to offer significant advantages over other proposed approaches, especially in the area of semantic stability.
Conceptual and logical level of database modeling
NASA Astrophysics Data System (ADS)
Hunka, Frantisek; Matula, Jiri
2016-06-01
Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.
[Case study on health risk assessment based on site-specific conceptual model].
Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Xia, Tian-Xiang; Zhu, Xiao-Ying; Han, Dan; Zhang, Li-Na
2013-02-01
Site investigation was carried out on an area to be redeveloped as a subway station, which is right downstream of the groundwater of a former chemical plant. The results indicate the subsurface soil and groundwater in the area are both polluted heavily by 1,2-dichloroethane, which was caused by the chemical plant upstream with the highest concentration was 104.08 mg.kg-1 for soil sample at 8.6 m below ground and the highest concentration was 18500 microg.L-1 for groundwater. Further, a site-specific contamination conceptual model, giving consideration to the specific structure configuration of the station, was developed, and the corresponding risk calculation equation was derived. The carcinogenic risks calculated with models developed on the generic site conceptual model and derived herein on the site-specific conceptual model were compared. Both models indicate that the carcinogenic risk is significantly higher than the acceptable level which is 1 x 10(-6). The comparison result reveals that the risk calculated with the former models for soil and groundwater are higher than the one calculated with the latter models by 2 times and 1.5 times, respectively. The finding in this paper indicates that the generic risk assessment model may underestimate the risk if specific site conditions and structure configuration are not considered.
A conceptual framework for ranking crown fire potential in wildland fuelbeds.
Mark D. Schaaf; David V. Sandberg; Maarten D. Schreuder; Cynthia L. Riccardi
2007-01-01
This paper presents a conceptual framework for ranking the crown fire potential of wildland fuelbeds with forest canopies. This approach extends the work by Van Wagner and Rothermel, and introduces several new physical concepts to the modeling of crown fire behavior derived from the reformulated Rothemel surface fire modeling concepts proposed by Sandberg et al. This...
The Cancer Family Caregiving Experience: An Updated and Expanded Conceptual Model
Fletcher, Barbara Swore; Miaskowski, Christine; Given, Barbara; Schumacher, Karen
2011-01-01
Objective The decade from 2000–2010 was an era of tremendous growth in family caregiving research specific to the cancer population. This research has implications for how cancer family caregiving is conceptualized, yet the most recent comprehensive model of cancer family caregiving was published ten years ago. Our objective was to develop an updated and expanded comprehensive model of the cancer family caregiving experience, derived from concepts and variables used in research during past ten years. Methods A conceptual model was developed based on cancer family caregiving research published from 2000–2010. Results Our updated and expanded model has three main elements: 1) the stress process, 2) contextual factors, and 3) the cancer trajectory. Emerging ways of conceptualizing the relationships between and within model elements are addressed, as well as an emerging focus on caregiver-patient dyads as the unit of analysis. Conclusions Cancer family caregiving research has grown dramatically since 2000 resulting in a greatly expanded conceptual landscape. This updated and expanded model of the cancer family caregiving experience synthesizes the conceptual implications of an international body of work and demonstrates tremendous progress in how cancer family caregiving research is conceptualized. PMID:22000812
A conceptual model of plant responses to climate with implications for monitoring ecosystem change
C. David Bertelsen
2013-01-01
Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...
NASA Technical Reports Server (NTRS)
Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve
2013-01-01
Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships
Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub
2009-08-01
Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.
Few conceptual frameworks attempt to connect disaster-associated environmental injuries to impacts on ecosystem services (the benefits humans derive from nature) and thence to both psychological and physiological human health effects. To our knowledge, this study is one of the fi...
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
[Design of a conceptual model on the transference of public health research results in Honduras].
Macías-Chapula, César A
2012-01-01
To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.
Leffler, Daniel A; Acaster, Sarah; Gallop, Katy; Dennis, Melinda; Kelly, Ciarán P; Adelman, Daniel C
2017-04-01
Celiac disease is a chronic inflammatory condition with wide ranging effects on individual's lives caused by a combination of symptoms and the burden of adhering to a gluten-free diet (GFD). To further understand patients' experience of celiac disease, the impact it has on health-related quality of life (HRQOL), and to develop a conceptual model describing this impact. Adults with celiac disease on a GFD reporting symptoms within the previous 3 months were included; patients with refractory celiac disease and confounding medical conditions were excluded. A semistructured discussion guide was developed exploring celiac disease symptoms and impact on patients' HRQOL. An experienced interviewer conducted in-depth interviews. The data set was coded and analyzed using thematic analysis to identify concepts, themes, and the inter-relationships between them. Data saturation was monitored and concepts identified formed the basis of the conceptual model. Twenty-one participants were recruited, and 32 distinct gluten-related symptoms were reported and data saturation was reached. Analysis identified several themes impacting patients' HRQOL: fears and anxiety, day-to-day management of celiac disease, physical functioning, sleep, daily activities, social activities, emotional functioning, and relationships. The conceptual model highlights the main areas of impact and the relationships between concepts. Both symptoms and maintaining a GFD have a substantial impact on patient functioning and HRQOL in adults with celiac disease. The conceptual model derived from these data may help to design future patient-reported outcomes as well as interventions to improve the quality of life in an individual with celiac disease. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Thomas, M.; Pascal, K.; Karl, S.
2012-04-01
Geophysical datasets are essential to guide particularly short-term forecasting of volcanic activity. Key parameters are derived from these datasets and interpreted in different ways, however, the biggest impact on the interpretation is not determined by the range of parameters but controlled through the parameterisation and the underlying conceptual model of the volcanic process. On the other hand, the increasing number of sophisticated geophysical models need to be constrained by monitoring data, to transform a merely numerical exercise into a useful forecasting tool. We utilise datasets from the "big three", seismology, deformation and gas emissions, to gain insight in the mutual relationship between conceptual models and constraining data. We show that, e.g. the same seismic dataset can be interpreted with respect to a wide variety of different models with very different implications to forecasting. In turn, different data processing procedures lead to different outcomes even though they are based on the same conceptual model. Unsurprisingly, the most reliable interpretation will be achieved by employing multi-disciplinary models with overlapping constraints.
Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models
Cuyler, David
2012-07-19
Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.
Surgical wound dehiscence: a conceptual framework for patient assessment.
Sandy-Hodgetts, Kylie; Carville, Keryln; Leslie, Gavin D
2018-03-02
This paper presents a conceptual framework which outlines the risk factors associated with surgical wound dehiscence (SWD) as identified in the literature. The purpose for the development of the conceptual framework was to derive an evidence-based, informed understanding of factors associated with SWD, in order to inform a programme of research on the aetiology and potential risk factors of SWD. Incorporated within the patient-centric conceptual framework are patient related comorbidities, intraoperative and postoperative risk factors related to SWD. These are categorised as either 'mechanical' or 'physiological mechanisms' posited to influence these relationships. The use of the conceptual model for assessment of patients has particular clinical relevance for identification of risk and the management of patients in the pre-, intra- and postoperative period.
Engineering Information System (EIS)
1992-01-31
be availabe and usefu for creating powerful tailored contro and mangeen functions. Mode and Framwork Wirth further elaboration of the EIS portio of...control data and activities of the engineering process. The EIM is a conceptual model of administrative and electroic design information. It records...of the access opeations are derived from the instance variable name and type. An attribute conceptually holds one or more instances of a basic type
NASA Astrophysics Data System (ADS)
Croke, Jacky; Phillips, Jonathan; Van Dyke, Chris
2017-04-01
Earth science knowledge and insight begins with case studies, and theories should be derived from and ultimately evaluated against empirical, case study evidence. However, isolated case studies not linked conceptually to other locations or embedded within a broader framework are often of limited use beyond the study site. Geomorphic evidence and phenomena may be interpreted using a variety of conceptual frameworks (theories, models, laws, methodologies, etc.). The evidence may be, or at least appear to be, consistent with multiple frameworks, even when those constructs are derived from entirely different assumptions or frames of reference. Thus different interpretations and stories can be derived from the same evidence. Our purpose here is to illustrate this phenomenon via a case study from Lockyer Creek, southeast Queensland, Australia. Lockyer Creek is fast becoming one of Australia's most studied catchments with a wealth of data emerging following two extreme flood events in 2011 and 2013. Whilst the initial objective of the Big Flood project was to provide information on the frequency and magnitude of these extreme events, in essence the project revealed a rich 'story' of river evolution and adjustment which at first glance did not appear to 'fit' many established conceptual frameworks and theories. This presentation tells the tale of Lockyer Creek as it relates to selected key conceptual frameworks and importantly how this information can then be used for more effective catchment and flood management.
A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning
NASA Astrophysics Data System (ADS)
Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.
2005-12-01
Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.
An, Gary
2009-01-01
The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.
A conceptual weather-type classification procedure for the Philadelphia, Pennsylvania, area
McCabe, Gregory J.
1990-01-01
A simple method of weather-type classification, based on a conceptual model of pressure systems that pass through the Philadelphia, Pennsylvania, area, has been developed. The only inputs required for the procedure are daily mean wind direction and cloud cover, which are used to index the relative position of pressure systems and fronts to Philadelphia.Daily mean wind-direction and cloud-cover data recorded at Philadelphia, Pennsylvania, from January 1954 through August 1988 were used to categorize daily weather conditions. The conceptual weather types reflect changes in daily air and dew-point temperatures, and changes in monthly mean temperature and monthly and annual precipitation. The weather-type classification produced by using the conceptual model was similar to a classification produced by using a multivariate statistical classification procedure. Even though the conceptual weather types are derived from a small amount of data, they appear to account for the variability of daily weather patterns sufficiently to describe distinct weather conditions for use in environmental analyses of weather-sensitive processes.
Response to Oud & Folmer: Randomness and Residuals
ERIC Educational Resources Information Center
Steele, Joel S.; Ferrer, Emilio
2011-01-01
This article presents our response to Oud and Folmer's "Modeling Oscillation, Approximately or Exactly?" (2011), which criticizes aspects of our article, "Latent Differential Equation Modeling of Self-Regulatory and Coregulatory Affective Processes" (2011). In this response, we present a conceptual explanation of the derivative-based estimation…
The Intersystem Model of Psychotherapy: An Integrated Systems Treatment Approach
ERIC Educational Resources Information Center
Weeks, Gerald R.; Cross, Chad L.
2004-01-01
This article introduces the intersystem model of psychotherapy and discusses its utility as a truly integrative and comprehensive approach. The foundation of this conceptually complex approach comes from dialectic metatheory; hence, its derivation requires an understanding of both foundational and integrational constructs. The article provides a…
A Conceptualization of Children's Spirituality Arising out of Recent Research
ERIC Educational Resources Information Center
Moriarty, Micheline Wyn
2011-01-01
This paper presents a model of children's spirituality which provided a structure for conducting some recent research and for analysing the findings. The model consisted of four dimensions of spirituality derived from the literature, namely consciousness, relationality, roadmap and identity, with a central integrating concept of worldview. The…
A Conceptual Model of Spirituality in Music Education
ERIC Educational Resources Information Center
van der Merwe, Liesl; Habron, John
2015-01-01
This article aims to describe the phenomenon of spirituality in music education by means of a model derived from the academic literature on the topic. Given the centrality of lived experience within this literature, we adopted a hermeneutic phenomenological theoretical framework to describe the phenomenon. The NCT (noticing, collecting, and…
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
The Teaching-Research Gestalt: The Development of a Discipline-Based Scale
ERIC Educational Resources Information Center
Duff, Angus; Marriott, Neil
2017-01-01
This paper reports the development and empirical testing of a model of the factors that influence the teaching-research nexus. No prior work has attempted to create a measurement model of the nexus. The conceptual model is derived from 19 propositions grouped into four sets of factors relating to: rewards, researchers, curriculum, and students.…
A model of free-living gait: A factor analysis in Parkinson's disease.
Morris, Rosie; Hickey, Aodhán; Del Din, Silvia; Godfrey, Alan; Lord, Sue; Rochester, Lynn
2017-02-01
Gait is a marker of global health, cognition and falls risk. Gait is complex, comprised of multiple characteristics sensitive to survival, age and pathology. Due to covariance amongst characteristics, conceptual gait models have been established to reduce redundancy and aid interpretation. Previous models have been derived from laboratory gait assessments which are costly in equipment and time. Body-worn monitors (BWM) allow for free-living, low-cost and continuous gait measurement and produce similar covariant gait characteristics. A BWM gait model from both controlled and free-living measurement has not yet been established, limiting utility. 103 control and 67 PD participants completed a controlled laboratory assessment; walking for two minutes around a circuit wearing a BWM. 89 control and 58 PD participants were assessed in free-living, completing normal activities for 7 days wearing a BWM. Fourteen gait characteristics were derived from the BWM, selected according to a previous model. Principle component analysis derived factor loadings of gait characteristics. Four gait domains were derived for both groups and conditions; pace, rhythm, variability and asymmetry. Domains totalled 84.84% and 88.43% of variance for controlled and 90.00% and 93.03% of variance in free-living environments for control and PD participants respectively. Gait characteristic loading was unambiguous for all characteristics apart from gait variability which demonstrated cross-loading for both groups and environments. The model was highly congruent with the original model. The conceptual gait models remained stable using a BWM in controlled and free-living environments. The model became more discrete supporting utility of the gait model for free-living gait. Copyright © 2016 Elsevier B.V. All rights reserved.
Horner, Ronnie D; Matthews, Gerald; Yi, Michael S
2012-08-01
Physician work intensity, although a major factor in determining the payment for medical services, may potentially affect patient health outcomes including quality of care and patient safety, and has implications for the redesign of medical practice to improve health care delivery. However, to date, there has been minimal research regarding the relationship between physician work intensity and either patient outcomes or the organization and management of medical practices. A theoretical model on physician work intensity will provide useful guidance to such inquiries. To describe an initial conceptual model to facilitate further investigations of physician work intensity. A conceptual model of physician work intensity is described using as its theoretical base human performance science relating to work intensity. For each of the theoretical components, we present relevant empirical evidence derived from a review of the current literature. The proposed model specifies that the level of work intensity experienced by a physician is a consequence of the physician performing the set of tasks (ie, demands) relating to a medical service. It is conceptualized that each medical service has an inherent level of intensity that is experienced by a physician as a function of factors relating to the physician, patient, and medical practice environment. The proposed conceptual model provides guidance to researchers as to the factors to consider in studies of how physician work intensity impacts patient health outcomes and how work intensity may be affected by proposed policies and approaches to health care delivery.
Classical Causal Models for Bell and Kochen-Specker Inequality Violations Require Fine-Tuning
NASA Astrophysics Data System (ADS)
Cavalcanti, Eric G.
2018-04-01
Nonlocality and contextuality are at the root of conceptual puzzles in quantum mechanics, and they are key resources for quantum advantage in information-processing tasks. Bell nonlocality is best understood as the incompatibility between quantum correlations and the classical theory of causality, applied to relativistic causal structure. Contextuality, on the other hand, is on a more controversial foundation. In this work, I provide a common conceptual ground between nonlocality and contextuality as violations of classical causality. First, I show that Bell inequalities can be derived solely from the assumptions of no signaling and no fine-tuning of the causal model. This removes two extra assumptions from a recent result from Wood and Spekkens and, remarkably, does not require any assumption related to independence of measurement settings—unlike all other derivations of Bell inequalities. I then introduce a formalism to represent contextuality scenarios within causal models and show that all classical causal models for violations of a Kochen-Specker inequality require fine-tuning. Thus, the quantum violation of classical causality goes beyond the case of spacelike-separated systems and already manifests in scenarios involving single systems.
History Places: A Case Study for Relational Database and Information Retrieval System Design
ERIC Educational Resources Information Center
Hendry, David G.
2007-01-01
This article presents a project-based case study that was developed for students with diverse backgrounds and varied inclinations for engaging technical topics. The project, called History Places, requires that student teams develop a vision for a kind of digital library, propose a conceptual model, and use the model to derive a logical model and…
Restoring natural fire regimes to the Sierra Nevada in an era of global change
Jon E. Keeley; Nathan L. Stephenson
2000-01-01
A conceptual model of fire and forest restoration and maintenance is presented. The process must begin with clearly articulated goals and depends upon derivation of science-driven models that describe the natural or desired conditions. Evaluating the extent to which contemporary landscapes depart from the model is a prerequisite to determining the need for restoration...
MARINE AEROSOLS ALTER SOIL PROCESSES IN COASTAL FORESTS
Most models of watershed biogeochemistry include the movement of materials from land to rivers and eventually the ocean. Few conceptual views, however, acknowledge the influence of materials derived from the ocean on terrestrial ecosystems processes. Based on spatial patterns o...
Analyzing Multiple-Choice Questions by Model Analysis and Item Response Curves
NASA Astrophysics Data System (ADS)
Wattanakasiwich, P.; Ananta, S.
2010-07-01
In physics education research, the main goal is to improve physics teaching so that most students understand physics conceptually and be able to apply concepts in solving problems. Therefore many multiple-choice instruments were developed to probe students' conceptual understanding in various topics. Two techniques including model analysis and item response curves were used to analyze students' responses from Force and Motion Conceptual Evaluation (FMCE). For this study FMCE data from more than 1000 students at Chiang Mai University were collected over the past three years. With model analysis, we can obtain students' alternative knowledge and the probabilities for students to use such knowledge in a range of equivalent contexts. The model analysis consists of two algorithms—concentration factor and model estimation. This paper only presents results from using the model estimation algorithm to obtain a model plot. The plot helps to identify a class model state whether it is in the misconception region or not. Item response curve (IRC) derived from item response theory is a plot between percentages of students selecting a particular choice versus their total score. Pros and cons of both techniques are compared and discussed.
ERIC Educational Resources Information Center
Brezavšcek, Alenka; Šparl, Petra; Žnidaršic, Anja
2017-01-01
The aim of the paper is to investigate the main factors influencing the adoption and continuous utilization of statistical software among university social sciences students in Slovenia. Based on the Technology Acceptance Model (TAM), a conceptual model was derived where five external variables were taken into account: statistical software…
Screening-level estimates of mass discharge uncertainty from point measurement methods
The uncertainty of mass discharge measurements associated with point-scale measurement techniques was investigated by deriving analytical solutions for the mass discharge coefficient of variation for two simplified, conceptual models. In the first case, a depth-averaged domain w...
Reliability model derivation of a fault-tolerant, dual, spare-switching, digital computer system
NASA Technical Reports Server (NTRS)
1974-01-01
A computer based reliability projection aid, tailored specifically for application in the design of fault-tolerant computer systems, is described. Its more pronounced characteristics include the facility for modeling systems with two distinct operational modes, measuring the effect of both permanent and transient faults, and calculating conditional system coverage factors. The underlying conceptual principles, mathematical models, and computer program implementation are presented.
Kwasniok, Frank; Lohmann, Gerrit
2009-12-01
A method for systematically deriving simple nonlinear dynamical models from ice-core data is proposed. It offers a tool to integrate models and theories with paleoclimatic data. The method is based on the unscented Kalman filter, a nonlinear extension of the conventional Kalman filter. Here, we adopt the abstract conceptual model of stochastically driven motion in a potential that allows for two distinctly different states. The parameters of the model-the shape of the potential and the noise level-are estimated from a North Greenland ice-core record. For the glacial period from 70 to 20 ky before present, a potential is derived that is asymmetric and almost degenerate. There is a deep well corresponding to a cold stadial state and a very shallow well corresponding to a warm interstadial state.
Thermohydrology of fractured geologic materials
NASA Astrophysics Data System (ADS)
Esh, David Whittaker
1998-11-01
Thermohydrological and thermohydrochemical modeling as applied to the disposal of radioactive materials in a geologic repository is presented. Site hydrology, chemistry, and mineralogy were summarized and conceptual models of the fundamental system processes were developed. The numerical model TOUGH2 was used to complete computer simulations of thermohydrological processes in fractured, geologic media. Sensitivity studies investigating the impact of dimensionality and different conceptual models to represent fractures (ECM, DK, MINC) on thermohydrological response were developed. Sensitivity to parameter variation within a given conceptual model was also considered. The sensitivity of response was examined against thermohydrological metrics derived from the flow and redistribution of moisture. A simple thermohydrochemical model to investigate a three-process coupling (thermal-hydrological-chemical) was presented. The redistribution of chloride was evaluated because the chemical behavior is well known and defensible. In addition, it is very important to overall system performance. For all of the simulations completed, chloride was found to be extremely concentrated in the fluids that eventually return to the engineered barrier system. Chloride concentration and mass flux were increased from ambient by over a factor of 1000 for some simulations. Thermohydrology was found to have the potential to significantly alter chemistry from ambient conditions.
Why are you telling me that? A conceptual model of the social function of autobiographical memory.
Alea, Nicole; Bluck, Susan
2003-03-01
In an effort to stimulate and guide empirical work within a functional framework, this paper provides a conceptual model of the social functions of autobiographical memory (AM) across the lifespan. The model delineates the processes and variables involved when AMs are shared to serve social functions. Components of the model include: lifespan contextual influences, the qualitative characteristics of memory (emotionality and level of detail recalled), the speaker's characteristics (age, gender, and personality), the familiarity and similarity of the listener to the speaker, the level of responsiveness during the memory-sharing process, and the nature of the social relationship in which the memory sharing occurs (valence and length of the relationship). These components are shown to influence the type of social function served and/or, the extent to which social functions are served. Directions for future empirical work to substantiate the model and hypotheses derived from the model are provided.
Irvine, Katherine N.; Warber, Sara L.; Devine-Wright, Patrick; Gaston, Kevin J.
2013-01-01
With increasing interest in the use of urban green space to promote human health, there is a need to understand the extent to which park users conceptualize these places as a resource for health and well-being. This study sought to examine park users’ own reasons for and benefits from green space usage and compare these with concepts and constructs in existing person-environment-health theories and models of health. Conducted in 13 public green spaces in Sheffield, UK, we undertook a qualitative content analysis of 312 park users’ responses to open-ended interview questions and identified a breadth, depth and salience of visit motivators and derived effects. Findings highlight a discrepancy between reasons for visiting and derived effects from the use of urban green space. Motivations emphasized walking, green space qualities, and children. Derived effects highlighted relaxation, positive emotions within the self and towards the place, and spiritual well-being. We generate a taxonomy of motivations and derived effects that could facilitate operationalization within empirical research and articulate a conceptual framework linking motivators to outcomes for investigating green space as a resource for human health and well-being. PMID:23340602
Irvine, Katherine N; Warber, Sara L; Devine-Wright, Patrick; Gaston, Kevin J
2013-01-22
With increasing interest in the use of urban green space to promote human health, there is a need to understand the extent to which park users conceptualize these places as a resource for health and well-being. This study sought to examine park users' own reasons for and benefits from green space usage and compare these with concepts and constructs in existing person-environment-health theories and models of health. Conducted in 13 public green spaces in Sheffield, UK, we undertook a qualitative content analysis of 312 park users' responses to open-ended interview questions and identified a breadth, depth and salience of visit motivators and derived effects. Findings highlight a discrepancy between reasons for visiting and derived effects from the use of urban green space. Motivations emphasized walking, green space qualities, and children. Derived effects highlighted relaxation, positive emotions within the self and towards the place, and spiritual well-being. We generate a taxonomy of motivations and derived effects that could facilitate operationalization within empirical research and articulate a conceptual framework linking motivators to outcomes for investigating green space as a resource for human health and well-being.
Validation of a New Conceptual Model of School Connectedness and Its Assessment Measure
ERIC Educational Resources Information Center
Hirao, Katsura
2011-01-01
A self-report assessment scale of school connectedness was validated in this study based on the data from middle-school children in a northeastern state of the United States (n = 145). The scale was based on the School Bonding Model (Morita, 1991), which was derived reductively from the social control (bond) theory (Hirschi, 1969). This validation…
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.
2017-01-01
We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures. PMID:28848460
A Conceptual Derivation of Einstein's Postulates of Special Relativity.
ERIC Educational Resources Information Center
Bearden, Thomas E.
This document presents a discussion and conceptual derivation of Einstein's postulates of special relativity. The perceptron approach appears to be a fundamentally new manner of regarding physical phenomena and it is hoped that physicists will interest themselves in the concept. (Author)
Most models of watershed biogeochemistry include the movement of materials from land to rivers and eventually the ocean. Few conceptual views, however, acknowledge the influence of materials derived from the ocean on terrestrial ecosystem processes. Based on spatial patterns of...
The Discriminating Power of Items that Measure More than One Dimension.
ERIC Educational Resources Information Center
Reckase, Mark D.
The work presented in this paper defined conceptually the concepts of multidimensional discrimination and information, derived mathematical expressions for the concepts for a particular multidimensional item response theory (IRT) model, and applied the concepts to actual test data. Multidimensional discrimination was defined as a function of the…
The Costs of Getting Ahead: Mexican Family System Changes after Immigration
ERIC Educational Resources Information Center
Bacallao, Martica L.; Smokowski, Paul R.
2007-01-01
This study explored how immigration influenced Mexican family relationships. Qualitative interviews were conducted with 12 adolescents and 14 parents from 10 undocumented Mexican families. Participants immigrated to North Carolina within the past 7 years. A conceptual model derived from the data using grounded theory methods suggested that, after…
ERIC Educational Resources Information Center
TRAVERS, ROBERT M.W.
THE REVIEWER FAULTS THE AUTHOR FOR "SIMPLE AND UNCRITICAL PRESENTATIONS OF IDEAS" THAT FAIL TO RESULT IN THE PROMISED "WORKABLE DOCUMENT FOR PRACTICING TEACHER EDUCATORS TO USE." THE MATERIAL "SHOWS SO COMPLETE A LACK OF CONCERN FOR SUCH MATTERS AS WHETHER A MODEL HAS OR HAS NOT BEEN DERIVED FROM EMPIRICAL RESEARCH, WHETHER THE MODEL HAS OR HAS…
Social phobia: further evidence of dimensional structure.
Crome, Erica; Baillie, Andrew; Slade, Tim; Ruscio, Ayelet Meron
2010-11-01
Social phobia is a common mental disorder associated with significant impairment. Current research and treatment models of social phobia rely on categorical diagnostic conceptualizations lacking empirical support. This study aims to further research exploring whether social phobia is best conceptualized as a dimension or a discrete categorical disorder. This study used three distinct taxometric techniques (mean above minus below a cut, maximum Eigen value and latent mode) to explore the latent structure of social phobia in two large epidemiological samples, using indicators derived from diagnostic criteria and associated avoidant personality traits. Overall, outcomes from multiple taxometric analyses supported dimensional structure. This is consistent with conceptualizations of social phobia as lying on a continuum with avoidant personality traits. Support for the dimensionality of social phobia has important implications for future research, assessment, treatment, and public policy.
Lihoreau, Mathieu; Buhl, Jerome; Charleston, Michael A; Sword, Gregory A; Raubenheimer, David; Simpson, Stephen J
2015-01-01
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual- and collective-level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments. PMID:25586099
Comparison of Conceptual and Neural Network Rainfall-Runoff Models
NASA Astrophysics Data System (ADS)
Vidyarthi, V. K.; Jain, A.
2014-12-01
Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to carry out such studies to prove the superiority of ANN models over conventional methods in an attempt to make them acceptable by water resources community responsible for the operation of water resources systems.
Traditions, Paradigms and Basic Concepts in Islamic Psychology.
Skinner, Rasjid
2018-03-23
The conceptual tools of psychology aim to explain the complexity of phenomena that psychotherapists observe in their patients and within themselves, as well as to predict the outcome of therapy. Naturally, Muslim psychologists have sought satisfaction in the conceptual tools of their trade and in what has been written in Islamic psychology-notably by Badri (The dilemma of Muslim psychologists, MWH London, London, 1979), who critiqued Western psychology from an Islamic perspective, arguing the need to filter out from Western Psychology which was cross-culturally invalid or was in conflict with Islamic precept. In this paper, I advocate an extension of Badri's (1979) approach and present a working model of the self derived from traditional Islamic thought. This model, though rudimentary and incomplete, I believe, makes better sense of my perceptions as a clinician than any other psychological model within my knowledge.
Woodward, Andrea; Beever, Erik A.
2011-01-01
More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the Unified Ecoregions of Alaska. Ecoregional models were then developed to illustrate resources and processes that operate at spatial scales larger than individual refuges within each ecoregion. Conceptual models also were developed for adjacent marine areas, designated as the North Pacific, Bering Sea, and Beaufort-Chukchi Sea Marine Ecoregions. Although many more conceptual models will be required to support development of a regional monitoring program, these definitions of ecoregions and associated conceptual models are an important foundation.
Geographic information system/watershed model interface
Fisher, Gary T.
1989-01-01
Geographic information systems allow for the interactive analysis of spatial data related to water-resources investigations. A conceptual design for an interface between a geographic information system and a watershed model includes functions for the estimation of model parameter values. Design criteria include ease of use, minimal equipment requirements, a generic data-base management system, and use of a macro language. An application is demonstrated for a 90.1-square-kilometer subbasin of the Patuxent River near Unity, Maryland, that performs automated derivation of watershed parameters for hydrologic modeling.
Timothy A. Martin; Kurt H. Johnsen; Timothy L. White
2001-01-01
Indirect genetic selection for early growth and disease resistance of southern pines has proven remarkably successful over the past several decades. However, several benefits could be derived for southern pine breeding programs by incorporating ideotypes, conceptual models which explicitly describe plant phenotypic characteristics that are hypothesized to produce...
Resource Manual on the Use of Computers in Schooling.
ERIC Educational Resources Information Center
New York State Education Dept., Albany. Bureau of Technology Applications.
This resource manual is designed to provide educators with timely information on the use of computers and related technology in schools. Section one includes a review of the new Bureau of Technology Applications' goal, functions, and major programs and activities; a description of the Model Schools Program, which has been conceptually derived from…
Clarifying Relationships among Work and Family Social Support, Stressors, and Work-Family Conflict
ERIC Educational Resources Information Center
Michel, Jesse S.; Mitchelson, Jacqueline K.; Pichler, Shaun; Cullen, Kristin L.
2010-01-01
Although work and family social support predict role stressors and work-family conflict, there has been much ambiguity regarding the conceptual relationships among these constructs. Using path analysis on meta-analytically derived validity coefficients (528 effect sizes from 156 samples), we compare three models to address these concerns and…
Predictors of Child Molestation: Adult Attachment, Cognitive Distortions, and Empathy
ERIC Educational Resources Information Center
Wood, Eric; Riggs, Shelley
2008-01-01
A conceptual model derived from attachment theory was tested by examining adult attachment style, cognitive distortions, and both general and victim empathy in a sample of 61 paroled child molesters and 51 community controls. Results of logistic multiple regression showed that attachment anxiety, cognitive distortions, high general empathy but low…
A computational method for optimizing fuel treatment locations
Mark A. Finney
2006-01-01
Modeling and experiments have suggested that spatial fuel treatment patterns can influence the movement of large fires. On simple theoretical landscapes consisting of two fuel types (treated and untreated) optimal patterns can be analytically derived that disrupt fire growth efficiently (i.e. with less area treated than random patterns). Although conceptually simple,...
Conceptual Model of Continuing Professional Education Based on Social-and-Academic Approach
ERIC Educational Resources Information Center
Dorozhkin, Evgenij M.; Saltseva, Svetlana V.; Steinberg, Valery E.
2016-01-01
The importance of the issue in subject derives from the fact that the vocational (professional) education does not really meet the demands of people, society and state that are explained by new qualification requirements to employees in various fields, including forestry, in the modern socio-economic situation. Thus, continuing professional…
NASA Astrophysics Data System (ADS)
Sun, Xiaobin; Xu, Yongxin; Lin, Lixiang
2015-05-01
Parameter estimates of artesian aquifers where piezometric head is above ground level are largely made through free-flowing and recovery tests. The straight-line method proposed by Jacob-Lohman is often used for interpretation of flow rate measured at flowing artesian boreholes. However, the approach fails to interpret the free-flowing test data from two artesian boreholes in the fractured-rock aquifer in Table Mountain Group (TMG) of South Africa. The diagnostic plot method using the reciprocal rate derivative is adapted to evaluate the artesian aquifer properties. The variation of the derivative helps not only identify flow regimes and discern the boundary conditions, but also facilitates conceptualization of the aquifer system and selection of an appropriate model for data interpretation later on. Test data from two free-flowing tests conducted in different sites in TMG are analysed using the diagnostic plot method. Based on the results, conceptual models and appropriate approaches are developed to evaluate the aquifer properties. The advantages and limitations of using the diagnostic plot method on free-flowing test data are discussed.
U.S.A.B.I.L.I.T.Y. Framework for Older Adults.
Caboral-Stevens, Meriam; Whetsell, Martha V; Evangelista, Lorraine S; Cypress, Brigitte; Nickitas, Donna
2015-01-01
The purpose of the current study was to present a framework to determine potential usability of health websites by older adults. Review of the literature showed paucity of nursing theory related to the use of technology and usability, particularly in older adults. The Roy Adaptation Model, a widely used nursing theory, was chosen to provide framework for the new model. Technology constructs from the Technology Acceptance Model and United Theory of Acceptance and Use of Technology and behavioral control construct from the Theory of Planned Behavior were integrated into the construction of the derived model. The Use of Technology for Adaptation by Older Adults and/or Those With Limited Literacy (U.S.A.B.I.L.I.T.Y.) Model was constructed from the integration of diverse theoretical/conceptual perspectives. The four determinants of usability in the conceptual model include (a) efficiency, (b) learnability, (c) perceived user experience, and (d) perceived control. Because of the lack of well-validated survey questionnaires to measure these determinants, a U.S.A.B.I.L.I.T.Y. Survey was developed. A panel of experts evaluated face and content validity of the new instrument. Internal consistency of the new instrument was 0.96. Usability is key to accepting technology. The derived U.S.A.B.I.L.I.T.Y. framework could serve as a guide for nurses in formative evaluation of technology. Copyright 2015, SLACK Incorporated.
Joslin, A C; Green, R; German, J B; Lange, M C
2014-09-01
Advances in the development of bioinformatic tools continue to improve investigators' ability to interrogate, organize, and derive knowledge from large amounts of heterogeneous information. These tools often require advanced technical skills not possessed by life scientists. User-friendly, low-barrier-to-entry methods of visualizing nutrigenomics information are yet to be developed. We utilized concept mapping software from the Institute for Human and Machine Cognition to create a conceptual model of diet and health-related data that provides a foundation for future nutrigenomics ontologies describing published nutrient-gene/polymorphism-phenotype data. In this model, maps containing phenotype, nutrient, gene product, and genetic polymorphism interactions are visualized as triples of two concepts linked together by a linking phrase. These triples, or "knowledge propositions," contextualize aggregated data and information into easy-to-read knowledge maps. Maps of these triples enable visualization of genes spanning the One-Carbon Metabolism (OCM) pathway, their sequence variants, and multiple literature-mined associations including concepts relevant to nutrition, phenotypes, and health. The concept map development process documents the incongruity of information derived from pathway databases versus literature resources. This conceptual model highlights the importance of incorporating information about genes in upstream pathways that provide substrates, as well as downstream pathways that utilize products of the pathway under investigation, in this case OCM. Other genes and their polymorphisms, such as TCN2 and FUT2, although not directly involved in OCM, potentially alter OCM pathway functionality. These upstream gene products regulate substrates such as B12. Constellations of polymorphisms affecting the functionality of genes along OCM, together with substrate and cofactor availability, may impact resultant phenotypes. These conceptual maps provide a foundational framework for development of nutrient-gene/polymorphism-phenotype ontologies and systems visualization.
Doyle, Jessica M.; Gleeson, Tom; Manning, Andrew H.; Mayer, K. Ulrich
2015-01-01
Environmental tracers provide information on groundwater age, recharge conditions, and flow processes which can be helpful for evaluating groundwater sustainability and vulnerability. Dissolved noble gas data have proven particularly useful in mountainous terrain because they can be used to determine recharge elevation. However, tracer-derived recharge elevations have not been utilized as calibration targets for numerical groundwater flow models. Herein, we constrain and calibrate a regional groundwater flow model with noble-gas-derived recharge elevations for the first time. Tritium and noble gas tracer results improved the site conceptual model by identifying a previously uncertain contribution of mountain block recharge from the Coast Mountains to an alluvial coastal aquifer in humid southwestern British Columbia. The revised conceptual model was integrated into a three-dimensional numerical groundwater flow model and calibrated to hydraulic head data in addition to recharge elevations estimated from noble gas recharge temperatures. Recharge elevations proved to be imperative for constraining hydraulic conductivity, recharge location, and bedrock geometry, and thus minimizing model nonuniqueness. Results indicate that 45% of recharge to the aquifer is mountain block recharge. A similar match between measured and modeled heads was achieved in a second numerical model that excludes the mountain block (no mountain block recharge), demonstrating that hydraulic head data alone are incapable of quantifying mountain block recharge. This result has significant implications for understanding and managing source water protection in recharge areas, potential effects of climate change, the overall water budget, and ultimately ensuring groundwater sustainability.
The Problem of Rarity: Estimation of Prevalence in Rare Disease.
Auvin, Stéphane; Irwin, John; Abi-Aad, Paul; Battersby, Alysia
2018-05-01
From a disease's first description to its wider recognition, factors such as changes over time in diagnostic criteria, available therapies, and subsequent mortality rates may influence diagnosed prevalence of rare diseases. To propose a novel methodology for estimating the true prevalence of rare diseases using current incidence adjusted to changing diagnostic practice over time. This article focuses on rare diseases whose diagnosis may have changed over time, and raises the hypothesis that prevalence calculated from current incidence may be higher than diagnosed prevalence, which may lag behind the current disease definition and diagnostic methods. A rare epileptic encephalopathy, Dravet syndrome (DS), is explored as an illustrative example. A targeted literature review was performed for DS to identify all reported incidence, prevalence, and mortality and depict how diagnostic practice has evolved over time. A conceptual model was developed to calculate prevalence derived from current incidence figures alone (incidence-derived prevalence) or incidence adjusted with factors that cause a diagnostic drag (diagnostic awareness-adjusted prevalence). We identified sufficient publications of incidence and prevalence to test the conceptual model. For pediatric patients with DS, diagnosed prevalence in the field (as reported in current literature) matches incidence-derived prevalence, whereas for adult patients, it is overestimated by incidence-derived prevalence, but not by diagnostic awareness-adjusted prevalence. Care should be taken with current incidence-derived prevalence figures to not overstate the prevalence in rare diseases, as methodological challenges in counting small populations, coupled with advances in rare disease discovery, may cause discrepancies. Copyright © 2018 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
1979-01-01
Cost data generated for the evolutionary power module concepts selected are reported. The initial acquisition costs (design, development, and protoflight unit test costs) were defined and modeled for the baseline 25 kW power module configurations. By building a parametric model of this initial building block, the cost of the 50 kW and the 100 kW power modules were derived by defining only their configuration and programmatic differences from the 25 kW baseline module. Variations in cost for the quantities needed to fulfill the mission scenarios were derived by applying appropriate learning curves.
The (Mathematical) Modeling Process in Biosciences.
Torres, Nestor V; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology.
Brunton, Ginny; Thomas, James; O'Mara-Eves, Alison; Jamal, Farah; Oliver, Sandy; Kavanagh, Josephine
2017-12-11
Government policy increasingly supports engaging communities to promote health. It is critical to consider whether such strategies are effective, for whom, and under what circumstances. However, 'community engagement' is defined in diverse ways and employed for different reasons. Considering the theory and context we developed a conceptual framework which informs understanding about what makes an effective (or ineffective) community engagement intervention. We conducted a systematic review of community engagement in public health interventions using: stakeholder involvement; searching, screening, appraisal and coding of research literature; and iterative thematic syntheses and meta-analysis. A conceptual framework of community engagement was refined, following interactions between the framework and each review stage. From 335 included reports, three products emerged: (1) two strong theoretical 'meta-narratives': one, concerning the theory and practice of empowerment/engagement as an independent objective; and a more utilitarian perspective optimally configuring health services to achieve defined outcomes. These informed (2) models that were operationalized in subsequent meta-analysis. Both refined (3) the final conceptual framework. This identified multiple dimensions by which community engagement interventions may differ. Diverse combinations of intervention purpose, theory and implementation were noted, including: ways of defining communities and health needs; initial motivations for community engagement; types of participation; conditions and actions necessary for engagement; and potential issues influencing impact. Some dimensions consistently co-occurred, leading to three overarching models of effective engagement which either: utilised peer-led delivery; employed varying degrees of collaboration between communities and health services; or built on empowerment philosophies. Our conceptual framework and models are useful tools for considering appropriate and effective approaches to community engagement. These should be tested and adapted to facilitate intervention design and evaluation. Using this framework may disentangle the relative effectiveness of different models of community engagement, promoting effective, sustainable and appropriate initiatives.
Modelling plankton ecosystems in the meta-omics era. Are we ready?
