Conceptual Chemical Process Design for Sustainability.
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyse...
2017-05-25
the planning process. Current US Army doctrine links conceptual planning to the Army Design Methodology and detailed planning to the Military...Decision Making Process. By associating conceptual and detailed planning with doctrinal methodologies , it is easy to regard the transition as a set period...plans into detailed directives resulting in changes to the operational environment. 15. SUBJECT TERMS Design; Army Design Methodology ; Conceptual
NASA Technical Reports Server (NTRS)
Welstead, Jason; Crouse, Gilbert L., Jr.
2014-01-01
Empirical sizing guidelines such as tail volume coefficients have long been used in the early aircraft design phases for sizing stabilizers, resulting in conservatively stable aircraft. While successful, this results in increased empty weight, reduced performance, and greater procurement and operational cost relative to an aircraft with optimally sized surfaces. Including flight dynamics in the conceptual design process allows the design to move away from empirical methods while implementing modern control techniques. A challenge of flight dynamics and control is the numerous design variables, which are changing fluidly throughout the conceptual design process, required to evaluate the system response to some disturbance. This research focuses on addressing that challenge not by implementing higher order tools, such as computational fluid dynamics, but instead by linking the lower order tools typically used within the conceptual design process so each discipline feeds into the other. In thisresearch, flight dynamics and control was incorporated into the conceptual design process along with the traditional disciplines of vehicle sizing, weight estimation, aerodynamics, and performance. For the controller, a linear quadratic regulator structure with constant gains has been specified to reduce the user input. Coupling all the disciplines in the conceptual design phase allows the aircraft designer to explore larger design spaces where stabilizers are sized according to dynamic response constraints rather than historical static margin and volume coefficient guidelines.
ERIC Educational Resources Information Center
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2013-01-01
Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…
NASA Astrophysics Data System (ADS)
Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.
2014-11-01
Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.
Function-based design process for an intelligent ground vehicle vision system
NASA Astrophysics Data System (ADS)
Nagel, Robert L.; Perry, Kenneth L.; Stone, Robert B.; McAdams, Daniel A.
2010-10-01
An engineering design framework for an autonomous ground vehicle vision system is discussed. We present both the conceptual and physical design by following the design process, development and testing of an intelligent ground vehicle vision system constructed for the 2008 Intelligent Ground Vehicle Competition. During conceptual design, the requirements for the vision system are explored via functional and process analysis considering the flows into the vehicle and the transformations of those flows. The conceptual design phase concludes with a vision system design that is modular in both hardware and software and is based on a laser range finder and camera for visual perception. During physical design, prototypes are developed and tested independently, following the modular interfaces identified during conceptual design. Prototype models, once functional, are implemented into the final design. The final vision system design uses a ray-casting algorithm to process camera and laser range finder data and identify potential paths. The ray-casting algorithm is a single thread of the robot's multithreaded application. Other threads control motion, provide feedback, and process sensory data. Once integrated, both hardware and software testing are performed on the robot. We discuss the robot's performance and the lessons learned.
QFD-ANP Approach for the Conceptual Design of Research Vessels: A Case Study
NASA Astrophysics Data System (ADS)
Venkata Subbaiah, Kambagowni; Yeshwanth Sai, Koneru; Suresh, Challa
2016-10-01
Conceptual design is a subset of concept art wherein a new idea of product is created instead of a visual representation which would directly be used in a final product. The purpose is to understand the needs of conceptual design which are being used in engineering designs and to clarify the current conceptual design practice. Quality function deployment (QFD) is a customer oriented design approach for developing new or improved products and services to enhance customer satisfaction. House of quality (HOQ) has been traditionally used as planning tool of QFD which translates customer requirements (CRs) into design requirements (DRs). Factor analysis is carried out in order to reduce the CR portions of HOQ. The analytical hierarchical process is employed to obtain the priority ratings of CR's which are used in constructing HOQ. This paper mainly discusses about the conceptual design of an oceanographic research vessel using analytical network process (ANP) technique. Finally the QFD-ANP integrated methodology helps to establish the importance ratings of DRs.
Conceptual design of flapping-wing micro air vehicles.
Whitney, J P; Wood, R J
2012-09-01
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which their design principles closely follow. The first step in aircraft design is the development of a conceptual design, where basic specifications and vehicle size are established. Conceptual design methods do not rely on specific knowledge of the propulsion system, vehicle layout and subsystems; these details are addressed later in the design process. Non-traditional MAV designs based on birds or insects are less common and without well-established conceptual design methods. This paper presents a conceptual design process for hovering flapping-wing vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one degree-of-freedom dynamic flapping model. Important results include simple analytical expressions for flight endurance and range, predictions for maximum feasible wing size and body mass, and critical design space restrictions resulting from finite wing inertia. A new figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the performance of real and artificial insect wings. The impact of these results on future flapping-wing MAV designs is discussed in detail.
NASA Astrophysics Data System (ADS)
Miyajima, Hiroyuki; Yuhara, Naohiro
Regenerative Life Support Systems (RLSS), which maintain human lives by recycling substances essential for living, are comprised of humans, plants, and material circulation systems. The plants supply food to the humans or reproduce water and gases by photosynthesis, while the material circulation systems recycle physicochemically and circulate substances disposed by humans and plants. RLSS attracts attention since manned space activities have been shifted from previous short trips to long-term stay activities as such base as a space station, a lunar base, and a Mars base. The present typical space base is the International Space Station (ISS), a manned experimental base for prolonged stays, where RLSS recycles only water and air. In order to accommodate prolonged and extended manned activity in future space bases, developing RLSS that implements food production and regeneration of resources at once using plants is expected. The configuration of RLSS should be designed to suit its own duty, for which design requirements for RLSS with an unprecedented configuration may arise. Accordingly, it is necessary to establish a conceptual design method for generalized RLSS. It is difficult, however, to systematize the design process by analyzing previous design because there are only a few ground-experimental facilities, namely CEEF (Closed Ecology Experiment Facilities) of Japan, BIO-Plex (Bioregenerative Planetary Life Support Systems Test Complex) of the U.S., and BIOS3 of Russia. Thus a conceptual design method which doesn’t rely on previous design examples is required for generalized RLSS from the above reasons. This study formalizes a conceptual design process, and develops a conceptual design support tool for RLSS based on this design process.
The methodology of database design in organization management systems
NASA Astrophysics Data System (ADS)
Chudinov, I. L.; Osipova, V. V.; Bobrova, Y. V.
2017-01-01
The paper describes the unified methodology of database design for management information systems. Designing the conceptual information model for the domain area is the most important and labor-intensive stage in database design. Basing on the proposed integrated approach to design, the conceptual information model, the main principles of developing the relation databases are provided and user’s information needs are considered. According to the methodology, the process of designing the conceptual information model includes three basic stages, which are defined in detail. Finally, the article describes the process of performing the results of analyzing user’s information needs and the rationale for use of classifiers.
Conceptual design optimization study
NASA Technical Reports Server (NTRS)
Hollowell, S. J.; Beeman, E. R., II; Hiyama, R. M.
1990-01-01
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1994-11-30
Universal Oil Products, Inc. (UOP) of Des Plaines, Illinois has contracted A.E. Roberts & Associates, Inc. (AERA) of Atlanta, Georgia to prepare a sensitivity analysis for the development of the Fluidized-bed Copper Oxide (FBCO) process. As proposed by AERA in September 1991, development of the FBCO process design for a 500 mega-watt (MW) unit was divided into three tasks: (1) Establishment of a Conceptual Design, (2) Conceptual Design, (3) Cost Analysis Task 1 determined the basis for a conceptual design for the 500 megawatt (MW) FBCO process. It was completed by AERA in September of 1992, and a report wasmore » submitted at that time {open_quotes}Establishment of the Design Basis for Application to a 500 MW Coal-fired Facility.{close_quotes} Task 2 gathered all pertinent data available to date and reviewed its applicability to the 500 MW FBCO process. Work on this task was carried out on a joint basis by the AERA team members: Roberts & Schaefers worked on the dense phase transport aspect of the design; Cornell and Carnegie Mellon Universities worked on the design kinetics and modeling; and AERA contributed commercial power and combustion experience. Task 3 provides budgetary cost estimates for the FBCO process and competing alternative technologies for sulfur dioxide and nitrogen oxide removal.« less
SLUDGE TREATMENT PROJECT KOP CONCEPTUAL DESIGN CONTROL DECISION REPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
CARRO CA
2010-03-09
This control decision addresses the Knock-Out Pot (KOP) Disposition KOP Processing System (KPS) conceptual design. The KPS functions to (1) retrieve KOP material from canisters, (2) remove particles less than 600 {micro}m in size and low density materials from the KOP material, (3) load the KOP material into Multi-Canister Overpack (MCO) baskets, and (4) stage the MCO baskets for subsequent loading into MCOs. Hazard and accident analyses of the KPS conceptual design have been performed to incorporate safety into the design process. The hazard analysis is documented in PRC-STP-00098, Knock-Out Pot Disposition Project Conceptual Design Hazard Analysis. The accident analysismore » is documented in PRC-STP-CN-N-00167, Knock-Out Pot Disposition Sub-Project Canister Over Lift Accident Analysis. Based on the results of these analyses, and analyses performed in support of MCO transportation and MCO processing and storage activities at the Cold Vacuum Drying Facility (CVDF) and Canister Storage Building (CSB), control decision meetings were held to determine the controls required to protect onsite and offsite receptors and facility workers. At the conceptual design stage, these controls are primarily defined by their safety functions. Safety significant structures, systems, and components (SSCs) that could provide the identified safety functions have been selected for the conceptual design. It is anticipated that some safety SSCs identified herein will be reclassified based on hazard and accident analyses performed in support of preliminary and detailed design.« less
CONCEPTUAL DESIGNS FOR A NEW HIGHWAY VEHICLE EMISSIONS ESTIMATION METHODOLOGY
The report discusses six conceptual designs for a new highway vehicle emissions estimation methodology and summarizes the recommendations of each design for improving the emissions and activity factors in the emissions estimation process. he complete design reports are included a...
Conceptual designs of NDA instruments for the NRTA system at the Rokkasho Reprocessing Plant
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, T.K.; Klosterbuer, S.F.; Menlove, H.O.
The authors are studying conceptual designs of selected nondestructive assay (NDA) instruments for the near-real-time accounting system at the rokkasho Reprocessing Plant (RRP) of Japan Nuclear Fuel Limited (JNFL). The JNFL RRP is a large-scale commercial reprocessing facility for spent fuel from boiling-water and pressurized-water reactors. The facility comprises two major components: the main process area to separate and produce purified plutonium nitrate and uranyl nitrate from irradiated reactor spent fuels, and the co-denitration process area to combine and convert the plutonium nitrate and uranyl nitrate into mixed oxide (MOX). The selected NDA instruments for conceptual design studies are themore » MOX-product canister counter, holdup measurement systems for calcination and reduction furnaces and for blenders in the co-denitration process, the isotope dilution gamma-ray spectrometer for the spent fuel dissolver solution, and unattended verification systems. For more effective and practical safeguards and material control and accounting at RRP, the authors are also studying the conceptual design for the UO{sub 3} large-barrel counter. This paper discusses the state-of-the-art NDA conceptual design and research and development activities for the above instruments.« less
Techno-economic analysis Process model development for existing and conceptual processes Detailed heat integration Economic analysis of integrated processes Integration of process simulation learnings into control ;Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A
Structural Analysis in a Conceptual Design Framework
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Robinson, Jay H.; Eldred, Lloyd B.
2012-01-01
Supersonic aircraft designers must shape the outer mold line of the aircraft to improve multiple objectives, such as mission performance, cruise efficiency, and sonic-boom signatures. Conceptual designers have demonstrated an ability to assess these objectives for a large number of candidate designs. Other critical objectives and constraints, such as weight, fuel volume, aeroelastic effects, and structural soundness, are more difficult to address during the conceptual design process. The present research adds both static structural analysis and sizing to an existing conceptual design framework. The ultimate goal is to include structural analysis in the multidisciplinary optimization of a supersonic aircraft. Progress towards that goal is discussed and demonstrated.
Design and Validation of the Quantum Mechanics Conceptual Survey
ERIC Educational Resources Information Center
McKagan, S. B.; Perkins, K. K.; Wieman, C. E.
2010-01-01
The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper, we describe the design and validation of the survey, a process that included…
Conceptual models of information processing
NASA Technical Reports Server (NTRS)
Stewart, L. J.
1983-01-01
The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.
Learning to Deflect: Conceptual Change in Physics during Digital Game Play
ERIC Educational Resources Information Center
Sengupta, Pratim; Krinks, Kara D.; Clark, Douglas B.
2015-01-01
How does deep conceptual change occur when students play well-designed educational games? To answer this question, we present a case study in the form of a microgenetic analysis of a student's processes of knowledge construction as he played a conceptually-integrated digital game (SURGE Next) designed to support learning about Newtonian mechanics.…
Conceptual design of distillation-based hybrid separation processes.
Skiborowski, Mirko; Harwardt, Andreas; Marquardt, Wolfgang
2013-01-01
Hybrid separation processes combine different separation principles and constitute a promising design option for the separation of complex mixtures. Particularly, the integration of distillation with other unit operations can significantly improve the separation of close-boiling or azeotropic mixtures. Although the design of single-unit operations is well understood and supported by computational methods, the optimal design of flowsheets of hybrid separation processes is still a challenging task. The large number of operational and design degrees of freedom requires a systematic and optimization-based design approach. To this end, a structured approach, the so-called process synthesis framework, is proposed. This article reviews available computational methods for the conceptual design of distillation-based hybrid processes for the separation of liquid mixtures. Open problems are identified that must be addressed to finally establish a structured process synthesis framework for such processes.