Stec, Krzysztof Franciszek; Caputi, Luigi; Buttigieg, Pier Luigi; D'Alelio, Domenico; Ibarbalz, Federico Matias; Sullivan, Matthew B; Chaffron, Samuel; Bowler, Chris; Ribera d'Alcalà, Maurizio; Iudicone, Daniele
2017-04-01
Recent progress in applying meta-omics approaches to the study of marine ecosystems potentially allows scientists to study the genetic and functional diversity of plankton at an unprecedented depth and with enhanced precision. However, while a range of persistent technical issues still need to be resolved, a much greater obstacle currently preventing a complete and integrated view of the marine ecosystem is the absence of a clear conceptual framework. Herein, we discuss the knowledge that has thus far been derived from conceptual and statistical modelling of marine plankton ecosystems, and illustrate the potential power of integrated meta-omics approaches in the field. We then propose the use of a semantic framework is necessary to support integrative ecological modelling in the meta-omics era, particularly when having to face the increased interdisciplinarity needed to address global issues related to climate change. Copyright © 2017. Published by Elsevier B.V.
2010-04-30
combating market dynamism (Aldrich, 1979; Child, 1972), which is a result of evolving technology, shifting prices, or variance in product availability... principles : (1) human beings are bounded rationally, and (2), as a result of being rationally bound, will always choose to further their own self... principles to govern the relationship among the buyers and suppliers. Our conceptual model aligns the alternative governance structures derived
Conceptual Model Development for Sea Turtle Nesting Habitat: Support for USACE Navigation Projects
2015-08-01
regional values. • Beach Width: The width of the beach (m) defines the region from the shoreline to the dune toe . Loggerhead turtles tend to prefer...primary drivers of the model parameters. • Beach Elevation: Beach elevation (m) is measured from the shoreline to the dune toe . Elevation influences...mapping, and morphological features in combination with imagery-derived environmental parameters (i.e., dune vegetation) have not been attempted
It's time to Rework the Blueprints: Building a Science for Clinical Psychology
ERIC Educational Resources Information Center
Millon, Theodore
2003-01-01
The aims in this article are to connect the conceptual structure of clinical psychological science to what the author believes to be the omnipresent principles of evolution, use the evolutionary model to create a deductively derived clinical theory and taxonomy, link the theory and taxonomy to comprehensive and integrated approaches to assessment,…
ERIC Educational Resources Information Center
Cree, George S.; McNorgan, Chris; McRae, Ken
2006-01-01
The authors present data from 2 feature verification experiments designed to determine whether distinctive features have a privileged status in the computation of word meaning. They use an attractor-based connectionist model of semantic memory to derive predictions for the experiments. Contrary to central predictions of the conceptual structure…
Electrostatic forces in the Poisson-Boltzmann systems
NASA Astrophysics Data System (ADS)
Xiao, Li; Cai, Qin; Ye, Xiang; Wang, Jun; Luo, Ray
2013-09-01
Continuum modeling of electrostatic interactions based upon numerical solutions of the Poisson-Boltzmann equation has been widely used in structural and functional analyses of biomolecules. A limitation of the numerical strategies is that it is conceptually difficult to incorporate these types of models into molecular mechanics simulations, mainly because of the issue in assigning atomic forces. In this theoretical study, we first derived the Maxwell stress tensor for molecular systems obeying the full nonlinear Poisson-Boltzmann equation. We further derived formulations of analytical electrostatic forces given the Maxwell stress tensor and discussed the relations of the formulations with those published in the literature. We showed that the formulations derived from the Maxwell stress tensor require a weaker condition for its validity, applicable to nonlinear Poisson-Boltzmann systems with a finite number of singularities such as atomic point charges and the existence of discontinuous dielectric as in the widely used classical piece-wise constant dielectric models.
NASA Astrophysics Data System (ADS)
Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara
2018-02-01
Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.
Nayak, Shalini G; Pai, Mamatha Shivananda; George, Linu Sara
2018-01-01
Conceptual models developed through qualitative research are based on the unique experiences of suffering and individuals' adoptions of each participant. A wide array of problems are faced by head-and-neck cancer (HNC) patients due to disease pathology and treatment modalities which are sufficient to influence the quality of life (QOL). Men possess greater self-acceptance and are better equipped with intrapersonal strength to cope with stress and adequacy compared to women. A qualitative phenomenology study was conducted among seven women suffering from HNC, with the objective to understand their experiences of suffering and to describe the phenomenon. Data were collected by face-to-face, in-depth, open-ended interviews. Data were analyzed using Open Code software (OPC 4.0) by following the steps of Colaizzi process. The phenomenon that emerged out of the lived experiences of HNC women was "Personified as paragon of suffering.optimistic being of achieving normalcy," with five major themes and 13 subthemes. The conceptual model developed with the phenomenological approach is very specific to the women suffering from HNC, which will be contributing to develop strategies to improve the QOL of women.
Nayak, Shalini G; Pai, Mamatha Shivananda; George, Linu Sara
2018-01-01
Background: Conceptual models developed through qualitative research are based on the unique experiences of suffering and individuals’ adoptions of each participant. A wide array of problems are faced by head-and-neck cancer (HNC) patients due to disease pathology and treatment modalities which are sufficient to influence the quality of life (QOL). Men possess greater self-acceptance and are better equipped with intrapersonal strength to cope with stress and adequacy compared to women. Methodology: A qualitative phenomenology study was conducted among seven women suffering from HNC, with the objective to understand their experiences of suffering and to describe the phenomenon. Data were collected by face-to-face, in-depth, open-ended interviews. Data were analyzed using Open Code software (OPC 4.0) by following the steps of Colaizzi process. Results: The phenomenon that emerged out of the lived experiences of HNC women was "Personified as paragon of suffering.optimistic being of achieving normalcy," with five major themes and 13 subthemes. Conclusion: The conceptual model developed with the phenomenological approach is very specific to the women suffering from HNC, which will be contributing to develop strategies to improve the QOL of women. PMID:29440812
Riedel, Natalie; van Kamp, Irene; Köckler, Heike; Scheiner, Joachim; Loerbroks, Adrian; Claßen, Thomas; Bolte, Gabriele
2017-01-01
The Environmental Noise Directive expects residents to be actively involved in localising and selecting noise abatement interventions during the noise action planning process. Its intervention impact is meant to be homogeneous across population groups. Against the background of social heterogeneity and environmental disparities, however, the impact of noise action planning on exposure to traffic-related noise and its health effects is unlikely to follow homogenous distributions. Until now, there has been no study evaluating the impact of noise action measures on the social distribution of traffic-related noise exposure and health outcomes. We develop a conceptual (logic) model on cognitive-motivational determinants of residents’ civic engagement and health (inequities) by integrating arguments from the Model on household’s Vulnerability to the local Environment, the learned helplessness model in environmental psychology, the Cognitive Activation Theory of Stress, and the reserve capacity model. Specifically, we derive four hypothetical patterns of cognitive-motivational determinants yielding different levels of sustained physiological activation and expectancies of civic engagement. These patterns may help us understand why health inequities arise in the context of noise action planning and learn how to transform noise action planning into an instrument conducive to health equity. While building on existing frameworks, our conceptual model will be tested empirically in the next stage of our research process. PMID:28556813
Riedel, Natalie; van Kamp, Irene; Köckler, Heike; Scheiner, Joachim; Loerbroks, Adrian; Claßen, Thomas; Bolte, Gabriele
2017-05-30
The Environmental Noise Directive expects residents to be actively involved in localising and selecting noise abatement interventions during the noise action planning process. Its intervention impact is meant to be homogeneous across population groups. Against the background of social heterogeneity and environmental disparities, however, the impact of noise action planning on exposure to traffic-related noise and its health effects is unlikely to follow homogenous distributions. Until now, there has been no study evaluating the impact of noise action measures on the social distribution of traffic-related noise exposure and health outcomes. We develop a conceptual (logic) model on cognitive-motivational determinants of residents' civic engagement and health (inequities) by integrating arguments from the Model on household's Vulnerability to the local Environment, the learned helplessness model in environmental psychology, the Cognitive Activation Theory of Stress, and the reserve capacity model. Specifically, we derive four hypothetical patterns of cognitive-motivational determinants yielding different levels of sustained physiological activation and expectancies of civic engagement. These patterns may help us understand why health inequities arise in the context of noise action planning and learn how to transform noise action planning into an instrument conducive to health equity. While building on existing frameworks, our conceptual model will be tested empirically in the next stage of our research process.
Smith, Denise Colter
2015-01-01
Since the passage of the Affordable Care Act, collaborative practice has been cited as one method of increasing access to care, decreasing costs, and improving efficiency. How and under what conditions might these goals be achieved? Midwives and physicians have built effective collaborative practice models over a period of 30 years. Empirical study of interprofessional collaboration between midwives and physicians could be useful in guiding professional education, regulation, and health policy in women's health and maternity care. Construction of a conceptual framework for interprofessional collaboration between midwives and physicians was guided by a review of the literature. A theory derivation strategy was used to define dimensions, concepts, and statements of the framework. Midwife-physician interprofessional collaboration can be defined by 4 dimensions (organizational, procedural, relational, and contextual) and 12 concepts (trust, shared power, synergy, commitment, and respect, among others). The constructed framework provides the foundation for further empirical study of the interprofessional collaborative process. The experiences of midwife-physician collaborations provide solid support for a conceptual framework of the collaborative process. A conceptual framework provides a point from which further research can increase knowledge and understanding about how successful outcomes are achieved in collaborative health care practices. Construction of a measurement scale and validation of the model are important next steps. © 2014 by the American College of Nurse-Midwives.
Guo, Xuezhen; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W
2014-06-01
Economic analysis of hazard surveillance in livestock production chains is essential for surveillance organizations (such as food safety authorities) when making scientifically based decisions on optimization of resource allocation. To enable this, quantitative decision support tools are required at two levels of analysis: (1) single-hazard surveillance system and (2) surveillance portfolio. This paper addresses the first level by presenting a conceptual approach for the economic analysis of single-hazard surveillance systems. The concept includes objective and subjective aspects of single-hazard surveillance system analysis: (1) a simulation part to derive an efficient set of surveillance setups based on the technical surveillance performance parameters (TSPPs) and the corresponding surveillance costs, i.e., objective analysis, and (2) a multi-criteria decision making model to evaluate the impacts of the hazard surveillance, i.e., subjective analysis. The conceptual approach was checked for (1) conceptual validity and (2) data validity. Issues regarding the practical use of the approach, particularly the data requirement, were discussed. We concluded that the conceptual approach is scientifically credible for economic analysis of single-hazard surveillance systems and that the practicability of the approach depends on data availability. Copyright © 2014 Elsevier B.V. All rights reserved.
Lihoreau, Mathieu; Buhl, Jerome; Charleston, Michael A; Sword, Gregory A; Raubenheimer, David; Simpson, Stephen J
2015-03-01
Over recent years, modelling approaches from nutritional ecology (known as Nutritional Geometry) have been increasingly used to describe how animals and some other organisms select foods and eat them in appropriate amounts in order to maintain a balanced nutritional state maximising fitness. These nutritional strategies profoundly affect the physiology, behaviour and performance of individuals, which in turn impact their social interactions within groups and societies. Here, we present a conceptual framework to study the role of nutrition as a major ecological factor influencing the development and maintenance of social life. We first illustrate some of the mechanisms by which nutritional differences among individuals mediate social interactions in a broad range of species and ecological contexts. We then explain how studying individual- and collective-level nutrition in a common conceptual framework derived from Nutritional Geometry can bring new fundamental insights into the mechanisms and evolution of social interactions, using a combination of simulation models and manipulative experiments. © 2015 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
NASA Astrophysics Data System (ADS)
Bianchi Janetti, Emanuela; Riva, Monica; Guadagnini, Alberto
2017-04-01
We perform a variance-based global sensitivity analysis to assess the impact of the uncertainty associated with (a) the spatial distribution of hydraulic parameters, e.g., hydraulic conductivity, and (b) the conceptual model adopted to describe the system on the characterization of a regional-scale aquifer. We do so in the context of inverse modeling of the groundwater flow system. The study aquifer lies within the provinces of Bergamo and Cremona (Italy) and covers a planar extent of approximately 785 km2. Analysis of available sedimentological information allows identifying a set of main geo-materials (facies/phases) which constitute the geological makeup of the subsurface system. We parameterize the conductivity field following two diverse conceptual schemes. The first one is based on the representation of the aquifer as a Composite Medium. In this conceptualization the system is composed by distinct (five, in our case) lithological units. Hydraulic properties (such as conductivity) in each unit are assumed to be uniform. The second approach assumes that the system can be modeled as a collection of media coexisting in space to form an Overlapping Continuum. A key point in this model is that each point in the domain represents a finite volume within which each of the (five) identified lithofacies can be found with a certain volumetric percentage. Groundwater flow is simulated with the numerical code MODFLOW-2005 for each of the adopted conceptual models. We then quantify the relative contribution of the considered uncertain parameters, including boundary conditions, to the total variability of the piezometric level recorded in a set of 40 monitoring wells by relying on the variance-based Sobol indices. The latter are derived numerically for the investigated settings through the use of a model-order reduction technique based on the polynomial chaos expansion approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sig Drellack, Lance Prothro
2007-12-01
The Underground Test Area (UGTA) Project of the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office is in the process of assessing and developing regulatory decision options based on modeling predictions of contaminant transport from underground testing of nuclear weapons at the Nevada Test Site (NTS). The UGTA Project is attempting to develop an effective modeling strategy that addresses and quantifies multiple components of uncertainty including natural variability, parameter uncertainty, conceptual/model uncertainty, and decision uncertainty in translating model results into regulatory requirements. The modeling task presents multiple unique challenges to the hydrological sciences as a result ofmore » the complex fractured and faulted hydrostratigraphy, the distributed locations of sources, the suite of reactive and non-reactive radionuclides, and uncertainty in conceptual models. Characterization of the hydrogeologic system is difficult and expensive because of deep groundwater in the arid desert setting and the large spatial setting of the NTS. Therefore, conceptual model uncertainty is partially addressed through the development of multiple alternative conceptual models of the hydrostratigraphic framework and multiple alternative models of recharge and discharge. Uncertainty in boundary conditions is assessed through development of alternative groundwater fluxes through multiple simulations using the regional groundwater flow model. Calibration of alternative models to heads and measured or inferred fluxes has not proven to provide clear measures of model quality. Therefore, model screening by comparison to independently-derived natural geochemical mixing targets through cluster analysis has also been invoked to evaluate differences between alternative conceptual models. Advancing multiple alternative flow models, sensitivity of transport predictions to parameter uncertainty is assessed through Monte Carlo simulations. The simulations are challenged by the distributed sources in each of the Corrective Action Units, by complex mass transfer processes, and by the size and complexity of the field-scale flow models. An efficient methodology utilizing particle tracking results and convolution integrals provides in situ concentrations appropriate for Monte Carlo analysis. Uncertainty in source releases and transport parameters including effective porosity, fracture apertures and spacing, matrix diffusion coefficients, sorption coefficients, and colloid load and mobility are considered. With the distributions of input uncertainties and output plume volumes, global analysis methods including stepwise regression, contingency table analysis, and classification tree analysis are used to develop sensitivity rankings of parameter uncertainties for each model considered, thus assisting a variety of decisions.« less
NASA Astrophysics Data System (ADS)
Förtsch, Christian; Dorfner, Tobias; Baumgartner, Julia; Werner, Sonja; von Kotzebue, Lena; Neuhaus, Birgit J.
2018-04-01
The German National Education Standards (NES) for biology were introduced in 2005. The content part of the NES emphasizes fostering conceptual knowledge. However, there are hardly any indications of what such an instructional implementation could look like. We introduce a theoretical framework of an instructional approach to foster students' conceptual knowledge as demanded in the NES (Fostering Conceptual Knowledge) including instructional practices derived from research on single core ideas, general psychological theories, and biology-specific features of instructional quality. First, we aimed to develop a rating manual, which is based on this theoretical framework. Second, we wanted to describe current German biology instruction according to this approach and to quantitatively analyze its effectiveness. And third, we aimed to provide qualitative examples of this approach to triangulate our findings. In a first step, we developed a theoretically devised rating manual to measure Fostering Conceptual Knowledge in videotaped lessons. Data for quantitative analysis included 81 videotaped biology lessons of 28 biology teachers from different German secondary schools. Six hundred forty students completed a questionnaire on their situational interest after each lesson and an achievement test. Results from multilevel modeling showed significant positive effects of Fostering Conceptual Knowledge on students' achievement and situational interest. For qualitative analysis, we contrasted instruction of four teachers, two with high and two with low student achievement and situational interest using the qualitative method of thematic analysis. Qualitative analysis revealed five main characteristics describing Fostering Conceptual Knowledge. Therefore, implementing Fostering Conceptual Knowledge in biology instruction seems promising. Examples of how to implement Fostering Conceptual Knowledge in instruction are shown and discussed.
A simplified model of precipitation enhancement over a heterogeneous surface
NASA Astrophysics Data System (ADS)
Cioni, Guido; Hohenegger, Cathy
2018-06-01
Soil moisture heterogeneities influence the onset of convection and subsequent evolution of precipitating systems through the triggering of mesoscale circulations. However, local evaporation also plays a role in determining precipitation amounts. Here we aim at disentangling the effect of advection and evaporation on precipitation over the course of a diurnal cycle by formulating a simple conceptual model. The derivation of the model is inspired by the results of simulations performed with a high-resolution (250 m) large eddy simulation model over a surface with varying degrees of heterogeneity. A key element of the conceptual model is the representation of precipitation as a weighted sum of advection and evaporation, each weighed by its own efficiency. The model is then used to isolate the main parameters that control precipitation variations over a spatially drier patch. It is found that these changes surprisingly do not depend on soil moisture itself but instead purely on parameters that describe the atmospheric initial state. The likelihood for enhanced precipitation over drier soils is discussed based on these parameters. Additional experiments are used to test the validity of the model.
Shreffler-Grant, Jean; Nichols, Elizabeth; Weinert, Clarann; Ide, Bette
2016-01-01
This article aims to present and describe a model of complementary and alternative medicine (CAM) health literacy. The model is the conceptual basis for CAM health literacy, which is operationally defined as the information about CAM needed to make informed self-management decisions regarding health. Improving health literacy is a national priority, and widespread use of CAM has added to the complexity of this task. There are no currently available models or measures of health literacy regarding CAM. The authors developed the model using an iterative process of deriving concepts, constructs, and empirical indicators from the literature and the author’s prior work, review and critique by experts, and revision. The model of CAM health literacy can serve as the basis for future research on the use and efficacy of CAM and the constructs and concepts within it can be used to identify points of intervention for research or for clinical practice. It is anticipated that the model will have scientific and clinical application for assessing health literacy in other self care decision-making situations. PMID:23889542
Shreffler-Grant, Jean; Nichols, Elizabeth; Weinert, Clarann; Ide, Bette
2013-01-01
This article aims to present and describe a model of complementary and alternative medicine (CAM) health literacy. The model is the conceptual basis for CAM health literacy, which is operationally defined as the information about CAM needed to make informed self-management decisions regarding health. Improving health literacy is a national priority, and widespread use of CAM has added to the complexity of this task. There are no currently available models or measures of health literacy regarding CAM. The authors developed the model using an iterative process of deriving concepts, constructs, and empirical indicators from the literature and the author's prior work, review and critique by experts, and revision. The model of CAM health literacy can serve as the basis for future research on the use and efficacy of CAM and the constructs and concepts within it can be used to identify points of intervention for research or for clinical practice. It is anticipated that the model will have scientific and clinical application for assessing health literacy in other self care decision-making situations.
2016-01-01
Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines. PMID:26912288
Gray, Kathleen; Sockolow, Paulina
2016-02-24
Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.
Where is Cultural Astronomy Going?
NASA Astrophysics Data System (ADS)
Sims, Lionel
2015-05-01
Archaeoastronomy has recently been characterised as 'going round in circles', failing to integrate a rapidly expanding body of data with the interpretive models of anthropology (Ruggles 2011). This paper locates some impediments to disciplinary growth in the legacy of our recent origins, a problematical conceptual vocabulary and a narrow and derivative theoretical base. Proposals are made for an alternative future for the discipline.
ERIC Educational Resources Information Center
Xie, Jinyu; Huang, Erjia
2010-01-01
Based on a literature review from English language journals related to the field of human resource development (HRD), the conceptual framework for this study was derived from the models developed by American Society for Training and Development (ASTD) for HRD practice. This study compared and analyzed the similarities and differences in HRD roles,…
Liao, Jun; Jackson, Todd; Chen, Hong
2014-09-01
We evaluated the structure and validity of the Upward Appearance Comparison Scale (UPACS) and Downward Appearance Comparison Scale (DACS) (O'Brien et al., 2009) in Chinese samples. In Study 1, principal component analysis on an initial sample (427 women, 123 men) and confirmatory factor analysis on another sample (447 women, 121 men) found that a 15-item, two component model had the best overall fit. Derived components had moderate correlations with most conceptually related measures and low correlations with less conceptually related indices. Study 2 participants (310 women, 201 men) completed the UPACS and DACS as well as measures of disordered eating, fatness concern, and negative affect; they were re-assessed one year later. Baseline UPACS scores predicted changes in disordered eating for women and fatness concerns for men, independent of initial disturbances, but DACS responses were not related to outcomes. Findings highlighted the potential utility of derived UPACS and DACS within a Chinese context. Copyright © 2014 Elsevier Ltd. All rights reserved.
The (Mathematical) Modeling Process in Biosciences
Torres, Nestor V.; Santos, Guido
2015-01-01
In this communication, we introduce a general framework and discussion on the role of models and the modeling process in the field of biosciences. The objective is to sum up the common procedures during the formalization and analysis of a biological problem from the perspective of Systems Biology, which approaches the study of biological systems as a whole. We begin by presenting the definitions of (biological) system and model. Particular attention is given to the meaning of mathematical model within the context of biology. Then, we present the process of modeling and analysis of biological systems. Three stages are described in detail: conceptualization of the biological system into a model, mathematical formalization of the previous conceptual model and optimization and system management derived from the analysis of the mathematical model. All along this work the main features and shortcomings of the process are analyzed and a set of rules that could help in the task of modeling any biological system are presented. Special regard is given to the formative requirements and the interdisciplinary nature of this approach. We conclude with some general considerations on the challenges that modeling is posing to current biology. PMID:26734063
A stable computation of log-derivatives from noisy drawdown data
NASA Astrophysics Data System (ADS)
Ramos, Gustavo; Carrera, Jesus; Gómez, Susana; Minutti, Carlos; Camacho, Rodolfo
2017-09-01
Pumping tests interpretation is an art that involves dealing with noise coming from multiple sources and conceptual model uncertainty. Interpretation is greatly helped by diagnostic plots, which include drawdown data and their derivative with respect to log-time, called log-derivative. Log-derivatives are especially useful to complement geological understanding in helping to identify the underlying model of fluid flow because they are sensitive to subtle variations in the response to pumping of aquifers and oil reservoirs. The main problem with their use lies in the calculation of the log-derivatives themselves, which may display fluctuations when data are noisy. To overcome this difficulty, we propose a variational regularization approach based on the minimization of a functional consisting of two terms: one ensuring that the computed log-derivatives honor measurements and one that penalizes fluctuations. The minimization leads to a diffusion-like differential equation in the log-derivatives, and boundary conditions that are appropriate for well hydraulics (i.e., radial flow, wellbore storage, fractal behavior, etc.). We have solved this equation by finite differences. We tested the methodology on two synthetic examples showing that a robust solution is obtained. We also report the resulting log-derivative for a real case.
An, Gary
2008-05-27
One of the greatest challenges facing biomedical research is the integration and sharing of vast amounts of information, not only for individual researchers, but also for the community at large. Agent Based Modeling (ABM) can provide a means of addressing this challenge via a unifying translational architecture for dynamic knowledge representation. This paper presents a series of linked ABMs representing multiple levels of biological organization. They are intended to translate the knowledge derived from in vitro models of acute inflammation to clinically relevant phenomenon such as multiple organ failure. ABM development followed a sequence starting with relatively direct translation from in-vitro derived rules into a cell-as-agent level ABM, leading on to concatenated ABMs into multi-tissue models, eventually resulting in topologically linked aggregate multi-tissue ABMs modeling organ-organ crosstalk. As an underlying design principle organs were considered to be functionally composed of an epithelial surface, which determined organ integrity, and an endothelial/blood interface, representing the reaction surface for the initiation and propagation of inflammation. The development of the epithelial ABM derived from an in-vitro model of gut epithelial permeability is described. Next, the epithelial ABM was concatenated with the endothelial/inflammatory cell ABM to produce an organ model of the gut. This model was validated against in-vivo models of the inflammatory response of the gut to ischemia. Finally, the gut ABM was linked to a similarly constructed pulmonary ABM to simulate the gut-pulmonary axis in the pathogenesis of multiple organ failure. The behavior of this model was validated against in-vivo and clinical observations on the cross-talk between these two organ systems. A series of ABMs are presented extending from the level of intracellular mechanism to clinically observed behavior in the intensive care setting. The ABMs all utilize cell-level agents that encapsulate specific mechanistic knowledge extracted from in vitro experiments. The execution of the ABMs results in a dynamic representation of the multi-scale conceptual models derived from those experiments. These models represent a qualitative means of integrating basic scientific information on acute inflammation in a multi-scale, modular architecture as a means of conceptual model verification that can potentially be used to concatenate, communicate and advance community-wide knowledge.
A two cable, six link boom crane for lunar construction
NASA Technical Reports Server (NTRS)
Taylor, Robert M.; Mikulas, Martin M., Jr.; Hedgepeth, John M.
1993-01-01
This paper presents the conceptual design and analysis of a modified crane boom and cable suspension which provide contro1 over all six degrees of freedom of a payload. Two cables pass around pulleys to form six links between the payload and boom. A linearization of the pulley mechanics was derived to create finite element models of the system. The models were experimentally verified and used to explore variations of the suspension geometry. Several crane concepts which use the suspension are discussed and illustrated.
A scheme for parameterizing ice cloud water content in general circulation models
NASA Technical Reports Server (NTRS)
Heymsfield, Andrew J.; Donner, Leo J.
1989-01-01
A method for specifying ice water content in GCMs is developed, based on theory and in-cloud measurements. A theoretical development of the conceptual precipitation model is given and the aircraft flights used to characterize the ice mass distribution in deep ice clouds is discussed. Ice water content values derived from the theoretical parameterization are compared with the measured values. The results demonstrate that a simple parameterization for atmospheric ice content can account for ice contents observed in several synoptic contexts.
ERIC Educational Resources Information Center
Jones, Steven R.
2015-01-01
This study aims to broadly examine how commonly various conceptualizations of the definite integral are drawn on by students as they attempt to explain the meaning of integral expressions. Previous studies have shown that certain conceptualizations, such as the area under a curve or the values of an anti-derivative, may be less productive in…
Désiron, Huguette A M; Donceel, Peter; de Rijk, Angelique; Van Hoof, Elke
2013-12-01
Improved therapies and early detection have significantly increased the number of breast cancers survivors, leading to increasing needs regarding return to work (RTW). Occupational therapy (OT) interventions provide successful RTW assistance for other conditions, but are not validated in breast cancer. This paper aims to identify a theoretical framework for OT intervention by questioning how OT models can be used in OT interventions in RTW of breast cancer patients; criteria to be used to select these models and adaptations that would be necessary to match the OT model(s) to breast cancer patients' needs? Using research specific criteria derived from OT literature (conceptual OT-model, multidisciplinary, referring to the International Classification of functioning (ICF), RTW in breast cancer) a search in 9 electronic databases was conducted to select articles that describe conceptual OT models. A content analysis of those models complying to at least two of the selection criteria was realised. Checking for breast cancer specific issues, results were matched with literature of care-models regarding RTW in breast cancer. From the nine models initially identified, three [Canadian Model of Occupational Performance, Model of Human Occupation (MOHO), Person-Environment-Occupation-Performance model] were selected based on the selection criteria. The MOHO had the highest compliance rate with the criteria. To enhance usability in breast cancer, some adaptations are needed. No OT model to facilitate RTW in breast cancer could be identified, indicating a need to fill this gap. Individual and societal needs of breast cancer patients can be answered by using a MOHO-based OT model, extended with indications for better treatment, work-outcomes and longitudinal process factors.
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
Constraint-based component-modeling for knowledge-based design
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1992-01-01
The paper describes the application of various advanced programming techniques derived from artificial intelligence research to the development of flexible design tools for conceptual design. Special attention is given to two techniques which appear to be readily applicable to such design tools: the constraint propagation technique and the object-oriented programming. The implementation of these techniques in a prototype computer tool, Rubber Airplane, is described.
Azmal, Mohammad; Sari, Ali Akbari; Foroushani, Abbas Rahimi; Ahmadi, Batoul
2016-06-01
Patient and public involvement is engaging patients, providers, community representatives, and the public in healthcare planning and decision-making. The purpose of this study was to develop a model for the application of patient and public involvement in decision making in the Iranian healthcare system. A mixed qualitative-quantitative approach was used to develop a conceptual model. Thirty three key informants were purposely recruited in the qualitative stage, and 420 people (patients and their companions) were included in a protocol study that was implemented in five steps: 1) Identifying antecedents, consequences, and variables associated with the patient and the publics' involvement in healthcare decision making through a comprehensive literature review; 2) Determining the main variables in the context of Iran's health system using conceptual framework analysis; 3) Prioritizing and weighting variables by Shannon entropy; 4) designing and validating a tool for patient and public involvement in healthcare decision making; and 5) Providing a conceptual model of patient and the public involvement in planning and developing healthcare using structural equation modeling. We used various software programs, including SPSS (17), Max QDA (10), EXCEL, and LISREL. Content analysis, Shannon entropy, and descriptive and analytic statistics were used to analyze the data. In this study, seven antecedents variable, five dimensions of involvement, and six consequences were identified. These variables were used to design a valid tool. A logical model was derived that explained the logical relationships between antecedent and consequent variables and the dimensions of patient and public involvement as well. Given the specific context of the political, social, and innovative environments in Iran, it was necessary to design a model that would be compatible with these features. It can improve the quality of care and promote the patient and the public satisfaction with healthcare and legitimate the representative of people they served for. This model can provide a practical guide for managers and policy makers to involve people in making the decisions that influence their lives.
Neural Networks for Hydrological Modeling Tool for Operational Purposes
NASA Astrophysics Data System (ADS)
Bhatt, Divya; Jain, Ashu
2010-05-01
Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models developed in this study. The ANN models developed consistently outperformed the conceptual model developed in this study. The results obtained in this study indicate that the ANNs can be extremely useful tools for modeling the complex rainfall-runoff process in real catchments. The ANNs should be adopted in real catchments for hydrological modeling and forecasting. It is hoped that more research will be carried out to compare the performance of ANN model with the conceptual models actually in use at catchment scales. It is hoped that such efforts may go a long way in making the ANNs more acceptable by the policy makers, water resources decision makers, and traditional hydrologists.
AI and simulation: What can they learn from each other
NASA Technical Reports Server (NTRS)
Colombano, Silvano P.
1988-01-01
Simulation and Artificial Intelligence share a fertile common ground both from a practical and from a conceptual point of view. Strengths and weaknesses of both Knowledge Based System and Modeling and Simulation are examined and three types of systems that combine the strengths of both technologies are discussed. These types of systems are a practical starting point, however, the real strengths of both technologies will be exploited only when they are combined in a common knowledge representation paradigm. From an even deeper conceptual point of view, one might even argue that the ability to reason from a set of facts (i.e., Expert System) is less representative of human reasoning than the ability to make a model of the world, change it as required, and derive conclusions about the expected behavior of world entities. This is a fundamental problem in AI, and Modeling Theory can contribute to its solution. The application of Knowledge Engineering technology to a Distributed Processing Network Simulator (DPNS) is discussed.
Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart
2016-11-28
Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart
Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes producemore » chemically diverse, stable SOM. As a result, we show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.« less
NASA Astrophysics Data System (ADS)
Kallenbach, Cynthia M.; Frey, Serita D.; Grandy, A. Stuart
2016-11-01
Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.
Kallenbach, Cynthia M; Frey, Serita D; Grandy, A Stuart
2016-11-28
Soil organic matter (SOM) and the carbon and nutrients therein drive fundamental submicron- to global-scale biogeochemical processes and influence carbon-climate feedbacks. Consensus is emerging that microbial materials are an important constituent of stable SOM, and new conceptual and quantitative SOM models are rapidly incorporating this view. However, direct evidence demonstrating that microbial residues account for the chemistry, stability and abundance of SOM is still lacking. Further, emerging models emphasize the stabilization of microbial-derived SOM by abiotic mechanisms, while the effects of microbial physiology on microbial residue production remain unclear. Here we provide the first direct evidence that soil microbes produce chemically diverse, stable SOM. We show that SOM accumulation is driven by distinct microbial communities more so than clay mineralogy, where microbial-derived SOM accumulation is greatest in soils with higher fungal abundances and more efficient microbial biomass production.
Large differences in land use emission quantifications implied by definition discrepancies
NASA Astrophysics Data System (ADS)
Stocker, B. D.; Joos, F.
2015-03-01
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review the conceptual differences of eLUC quantification methods and apply an Earth System Model to demonstrate that what is claimed to represent total eLUC differs by up to ~20% when quantified from ESM vs. offline vegetation models. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies and global carbon budget accountings should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
Quantifying differences in land use emission estimates implied by definition discrepancies
NASA Astrophysics Data System (ADS)
Stocker, B. D.; Joos, F.
2015-11-01
The quantification of CO2 emissions from anthropogenic land use and land use change (eLUC) is essential to understand the drivers of the atmospheric CO2 increase and to inform climate change mitigation policy. Reported values in synthesis reports are commonly derived from different approaches (observation-driven bookkeeping and process-modelling) but recent work has emphasized that inconsistencies between methods may imply substantial differences in eLUC estimates. However, a consistent quantification is lacking and no concise modelling protocol for the separation of primary and secondary components of eLUC has been established. Here, we review differences of eLUC quantification methods and apply an Earth System Model (ESM) of Intermediate Complexity to quantify them. We find that the magnitude of effects due to merely conceptual differences between ESM and offline vegetation model-based quantifications is ~ 20 % for today. Under a future business-as-usual scenario, differences tend to increase further due to slowing land conversion rates and an increasing impact of altered environmental conditions on land-atmosphere fluxes. We establish how coupled Earth System Models may be applied to separate secondary component fluxes of eLUC arising from the replacement of potential C sinks/sources and the land use feedback and show that secondary fluxes derived from offline vegetation models are conceptually and quantitatively not identical to either, nor their sum. Therefore, we argue that synthesis studies should resort to the "least common denominator" of different methods, following the bookkeeping approach where only primary land use emissions are quantified under the assumption of constant environmental boundary conditions.
The standard-based open workflow system in GeoBrain (Invited)
NASA Astrophysics Data System (ADS)
Di, L.; Yu, G.; Zhao, P.; Deng, M.
2013-12-01
GeoBrain is an Earth science Web-service system developed and operated by the Center for Spatial Information Science and Systems, George Mason University. In GeoBrain, a standard-based open workflow system has been implemented to accommodate the automated processing of geospatial data through a set of complex geo-processing functions for advanced production generation. The GeoBrain models the complex geoprocessing at two levels, the conceptual and concrete. At the conceptual level, the workflows exist in the form of data and service types defined by ontologies. The workflows at conceptual level are called geo-processing models and cataloged in GeoBrain as virtual product types. A conceptual workflow is instantiated into a concrete, executable workflow when a user requests a product that matches a virtual product type. Both conceptual and concrete workflows are encoded in Business Process Execution Language (BPEL). A BPEL workflow engine, called BPELPower, has been implemented to execute the workflow for the product generation. A provenance capturing service has been implemented to generate the ISO 19115-compliant complete product provenance metadata before and after the workflow execution. The generation of provenance metadata before the workflow execution allows users to examine the usability of the final product before the lengthy and expensive execution takes place. The three modes of workflow executions defined in the ISO 19119, transparent, translucent, and opaque, are available in GeoBrain. A geoprocessing modeling portal has been developed to allow domain experts to develop geoprocessing models at the type level with the support of both data and service/processing ontologies. The geoprocessing models capture the knowledge of the domain experts and are become the operational offering of the products after a proper peer review of models is conducted. An automated workflow composition has been experimented successfully based on ontologies and artificial intelligence technology. The GeoBrain workflow system has been used in multiple Earth science applications, including the monitoring of global agricultural drought, the assessment of flood damage, the derivation of national crop condition and progress information, and the detection of nuclear proliferation facilities and events.
He, Yujie; Yang, Jinyan; Zhuang, Qianlai; McGuire, A. David; Zhu, Qing; Liu, Yaling; Teskey, Robert O.
2014-01-01
Conventional Q10 soil organic matter decomposition models and more complex microbial models are available for making projections of future soil carbon dynamics. However, it is unclear (1) how well the conceptually different approaches can simulate observed decomposition and (2) to what extent the trajectories of long-term simulations differ when using the different approaches. In this study, we compared three structurally different soil carbon (C) decomposition models (one Q10 and two microbial models of different complexity), each with a one- and two-horizon version. The models were calibrated and validated using 4 years of measurements of heterotrophic soil CO2 efflux from trenched plots in a Dahurian larch (Larix gmelinii Rupr.) plantation. All models reproduced the observed heterotrophic component of soil CO2 efflux, but the trajectories of soil carbon dynamics differed substantially in 100 year simulations with and without warming and increased litterfall input, with microbial models that produced better agreement with observed changes in soil organic C in long-term warming experiments. Our results also suggest that both constant and varying carbon use efficiency are plausible when modeling future decomposition dynamics and that the use of a short-term (e.g., a few years) period of measurement is insufficient to adequately constrain model parameters that represent long-term responses of microbial thermal adaption. These results highlight the need to reframe the representation of decomposition models and to constrain parameters with long-term observations and multiple data streams. We urge caution in interpreting future soil carbon responses derived from existing decomposition models because both conceptual and parameter uncertainties are substantial.
Sediment carbon fate in phreatic karst (Part 1): Conceptual model development
NASA Astrophysics Data System (ADS)
Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.
2017-06-01
Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks and carbon transformation in fluvial networks.
Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E; Stechmiller, Joyce
2016-01-08
Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers.
ERIC Educational Resources Information Center
Myers, Nicholas; Feltz, Deborah; Chase, Melissa
2011-01-01
The purpose of this study was to determine whether theoretically relevant sources of coaching efficacy could predict the measures derived from the Coaching Efficacy Scale II-High School Teams (CES II-HST). Data were collected from head coaches of high school teams in the United States (N = 799). The analytic framework was a multiple-group…
ERIC Educational Resources Information Center
Reynolds, James A.; Reynolds, Larry J.
The purposes of this study were to develop a conceptual rationale that might serve as the basis for a model of the change process and to test hypotheses derived from the rationale. It was believed that this approach would make a contribution to a growing body of research which views the school in the broader context of organizational theory. The…
Mohammed, Mohammed A; Manktelow, Bradley N; Hofer, Timothy P
2016-04-01
There is interest in deriving case-mix adjusted standardised mortality ratios so that comparisons between healthcare providers, such as hospitals, can be undertaken in the controversial belief that variability in standardised mortality ratios reflects quality of care. Typically standardised mortality ratios are derived using a fixed effects logistic regression model, without a hospital term in the model. This fails to account for the hierarchical structure of the data - patients nested within hospitals - and so a hierarchical logistic regression model is more appropriate. However, four methods have been advocated for deriving standardised mortality ratios from a hierarchical logistic regression model, but their agreement is not known and neither do we know which is to be preferred. We found significant differences between the four types of standardised mortality ratios because they reflect a range of underlying conceptual issues. The most subtle issue is the distinction between asking how an average patient fares in different hospitals versus how patients at a given hospital fare at an average hospital. Since the answers to these questions are not the same and since the choice between these two approaches is not obvious, the extent to which profiling hospitals on mortality can be undertaken safely and reliably, without resolving these methodological issues, remains questionable. © The Author(s) 2012.
Bjerklie, David M.; Dingman, S. Lawrence; Bolster, Carl H.
2005-01-01
A set of conceptually derived in‐bank river discharge–estimating equations (models), based on the Manning and Chezy equations, are calibrated and validated using a database of 1037 discharge measurements in 103 rivers in the United States and New Zealand. The models are compared to a multiple regression model derived from the same data. The comparison demonstrates that in natural rivers, using an exponent on the slope variable of 0.33 rather than the traditional value of 0.5 reduces the variance associated with estimating flow resistance. Mean model uncertainty, assuming a constant value for the conductance coefficient, is less than 5% for a large number of estimates, and 67% of the estimates would be accurate within 50%. The models have potential application where site‐specific flow resistance information is not available and can be the basis for (1) a general approach to estimating discharge from remotely sensed hydraulic data, (2) comparison to slope‐area discharge estimates, and (3) large‐scale river modeling.
Generalization of one-dimensional solute transport: A stochastic-convective flow conceptualization
NASA Astrophysics Data System (ADS)
Simmons, C. S.