Borek, Aleksandra J; Abraham, Charles
2018-03-01
Small groups are used to promote health, well-being, and personal change by altering members' perceptions, beliefs, expectations, and behaviour patterns. An extensive cross-disciplinary literature has articulated and tested theories explaining how such groups develop, function, and facilitate change. Yet these theoretical understandings are rarely applied in the development, description, and evaluation of health-promotion, group-based, behaviour-change interventions. Medline database, library catalogues, search engines, specific journals and reference lists were searched for relevant texts. Texts were reviewed for explanatory concepts or theories describing change processes in groups, which were integrated into the developing conceptual structure. This was designed to be a parsimonious conceptual framework that could be applied to design and delivery. Five categories of interacting processes and concepts were identified and defined: (1) group development processes, (2) dynamic group processes, (3) social change processes, (4) personal change processes, and (5) group design and operating parameters. Each of these categories encompasses a variety of theorised mechanisms explaining individual change in small groups. The final conceptual model, together with the design issues and practical recommendations derived from it, provides a practical basis for linking research and theory explaining group functioning to optimal design of group-based, behaviour-change interventions. © 2018 The Authors. Applied Psychology: Health and Well-Being published by John Wiley & Sons Ltd on behalf of International Association of Applied Psychology.
Handling Qualities Optimization for Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Theodore, Colin R.; Berger, Tom
2016-01-01
Over the past decade, NASA, under a succession of rotary-wing programs has been moving towards coupling multiple discipline analyses in a rigorous consistent manner to evaluate rotorcraft conceptual designs. Handling qualities is one of the component analyses to be included in a future NASA Multidisciplinary Analysis and Optimization framework for conceptual design of VTOL aircraft. Similarly, the future vision for the capability of the Concept Design and Assessment Technology Area (CD&A-TA) of the U.S Army Aviation Development Directorate also includes a handling qualities component. SIMPLI-FLYD is a tool jointly developed by NASA and the U.S. Army to perform modeling and analysis for the assessment of flight dynamics and control aspects of the handling qualities of rotorcraft conceptual designs. An exploration of handling qualities analysis has been carried out using SIMPLI-FLYD in illustrative scenarios of a tiltrotor in forward flight and single-main rotor helicopter at hover. Using SIMPLI-FLYD and the conceptual design tool NDARC integrated into a single process, the effects of variations of design parameters such as tail or rotor size were evaluated in the form of margins to fixed- and rotary-wing handling qualities metrics as well as the vehicle empty weight. The handling qualities design margins are shown to vary across the flight envelope due to both changing flight dynamic and control characteristics and changing handling qualities specification requirements. The current SIMPLI-FLYD capability and future developments are discussed in the context of an overall rotorcraft conceptual design process.
Conceptual Chemical Process Design for Sustainability. ...
This chapter examines the sustainable design of chemical processes, with a focus on conceptual design, hierarchical and short-cut methods, and analyses of process sustainability for alternatives. The chapter describes a methodology for incorporating process sustainability analyses throughout the conceptual design. Hierarchical and short-cut decision-making methods will be used to approach sustainability. An example showing a sustainability-based evaluation of chlor-alkali production processes is presented with economic analysis and five pollutants described as emissions. These emissions are analyzed according to their human toxicity potential by ingestion using the Waste Reduction Algorithm and a method based on US Environmental Protection Agency reference doses, with the addition of biodegradation for suitable components. Among the emissions, mercury as an element will not biodegrade, and results show the importance of this pollutant to the potential toxicity results and therefore the sustainability of the process design. The dominance of mercury in determining the long-term toxicity results when energy use is included suggests that all process system evaluations should (re)consider the role of mercury and other non-/slow-degrading pollutants in sustainability analyses. The cycling of nondegrading pollutants through the biosphere suggests the need for a complete analysis based on the economic, environmental, and social aspects of sustainability. Chapter reviews
Application of the generalized reduced gradient method to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Gabriele, G. A.
1984-01-01
The complete aircraft design process can be broken into three phases of increasing depth: conceptual design, preliminary design, and detail design. Conceptual design consists primarily of developing general arrangements and selecting the configuration that optimally satisfies all mission requirements. The result of the conceptual phase is a conceptual baseline configuration that serves as the starting point for the preliminary design phase. The conceptual design of an aircraft involves a complex trade-off of many independent variables that must be investigated before deciding upon the basic configuration. Some of these variables are discrete (number of engines), some represent different configurations (canard vs conventional tail) and some may represent incorporation of new technologies (aluminum vs composite materials). At Lockheed-Georgia, the sizing program is known as GASP (Generalized Aircraft Sizing Program). GASP is a large program containing analysis modules covering the many different disciplines involved fin defining the aricraft, such as aerodynamics, structures, stability and control, mission performance, and cost. These analysis modules provide first-level estimates the aircraft properties that are derived from handbook, experimental, and historical sources.
NASA Technical Reports Server (NTRS)
1986-01-01
The conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are highlighted. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or Follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSRF to the FOC LSRF.
POLLUTION PREVENTION IN THE EARLY STAGES OF HIERARCHICAL PROCESS DESIGN
Hierarchical methods are often used in the conceptual stages of process design to synthesize and evaluate process alternatives. In this work, the methods of hierarchical process design will be focused on environmental aspects. In particular, the design methods will be coupled to ...
NASA Astrophysics Data System (ADS)
Tarumi, Shinya; Kozaki, Kouji; Kitamura, Yoshinobu; Mizoguchi, Riichiro
In the recent materials research, much work aims at realization of ``functional materials'' by changing structure and/or manufacturing process with nanotechnology. However, knowledge about the relationship among function, structure and manufacturing process is not well organized. So, material designers have to consider a lot of things at the same time. It would be very helpful for them to support their design process by a computer system. In this article, we discuss a conceptual design supporting system for nano-materials. Firstly, we consider a framework for representing functional structures and manufacturing processes of nano-materials with relationships among them. We expand our former framework for representing functional knowledge based on our investigation through discussion with experts of nano-materials. The extended framework has two features: 1) it represents functional structures and manufacturing processes comprehensively, 2) it expresses parameters of function and ways with their dependencies because they are important for material design. Next, we describe a conceptual design support system we developed based on the framework with its functionalities. Lastly, we evaluate the utility of our system in terms of functionality for design supports. For this purpose, we tried to represent two real examples of material design. And then we did an evaluation experiment on conceptual design of material using our system with the collaboration of domain experts.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level. ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed. Examples of mass property stochastic calculations produced during a recent systems study are provided. This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime, few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Aircraft Structural Mass Property Prediction Using Conceptual-Level Structural Analysis
NASA Technical Reports Server (NTRS)
Sexstone, Matthew G.