1986-04-01
A stochastic-convective representation of one-dimensional solute transport is derived. It is shown to conceptually encompass solutions of the conventional convection-dispersion equation. This stochastic approach, however, does not rely on the assumption that dispersive flux satisfies Fick's diffusion law. Observable values of solute concentration and flux, which together satisfy a conservation equation, are expressed as expectations over a flow velocity ensemble, representing the inherent random processess that govern dispersion. Solute concentration is determined by a Lagrangian pdf for random spatial displacements, while flux is determined by an equivalent Eulerian pdf for random travel times. A condition for such equivalence is derived for steady nonuniform flow, and it is proven that both Lagrangian and Eulerian pdfs are required to account for specified initial and boundary conditions on a global scale. Furthermore, simplified modeling of transport is justified by proving that an ensemble of effectively constant velocities always exists that constitutes an equivalent representation. An example of how a two-dimensional transport problem can be reduced to a single-dimensional stochastic viewpoint is also presented to further clarify concepts.
A study of the Tyrone-Mount Union lineament by remote sensing techniques and field methods
NASA Technical Reports Server (NTRS)
Gold, D. P. (Principal Investigator)
1977-01-01
The author has identified the following significant results. This study has shown that subtle variations in fold axes, fold form, and stratigraphic thickness can be delineated. Many of the conclusions were based on extrapolation in similitude to different scales. A conceptual model was derived for the Tyrone-Mount Union lineament. In this model, the lineament the morphological expression of a zone of fracture concentrations which penetrated basement rocks and may have acted as a curtain to regional stresses or as a domain boundary between uncoupled adjacent crustal blocks.
Imposing constraints on parameter values of a conceptual hydrological model using baseflow response
NASA Astrophysics Data System (ADS)
Dunn, S. M.
Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.
A unitary healing praxis model for women in despair.
Cowling, W Richard
2006-04-01
The evolution of a unitary healing praxis model derived from three unitary appreciative inquiries of despair is described. Explication of unitary appreciative inquiry and how it informed and contributed to the development of the model is provided. The model is based on a conceptualization of healing as appreciating the inherent wholeness of life and provides knowledge specific to the individual lives of women in despair. The process of generative theorizing that led to the creation of the model is explicated. Unitary, appreciative, and participatory responses to despair are integrated in the model, praxis modalities are delineated, key concerns and perspectives of women in despair are addressed, and potentialities for healing are illustrated.
Eberts, S.M.; Böhlke, J.K.; Kauffman, L.J.; Jurgens, B.C.
2012-01-01
Environmental age tracers have been used in various ways to help assess vulnerability of drinking-water production wells to contamination. The most appropriate approach will depend on the information that is available and that which is desired. To understand how the well will respond to changing nonpoint-source contaminant inputs at the water table, some representation of the distribution of groundwater ages in the well is needed. Such information for production wells is sparse and difficult to obtain, especially in areas lacking detailed field studies. In this study, age distributions derived from detailed groundwater-flow models with advective particle tracking were compared with those generated from lumped-parameter models to examine conditions in which estimates from simpler, less resource-intensive lumped-parameter models could be used in place of estimates from particle-tracking models. In each of four contrasting hydrogeologic settings in the USA, particle-tracking and lumped-parameter models yielded roughly similar age distributions and largely indistinguishable contaminant trends when based on similar conceptual models and calibrated to similar tracer data. Although model calibrations and predictions were variably affected by tracer limitations and conceptual ambiguities, results illustrated the importance of full age distributions, rather than apparent tracer ages or model mean ages, for trend analysis and forecasting.
Series solution for two-frequency Bragg interaction using the Korpel-Poon multiple-scattering model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appel, R.K.; Somekh, M.G.
1993-03-01
The two-frequency acousto-optic interaction is analytically solved in the Bragg regime by use of a multiple-scattering model that was previously described by Korpel and Poon [J. Opt. Soc. Am. 70, 817-820 (1980)]. The method uses Feynman diagrams to conceptualize the problem and demonstrates the applicability of such a method to model a relatively complex system. The solution presented is compared with that derived by Hecht [IEEE Trans. Sonics Ultrason. SU-24, 7-18 (1977)], who used a coupled-mode approach. The derivation of the authors' solution is relatively simple and leads to a formulation that appears to be more compact. Numerical evaluations havemore » demonstrated their equivalence. The authors present results that illustrate the dependence of the diffracted beam intensities on the amplitude of the two acoustic waves. 21 refs., 8 figs.« less
Leveraging Geospatial Intelligence (GEOINT) in Mission Command
2009-03-21
Operational artists at all levels need new conceptual tools commensurate to today’s demands. Conceptual aids derived from old, industrial-age analogies...are not up to the mental gymnastics demanded by 21 st –century missions. Because operational environments evince increasingly dynamic complexity
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
Dynamical Systems Approach to Endothelial Heterogeneity
Regan, Erzsébet Ravasz; Aird, William C.
2012-01-01
Rationale Objective Here we reexamine our current understanding of the molecular basis of endothelial heterogeneity. We introduce multistability as a new explanatory framework in vascular biology. Methods We draw on the field of non-linear dynamics to propose a dynamical systems framework for modeling multistability and its derivative properties, including robustness, memory, and plasticity. Conclusions Our perspective allows for both a conceptual and quantitative description of system-level features of endothelial regulation. PMID:22723222
OWL reasoning framework over big biological knowledge network.
Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong
2014-01-01
Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity.
OWL Reasoning Framework over Big Biological Knowledge Network
Chen, Huajun; Chen, Xi; Gu, Peiqin; Wu, Zhaohui; Yu, Tong
2014-01-01
Recently, huge amounts of data are generated in the domain of biology. Embedded with domain knowledge from different disciplines, the isolated biological resources are implicitly connected. Thus it has shaped a big network of versatile biological knowledge. Faced with such massive, disparate, and interlinked biological data, providing an efficient way to model, integrate, and analyze the big biological network becomes a challenge. In this paper, we present a general OWL (web ontology language) reasoning framework to study the implicit relationships among biological entities. A comprehensive biological ontology across traditional Chinese medicine (TCM) and western medicine (WM) is used to create a conceptual model for the biological network. Then corresponding biological data is integrated into a biological knowledge network as the data model. Based on the conceptual model and data model, a scalable OWL reasoning method is utilized to infer the potential associations between biological entities from the biological network. In our experiment, we focus on the association discovery between TCM and WM. The derived associations are quite useful for biologists to promote the development of novel drugs and TCM modernization. The experimental results show that the system achieves high efficiency, accuracy, scalability, and effectivity. PMID:24877076
[Social actors and phenomenologic modelling].
Laflamme, Simon
2012-05-01
The phenomenological approach has a quasi-monopoly in the individual and subjectivity analyses in social sciences. However, the conceptual apparatus associated with this approach is very restrictive. The human being has to be understood as rational, conscious, intentional, interested, and autonomous. Because of this, a large dimension of human activity cannot be taken into consideration: all that does not fit into the analytical categories (nonrational, nonconscious, etc.). Moreover, this approach cannot really move toward a relational analysis unless it is between individuals predefined by its conceptual apparatus. This lack of complexity makes difficult the establishment of links between phenomenology and systemic analysis in which relation (and its derivatives such as recursiveness, dialectic, correlation) plays an essential role. This article intends to propose a way for systemic analysis to apprehend the individual with respect to his complexity.
NASA Technical Reports Server (NTRS)
Gillies, Robert R.; Carlson, Toby N.
1995-01-01
This study outlines a method for the estimation of regional patterns of surface moisture availability (M(sub 0)) and fractional vegetation (Fr) in the presence of spatially variable vegetation cover. The method requires relating variations in satellite-derived (NOAA, Advanced Very High Resolution Radiometer (AVHRR)) surface radiant temperature to a vegetation index (computed from satellite visible and near-infrared data) while coupling this association to an inverse modeling scheme. More than merely furnishing surface soil moisture values, the method constitues a new conceptual and practical approach for combining thermal infrared and vegetation index measurements for incorporating the derived values of M(sub 0) into hydrologic and atmospheric prediction models. Application of the technique is demonstrated for a region in and around the city of Newcastle upon Tyne situated in the northeast of England. A regional estimate of M(sub 0) is derived and is probabbly good for fractional vegetation cover up to 80% before errors in the estimated soil water content become unacceptably large. Moreover, a normalization scheme is suggested from which a nomogram, `universal triangle,' is constructed and is seen to fit the observed data well. The universal triangle also simplifies the inclusion of remotely derived M(sub 0) in hydrology and meteorological models and is perhaps a practicable step toward integrating derived data from satellite measurements in weather forecasting.
Kreisberg, Debra; Thomas, Deborah S K; Valley, Morgan; Newell, Shannon; Janes, Enessa; Little, Charles
2016-04-01
As attention to emergency preparedness becomes a critical element of health care facility operations planning, efforts to recognize and integrate the needs of vulnerable populations in a comprehensive manner have lagged. This not only results in decreased levels of equitable service, but also affects the functioning of the health care system in disasters. While this report emphasizes the United States context, the concepts and approaches apply beyond this setting. This report: (1) describes a conceptual framework that provides a model for the inclusion of vulnerable populations into integrated health care and public health preparedness; and (2) applies this model to a pilot study. The framework is derived from literature, hospital regulatory policy, and health care standards, laying out the communication and relational interfaces that must occur at the systems, organizational, and community levels for a successful multi-level health care systems response that is inclusive of diverse populations explicitly. The pilot study illustrates the application of key elements of the framework, using a four-pronged approach that incorporates both quantitative and qualitative methods for deriving information that can inform hospital and health facility preparedness planning. The conceptual framework and model, applied to a pilot project, guide expanded work that ultimately can result in methodologically robust approaches to comprehensively incorporating vulnerable populations into the fabric of hospital disaster preparedness at levels from local to national, thus supporting best practices for a community resilience approach to disaster preparedness.
Testing an integral conceptual model of frailty.
Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M
2012-09-01
This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty. The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.
Kidney disease models: tools to identify mechanisms and potential therapeutic targets
Bao, Yin-Wu; Yuan, Yuan; Chen, Jiang-Hua; Lin, Wei-Qiang
2018-01-01
Acute kidney injury (AKI) and chronic kidney disease (CKD) are worldwide public health problems affecting millions of people and have rapidly increased in prevalence in recent years. Due to the multiple causes of renal failure, many animal models have been developed to advance our understanding of human nephropathy. Among these experimental models, rodents have been extensively used to enable mechanistic understanding of kidney disease induction and progression, as well as to identify potential targets for therapy. In this review, we discuss AKI models induced by surgical operation and drugs or toxins, as well as a variety of CKD models (mainly genetically modified mouse models). Results from recent and ongoing clinical trials and conceptual advances derived from animal models are also explored. PMID:29515089
Towards a Conceptual Model of Diabetes Self-Management among Chinese Immigrants in the United States
Zeng, Bin; Sun, Wenjie; Gary, Rebecca A.; Li, Changwei; Liu, Tingting
2014-01-01
Background: Chinese immigrants have been disproportionally affected by type 2 diabetes. This paper presents the state of science regarding the factors that may influence diabetes self-management among Chinese immigrants in the US and the potential health outcomes. Design: Using Walker and Avant’s techniques, a search of the literature was conducted from CINAHL, PubMed, OVID, and Web of Science. Findings: Factors most relevant to diabetes self-management were grouped under five categories: socio-demographic characteristics, behavioral and psychological characteristics, social support, linguistic barriers, and cultural characteristics. Potential outcomes derived from improved diabetes self-management include quality of life, glycosylated hemoglobin, and blood pressure and other cardiovascular risk factors. Discussion: A conceptual model was provided to guide future research. Based on the review of the literature, specific research topics that need to fill the gaps in the literature were provided, including family-focused interventions for Chinese immigrant patients with diabetes and the effectiveness of these interventions to improve family functioning. PMID:24978878
Zeng, Bin; Sun, Wenjie; Gary, Rebecca A; Li, Changwei; Liu, Tingting
2014-06-27
Chinese immigrants have been disproportionally affected by type 2 diabetes. This paper presents the state of science regarding the factors that may influence diabetes self-management among Chinese immigrants in the US and the potential health outcomes. Using Walker and Avant's techniques, a search of the literature was conducted from CINAHL, PubMed, OVID, and Web of Science. Factors most relevant to diabetes self-management were grouped under five categories: socio-demographic characteristics, behavioral and psychological characteristics, social support, linguistic barriers, and cultural characteristics. Potential outcomes derived from improved diabetes self-management include quality of life, glycosylated hemoglobin, and blood pressure and other cardiovascular risk factors. A conceptual model was provided to guide future research. Based on the review of the literature, specific research topics that need to fill the gaps in the literature were provided, including family-focused interventions for Chinese immigrant patients with diabetes and the effectiveness of these interventions to improve family functioning.
Zhan, Weiqing; Tan, Shaun S; Lu, Feng
2016-08-01
In reconstructive surgery, there is a clinical need for adequate implants to repair soft tissue defects caused by traumatic injury, tumor resection, or congenital abnormalities. Adipose tissue engineering may provide answers to this increasing demand. This study comprehensively reviews current approaches to adipose tissue engineering, detailing different cell carriers under investigation, with a special focus on the application of adipose-derived stem cells (ASCs). ASCs act as building blocks for new tissue growth and as modulators of the host response. Recent studies have also demonstrated that the implantation of a hollow protected chamber, combined with a vascular pedicle within the fat flaps provides blood supply and enables the growth of large-volume of engineered soft tissue. Conceptually, it would be of value to co-regulate this unique chamber model with adipose-derived stem cells to obtain a greater volume of soft tissue constructs for clinical use. Our review provides a cogent update on these advances and details the generation of possible fat substitutes.
The added value of remote sensing products in constraining hydrological models
NASA Astrophysics Data System (ADS)
Nijzink, Remko C.; Almeida, Susana; Pechlivanidis, Ilias; Capell, René; Gustafsson, David; Arheimer, Berit; Freer, Jim; Han, Dawei; Wagener, Thorsten; Sleziak, Patrik; Parajka, Juraj; Savenije, Hubert; Hrachowitz, Markus
2017-04-01
The calibration of a hydrological model still depends on the availability of streamflow data, even though more additional sources of information (i.e. remote sensed data products) have become more widely available. In this research, the model parameters of four different conceptual hydrological models (HYPE, HYMOD, TUW, FLEX) were constrained with remotely sensed products. The models were applied over 27 catchments across Europe to cover a wide range of climates, vegetation and landscapes. The fluxes and states of the models were correlated with the relevant products (e.g. MOD10A snow with modelled snow states), after which new a-posteriori parameter distributions were determined based on a weighting procedure using conditional probabilities. Briefly, each parameter was weighted with the coefficient of determination of the relevant regression between modelled states/fluxes and products. In this way, final feasible parameter sets were derived without the use of discharge time series. Initial results show that improvements in model performance, with regard to streamflow simulations, are obtained when the models are constrained with a set of remotely sensed products simultaneously. In addition, we present a more extensive analysis to assess a model's ability to reproduce a set of hydrological signatures, such as rising limb density or peak distribution. Eventually, this research will enhance our understanding and recommendations in the use of remotely sensed products for constraining conceptual hydrological modelling and improving predictive capability, especially for data sparse regions.
Suicide and Alcohol: Conceptualizing the Relationship from a Cognitive-Social Paradigm.
ERIC Educational Resources Information Center
Rogers, James R.
1992-01-01
Presents formulation of association between alcohol consumption and suicidal behavior derived from recent advances in area of social cognition. Suggests that social cognitive mechanism of alcohol-induced myopia may serve important role in developing comprehensive conceptualization of alcohol-suicide relationship. Discusses implications for…
Manned orbital facility: A user's guide
NASA Technical Reports Server (NTRS)
1975-01-01
The salient conceptual features and expected evolution of the facility are discussed; the baseline design is offered as a model against which the reader can compare his needs. The overall program is discussed, supporting services and resources are described, and examples of typical payload applications are given. The general design features and configurations representing the baseline MOF developed and derived with due consideration given to applicable designs and subsystems such as those available in the Skylab, orbiter, and space lab vehicles.
Metacognition: towards a new approach to quality of life.
Blanc, Julien; Boyer, Laurent; Le Coz, Pierre; Auquier, Pascal
2014-03-01
Recent studies have demonstrated that various diseases states (e.g., schizophrenia, Alzheimer's disease) and events (e.g., a stroke) alter a person's perception of their physical and mental status. Most often this involves alterations in a person's metacognitive capabilities, and this can question the conceptual model of quality of life (QoL) based on a "perspectivist" approach. Using the example of schizophrenia, we applied a philosophical model, developed by Griffin, to deal with this potential threat to the validity of QoL assessment. Patients with schizophrenia are at risk for being impaired in their ability to assess their QoL. We hypothesise that metacognition (i.e., the ability to attribute mental states in terms of beliefs and goals to one's self and others) is a formal condition to assess QoL. This particular skill is important because self-reflection is necessary for making a qualitative judgment. A link between this psychological concept and the philosophical concept of reflexivity may be established. We propose a conceptual approach to QoL that takes into account the patient's reflexivity. This approach is derived from Griffin's theory based on the list of "prudential values" and the satisfaction of the informed desires of the individual. The ability of patients to evaluate and value their life should be considered to enrich the concept of QoL. The approach derived from Griffin's theory might constitute a new avenue for QoL research.
NASA Astrophysics Data System (ADS)
Kotliar, Gabriel
2005-01-01
Dynamical mean field theory (DMFT) relates extended systems (bulk solids, surfaces and interfaces) to quantum impurity models (QIM) satisfying a self-consistency condition. This mapping provides an economic description of correlated electron materials. It is currently used in practical computations of physical properties of real materials. It has also great conceptual value, providing a simple picture of correlated electron phenomena on the lattice, using concepts derived from quantum impurity models such as the Kondo effect. DMFT can also be formulated as a first principles electronic structure method and is applicable to correlated materials.
Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics
NASA Astrophysics Data System (ADS)
Weltje, G. J.; Prins, M. A.
2003-04-01
One of the outstanding problems of palaeoclimate reconstruction from physico-chemical properties of terrigenous deep-sea sediments is the fact that most basin fills are mixtures of sediment populations derived from different sources and transported to the site of deposition by different mechanisms. Conventional approaches to palaeoclimate reconstruction from deep-sea sediments, which ignore this common fact, often fail to recognise the true significance of variations in sediment properties. We formulate a set of requirements that each proposed palaeoenvironmental indicator should fulfil, and focus on the intrinsic coupling between grain size and chemical composition. A critical review of past achievements in grain-size analysis is given to provide a starting point for a conceptual model of spatio-temporal grain-size variation in terms of dynamic populations. Each dynamic population results from a characteristic combination of production and transport mechanisms that corresponds to a distinct subpopulation in the data analysed. The mathematical-statistical equivalent of the conceptual model may be solved by means of the end-member modelling algorithm EMMA. Applications of the model to several ocean basins are discussed, as well as methods to examine the validity of the palaeoclimate reconstructions.
A Fuzzy Cognitive Model of aeolian instability across the South Texas Sandsheet
NASA Astrophysics Data System (ADS)
Houser, C.; Bishop, M. P.; Barrineau, C. P.
2014-12-01
Characterization of aeolian systems is complicated by rapidly changing surface-process regimes, spatio-temporal scale dependencies, and subjective interpretation of imagery and spatial data. This paper describes the development and application of analytical reasoning to quantify instability of an aeolian environment using scale-dependent information coupled with conceptual knowledge of process and feedback mechanisms. Specifically, a simple Fuzzy Cognitive Model (FCM) for aeolian landscape instability was developed that represents conceptual knowledge of key biophysical processes and feedbacks. Model inputs include satellite-derived surface biophysical and geomorphometric parameters. FCMs are a knowledge-based Artificial Intelligence (AI) technique that merges fuzzy logic and neural computing in which knowledge or concepts are structured as a web of relationships that is similar to both human reasoning and the human decision-making process. Given simple process-form relationships, the analytical reasoning model is able to map the influence of land management practices and the geomorphology of the inherited surface on aeolian instability within the South Texas Sandsheet. Results suggest that FCMs can be used to formalize process-form relationships and information integration analogous to human cognition with future iterations accounting for the spatial interactions and temporal lags across the sand sheets.
Key competencies of the psychodynamic psychotherapist and how to teach them in supervision.
Sarnat, Joan
2010-03-01
Four of Rodolfa et al.'s (2005) competencies in professional psychology-relationship, self-reflection, assessment-case conceptualization, and intervention-are key for the psychodynamic psychotherapist. Relationship lies at the heart of what is understood to be curative about psychodynamic psychotherapy. Self-reflection implies a complex and highly developed process that includes but goes beyond Rodolfa et al.'s and Kaslow, Dunn, and Smith's (2008) definitions. Competent assessment, diagnosis, and case conceptualization entails making inferences about unconscious processes by observing the client and also one's own experience, and integrating these inferences with theory. Effective psychodynamic intervention is derived from what the psychotherapist has experienced, processed, and conceptualized about the relationship with the client and about the client's internal object world. An extended vignette shows these competencies emerging in a psychotherapist-in-training, facilitated by an intense interaction with a supervisor. Although the supervisory and clinical tasks are different, the supervisor provides a relationship experience that models these same competencies for the supervisee and catalyzes their development in the supervisee. PsycINFO Database Record (c) 2010 APA, all rights reserved
Kim, Junglyun; Ahn, Hyochol; Lyon, Debra E.; Stechmiller, Joyce
2016-01-01
Although pressure ulcers are a prevalent condition, pain associated with pressure ulcers is not fully understood. Indeed, previous studies do not shed light on the association between pressure ulcer stages and the experience of pain. Especially, pain characteristics of suspected deep tissue injury, which is a new category that was recently added by the National Pressure Ulcer Advisory Panel, are yet unknown. This is concerning because the incidence of pressure ulcers in hospitalized patients has increased exponentially over the last two decades, and health care providers are struggling to ensure providing adequate care. Thus, in order to facilitate the development of effective interventions, this paper presents a conceptual framework to explore pressure ulcer pain in hospitalized patients. The concepts were derived from a biopsychosocial model of pain, and the relationships among each concept were identified through a literature review. Major propositions are presented based on the proposed conceptual framework, which integrates previous research on pressure ulcer pain, to ultimately improve understanding of pain in hospitalized patients with pressure ulcers. PMID:27417595
Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data
NASA Astrophysics Data System (ADS)
Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.
2005-12-01
Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and geochemical data, with detailed monitoring plume data. It provided key insights for confirming alternative conceptual site models and assessing the performance of monitoring networks. A monitoring strategy based on this graded approach for assessing alternative conceptual models can provide the technical bases for identifying critical monitoring locations, adequate monitoring frequency, and performance indicator parameters for performance monitoring involving ground-water levels and PCE concentrations.
A taxometric study of hypochondriasis symptoms.
Longley, Susan L; Broman-Fulks, Joshua J; Calamari, John E; Noyes, Russell; Wade, Michael; Orlando, Carissa M
2010-12-01
Hypochondriasis has been conceptualized as both a distinct category that is characterized by a disabling illness preoccupation and as a continuum of health concerns. Empirical support for one of these theoretical models will clarify inconsistent assessment approaches and study designs that have impeded theory and research. To facilitate progress, taxometric analyses were conducted to determine whether hypochondriasis is best understood as a discrete category, consistent with the DSM, or as a dimensional entity, consistent with prevailing opinion and most self-report measures. Data from a large undergraduate sample that completed 3 hypochondriasis symptom measures were factor analyzed. The 4 factor analytically derived symptom indicators were then used in these taxometric analyses. Consistent with our hypotheses and existing theory, results supported a dimensional structure for hypochondriasis. Implications for the conceptualization of hypochondriasis and directions for future study are discussed. Copyright © 2010. Published by Elsevier Ltd.
Development and psychometric evaluation of the Professional Practice Environment (PPE) scale.
Erickson, Jeanette Ives; Duffy, Mary E; Gibbons, M Patricia; Fitzmaurice, Joan; Ditomassi, Marianne; Jones, Dorothy
2004-01-01
To describe the Professional Practice Environment (PPE) scale, its conceptual development and psychometric evaluation, and its uses in measuring eight characteristics of the professional practice environment in an acute care setting. The 38-item PPE Scale was validated on a sample of 849 professional practice staff at the Massachusetts General Hospital in Boston. Psychometric analysis included: item analysis, principal components analysis (PCA) with varimax rotation and Kaiser normalization, and internal consistency reliability using Cronbach's alpha coefficient. Eight components were shown, confirming the original conceptually derived model's structure and accounting for 61% of explained variance. Cronbach's alpha coefficients for the eight PPE subscales ranged from .78 to .88. Findings showed the 38-item PPE Scale was reliable and valid for use in health outcomes research to examine the professional practice environment of staff working in acute care settings.
Using Big Data Analytics to Advance Precision Radiation Oncology.
McNutt, Todd R; Benedict, Stanley H; Low, Daniel A; Moore, Kevin; Shpitser, Ilya; Jiang, Wei; Lakshminarayanan, Pranav; Cheng, Zhi; Han, Peijin; Hui, Xuan; Nakatsugawa, Minoru; Lee, Junghoon; Moore, Joseph A; Robertson, Scott P; Shah, Veeraj; Taylor, Russ; Quon, Harry; Wong, John; DeWeese, Theodore
2018-06-01
Big clinical data analytics as a primary component of precision medicine is discussed, identifying where these emerging tools fit in the spectrum of genomics and radiomics research. A learning health system (LHS) is conceptualized that uses clinically acquired data with machine learning to advance the initiatives of precision medicine. The LHS is comprehensive and can be used for clinical decision support, discovery, and hypothesis derivation. These developing uses can positively impact the ultimate management and therapeutic course for patients. The conceptual model for each use of clinical data, however, is different, and an overview of the implications is discussed. With advancements in technologies and culture to improve the efficiency, accuracy, and breadth of measurements of the patient condition, the concept of an LHS may be realized in precision radiation therapy. Copyright © 2018 Elsevier Inc. All rights reserved.
A Structural Equation Model of Conceptual Change in Physics
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Sinatra, Gale M.
2011-01-01
A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…
Postacute rehabilitation quality of care: toward a shared conceptual framework.
Jesus, Tiago Silva; Hoenig, Helen
2015-05-01
There is substantial interest in mechanisms for measuring, reporting, and improving the quality of health care, including postacute care (PAC) and rehabilitation. Unfortunately, current activities generally are either too narrow or too poorly specified to reflect PAC rehabilitation quality of care. In part, this is caused by a lack of a shared conceptual understanding of what construes quality of care in PAC rehabilitation. This article presents the PAC-rehab quality framework: an evidence-based conceptual framework articulating elements specifically pertaining to PAC rehabilitation quality of care. The widely recognized Donabedian structure, process, and outcomes (SPO) model furnished the underlying structure for the PAC-rehab quality framework, and the International Classification of Functioning, Disability and Health (ICF) framed the functional outcomes. A comprehensive literature review provided the evidence base to specify elements within the SPO model and ICF-derived framework. A set of macrolevel-outcomes (functional performance, quality of life of patient and caregivers, consumers' experience, place of discharge, health care utilization) were defined for PAC rehabilitation and then related to their (1) immediate and intermediate outcomes, (2) underpinning care processes, (3) supportive team functioning and improvement processes, and (4) underlying care structures. The role of environmental factors and centrality of patients in the framework are explicated as well. Finally, we discuss why outcomes may best measure and reflect the quality of PAC rehabilitation. The PAC-rehab quality framework provides a conceptually sound, evidence-based framework appropriate for quality of care activities across the PAC rehabilitation continuum. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Runkel, Anthony C.; Tipping, Robert G.; Meyer, Jessica R.; Steenberg, Julia R.; Retzler, Andrew J.; Parker, Beth L.; Green, Jeff A.; Barry, John D.; Jones, Perry M.
2018-06-01
A hydrogeologic conceptual model that improves understanding of variability in aquitard integrity is presented for a fractured sedimentary bedrock unit in the Cambrian-Ordovician aquifer system of midcontinent North America. The model is derived from multiple studies on the siliciclastic St. Lawrence Formation and adjacent strata across a range of scales and geologic conditions. These studies employed multidisciplinary techniques including borehole flowmeter logging, high-resolution depth-discrete multilevel well monitoring, fracture stratigraphy, fluorescent dye tracing, and three-dimensional (3D) distribution of anthropogenic tracers regionally. The paper documents a bulk aquitard that is highly anisotropic because of poor connectivity of vertical fractures across matrix with low permeability, but with ubiquitous bed parallel partings. The partings provide high bulk horizontal hydraulic conductivity, analogous to aquifers in the system, while multiple preferential termination horizons of vertical fractures serve as discrete low vertical hydraulic conductivity intervals inhibiting vertical flow. The aquitard has substantial variability in its ability to protect underlying groundwater from contamination. Across widespread areas where the aquitard is deeply buried by younger bedrock, preferential termination horizons provide for high aquitard integrity (i.e. protection). Protection is diminished close to incised valleys where stress release and weathering has enhanced secondary pore development, including better connection of fractures across these horizons. These conditions, along with higher hydraulic head gradients in the same areas and more complex 3D flow where the aquitard is variably incised, allow for more substantial transport to deeper aquifers. The conceptual model likely applies to other fractured sedimentary bedrock aquitards within and outside of this region.
Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model
ERIC Educational Resources Information Center
Berman, Jeanette; Smyth, Robyn
2015-01-01
This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…
Modelling strategies to predict the multi-scale effects of rural land management change
NASA Astrophysics Data System (ADS)
Bulygina, N.; Ballard, C. E.; Jackson, B. M.; McIntyre, N.; Marshall, M.; Reynolds, B.; Wheater, H. S.
2011-12-01
Changes to the rural landscape due to agricultural land management are ubiquitous, yet predicting the multi-scale effects of land management change on hydrological response remains an important scientific challenge. Much empirical research has been of little generic value due to inadequate design and funding of monitoring programmes, while the modelling issues challenge the capability of data-based, conceptual and physics-based modelling approaches. In this paper we report on a major UK research programme, motivated by a national need to quantify effects of agricultural intensification on flood risk. Working with a consortium of farmers in upland Wales, a multi-scale experimental programme (from experimental plots to 2nd order catchments) was developed to address issues of upland agricultural intensification. This provided data support for a multi-scale modelling programme, in which highly detailed physics-based models were conditioned on the experimental data and used to explore effects of potential field-scale interventions. A meta-modelling strategy was developed to represent detailed modelling in a computationally-efficient manner for catchment-scale simulation; this allowed catchment-scale quantification of potential management options. For more general application to data-sparse areas, alternative approaches were needed. Physics-based models were developed for a range of upland management problems, including the restoration of drained peatlands, afforestation, and changing grazing practices. Their performance was explored using literature and surrogate data; although subject to high levels of uncertainty, important insights were obtained, of practical relevance to management decisions. In parallel, regionalised conceptual modelling was used to explore the potential of indices of catchment response, conditioned on readily-available catchment characteristics, to represent ungauged catchments subject to land management change. Although based in part on speculative relationships, significant predictive power was derived from this approach. Finally, using a formal Bayesian procedure, these different sources of information were combined with local flow data in a catchment-scale conceptual model application , i.e. using small-scale physical properties, regionalised signatures of flow and available flow measurements.
ERIC Educational Resources Information Center
Ocal, Mehmet Fatih
2017-01-01
Integrating the properties of computer algebra systems and dynamic geometry environments, Geogebra became an effective and powerful tool for teaching and learning mathematics. One of the reasons that teachers use Geogebra in mathematics classrooms is to make students learn mathematics meaningfully and conceptually. From this perspective, the…
ERIC Educational Resources Information Center
Bruck, Laura B.; Bruck, Aaron D.; Phelps, Amy J.
2010-01-01
Solubility is challenging for many general chemistry students, and the interactions of aqueous species are difficult to conceptualize. Derived from the pedagogies of Johnstone, Bloom, and Piaget, our primary research questions probe whether students' conceptual understandings of solubility could be enhanced by participation in a concept-building,…
Update on the Solar Power Satellite transmitter design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, W.C.
1986-01-01
A number of remaining problems in the conceptual design of the transmitting antenna for the Solar Power Satellite have been solved as a result of additional technology development. Much of the technology was derived from the conceptual design of a ground-based transmitting antenna for beaming power to a high altitude airship or airplane.
South Palomares, Jennifer K; Sutherland, Clare A M; Young, Andrew W
2017-12-17
Given the frequency of relationships nowadays initiated online, where impressions from face photographs may influence relationship initiation, it is important to understand how facial first impressions might be used in such contexts. We therefore examined the applicability of a leading model of verbally expressed partner preferences to impressions derived from real face images and investigated how the factor structure of first impressions based on potential partner preference-related traits might relate to a more general model of facial first impressions. Participants rated 1,000 everyday face photographs on 12 traits selected to represent (Fletcher, et al. 1999, Journal of Personality and Social Psychology, 76, 72) verbal model of partner preferences. Facial trait judgements showed an underlying structure that largely paralleled the tripartite structure of Fletcher et al.'s verbal preference model, regardless of either face gender or participant gender. Furthermore, there was close correspondence between the verbal partner preference model and a more general tripartite model of facial first impressions derived from a different literature (Sutherland et al., 2013, Cognition, 127, 105), suggesting an underlying correspondence between verbal conceptual models of romantic preferences and more general models of facial first impressions. © 2017 The British Psychological Society.
Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter
ERIC Educational Resources Information Center
Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia
2011-01-01
This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…
Our evolving conceptual model of the coastal eutrophication problem
Cloern, James E.
2001-01-01
A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5 questions that will guide coastal science in the early 21st century: (1) How do system-specific attributes constrain or amplify the responses of coastal ecosystems to nutrient enrichment? (2) How does nutrient enrichment interact with other stressors (toxic contaminants, fishing harvest, aquaculture, nonindigenous species, habitat loss, climate change, hydrologic manipulations) to change coastal ecosystems? (3) How are responses to multiple stressors linked? (4) How does human-induced change in the coastal zone impact the Earth system as habitat for humanity and other species? (5) How can a deeper scientific understanding of the coastal eutrophication problem be applied to develop tools for building strategies at ecosystem restoration or rehabilitation?
Equation-free multiscale computation: algorithms and applications.
Kevrekidis, Ioannis G; Samaey, Giovanni
2009-01-01
In traditional physicochemical modeling, one derives evolution equations at the (macroscopic, coarse) scale of interest; these are used to perform a variety of tasks (simulation, bifurcation analysis, optimization) using an arsenal of analytical and numerical techniques. For many complex systems, however, although one observes evolution at a macroscopic scale of interest, accurate models are only given at a more detailed (fine-scale, microscopic) level of description (e.g., lattice Boltzmann, kinetic Monte Carlo, molecular dynamics). Here, we review a framework for computer-aided multiscale analysis, which enables macroscopic computational tasks (over extended spatiotemporal scales) using only appropriately initialized microscopic simulation on short time and length scales. The methodology bypasses the derivation of macroscopic evolution equations when these equations conceptually exist but are not available in closed form-hence the term equation-free. We selectively discuss basic algorithms and underlying principles and illustrate the approach through representative applications. We also discuss potential difficulties and outline areas for future research.
Validation of the Continuum of Care Conceptual Model for Athletic Therapy
Lafave, Mark R.; Butterwick, Dale; Eubank, Breda
2015-01-01
Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897
ERIC Educational Resources Information Center
de Castro, Christopher H.
2011-01-01
This study explored the development of student's conceptual understandings of limit and derivative when utilizing specifically designed computational tools. Fourteen students from a secondary Advanced Placement Calculus AB course learned and explored the limit and derivative concepts from differential calculus using visualization tools in the…
Fractal Analysis of Permeability of Unsaturated Fractured Rocks
Jiang, Guoping; Shi, Wei; Huang, Lili
2013-01-01
A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model. PMID:23690746
Fractal analysis of permeability of unsaturated fractured rocks.
Jiang, Guoping; Shi, Wei; Huang, Lili
2013-01-01
A physical conceptual model for water retention in fractured rocks is derived while taking into account the effect of pore size distribution and tortuosity of capillaries. The formula of calculating relative hydraulic conductivity of fractured rock is given based on fractal theory. It is an issue to choose an appropriate capillary pressure-saturation curve in the research of unsaturated fractured mass. The geometric pattern of the fracture bulk is described based on the fractal distribution of tortuosity. The resulting water content expression is then used to estimate the unsaturated hydraulic conductivity of the fractured medium based on the well-known model of Burdine. It is found that for large enough ranges of fracture apertures the new constitutive model converges to the empirical Brooks-Corey model.
An integrated land change model for projecting future climate and land change scenarios
Wimberly, Michael; Sohl, Terry L.; Lamsal, Aashis; Liu, Zhihua; Hawbaker, Todd J.
2013-01-01
Climate change will have myriad effects on ecosystems worldwide, and natural and anthropogenic disturbances will be key drivers of these dynamics. In addition to climatic effects, continual expansion of human settlement into fire-prone forests will alter fire regimes, increase human vulnerability, and constrain future forest management options. There is a need for modeling tools to support the simulation and assessment of new management strategies over large regions in the context of changing climate, shifting development patterns, and an expanding wildland-urban interface. To address this need, we developed a prototype land change simulator that combines human-driven land use change (derived from the FORE-SCE model) with natural disturbances and vegetation dynamics (derived from the LADS model) and incorporates novel feedbacks between human land use and disturbance regimes. The prototype model was implemented in a test region encompassing the Denver metropolitan area along with its surrounding forested and agricultural landscapes. Initial results document the feasibility of integrated land change modeling at a regional scale but also highlighted conceptual and technical challenges for this type of model integration. Ongoing development will focus on improving climate sensitivities and modeling constraints imposed by climate change and human population growth on forest management activities.
Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems
2015-12-01
distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. Keating; W.Statham
2004-02-12
The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the groundmore » surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.« less
Jeddi, Fatemeh Rangraz; Farzandipoor, Mehrdad; Arabfard, Masoud; Hosseini, Azam Haj Mohammad
2014-04-01
The purpose of this study was investigating situation and presenting a conceptual model for clinical governance information system by using UML in two sample hospitals. However, use of information is one of the fundamental components of clinical governance; but unfortunately, it does not pay much attention to information management. A cross sectional study was conducted in October 2012- May 2013. Data were gathered through questionnaires and interviews in two sample hospitals. Face and content validity of the questionnaire has been confirmed by experts. Data were collected from a pilot hospital and reforms were carried out and Final questionnaire was prepared. Data were analyzed by descriptive statistics and SPSS 16 software. With the scenario derived from questionnaires, UML diagrams are presented by using Rational Rose 7 software. The results showed that 32.14 percent Indicators of the hospitals were calculated. Database was not designed and 100 percent of the hospital's clinical governance was required to create a database. Clinical governance unit of hospitals to perform its mission, do not have access to all the needed indicators. Defining of Processes and drawing of models and creating of database are essential for designing of information systems.
Jeddi, Fatemeh Rangraz; Farzandipoor, Mehrdad; Arabfard, Masoud; Hosseini, Azam Haj Mohammad
2016-04-01
The purpose of this study was investigating situation and presenting a conceptual model for clinical governance information system by using UML in two sample hospitals. However, use of information is one of the fundamental components of clinical governance; but unfortunately, it does not pay much attention to information management. A cross sectional study was conducted in October 2012- May 2013. Data were gathered through questionnaires and interviews in two sample hospitals. Face and content validity of the questionnaire has been confirmed by experts. Data were collected from a pilot hospital and reforms were carried out and Final questionnaire was prepared. Data were analyzed by descriptive statistics and SPSS 16 software. With the scenario derived from questionnaires, UML diagrams are presented by using Rational Rose 7 software. The results showed that 32.14 percent Indicators of the hospitals were calculated. Database was not designed and 100 percent of the hospital's clinical governance was required to create a database. Clinical governance unit of hospitals to perform its mission, do not have access to all the needed indicators. Defining of Processes and drawing of models and creating of database are essential for designing of information systems.
Factor structure and clinical correlates of the 61-item Wender Utah Rating Scale (WURS).
Calamia, Matthew; Hill, Benjamin D; Musso, Mandi W; Pella, Russell D; Gouvier, Wm Drew
2018-02-09
The objective of this study was to assess the factor structure and clinical correlates of a 61-item version of the Wender Utah Rating Scale (WURS), a self-report retrospective measure of childhood problems, experiences, and behavior used in ADHD assessment. Given the currently mostly widely used form of the WURS was derived via a criterion-keyed approach, the study aimed to use latent variable modeling of the 61-item WURS to potentially identify more and more homogeneous set of items reflecting current conceptualizations of ADHD symptoms. Exploratory structural equation modeling was used to generate factor scores which were then correlated with neuropsychological measures of intelligence and executive attention as well as a broad measure of personality and emotional functioning. Support for a modified five-factor model was found: ADHD, disruptive mood and behavior, negative affectivity, social confidence, and academic problems. The ADHD factor differed somewhat from the traditional 25-item WURS short form largely through weaker associations with several measures of personality and psychopathology. This study identified a factor more aligned with DSM-5 conceptualization of ADHD as well as measures of other types of childhood characteristics and symptoms which may prove useful for both research and clinical practice.
ERIC Educational Resources Information Center
Latz, Amanda O.