1998-01-01
This paper describes a methodology that extends the use of the Equivalent LAminated Plate Solution (ELAPS) structural analysis code from conceptual-level aircraft structural analysis to conceptual-level aircraft mass property analysis. Mass property analysis in aircraft structures has historically depended upon parametric weight equations at the conceptual design level and Finite Element Analysis (FEA) at the detailed design level ELAPS allows for the modeling of detailed geometry, metallic and composite materials, and non-structural mass coupled with analytical structural sizing to produce high-fidelity mass property analyses representing fully configured vehicles early in the design process. This capability is especially valuable for unusual configuration and advanced concept development where existing parametric weight equations are inapplicable and FEA is too time consuming for conceptual design. This paper contrasts the use of ELAPS relative to empirical weight equations and FEA. ELAPS modeling techniques are described and the ELAPS-based mass property analysis process is detailed Examples of mass property stochastic calculations produced during a recent systems study are provided This study involved the analysis of three remotely piloted aircraft required to carry scientific payloads to very high altitudes at subsonic speeds. Due to the extreme nature of this high-altitude flight regime,few existing vehicle designs are available for use in performance and weight prediction. ELAPS was employed within a concurrent engineering analysis process that simultaneously produces aerodynamic, structural, and static aeroelastic results for input to aircraft performance analyses. The ELAPS models produced for each concept were also used to provide stochastic analyses of wing structural mass properties. The results of this effort indicate that ELAPS is an efficient means to conduct multidisciplinary trade studies at the conceptual design level.
Scrutinizing UML Activity Diagrams
NASA Astrophysics Data System (ADS)
Al-Fedaghi, Sabah
Building an information system involves two processes: conceptual modeling of the “real world domain” and designing the software system. Object-oriented methods and languages (e.g., UML) are typically used for describing the software system. For the system analysis process that produces the conceptual description, object-oriented techniques or semantics extensions are utilized. Specifically, UML activity diagrams are the “flow charts” of object-oriented conceptualization tools. This chapter proposes an alternative to UML activity diagrams through the development of a conceptual modeling methodology based on the notion of flow.
Developing and Applying Synthesis Models of Emerging Space Systems
2016-03-01
enables the exploration of small satellite physical trade -offs early in the conceptual design phase of the DOD space acquisition process. Early...provide trade space insights that can assist DOD space acquisition professionals in making better decisions in the conceptual design phase. More informed
Integration of Engine, Plume, and CFD Analyses in Conceptual Design of Low-Boom Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Li, Wu; Campbell, Richard; Geiselhart, Karl; Shields, Elwood; Nayani, Sudheer; Shenoy, Rajiv
2009-01-01
This paper documents an integration of engine, plume, and computational fluid dynamics (CFD) analyses in the conceptual design of low-boom supersonic aircraft, using a variable fidelity approach. In particular, the Numerical Propulsion Simulation System (NPSS) is used for propulsion system cycle analysis and nacelle outer mold line definition, and a low-fidelity plume model is developed for plume shape prediction based on NPSS engine data and nacelle geometry. This model provides a capability for the conceptual design of low-boom supersonic aircraft that accounts for plume effects. Then a newly developed process for automated CFD analysis is presented for CFD-based plume and boom analyses of the conceptual geometry. Five test cases are used to demonstrate the integrated engine, plume, and CFD analysis process based on a variable fidelity approach, as well as the feasibility of the automated CFD plume and boom analysis capability.
Transitioning from conceptual design to construction performance specification
NASA Astrophysics Data System (ADS)
Jeffers, Paul; Warner, Mark; Craig, Simon; Hubbard, Robert; Marshall, Heather
2012-09-01
On successful completion of a conceptual design review by a funding agency or customer, there is a transition phase before construction contracts can be placed. The nature of this transition phase depends on the Project's approach to construction and the particular subsystem being considered. There are generically two approaches; project retention of design authority and issuance of build to print contracts, or issuance of subsystem performance specifications with controlled interfaces. This paper relates to the latter where a proof of concept (conceptual or reference design) is translated into performance based sub-system specifications for competitive tender. This translation is not a straightforward process and there are a number of different issues to consider in the process. This paper deals with primarily the Telescope mount and Enclosure subsystems. The main subjects considered in this paper are: • Typical status of design at Conceptual Design Review compared with the desired status of Specifications and Interface Control Documents at Request for Quotation. • Options for capture and tracking of system requirements flow down from science / operating requirements and sub-system requirements, and functional requirements derived from reference design. • Requirements that may come specifically from the contracting approach. • Methods for effective use of reference design work without compromising a performance based specification. • Management of project team's expectation relating to design. • Effects on cost estimates from reference design to actual. This paper is based on experience and lessons learned through this process on both the VISTA and the ATST projects.
Design for Safety - The Ares Launch Vehicles Paradigm Change
NASA Technical Reports Server (NTRS)
Safie, Fayssal M.; Maggio, Gaspare
2010-01-01
The lessons learned from the S&MA early involvement in the Ares I launch vehicle design phases proved that performing an in-line function jointly with engineering is critical for S&MA to have an effective role in supporting the system, element, and component design. These lessons learned were used to effectively support the Ares V conceptual design phase and planning for post conceptual design phases. The Top level Conceptual LOM assessment for Ares V performed by the S&MA community jointly with the engineering Advanced Concept Office (ACO) was influential in the final selection of the Ares V system configuration. Post conceptual phase, extensive reliability effort should be planned to support future Heavy Lift Launch Vehicles (HLLV) design. In-depth reliability analysis involving the design, manufacturing, and system engineering communities is critical to understand design and process uncertainties and system integrated failures.
Conceptual design of single turbofan engine powered light aircraft
NASA Technical Reports Server (NTRS)
Snyder, F. S.; Voorhees, C. G.; Heinrich, A. M.; Baisden, D. N.
1977-01-01
The conceptual design of a four place single turbofan engine powered light aircraft was accomplished utilizing contemporary light aircraft conventional design techniques as a means of evaluating the NASA-Ames General Aviation Synthesis Program (GASP) as a preliminary design tool. In certain areas, disagreement or exclusion were found to exist between the results of the conventional design and GASP processes. Detail discussion of these points along with the associated contemporary design methodology are presented.
FUEL CELL OPERATION ON ANAEROBIC DIGESTER GAS: CONCEPTUAL DESIGN AND ASSESSMENT
The conceptual design of a fuel cell (FC) system for operation on anaerobic digester gas (ADG) is described and its economic and environmental feasibility is projected. ADG is produced at water treatment plants during the process of treating sewage anaerobically to reduce solids....
Lee, Inkyu; Park, Jinwoo; Moon, Il
2017-12-01
This paper describes data of an integrated process, cryogenic energy storage system combined with liquefied natural gas (LNG) regasification process. The data in this paper is associated with the article entitled "Conceptual Design and Exergy Analysis of Combined Cryogenic Energy Storage and LNG Regasification Processes: Cold and Power Integration" (Lee et al., 2017) [1]. The data includes the sensitivity case study dataset of the air flow rate and the heat exchanging feasibility data by composite curves. The data is expected to be helpful to the cryogenic energy process development.