2012-01-01
One finding and concomitant new conceptualization of the photovoice methodology derived from a research study conducted with community college students are put forward in this paper. One of the aims of the photovoice methodology is to develop a more critical consciousness within participants. I, however, did not note an increase of critical…
To Die, To Sleep: A Contrastive Study of Metaphors for Death and Dying in English and Spanish.
ERIC Educational Resources Information Center
Marin-Arrese, Juana I.
1996-01-01
Contrasts the use of metaphors for death and dying in English and Spanish and makes some observations concerning universal and culture-specific conceptualizations. The article points out that the human capacity to conceptualize and reason derives from experience (perceptions, cultural practices, motor activity) and imagination (metaphor, metonymy,…
Supporting Conceptual Change in School Science: A Possible Role for Tacit Understanding
ERIC Educational Resources Information Center
Howe, Christine; Devine, Amy; Tavares, Joana Taylor
2013-01-01
When students reason during school science, they often refer to conceptions that are derived from out-of-school experiences and are poor proxies for science orthodoxy. However, for some areas of science, these conceptions represent only a proportion of students' full conceptual knowledge, for tacit understanding exists that is superior to the…
Benoit, Richard; Mion, Lorraine
2012-08-01
This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.
Ward, Ryan D.; Gallistel, C.R.; Balsam, Peter D
2013-01-01
Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. PMID:23384660
NASA Astrophysics Data System (ADS)
Robins, N. S.; Rutter, H. K.; Dumpleton, S.; Peach, D. W.
2005-01-01
Groundwater investigation has long depended on the process of developing a conceptual flow model as a precursor to developing a mathematical model, which in turn may lead in complex aquifers to the development of a numerical approximation model. The assumptions made in the development of the conceptual model depend heavily on the geological framework defining the aquifer, and if the conceptual model is inappropriate then subsequent modelling will also be incorrect. Paradoxically, the development of a robust conceptual model remains difficult, not least because this 3D paradigm is usually reduced to 2D plans and sections. 3D visualisation software is now available to facilitate the development of the conceptual model, to make the model more robust and defensible and to assist in demonstrating the hydraulics of the aquifer system. Case studies are presented to demonstrate the role and cost-effectiveness of the visualisation process.
Eime, Rochelle M; Young, Janet A; Harvey, Jack T; Charity, Melanie J; Payne, Warren R
2013-12-07
The definition of health incorporates the physical, social and mental domains, however the Physical Activity (PA) guidelines do not address social health. Furthermore, there is insufficient evidence about the levels or types of PA associated specifically with psychological health. This paper first presents the results of a systematic review of the psychological and social health benefits of participation in sport by adults. Secondly, the information arising from the systematic review has been used to develop a conceptual model of Health through Sport. A systematic review of 14 electronic databases was conducted in June 2012, and studies published since 1990 were considered for inclusion. Studies that addressed mental and/or social health benefits from participation in sport were included. A total of 3668 publications were initially identified, of which 11 met the selection criteria. There were many different psychological and social health benefits reported, with the most commonly being wellbeing and reduced distress and stress. Sport may be associated with improved psychosocial health in addition to improvements attributable to participation in PA. Specifically, club-based or team-based sport seems to be associated with improved health outcomes compared to individual activities, due to the social nature of the participation. Notwithstanding this, individuals who prefer to participate in sport by themselves can still derive mental health benefits which can enhance the development of true-self-awareness and personal growth which is essential for social health. A conceptual model, Health through Sport, is proposed. The model depicts the relationship between psychological, psychosocial and social health domains, and their positive associations with sport participation, as reported in the literature. However, it is acknowledged that the capacity to determine the existence and direction of causal links between participation and health is limited by the cross-sectional nature of studies to date. It is recommended that participation in sport is advocated as a form of leisure-time PA for adults which can produce a range of health benefits. It is also recommended that the causal link between participation in sport and psycho-social health be further investigated and the conceptual model of Health through Sport tested.
Financial errors in dementia: Testing a neuroeconomic conceptual framework
Chiong, Winston; Hsu, Ming; Wudka, Danny; Miller, Bruce L.; Rosen, Howard J.
2013-01-01
Financial errors by patients with dementia can have devastating personal and family consequences. We developed and evaluated a neuroeconomic conceptual framework for understanding financial errors across different dementia syndromes, using a systematic, retrospective, blinded chart review of demographically-balanced cohorts of patients with Alzheimer’s disease (AD, n=100) and behavioral variant frontotemporal dementia (bvFTD, n=50). Reviewers recorded specific reports of financial errors according to a conceptual framework identifying patient cognitive and affective characteristics, and contextual influences, conferring susceptibility to each error. Specific financial errors were reported for 49% of AD and 70% of bvFTD patients (p = 0.012). AD patients were more likely than bvFTD patients to make amnestic errors (p< 0.001), while bvFTD patients were more likely to spend excessively (p = 0.004) and to exhibit other behaviors consistent with diminished sensitivity to losses and other negative outcomes (p< 0.001). Exploratory factor analysis identified a social/affective vulnerability factor associated with errors in bvFTD, and a cognitive vulnerability factor associated with errors in AD. Our findings highlight the frequency and functional importance of financial errors as symptoms of AD and bvFTD. A conceptual model derived from neuroeconomic literature identifies factors that influence vulnerability to different types of financial error in different dementia syndromes, with implications for early diagnosis and subsequent risk prevention. PMID:23550884
Borek, Aleksandra J; Abraham, Charles
2018-03-01
Small groups are used to promote health, well-being, and personal change by altering members' perceptions, beliefs, expectations, and behaviour patterns. An extensive cross-disciplinary literature has articulated and tested theories explaining how such groups develop, function, and facilitate change. Yet these theoretical understandings are rarely applied in the development, description, and evaluation of health-promotion, group-based, behaviour-change interventions. Medline database, library catalogues, search engines, specific journals and reference lists were searched for relevant texts. Texts were reviewed for explanatory concepts or theories describing change processes in groups, which were integrated into the developing conceptual structure. This was designed to be a parsimonious conceptual framework that could be applied to design and delivery. Five categories of interacting processes and concepts were identified and defined: (1) group development processes, (2) dynamic group processes, (3) social change processes, (4) personal change processes, and (5) group design and operating parameters. Each of these categories encompasses a variety of theorised mechanisms explaining individual change in small groups. The final conceptual model, together with the design issues and practical recommendations derived from it, provides a practical basis for linking research and theory explaining group functioning to optimal design of group-based, behaviour-change interventions. © 2018 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of International Association of Applied Psychology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steven Markovich
This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part ofmore » the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.« less
Background-independent condensed matter models for quantum gravity
NASA Astrophysics Data System (ADS)
Hamma, Alioscia; Markopoulou, Fotini
2011-09-01
A number of recent proposals on a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the 'timelessness' of general relativity and emergence. Secondly, the lack of a fundamental spacetime renders difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on the evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this paper, we review two such models. The first model is a model of emergent (flat) space and matter, and we show how to use methods from quantum information theory to derive features such as the speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction that we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
Modelling Unsteady Wall Pressures Beneath Turbulent Boundary Layers
NASA Technical Reports Server (NTRS)
Ahn, B-K.; Graham, W. R.; Rizzi, S. A.
2004-01-01
As a structural entity of turbulence, hairpin vortices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work we focus on fully developed typical hairpin vortices and estimate the associated surface pressure distributions and their corresponding spectra. On the basis of the attached eddy model, we develop a representation of the overall surface pressure spectra in terms of the eddy size distribution. Instantaneous wavenumber spectra and spatial correlations are readily derivable from this representation. The model is validated by comparison of predicted wavenumber spectra and cross-correlations with existing emperical models and experimental data.
Han, Liang-Feng; Plummer, Niel
2013-01-01
The widely applied model for groundwater dating using 14C proposed by Fontes and Garnier (F&G) (Fontes and Garnier, 1979) estimates the initial 14C content in waters from carbonate-rock aquifers affected by isotopic exchange. Usually, the model of F&G is applied in one of two ways: (1) using a single 13C fractionation factor of gaseous CO2 with respect to a solid carbonate mineral, εg/s, regardless of whether the carbon isotopic exchange is controlled by soil CO2 in the unsaturated zone, or by solid carbonate mineral in the saturated zone; or (2) using different fractionation factors if the exchange process is dominated by soil CO2 gas as opposed to solid carbonate mineral (typically calcite). An analysis of the F&G model shows an inadequate conceptualization, resulting in underestimation of the initial 14C values (14C0) for groundwater systems that have undergone isotopic exchange. The degree to which the 14C0 is underestimated increases with the extent of isotopic exchange. Examples show that in extreme cases, the error in calculated adjusted initial 14C values can be more than 20% modern carbon (pmc). A model is derived that revises the mass balance method of F&G by using a modified model conceptualization. The derivation yields a “global” model both for carbon isotopic exchange dominated by gaseous CO2 in the unsaturated zone, and for carbon isotopic exchange dominated by solid carbonate mineral in the saturated zone. However, the revised model requires different parameters for exchange dominated by gaseous CO2 as opposed to exchange dominated by solid carbonate minerals. The revised model for exchange dominated by gaseous CO2 is shown to be identical to the model of Mook (Mook, 1976). For groundwater systems where exchange occurs both in the unsaturated zone and saturated zone, the revised model can still be used; however, 14C0 will be slightly underestimated. Finally, in carbonate systems undergoing complex geochemical reactions, such as oxidation of organic carbon, radiocarbon ages are best estimated by inverse geochemical modeling techniques.
NASA Technical Reports Server (NTRS)
Maughmer, Mark D.; Ozoroski, L.; Ozoroski, T.; Straussfogel, D.
1990-01-01
Many types of hypersonic aircraft configurations are currently being studied for feasibility of future development. Since the control of the hypersonic configurations throughout the speed range has a major impact on acceptable designs, it must be considered in the conceptual design stage. The ability of the aerodynamic analysis methods contained in an industry standard conceptual design system, APAS II, to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds is considered. Predicted control forces and moments generated by various control effectors are compared with previously published wind tunnel and flight test data for three configurations: the North American X-15, the Space Shuttle Orbiter, and a hypersonic research airplane concept. Qualitative summaries of the results are given for each longitudinal force and moment and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage. Results for most lateral/directional control derivatives are acceptable for conceptual design purposes; however, predictions at supersonic Mach numbers for the change in yawing moment due to aileron deflection and the change in rolling moment due to rudder deflection are found to be unacceptable. Including shielding effects in the analysis is shown to have little effect on lift and pitching moment predictions while improving drag predictions.
Kuyken, Willem; Beshai, Shadi; Dudley, Robert; Abel, Anna; Görg, Nora; Gower, Philip; McManus, Freda; Padesky, Christine A
2016-03-01
Case conceptualization is assumed to be an important element in cognitive-behavioural therapy (CBT) because it describes and explains clients' presentations in ways that inform intervention. However, we do not have a good measure of competence in CBT case conceptualization that can be used to guide training and elucidate mechanisms. The current study addresses this gap by describing the development and preliminary psychometric properties of the Collaborative Case Conceptualization - Rating Scale (CCC-RS; Padesky et al., 2011). The CCC-RS was developed in accordance with the model posited by Kuyken et al. (2009). Data for this study (N = 40) were derived from a larger trial (Wiles et al., 2013) with adults suffering from resistant depression. Internal consistency and inter-rater reliability were calculated. Further, and as a partial test of the scale's validity, Pearson's correlation coefficients were obtained for scores on the CCC-RS and key scales from the Cognitive Therapy Scale - Revised (CTS-R; Blackburn et al., 2001). The CCC-RS showed excellent internal consistency (α = .94), split-half (.82) and inter-rater reliabilities (ICC =.84). Total scores on the CCC-RS were significantly correlated with scores on the CTS-R (r = .54, p < .01). Moreover, the Collaboration subscale of the CCC-RS was significantly correlated (r = .44) with its counterpart of the CTS-R in a theoretically predictable manner. These preliminary results indicate that the CCC-RS is a reliable measure with adequate face, content and convergent validity. Further research is needed to replicate and extend the current findings to other facets of validity.
Cognitive network organization and cockpit automation
NASA Technical Reports Server (NTRS)
Roske-Hofstrand, R. J.; Paap, K. R.
1985-01-01
Attention is given to a technique for the derivation of pilot cognitive networks from empirical data, which has been successfully used to guide the redesign of the Control Display Unit that serves as the primary interface of the complex flight management system being developed by NASA's Advanced Concepts Flight Simulator program. The 'pathfinder' algorithm of Schvaneveldt et al. (1985) is used to obtain the conceptual organization of four pilots by generating a family of link-weighted networks from a set of psychological distance data derived through similarity ratings. The degree of conceptual agreement between pilots is assessed, and the means of translating a cognitive network into a menu structure are noted.
Options for diabetes management in sub-Saharan Africa with an electronic medical record system.
Kouematchoua Tchuitcheu, G; Rienhoff, O
2011-01-01
An increase of diabetes prevalence of up to 80% is predicted in sub-Saharan Africa (SSA) by 2025 exceeding the worldwide 55%. Mortality rates of diabetes and HIV/AIDS are similar. Diabetes shares several common factors with HIV/AIDS and multidrug-resistant tuberculosis (MDR-TB). The latter two health problems have been efficiently managed by an open source electronic medical record system (EMRS) in Latin America. Therefore a similar solution for diabetes in SSA could be extremely helpful. The aim was to design and validate a conceptual model for an EMRS to improve diabetes management in SSA making use of the HIV and TB experience. A review of the literature addressed diabetes care and management in SSA as well as existing examples of information and communication technology (ICT) use in SSA. Based on a need assessment conducted in SSA a conceptual model based on the traditionally structured healthcare system in SSA was mapped into a three-layer structure. Application modules were derived and a demonstrator programmed based on an open source EMRS. Then the approach was validated by SSA experts. A conceptual model could be specified and validated which enhances a problem-oriented approach to diabetes management processes. The prototyp EMRS demonstrates options for a patient portal and simulation tools for education of health professional and patients in SSA. It is possible to find IT solutions for diabetes care in SSA which follow the same efficiency concepts as HIV or TB modules in Latin America. The local efficiency and sustainability of the solution will, however, depend on training and changes in work behavior.
Why College Students Cheat: A Conceptual Model of Five Factors
ERIC Educational Resources Information Center
Yu, Hongwei; Glanzer, Perry L.; Johnson, Byron R.; Sriram, Rishi; Moore, Brandon
2018-01-01
Though numerous studies have identified factors associated with academic misconduct, few have proposed conceptual models that could make sense of multiple factors. In this study, we used structural equation modeling (SEM) to test a conceptual model of five factors using data from a relatively large sample of 2,503 college students. The results…
Compartmentalization: a conceptual framework for understanding how trees grow and defend themselves
Alex L. Shigo
1984-01-01
The purpose of this chapter is to describe a conceptual framework for understanding how trees grow and how they and other perennial plants defend themselves. The concept of compartmentalization has developed over many years, a synthesis of ideas from a number of investigators. It is derived from detailed studies of the gross morphology and cellular anatomy of the wood...
Conceptual Change from the Framework Theory Side of the Fence
ERIC Educational Resources Information Center
Vosniadou, Stella; Skopeliti, Irini
2014-01-01
We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively…
A conceptual modeling framework for discrete event simulation using hierarchical control structures.
Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D
2015-08-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.
Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.
Nagel, Daniel A; Penner, Jamie L
2016-03-01
Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Rolland, Colette; Yu, Eric; Salinesi, Camille; Castro, Jaelson
The use of intentional concepts, the notion of "goal" in particular, has been prominent in recent approaches to requirement engineering (RE). Goal-oriented frameworks and methods for requirements engineering (GORE) have been keynote topics in requirements engineering, conceptual modelling, and more generally in software engineering. What are the conceptual modelling foundations in these approaches? RIGiM (Requirements Intentions and Goals in Conceptual Modelling) aims to provide a forum for discussing the interplay between requirements engineering and conceptual modelling, and in particular, to investigate how goal- and intention-driven approaches help in conceptualising purposeful systems. What are the fundamental objectives and premises of requirements engineering and conceptual modelling respectively, and how can they complement each other? What are the demands on conceptual modelling from the standpoint of requirements engineering? What conceptual modelling techniques can be further taken advantage of in requirements engineering? What are the upcoming modelling challenges and issues in GORE? What are the unresolved open questions? What lessons are there to be learnt from industrial experiences? What empirical data are there to support the cost-benefit analysis when adopting GORE methods? Are there application domains or types of project settings for which goals and intentional approaches are particularly suitable or not suitable? What degree of formalization and automation, or interactivity is feasible and appropriate for what types of participants during requirements engineering?
A reporting protocol for thermochronologic modeling illustrated with data from the Grand Canyon
NASA Astrophysics Data System (ADS)
Flowers, Rebecca M.; Farley, Kenneth A.; Ketcham, Richard A.
2015-12-01
Apatite (U-Th)/He and fission-track dates, as well as 4He/3He and fission-track length data, provide rich thermal history information. However, numerous choices and assumptions are required on the long road from raw data and observations to potentially complex geologic interpretations. This paper outlines a conceptual framework for this path, with the aim of promoting a broader understanding of how thermochronologic conclusions are derived. The tiered structure consists of thermal history model inputs at Level 1, thermal history model outputs at Level 2, and geologic interpretations at Level 3. Because inverse thermal history modeling is at the heart of converting thermochronologic data to interpretation, for others to evaluate and reproduce conclusions derived from thermochronologic results it is necessary to publish all data required for modeling, report all model inputs, and clearly and completely depict model outputs. Here we suggest a generalized template for a model input table with which to arrange, report and explain the choice of inputs to thermal history models. Model inputs include the thermochronologic data, additional geologic information, and system- and model-specific parameters. As an example we show how the origin of discrepant thermochronologic interpretations in the Grand Canyon can be better understood by using this disciplined approach.
Van Oudenhove, Lukas; Cuypers, Stefaan
2014-05-01
Psychosomatic medicine, with its prevailing biopsychosocial model, aims to integrate human and exact sciences with their divergent conceptual models. Therefore, its own conceptual foundations, which often remain implicit and unknown, may be critically relevant. We defend the thesis that choosing between different metaphysical views on the 'mind-body problem' may have important implications for the conceptual foundations of psychosomatic medicine, and therefore potentially also for its methods, scientific status and relationship with the scientific disciplines it aims to integrate: biomedical sciences (including neuroscience), psychology and social sciences. To make this point, we introduce three key positions in the philosophical 'mind-body' debate (emergentism, reductionism, and supervenience physicalism) and investigate their consequences for the conceptual basis of the biopsychosocial model in general and its 'psycho-biological' part ('mental causation') in particular. Despite the clinical merits of the biopsychosocial model, we submit that it is conceptually underdeveloped or even flawed, which may hamper its use as a proper scientific model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paul L. Wichlacz; Robert C. Starr; Brennon Orr
2003-09-01
This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants inmore » the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.« less
Wolfs, Vincent; Villazon, Mauricio Florencio; Willems, Patrick
2013-01-01
Applications such as real-time control, uncertainty analysis and optimization require an extensive number of model iterations. Full hydrodynamic sewer models are not sufficient for these applications due to the excessive computation time. Simplifications are consequently required. A lumped conceptual modelling approach results in a much faster calculation. The process of identifying and calibrating the conceptual model structure could, however, be time-consuming. Moreover, many conceptual models lack accuracy, or do not account for backwater effects. To overcome these problems, a modelling methodology was developed which is suited for semi-automatic calibration. The methodology is tested for the sewer system of the city of Geel in the Grote Nete river basin in Belgium, using both synthetic design storm events and long time series of rainfall input. A MATLAB/Simulink(®) tool was developed to guide the modeller through the step-wise model construction, reducing significantly the time required for the conceptual modelling process.
Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity
Marson, Daniel
2016-01-01
The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. PMID:27506235
Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...
Moral valuation: a third domain of conscience functioning.
Stilwell, B M; Galvin, M; Kopta, S M; Padgett, R J
1996-02-01
To assess development of moral valuation in normal children and adolescents, that is, how moral rules for living are derived and justified, and to examine the relationship of this progression with previously identified stages of conceptualization of conscience. Using three semistructured questions from the Stilwell Conscience Interview, 132 normal volunteers between the ages of 5 and 17 years were assessed. All moral valuation responses were examined within three aspects of social reference: authority-derived, self-derived, and peer-derived. Each aspect was scaled for complexity into six anchored levels. The levels of all three aspects correlated positively with conceptualization stages as well as with each other. When the covariate, age, was taken into consideration, peer-derived valuation was significantly correlated with both age and stage. Moral valuation is a domain of conscience functioning in which moral rules and their justifications are socially referenced in relationship to authority, self, and peers. Anchored levels of these three aspects of moral valuation provide developmental guidelines for mental status examinations in patients between 5 and 17 years of age as well as providing criteria for future comparative studies in various diagnostic categories of psychopathology.
Frau, Juan; Glossman-Mitnik, Daniel
2018-01-01
This computational study assessed eight fixed RSH (range-separated hybrid) density functionals that include CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX, ωB97, ωB97X, and ωB97XD related to the Def2TZVP basis sets together with the SMD solvation model in the calculation the molecular structure and reactivity properties of the BISARG intermediate melanoidin pigment (5-(2-(E)-(Z)-5-[(2-furyl)methylidene]-3-(4-acetylamino-4-carboxybutyl)-2-imino-1,3-dihydroimidazol-4-ylideneamino(E)-4-[(2-furyl)methylidene]-5-oxo-1H-imidazol-1-yl)-2-acetylaminovaleric acid) and its protonated derivative, BISARG(p). The chemical reactivity descriptors for the systems were calculated via the Conceptual Density Functional Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks were made by linking them with Fukui functions indices, electrophilic and nucleophilic Parr functions, and the condensed Dual Descriptor Δf(r). The study found the MN12SX and N12SX density functionals to be the most appropriate in predicting the chemical reactivity of the molecular systems under study starting from the knowledge of the HOMO, LUMO, and HOMO-LUMO gap energies. PMID:29765937
Frau, Juan; Glossman-Mitnik, Daniel
2018-01-01
This computational study assessed eight fixed RSH (range-separated hybrid) density functionals that include CAM-B3LYP, LC-ωPBE, M11, MN12SX, N12SX, ωB97, ωB97X, and ωB97XD related to the Def2TZVP basis sets together with the SMD solvation model in the calculation the molecular structure and reactivity properties of the BISARG intermediate melanoidin pigment (5-(2-(E)-(Z)-5-[(2-furyl)methylidene]-3-(4-acetylamino-4-carboxybutyl)-2-imino-1,3-dihydroimidazol-4-ylideneamino(E)-4-[(2-furyl)methylidene]-5-oxo-1H-imidazol-1-yl)-2-acetylaminovaleric acid) and its protonated derivative, BISARG(p). The chemical reactivity descriptors for the systems were calculated via the Conceptual Density Functional Theory. The choice of active sites applicable to nucleophilic, electrophilic as well as radical attacks were made by linking them with Fukui functions indices, electrophilic and nucleophilic Parr functions, and the condensed Dual Descriptor Δf( r ). The study found the MN12SX and N12SX density functionals to be the most appropriate in predicting the chemical reactivity of the molecular systems under study starting from the knowledge of the HOMO, LUMO, and HOMO-LUMO gap energies.
Renal parameter estimates in unrestrained dogs
NASA Technical Reports Server (NTRS)
Rader, R. D.; Stevens, C. M.
1974-01-01
A mathematical formulation has been developed to describe the hemodynamic parameters of a conceptualized kidney model. The model was developed by considering regional pressure drops and regional storage capacities within the renal vasculature. Estimation of renal artery compliance, pre- and postglomerular resistance, and glomerular filtration pressure is feasible by considering mean levels and time derivatives of abdominal aortic pressure and renal artery flow. Changes in the smooth muscle tone of the renal vessels induced by exogenous angiotensin amide, acetylcholine, and by the anaesthetic agent halothane were estimated by use of the model. By employing totally implanted telemetry, the technique was applied on unrestrained dogs to measure renal resistive and compliant parameters while the dogs were being subjected to obedience training, to avoidance reaction, and to unrestrained caging.
The `Miracle' of Applicability? The Curious Case of the Simple Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Bangu, Sorin; Moir, Robert H. C.
2018-05-01
The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner's famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of the Wigner problem.
The `Miracle' of Applicability? The Curious Case of the Simple Harmonic Oscillator
NASA Astrophysics Data System (ADS)
Bangu, Sorin; Moir, Robert H. C.
2018-03-01
The paper discusses to what extent the conceptual issues involved in solving the simple harmonic oscillator model fit Wigner's famous point that the applicability of mathematics borders on the miraculous. We argue that although there is ultimately nothing mysterious here, as is to be expected, a careful demonstration that this is so involves unexpected difficulties. Consequently, through the lens of this simple case we derive some insight into what is responsible for the appearance of mystery in more sophisticated examples of the Wigner problem.
A conceptual modeling framework for discrete event simulation using hierarchical control structures
Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.
2015-01-01
Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940
Can the Neuman Systems Model be adapted to the Malaysian nursing context?
Shamsudin, Nafsiah
2002-04-01
Nursing in Malaysia is still developing as a profession. Issues such as using nursing conceptual models or frameworks in the delivery of nursing care have not been addressed by the majority of nurses. One reason for this has been the level of education and preparation of nurses, while another reason lies with the origins of existing nursing conceptual models. Most nursing conceptual models have their origins in North America. Their utility by nurses of different cultures and academic preparations might not be appropriate. Nursing is a social activity, an interaction between the nurse and the patient. It is carried out in a social environment within a particular culture. Conceptual models developed in one culture might not be readily implanted into another culture. This paper discusses how a conceptual model developed in North America; that is, the Neuman Systems Model, can be adapted into the Malaysian nursing context.
Modeling and measuring limb fine-motor unsteadiness
NASA Technical Reports Server (NTRS)
Magdaleno, R. E.; Jex, H. R.; Allen, R. W.
1973-01-01
Fine-motor unsteadiness its properties, conceptual and analytical models, and experimental measurements is examined. Based on a data review, the tentative model derived includes: neuromuscular system, grip interface, and control system dynamic elements. The properties of this model change with muscle tension and match a wide group of extant data. A simple experiment was performed to investigate the amplitude/force relationships of the tremor mode. As the finger-pull force increased from 5 to 20 Newtons, the tremor mode frequency for a given individual stayed within roughly + or - 1 Hz over a range from 9-12 Hz, while the average magnitude of the rms tremor acceleration increased tenfold. A standardized test for making such measurements is given and applications in the fields of psychophysiological stress and strain measurements are mentioned.
A Conceptual Modeling Approach for OLAP Personalization
NASA Astrophysics Data System (ADS)
Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan
Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.
A human factors systems approach to understanding team-based primary care: a qualitative analysis
Mundt, Marlon P.; Swedlund, Matthew P.
2016-01-01
Background. Research shows that high-functioning teams improve patient outcomes in primary care. However, there is no consensus on a conceptual model of team-based primary care that can be used to guide measurement and performance evaluation of teams. Objective. To qualitatively understand whether the Systems Engineering Initiative for Patient Safety (SEIPS) model could serve as a framework for creating and evaluating team-based primary care. Methods. We evaluated qualitative interview data from 19 clinicians and staff members from 6 primary care clinics associated with a large Midwestern university. All health care clinicians and staff in the study clinics completed a survey of their communication connections to team members. Social network analysis identified key informants for interviews by selecting the respondents with the highest frequency of communication ties as reported by their teammates. Semi-structured interviews focused on communication patterns, team climate and teamwork. Results. Themes derived from the interviews lent support to the SEIPS model components, such as the work system (Team, Tools and Technology, Physical Environment, Tasks and Organization), team processes and team outcomes. Conclusions. Our qualitative data support the SEIPS model as a promising conceptual framework for creating and evaluating primary care teams. Future studies of team-based care may benefit from using the SEIPS model to shift clinical practice to high functioning team-based primary care. PMID:27578837
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Semantic Description of Educational Adaptive Hypermedia Based on a Conceptual Model
ERIC Educational Resources Information Center
Papasalouros, Andreas; Retalis, Symeon; Papaspyrou, Nikolaos
2004-01-01
The role of conceptual modeling in Educational Adaptive Hypermedia Applications (EAHA) is especially important. A conceptual model of an educational application depicts the instructional solution that is implemented, containing information about concepts that must be ac-quired by learners, tasks in which learners must be involved and resources…
A Multivariate Model of Conceptual Change
ERIC Educational Resources Information Center
Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John
2016-01-01
The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…
Conceptual Model of Research to Reduce Stigma Related to Mental Disorders in Adolescents
Pinto-Foltz, Melissa D.; Logsdon, M. Cynthia
2010-01-01
Purpose: To explicate an initial conceptual model that is amenable to testing and guiding anti-stigma interventions with adolescents. Design/Sources Used: Multidisciplinary research and theoretical articles were reviewed. . Conclusions: The conceptual model may guide anti-stigma interventions, and undergo testing and refinement in the future to reflect scientific advances in stigma reduction among adolescents. Use of a conceptual model enhances empirical evaluation of anti-stigma interventions yielding a casual explanation for the intervention effects and enhances clinical applicability of interventions across settings. PMID:19916813
Senin, Tatjana; Meyer, Thorsten
2018-01-22
Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.
ERIC Educational Resources Information Center
Hashemi, Nourooz; Abu, Mohd Salleh; Kashefi, Hamidreza; Mokhtar, Mahani; Rahimi, Khadijeh
2015-01-01
Derivatives and integrals are two important concepts of calculus which are precondition topics for most of mathematics courses and other courses in different fields of studies. A majority of students at the undergraduate level have to master derivatives and integrals if they want to be successful in their studies However, students encounter…
Data Modeling & the Infrastructural Nature of Conceptual Tools
ERIC Educational Resources Information Center
Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta
2007-01-01
The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…
Randhawa, Gurprit K
2017-01-01
A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.
Validation analysis of probabilistic models of dietary exposure to food additives.
Gilsenan, M B; Thompson, R L; Lambe, J; Gibney, M J
2003-10-01
The validity of a range of simple conceptual models designed specifically for the estimation of food additive intakes using probabilistic analysis was assessed. Modelled intake estimates that fell below traditional conservative point estimates of intake and above 'true' additive intakes (calculated from a reference database at brand level) were considered to be in a valid region. Models were developed for 10 food additives by combining food intake data, the probability of an additive being present in a food group and additive concentration data. Food intake and additive concentration data were entered as raw data or as a lognormal distribution, and the probability of an additive being present was entered based on the per cent brands or the per cent eating occasions within a food group that contained an additive. Since the three model components assumed two possible modes of input, the validity of eight (2(3)) model combinations was assessed. All model inputs were derived from the reference database. An iterative approach was employed in which the validity of individual model components was assessed first, followed by validation of full conceptual models. While the distribution of intake estimates from models fell below conservative intakes, which assume that the additive is present at maximum permitted levels (MPLs) in all foods in which it is permitted, intake estimates were not consistently above 'true' intakes. These analyses indicate the need for more complex models for the estimation of food additive intakes using probabilistic analysis. Such models should incorporate information on market share and/or brand loyalty.
NASA Astrophysics Data System (ADS)
Fovet, O.; Hrachowitz, M.; RUIZ, L.; Gascuel-odoux, C.; Savenije, H.
2013-12-01
While most hydrological models reproduce the general flow dynamics of a system, they frequently fail to adequately mimic system internal processes. This is likely to make them inadequate to simulate solutes transport. For example, the hysteresis between storage and discharge, which is often observed in shallow hard-rock aquifers, is rarely well reproduced by models. One main reason is that this hysteresis has little weight in the calibration because objective functions are based on time series of individual variables. This reduces the ability of classical calibration/validation procedures to assess the relevance of the conceptual hypothesis associated with hydrological models. Calibrating models on variables derived from the combination of different individual variables (like stream discharge and groundwater levels) is a way to insure that models will be accepted based on their consistency. Here we therefore test the value of this more systems-like approach to test different hypothesis on the behaviour of a small experimental low-land catchment in French Brittany (ORE AgrHys) where a high hysteresis is observed on the stream flow vs. shallow groundwater level relationship. Several conceptual models were applied to this site, and calibrated using objective functions based on metrics of this hysteresis. The tested model structures differed with respect to the storage function in each reservoir, the storage-discharge function in each reservoir, the deep loss expressions (as constant or variable fraction), the number of reservoirs (from 1 to 4) and their organization (parallel, series). The observed hysteretic groundwater level-discharge relationship was not satisfactorily reproduced by most of the tested models except for the most complex ones. Those were thus more consistent, their underlying hypotheses are probably more realistic even though their performance for simulating observed stream flow was decreased. Selecting models based on such systems-like approach is likely to improve their efficiency for environmental application e.g. on solute transport issues. The next step would be to apply the same approach with variables combining hydrological and biogeochemical variables.
Sadeghi, Zahra
2016-09-01
In this paper, I investigate conceptual categories derived from developmental processing in a deep neural network. The similarity matrices of deep representation at each layer of neural network are computed and compared with their raw representation. While the clusters generated by raw representation stand at the basic level of abstraction, conceptual categories obtained from deep representation shows a bottom-up transition procedure. Results demonstrate a developmental course of learning from specific to general level of abstraction through learned layers of representations in a deep belief network. © The Author(s) 2016.
Health literacy and public health: a systematic review and integration of definitions and models.
Sørensen, Kristine; Van den Broucke, Stephan; Fullam, James; Doyle, Gerardine; Pelikan, Jürgen; Slonska, Zofia; Brand, Helmut
2012-01-25
Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy. A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model. The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively. Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings.
Direct and conceptual replications of the taxometric analysis of type a behavior.
Wilmot, Michael P; Haslam, Nick; Tian, Jingyuan; Ones, Deniz S
2018-05-17
We present direct and conceptual replications of the influential taxometric analysis of Type A Behavior (TAB; Strube, 1989), which reported evidence for the latent typology of the construct. Study 1, the direct replication (N = 2,373), duplicated sampling and methodological procedures of the original study, but results showed that the item indicators used in the original study lacked sufficient validity to unambiguously determine latent structure. Using improved factorial subscale indicators to further test the question, multiple taxometric procedures, in combination with parallel analyses of simulated data, failed to replicate the original typological finding. Study 2, the conceptual replication, tested the latent structure of the wider construct of TAB using the sample from the Caerphilly Prospective Study (N = 2,254), which contains responses to the three most widely used self-report measures of TAB: the Jenkins Activity Survey, Bortner scale, and Framingham scale. Factorial subscale indicators were derived from the measures and submitted to multiple taxometric procedures. Results of Study 2 converged with those of Study 1, providing clear evidence of latent dimensional structure. Overall, results suggest there is no evidence for the type in TAB. Findings imply that theoretical models of TAB, assessment practices, and data analytic procedures that assume a typology should be replaced by dimensional models, factorial subscale measures, and corresponding statistical approaches. Specific subscale measures that tap multiple Big Five trait domains, and show evidence of predictive utility, are also recommended. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
ERIC Educational Resources Information Center
Urey, Mustafa; Calik, Muammer
2008-01-01
Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…
ERIC Educational Resources Information Center
Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik
2011-01-01
Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…
Ward, Ryan D; Gallistel, C R; Balsam, Peter D
2013-05-01
Learning in conditioning protocols has long been thought to depend on temporal contiguity between the conditioned stimulus and the unconditioned stimulus. This conceptualization has led to a preponderance of associative models of conditioning. We suggest that trial-based associative models that posit contiguity as the primary principle underlying learning are flawed, and provide a brief review of an alternative, information theoretic approach to conditioning. The information that a CS conveys about the timing of the next US can be derived from the temporal parameters of a conditioning protocol. According to this view, a CS will support conditioned responding if, and only if, it reduces uncertainty about the timing of the next US. Copyright © 2013 Elsevier B.V. All rights reserved.
OBO to UML: Support for the development of conceptual models in the biomedical domain.
Waldemarin, Ricardo C; de Farias, Cléver R G
2018-04-01
A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.
Auer, Annella; Guerrero Espinel, Juan Eduardo
2011-08-01
A constantly changing and increasingly complex global environment requires leaders with special competencies to respond effectively to this scenario. Within this context, the Pan American Health Organization (PAHO) goes beyond traditional leadership training models both in terms of its design as well as its conceptual approach to international health. As an intergovernmental, centenary organization in health, PAHO allows participants a unique vantage point from which to conceptualize, share experiences and develop projects relevant to international health. Derived from over two decades of experience (1985-2006) training professionals through its predessor Training Program in International Health, the Leaders in International Health Program "Edmundo Granda Ugalde" (LIHP) utilizes an innovative design, virtual and practical learning activities, and a problem-based approach to analyze the main concepts, theories, actors, forces, and processes relevant to international health. In collaboration with PAHO/WHO Representative Offices and national institutions, participants develop country projects based on priority health issues, many of which are integrated into the Organization's technical cooperation and/or implemented by relevant ministries and other entities in their respective countries/subregions. A total of 185 participants representing 31 countries have participated in the LIHP since its inception in 2008, building upon the 187 trained through its predecessor. These initiatives have contributed to the development of health professionals in the Region of the Americas devoted to international health, as well as provided important input towards a conceptual understanding of international health by fostering debate on this issue.
An empirically based conceptual framework for fostering meaningful patient engagement in research.
Hamilton, Clayon B; Hoens, Alison M; Backman, Catherine L; McKinnon, Annette M; McQuitty, Shanon; English, Kelly; Li, Linda C
2018-02-01
Patient engagement in research (PEIR) is promoted to improve the relevance and quality of health research, but has little conceptualization derived from empirical data. To address this issue, we sought to develop an empirically based conceptual framework for meaningful PEIR founded on a patient perspective. We conducted a qualitative secondary analysis of in-depth interviews with 18 patient research partners from a research centre-affiliated patient advisory board. Data analysis involved three phases: identifying the themes, developing a framework and confirming the framework. We coded and organized the data, and abstracted, illustrated, described and explored the emergent themes using thematic analysis. Directed content analysis was conducted to derive concepts from 18 publications related to PEIR to supplement, confirm or refute, and extend the emergent conceptual framework. The framework was reviewed by four patient research partners on our research team. Participants' experiences of working with researchers were generally positive. Eight themes emerged: procedural requirements, convenience, contributions, support, team interaction, research environment, feel valued and benefits. These themes were interconnected and formed a conceptual framework to explain the phenomenon of meaningful PEIR from a patient perspective. This framework, the PEIR Framework, was endorsed by the patient research partners on our team. The PEIR Framework provides guidance on aspects of PEIR to address for meaningful PEIR. It could be particularly useful when patient-researcher partnerships are led by researchers with little experience of engaging patients in research. © 2017 The Authors Health Expectations Published by John Wiley & Sons Ltd.
A Common Core for Active Conceptual Modeling for Learning from Surprises
NASA Astrophysics Data System (ADS)
Liddle, Stephen W.; Embley, David W.
The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.
Jeddi, Fatemeh Rangraz; Farzandipoor, Mehrdad; Arabfard, Masoud; Hosseini, Azam Haj Mohammad
2016-01-01
Objective: The purpose of this study was investigating situation and presenting a conceptual model for clinical governance information system by using UML in two sample hospitals. Background: However, use of information is one of the fundamental components of clinical governance; but unfortunately, it does not pay much attention to information management. Material and Methods: A cross sectional study was conducted in October 2012- May 2013. Data were gathered through questionnaires and interviews in two sample hospitals. Face and content validity of the questionnaire has been confirmed by experts. Data were collected from a pilot hospital and reforms were carried out and Final questionnaire was prepared. Data were analyzed by descriptive statistics and SPSS 16 software. Results: With the scenario derived from questionnaires, UML diagrams are presented by using Rational Rose 7 software. The results showed that 32.14 percent Indicators of the hospitals were calculated. Database was not designed and 100 percent of the hospital’s clinical governance was required to create a database. Conclusion: Clinical governance unit of hospitals to perform its mission, do not have access to all the needed indicators. Defining of Processes and drawing of models and creating of database are essential for designing of information systems. PMID:27147804
Jeddi, Fatemeh Rangraz; Farzandipoor, Mehrdad; Arabfard, Masoud; Hosseini, Azam Haj Mohammad
2014-01-01
Objective: The purpose of this study was investigating situation and presenting a conceptual model for clinical governance information system by using UML in two sample hospitals. Background: However, use of information is one of the fundamental components of clinical governance; but unfortunately, it does not pay much attention to information management. Material and Methods: A cross sectional study was conducted in October 2012- May 2013. Data were gathered through questionnaires and interviews in two sample hospitals. Face and content validity of the questionnaire has been confirmed by experts. Data were collected from a pilot hospital and reforms were carried out and Final questionnaire was prepared. Data were analyzed by descriptive statistics and SPSS 16 software. Results: With the scenario derived from questionnaires, UML diagrams are presented by using Rational Rose 7 software. The results showed that 32.14 percent Indicators of the hospitals were calculated. Database was not designed and 100 percent of the hospital’s clinical governance was required to create a database. Conclusion: Clinical governance unit of hospitals to perform its mission, do not have access to all the needed indicators. Defining of Processes and drawing of models and creating of database are essential for designing of information systems. PMID:24825933
Structural Configuration Systems Analysis for Advanced Aircraft Fuselage Concepts
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek; Welstead, Jason R.; Quinlan, Jesse R.; Guynn, Mark D.
2016-01-01
Structural configuration analysis of an advanced aircraft fuselage concept is investigated. This concept is characterized by a double-bubble section fuselage with rear mounted engines. Based on lessons learned from structural systems analysis of unconventional aircraft, high-fidelity finite-element models (FEM) are developed for evaluating structural performance of three double-bubble section configurations. Structural sizing and stress analysis are applied for design improvement and weight reduction. Among the three double-bubble configurations, the double-D cross-section fuselage design was found to have a relatively lower structural weight. The structural FEM weights of these three double-bubble fuselage section concepts are also compared with several cylindrical fuselage models. Since these fuselage concepts are different in size, shape and material, the fuselage structural FEM weights are normalized by the corresponding passenger floor area for a relative comparison. This structural systems analysis indicates that an advanced composite double-D section fuselage may have a relative structural weight ratio advantage over a conventional aluminum fuselage. Ten commercial and conceptual aircraft fuselage structural weight estimates, which are empirically derived from the corresponding maximum takeoff gross weight, are also presented and compared with the FEM- based estimates for possible correlation. A conceptual full vehicle FEM model with a double-D fuselage is also developed for preliminary structural analysis and weight estimation.
Hill, Rachel T; Matthews, Russell A; Walsh, Benjamin M
2016-12-01
Implicit to the definitions of both family-supportive supervision (FSS) and family-supportive organization perceptions (FSOP) is the argument that these constructs may manifest at a higher (e.g. group or organizational) level. In line with these conceptualizations, grounded in tenants of conservation of resources theory, we argue that FSS and FSOP, as universal resources, are emergent constructs at the organizational level, which have cross-level effects on work-family conflict and turnover intentions. To test our theoretically derived hypotheses, a multilevel model was examined in which FSS and FSOP at the unit level predict individual work-to-family conflict, which in turn predicts turnover intentions. Our hypothesized model was generally supported. Collectively, our results point to FSOP serving as an explanatory mechanism of the effects that mutual perceptions of FSS have on individual experiences of work-to-family conflict and turnover intentions. Lagged (i.e. overtime) cross-level effects of the model were also confirmed in supplementary analyses. Our results extend our theoretical understanding of FSS and FSOP by demonstrating the utility of conceptualizing them as universal resources, opening up a variety of avenues for future research. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A
2017-09-15
In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.
Development of Conceptual Models for Internet Search: A Case Study.
ERIC Educational Resources Information Center
Uden, Lorna; Tearne, Stephen; Alderson, Albert
This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…
Feasibility of Implementing an All-Volunteer Force for the ROK Armed Forces
2007-03-01
Korea’s current military/economic/political/social factors for voluntary recruitment through an open-systems conceptual model. Results indicate that the...recruitment through an open-systems conceptual model. Results indicate that the draft should be maintained for the near future, but this does not...7 A. A CONCEPTUAL MODEL FOR DEFENSE ORGANIZATION
Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research
ERIC Educational Resources Information Center
Fried, Leanne; Mansfield, Caroline; Dobozy, Eva
2015-01-01
This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…
Showing Automatically Generated Students' Conceptual Models to Students and Teachers
ERIC Educational Resources Information Center
Perez-Marin, Diana; Pascual-Nieto, Ismael
2010-01-01
A student conceptual model can be defined as a set of interconnected concepts associated with an estimation value that indicates how well these concepts are used by the students. It can model just one student or a group of students, and can be represented as a concept map, conceptual diagram or one of several other knowledge representation…
Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts
ERIC Educational Resources Information Center
Agnew, Deborah; Pill, Shane; Orrell, Janice
2017-01-01
This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…
ERIC Educational Resources Information Center
Battisti, Bryce Thomas; Hanegan, Nikki; Sudweeks, Richard; Cates, Rex
2010-01-01
Concept inventories are often used to assess current student understanding although conceptual change models are problematic. Due to controversies with conceptual change models and the realities of student assessment, it is important that concept inventories are evaluated using a variety of theoretical models to improve quality. This study used a…
Directional Statistics for Polarization Observations of Individual Pulses from Radio Pulsars
NASA Astrophysics Data System (ADS)
McKinnon, M. M.
2010-10-01
Radio polarimetry is a three-dimensional statistical problem. The three-dimensional aspect of the problem arises from the Stokes parameters Q, U, and V, which completely describe the polarization of electromagnetic radiation and conceptually define the orientation of a polarization vector in the Poincaré sphere. The statistical aspect of the problem arises from the random fluctuations in the source-intrinsic polarization and the instrumental noise. A simple model for the polarization of pulsar radio emission has been used to derive the three-dimensional statistics of radio polarimetry. The model is based upon the proposition that the observed polarization is due to the incoherent superposition of two, highly polarized, orthogonal modes. The directional statistics derived from the model follow the Bingham-Mardia and Fisher family of distributions. The model assumptions are supported by the qualitative agreement between the statistics derived from it and those measured with polarization observations of the individual pulses from pulsars. The orthogonal modes are thought to be the natural modes of radio wave propagation in the pulsar magnetosphere. The intensities of the modes become statistically independent when generalized Faraday rotation (GFR) in the magnetosphere causes the difference in their phases to be large. A stochastic version of GFR occurs when fluctuations in the phase difference are also large, and may be responsible for the more complicated polarization patterns observed in pulsar radio emission.
NASA Astrophysics Data System (ADS)
Rödiger, T.; Geyer, S.; Mallast, U.; Merz, R.; Krause, P.; Fischer, C.; Siebert, C.
2014-02-01
A key factor for sustainable management of groundwater systems is the accurate estimation of groundwater recharge. Hydrological models are common tools for such estimations and widely used. As such models need to be calibrated against measured values, the absence of adequate data can be problematic. We present a nested multi-response calibration approach for a semi-distributed hydrological model in the semi-arid catchment of Wadi al Arab in Jordan, with sparsely available runoff data. The basic idea of the calibration approach is to use diverse observations in a nested strategy, in which sub-parts of the model are calibrated to various observation data types in a consecutive manner. First, the available different data sources have to be screened for information content of processes, e.g. if data sources contain information on mean values, spatial or temporal variability etc. for the entire catchment or only sub-catchments. In a second step, the information content has to be mapped to relevant model components, which represent these processes. Then the data source is used to calibrate the respective subset of model parameters, while the remaining model parameters remain unchanged. This mapping is repeated for other available data sources. In that study the gauged spring discharge (GSD) method, flash flood observations and data from the chloride mass balance (CMB) are used to derive plausible parameter ranges for the conceptual hydrological model J2000g. The water table fluctuation (WTF) method is used to validate the model. Results from modelling using a priori parameter values from literature as a benchmark are compared. The estimated recharge rates of the calibrated model deviate less than ±10% from the estimates derived from WTF method. Larger differences are visible in the years with high uncertainties in rainfall input data. The performance of the calibrated model during validation produces better results than applying the model with only a priori parameter values. The model with a priori parameter values from literature tends to overestimate recharge rates with up to 30%, particular in the wet winter of 1991/1992. An overestimation of groundwater recharge and hence available water resources clearly endangers reliable water resource managing in water scarce region. The proposed nested multi-response approach may help to better predict water resources despite data scarcity.
Sabzi Khoshnami, Mohammad; Mohammadi, Elham; Addelyan Rasi, Hamideh; Khankeh, Hamid Reza; Arshi, Maliheh
2017-05-01
Acid attack, a worldwide phenomenon, has been increasing in recent years. In addition to severe injuries to the face and body, such violence leads to psychological and social problems that affect the survivors' quality of life. The present study provides a more in-depth understanding of this phenomenon and explores the nature and dimensions of acid attacks based on survivors' experiences. A grounded theory study using semi-structured, recorded interviews and applying purposeful theoretical sampling was conducted with 12 acid attack survivors in Iran. Data were analysed using constant comparison in open, axial and selective coding stages. A conceptual model was developed to explain the relationships among the main categories extracted through the grounded theory study. Physical and psychological wounds emerged as a core category. Traditional context and extreme beauty value in society acted as the context of the physical and psychological wounds experienced. Living with a drug abuser with behavioural disorders and lack of problem-solving skills in interpersonal conflict were found to be causal conditions. Action strategies to deal with this experience were found to be composed of individual, interpersonal and structural levels. Education, percentage and place of burning acted as intervening conditions that influenced survivors' strategies. Finally, adverse consequences of social deprivation and feeling helpless and hindered were found to have an important impact. Acid attack lead to physical and psychological wounds in survivors. This is a multi-dimensional phenomenon involving illness, disability, and victimization, and requires a wide range of strategies at different levels. The conceptual model derived through this study can serve as a good basis for intervention programs. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Klijs, Bart; Kibele, Eva U B; Ellwardt, Lea; Zuidersma, Marij; Stolk, Ronald P; Wittek, Rafael P M; Mendes de Leon, Carlos M; Smidt, Nynke
2016-08-11
Previous studies are inconclusive on whether poor socioeconomic conditions in the neighborhood are associated with major depressive disorder. Furthermore, conceptual models that relate neighborhood conditions to depressive disorder have not been evaluated using empirical data. In this study, we investigated whether neighborhood income is associated with major depressive episodes. We evaluated three conceptual models. Conceptual model 1: The association between neighborhood income and major depressive episodes is explained by diseases, lifestyle factors, stress and social participation. Conceptual model 2: A low individual income relative to the mean income in the neighborhood is associated with major depressive episodes. Conceptual model 3: A high income of the neighborhood buffers the effect of a low individual income on major depressive disorder. We used adult baseline data from the LifeLines Cohort Study (N = 71,058) linked with data on the participants' neighborhoods from Statistics Netherlands. The current presence of a major depressive episode was assessed using the MINI neuropsychiatric interview. The association between neighborhood income and major depressive episodes was assessed using a mixed effect logistic regression model adjusted for age, sex, marital status, education and individual (equalized) income. This regression model was sequentially adjusted for lifestyle factors, chronic diseases, stress, and social participation to evaluate conceptual model 1. To evaluate conceptual models 2 and 3, an interaction term for neighborhood income*individual income was included. Multivariate regression analysis showed that a low neighborhood income is associated with major depressive episodes (OR (95 % CI): 0.82 (0.73;0.93)). Adjustment for diseases, lifestyle factors, stress, and social participation attenuated this association (ORs (95 % CI): 0.90 (0.79;1.01)). Low individual income was also associated with major depressive episodes (OR (95 % CI): 0.72 (0.68;0.76)). The interaction of individual income*neighborhood income on major depressive episodes was not significant (p = 0.173). Living in a low-income neighborhood is associated with major depressive episodes. Our results suggest that this association is partly explained by chronic diseases, lifestyle factors, stress and poor social participation, and thereby partly confirm conceptual model 1. Our results do not support conceptual model 2 and 3.
Health literacy and public health: A systematic review and integration of definitions and models
2012-01-01
Background Health literacy concerns the knowledge and competences of persons to meet the complex demands of health in modern society. Although its importance is increasingly recognised, there is no consensus about the definition of health literacy or about its conceptual dimensions, which limits the possibilities for measurement and comparison. The aim of the study is to review definitions and models on health literacy to develop an integrated definition and conceptual model capturing the most comprehensive evidence-based dimensions of health literacy. Methods A systematic literature review was performed to identify definitions and conceptual frameworks of health literacy. A content analysis of the definitions and conceptual frameworks was carried out to identify the central dimensions of health literacy and develop an integrated model. Results The review resulted in 17 definitions of health literacy and 12 conceptual models. Based on the content analysis, an integrative conceptual model was developed containing 12 dimensions referring to the knowledge, motivation and competencies of accessing, understanding, appraising and applying health-related information within the healthcare, disease prevention and health promotion setting, respectively. Conclusions Based upon this review, a model is proposed integrating medical and public health views of health literacy. The model can serve as a basis for developing health literacy enhancing interventions and provide a conceptual basis for the development and validation of measurement tools, capturing the different dimensions of health literacy within the healthcare, disease prevention and health promotion settings. PMID:22276600
Hierarchical species distribution models
Hefley, Trevor J.; Hooten, Mevin B.
2016-01-01
Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.
Theoretical results on the tandem junction solar cell based on its Ebers-Moll transistor model
NASA Technical Reports Server (NTRS)
Goradia, C.; Vaughn, J.; Baraona, C. R.
1980-01-01
A one-dimensional theoretical model of the tandem junction solar cell (TJC) with base resistivity greater than about 1 ohm-cm and under low level injection has been derived. This model extends a previously published conceptual model which treats the TJC as an npn transistor. The model gives theoretical expressions for each of the Ebers-Moll type currents of the illuminated TJC and allows for the calculation of the spectral response, I(sc), V(oc), FF and eta under variation of one or more of the geometrical and material parameters and 1MeV electron fluence. Results of computer calculations based on this model are presented and discussed. These results indicate that for space applications, both a high beginning of life efficiency, greater than 15% AM0, and a high radiation tolerance can be achieved only with thin (less than 50 microns) TJC's with high base resistivity (greater than 10 ohm-cm).
A Systematic Review of Conceptual Frameworks of Medical Complexity and New Model Development.
Zullig, Leah L; Whitson, Heather E; Hastings, Susan N; Beadles, Chris; Kravchenko, Julia; Akushevich, Igor; Maciejewski, Matthew L
2016-03-01
Patient complexity is often operationalized by counting multiple chronic conditions (MCC) without considering contextual factors that can affect patient risk for adverse outcomes. Our objective was to develop a conceptual model of complexity addressing gaps identified in a review of published conceptual models. We searched for English-language MEDLINE papers published between 1 January 2004 and 16 January 2014. Two reviewers independently evaluated abstracts and all authors contributed to the development of the conceptual model in an iterative process. From 1606 identified abstracts, six conceptual models were selected. One additional model was identified through reference review. Each model had strengths, but several constructs were not fully considered: 1) contextual factors; 2) dynamics of complexity; 3) patients' preferences; 4) acute health shocks; and 5) resilience. Our Cycle of Complexity model illustrates relationships between acute shocks and medical events, healthcare access and utilization, workload and capacity, and patient preferences in the context of interpersonal, organizational, and community factors. This model may inform studies on the etiology of and changes in complexity, the relationship between complexity and patient outcomes, and intervention development to improve modifiable elements of complex patients.
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
Health information systems: failure, success and improvisation.
Heeks, Richard
2006-02-01
The generalised assumption of health information systems (HIS) success is questioned by a few commentators in the medical informatics field. They point to widespread HIS failure. The purpose of this paper was therefore to develop a better conceptual foundation for, and practical guidance on, health information systems failure (and success). Literature and case analysis plus pilot testing of developed model. Defining HIS failure and success is complex, and the current evidence base on HIS success and failure rates was found to be weak. Nonetheless, the best current estimate is that HIS failure is an important problem. The paper therefore derives and explains the "design-reality gap" conceptual model. This is shown to be robust in explaining multiple cases of HIS success and failure, yet provides a contingency that encompasses the differences which exist in different HIS contexts. The design-reality gap model is piloted to demonstrate its value as a tool for risk assessment and mitigation on HIS projects. It also throws into question traditional, structured development methodologies, highlighting the importance of emergent change and improvisation in HIS. The design-reality gap model can be used to address the problem of HIS failure, both as a post hoc evaluative tool and as a pre hoc risk assessment and mitigation tool. It also validates a set of methods, techniques, roles and competencies needed to support the dynamic improvisations that are found to underpin cases of HIS success.
Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling
NASA Astrophysics Data System (ADS)
March, Salvatore T.; Allen, Gove N.
Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.
Mack, John; Sosa-Vargas, Lydia; Coles, Simon J; Tizzard, Graham J; Chambrier, Isabelle; Cammidge, Andrew N; Cook, Michael J; Kobayashi, Nagao
2012-12-03
Synthesis of the title compounds has been achieved through refinement of a recently reported synthetic protocol whereby varying equivalents of MeMgBr are reacted with 1,4-dioctylphthalonitrile to produce mixtures favoring specific hybrid structures. The initially formed magnesium-metalated compounds are obtained as pure materials and include, for the first time, both isomers (cis and trans) of tetrabenzodiazaporphyrin. The compounds were demetalated to the metal-free analogues, which were then converted into the copper-metalated derivatives. The X-ray structure of the copper tetrabenzotriazaporphyrin derivative is reported. The metal-free and copper-metalated macrocycles exhibit columnar mesophase behavior, and it is found that the mesophase stability is unexpectedly reduced in the diazaporphyrin derivatives compared to the rest of the series. The results of time-dependent density functional theory calculations for the copper complexes are compared to the observed optical properties. Michl's perimeter model was used as a conceptual framework for analyzing the magnetic circular dichroism spectral data, which predicted and accounted for trends in the observed experimental spectra.
Application of the human needs conceptual model to dental hygiene practice.
Darby, M L; Walsh, M M
2000-01-01
The Human Needs Conceptual Model is relevant to dental hygiene because of the need for dental hygienists to be client focused, humanistic, and accountable in practice. Application of the Human Needs Conceptual Model provides a formal framework for identifying and understanding the unique needs of the client that can be met through dental hygiene care. Practitioners find that the Human Needs Conceptual Model can not only help them in assessment and diagnosis, but also in client education, decision-making, care implementation, and the evaluation of treatment outcomes. By using the model, the dental hygienist is able to manage client care humanistically and holistically, and ensure that care is client-centered rather than task-oriented. With the model, a professional practice can be made operational.
White-Means, S I
1995-01-01
There is no consensus on the appropriate conceptualization of race in economic models of health care. This is because race is rarely the primary focus for analysis of the market. This article presents an alternative framework for conceptualizing race in health economic models. A case study is analyzed to illustrate the value of the alternative conceptualization. The case study findings clearly document the importance of model stratification according to race. Moreover, the findings indicate that empirical results are improved when medical utilization models are refined in a way that reflects the unique experiences of the population that is studied. PMID:7721593
Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.
2003-01-01
This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Schultz, Christopher J.; Carey, Lawerence D.; Schultz, Elise V.; Stano, Geoffery T.; Kozlowski, Danielle M.; Goodman, Steven
2012-01-01
Key points that this analysis will begin to address are: 1)What physically is going on in the cloud when there is a jump in lightning? - Updraft variations, ice fluxes. 2)How do these processes fit in with severe storm conceptual models? 3)What would this information provide an end user (i.e., the forecaster)? - Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi-Doppler derived physical relationships 4) How do we best transistionthis algorithm into the warning decision process. The known relationship between lightning updraft strength/volume and precipitation ice mass production can be extended to the concept of the lightning jump. Examination of the first lightning jump times from 329 storms in Schultz et al. shows an increase in the mean reflectivity profile and mixed phase echo volume during the 10 minutes prior to the lightning jump. Limited dual-Doppler results show that the largest lightning jumps are well correlated in time with increases in updraft strength/volume and precipitation ice mass production; however, the smaller magnitude lightning jumps appear to have more subtle relationships to updraft and ice mass characteristics.
A learning theory account of depression.
Ramnerö, Jonas; Folke, Fredrik; Kanter, Jonathan W
2015-06-11
Learning theory provides a foundation for understanding and deriving treatment principles for impacting a spectrum of functional processes relevant to the construct of depression. While behavioral interventions have been commonplace in the cognitive behavioral tradition, most often conceptualized within a cognitive theoretical framework, recent years have seen renewed interest in more purely behavioral models. These modern learning theory accounts of depression focus on the interchange between behavior and the environment, mainly in terms of lack of reinforcement, extinction of instrumental behavior, and excesses of aversive control, and include a conceptualization of relevant cognitive and emotional variables. These positions, drawn from extensive basic and applied research, cohere with biological theories on reduced reward learning and reward responsiveness and views of depression as a heterogeneous, complex set of disorders. Treatment techniques based on learning theory, often labeled Behavioral Activation (BA) focus on activating the individual in directions that increase contact with potential reinforcers, as defined ideographically with the client. BA is considered an empirically well-established treatment that generalizes well across diverse contexts and populations. The learning theory account is discussed in terms of being a parsimonious model and ground for treatments highly suitable for large scale dissemination. © 2015 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer
NASA Astrophysics Data System (ADS)
Jiao, Jiu Jimmy; Tang, Zhonghua
1999-03-01
An analytical solution is derived to investigate the influence of leakage on tidal response in a coastal leaky confined aquifer system. The analytical solution developed here is more general than the traditional solution obtained by Ferris [1951], which can be regarded as a special case of the solution presented in this paper. This solution is based on a conceptual model under the assumption that the groundwater level in the confined aquifer fluctuates in response to sea tide while that of the overlying unconfined aquifer remains constant. This conceptual model is supported by numerous field studies by previous researchers which have demonstrated that the tidal response in an unconfined aquifer may be negligible compared to that in a confined aquifer. The leakage has a significant impact on the tidal behavior of the confined aquifer. Hypothetical studies indicate that both tidal amplitude of groundwater head in the aquifer and the distance over which the aquifer can be disturbed by the sea tide will be considerably reduced because of the existence of leakage. This analytical solution is used to investigate the tidal and piezometer data at the Chek Lap Kok airport, Hong Kong Special Administrative Region, People's Republic of China.
Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.
Marson, Daniel
2016-09-01
The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
An Empirical Study of Enterprise Conceptual Modeling
NASA Astrophysics Data System (ADS)
Anaby-Tavor, Ateret; Amid, David; Fisher, Amit; Ossher, Harold; Bellamy, Rachel; Callery, Matthew; Desmond, Michael; Krasikov, Sophia; Roth, Tova; Simmonds, Ian; de Vries, Jacqueline
Business analysts, business architects, and solution consultants use a variety of practices and methods in their quest to understand business. The resulting work products could end up being transitioned into the formal world of software requirement definitions or as recommendations for all kinds of business activities. We describe an empirical study about the nature of these methods, diagrams, and home-grown conceptual models as reflected in real practice at IBM. We identify the models as artifacts of "enterprise conceptual modeling". We study important features of these models, suggest practical classifications, and discuss their usage. Our survey shows that the "enterprise conceptual modeling" arena presents a variety of descriptive models, each used by a relatively small group of colleagues. Together they form a "long tail" that extends from "drawings" on one end to "standards" on the other.
It's time to rework the blueprints: building a science for clinical psychology.
Millon, Theodore
2003-11-01
The aims in this article are to connect the conceptual structure of clinical psychological science to what the author believes to be the omnipresent principles of evolution, use the evolutionary model to create a deductively derived clinical theory and taxonomy, link the theory and taxonomy to comprehensive and integrated approaches to assessment, and outline a framework for an integrative synergistic model of psychotherapy. These foundations also provide a framework for a systematic approach to the subject realms of personology and psychopathology. Exploring nature's deep principles, the model revives the personologic concept christened by Henry Murray some 65 years ago; it also parallels the interface between human social functioning and evolutionary biology proposed by Edward Wilson in his concept of sociobiology. (c) 2003 APA, all rights reserved.
System Modeling of a large FPGA project: the SKA Tile Processing Module
NASA Astrophysics Data System (ADS)
Belli, C.; Comoretto, G.
Large projects like the SKA have an intrinsic complexity due to their scale. In this context, the application of a management design system becomes fundamental. For this purpose the SysML language, a UML customization for engineering applications, has been applied. As far as our work is concerned, we focused on the SKA Low Telescope - Tile Processing Module, designing diagrams at different detail levels. We designed a conceptual model of the TPM, primarily focusing on the main interfaces and the major data flows between product items. Functionalities are derived from use cases and allocated to hardware modules in order to guarantee the project's internal consistency and features. This model has been used both as internal documentation and as job specification, to commit part of the design to external entities.
Educational Criteria for Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling
ERIC Educational Resources Information Center
Kayama, Mizue; Ogata, Shinpei; Asano, David K.; Hashimoto, Masami
2016-01-01
Conceptual modeling is one of the most important learning topics for higher education and secondary education. The goal of conceptual modeling in this research is to draw a class diagram using given notation to satisfy the given requirements. In this case, the subjects are asked to choose concepts to satisfy the given requirements and to correctly…
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
Corrected Four-Sphere Head Model for EEG Signals.
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V; Dale, Anders M; Einevoll, Gaute T; Wójcik, Daniel K
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations.
Corrected Four-Sphere Head Model for EEG Signals
Næss, Solveig; Chintaluri, Chaitanya; Ness, Torbjørn V.; Dale, Anders M.; Einevoll, Gaute T.; Wójcik, Daniel K.
2017-01-01
The EEG signal is generated by electrical brain cell activity, often described in terms of current dipoles. By applying EEG forward models we can compute the contribution from such dipoles to the electrical potential recorded by EEG electrodes. Forward models are key both for generating understanding and intuition about the neural origin of EEG signals as well as inverse modeling, i.e., the estimation of the underlying dipole sources from recorded EEG signals. Different models of varying complexity and biological detail are used in the field. One such analytical model is the four-sphere model which assumes a four-layered spherical head where the layers represent brain tissue, cerebrospinal fluid (CSF), skull, and scalp, respectively. While conceptually clear, the mathematical expression for the electric potentials in the four-sphere model is cumbersome, and we observed that the formulas presented in the literature contain errors. Here, we derive and present the correct analytical formulas with a detailed derivation. A useful application of the analytical four-sphere model is that it can serve as ground truth to test the accuracy of numerical schemes such as the Finite Element Method (FEM). We performed FEM simulations of the four-sphere head model and showed that they were consistent with the corrected analytical formulas. For future reference we provide scripts for computing EEG potentials with the four-sphere model, both by means of the correct analytical formulas and numerical FEM simulations. PMID:29093671
Utility of qualitative research findings in evidence-based public health practice.
Jack, Susan M
2006-01-01
Epidemiological data, derived from quantitative studies, provide important information about the causes, prevalence, risk correlates, treatment and prevention of diseases, and health issues at a population level. However, public health issues are complex in nature and quantitative research findings are insufficient to support practitioners and administrators in making evidence-informed decisions. Upshur's Synthetic Model of Evidence (2001) situates qualitative research findings as a credible source of evidence for public health practice. This article answers the following questions: (1) where does qualitative research fit within the paradigm of evidence-based practice and (2) how can qualitative research be used by public health professionals? Strategies for using qualitative research findings instrumentally, conceptually, and symbolically are identified by applying Estabrooks' (1999) conceptual structure of research utilization. Different research utilization strategies are illustrated through the use of research examples from the field of work on intimate partner violence against women. Recommendations for qualitative researchers disseminating findings and for public health practitioners/policy makers considering the use of qualitative findings as evidence to inform decisions are provided.
The essential role of social theory in qualitative public health research.
Willis, Karen; Daly, Jeanne; Kealy, Michelle; Small, Rhonda; Koutroulis, Glenda; Green, Julie; Gibbs, Lisa; Thomas, Samantha
2007-10-01
To define the role of social theory and examine how research studies using qualitative methods can use social theory to generalize their results beyond the setting of the study or to other social groups. The assumptions underlying public health research using qualitative methods derive from a range of social theories that include conflict theory, structural functionalism, symbolic interactionism, the sociology of knowledge and feminism. Depending on the research problem, these and other social theories provide conceptual tools and models for constructing a suitable research framework, and for collecting and analysing data. In combination with the substantive health literature, the theoretical literature provides the conceptual bridge that links the conclusions of the study to other social groups and settings. While descriptive studies using qualitative research methods can generate important insights into social experience, the use of social theory in the construction and conduct of research enables researchers to extrapolate their findings to settings and groups broader than the ones in which the research was conducted.
Conceptual Spaces of the Immune System.
Fierz, Walter
2016-01-01
The immune system can be looked at as a cognitive system. This is often done in analogy to the neuro-psychological system. Here, it is demonstrated that the cognitive functions of the immune system can be properly described within a new theory of cognitive science. Gärdenfors' geometrical framework of conceptual spaces is applied to immune cognition. Basic notions, like quality dimensions, natural properties and concepts, similarities, prototypes, saliences, etc., are related to cognitive phenomena of the immune system. Constraints derived from treating the immune system within a cognitive theory, like Gärdenfors' conceptual spaces, might well prove to be instrumental for the design of vaccines, immunological diagnostic tests, and immunotherapy.
Amsel, Ben D
2011-04-01
Empirically derived semantic feature norms categorized into different types of knowledge (e.g., visual, functional, auditory) can be summed to create number-of-feature counts per knowledge type. Initial evidence suggests several such knowledge types may be recruited during language comprehension. The present study provides a more detailed understanding of the timecourse and intensity of influence of several such knowledge types on real-time neural activity. A linear mixed-effects model was applied to single trial event-related potentials for 207 visually presented concrete words measured on total number of features (semantic richness), imageability, and number of visual motion, color, visual form, smell, taste, sound, and function features. Significant influences of multiple feature types occurred before 200ms, suggesting parallel neural computation of word form and conceptual knowledge during language comprehension. Function and visual motion features most prominently influenced neural activity, underscoring the importance of action-related knowledge in computing word meaning. The dynamic time courses and topographies of these effects are most consistent with a flexible conceptual system wherein temporally dynamic recruitment of representations in modal and supramodal cortex are a crucial element of the constellation of processes constituting word meaning computation in the brain. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed
Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.
Intrinsic connectivity in the human brain does not reveal networks for ‘basic’ emotions
Lindquist, Kristen A.; Dickerson, Bradford C.; Barrett, Lisa Feldman
2015-01-01
We tested two competing models for the brain basis of emotion, the basic emotion theory and the conceptual act theory of emotion, using resting-state functional connectivity magnetic resonance imaging (rs-fcMRI). The basic emotion view hypothesizes that anger, sadness, fear, disgust and happiness each arise from a brain network that is innate, anatomically constrained and homologous in other animals. The conceptual act theory of emotion hypothesizes that an instance of emotion is a brain state constructed from the interaction of domain-general, core systems within the brain such as the salience, default mode and frontoparietal control networks. Using peak coordinates derived from a meta-analysis of task-evoked emotion fMRI studies, we generated a set of whole-brain rs-fcMRI ‘discovery’ maps for each emotion category and examined the spatial overlap in their conjunctions. Instead of discovering a specific network for each emotion category, variance in the discovery maps was accounted for by the known domain-general network. Furthermore, the salience network is observed as part of every emotion category. These results indicate that specific networks for each emotion do not exist within the intrinsic architecture of the human brain and instead support the conceptual act theory of emotion. PMID:25680990
Conceptual Models of Depression in Primary Care Patients: A Comparative Study
Karasz, Alison; Garcia, Nerina; Ferri, Lucia
2009-01-01
Conventional psychiatric treatment models are based on a biopsychiatric model of depression. A plausible explanation for low rates of depression treatment utilization among ethnic minorities and the poor is that members of these communities do not share the cultural assumptions underlying the biopsychiatric model. The study examined conceptual models of depression among depressed patients from various ethnic groups, focusing on the degree to which patients’ conceptual models ‘matched’ a biopsychiatric model of depression. The sample included 74 primary care patients from three ethnic groups screening positive for depression. We administered qualitative interviews assessing patients’ conceptual representations of depression. The analysis proceeded in two phases. The first phase involved a strategy called ‘quantitizing’ the qualitative data. A rating scheme was developed and applied to the data by a rater blind to study hypotheses. The data was subjected to statistical analyses. The second phase of the analysis involved the analysis of thematic data using standard qualitative techniques. Study hypotheses were largely supported. The qualitative analysis provided a detailed picture of primary care patients’ conceptual models of depression and suggested interesting directions for future research. PMID:20182550
Cohen, Trevor; Blatter, Brett; Patel, Vimla
2005-01-01
Certain applications require computer systems to approximate intended human meaning. This is achievable in constrained domains with a finite number of concepts. Areas such as psychiatry, however, draw on concepts from the world-at-large. A knowledge structure with broad scope is required to comprehend such domains. Latent Semantic Analysis (LSA) is an unsupervised corpus-based statistical method that derives quantitative estimates of the similarity between words and documents from their contextual usage statistics. The aim of this research was to evaluate the ability of LSA to derive meaningful associations between concepts relevant to the assessment of dangerousness in psychiatry. An expert reference model of dangerousness was used to guide the construction of a relevant corpus. Derived associations between words in the corpus were evaluated qualitatively. A similarity-based scoring function was used to assign dangerousness categories to discharge summaries. LSA was shown to derive intuitive relationships between concepts and correlated significantly better than random with human categorization of psychiatric discharge summaries according to dangerousness. The use of LSA to derive a simulated knowledge structure can extend the scope of computer systems beyond the boundaries of constrained conceptual domains. PMID:16779020
2013-01-01
Background The definition of health incorporates the physical, social and mental domains, however the Physical Activity (PA) guidelines do not address social health. Furthermore, there is insufficient evidence about the levels or types of PA associated specifically with psychological health. This paper first presents the results of a systematic review of the psychological and social health benefits of participation in sport by adults. Secondly, the information arising from the systematic review has been used to develop a conceptual model of Health through Sport. Methods A systematic review of 14 electronic databases was conducted in June 2012, and studies published since 1990 were considered for inclusion. Studies that addressed mental and/or social health benefits from participation in sport were included. Results A total of 3668 publications were initially identified, of which 11 met the selection criteria. There were many different psychological and social health benefits reported, with the most commonly being wellbeing and reduced distress and stress. Sport may be associated with improved psychosocial health in addition to improvements attributable to participation in PA. Specifically, club-based or team-based sport seems to be associated with improved health outcomes compared to individual activities, due to the social nature of the participation. Notwithstanding this, individuals who prefer to participate in sport by themselves can still derive mental health benefits which can enhance the development of true-self-awareness and personal growth which is essential for social health. A conceptual model, Health through Sport, is proposed. The model depicts the relationship between psychological, psychosocial and social health domains, and their positive associations with sport participation, as reported in the literature. However, it is acknowledged that the capacity to determine the existence and direction of causal links between participation and health is limited by the cross-sectional nature of studies to date. Conclusion It is recommended that participation in sport is advocated as a form of leisure-time PA for adults which can produce a range of health benefits. It is also recommended that the causal link between participation in sport and psycho-social health be further investigated and the conceptual model of Health through Sport tested. PMID:24313992
Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation
NASA Astrophysics Data System (ADS)
Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.
2008-12-01
The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.
A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin
NASA Astrophysics Data System (ADS)
Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.
2004-12-01
The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio-economic activities occurring (or to occur) in the real system that the corresponding numerical models are required to address, such as riparian evapotranspiration responses to vegetation change and groundwater pumping impacts on soil moisture contents. Simulation results from different resolution models and observations of the real system will then be compared to evaluate the consistency among the CSM, the CPMs, and the numerical models, and feedbacks will be used to update the models. In a broad sense, the evaluation of the models (conceptual or numerical), as well as the linkages between them, can be viewed as a part of the overall conceptual framework. As new data are generated and understanding improves, the models will evolve, and the overall conceptual framework is refined. The development of the conceptual framework becomes an on-going process. We will describe the current state of this framework and the open questions that have to be addressed in the future.
Conceptual strategies and inter-theory relations: The case of nanoscale cracks
NASA Astrophysics Data System (ADS)
Bursten, Julia R.
2018-05-01
This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.
Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA
Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.
2005-01-01
This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an inexpensive way to develop a roadmap for understanding sediment dynamics at a watershed scale.
Evaluation of bias associated with capture maps derived from nonlinear groundwater flow models
Nadler, Cara; Allander, Kip K.; Pohll, Greg; Morway, Eric D.; Naranjo, Ramon C.; Huntington, Justin
2018-01-01
The impact of groundwater withdrawal on surface water is a concern of water users and water managers, particularly in the arid western United States. Capture maps are useful tools to spatially assess the impact of groundwater pumping on water sources (e.g., streamflow depletion) and are being used more frequently for conjunctive management of surface water and groundwater. Capture maps have been derived using linear groundwater flow models and rely on the principle of superposition to demonstrate the effects of pumping in various locations on resources of interest. However, nonlinear models are often necessary to simulate head-dependent boundary conditions and unconfined aquifers. Capture maps developed using nonlinear models with the principle of superposition may over- or underestimate capture magnitude and spatial extent. This paper presents new methods for generating capture difference maps, which assess spatial effects of model nonlinearity on capture fraction sensitivity to pumping rate, and for calculating the bias associated with capture maps. The sensitivity of capture map bias to selected parameters related to model design and conceptualization for the arid western United States is explored. This study finds that the simulation of stream continuity, pumping rates, stream incision, well proximity to capture sources, aquifer hydraulic conductivity, and groundwater evapotranspiration extinction depth substantially affect capture map bias. Capture difference maps demonstrate that regions with large capture fraction differences are indicative of greater potential capture map bias. Understanding both spatial and temporal bias in capture maps derived from nonlinear groundwater flow models improves their utility and defensibility as conjunctive-use management tools.
Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.
Gilbert, Jason H; Von Ah, Diane; Broome, Marion E
Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing leadership. Copyright © 2017 Elsevier Inc. All rights reserved.
Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.
Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J
2017-05-01
Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth, specificity, and precision to efforts to conceptualize and measure UT. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Kintsch, Walter; Mangalath, Praful
2011-04-01
We argue that word meanings are not stored in a mental lexicon but are generated in the context of working memory from long-term memory traces that record our experience with words. Current statistical models of semantics, such as latent semantic analysis and the Topic model, describe what is stored in long-term memory. The CI-2 model describes how this information is used to construct sentence meanings. This model is a dual-memory model, in that it distinguishes between a gist level and an explicit level. It also incorporates syntactic information about how words are used, derived from dependency grammar. The construction of meaning is conceptualized as feature sampling from the explicit memory traces, with the constraint that the sampling must be contextually relevant both semantically and syntactically. Semantic relevance is achieved by sampling topically relevant features; local syntactic constraints as expressed by dependency relations ensure syntactic relevance. Copyright © 2010 Cognitive Science Society, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Harrington
2004-10-25
The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through themore » Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.« less
LaDeau, Shannon L; Glass, Gregory E; Hobbs, N Thompson; Latimer, Andrew; Ostfeld, Richard S
2011-07-01
Ecologists worldwide are challenged to contribute solutions to urgent and pressing environmental problems by forecasting how populations, communities, and ecosystems will respond to global change. Rising to this challenge requires organizing ecological information derived from diverse sources and formally assimilating data with models of ecological processes. The study of infectious disease has depended on strategies for integrating patterns of observed disease incidence with mechanistic process models since John Snow first mapped cholera cases around a London water pump in 1854. Still, zoonotic and vector-borne diseases increasingly affect human populations, and methods used to successfully characterize directly transmitted diseases are often insufficient. We use four case studies to demonstrate that advances in disease forecasting require better understanding of zoonotic host and vector populations, as well of the dynamics that facilitate pathogen amplification and disease spillover into humans. In each case study, this goal is complicated by limited data, spatiotemporal variability in pathogen transmission and impact, and often, insufficient biological understanding. We present a conceptual framework for data-model fusion in infectious disease research that addresses these fundamental challenges using a hierarchical state-space structure to (1) integrate multiple data sources and spatial scales to inform latent parameters, (2) partition uncertainty in process and observation models, and (3) explicitly build upon existing ecological and epidemiological understanding. Given the constraints inherent in the study of infectious disease and the urgent need for progress, fusion of data and expertise via this type of conceptual framework should prove an indispensable tool.
A human factors systems approach to understanding team-based primary care: a qualitative analysis.
Mundt, Marlon P; Swedlund, Matthew P
2016-12-01
Research shows that high-functioning teams improve patient outcomes in primary care. However, there is no consensus on a conceptual model of team-based primary care that can be used to guide measurement and performance evaluation of teams. To qualitatively understand whether the Systems Engineering Initiative for Patient Safety (SEIPS) model could serve as a framework for creating and evaluating team-based primary care. We evaluated qualitative interview data from 19 clinicians and staff members from 6 primary care clinics associated with a large Midwestern university. All health care clinicians and staff in the study clinics completed a survey of their communication connections to team members. Social network analysis identified key informants for interviews by selecting the respondents with the highest frequency of communication ties as reported by their teammates. Semi-structured interviews focused on communication patterns, team climate and teamwork. Themes derived from the interviews lent support to the SEIPS model components, such as the work system (Team, Tools and Technology, Physical Environment, Tasks and Organization), team processes and team outcomes. Our qualitative data support the SEIPS model as a promising conceptual framework for creating and evaluating primary care teams. Future studies of team-based care may benefit from using the SEIPS model to shift clinical practice to high functioning team-based primary care. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
On the Assessment of Paramedic Competence: A Narrative Review with Practice Implications.
Tavares, W; Boet, S
2016-02-01
Paramedicine is experiencing significant growth in scope of practice, autonomy, and role in the health care system. Despite clinical governance models, the degree to which paramedicine ultimately can be safe and effective will be dependent on the individuals the profession deems suited to practice. This creates an imperative for those responsible for these decisions to ensure that assessments of paramedic competence are indeed accurate, trustworthy, and defensible. The purpose of this study was to explore and synthesize relevant theoretical foundations and literature informing best practices in performance-based assessment (PBA) of competence, as it might be applied to paramedicine, for design or evaluation of assessment programs. A narrative review methodology was applied to focus intentionally, but broadly, on purpose relevant, theoretically derived research that could inform assessment protocols in paramedicine. Primary and secondary studies from a number of health professions that contributed to and informed best practices related to the assessment of paramedic clinical competence were included and synthesized. Multiple conceptual frameworks, psychometric requirements, and emerging lines of research are forwarded. Seventeen practice implications are derived to promote understanding as well as best practices and evaluation criteria for educators, employers, and/or licensing/certifying bodies when considering the assessment of paramedic competence. The assessment of paramedic competence is a complex process requiring an understanding, appreciation for, and integration of conceptual and psychometric principles. The field of PBA is advancing rapidly with numerous opportunities for research.