Graphic Design in Libraries: A Conceptual Process
ERIC Educational Resources Information Center
Ruiz, Miguel
2014-01-01
Providing successful library services requires efficient and effective communication with users; therefore, it is important that content creators who develop visual materials understand key components of design and, specifically, develop a holistic graphic design process. Graphic design, as a form of visual communication, is the process of…
Innovating Method of Existing Mechanical Product Based on TRIZ Theory
NASA Astrophysics Data System (ADS)
Zhao, Cunyou; Shi, Dongyan; Wu, Han
Main way of product development is adaptive design and variant design based on existing product. In this paper, conceptual design frame and its flow model of innovating products is put forward through combining the methods of conceptual design and TRIZ theory. Process system model of innovating design that includes requirement analysis, total function analysis and decomposing, engineering problem analysis, finding solution of engineering problem and primarily design is constructed and this establishes the base for innovating design of existing product.
NASA Technical Reports Server (NTRS)
Sensmeier, Mark D.; Samareh, Jamshid A.
2005-01-01
An approach is proposed for the application of rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process. This should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. A demonstration of this process is shown for two sample aircraft wing designs.
Conceptual design of ACB-CP for ITER cryogenic system
NASA Astrophysics Data System (ADS)
Jiang, Yongcheng; Xiong, Lianyou; Peng, Nan; Tang, Jiancheng; Liu, Liqiang; Zhang, Liang
2012-06-01
ACB-CP (Auxiliary Cold Box for Cryopumps) is used to supply the cryopumps system with necessary cryogen in ITER (International Thermonuclear Experimental Reactor) cryogenic distribution system. The conceptual design of ACB-CP contains thermo-hydraulic analysis, 3D structure design and strength checking. Through the thermohydraulic analysis, the main specifications of process valves, pressure safety valves, pipes, heat exchangers can be decided. During the 3D structure design process, vacuum requirement, adiabatic requirement, assembly constraints and maintenance requirement have been considered to arrange the pipes, valves and other components. The strength checking has been performed to crosscheck if the 3D design meets the strength requirements for the ACB-CP.
Parity in Designing, Conducting, and Evaluating Teacher Education Programs: A Conceptual Definition.
ERIC Educational Resources Information Center
Caruso, Joseph J.
Individuals, agencies, and institutions involved in the education and employment of teachers conceptually defined parity relevant to the decision-making process in planning, conducting, and evaluating teacher education programs and translated the conceptual definition into an instrument for describing parity in consortium-centered teacher…
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2010-08-01
This article investigates the role of creativity in ergonomic design and the generic process of developing creative products and services. Creativity is gaining increased emphasis in both academia and industry. More than 50 years of research in creativity indicates that creativity is key to product and service innovation. Nevertheless, there is scarcely any comprehensive review dedicated to appraising the complex construct of creativity, the underlying cognitive process, and the role of creativity in product and service development. We review relevant literature regarding creativity, creative cognition, and the engineering design process to appraise the role of creativity in ergonomic design and to construct a conceptual model of creative product and service development. A framework of ergodesign creativity is advanced that highlights the central role of creativity in synergistically addressing the four dimensions of ergonomic design: functionality, safety, usability, and affectivity. A conceptual model of creative design process is then constructed that is goal oriented and is initiated by active problem finding and problem formulating. This process is carried out in a recursive and dynamic way, facilitated by creative thinking strategies. It is proposed that ergodesign creativity can add supplemental value to products and services, which subsequently affects consumer behavior and helps organizations gain competitive advantage. The proposed conceptual framework of ergodesign creativity and creative design process can serve as the ground for future theory development. Propositions advanced in this study should facilitate designers generating products and services that are creative and commercially competitive.
Flexible Learning Itineraries Based on Conceptual Maps
ERIC Educational Resources Information Center
Agudelo, Olga Lucía; Salinas, Jesús
2015-01-01
The use of learning itineraries based on conceptual maps is studied in order to propose a more flexible instructional design that strengthens the learning process focused on the student, generating non-linear processes, characterising its elements, setting up relationships between them and shaping a general model with specifications for each…
NASA Astrophysics Data System (ADS)
Hernández, María Isabel; Couso, Digna; Pintó, Roser
2015-04-01
The study we have carried out aims to characterize 15- to 16-year-old students' learning progressions throughout the implementation of a teaching-learning sequence on the acoustic properties of materials. Our purpose is to better understand students' modeling processes about this topic and to identify how the instructional design and actual enactment influences students' learning progressions. This article presents the design principles which elicit the structure and types of modeling and inquiry activities designed to promote students' development of three conceptual models. Some of these activities are enhanced by the use of ICT such as sound level meters connected to data capture systems, which facilitate the measurement of the intensity level of sound emitted by a sound source and transmitted through different materials. Framing this study within the design-based research paradigm, it consists of the experimentation of the designed teaching sequence with two groups of students ( n = 29) in their science classes. The analysis of students' written productions together with classroom observations of the implementation of the teaching sequence allowed characterizing students' development of the conceptual models. Moreover, we could evidence the influence of different modeling and inquiry activities on students' development of the conceptual models, identifying those that have a major impact on students' modeling processes. Having evidenced different levels of development of each conceptual model, our results have been interpreted in terms of the attributes of each conceptual model, the distance between students' preliminary mental models and the intended conceptual models, and the instructional design and enactment.
Automated Tetrahedral Mesh Generation for CFD Analysis of Aircraft in Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu; Campbell, Richard L.
2014-01-01
The paper introduces an automation process of generating a tetrahedral mesh for computational fluid dynamics (CFD) analysis of aircraft configurations in early conceptual design. The method was developed for CFD-based sonic boom analysis of supersonic configurations, but can be applied to aerodynamic analysis of aircraft configurations in any flight regime.
A Novel CAI System for Space Conceptualization Training in Perspective Sketching
ERIC Educational Resources Information Center
Luh, Ding-Bang; Chen, Shao-Nung
2013-01-01
For many designers, freehand sketching is the primary tool for conceptualization in the early stage of the design process. However, current education on concept presentation techniques rarely emphasizes the construction of the most fundamental spatial unit, the cube. Incorrect construction of spatial units leads to disproportions that deviate from…
Enabling Rapid and Robust Structural Analysis During Conceptual Design
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Padula, Sharon L.; Li, Wu
2015-01-01
This paper describes a multi-year effort to add a structural analysis subprocess to a supersonic aircraft conceptual design process. The desired capabilities include parametric geometry, automatic finite element mesh generation, static and aeroelastic analysis, and structural sizing. The paper discusses implementation details of the new subprocess, captures lessons learned, and suggests future improvements. The subprocess quickly compares concepts and robustly handles large changes in wing or fuselage geometry. The subprocess can rank concepts with regard to their structural feasibility and can identify promising regions of the design space. The automated structural analysis subprocess is deemed robust and rapid enough to be included in multidisciplinary conceptual design and optimization studies.
Incorporating Handling Qualities Analysis into Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben
2014-01-01
This paper describes the initial development of a framework to incorporate handling qualities analyses into a rotorcraft conceptual design process. In particular, the paper describes how rotorcraft conceptual design level data can be used to generate flight dynamics models for handling qualities analyses. Also, methods are described that couple a basic stability augmentation system to the rotorcraft flight dynamics model to extend analysis to beyond that of the bare airframe. A methodology for calculating the handling qualities characteristics of the flight dynamics models and for comparing the results to ADS-33E criteria is described. Preliminary results from the application of the handling qualities analysis for variations in key rotorcraft design parameters of main rotor radius, blade chord, hub stiffness and flap moment of inertia are shown. Varying relationships, with counteracting trends for different handling qualities criteria and different flight speeds are exhibited, with the action of the control system playing a complex part in the outcomes. Overall, the paper demonstrates how a broad array of technical issues across flight dynamics stability and control, simulation and modeling, control law design and handling qualities testing and evaluation had to be confronted to implement even a moderately comprehensive handling qualities analysis of relatively low fidelity models. A key outstanding issue is to how to 'close the loop' with an overall design process, and options for the exploration of how to feedback handling qualities results to a conceptual design process are proposed for future work.
The role of right and left parietal lobes in the conceptual processing of numbers.
Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D; Price, Cathy J
2010-02-01
Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention, and response-selection processes. To dissociate parietal activation that is number-selective from parietal activation related to other stimulus or response-selection processes, we used fMRI to compare numbers and object names during exactly the same conceptual and perceptual tasks while factoring out activations correlating with response times. We found that right parietal activation was higher for conceptual decisions on numbers relative to the same tasks on object names, even when response time effects were fully factored out. In contrast, left parietal activation for numbers was equally involved in conceptual processing of object names. We suggest that left parietal activation for numbers reflects a range of processes, including the retrieval of learnt facts that are also involved in conceptual decisions on object names. In contrast, number selectivity in right parietal cortex reflects processes that are more involved in conceptual decisions on numbers than object names. Our results generate a new set of hypotheses that have implications for the design of future behavioral and functional imaging studies of patients with left and right parietal damage.
Landing Gear Integration in Aircraft Conceptual Design. Revision
NASA Technical Reports Server (NTRS)
Chai, Sonny T.; Mason, William H.
1997-01-01
The design of the landing gear is one of the more fundamental aspects of aircraft design. The design and integration process encompasses numerous engineering disciplines, e.g., structure, weights, runway design, and economics, and has become extremely sophisticated in the last few decades. Although the design process is well-documented, no attempt has been made until now in the development of a design methodology that can be used within an automated environment. As a result, the process remains to be a key responsibility for the configuration designer and is largely experience-based and graphically-oriented. However, as industry and government try to incorporate multidisciplinary design optimization (MDO) methods in the conceptual design phase, the need for a more systematic procedure has become apparent. The development of an MDO-capable design methodology as described in this work is focused on providing the conceptual designer with tools to help automate the disciplinary analyses, i.e., geometry, kinematics, flotation, and weight. Documented design procedures and analyses were examined to determine their applicability, and to ensure compliance with current practices and regulations. Using the latest information as obtained from industry during initial industry survey, the analyses were in terms modified and expanded to accommodate the design criteria associated with the advanced large subsonic transports. Algorithms were then developed based on the updated analysis procedures to be incorporated into existing MDO codes.
Demonstration of the feasibility of automated silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Taylor, W. E.; Schwartz, F. M.
1975-01-01
A study effort was undertaken to determine the process, steps and design requirements of an automated silicon solar cell production facility. Identification of the key process steps was made and a laboratory model was conceptually designed to demonstrate the feasibility of automating the silicon solar cell fabrication process. A detailed laboratory model was designed to demonstrate those functions most critical to the question of solar cell fabrication process automating feasibility. The study and conceptual design have established the technical feasibility of automating the solar cell manufacturing process to produce low cost solar cells with improved performance. Estimates predict an automated process throughput of 21,973 kilograms of silicon a year on a three shift 49-week basis, producing 4,747,000 hexagonal cells (38mm/side), a total of 3,373 kilowatts at an estimated manufacturing cost of $0.866 per cell or $1.22 per watt.
NASA Astrophysics Data System (ADS)
Omoragbon, Amen
Although, the Aerospace and Defense (A&D) industry is a significant contributor to the United States' economy, national prestige and national security, it experiences significant cost and schedule overruns. This problem is related to the differences between technology acquisition assessments and aerospace vehicle conceptual design. Acquisition assessments evaluate broad sets of alternatives with mostly qualitative techniques, while conceptual design tools evaluate narrow set of alternatives with multidisciplinary tools. In order for these two fields to communicate effectively, a common platform for both concerns is desired. This research is an original contribution to a three-part solution to this problem. It discusses the decomposition step of an innovation technology and sizing tool generation framework. It identifies complex multidisciplinary system definitions as a bridge between acquisition and conceptual design. It establishes complex multidisciplinary building blocks that can be used to build synthesis systems as well as technology portfolios. It also describes a Graphical User Interface Designed to aid in decomposition process. Finally, it demonstrates an application of the methodology to a relevant acquisition and conceptual design problem posed by the US Air Force.
NASA Technical Reports Server (NTRS)
1986-01-01
Lockheed Missiles and Space Company's conceptual designs and programmatics for a Space Station Nonhuman Life Sciences Research Facility (LSRF) are presented. Conceptual designs and programmatics encompass an Initial Orbital Capability (IOC) LSRF, a growth or follow-on Orbital Capability (FOC), and the transitional process required to modify the IOC LSFR to the FOC LSFR. The IOC and FOC LSFRs correspond to missions SAAX0307 and SAAX0302 of the Space Station Mission Requirements Database, respectively.
NASA Technical Reports Server (NTRS)
DeMott, Diana; Fuqua, Bryan; Wilson, Paul
2013-01-01
Once a project obtains approval, decision makers have to consider a variety of alternative paths for completing the project and meeting the project objectives. How decisions are made involves a variety of elements including: cost, experience, current technology, ideologies, politics, future needs and desires, capabilities, manpower, timing, available information, and for many ventures management needs to assess the elements of risk versus reward. The use of high level Probabilistic Risk Assessment (PRA) Models during conceptual design phases provides management with additional information during the decision making process regarding the risk potential for proposed operations and design prototypes. The methodology can be used as a tool to: 1) allow trade studies to compare alternatives based on risk, 2) determine which elements (equipment, process or operational parameters) drives the risk, and 3) provide information to mitigate or eliminate risks early in the conceptual design to lower costs. Creating system models using conceptual design proposals and generic key systems based on what is known today can provide an understanding of the magnitudes of proposed systems and operational risks and facilitates trade study comparisons early in the decision making process. Identifying the "best" way to achieve the desired results is difficult, and generally occurs based on limited information. PRA provides a tool for decision makers to explore how some decisions will affect risk before the project is committed to that path, which can ultimately save time and money.