Conceptual Change from the Framework Theory Side of the Fence
NASA Astrophysics Data System (ADS)
Vosniadou, Stella; Skopeliti, Irini
2014-07-01
We describe the main principles of the framework theory approach to conceptual change and briefly report on the results of a text comprehension study that investigated some of the hypotheses that derive from it. We claim that children construct a naive physics which is based on observation in the context of lay culture and which forms a relatively coherent conceptual system—i.e., a framework theory—that can be used as a basis for explanation and prediction of everyday phenomena. Learning science requires fundamental ontological, epistemological, and representational changes in naive physics. These conceptual changes take a long time to be achieved, giving rise to fragmentation and synthetic conceptions. We also argue that both fragmentation and synthetic conceptions can be explained to result from learners' attempts assimilate scientific information into their existing but incompatible naive physics.
NASA Astrophysics Data System (ADS)
Domènech, Cristina; Galí, Salvador; Villanova-de-Benavent, Cristina; Soler, Josep M.; Proenza, Joaquín A.
2017-10-01
Oxide-type Ni-laterite deposits are characterized by a dominant limonite zone with goethite as the economically most important Ni ore mineral and a thin zone of hydrous Mg silicate-rich saprolite beneath the magnesium discontinuity. Fe, less soluble, is mainly retained forming goethite, while Ni is redeposited at greater depth in a Fe(III) and Ni-rich serpentine (serpentine II) or in goethite, where it adsorbs or substitutes for Fe in the mineral structure. Here, a 1D reactive transport model, using CrunchFlow, of Punta Gorda oxide-type Ni-laterite deposit (Moa Bay, Cuba) formation is presented. The model reproduces the formation of the different laterite horizons in the profile from an initial, partially serpentinized peridotite, in 106 years, validating the conceptual model of the formation of this kind of deposits in which a narrow saprolite horizon rich in Ni-bearing serpentine is formed above peridotite parent rock and a thick limonite horizon is formed over saprolite. Results also confirm that sorption of Ni onto goethite can explain the weight percent of Ni found in the Moa goethite. Sensitivity analyses accounting for the effect of key parameters (composition, dissolution rate, carbonate concentration, quartz precipitation) on the model results are also presented. It is found that aqueous carbonate concentration and quartz precipitation significantly affects the laterization process rate, while the effect of the composition of secondary serpentine or of mineral dissolution rates is minor. The results of this reactive transport modeling have proven useful to validate the conceptual models derived from field observations.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
The Model-Building Process in Introductory College Geography: An Illustrative Example
ERIC Educational Resources Information Center
Cadwallader, Martin
1978-01-01
Illustrates the five elements of conceptual models by developing a model of consumer behavior in choosing among alternative supermarkets. The elements are: identifying the problem, constructing a conceptual model, translating it into a symbolic model, operationalizing the model, and testing. (Author/AV)
Transforming reflectance spectra into Munsell color space by using prime colors.
Romney, A Kimball; Fulton, James T
2006-10-17
Independent researchers have proved mathematically that, given a set of color-matching functions, there exists a unique set of three monochromatic spectral lights that optimizes luminous efficiency and color gamut. These lights are called prime colors. We present a method for transforming reflectance spectra into Munsell color space by using hypothetical absorbance curves based on Gaussian approximations of the prime colors and a simplified version of opponent process theory. The derived color appearance system is represented as a 3D color system that is qualitatively similar to a conceptual representation of the Munsell color system. We illustrate the application of the model and compare it with existing models by using reflectance spectra obtained from 1,269 Munsell color samples.
Preliminary results from the hydrodynamic element of the 1994 entrapment zone study
Burau, J.R.; Stacey, M.; Gartner, J.W.
1995-01-01
This article discusses preliminary results from analyses of USGS hydrodynamic data collected as part of the 1994 Interagency Ecological Program entrapment zone study. The USGS took part in three 30-hour cruises and deployed instruments for measuring currents and salinity from April to June. This article primarily focuses on the analysis of data from five Acoustic Doppler Current ProUers (ADCPs) deployed in Carquinez Strait, Suisun Bay, and the Western Delta. From these analyses a revised conceptual model of the hydrodynamics of the entrapment/null zone has evolved. The ideas discussed in this newsletter article are essentially working hypotheses, which are presented here to stimulate discussion and further analyses. In this article we discuss the currently-held conceptual model of entrapment and present data that are inconsistent with this conceptual model. Finally, we suggest a revised conceptual model that is consistent with all of the hydrodynamic data collected to date and describe how the 1995 study incorporates our revised conceptual model into its design.
Dini-Andreote, Francisco; Stegen, James C.; van Elsas, Jan D.; ...
2015-03-17
Despite growing recognition that deterministic and stochastic factors simultaneously influence bacterial communities, little is known about mechanisms shifting their relative importance. To better understand underlying mechanisms, we developed a conceptual model linking ecosystem development during primary succession to shifts in the stochastic/deterministic balance. To evaluate the conceptual model we coupled spatiotemporal data on soil bacterial communities with environmental conditions spanning 105 years of salt marsh development. At the local scale there was a progression from stochasticity to determinism due to Na accumulation with increasing ecosystem age, supporting a main element of the conceptual model. At the regional-scale, soil organic mattermore » (SOM) governed the relative influence of stochasticity and the type of deterministic ecological selection, suggesting scale-dependency in how deterministic ecological selection is imposed. Analysis of a new ecological simulation model supported these conceptual inferences. Looking forward, we propose an extended conceptual model that integrates primary and secondary succession in microbial systems.« less
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichlacz, Paul Louis; Orr, Brennan
2002-08-01
The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow into the subregion. Both conceptual models extend approximately 25 miles to the southwest of the INEEL, a distance sufficient to include known concentrations of contaminant tracers. Several hypotheses have been developed concerning the effective thickness of the SRPA at the INEEL. The USGS model has defined the effective thickness from electrical resistivity and borehole data to be as much as 2,500 ft in the eastern part of the subregion and as much as 4,000 ft in the southwestern part. The WAG-10 model has developed two alternatives using aquifer-temperature and electrical resistivity data. The ''thick'' aquifer interpretation utilizes colder temperature data and includes a northtrending zone in which the thickness exceeds 1,300 ft and with a maximum thickness of 1,700 ft. The ''thin'' aquifer interpretation minimizes aquifer thickness, with thickness ranging from 328 to 1,300 ft. Facility-specific models generally have focused efforts on the upper 250 ft of saturation. Conceptual models have utilized a stratigraphic data set to define geohydrologic units within the INEEL subregion. This data set, compiled from geophysical logs and cores from boreholes, correlates the thick, complex stack of basalt flows across the subregion. Conceptual models generally concur that the upper geohydrologic unit consists of a section of highly fractured, multiple, thin basalt flows and sedimentary interbeds. Beneath this unit is an areally extensive, thick, unfractured basalt flow that rises above the water table southwest of the INEEL. The bottom unit consists of a thick section of slightly- to moderately-altered basalt. A key objective of the DOE water-integration project at the INEEL is to coordinate development of a subregional conceptual model of groundwater flow and contaminant transport that is based on the best available understanding of geologic and hydrologic features. The first step in this process is to compile and summarize the current conceptual models of groundwater flow and contaminant transport at the INEEL that have been developed from extensive geohydrologic studies conducted during the last 50 years.« less
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
A conceptual model for vision rehabilitation
Roberts, Pamela S.; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August
2017-01-01
Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines. PMID:27997671
A conceptual model for vision rehabilitation.
Roberts, Pamela S; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August
2016-01-01
Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines.
Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models
ERIC Educational Resources Information Center
Delgado, Cesar
2015-01-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…
A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation
ERIC Educational Resources Information Center
Poikela, Paula; Teräs, Marianne
2015-01-01
Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…
Conceptualization of preferential flow for hillslope stability assessment
NASA Astrophysics Data System (ADS)
Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip
2018-03-01
This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.
A New Method for Conceptual Modelling of Information Systems
NASA Astrophysics Data System (ADS)
Gustas, Remigijus; Gustiene, Prima
Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.
Implementation of nursing conceptual models: observations of a multi-site research team.
Shea, H; Rogers, M; Ross, E; Tucker, D; Fitch, M; Smith, I
1989-01-01
The general acceptance by nursing of the nursing process as the methodology of practice enabled nurses to have a common grounding for practice, research and theory development in the 1970s. It has become clear, however, that the nursing process is just that--a process. What is sorely needed is the nursing content for that process and consequently in the past 10 years nursing theorists have further developed their particular conceptual models (CM). Three major teaching hospitals in Toronto have instituted a conceptual model (CM) of nursing as a basis of nursing practice. Mount Sinai Hospital has adopted Roy's adaptation model; Sunnybrook Medical Centre, Kings's goal attainment model; and Toronto General Hospital, Orem's self-care deficit theory model. All of these hospitals are affiliated through a series of cross appointments with the Faculty of Nursing at the University of Toronto. Two community hospitals, Mississauga and Scarborough General, have also adopted Orem's model and are related to the University through educational, community and interest groups. A group of researchers from these hospitals and the University of Toronto have proposed a collaborative project to determine what impact using a conceptual model will make on nursing practice. Discussions among the participants of this research group indicate that there are observations associated with instituting conceptual models that can be identified early in the process of implementation. These observations may be of assistance to others contemplating the implementation of conceptually based practice in their institution.
NASA Astrophysics Data System (ADS)
Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.
2012-04-01
Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from the parametric uncertainty. To quantify the conceptual uncertainty from a given site, we combine the outputs from the different conceptual models using Bayesian model averaging. The weight for each model is obtained by integrating available data and expert knowledge using Bayesian belief networks. The multi-model approach is applied to a contaminated site. At the site a DNAPL (dense non aqueous phase liquid) spill consisting of PCE (perchloroethylene) has contaminated a fractured clay till aquitard overlaying a limestone aquifer. The exact shape and nature of the source is unknown and so is the importance of transport in the fractures. The result of the multi-model approach is a visual representation of the uncertainty of the mass discharge estimates for the site which can be used to support the management options.
OWL references in ORM conceptual modelling
NASA Astrophysics Data System (ADS)
Matula, Jiri; Belunek, Roman; Hunka, Frantisek
2017-07-01
Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.
NASA Astrophysics Data System (ADS)
Zeng, X.
2015-12-01
A large number of model executions are required to obtain alternative conceptual models' predictions and their posterior probabilities in Bayesian model averaging (BMA). The posterior model probability is estimated through models' marginal likelihood and prior probability. The heavy computation burden hinders the implementation of BMA prediction, especially for the elaborated marginal likelihood estimator. For overcoming the computation burden of BMA, an adaptive sparse grid (SG) stochastic collocation method is used to build surrogates for alternative conceptual models through the numerical experiment of a synthetical groundwater model. BMA predictions depend on model posterior weights (or marginal likelihoods), and this study also evaluated four marginal likelihood estimators, including arithmetic mean estimator (AME), harmonic mean estimator (HME), stabilized harmonic mean estimator (SHME), and thermodynamic integration estimator (TIE). The results demonstrate that TIE is accurate in estimating conceptual models' marginal likelihoods. The BMA-TIE has better predictive performance than other BMA predictions. TIE has high stability for estimating conceptual model's marginal likelihood. The repeated estimated conceptual model's marginal likelihoods by TIE have significant less variability than that estimated by other estimators. In addition, the SG surrogates are efficient to facilitate BMA predictions, especially for BMA-TIE. The number of model executions needed for building surrogates is 4.13%, 6.89%, 3.44%, and 0.43% of the required model executions of BMA-AME, BMA-HME, BMA-SHME, and BMA-TIE, respectively.
Development of hospital disaster resilience: conceptual framework and potential measurement.
Zhong, Shuang; Clark, Michele; Hou, Xiang-Yu; Zang, Yu-Li; Fitzgerald, Gerard
2014-11-01
Despite 'hospital resilience' gaining prominence in recent years, it remains poorly defined. This article aims to define hospital resilience, build a preliminary conceptual framework and highlight possible approaches to measurement. Searches were conducted of the commonly used health databases to identify relevant literature and reports. Search terms included 'resilience and framework or model' or 'evaluation or assess or measure and hospital and disaster or emergency or mass casualty and resilience or capacity or preparedness or response or safety'. Articles were retrieved that focussed on disaster resilience frameworks and the evaluation of various hospital capacities. A total of 1480 potentially eligible publications were retrieved initially but the final analysis was conducted on 47 articles, which appeared to contribute to the study objectives. Four disaster resilience frameworks and 11 evaluation instruments of hospital disaster capacity were included. Hospital resilience is a comprehensive concept derived from existing disaster resilience frameworks. It has four key domains: hospital safety; disaster preparedness and resources; continuity of essential medical services; recovery and adaptation. These domains were categorised according to four criteria, namely, robustness, redundancy, resourcefulness and rapidity. A conceptual understanding of hospital resilience is essential for an intellectual basis for an integrated approach to system development. This article (1) defines hospital resilience; (2) constructs conceptual framework (including key domains); (3) proposes comprehensive measures for possible inclusion in an evaluation instrument; and (4) develops a matrix of critical issues to enhance hospital resilience to cope with future disasters. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.
2005-05-01
Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system performance.
Saengsiri, Aem-orn; Hacker, Eileen Danaher
2015-01-01
Health-related quality of life is an important clinical outcome to measure in patients with cardiovascular disease. International nurse researchers with limited English skills and novice cardiovascular nurse researchers face numerous challenges when conducting quality of life research because of the conceptual ambiguity of the construct and subsequent operationalization issues as well as difficulty identifying conceptual models to guide their quality of life research. The overall purpose of this article was to provide guidance to cardiovascular nurse researchers (using Thailand as an example) who are interested in examining quality of life in their native country but lack access to quality of life conceptual models and instruments because of language barriers. This article will examine definitions of health-related quality of life, selection of a conceptual model to guide quality of life research, use of the conceptual model to guide selection and measurement of variables, and translation of instruments when reliable and valid instruments are not available in the native language. Ferrans' definition of quality of life and the Wilson and Cleary Revised Model of Patient Outcomes were selected to guide the research. Selection of variables/instruments flowed directly from the conceptualization of constructs identified in this model. Our study, "Examining HRQOL in Thai People With Coronary Artery Disease Following Percutaneous Coronary Intervention," serves as an exemplar to illustrate the conceptual and operational challenges associated with conducting quality of life research in Thailand. The ultimate goal of cardiovascular nursing is to help patients achieve their optimal quality of life. Thai clinicians implementing quality of life assessment in clinical practice face similar conceptual and operationalization issues, especially when using instruments that are not well established or easily interpreted. Although quality of life assessment in clinical practice improves communication between patients and healthcare providers, clear guidelines for making changes to treatment strategies based on changes in quality of life must be established.
System Sensitivity Analysis Applied to the Conceptual Design of a Dual-Fuel Rocket SSTO
NASA Technical Reports Server (NTRS)
Olds, John R.
1994-01-01
This paper reports the results of initial efforts to apply the System Sensitivity Analysis (SSA) optimization method to the conceptual design of a single-stage-to-orbit (SSTO) launch vehicle. SSA is an efficient, calculus-based MDO technique for generating sensitivity derivatives in a highly multidisciplinary design environment. The method has been successfully applied to conceptual aircraft design and has been proven to have advantages over traditional direct optimization methods. The method is applied to the optimization of an advanced, piloted SSTO design similar to vehicles currently being analyzed by NASA as possible replacements for the Space Shuttle. Powered by a derivative of the Russian RD-701 rocket engine, the vehicle employs a combination of hydrocarbon, hydrogen, and oxygen propellants. Three primary disciplines are included in the design - propulsion, performance, and weights & sizing. A complete, converged vehicle analysis depends on the use of three standalone conceptual analysis computer codes. Efforts to minimize vehicle dry (empty) weight are reported in this paper. The problem consists of six system-level design variables and one system-level constraint. Using SSA in a 'manual' fashion to generate gradient information, six system-level iterations were performed from each of two different starting points. The results showed a good pattern of convergence for both starting points. A discussion of the advantages and disadvantages of the method, possible areas of improvement, and future work is included.
NASA Astrophysics Data System (ADS)
Hostache, Renaud; Rains, Dominik; Chini, Marco; Lievens, Hans; Verhoest, Niko E. C.; Matgen, Patrick
2017-04-01
Motivated by climate change and its impact on the scarcity or excess of water in many parts of the world, several agencies and research institutions have taken initiatives in monitoring and predicting the hydrologic cycle at a global scale. Such a monitoring/prediction effort is important for understanding the vulnerability to extreme hydrological events and for providing early warnings. This can be based on an optimal combination of hydro-meteorological models and remote sensing, in which satellite measurements can be used as forcing or calibration data or for regularly updating the model states or parameters. Many advances have been made in these domains and the near future will bring new opportunities with respect to remote sensing as a result of the increasing number of spaceborn sensors enabling the large scale monitoring of water resources. Besides of these advances, there is currently a tendency to refine and further complicate physically-based hydrologic models to better capture the hydrologic processes at hand. However, this may not necessarily be beneficial for large-scale hydrology, as computational efforts are therefore increasing significantly. As a matter of fact, a novel thematic science question that is to be investigated is whether a flexible conceptual model can match the performance of a complex physically-based model for hydrologic simulations at large scale. In this context, the main objective of this study is to investigate how innovative techniques that allow for the estimation of soil moisture from satellite data can help in reducing errors and uncertainties in large scale conceptual hydro-meteorological modelling. A spatially distributed conceptual hydrologic model has been set up based on recent developments of the SUPERFLEX modelling framework. As it requires limited computational efforts, this model enables early warnings for large areas. Using as forcings the ERA-Interim public dataset and coupled with the CMEM radiative transfer model, SUPERFLEX is capable of predicting runoff, soil moisture, and SMOS-like brightness temperature time series. Such a model is traditionally calibrated using only discharge measurements. In this study we designed a multi-objective calibration procedure based on both discharge measurements and SMOS-derived brightness temperature observations in order to evaluate the added value of remotely sensed soil moisture data in the calibration process. As a test case we set up the SUPERFLEX model for the large scale Murray-Darling catchment in Australia ( 1 Million km2). When compared to in situ soil moisture time series, model predictions show good agreement resulting in correlation coefficients exceeding 70 % and Root Mean Squared Errors below 1 %. When benchmarked with the physically based land surface model CLM, SUPERFLEX exhibits similar performance levels. By adapting the runoff routing function within the SUPERFLEX model, the predicted discharge results in a Nash Sutcliff Efficiency exceeding 0.7 over both the calibration and the validation periods.
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
The Site-Scale Saturated Zone Flow Model for Yucca Mountain
NASA Astrophysics Data System (ADS)
Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.
2006-12-01
This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the previous model calibration. Specific discharge at a point 5~km from the repository is also examined and found to be within acceptable uncertainty. The results show that updated model yields a calibration with smaller residuals than the previous model revision while ensuring that flowpaths follow measured gradients and paths derived from hydrochemical analyses. This work was supported by the Yucca Mountain Site Characterization Office as part of the Civilian Radioactive Waste Management Program, which is managed by the U.S. Department of Energy, Yucca Mountain Site Characterization Project. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.
The conceptualization model problem—surprise
NASA Astrophysics Data System (ADS)
Bredehoeft, John
2005-03-01
The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait que le modèle conceptuel peut bien changer lorsque des nouvelles informations apparaissent. Dans l'analyse finale le hydrogéologue prend une décision subjective sur le modèle conceptuel approprié. Le problème du le modèle conceptuel ne doit pas rendre le modèle inutilisable. Ce problème introduit une incertitude qui n'est pas toujours reconnue. Les incertitudes du modèle conceptuel deviennent plus importantes dans les cases de prévisions à long terme dans l'analyse de performance. La base para hacer un análisis de un modelo es el modelo conceptual. Se define aquí la sorpresa como los datos nuevos que convierten en incoherente al modelo conceptual previamente aceptado; tal como se define aquí esto representa un cambio de paradigma. Los datos empíricos limitados indican que estas sorpresas suceden entre un 20 a un 30% de los análisis de modelos. Esto sugiere que los analistas de modelos de agua subterránea tienen dificultades al seleccionar el modelo conceptual apropiado. No hayotra solución disponible a este problema del modelo conceptual diferente de: (1) Recolectar tanta información como sea posible, mediante la utilización de todos los métodos aplicables, lo cual puede resultar en que esta nueva información ayude a cambiar el modelo conceptual vigente, y (2) Que el analista de modelos se mantenga siempre abierto al hecho de que un modelo conceptual puede cambiar de manera total, en la medida en que se colecte mas información. En el análisis final el hidrogeólogo toma una decisión subjetiva en cuanto al modelo conceptual apropiado. El problema de la conceptualización no produce modelos inútiles. El problema presenta una incertidumbre, la cual a menudo no es tenida en cuentade manera adecuada. Esta incertidumbre en los modelos conceptuales se aumenta, cuando se hacen predicciones a largo plazo del comportamiento de un sistema dado.
Validation of engineering methods for predicting hypersonic vehicle controls forces and moments
NASA Technical Reports Server (NTRS)
Maughmer, M.; Straussfogel, D.; Long, L.; Ozoroski, L.
1991-01-01
This work examines the ability of the aerodynamic analysis methods contained in an industry standard conceptual design code, the Aerodynamic Preliminary Analysis System (APAS II), to estimate the forces and moments generated through control surface deflections from low subsonic to high hypersonic speeds. Predicted control forces and moments generated by various control effectors are compared with previously published wind-tunnel and flight-test data for three vehicles: the North American X-15, a hypersonic research airplane concept, and the Space Shuttle Orbiter. Qualitative summaries of the results are given for each force and moment coefficient and each control derivative in the various speed ranges. Results show that all predictions of longitudinal stability and control derivatives are acceptable for use at the conceptual design stage.
NASA Astrophysics Data System (ADS)
Vautier, Camille; Dulaiova, Henrietta
2017-04-01
Hawaiian coastal waters suffer from excess terrestrial nutrient loading, most of which comes from submarine groundwater discharge (SGD). This study quantifies and distinguishes the role of the fresh terrestrial and tidally pumped salt water components of SGD into the nearshore zone of two reefs on the island of Oahu: Maunalua Bay and Kāneohe Bay. The two components of SGD are characterized using isotopic techniques, and the study mainly focuses on the less understood recirculation component. A two-step approach is implemented: first, a conceptual model of groundwater circulation is established; second, nutrient fluxes associated with seawater recirculation are quantified. Groundwater circulation through the beach berm is quantified and characterized using 222Rn and 224Ra activity measurements. Nutrient fluxes are obtained by coupling nutrient concentration measurements and discharge estimates. The isotopic signatures inform us about the influence of the tidal cycle on groundwater circulation. 222Rn, 224Ra, and δ18O isotopes are used to derive apparent ages of the infiltrated seawater and allow us to quantify recirculation rates. The method is also complemented with the use of silicate concentration as tracers of the recirculation process. The trends in apparent ages observed in pore water in Maunalua match previously published conceptual groundwater circulation models and show a sequentially aging pore water circulation loop. However, the ages obtained in Kāneohe suggest a different tidal pumping dynamic that lacks a circulation loop, perhaps resulting from the absence of freshwater discharge. Derived nutrient fluxes show that the autochthonous production of inorganic nitrogen and phosphorus that occurs during seawater recirculation has a significant impact on nutrient cycles in the nearshore areas of the bays. This result suggests that seawater recirculation should be taken into account in biogeochemical studies of coastal areas.
Some New/Old Approaches to QCD
DOE R&D Accomplishments Database
Gross, D. J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Wali, Arvin R; Brandel, Michael G; Santiago-Dieppa, David R; Rennert, Robert C; Steinberg, Jeffrey A; Hirshman, Brian R; Murphy, James D; Khalessi, Alexander A
2018-05-01
OBJECTIVE Markov modeling is a clinical research technique that allows competing medical strategies to be mathematically assessed in order to identify the optimal allocation of health care resources. The authors present a review of the recently published neurosurgical literature that employs Markov modeling and provide a conceptual framework with which to evaluate, critique, and apply the findings generated from health economics research. METHODS The PubMed online database was searched to identify neurosurgical literature published from January 2010 to December 2017 that had utilized Markov modeling for neurosurgical cost-effectiveness studies. Included articles were then assessed with regard to year of publication, subspecialty of neurosurgery, decision analytical techniques utilized, and source information for model inputs. RESULTS A total of 55 articles utilizing Markov models were identified across a broad range of neurosurgical subspecialties. Sixty-five percent of the papers were published within the past 3 years alone. The majority of models derived health transition probabilities, health utilities, and cost information from previously published studies or publicly available information. Only 62% of the studies incorporated indirect costs. Ninety-three percent of the studies performed a 1-way or 2-way sensitivity analysis, and 67% performed a probabilistic sensitivity analysis. A review of the conceptual framework of Markov modeling and an explanation of the different terminology and methodology are provided. CONCLUSIONS As neurosurgeons continue to innovate and identify novel treatment strategies for patients, Markov modeling will allow for better characterization of the impact of these interventions on a patient and societal level. The aim of this work is to equip the neurosurgical readership with the tools to better understand, critique, and apply findings produced from cost-effectiveness research.
1990-10-03
9 4.1. Mapping the Conceptual Model to the Implementation ................................................ 9 4.2. Overview of...browser-editor application. Finally, appendix A provides a detailed description of the AdaKNET conceptual model; users of AdaKNET should fami...provide a brief summary of the semantics of the underlying conceptual model implemented by AdaKNET, use of the AdaKNET ADT will require a more thorough
Constructing a Conceptual Model Linking Drivers and Ecosystem Services in Piedmont Streams
2011-04-01
to the Virginia-Maryland border and is bound by the Appalachian Mountains and Blue Ridge to the northwest and the Atlantic Coastal Plain to the south...demand on freshwater ecosystem services, and a growing appreciation for the value of functioning ecosystems, the Appalachian Piedmont has developed a...the model and how it can be adapted and ap - plied for specific projects. A FRAMEWORK FOR CONCEPTUAL MODELING The general approach to conceptual
NASA Astrophysics Data System (ADS)
Dunn, S. M.; Lilly, A.
2001-10-01
There are now many examples of hydrological models that utilise the capabilities of Geographic Information Systems to generate spatially distributed predictions of behaviour. However, the spatial variability of hydrological parameters relating to distributions of soils and vegetation can be hard to establish. In this paper, the relationship between a soil hydrological classification Hydrology of Soil Types (HOST) and the spatial parameters of a conceptual catchment-scale model is investigated. A procedure involving inverse modelling using Monte-Carlo simulations on two catchments is developed to identify relative values for soil related parameters of the DIY model. The relative values determine the internal variability of hydrological processes as a function of the soil type. For three out of the four soil parameters studied, the variability between HOST classes was found to be consistent across two catchments when tested independently. Problems in identifying values for the fourth 'fast response distance' parameter have highlighted a potential limitation with the present structure of the model. The present assumption that this parameter can be related simply to soil type rather than topography appears to be inadequate. With the exclusion of this parameter, calibrated parameter sets from one catchment can be converted into equivalent parameter sets for the alternate catchment on the basis of their HOST distributions, to give a reasonable simulation of flow. Following further testing on different catchments, and modifications to the definition of the fast response distance parameter, the technique provides a methodology whereby it is possible to directly derive spatial soil parameters for new catchments.
Kaufman, Martin M; Murray, Kent S; Rogers, Daniel T
2003-01-01
A model is created for assessing the redevelopment potential of brownfields. The model is derived from a space and time conceptual framework that identifies and measures the surface and subsurface risk factors present at brownfield sites. The model then combines these factors with a contamination extent multiplier at each site to create an index of redevelopment potential. Results from the application of the model within an urbanized watershed demonstrate clear differences between the redevelopment potential present within five different near-surface geologic units, with those units containing clay being less vulnerable to subsurface contamination. With and without the extent multiplier, the total risk present at the brownfield sites within all the geologic units is also strongly correlated to the actual costs of remediation. Thus, computing the total surface and subsurface risk within a watershed can help guide the remediation efforts at broad geographic scales, and prioritize the locations for redevelopment.
ERIC Educational Resources Information Center
Vasilenko, Sara A.; Lefkowitz, Eva S.; Welsh, Deborah P.
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that…
What Are We Doing When We Translate from Quantitative Models?
Critchfield, Thomas S; Reed, Derek D
2009-01-01
Although quantitative analysis (in which behavior principles are defined in terms of equations) has become common in basic behavior analysis, translational efforts often examine everyday events through the lens of narrative versions of laboratory-derived principles. This approach to translation, although useful, is incomplete because equations may convey concepts that are difficult to capture in words. To support this point, we provide a nontechnical introduction to selected aspects of quantitative analysis; consider some issues that translational investigators (and, potentially, practitioners) confront when attempting to translate from quantitative models; and discuss examples of relevant translational studies. We conclude that, where behavior-science translation is concerned, the quantitative features of quantitative models cannot be ignored without sacrificing conceptual precision, scientific and practical insights, and the capacity of the basic and applied wings of behavior analysis to communicate effectively. PMID:22478533
On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction
NASA Astrophysics Data System (ADS)
Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish
2016-04-01
A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.
NASA Astrophysics Data System (ADS)
Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.
2003-01-01
In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.
Dispersion Modeling in Complex Urban Systems
Models are used to represent real systems in an understandable way. They take many forms. A conceptual model explains the way a system works. In environmental studies, for example, a conceptual model may delineate all the factors and parameters for determining how a particle move...
Payne, Philip R O; Kwok, Alan; Dhaval, Rakesh; Borlawsky, Tara B
2009-03-01
The conduct of large-scale translational studies presents significant challenges related to the storage, management and analysis of integrative data sets. Ideally, the application of methodologies such as conceptual knowledge discovery in databases (CKDD) provides a means for moving beyond intuitive hypothesis discovery and testing in such data sets, and towards the high-throughput generation and evaluation of knowledge-anchored relationships between complex bio-molecular and phenotypic variables. However, the induction of such high-throughput hypotheses is non-trivial, and requires correspondingly high-throughput validation methodologies. In this manuscript, we describe an evaluation of the efficacy of a natural language processing-based approach to validating such hypotheses. As part of this evaluation, we will examine a phenomenon that we have labeled as "Conceptual Dissonance" in which conceptual knowledge derived from two or more sources of comparable scope and granularity cannot be readily integrated or compared using conventional methods and automated tools.
Definitions and Conceptual Dimensions of Responsible Research and Innovation: A Literature Review.
Burget, Mirjam; Bardone, Emanuele; Pedaste, Margus
2017-02-01
The aim of this study is to provide a discussion on the definitions and conceptual dimensions of Responsible Research and Innovation based on findings from the literature. In the study, the outcomes of a literature review of 235 RRI-related articles were presented. The articles were selected from the EBSCO and Google Scholar databases regarding the definitions and dimensions of RRI. The results of the study indicated that while administrative definitions were widely quoted in the reviewed literature, they were not substantially further elaborated. Academic definitions were mostly derived from the institutional definitions; however, more empirical studies should be conducted in order to give a broader empirical basis to the development of the concept. In the current study, four distinct conceptual dimensions of RRI that appeared in the reviewed literature were brought out: inclusion, anticipation, responsiveness and reflexivity. Two emerging conceptual dimensions were also added: sustainability and care.
Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.
Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray
2012-01-01
The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie; ...
2017-12-20
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramoff, Rose; Xu, Xiaofeng; Hartman, Melannie
Soil organic carbon (SOC) can be defined by measurable chemical and physical pools, such as mineral-associated carbon, carbon physically entrapped in aggregates, dissolved carbon, and fragments of plant detritus. Yet, most soil models use conceptual rather than measurable SOC pools. What would the traditional pool-based soil model look like if it were built today, reflecting the latest understanding of biological, chemical, and physical transformations in soils? We propose a conceptual model—the Millennial model—that defines pools as measurable entities. First, we discuss relevant pool definitions conceptually and in terms of the measurements that can be used to quantify pool size, formation,more » and destabilization. Then, we develop a numerical model following the Millennial model conceptual framework to evaluate against the Century model, a widely-used standard for estimating SOC stocks across space and through time. The Millennial model predicts qualitatively similar changes in total SOC in response to single factor perturbations when compared to Century, but different responses to multiple factor perturbations. Finally, we review important conceptual and behavioral differences between the Millennial and Century modeling approaches, and the field and lab measurements needed to constrain parameter values. Here, we propose the Millennial model as a simple but comprehensive framework to model SOC pools and guide measurements for further model development.« less
Conceptualizing Programme Evaluation
ERIC Educational Resources Information Center
Hassan, Salochana
2013-01-01
The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…
Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models
Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael
2009-01-01
Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic processes represented in the parameter sets resulting from each model were comparable at individual watersheds, but varied between watersheds. The models were unable to show, however, whether hydrologic processes other than those included in the original conceptual models were major contributors to streamflow. Supplemental simulations of agricultural chemical transport could improve the ability to assess conceptual models.
Debates—Perspectives on socio-hydrology: Modeling flood risk as a public policy problem
NASA Astrophysics Data System (ADS)
Gober, Patricia; Wheater, Howard S.
2015-06-01
Socio-hydrology views human activities as endogenous to water system dynamics; it is the interaction between human and biophysical processes that threatens the viability of current water systems through positive feedbacks and unintended consequences. Di Baldassarre et al. implement socio-hydrology as a flood risk problem using the concept of social memory as a vehicle to link human perceptions to flood damage. Their mathematical model has heuristic value in comparing potential flood damages in green versus technological societies. It can also support communities in exploring the potential consequences of policy decisions and evaluating critical policy tradeoffs, for example, between flood protection and economic development. The concept of social memory does not, however, adequately capture the social processes whereby public perceptions are translated into policy action, including the pivotal role played by the media in intensifying or attenuating perceived flood risk, the success of policy entrepreneurs in keeping flood hazard on the public agenda during short windows of opportunity for policy action, and different societal approaches to managing flood risk that derive from cultural values and economic interests. We endorse the value of seeking to capture these dynamics in a simplified conceptual framework, but favor a broader conceptualization of socio-hydrology that includes a knowledge exchange component, including the way modeling insights and scientific results are communicated to floodplain managers. The social processes used to disseminate the products of socio-hydrological research are as important as the research results themselves in determining whether modeling is used for real-world decision making.
A critique of the Active Ageing Index.
São José, José Manuel de; Timonen, Virpi; Amado, Carla Alexandra Filipe; Santos, Sérgio Pereira
2017-01-01
Active ageing and successful ageing are ubiquitous concepts in contemporary societies. In the European Union, active ageing is monitored and promoted chiefly by the Active Ageing Index, a policy tool in use since 2012. We acknowledge that the AAI may contribute to sensitizing people, including policymakers, to the multidimensionality and complexity of the process of "ageing well". However, we note that despite being widely used and promoted, the Active Ageing Index remains under-scrutinized. In this article, we undertake a comprehensive critical analysis of the Active Ageing Index. This critical analysis is supported by the Theory of Model Ageing, the Capability Approach and, to a lesser extent, by relevant literature on composite indices. We conclude that the Active Ageing Index was developed with the paradoxical aim of deriving "the solution" from "the problem". It is an under-theorized and narrowly conceptualized index that contributes to the process of Model Ageing, as its conceptual foundation, and its domains and indicators, convey a certain model of active ageing. This model is expert-based and ingrained with a priori assumptions about the potential of older people, the domains of life and activities they value and how strongly they value them. Finally, the Active Ageing Index measures current achievements, not capabilities (i.e. the opportunity set of achievable "doings" and "beings"), resulting in a valuable but incomplete tool for policymaking purposes. We hope that this critical analysis will initiate a debate on the Active Ageing Index that, in our view, is overdue. Copyright © 2017 Elsevier Inc. All rights reserved.
Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions
ERIC Educational Resources Information Center
Shahbari, Juhaina Awawdeh; Peled, Irit
2017-01-01
This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…
Conceptual Models and the Future of Special Education
ERIC Educational Resources Information Center
Kauffman, James M.
2007-01-01
A medical model has advantages over a legal model in thinking about special education, especially in responding supportively to difference, meeting individual needs, and practicing prevention. The legal conceptual model now dominates thinking about special education, but a medical model promises a brighter future for special education and for…
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
Thomas, Jonathan V.; Stanton, Gregory P.; Bumgarner, Johnathan R.; Pearson, Daniel K.; Teeple, Andrew; Houston, Natalie A.; Payne, Jason; Musgrove, MaryLynn
2013-01-01
Several previous studies have been done to compile or collect physical and chemical data, describe the hydrogeologic processes, and develop conceptual and numerical groundwater-flow models of the Edwards-Trinity aquifer in the Trans-Pecos region. Documented methods were used to compile and collect groundwater, surface-water, geochemical, geophysical, and geologic information that subsequently were used to develop this conceptual model.
Mirror neurons and imitation: a computationally guided review.
Oztop, Erhan; Kawato, Mitsuo; Arbib, Michael
2006-04-01
Neurophysiology reveals the properties of individual mirror neurons in the macaque while brain imaging reveals the presence of 'mirror systems' (not individual neurons) in the human. Current conceptual models attribute high level functions such as action understanding, imitation, and language to mirror neurons. However, only the first of these three functions is well-developed in monkeys. We thus distinguish current opinions (conceptual models) on mirror neuron function from more detailed computational models. We assess the strengths and weaknesses of current computational models in addressing the data and speculations on mirror neurons (macaque) and mirror systems (human). In particular, our mirror neuron system (MNS), mental state inference (MSI) and modular selection and identification for control (MOSAIC) models are analyzed in more detail. Conceptual models often overlook the computational requirements for posited functions, while too many computational models adopt the erroneous hypothesis that mirror neurons are interchangeable with imitation ability. Our meta-analysis underlines the gap between conceptual and computational models and points out the research effort required from both sides to reduce this gap.
John Hughlings Jackson and the conceptual foundations of the neurosciences.
Greenblatt, S H
1999-01-01
Cerebral localization, including hierarchical organization of the nervous system, was the critical conceptual advance that made possible the development of modern neuroscience in the nineteenth century. Some of our most basic ideas about neural organization were contributed by Hughlings Jackson. In the early twentieth century, Charles Sherrington combined localization with the neurone theory to create the paradigm of neurophysiological integration. Because Sherrington was educated in the Jacksonian tradition of British neurology, Sherringtonian integration contains ideas that are derived from Jackson and from Herbert Spencer.
An introduction to the multisystem model of knowledge integration and translation.
Palmer, Debra; Kramlich, Debra
2011-01-01
Many nurse researchers have designed strategies to assist health care practitioners to move evidence into practice. While many have been identified as "models," most do not have a conceptual framework. They are unidirectional, complex, and difficult for novice research users to understand. These models have focused on empirical knowledge and ignored the importance of practitioners' tacit knowledge. The Communities of Practice conceptual framework allows for the integration of tacit and explicit knowledge into practice. This article describes the development of a new translation model, the Multisystem Model of Knowledge Integration and Translation, supported by the Communities of Practice conceptual framework.
NASA Astrophysics Data System (ADS)
Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed
2016-08-01
It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.
NASA Astrophysics Data System (ADS)
Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey
2015-04-01
The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.
Landis, G.P.; Hofstra, A.H.
1991-01-01
Recent advances in instrumentation now permit quantitative analysis of gas species from individual fluid inclusions. Fluid inclusion gas data can be applied to minerals exploration empirically to establish chemical (gas composition) signatures of the ore fluids, and conceptually through the development of genetic models of ore formation from a framework of integrated geologic, geochemical, and isotopic investigations. Case studies of fluid inclusion gas chemistry from ore deposits representing a spectrum of ore-forming processes and environments are presented to illustrate both the empirical and conceptual approaches. We consider epithermal silver-gold deposits of Creede, Colorado, Carlin-type sediment-hosted disseminated gold deposits of Jerritt Canyon, Nevada, metamorphic silver-base-metal veins of the Coeur d'Alene district, Idaho and Montana, gold-quartz veins in accreted terranes of southern Alaska, and the mid-continent base-metal sulfide deposits of Mississippi Valley-Type (MVT's). Variations in gas chemistry determine the redox state of the ore fluids, provide compositional input for gas geothermometers, characterize ore fluid chemistry (e.g., CH4CO2, H2SSO2, CO2/H2S, organic-rich fluids, gas-rich and gas-poor fluids), identify magmatic, meteoric, metamorphic, shallow and deep basin fluids in ore systems, locate upwelling plumes of magmatic-derived volatiles, zones of boiling and volatile separation, interfaces between contrasting fluids, and important zones of fluid mixing. Present techniques are immediately applicable to exploration programsas empirical studies that monitor fluid inclusion gas threshold concentration levels, presence or absence of certain gases, or changes in gas ratios. We suggest that the greater contribution of fluid inclusion gas analysis is in the integrated and comprehensive chemical dimension that gas data impart to genetic models, and in the exploration concepts based on processes and environments of ore formation derived from these genetic models. ?? 1991.
CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs)
In Interactive Conceptual Diagram (ICD) section of CADDIS allows users to create conceptual model diagrams, search a literature-based evidence database, and then attach that evidence to their diagrams.
Evaluation of a distributed catchment scale water balance model
NASA Technical Reports Server (NTRS)
Troch, Peter A.; Mancini, Marco; Paniconi, Claudio; Wood, Eric F.
1993-01-01
The validity of some of the simplifying assumptions in a conceptual water balance model is investigated by comparing simulation results from the conceptual model with simulation results from a three-dimensional physically based numerical model and with field observations. We examine, in particular, assumptions and simplifications related to water table dynamics, vertical soil moisture and pressure head distributions, and subsurface flow contributions to stream discharge. The conceptual model relies on a topographic index to predict saturation excess runoff and on Philip's infiltration equation to predict infiltration excess runoff. The numerical model solves the three-dimensional Richards equation describing flow in variably saturated porous media, and handles seepage face boundaries, infiltration excess and saturation excess runoff production, and soil driven and atmosphere driven surface fluxes. The study catchments (a 7.2 sq km catchment and a 0.64 sq km subcatchment) are located in the North Appalachian ridge and valley region of eastern Pennsylvania. Hydrologic data collected during the MACHYDRO 90 field experiment are used to calibrate the models and to evaluate simulation results. It is found that water table dynamics as predicted by the conceptual model are close to the observations in a shallow water well and therefore, that a linear relationship between a topographic index and the local water table depth is found to be a reasonable assumption for catchment scale modeling. However, the hydraulic equilibrium assumption is not valid for the upper 100 cm layer of the unsaturated zone and a conceptual model that incorporates a root zone is suggested. Furthermore, theoretical subsurface flow characteristics from the conceptual model are found to be different from field observations, numerical simulation results, and theoretical baseflow recession characteristics based on Boussinesq's groundwater equation.
An integrated conceptual framework for evaluating and improving 'understanding' in informed consent.
Bossert, Sabine; Strech, Daniel
2017-10-17
The development of understandable informed consent (IC) documents has proven to be one of the most important challenges in research with humans as well as in healthcare settings. Therefore, evaluating and improving understanding has been of increasing interest for empirical research on IC. However, several conceptual and practical challenges for the development of understandable IC documents remain unresolved. In this paper, we will outline and systematize some of these challenges. On the basis of our own experiences in empirical user testing of IC documents as well as the relevant literature on understanding in IC, we propose an integrated conceptual model for the development of understandable IC documents. The proposed conceptual model integrates different methods for the participatory improvement of written information, including IC, as well as quantitative methods for measuring understanding in IC. In most IC processes, understandable written information is an important prerequisite for valid IC. To improve the quality of IC documents, a conceptual model for participatory procedures of testing, revising, and retesting can be applied. However, the model presented in this paper needs further theoretical and empirical elaboration and clarification of several conceptual and practical challenges.
Conceptual astronomy: A novel model for teaching postsecondary science courses
NASA Astrophysics Data System (ADS)
Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter
1997-10-01
An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.
Footprint Characteristics of Cosmic-Ray Neutron Sensors for Soil Moisture Monitoring
NASA Astrophysics Data System (ADS)
Schrön, Martin; Köhli, Markus; Zreda, Marek; Dietrich, Peter; Zacharias, Steffen
2015-04-01
Cosmic-ray neutron sensing is a unique and an increasingly accepted method to monitor the effective soil water content at the field scale. The technology is famous for its low maintenance, non-invasiveness, continuous measurement, and most importantly, for its large footprint. Being more representative than point data and finer resolved than remote-sensing products, cosmic-ray neutron derived soil moisture products provide unrivaled advantage for mesoscale hydrologic and land surface models. The method takes advantage of neutrons induced by cosmic radiation which are extraordinarily sensitive to hydrogen and behave like a hot gas. Information about nearby water sources are quickly mixed in a domain of tens of hectares in air. Since experimental determination of the actual spatial extent is hardly possible, scientists have applied numerical models to address the footprint characteristics. We have revisited previous neutron transport simulations and present a modified conceptual design and refined physical assumptions. Our revised study reveals new insights into probing distance and water sensitivity of detected neutrons under various environmental conditions. These results sharpen the range of interpretation concerning the spatial extent of integral soil moisture products derived from cosmic-ray neutron counts. Our findings will have important impact on calibration strategies, on scales for data assimilation and on the interpolation of soil moisture data derived from mobile cosmic-ray neutron surveys.
Schultz-Larsen, Kirsten; Kreiner, Svend; Lomholt, Rikke Kirstine
2007-03-01
This study published in two companion papers assesses properties of the Mini-Mental State Examination (MMSE) with the purpose of improving the efficiencies of the methods of screening for cognitive impairment and dementia. An item analysis by conventional and mixed Rasch models was used to explore empirically derived cognitive dimensions of the MMSE, to assess item bias, and to construct diagnostic cut-points. The scores of 1,189 elderly residents were analyzed. Two dimensions of cognitive function, which are statistically and conceptually different from those obtained in previous studies, were derived. The corresponding sum scales were (1) age-correlated MMSE scale (A-MMSE scale: orientation to time, attention/calculation, naming, repetition, and three-stage command) and (2) non-age-correlated MMSE scale (B-MMSE scale: orientation to place, registration, recall, reading, and copying). The "writing" item was not included due to differential effects of age and sex. The analysis also showed that the study sample consisted of two cognitively different groups of elderly. The findings indicate that a two-scale solution is a stable and statistically supported framework for interpreting data obtained by means of the MMSE. Supplementary analyses are presented in the companion paper to explore the performance of this item response theory calibration as a screening test for dementia.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
An Integrative-Interactive Conceptual Model for Curriculum Development.
ERIC Educational Resources Information Center
Al-Ibrahim, Abdul Rahman H.
1982-01-01
The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)
Evaluating the Functionality of Conceptual Models
NASA Astrophysics Data System (ADS)
Mehmood, Kashif; Cherfi, Samira Si-Said
Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.
Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.
The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less
A conceptual network model of the air transportation system. the basic level 1 model.
DOT National Transportation Integrated Search
1971-04-01
A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...
Clarifying the confusion: old-growth savannahs and tropical ecosystem degradation
2016-01-01
Ancient tropical grassy biomes are often misrecognized as severely degraded forests. I trace this confusion to several factors, with roots in the nineteenth century, including misinterpretations of the nature of fire in savannahs, attempts to reconcile savannah ecology with Clementsian succession, use of physiognomic (structural) definitions of savannah and development of tropical degradation frameworks focused solely on forests. Towards clarity, I present two models that conceptualize the drivers of ecosystem degradation as operating in both savannahs and forests. These models highlight how human-induced environmental changes create ecosystems with superficially similar physiognomies but radically different conservation values. Given the limitation of physiognomy to differentiate savannahs from severely degraded forests, I present an alternative approach based on floristic composition. Data from eastern lowland Bolivia show that old-growth savannahs can be reliably distinguished by eight grass species and that species identity influences ecosystem flammability. I recommend that scientists incorporate savannahs in tropical degradation frameworks alongside forests, and that savannah be qualified as old-growth savannah in reference to ancient grassy biomes or derived savannah in reference to deforestation. These conceptual advances will require attention not only to tree cover, but also to savannah herbaceous plant species and their ecologies. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502372
Stamatopoulou, Despina
2004-10-01
This study assessed the dynamic relationship between person and object in aesthetic experience. Patterns of the structure of aesthetic experience were derived from a conceptual model based on philosophical and psychological ideas. These patterns were further informed by interviewing individuals with extensive involvement in aesthetic activities and 25 secondary students. Accordingly, patterns were tested by developing a large pool of items attempting to identify measurable structural components of aesthetic experience. Refined first in a pilot study, the 36-item questionnaire was administered to 652 Greek students, aged from 13 to 15 years. Correlation matrices and exploratory factor analyses on principal components were used to examine internal structural relationships. The obliquely rotated five-factor solution of the refined instrument accounted for the 44.1% of the total variance and was combatible with the conceptual model of aesthetic experience, indicating the plausibility of both. The internal consistency of the items was adequate and external correlational analysis offered preliminary support for subsequent development of a self-report measure that serves to operationalize the major constructs of aesthetic experience in the general adolescent population. The results also raise theoretical issues for those interested in empirical aesthetics, suggesting that in experiential functioning, expressive perception and affect may play a more constructive role in cognitive processes than is generally acknowledged.
Regionalized rainfall-runoff model to estimate low flow indices
NASA Astrophysics Data System (ADS)
Garcia, Florine; Folton, Nathalie; Oudin, Ludovic
2016-04-01
Estimating low flow indices is of paramount importance to manage water resources and risk assessments. These indices are derived from river discharges which are measured at gauged stations. However, the lack of observations at ungauged sites bring the necessity of developing methods to estimate these low flow indices from observed discharges in neighboring catchments and from catchment characteristics. Different estimation methods exist. Regression or geostatistical methods performed on the low flow indices are the most common types of methods. Another less common method consists in regionalizing rainfall-runoff model parameters, from catchment characteristics or by spatial proximity, to estimate low flow indices from simulated hydrographs. Irstea developed GR2M-LoiEau, a conceptual monthly rainfall-runoff model, combined with a regionalized model of snow storage and melt. GR2M-LoiEau relies on only two parameters, which are regionalized and mapped throughout France. This model allows to cartography monthly reference low flow indices. The inputs data come from SAFRAN, the distributed mesoscale atmospheric analysis system, which provides daily solid and liquid precipitation and temperature data from everywhere in the French territory. To exploit fully these data and to estimate daily low flow indices, a new version of GR-LoiEau has been developed at a daily time step. The aim of this work is to develop and regionalize a GR-LoiEau model that can provide any daily, monthly or annual estimations of low flow indices, yet keeping only a few parameters, which is a major advantage to regionalize them. This work includes two parts. On the one hand, a daily conceptual rainfall-runoff model is developed with only three parameters in order to simulate daily and monthly low flow indices, mean annual runoff and seasonality. On the other hand, different regionalization methods, based on spatial proximity and similarity, are tested to estimate the model parameters and to simulate low flow indices in ungauged sites. The analysis is carried out on 691 French catchments that are representative of various hydro-meteorological behaviors. The results are validated with a cross-validation procedure and are compared with the ones obtained with GR4J, a conceptual rainfall-runoff model, which already provides daily estimations, but involves four parameters that cannot easily be regionalized.
A modal parameter extraction procedure applicable to linear time-invariant dynamic systems
NASA Technical Reports Server (NTRS)
Kurdila, A. J.; Craig, R. R., Jr.
1985-01-01
Modal analysis has emerged as a valuable tool in many phases of the engineering design process. Complex vibration and acoustic problems in new designs can often be remedied through use of the method. Moreover, the technique has been used to enhance the conceptual understanding of structures by serving to verify analytical models. A new modal parameter estimation procedure is presented. The technique is applicable to linear, time-invariant systems and accommodates multiple input excitations. In order to provide a background for the derivation of the method, some modal parameter extraction procedures currently in use are described. Key features implemented in the new technique are elaborated upon.
Conceptual model for partnership and sustainability in global health.
Leffers, Jeanne; Mitchell, Emma
2011-01-01
Although nursing has a long history of service to the global community, the profession lacks a theoretical and empirical base for nurses to frame their global practice. A study using grounded theory methodology to investigate partnership and sustainability for global health led to the development of a conceptual model. Interviews were conducted with 13 global health nurse experts. Themes from the interviews were: components for engagement, mutual goal setting, cultural bridging, collaboration, capacity building, leadership, partnership, ownership, and sustainability. Next, the identified themes were reviewed in the literature in order to evaluate their conceptual relationships. Finally, careful comparison of the interview transcripts and the supporting literature led to the Conceptual Framework for Partnership and Sustainability in Global Health Nursing. The model posits that engagement and partnership must precede any planning and intervention in order to create sustainable interventions. This conceptual framework will offer nurses important guidance for global health nursing practice. © 2010 Wiley Periodicals, Inc.
The ACTIVE conceptual framework as a structural equation model.
Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N
2018-01-01
Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from those with the greatest chance of transfer to real-world activities.
One-dimensional GIS-based model compared with a two-dimensional model in urban floods simulation.
Lhomme, J; Bouvier, C; Mignot, E; Paquier, A
2006-01-01
A GIS-based one-dimensional flood simulation model is presented and applied to the centre of the city of Nîmes (Gard, France), for mapping flow depths or velocities in the streets network. The geometry of the one-dimensional elements is derived from the Digital Elevation Model (DEM). The flow is routed from one element to the next using the kinematic wave approximation. At the crossroads, the flows in the downstream branches are computed using a conceptual scheme. This scheme was previously designed to fit Y-shaped pipes junctions, and has been modified here to fit X-shaped crossroads. The results were compared with the results of a two-dimensional hydrodynamic model based on the full shallow water equations. The comparison shows that good agreements can be found in the steepest streets of the study zone, but differences may be important in the other streets. Some reasons that can explain the differences between the two models are given and some research possibilities are proposed.
The semiotics of control and modeling relations in complex systems.
Joslyn, C
2001-01-01
We provide a conceptual analysis of ideas and principles from the systems theory discourse which underlie Pattee's semantic or semiotic closure, which is itself foundational for a school of theoretical biology derived from systems theory and cybernetics, and is now being related to biological semiotics and explicated in the relational biological school of Rashevsky and Rosen. Atomic control systems and models are described as the canonical forms of semiotic organization, sharing measurement relations, but differing topologically in that control systems are circularly and models linearly related to their environments. Computation in control systems is introduced, motivating hierarchical decomposition, hybrid modeling and control systems, and anticipatory or model-based control. The semiotic relations in complex control systems are described in terms of relational constraints, and rules and laws are distinguished as contingent and necessary functional entailments, respectively. Finally, selection as a meta-level of constraint is introduced as the necessary condition for semantic relations in control systems and models.
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research
Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.
2017-01-01
Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262
Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.
Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M
2016-11-01
To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.
PDES Logical Layer Initiation Task.
1986-04-28
surface. We have heard such expressions as "topology sits on tcp of geometry." We choose to avoid subordinating one to the other by bringing them together...a mapping from Discipline model to Global model. 38 A~A g d ip . t ~ P A1 / /oaefZ - - 6jOM#AL Mat&mft9 We have attempted to group basqd on the...FIGURE PHASE 2: Conceptualization and Integration. In this phase conceptual entities and relationships are discovered. An integrated conceptual modelO
Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A
2017-06-01
Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.
This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less
Walsh, M M; Darby, M
1993-01-01
In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.
Consumers' disease information-seeking behaviour on the Internet in Korea.
Yun, Eun Kyoung; Park, Hyeoun-Ae
2010-10-01
This study was conducted to explain the relationships of the factors affecting consumers' disease information-seeking behaviour on the Internet in Korea. Similar to other countries, Korea is facing an increasing use of Internet as a resource of health information. With the paradigm shifts towards consumer-centred health service, it is expected that more health care consumers will use the Internet actively in the future. A survey was conducted using a self-selected convenience sample. A conceptual model was derived by extending technology acceptance model and tested via structural equation modelling. The overall goodness of fit of the conceptual model was acceptable. Consumers' health consciousness, perceived health risk and Internet health information use efficacy were found to influence consumers' beliefs, attitude and intention of use disease information on the Internet. But Internet health information use efficacy did not significantly influence perceived usefulness. It was also identified that consumers' perceived credibility of the information in the websites was the main determinant in forming of attitude towards disease information on the Internet. Technology acceptance model has been extended and examined successfully in explaining consumers' disease information-seeking behaviour on the Internet. It was found that consumers' cognitive and affective characteristics, determined as initiators in health-related behaviour, also impacted consumers' disease information-seeking behaviour on the Internet. These findings may be used to help nurses to predict and identify the factors affecting individual's use of disease information on the Internet. Based on this knowledge, nurses will be able to develop nursing intervention programmes for the patients' health management. © 2010 The Authors. Journal compilation © 2010 Blackwell Publishing Ltd.
Force-directed visualization for conceptual data models
NASA Astrophysics Data System (ADS)
Battigaglia, Andrew; Sutter, Noah
2017-03-01
Conceptual data models are increasingly stored in an eXtensible Markup Language (XML) format because of its portability between different systems and the ability of databases to use this format for storing data. However, when attempting to capture business or design needs, an organized graphical format is preferred in order to facilitate communication to receive as much input as possible from users and subject-matter experts. Existing methods of achieving this conversion suffer from problems of not being specific enough to capture all of the needs of conceptual data modeling and not being able to handle a large number of relationships between entities. This paper describes an implementation for a modeling solution to clearly illustrate conceptual data models stored in XML formats in well organized and structured diagrams. A force layout with several different parameters is applied to the diagram to create both compact and easily traversable relationships between entities.
A Conceptual Model To Assist Educational Leaders Manage Change.
ERIC Educational Resources Information Center
Cochren, John R.
This paper presents a conceptual model to help school leaders manage change effectively. The model was developed from a literature review of theory development and model construction. Specifically, the paper identifies the major components that inhibit organizational change, and synthesizes the most salient features of these components through a…
Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J. A.
A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).
Stanimirovic, Dalibor; Vintar, Mirko
The Slovenian healthcare business model (BM) has largely failed to integrate information and communication technologies (ICT) into its operational context, instead maintaining its rigid structure and traditional 'way of doing business'wo managers of public clinics). Findings present a roadmap for the redefinition of BM elements and the transformation of the Slovenian healthcare BM. It includes the specific reconfiguration of BM actors and their interactions, and the application of advanced ICT solutions, which could facilitate more effective utilisation of healthcare resources and promote an improved delivery of healthcare services and products. The presented development approach and derived conceptual solution could be transferable to other countries with similar socio-economic characteristics and comparable healthcare systems, subject to certain adjustments and inclusion of national specifics.
Estimating economic thresholds for pest control: an alternative procedure.
Ramirez, O A; Saunders, J L
1999-04-01
An alternative methodology to determine profit maximizing economic thresholds is developed and illustrated. An optimization problem based on the main biological and economic relations involved in determining a profit maximizing economic threshold is first advanced. From it, a more manageable model of 2 nonsimultaneous reduced-from equations is derived, which represents a simpler but conceptually and statistically sound alternative. The model recognizes that yields and pest control costs are a function of the economic threshold used. Higher (less strict) economic thresholds can result in lower yields and, therefore, a lower gross income from the sale of the product, but could also be less costly to maintain. The highest possible profits will be obtained by using the economic threshold that results in a maximum difference between gross income and pest control cost functions.
Towards a unified theory of health-disease: II. Holopathogenesis
Almeida-Filho, Naomar
2014-01-01
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease. PMID:24897040
Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.
Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray
2012-01-01
The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.
A Conceptual Model for Episodes of Acute, Unscheduled Care.
Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G
2016-10-01
We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Implications of conceptual channel representation on SWAT streamflow and sediment modeling
USDA-ARS?s Scientific Manuscript database
Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of...
ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT
Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...
da Veiga Soares Carvalho, Maria Cláudia; Luz, Madel Therezinha; Prado, Shirley Donizete
2011-01-01
Eating, nourishment or nutrition circulate in our culture as synonyms and thus do not account for the changes that occur in nourishment, which intended or unintended, have a hybridization pattern that represents a change of rules and food preferences. This paper aims to take these common sense conceptions as analytic categories for analyzing and interpreting research for the Humanities and Health Sciences in a theoretical perspective, through conceptualization. The food is associated with a natural function (biological), a concept in which nature is opposed to culture, and nourishment takes cultural meanings (symbolic), expressing the division of labor, wealth, and a historical and cultural creation through which one can study a society. One attributes to Nutrition a sense of rational action, derived from the constitution of this science in modernity, inserted in a historical process of scientific rationalization of eating and nourishing. We believe that through the practice of conceptualization in interdisciplinary research, which involves a shared space of knowledge, we can be less constrained by a unified theoretical model of learning and be freer to think about life issues.
New linked data on research investments: scientific workforce, productivity, and public value
Lane, Julia; Owen-Smith, Jason; Rosen, Rebecca; Weinberg, Bruce
2015-01-01
Longitudinal micro-data derived from transaction level information about wage and vendor payments made by federal grants on multiple U.S. campuses are being developed in a partnership involving researchers, university administrators, representatives of federal agencies, and others. This paper describes the UMETRICS data initiative that has been implemented under the auspices of the Committee on Institutional Cooperation. The resulting data set reflects an emerging conceptual framework for analyzing the process, products, and impact of research. It grows from and engages the work of a diverse and vibrant community. This paper situates the UMETRICS effort in the context of research evaluation and ongoing data infrastructure efforts in order to highlight its novel and valuable features. Refocusing data construction in this field around individuals, networks, and teams offers dramatic possibilities for data linkage, the evaluation of research investments, and the development of rigorous conceptual and empirical models. Two preliminary analyses of the scientific workforce and network approaches to characterizing scientific teams ground a discussion of future directions and a call for increased community engagement. PMID:26335785
Roles of Fog and Topography in Redwood Forest Hydrology
NASA Astrophysics Data System (ADS)
Francis, E. J.; Asner, G. P.
2017-12-01
Spatial variability of water in forests is a function of both climatic gradients that control water inputs and topo-edaphic variation that determines the flows of water belowground, as well as interactions of climate with topography. Coastal redwood forests are hydrologically unique because they are influenced by coastal low clouds, or fog, that is advected onto land by a strong coastal-to-inland temperature difference. Where fog intersects the land surface, annual water inputs from summer fog drip can be greater than that of winter rainfall. In this study, we take advantage of mapped spatial gradients in forest canopy water storage, topography, and fog cover in California to better understand the roles and interactions of fog and topography in the hydrology of redwood forests. We test a conceptual model of redwood forest hydrology with measurements of canopy water content derived from high-resolution airborne imaging spectroscopy, topographic variables derived from high-resolution LiDAR data, and fog cover maps derived from NASA MODIS data. Landscape-level results provide insight into hydrological processes within redwood forests, and cross-site analyses shed light on their generality.
Heteromodal Cortical Areas Encode Sensory-Motor Features of Word Meaning.
Fernandino, Leonardo; Humphries, Colin J; Conant, Lisa L; Seidenberg, Mark S; Binder, Jeffrey R
2016-09-21
The capacity to process information in conceptual form is a fundamental aspect of human cognition, yet little is known about how this type of information is encoded in the brain. Although the role of sensory and motor cortical areas has been a focus of recent debate, neuroimaging studies of concept representation consistently implicate a network of heteromodal areas that seem to support concept retrieval in general rather than knowledge related to any particular sensory-motor content. We used predictive machine learning on fMRI data to investigate the hypothesis that cortical areas in this "general semantic network" (GSN) encode multimodal information derived from basic sensory-motor processes, possibly functioning as convergence-divergence zones for distributed concept representation. An encoding model based on five conceptual attributes directly related to sensory-motor experience (sound, color, shape, manipulability, and visual motion) was used to predict brain activation patterns associated with individual lexical concepts in a semantic decision task. When the analysis was restricted to voxels in the GSN, the model was able to identify the activation patterns corresponding to individual concrete concepts significantly above chance. In contrast, a model based on five perceptual attributes of the word form performed at chance level. This pattern was reversed when the analysis was restricted to areas involved in the perceptual analysis of written word forms. These results indicate that heteromodal areas involved in semantic processing encode information about the relative importance of different sensory-motor attributes of concepts, possibly by storing particular combinations of sensory and motor features. The present study used a predictive encoding model of word semantics to decode conceptual information from neural activity in heteromodal cortical areas. The model is based on five sensory-motor attributes of word meaning (color, shape, sound, visual motion, and manipulability) and encodes the relative importance of each attribute to the meaning of a word. This is the first demonstration that heteromodal areas involved in semantic processing can discriminate between different concepts based on sensory-motor information alone. This finding indicates that the brain represents concepts as multimodal combinations of sensory and motor representations. Copyright © 2016 the authors 0270-6474/16/369763-07$15.00/0.
A beginner's guide to writing the nursing conceptual model-based theoretical rationale.
Gigliotti, Eileen; Manister, Nancy N
2012-10-01
Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.
NASA Astrophysics Data System (ADS)
Knoben, Wouter; Woods, Ross; Freer, Jim
2016-04-01
Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.
Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model
This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).
Supporting user-defined granularities in a spatiotemporal conceptual model
Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.
2002-01-01
Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.
A Conceptual Model for Analysing Management Development in the UK Hospitality Industry
ERIC Educational Resources Information Center
Watson, Sandra
2007-01-01
This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…
ERIC Educational Resources Information Center
Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran
2016-01-01
The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…
ERIC Educational Resources Information Center
Dane, Arif; Çetin, Ömer Faruk; Bas, Fatih; Sagirli, Meryem Özturan
2016-01-01
In this present study, it was aimed to investigate whether the hierarchical structure of mathematics emerged in university students' minds or not, considering the concepts of limit, continuity derivative and integral from the perspective of students in the department of secondary school mathematics teacher training and the department of…
[Impact of small-area context on health: proposing a conceptual model].
Voigtländer, S; Mielck, A; Razum, O
2012-11-01
Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.
Chini, G P; Montemuro, B; White, C M; Klewicki, J
2017-03-13
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed 'vortical fissures' (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier-Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within-and isolate possible coupling mechanisms among-these different regions of the flow.This article is part of the themed issue 'Toward the development of high-fidelity models of wall turbulence at large Reynolds number'. © 2017 The Author(s).
Montemuro, B.; White, C. M.; Klewicki, J.
2017-01-01
Field observations and laboratory experiments suggest that at high Reynolds numbers Re the outer region of turbulent boundary layers self-organizes into quasi-uniform momentum zones (UMZs) separated by internal shear layers termed ‘vortical fissures’ (VFs). Motivated by this emergent structure, a conceptual model is proposed with dynamical components that collectively have the potential to generate a self-sustaining interaction between a single VF and adjacent UMZs. A large-Re asymptotic analysis of the governing incompressible Navier–Stokes equation is performed to derive reduced equation sets for the streamwise-averaged and streamwise-fluctuating flow within the VF and UMZs. The simplified equations reveal the dominant physics within—and isolate possible coupling mechanisms among—these different regions of the flow. This article is part of the themed issue ‘Toward the development of high-fidelity models of wall turbulence at large Reynolds number’. PMID:28167583
Modeling and Control of a Fixed Wing Tilt-Rotor Tri-Copter
NASA Astrophysics Data System (ADS)
Summers, Alexander
The following thesis considers modeling and control of a fixed wing tilt-rotor tri-copter. An emphasis of the conceptual design is made toward payload transport. Aerodynamic panel code and CAD design provide the base aerodynamic, geometric, mass, and inertia properties. A set of non-linear dynamics are created considering gravity, aerodynamics in vertical takeoff and landing (VTOL) and forward flight, and propulsion applied to a three degree of freedom system. A transition strategy, that removes trajectory planning by means of scheduled inputs, is theorized. Three discrete controllers, utilizing separate control techniques, are applied to ensure stability in the aerodynamic regions of VTOL, transition, and forward flight. The controller techniques include linear quadratic regulation, full state integral action, gain scheduling, and proportional integral derivative (PID) flight control. Simulation of the model control system for flight from forward to backward transition is completed with mass and center of gravity variation.
The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...
Thoughts About Nursing Conceptual Models and the "Medical Model".
Fawcett, Jacqueline
2017-01-01
This essay, written to celebrate the 30th anniversary of Nursing Science Quarterly, focuses on the distinctions between the discipline of nursology and the trade of medicine. The distinctions are drawn from content found in nursing conceptual models and from literature about the elusive content of the so-called "medical model."
Models of borderline personality disorder: recent advances and new perspectives.
D'Agostino, Alessandra; Rossi Monti, Mario; Starcevic, Vladan
2018-01-01
The purpose of this article is to review the most relevant conceptual models of borderline personality disorder (BPD), with a focus on recent developments in this area. Several conceptual models have been proposed with the aim of better understanding BPD: the borderline personality organization, emotion dysregulation, reflective (mentalization) dysfunction, interpersonal hypersensitivity and hyperbolic temperament models. These models have all been supported to some extent and their common components include disorganized attachment and traumatic early experiences, emotion dysregulation, interpersonal sensitivity and difficulties with social cognition. An attempt to integrate some components of the conceptual models of BPD has resulted in an emerging new perspective, the interpersonal dysphoria model, which emphasizes dysphoria as an overarching phenomenon that connects the dispositional and situational aspects of BPD. Various conceptual models have expanded our understanding of BPD, but it appears that further development entails theoretical integration. More research is needed to better understand interactions between various components of BPD, including the situational factors that activate symptoms of BPD. This will help develop therapeutic approaches that are more tailored to the heterogeneous psychopathology of BPD.
NASA Astrophysics Data System (ADS)
Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.
2010-12-01
The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.
Looking at the ICF and human communication through the lens of classification theory.
Walsh, Regina
2011-08-01
This paper explores the insights that classification theory can provide about the application of the International Classification of Functioning, Disability and Health (ICF) to communication. It first considers the relationship between conceptual models and classification systems, highlighting that classification systems in speech-language pathology (SLP) have not historically been based on conceptual models of human communication. It then overviews the key concepts and criteria of classification theory. Applying classification theory to the ICF and communication raises a number of issues, some previously highlighted through clinical application. Six focus questions from classification theory are used to explore these issues, and to propose the creation of an ICF-related conceptual model of communicating for the field of communication disability, which would address some of the issues raised. Developing a conceptual model of communication for SLP purposes closely articulated with the ICF would foster productive intra-professional discourse, while at the same time allow the profession to continue to use the ICF for purposes in inter-disciplinary discourse. The paper concludes by suggesting the insights of classification theory can assist professionals to apply the ICF to communication with the necessary rigour, and to work further in developing a conceptual model of human communication.
Saul, Katherine R.; Hu, Xiao; Goehler, Craig M.; Vidt, Meghan E.; Daly, Melissa; Velisar, Anca; Murray, Wendy M.
2014-01-01
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms. PMID:24995410
Saul, Katherine R; Hu, Xiao; Goehler, Craig M; Vidt, Meghan E; Daly, Melissa; Velisar, Anca; Murray, Wendy M
2015-01-01
Several opensource or commercially available software platforms are widely used to develop dynamic simulations of movement. While computational approaches are conceptually similar across platforms, technical differences in implementation may influence output. We present a new upper limb dynamic model as a tool to evaluate potential differences in predictive behavior between platforms. We evaluated to what extent differences in technical implementations in popular simulation software environments result in differences in kinematic predictions for single and multijoint movements using EMG- and optimization-based approaches for deriving control signals. We illustrate the benchmarking comparison using SIMM-Dynamics Pipeline-SD/Fast and OpenSim platforms. The most substantial divergence results from differences in muscle model and actuator paths. This model is a valuable resource and is available for download by other researchers. The model, data, and simulation results presented here can be used by future researchers to benchmark other software platforms and software upgrades for these two platforms.
A model of burnout and life satisfaction amongst nurses.
Demerouti, E; Bakker, A B; Nachreiner, F; Schaufeli, W B
2000-08-01
This study, among 109 German nurses, tested a theoretically derived model of burnout and overall life satisfaction. The model discriminates between two conceptually different categories of working conditions, namely job demands and job resources. It was hypothesized that: (1) job demands, such as demanding contacts with patients and time pressure, are most predictive of exhaustion; (2) job resources, such as (poor) rewards and (lack of) participation in decision making, are most predictive of disengagement from work; and (3) job demands and job resources have an indirect impact on nurses' life satisfaction, through the experience of burnout (i.e., exhaustion and disengagement). A model including each of these relationships was tested simultaneously with structural equations modelling. Results confirm the strong effects of job demands and job resources on exhaustion and disengagement respectively, and the mediating role of burnout between the working conditions and life satisfaction. These findings contribute to existing knowledge about antecedents and consequences of occupational burnout, and provide guidelines for interventions aimed at preventing or reducing burnout among nurses.
Observing Inflationary Reheating
NASA Astrophysics Data System (ADS)
Martin, Jérôme; Ringeval, Christophe; Vennin, Vincent
2015-02-01
Reheating is the epoch which connects inflation to the subsequent hot big-bang phase. Conceptually very important, this era is, however, observationally poorly known. We show that the current Planck satellite measurements of the cosmic microwave background (CMB) anisotropies constrain the kinematic properties of the reheating era for most of the inflationary models. This result is obtained by deriving the marginalized posterior distributions of the reheating parameter for about 200 models of slow-roll inflation. Weighted by the statistical evidence of each model to explain the data, we show that the Planck 2013 measurements induce an average reduction of the posterior-to-prior volume by 40%. Making some additional assumptions on reheating, such as specifying a mean equation of state parameter, or focusing the analysis on peculiar scenarios, can enhance or reduce this constraint. Our study also indicates that the Bayesian evidence of a model can substantially be affected by the reheating properties. The precision of the current CMB data is therefore such that estimating the observational performance of a model now requires incorporating information about its reheating history.
Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.
Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.
2005-01-01
The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.
A Conceptual Framework Curriculum Evaluation Electrical Engineering Education
ERIC Educational Resources Information Center
Imansari, Nurulita; Sutadji, Eddy
2017-01-01
This evaluation is a conceptual framework that has been analyzed in the hope that can help research related an evaluation of the curriculum. The Model of evaluation used was CIPPO model. CIPPO Model consists of "context," "input," "process," "product," and "outcomes." On the dimension of the…
Morey, Leslie C; Skodol, Andrew E
2013-05-01
The Personality and Personality Disorders Work Group for the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) recommended substantial revisions to the personality disorders (PDs) section of DSM-IV-TR, proposing a hybrid categorical-dimensional model that represented PDs as combinations of core personality dysfunctions and various configurations of maladaptive personality traits. Although the DSM-5 Task Force endorsed the proposal, the Board of Trustees of the American Psychiatric Association (APA) did not, placing the Work Group's model in DSM-5 Section III ("Emerging Measures and Models") with other concepts thought to be in need of additional research. This paper documents the impact of using this alternative model in a national sample of 337 patients as described by clinicians familiar with their cases. In particular, the analyses focus on alternative strategies considered by the Work Group for deriving decision rules, or diagnostic thresholds, with which to assign categorical diagnoses. Results demonstrate that diagnostic rules could be derived that yielded appreciable correspondence between DSM-IV-TR and proposed DSM-5 PD diagnoses-correspondence greater than that observed in the transition between DSM-III and DSM-III-R PDs. The approach also represents the most comprehensive attempt to date to provide conceptual and empirical justification for diagnostic thresholds utilized within the DSM PDs.
Space Synthetic Biology Project
NASA Technical Reports Server (NTRS)
Howard, David; Roman, Monsi; Mansell, James (Matt)
2015-01-01
Synthetic biology is an effort to make genetic engineering more useful by standardizing sections of genetic code. By standardizing genetic components, biological engineering will become much more similar to traditional fields of engineering, in which well-defined components and subsystems are readily available in markets. Specifications of the behavior of those components and subsystems can be used to model a system which incorporates them. Then, the behavior of the novel system can be simulated and optimized. Finally, the components and subsystems can be purchased and assembled to create the optimized system, which most often will exhibit behavior similar to that indicated by the model. The Space Synthetic Biology project began in 2012 as a multi-Center effort. The purpose of this project was to harness Synthetic Biology principals to enable NASA's missions. A central target for application was to Environmental Control & Life Support (ECLS). Engineers from NASA Marshall Space Flight Center's (MSFC's) ECLS Systems Development Branch (ES62) were brought into the project to contribute expertise in operational ECLS systems. Project lead scientists chose to pursue the development of bioelectrochemical technologies to spacecraft life support. Therefore, the ECLS element of the project became essentially an effort to develop a bioelectrochemical ECLS subsystem. Bioelectrochemical systems exploit the ability of many microorganisms to drive their metabolisms by direct or indirect utilization of electrical potential gradients. Whereas many microorganisms are capable of deriving the energy required for the processes of interest (such as carbon dioxide (CO2) fixation) from sunlight, it is believed that subsystems utilizing electrotrophs will exhibit smaller mass, volume, and power requirements than those that derive their energy from sunlight. In the first 2 years of the project, MSFC personnel conducted modeling, simulation, and conceptual design efforts to assist the project in selecting the best approaches to the application of bioelectrochemical technologies to ECLS. Figure 1 shows results of simulation of charge transport in an experimental system. Figure 2 shows one of five conceptual designs for ECLS subsystems based on bioelectrochemical reactors. Also during the first 2 years, some work was undertaken to gather fundamental data (conductivities, overpotentials) relevant to the modeling efforts.
NASA Astrophysics Data System (ADS)
Horat, Christoph; Antonetti, Manuel; Wernli, Heini; Zappa, Massimiliano
2017-04-01
Flash floods evolve rapidly during and after heavy precipitation events and represent a risk for society, especially in mountainous areas. Knowledge on meteorological variables and their temporal development is often not sufficient to predict their occurrence. Therefore, information about the state of the hydrological system derived from hydrological models is used. These models rely however on strong simplifying assumptions and need therefore to be calibrated. This prevents their application on catchments, where no runoff data is available. Here we present a flash-flood forecasting chain including: (i) a nowcasting product which combines radar and rain gauge rainfall data (CombiPrecip), (ii) meteorological data from numerical weather prediction models at currently finest available resolution (COSMO-1, COSMO-E), (iii) operationally available soil moisture estimations from the PREVAH hydrological model, and (iv) a process-based runoff generation module with no need for calibration (RGM-PRO). This last component uses information on the spatial distribution of dominant runoff processes (DRPs) which can be derived with different mapping approaches, and is parameterised a priori based on expert knowledge. First, we compared the performance of RGM-PRO with the one of a traditional conceptual runoff generation module for several events on Swiss Emme catchment, as well as on their nested catchments. Different DRP-maps are furthermore tested to evaluate the sensitivity of the forecasting chain to the mapping approaches. Then, we benchmarked the new forecasting chain with the traditional chain used on the Swiss Verzasca catchment. The results show that RGM-PRO performs similarly or even better than the traditional calibrated conceptual module on the investigated catchments. The use of strongly simplified DRP mapping approaches still leads to satisfying results, due mainly to the fact that the largest uncertainty source is represented by the meteorological input data. On the Verzasca catchment, RGM-PRO outperformed the traditional forecast chain in terms of mean absolute error, independently from the lead time and threshold quantile, whereas the Brier Skill Score did not show any clear preference. Probabilistic input data led generally to better results compared with those obtained with deterministic forecasts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boerner, A. J.; Maldonado, D. G.; Hansen, Tom
2012-09-01
Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensedmore » by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines.« less
ERIC Educational Resources Information Center
Heimberg, Richard G.
2009-01-01
Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…
ERIC Educational Resources Information Center
Hrepic, Zdeslav; Zollman, Dean A.; Rebello, N. Sanjay
2010-01-01
We investigated introductory physics students' mental models of sound propagation. We used a phenomenographic method to analyze the data in the study. In addition to the scientifically accepted Wave model, students used the "Entity" model to describe the propagation of sound. In this latter model sound is a self-standing entity,…
CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH
Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...
Brown, T A
1997-10-01
To examine the nature and conceptualization of generalized anxiety disorder (GAD) and chronic worry as well as data bearing on the validity of GAD as a distinct diagnosis. Narrative literature review. Although a wealth of data have been obtained on the epidemiology, genetics, and nature of GAD, many important questions remain regarding the validity of current conceptual models of pathological worry and the discriminability of GAD from certain emotional disorders (for instance, mood disorders) and higher-order trait vulnerability dimensions (for example, negative affect). Because the constituent features of GAD are salient to current conceptual models of emotional disorders (for example, models that implicate negative affect or worry/anxious apprehension as vulnerability factors), research on the nature of GAD and its associated features should provide important information on the pathogenesis, course, and co-occurrence of the entire range of anxiety and mood disorders.
The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.
Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K
2000-06-01
The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.
ERIC Educational Resources Information Center
Rea-Ramirez, Mary Anne; Ramirez, Tina M.
2017-01-01
Purpose: The purpose is to demonstrate that conceptual change theory and strategies can be applied to areas of the social science, such as human rights education on FORB. Design/methodology/approach: The theoretical scope of this paper is conceptual change theory and is intended to introduce the theory and practice of conceptual change in teaching…
Teaching for Hot Conceptual Change: Towards a New Model, beyond the Cold and Warm Ones
ERIC Educational Resources Information Center
Kural, Mehmet; Kocakülah, M. Sabri
2016-01-01
At the beginning of the 1980s, one of the most striking explanations of conceptual change was made by Posner, Strike, Hewson & Gertzog (1982) with a Conceptual Change Theory based on a Scientific Revolution Theory of Kuhn (1970). In Conceptual Change Theory, learning was explained with the Piaget (1970)'s concepts such as assimilation and…
Tidal oscillation of sediment between a river and a bay: A conceptual model
Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.
2004-01-01
A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.
A Study of Child Variance, Volume 1: Conceptual Models; Conceptual Project in Emotional Disturbance.
ERIC Educational Resources Information Center
Rhodes, William C.; Tracy, Michael L.