Risk Evaluation in the Pre-Phase A Conceptual Design of Spacecraft
NASA Technical Reports Server (NTRS)
Fabisinski, Leo L., III; Maples, Charlotte Dauphne
2010-01-01
Typically, the most important decisions in the design of a spacecraft are made in the earliest stages of its conceptual design the Pre-Phase A stages. It is in these stages that the greatest number of design alternatives is considered, and the greatest number of alternatives is rejected. The focus of Pre-Phase A conceptual development is on the evaluation and comparison of whole concepts and the larger-scale systems comprising those concepts. This comparison typically uses general Figures of Merit (FOMs) to quantify the comparative benefits of designs and alternative design features. Along with mass, performance, and cost, risk should be one of the major FOMs in evaluating design decisions during the conceptual design phases. However, risk is often given inadequate consideration in conceptual design practice. The reasons frequently given for this lack of attention to risk include: inadequate mission definition, lack of rigorous design requirements in early concept phases, lack of fidelity in risk assessment methods, and under-evaluation of risk as a viable FOM for design evaluation. In this paper, the role of risk evaluation in early conceptual design is discussed. The various requirements of a viable risk evaluation tool at the Pre-Phase A level are considered in light of the needs of a typical spacecraft design study. A technique for risk identification and evaluation is presented. The application of the risk identification and evaluation approach to the conceptual design process is discussed. Finally, a computational tool for risk profiling is presented and applied to assess the risk for an existing Pre-Phase A proposal. The resulting profile is compared to the risks identified for the proposal by other means.
Cultivating the Ineffable: The Role of Contemplative Practice in Enactivist Learning
ERIC Educational Resources Information Center
Morgan, Patricia; Abrahamson, Dor
2016-01-01
We consider designs for conceptual learning where students first engage in pre-symbolic problem solving and then articulate their solutions formally. An enduring problem in these designs has been to support students in accessing their pre-conceptual situated process, so that they can reflect on it and couch it in mathematical form. Contemplative…
ERIC Educational Resources Information Center
Greenman, Jim
1992-01-01
The process of designing a child care center is described. This process includes the conceptual and schematic design, schematic pricing, design development, and construction documents. Overall design criteria, and interior program components, are discussed. (LB)
Lee, Heewon; Contento, Isobel R.; Koch, Pamela
2012-01-01
Objective To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. Design A process evaluation study based on a systematic conceptual model. Setting Five middle schools in New York City. Participants 562 students in 20 classes and their science teachers (n=8). Main Outcome Measures Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers’ curriculum evaluation, and satisfaction with teaching the curriculum. Analysis Descriptive statistics and Spearman’s Rho Correlation for quantitative analysis and content analysis for qualitative data were used. Results Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teachers’ satisfaction with teaching the curriculum was highly correlated with students’ satisfaction (p <.05). Teachers’ perception of amount of student work was negatively correlated with implementation and with student satisfaction (p<.05). Conclusions and implications Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. PMID:23321021
NASA Astrophysics Data System (ADS)
Huang, Xiao
2006-04-01
Today's and especially tomorrow's competitive launch vehicle design environment requires the development of a dedicated generic Space Access Vehicle (SAV) design methodology. A total of 115 industrial, research, and academic aircraft, helicopter, missile, and launch vehicle design synthesis methodologies have been evaluated. As the survey indicates, each synthesis methodology tends to focus on a specific flight vehicle configuration, thus precluding the key capability to systematically compare flight vehicle design alternatives. The aim of the research investigation is to provide decision-making bodies and the practicing engineer a design process and tool box for robust modeling and simulation of flight vehicles where the ultimate performance characteristics may hinge on numerical subtleties. This will enable the designer of a SAV for the first time to consistently compare different classes of SAV configurations on an impartial basis. This dissertation presents the development steps required towards a generic (configuration independent) hands-on flight vehicle conceptual design synthesis methodology. This process is developed such that it can be applied to any flight vehicle class if desired. In the present context, the methodology has been put into operation for the conceptual design of a tourist Space Access Vehicle. The case study illustrates elements of the design methodology & algorithm for the class of Horizontal Takeoff and Horizontal Landing (HTHL) SAVs. The HTHL SAV design application clearly outlines how the conceptual design process can be centrally organized, executed and documented with focus on design transparency, physical understanding and the capability to reproduce results. This approach offers the project lead and creative design team a management process and tool which iteratively refines the individual design logic chosen, leading to mature design methods and algorithms. As illustrated, the HTHL SAV hands-on design methodology offers growth potential in that the same methodology can be continually updated and extended to other SAV configuration concepts, such as the Vertical Takeoff and Vertical Landing (VTVL) SAV class. Having developed, validated and calibrated the methodology for HTHL designs in the 'hands-on' mode, the report provides an outlook how the methodology will be integrated into a prototype computerized design synthesis software AVDS-PrADOSAV in a follow-on step.
Optimization in the systems engineering process
NASA Technical Reports Server (NTRS)
Lemmerman, Loren A.
1993-01-01
The essential elements of the design process consist of the mission definition phase that provides the system requirements, the conceptual design, the preliminary design and finally the detailed design. Mission definition is performed largely by operations analysts in conjunction with the customer. The result of their study is handed off to the systems engineers for documentation as the systems requirements. The document that provides these requirements is the basis for the further design work of the design engineers at the Lockheed-Georgia Company. The design phase actually begins with conceptual design, which is generally conducted by a small group of engineers using multidisciplinary design programs. Because of the complexity of the design problem, the analyses are relatively simple and generally dependent on parametric analyses of the configuration. The result of this phase is a baseline configuration from which preliminary design may be initiated.
Advanced Usage of Vehicle Sketch Pad for CFD-Based Conceptual Design
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2013-01-01
Conceptual design is the most fluid phase of aircraft design. It is important to be able to perform large scale design space exploration of candidate concepts that can achieve the design intent to avoid more costly configuration changes in later stages of design. This also means that conceptual design is highly dependent on the disciplinary analysis tools to capture the underlying physics accurately. The required level of analysis fidelity can vary greatly depending on the application. Vehicle Sketch Pad (VSP) allows the designer to easily construct aircraft concepts and make changes as the design matures. More recent development efforts have enabled VSP to bridge the gap to high-fidelity analysis disciplines such as computational fluid dynamics and structural modeling for finite element analysis. This paper focuses on the current state-of-the-art geometry modeling for the automated process of analysis and design of low-boom supersonic concepts using VSP and several capability-enhancing design tools.
Multiple Perspectives of Conceptual Change in Science and the Challenges Ahead
ERIC Educational Resources Information Center
Treagust, David F.; Duit, Reinders
2009-01-01
Conceptual change views of teaching and learning processes in science, and also in various other content domains, have played a significant role in research on teaching and learning as well as in instructional design since the late 1970s. Conceptual change can be interpreted from different individual perspectives or from multiple perspectives. In…
Sánchez, Óscar J; Cardona, Carlos A
2012-01-01
In this work, the hierarchical decomposition methodology was used to conceptually design the production of fuel ethanol from sugarcane. The decomposition of the process into six levels of analysis was carried out. Several options of technological configurations were assessed in each level considering economic and environmental criteria. The most promising alternatives were chosen rejecting the ones with a least favorable performance. Aspen Plus was employed for simulation of each one of the technological configurations studied. Aspen Icarus was used for economic evaluation of each configuration, and WAR algorithm was utilized for calculation of the environmental criterion. The results obtained showed that the most suitable synthesized flowsheet involves the continuous cultivation of Zymomonas mobilis with cane juice as substrate and including cell recycling and the ethanol dehydration by molecular sieves. The proposed strategy demonstrated to be a powerful tool for conceptual design of biotechnological processes considering both techno-economic and environmental indicators. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1988-01-01
The Rubber Airplane program, which combines two symbolic processing techniques with a component-based database of design knowledge, is proposed as a computer aid for conceptual design. Using object-oriented programming, programs are organized around the objects and behavior to be simulated, and using constraint propagation, declarative statements designate mathematical relationships among all the equation variables. It is found that the additional level of organizational structure resulting from the arrangement of the design information in terms of design components provides greater flexibility and convenience.