Presented are 11 papers discussing the following six models of emotional disturbance in children: biophysical, behavioral, psychodynamic, sociological, and ecological, models, and counter theory. Emotional disturbance is defined as a distinctive human state having multiple manifestations and involving disability, deviance, and alienation. All the…
A Conceptual Framework for Institutional Research in Community Colleges.
ERIC Educational Resources Information Center
Alfred, Richard L.; Ivens, Stephen H.
This paper defines a conceptual model for institutional research in the community college and identifies sources of information, programs, and services that provide data necessary for implementation of the model. The model contains four specific subsystems: goal setting, program development, program review, and cost effectiveness. Each subsystem…
Re-Conceptualizing Intimacy and Distance in Instructional Models
ERIC Educational Resources Information Center
Ketterer, John J.
2006-01-01
The idea that distance education lacks intimacy and is therefore inferior is based on an embedded metaphor that sustains a restricted and limiting mental model of ideal instruction. The authors analyze alternative conceptualizations of intimacy, space, and place as factors in the development of effective instructional models. They predict that the…
ERIC Educational Resources Information Center
Wang, Chia-Yu; Barrow, Lloyd H.
2013-01-01
The purpose of the study was to explore students' conceptual frameworks of models of atomic structure and periodic variations, chemical bonding, and molecular shape and polarity, and how these conceptual frameworks influence their quality of explanations and ability to shift among chemical representations. This study employed a purposeful sampling…
Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.
Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O
2017-12-13
Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.
A Conceptual Model of Career Development to Enhance Academic Motivation
ERIC Educational Resources Information Center
Collins, Nancy Creighton
2010-01-01
The purpose of this study was to develop, refine, and validate a conceptual model of career development to enhance the academic motivation of community college students. To achieve this end, a straw model was built from the theoretical and empirical research literature. The model was then refined and validated through three rounds of a Delphi…
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Bukova Güzel, Esra
2013-01-01
The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…
Moving from Victim to Survivor of Cultural Violence: A Conceptual Model
ERIC Educational Resources Information Center
Salazar, Carmen F.; Casto, Challon
2008-01-01
The authors propose the Moving From Victim to Survivor of Cultural Violence model, using the stages of D. W. Sue and D. Sue's (1999) Racial/Cultural Identity Development model. This conceptual model describes the process of first overcoming internalized sexism, domestic abuse, sexual harassment, rape, and other forms of oppression and then healing…
Toward a Stress Process Model of Children's Exposure to Physical Family and Community Violence
ERIC Educational Resources Information Center
Foster, Holly; Brooks-Gunn, Jeanne
2009-01-01
Theoretically informed models are required to further the comprehensive understanding of children's ETV. We draw on the stress process paradigm to forward an overall conceptual model of ETV (ETV) in childhood and adolescence. Around this conceptual model, we synthesize research in four dominant areas of the literature which are detailed but often…
A Conceptual View of the Officer Procurement Model (TOPOPS). Technical Report No. 73-73.
ERIC Educational Resources Information Center
Akman, Allan; Nordhauser, Fred
This report presents the conceptual design of a computer-based linear programing model of the Air Force officer procurement system called TOPOPS. The TOPOPS model is an aggregate model which simulates officer accession and training and is directed at optimizing officer procurement in terms of either minimizing cost or maximizing accession quality…
Gallistel, C R; Gibbon, J
2000-04-01
The authors draw together and develop previous timing models for a broad range of conditioning phenomena to reveal their common conceptual foundations: First, conditioning depends on the learning of the temporal intervals between events and the reciprocals of these intervals, the rates of event occurrence. Second, remembered intervals and rates translate into observed behavior through decision processes whose structure is adapted to noise in the decision variables. The noise and the uncertainties consequent on it have both subjective and objective origins. A third feature of these models is their timescale invariance, which the authors argue is a very important property evident in the available experimental data. This conceptual framework is similar to the psychophysical conceptual framework in which contemporary models of sensory processing are rooted. The authors contrast it with the associative conceptual framework.
Intitialization, Conceptualization, and Application in the Generalized Fractional Calculus
NASA Technical Reports Server (NTRS)
Lorenzo, Carl F.; Hartley, Tom T.
1998-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
Initialization, conceptualization, and application in the generalized (fractional) calculus.
Lorenzo, Carl F; Hartley, Tom T
2007-01-01
This paper provides a formalized basis for initialization in the fractional calculus. The intent is to make the fractional calculus readily accessible to engineering and the sciences. A modified set of definitions for the fractional calculus is provided which formally include the effects of initialization. Conceptualizations of fractional derivatives and integrals are shown. Physical examples of the basic elements from electronics are presented along with examples from dynamics, material science, viscoelasticity, filtering, instrumentation, and electrochemistry to indicate the broad application of the theory and to demonstrate the use of the mathematics. The fundamental criteria for a generalized calculus established by Ross (1974) are shown to hold for the generalized fractional calculus under appropriate conditions. A new generalized form for the Laplace transform of the generalized differintegral is derived. The concept of a variable structure (order) differintegral is presented along with initial efforts toward meaningful definitions.
A model to explain suicide by self-immolation among Iranian women: A grounded theory study.
Khankeh, Hamid Reza; Hosseini, Seyed Ali; Rezaie, Leeba; Shakeri, Jalal; Schwebel, David C
2015-11-01
Self-immolation is a common method of suicide among Iranian women. There are several contributing motives for attempting self-immolation, and exploration of the process of self-immolation incidents will help interventionists and clinicians develop prevention programs. A grounded theory study using face-to-face, recorded interviews was conducted with surviving self-immolated patients (n=14), their close relatives (n=5), and medical staff (n=8) in Kermanshah, Iran. Data were analyzed using constant comparison in open, axial, and selective coding stages. A conceptual model was developed to explain the relationships among the main categories extracted through the grounded theory study. Family conflicts emerged as the core category. Cultural context of self-immolated patients offered a contextual condition. Other important categories linked to the core category were mental health problems, distinct characteristics of the suicidal method, and self-immolation as a threat. The role of mental health problems as a causal condition was detected in different levels of the self-immolation process. Finally, adverse consequences of self-immolation emerged as having important impact. The conceptual model, derived through grounded theory study, can guide design of prevention programs. The pivotal role of family conflicts should be emphasized in mental health interventions. The impact of adverse consequences of self-immolation on further suicidal processes necessitates post-suicide prevention programs. Further research to design specific interventions is recommended. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Leading change: a concept analysis.
Nelson-Brantley, Heather V; Ford, Debra J
2017-04-01
To report an analysis of the concept of leading change. Nurses have been called to lead change to advance the health of individuals, populations, and systems. Conceptual clarity about leading change in the context of nursing and healthcare systems provides an empirical direction for future research and theory development that can advance the science of leadership studies in nursing. Concept analysis. CINAHL, PubMed, PsycINFO, Psychology and Behavioral Sciences Collection, Health Business Elite and Business Source Premier databases were searched using the terms: leading change, transformation, reform, leadership and change. Literature published in English from 2001 - 2015 in the fields of nursing, medicine, organizational studies, business, education, psychology or sociology were included. Walker and Avant's method was used to identify descriptions, antecedents, consequences and empirical referents of the concept. Model, related and contrary cases were developed. Five defining attributes of leading change were identified: (a) individual and collective leadership; (b) operational support; (c) fostering relationships; (d) organizational learning; and (e) balance. Antecedents were external or internal driving forces and organizational readiness. The consequences of leading change included improved organizational performance and outcomes and new organizational culture and values. A theoretical definition and conceptual model of leading change were developed. Future studies that use and test the model may contribute to the refinement of a middle-range theory to advance nursing leadership research and education. From this, empirically derived interventions that prepare and enable nurses to lead change to advance health may be realized. © 2016 John Wiley & Sons Ltd.
Development of a Conceptual Chum Salmon Emergence Model for Ives Island
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murray, Christopher J.; Geist, David R.; Arntzen, Evan V.
2011-02-09
The objective of the study described herein was to develop a conceptual model of chum salmon emergence that was based on empirical water temperature of the riverbed and river in specific locations where chum salmon spawn in the Ives Island area. The conceptual model was developed using water temperature data that have been collected in the past and are currently being collected in the Ives Island area. The model will be useful to system operators who need to estimate the complete distribution of chum salmon emergence (first emergence through final emergence) in order to balance chum salmon redd protection andmore » power system operation.« less
NASA Astrophysics Data System (ADS)
Scharnagl, Benedikt; Vrugt, Jasper A.; Vereecken, Harry; Herbst, Michael
2010-05-01
Turnover of soil organic matter is usually described with multi-compartment models. However, a major drawback of these models is that the conceptually defined compartments (or pools) do not necessarily correspond to measurable soil organic carbon (SOC) fractions in real practice. This not only impairs our ability to rigorously evaluate SOC models but also makes it difficult to derive accurate initial states. In this study, we tested the usefulness and applicability of inverse modeling to derive the various carbon pool sizes in the Rothamsted carbon model (ROTHC) using a synthetic time series of mineralization rates from laboratory incubation. To appropriately account for data and model uncertainty we considered a Bayesian approach using the recently developed DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm. This Markov chain Monte Carlo scheme derives the posterior probability density distribution of the initial pool sizes at the start of incubation from observed mineralization rates. We used the Kullback-Leibler divergence to quantify the information contained in the data and to illustrate the effect of increasing incubation times on the reliability of the pool size estimates. Our results show that measured mineralization rates generally provide sufficient information to reliably estimate the sizes of all active pools in the ROTHC model. However, with about 900 days of incubation, these experiments are excessively long. The use of prior information on microbial biomass provided a way forward to significantly reduce uncertainty and required duration of incubation to about 600 days. Explicit consideration of model parameter uncertainty in the estimation process further impaired the identifiability of initial pools, especially for the more slowly decomposing pools. Our illustrative case studies show how Bayesian inverse modeling can be used to provide important insights into the information content of incubation experiments. Moreover, the outcome of this virtual experiment helps to explain the results of related real-world studies on SOC dynamics.
NASA Astrophysics Data System (ADS)
Marsh, C.; Pomeroy, J. W.; Wheater, H. S.
2017-12-01
Accurate management of water resources is necessary for social, economic, and environmental sustainability worldwide. In locations with seasonal snowcovers, the accurate prediction of these water resources is further complicated due to frozen soils, solid-phase precipitation, blowing snow transport, and snowcover-vegetation-atmosphere interactions. Complex process interactions and feedbacks are a key feature of hydrological systems and may result in emergent phenomena, i.e., the arising of novel and unexpected properties within a complex system. One example is the feedback associated with blowing snow redistribution, which can lead to drifts that cause locally-increased soil moisture, thus increasing plant growth that in turn subsequently impacts snow redistribution, creating larger drifts. Attempting to simulate these emergent behaviours is a significant challenge, however, and there is concern that process conceptualizations within current models are too incomplete to represent the needed interactions. An improved understanding of the role of emergence in hydrological systems often requires high resolution distributed numerical hydrological models that incorporate the relevant process dynamics. The Canadian Hydrological Model (CHM) provides a novel tool for examining cold region hydrological systems. Key features include efficient terrain representation, allowing simulations at various spatial scales, reduced computational overhead, and a modular process representation allowing for an alternative-hypothesis framework. Using both physics-based and conceptual process representations sourced from long term process studies and the current cold regions literature allows for comparison of process representations and importantly, their ability to produce emergent behaviours. Examining the system in a holistic, process-based manner can hopefully derive important insights and aid in development of improved process representations.
The Role of System Thinking Development and Experiential Learning on Enterprise Transformation
NASA Astrophysics Data System (ADS)
Lopez, Gabriel
The recent economic downturn has had global repercussions in all businesses alike. Competition is fierce and a survival of the fittest model is always present; fast delivery times and innovative designs ultimately translate into the enterprises' bottom line. In such market conditions, enterprises have to find ways to develop and train their workforce in a manner that enhances the innovative capabilities of the enterprise. Additionally, if companies are to stay competitive, they have to ensure critical skills in their workforce are transferred from generation to generation. This study builds on recent research on system-thinking development via experiential learning methodologies. First, a conceptual framework model was developed. This conceptual model captures a methodology to construct a system-thinking apprenticeship program suitable for system engineers. Secondly, a survey of system engineering professionals was conducted in order to assess and refine the proposed conceptual model. This dissertation captures the findings of the conceptual model and the implications of the study for enterprises and for system engineering organizations.
NASA Astrophysics Data System (ADS)
Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio
2017-08-01
We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).
Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology
NASA Astrophysics Data System (ADS)
Gailly, Frederik; Poels, Geert
Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.
NASA Astrophysics Data System (ADS)
Mahaboob, B.; Venkateswarlu, B.; Sankar, J. Ravi; Balasiddamuni, P.
2017-11-01
This paper uses matrix calculus techniques to obtain Nonlinear Least Squares Estimator (NLSE), Maximum Likelihood Estimator (MLE) and Linear Pseudo model for nonlinear regression model. David Pollard and Peter Radchenko [1] explained analytic techniques to compute the NLSE. However the present research paper introduces an innovative method to compute the NLSE using principles in multivariate calculus. This study is concerned with very new optimization techniques used to compute MLE and NLSE. Anh [2] derived NLSE and MLE of a heteroscedatistic regression model. Lemcoff [3] discussed a procedure to get linear pseudo model for nonlinear regression model. In this research article a new technique is developed to get the linear pseudo model for nonlinear regression model using multivariate calculus. The linear pseudo model of Edmond Malinvaud [4] has been explained in a very different way in this paper. David Pollard et.al used empirical process techniques to study the asymptotic of the LSE (Least-squares estimation) for the fitting of nonlinear regression function in 2006. In Jae Myung [13] provided a go conceptual for Maximum likelihood estimation in his work “Tutorial on maximum likelihood estimation
Model averaging techniques for quantifying conceptual model uncertainty.
Singh, Abhishek; Mishra, Srikanta; Ruskauff, Greg
2010-01-01
In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.
Transforming Undergraduate Education Through the use of Analytical Reasoning (TUETAR)
NASA Astrophysics Data System (ADS)
Bishop, M. P.; Houser, C.; Lemmons, K.
2015-12-01
Traditional learning limits the potential for self-discovery, and the use of data and knowledge to understand Earth system relationships, processes, feedback mechanisms and system coupling. It is extremely difficult for undergraduate students to analyze, synthesize, and integrate quantitative information related to complex systems, as many concepts may not be mathematically tractable or yet to be formalized. Conceptual models have long served as a means for Earth scientists to organize their understanding of Earth's dynamics, and have served as a basis for human analytical reasoning and landscape interpretation. Consequently, we evaluated the use of conceptual modeling, knowledge representation and analytical reasoning to provide undergraduate students with an opportunity to develop and test geocomputational conceptual models based upon their understanding of Earth science concepts. This study describes the use of geospatial technologies and fuzzy cognitive maps to predict desertification across the South-Texas Sandsheet in an upper-level geomorphology course. Students developed conceptual models based on their understanding of aeolian processes from lectures, and then compared and evaluated their modeling results against an expert conceptual model and spatial predictions, and the observed distribution of dune activity in 2010. Students perceived that the analytical reasoning approach was significantly better for understanding desertification compared to traditional lecture, and promoted reflective learning, working with data, teamwork, student interaction, innovation, and creative thinking. Student evaluations support the notion that the adoption of knowledge representation and analytical reasoning in the classroom has the potential to transform undergraduate education by enabling students to formalize and test their conceptual understanding of Earth science. A model for developing and utilizing this geospatial technology approach in Earth science is presented.
NASA Astrophysics Data System (ADS)
Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.
2017-12-01
Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and support development of improved large-scale flow and transport models for Pahute Mesa.
Conceptual Modeling Techniques for Use Within the DoD Acquisition Community
2013-02-14
auditory, or kinesthetic information, but are there people more naturally adept at thinking conceptually? For those who showed greater conceptually...thinking ability, does being a visual, auditory, or kinesthetic learner correlate to this in any statistically significant manner? Does field
Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling
NASA Astrophysics Data System (ADS)
Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.
2002-05-01
Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF) representing parameter uncertainty associated with a particular scenario and ACM and the outer sum enumerating the various plausible ACM and scenario combinations in order to represent the combined estimate of uncertainty (a family of CCDFs). A final important part of the framework includes identification, enumeration, and documentation of all the assumptions, which include those made during conceptual model development, required by the mathematical model, required by the numerical model, made during the spatial and temporal descretization process, needed to assign the statistical model and associated parameters that describe the uncertainty in the relevant input parameters, and finally those assumptions required by the propagation method. Pacific Northwest National Laboratory is operated for the U.S. Department of Energy under Contract DE-AC06-76RL01830.
The ACTIVE conceptual framework as a structural equation model
Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.
2018-01-01
Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Conclusions Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from those with the greatest chance of transfer to real-world activities. PMID:29303475
Exploring students' patterns of reasoning
NASA Astrophysics Data System (ADS)
Matloob Haghanikar, Mojgan
As part of a collaborative study of the science preparation of elementary school teachers, we investigated the quality of students' reasoning and explored the relationship between sophistication of reasoning and the degree to which the courses were considered inquiry oriented. To probe students' reasoning, we developed open-ended written content questions with the distinguishing feature of applying recently learned concepts in a new context. We devised a protocol for developing written content questions that provided a common structure for probing and classifying students' sophistication level of reasoning. In designing our protocol, we considered several distinct criteria, and classified students' responses based on their performance for each criterion. First, we classified concepts into three types: Descriptive, Hypothetical, and Theoretical and categorized the abstraction levels of the responses in terms of the types of concepts and the inter-relationship between the concepts. Second, we devised a rubric based on Bloom's revised taxonomy with seven traits (both knowledge types and cognitive processes) and a defined set of criteria to evaluate each trait. Along with analyzing students' reasoning, we visited universities and observed the courses in which the students were enrolled. We used the Reformed Teaching Observation Protocol (RTOP) to rank the courses with respect to characteristics that are valued for the inquiry courses. We conducted logistic regression for a sample of 18courses with about 900 students and reported the results for performing logistic regression to estimate the relationship between traits of reasoning and RTOP score. In addition, we analyzed conceptual structure of students' responses, based on conceptual classification schemes, and clustered students' responses into six categories. We derived regression model, to estimate the relationship between the sophistication of the categories of conceptual structure and RTOP scores. However, the outcome variable with six categories required a more complicated regression model, known as multinomial logistic regression, generalized from binary logistic regression. With the large amount of collected data, we found that the likelihood of the higher cognitive processes were in favor of classes with higher measures on inquiry. However, the usage of more abstract concepts with higher order conceptual structures was less prevalent in higher RTOP courses.
ERIC Educational Resources Information Center
Sackes, Mesut
2010-01-01
This study seeks to explore and describe the role of cognitive, metacognitive, and motivational variables in conceptual change. More specifically, the purposes of the study were (1) to investigate the predictive ability of a learning model that was developed based on the intentional conceptual change perspective in predicting change in conceptual…
Conceptual Variation or Incoherence? Textbook Discourse on Genes in Six Countries
NASA Astrophysics Data System (ADS)
Gericke, Niklas M.; Hagberg, Mariana; dos Santos, Vanessa Carvalho; Joaquim, Leyla Mariane; El-Hani, Charbel N.
2014-02-01
The aim of this paper is to investigate in a systematic and comparative way previous results of independent studies on the treatment of genes and gene function in high school textbooks from six different countries. We analyze how the conceptual variation within the scientific domain of Genetics regarding gene function models and gene concepts is transformed via the didactic transposition into school science textbooks. The results indicate that a common textbook discourse on genes and their function exist in textbooks from the different countries. The structure of science as represented by conceptual variation and the use of multiple models was present in all the textbooks. However, the existence of conceptual variation and multiple models is implicit in these textbooks, i.e., the phenomenon of conceptual variation and multiple models are not addressed explicitly, nor its consequences and, thus, it ends up introducing conceptual incoherence about the gene concept and its function within the textbooks. We conclude that within the found textbook-discourse ontological aspects of the academic disciplines of genetics and molecular biology were retained, but without their epistemological underpinnings; these are lost in the didactic transposition. These results are of interest since students might have problems reconstructing the correct scientific understanding from the transformed school science knowledge as depicted within the high school textbooks. Implications for textbook writing as well as teaching are discussed in the paper.
NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information
,
2004-01-01
Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.
NASA Astrophysics Data System (ADS)
Gontis, V.; Kononovicius, A.
2017-10-01
We address the problem of long-range memory in the financial markets. There are two conceptually different ways to reproduce power-law decay of auto-correlation function: using fractional Brownian motion as well as non-linear stochastic differential equations. In this contribution we address this problem by analyzing empirical return and trading activity time series from the Forex. From the empirical time series we obtain probability density functions of burst and inter-burst duration. Our analysis reveals that the power-law exponents of the obtained probability density functions are close to 3 / 2, which is a characteristic feature of the one-dimensional stochastic processes. This is in a good agreement with earlier proposed model of absolute return based on the non-linear stochastic differential equations derived from the agent-based herding model.
Narratives of psychiatric malingering in works of fiction.
Kuperman, V
2006-12-01
This paper argues that the representation of psychiatric malingering in literary and cinematographic narratives informs societal stereotypes, and thus influences the clinical phenomenology of malingering. The study aims to identify sociocultural models of malingering in contemporary Western society based on the narrative analysis of about 60 fictional and non-fiction texts. Two behavioural patterns derived from the Foucauldian categories folly and madness are recognisable in naïve conceptualisations of fake insanity. Fabricated significations of deviation originate in grand societal narratives rather than in medical discourse, and construct characters such as animal like underdeveloped simpletons or detached, irrational, violent madmen. Each pattern stems from its own archaic conceptual basis and dictates a distinct framework for strategies of malingering. The semiotic structure of artistic narratives of malingering is discussed in comparison with the symptomatology of existing psychiatric models.
NASA Astrophysics Data System (ADS)
Clark, Martyn P.; Kavetski, Dmitri
2010-10-01
A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.
The intersection of disability and healthcare disparities: a conceptual framework.
Meade, Michelle A; Mahmoudi, Elham; Lee, Shoou-Yih
2015-01-01
This article provides a conceptual framework for understanding healthcare disparities experienced by individuals with disabilities. While health disparities are the result of factors deeply rooted in culture, life style, socioeconomic status, and accessibility of resources, healthcare disparities are a subset of health disparities that reflect differences in access to and quality of healthcare and can be viewed as the inability of the healthcare system to adequately address the needs of specific population groups. This article uses a narrative method to identify and critique the main conceptual frameworks that have been used in analyzing disparities in healthcare access and quality, and evaluating those frameworks in the context of healthcare for individuals with disabilities. Specific models that are examined include the Aday and Anderson Model, the Grossman Utility Model, the Institute of Medicine (IOM)'s models of Access to Healthcare Services and Healthcare Disparities, and the Cultural Competency model. While existing frameworks advance understandings of disparities in healthcare access and quality, they fall short when applied to individuals with disabilities. Specific deficits include a lack of attention to cultural and contextual factors (Aday and Andersen framework), unrealistic assumptions regarding equal access to resources (Grossman's utility model), lack of recognition or inclusion of concepts of structural accessibility (IOM model of Healthcare Disparities) and exclusive emphasis on supply side of the healthcare equation to improve healthcare disparities (Cultural Competency model). In response to identified gaps in the literature and short-comings of current conceptualizations, an integrated model of disability and healthcare disparities is put forth. We analyzed models of access to care and disparities in healthcare to be able to have an integrated and cohesive conceptual framework that could potentially address issues related to access to healthcare among individuals with disabilities. The Model of Healthcare Disparities and Disability (MHDD) provides a framework for conceptualizing how healthcare disparities impact disability and specifically, how a mismatch between personal and environmental factors may result in reduced healthcare access and quality, which in turn may lead to reduced functioning, activity and participation among individuals with impairments and chronic health conditions. Researchers, health providers, policy makers and community advocate groups who are engaged in devising interventions aimed at reducing healthcare disparities would benefit from the discussions. Implications for Rehabilitation Evaluates the main models of healthcare disparity and disability to create an integrated framework. Provides a comprehensive conceptual model of healthcare disparity that specifically targets issues related to individuals with disabilities. Conceptualizes how personal and environmental factors interact to produce disparities in access to healthcare and healthcare quality. Recognizes and targets modifiable factors to reduce disparities between and within individuals with disabilities.
Wahler, Elizabeth A; Otis, Melanie D
2014-11-01
Social characteristics associated with disadvantage, such as racial/ethnic minority status, female gender, and low socioeconomic status (SES), are often associated with increased psychological distress and substance use disorders. This project tests a conceptual model derived from Pearlin's social stress theory for predicting abstinence from substance use between baseline and 1-year follow-up in secondary data from a large statewide sample of Kentucky substance abuse treatment participants (N = 1,123). Racial minority status, employment, and higher education level were predictive of substance use at follow-up, while female gender was predictive of abstinence. Limitations, implications for practice, and suggestions for future research are discussed.
The Clinical Teacher for Special Education. Final Report: Volume II; Evaluating the Model.
ERIC Educational Resources Information Center
Schwartz, Louis; Oseroff, Andrew
Effectiveness of the clinical teaching model (CTM) developed at Florida State University is documented in Volume II of the project's final report. Reviewed is literature related to teacher effectiveness and conceptual changes, conceptual models and instructional systems, and evaluation research in education. Research design and procedures are…
Modeling Rare and Unique Documents: Using FRBR[subscript OO]/CIDOC CRM
ERIC Educational Resources Information Center
Le Boeuf, Patrick
2012-01-01
Both the library and the museum communities have developed conceptual models for the information they produce about the collections they hold: FRBR (Functional Requirements for Bibliographic Records) and CIDOC CRM (Conceptual Reference Model). But neither proves perfectly adequate when it comes to some specific types of rare and unique materials:…
The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment
ERIC Educational Resources Information Center
Hidiroglu, Çaglar Naci; Güzel, Esra Bukova
2017-01-01
The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…
ERIC Educational Resources Information Center
Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel
2014-01-01
The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…
What Is FRBR? A Conceptual Model for the Bibliographic Universe
ERIC Educational Resources Information Center
Tillett, Barbara
2005-01-01
From 1992 to 1995 the IFLA Study Group on Functional Requirements for Bibliographic Records (FRBR) developed an entity relationship model as a generalised view of the bibliographic universe, intended to be independent of any cataloguing code or implementation. The FRBR report itself includes a description of the conceptual model (the entities,…
Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation
ERIC Educational Resources Information Center
Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy
2014-01-01
Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…
Geographers in the Post-Industrial Age: A Conceptual Curriculum Model for Geography.
ERIC Educational Resources Information Center
Verduin-Muller, Henriette
The document describes a conceptual curriculum model for designing original geographical curriculum materials. The model emanated from a series of research projects at the Geographical Institute's Department of Geography for Education at the Rijksuniversiteit of Utrecht, the Netherlands. The objective of the research was to gain insight into the…
Using Analogy and Model to Enhance Conceptual Change in Thai Middle School Students
ERIC Educational Resources Information Center
Wichaidit, Sittichai; Wongyounoi, Somson; Dechsri, Precharn; Chaivisuthangkura, Parin
2011-01-01
This study examined conceptual change of Thai middle school students after learning photosynthesis with analogy and model. The analogy mapped key features from the analog (cooking food) to the target concept (photosynthesis). Modeling photosynthesis activity provided the opportunity for students to understand how plants use sugar to synthesize…
River City High School Guidance Services: A Conceptual Model.
ERIC Educational Resources Information Center
American Coll. Testing Program, Iowa City, IA.
This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…
Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model
ERIC Educational Resources Information Center
Kim, Sooyoung
2007-01-01
Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…
ERIC Educational Resources Information Center
Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey
2015-01-01
The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…
A Dyadic Approach: Applying a Developmental-Conceptual Model to Couples Coping with Chronic Illness
ERIC Educational Resources Information Center
Checton, Maria G.; Magsamen-Conrad, Kate; Venetis, Maria K.; Greene, Kathryn
2015-01-01
The purpose of the present study was to apply Berg and Upchurch's developmental-conceptual model toward a better understanding of how couples cope with chronic illness. Specifically, a model was hypothesized in which proximal factors (relational quality), dyadic appraisal (illness interference), and dyadic coping (partner support) influence…
Technical Assistance Model for Long-Term Systems Change: Three State Examples
ERIC Educational Resources Information Center
Kasprzak, Christina; Hurth, Joicey; Lucas, Anne; Marshall, Jacqueline; Terrell, Adriane; Jones, Elizabeth
2010-01-01
The National Early Childhood Technical Assistance Center (NECTAC) Technical Assistance (TA) Model for Long-Term Systems Change (LTSC) is grounded in conceptual frameworks in the literature on systems change and systems thinking. The NECTAC conceptual framework uses a logic model approach to change developed specifically for states' infant and…
Unified Model for Academic Competence, Social Adjustment, and Psychopathology.
ERIC Educational Resources Information Center
Schaefer, Earl S.; And Others
A unified conceptual model is needed to integrate the extensive research on (1) social competence and adaptive behavior, (2) converging conceptualizations of social adjustment and psychopathology, and (3) emerging concepts and measures of academic competence. To develop such a model, a study was conducted in which teacher ratings were collected on…
Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model
ERIC Educational Resources Information Center
Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa
2011-01-01
Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…
ERIC Educational Resources Information Center
Maddox, Alexia; Zhao, Linlin
2017-01-01
This case study presents a conceptual model of researcher performance developed by Deakin University Library, Australia. The model aims to organize research performance data into meaningful researcher profiles, referred to as researcher typologies, which support the demonstration of research impact and value. Three dimensions shaping researcher…
McLellan, Eileen; Schilling, Keith; Robertson, Dale M.
2015-01-01
We present conceptual and quantitative models that predict changes in fertilizer-derived nitrogen delivery from rowcrop landscapes caused by agricultural conservation efforts implemented to reduce nutrient inputs and transport and increase nutrient retention in the landscape. To evaluate the relative importance of changes in the sources, transport, and sinks of fertilizer-derived nitrogen across a region, we use the spatially explicit SPAtially Referenced Regression On Watershed attributes watershed model to map the distribution, at the small watershed scale within the Upper Mississippi-Ohio River Basin (UMORB), of: (1) fertilizer inputs; (2) nutrient attenuation during delivery of those inputs to the UMORB outlet; and (3) nitrogen export from the UMORB outlet. Comparing these spatial distributions suggests that the amount of fertilizer input and degree of nutrient attenuation are both important in determining the extent of nitrogen export. From a management perspective, this means that agricultural conservation efforts to reduce nitrogen export would benefit by: (1) expanding their focus to include activities that restore and enhance nutrient processing in these highly altered landscapes; and (2) targeting specific types of best management practices to watersheds where they will be most valuable. Doing so successfully may result in a shift in current approaches to conservation planning, outreach, and funding.
This fact sheet is the first in a series of documents that address conceptual site models (CSMs). This fact sheet summarizes how environmental practitioners can use CSMs to achieve, communicate, and maintain stakeholder consensus.
Conceptual models for aquatic and terrestrial exposures. Graphic representation of predicted relationships between the ecological entities, both listed (threatened and endangered) and non-listed species, and the stressors to which they may be exposed.
Administrator Training and Development: Conceptual Model.
ERIC Educational Resources Information Center
Boardman, Gerald R.
A conceptual model for an individualized training program for school administrators integrates processes, characteristics, and tasks through theory training and application. Based on an application of contingency theory, it provides a system matching up administrative candidates' needs in three areas (administrative process, administrative…
Pattern of students' conceptual change on magnetic field based on students' mental models
NASA Astrophysics Data System (ADS)
Hamid, Rimba; Widodo, Ari; Sopandi, Wahyu
2017-05-01
Students understanding about natural phenomena can be identified by analyzing their mental model. Changes in students' mental model are good indicator of students' conceptual change. This research aims at identifying students' conceptual change by analyzing changes in students' mental model. Participants of the study were twenty five elementary school students. Data were collected through throughout the lessons (prior to the lessons, during the lessons and after the lessons) based on students' written responses and individual interviews. Lessons were designed to facilitate students' conceptual change by allowing students to work in groups of students who have the similar ideas. Therefore, lessons were students-directed. Changes of students' ideas in every stage of the lessons were identified and analyzed. The results showed that there are three patterns of students' mental models, namely type of scientific (44%), analogous to everyday life (52%), and intuitive (4%). Further analyses of the pattern of their conceptual change identifies four different patterns, i.e. consistently correct (20%), consistently incomplete (16%), changing from incorrect to incomplete (8%), changing from incomplete to complete (32%), changing from complete to incorrect (4%), and changing from incorrect to complete (4%). This study suggest that the process of learning science does not move in a linear and progressive ways, rather they move in random and may move backward and forward.
Smart vision chips: An overview
NASA Technical Reports Server (NTRS)
Koch, Christof
1994-01-01
This viewgraph presentation presents four working analog VLSI vision chips: (1) time-derivative retina, (2) zero-crossing chip, (3) resistive fuse, and (4) figure-ground chip; work in progress on computing motion and neuromorphic systems; and conceptual and practical lessons learned.
Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation
ERIC Educational Resources Information Center
Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom
2014-01-01
Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…
ERIC Educational Resources Information Center
Wyatt, Mark
2016-01-01
Conceptual models can fulfil important educative roles, particularly in fields where there are few such models and where constructs are confused, as in research into teachers' self-efficacy beliefs. In this area, one model developed in the late twentieth century subsequently became dominant, but seems flawed. This article addresses criticisms of…
Tumor heterogeneity and progression: conceptual foundations for modeling.
Greller, L D; Tobin, F L; Poste, G
1996-01-01
A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.
Using conceptual work products of health care to design health IT.
Berry, Andrew B L; Butler, Keith A; Harrington, Craig; Braxton, Melissa O; Walker, Amy J; Pete, Nikki; Johnson, Trevor; Oberle, Mark W; Haselkorn, Jodie; Paul Nichol, W; Haselkorn, Mark
2016-02-01
This paper introduces a new, model-based design method for interactive health information technology (IT) systems. This method extends workflow models with models of conceptual work products. When the health care work being modeled is substantially cognitive, tacit, and complex in nature, graphical workflow models can become too complex to be useful to designers. Conceptual models complement and simplify workflows by providing an explicit specification for the information product they must produce. We illustrate how conceptual work products can be modeled using standard software modeling language, which allows them to provide fundamental requirements for what the workflow must accomplish and the information that a new system should provide. Developers can use these specifications to envision how health IT could enable an effective cognitive strategy as a workflow with precise information requirements. We illustrate the new method with a study conducted in an outpatient multiple sclerosis (MS) clinic. This study shows specifically how the different phases of the method can be carried out, how the method allows for iteration across phases, and how the method generated a health IT design for case management of MS that is efficient and easy to use. Copyright © 2015 Elsevier Inc. All rights reserved.
Nishikawa, Tracy
1997-01-01
Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.
History of Science and Conceptual Change: The Formation of Shadows by Extended Light Sources
NASA Astrophysics Data System (ADS)
Dedes, Christos; Ravanis, Konstantinos
2009-09-01
This study investigates the effectiveness of a teaching conflict procedure whose purpose was the transformation of the representations of 12-16-year-old pupils in Greece concerning light emission and shadow formation by extended light sources. The changes observed during the children’s effort to destabilize and reorganise their representations towards a model that was compatible with the respective scientific model were studied using three groups of pupils belonging to different age groups. The methodological plan implemented was based on input from the History of Science, while the parameters of the geometrical optics model were derived from Kepler’s relevant historic experiment. The effectiveness of the teaching procedure was evaluated 2 weeks after the intervention. The results showed that the majority of the subjects accepted the model of geometrical optics, i.e. the pupils were able to correctly predict and adequately justify the experimental results based on the principle of punctiform light emission. Educational and research implications are discussed.
Use of theoretical and conceptual frameworks in qualitative research.
Green, Helen Elise
2014-07-01
To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.
Jahn, Beate; Theurl, Engelbert; Siebert, Uwe; Pfeiffer, Karl-Peter
2010-01-01
In most decision-analytic models in health care, it is assumed that there is treatment without delay and availability of all required resources. Therefore, waiting times caused by limited resources and their impact on treatment effects and costs often remain unconsidered. Queuing theory enables mathematical analysis and the derivation of several performance measures of queuing systems. Nevertheless, an analytical approach with closed formulas is not always possible. Therefore, simulation techniques are used to evaluate systems that include queuing or waiting, for example, discrete event simulation. To include queuing in decision-analytic models requires a basic knowledge of queuing theory and of the underlying interrelationships. This tutorial introduces queuing theory. Analysts and decision-makers get an understanding of queue characteristics, modeling features, and its strength. Conceptual issues are covered, but the emphasis is on practical issues like modeling the arrival of patients. The treatment of coronary artery disease with percutaneous coronary intervention including stent placement serves as an illustrative queuing example. Discrete event simulation is applied to explicitly model resource capacities, to incorporate waiting lines and queues in the decision-analytic modeling example.
Billieux, Joël; Philippot, Pierre; Schmid, Cécile; Maurage, Pierre; De Mol, Jan; Van der Linden, Martial
2015-01-01
Dysfunctional use of the mobile phone has often been conceptualized as a 'behavioural addiction' that shares most features with drug addictions. In the current article, we challenge the clinical utility of the addiction model as applied to mobile phone overuse. We describe the case of a woman who overuses her mobile phone from two distinct approaches: (1) a symptom-based categorical approach inspired from the addiction model of dysfunctional mobile phone use and (2) a process-based approach resulting from an idiosyncratic clinical case conceptualization. In the case depicted here, the addiction model was shown to lead to standardized and non-relevant treatment, whereas the clinical case conceptualization allowed identification of specific psychological processes that can be targeted with specific, empirically based psychological interventions. This finding highlights that conceptualizing excessive behaviours (e.g., gambling and sex) within the addiction model can be a simplification of an individual's psychological functioning, offering only limited clinical relevance. The addiction model, applied to excessive behaviours (e.g., gambling, sex and Internet-related activities) may lead to non-relevant standardized treatments. Clinical case conceptualization allowed identification of specific psychological processes that can be targeted with specific empirically based psychological interventions. The biomedical model might lead to the simplification of an individual's psychological functioning with limited clinical relevance. Copyright © 2014 John Wiley & Sons, Ltd.
Vasilenko, Sara A; Lefkowitz, Eva S; Welsh, Deborah P
2014-01-01
Although research has increasingly emphasized how adolescent sexual behavior may be associated with aspects of health beyond unwanted pregnancy and sexually transmitted infections, no current theoretical or conceptual model fully explains associations between sexual behavior and multiple facets of health. We provide a conceptual model that explicates possible processes of how adolescent sexual behavior may influence physical, mental, and social health. Next, we review the current literature consistent with this conceptual model, demonstrating that although early sexual behavior can be associated with some negative outcomes, sex may be, on average, a positive experience in late adolescence. Finally, we discuss important future directions for research in these areas, including how individuals' attitudes about and perceptions of sexual behavior influence outcomes of sex. © 2014 Wiley Periodicals, Inc.
A process proof test for model concepts: Modelling the meso-scale
NASA Astrophysics Data System (ADS)
Hellebrand, Hugo; Müller, Christoph; Matgen, Patrick; Fenicia, Fabrizio; Savenije, Huub
In hydrological modelling the use of detailed soil data is sometimes troublesome, since often these data are hard to obtain and, if available at all, difficult to interpret and process in a way that makes them meaningful for the model at hand. Intuitively the understanding and mapping of dominant runoff processes in the soil show high potential for improving hydrological models. In this study a labour-intensive methodology to assess dominant runoff processes is simplified in such a way that detailed soil maps are no longer needed. Nonetheless, there is an ongoing debate on how to integrate this type of information in hydrological models. In this study, dominant runoff processes (DRP) are mapped for meso-scale basins using the permeability of the substratum, land use information and the slope in a GIS. During a field campaign the processes are validated and for each DRP assumptions are made concerning their water storage capacity. The latter is done by means of combining soil data obtained during the field campaign with soil data obtained from the literature. Second, several parsimoniously parameterized conceptual hydrological models are used that incorporate certain aspects of the DRP. The result of these models are compared with a benchmark model in which the soil is represented as only one lumped parameter to test the contribution of the DRP in hydrological models. The proposed methodology is tested for 15 meso-scale river basins located in Luxembourg. The main goal of this study is to investigate if integrating dominant runoff processes, which have high information content concerning soil characteristics, with hydrological models allows the improvement of simulation results models with a view to regionalization and predictions in ungauged basins. The regionalization procedure gave no clear results. The calibration procedure and the well-mixed discharge signal of the calibration basins are considered major causes for this and it made the deconvolution of discharge signals of meso-scale basins problematic. From the results it is also suggested that DRP could very well display some sort of uniqueness of place, which was not foreseen in the methods from which they were derived. Furthermore, a strong seasonal influence on model performance was observed, implying a seasonal dependence of the DRP. When comparing the performance between the DRP models and the benchmark model no real distinction was found. To improve the performance of the DRP models, which are used in this study and also for then use of conceptual models in general, there is a need for an improved identification of the mechanisms that cause the different dominant runoff processes at the meso-scale. To achieve this, more orthogonal data could be of use for a better conceptualization of the DRPs. Then, models concepts should be adapted accordingly.