ERIC Educational Resources Information Center
Svensson, Goran; Wood, Greg
2011-01-01
Purpose: The objective of this paper is to introduce and describe a conceptual framework of corporate and business ethics across organizations in terms of ethical structures, ethical processes and ethical performance. Design/methodology/approach: A framework is outlined and positioned incorporating an ethical frame of reference in the field of…
ERIC Educational Resources Information Center
Sen, Senol; Yilmaz, Ayhan; Geban, Ömer
2016-01-01
The purpose of this study was to investigate the effect of Process Oriented Guided Inquiry Learning (POGIL) method compared to traditional teaching method on 11th grade students' conceptual understanding of electrochemistry concepts. Participants were 115 students from a public school in Turkey. Nonequivalent control group design was used. Two…
A closed-loop air revitalization process technology demonstrator
NASA Astrophysics Data System (ADS)
Mulloth, Lila; Perry, Jay; Luna, Bernadette; Kliss, Mark
Demonstrating a sustainable, reliable life support system process design that possesses the capability to close the oxygen cycle to the greatest extent possible is required for extensive surface exploration of the Moon and Mars by humans. A conceptual closed-loop air revitalization system process technology demonstrator that combines the CO2 removal, recovery, and reduction and oxygen generation operations in a single compact envelope is described. NASA has developed, and in some cases flown, process technologies for capturing metabolic CO2 from air, reducing CO2 to H2O and CH4, electrolyzing H2O to O2, and electrolyzing CO2 to O2 and CO among a number of candidates. Traditionally, these processes either operate in parallel with one another or have not taken full benefit of a unit operation-based design approach to take complete advantage of the synergy between individual technologies. The appropriate combination of process technologies must capitalize on the advantageous aspects of individual technologies while eliminating or transforming the features that limit their feasibility when considered alone. Such a process technology integration approach also provides advantages of optimized mass, power and volume characteristics for the hardware embodiment. The conceptual air revitalization system process design is an ideal technology demonstrator for the critically needed closed-loop life support capabilities for long duration human exploration of the lunar surface and extending crewed space exploration toward Mars. The conceptual process design incorporates low power CO2 removal, process gas drying, and advanced engineered adsorbents being developed by NASA and industry.
The use of COSMIC NASTRAN in an integrated conceptual design environment
NASA Technical Reports Server (NTRS)
White, Gil
1989-01-01
Changes in both software and hardware are rapidly bringing conceptual engineering tools like finite element analysis into mainstream mechanical design. Systems that integrate all phases of the manufacturing process provide the most cost benefits. The application of programming concepts like object oriented programming allow for the encapsulation of intelligent data within the design geometry. This combined with declining cost in per seat hardware bring new alternatives to the user.
Improving aircraft conceptual design - A PHIGS interactive graphics interface for ACSYNT
NASA Technical Reports Server (NTRS)
Wampler, S. G.; Myklebust, A.; Jayaram, S.; Gelhausen, P.
1988-01-01
A CAD interface has been created for the 'ACSYNT' aircraft conceptual design code that permits the execution and control of the design process via interactive graphics menus. This CAD interface was coded entirely with the new three-dimensional graphics standard, the Programmer's Hierarchical Interactive Graphics System. The CAD/ACSYNT system is designed for use by state-of-the-art high-speed imaging work stations. Attention is given to the approaches employed in modeling, data storage, and rendering.
NASA Astrophysics Data System (ADS)
Arnaoudova, Kristina; Stanchev, Peter
2015-11-01
The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.
Zeng, Liang; Proctor, Robert W; Salvendy, Gavriel
2011-06-01
This research is intended to empirically validate a general model of creative product and service development proposed in the literature. A current research gap inspired construction of a conceptual model to capture fundamental phases and pertinent facilitating metacognitive strategies in the creative design process. The model also depicts the mechanism by which design creativity affects consumer behavior. The validity and assets of this model have not yet been investigated. Four laboratory studies were conducted to demonstrate the value of the proposed cognitive phases and associated metacognitive strategies in the conceptual model. Realistic product and service design problems were used in creativity assessment to ensure ecological validity. Design creativity was enhanced by explicit problem analysis, whereby one formulates problems from different perspectives and at different levels of abstraction. Remote association in conceptual combination spawned more design creativity than did near association. Abstraction led to greater creativity in conducting conceptual expansion than did specificity, which induced mental fixation. Domain-specific knowledge and experience enhanced design creativity, indicating that design can be of a domain-specific nature. Design creativity added integrated value to products and services and positively influenced customer behavior. The validity and value of the proposed conceptual model is supported by empirical findings. The conceptual model of creative design could underpin future theory development. Propositions advanced in this article should provide insights and approaches to facilitate organizations pursuing product and service creativity to gain competitive advantage.
METHODS FOR INTEGRATING ENVIRONMENTAL CONSIDERATIONS INTO CHEMICAL PROCESS DESIGN DECISIONS
The objective of this cooperative agreement was to postulate a means by which an engineer could routinely include environmental considerations in day-to-day conceptual design problems; a means that could easily integrate with existing design processes, and thus avoid massive retr...
NASA Astrophysics Data System (ADS)
Prawata, Albertus Galih
2017-11-01
The architectural design stages in architectural practices or in architectural design studio consist of many aspects. One of them is during the early phases of the design process, where the architects or designers try to interpret the project brief into the design concept. This paper is a report of the procedure of digital tools in the early design process in an architectural practice in Jakarta. It targets principally the use of BIM and digital modeling to generate information and transform them into conceptual forms, which is not very common in Indonesian architectural practices. Traditionally, the project brief is transformed into conceptual forms by using sketches, drawings, and physical model. The new method using digital tools shows that it is possible to do the same thing during the initial stage of the design process to create early architectural design forms. Architect's traditional tools and methods begin to be replaced effectively by digital tools, which would drive bigger opportunities for innovation.
Linking Neural and Symbolic Representation and Processing of Conceptual Structures
van der Velde, Frank; Forth, Jamie; Nazareth, Deniece S.; Wiggins, Geraint A.
2017-01-01
We compare and discuss representations in two cognitive architectures aimed at representing and processing complex conceptual (sentence-like) structures. First is the Neural Blackboard Architecture (NBA), which aims to account for representation and processing of complex and combinatorial conceptual structures in the brain. Second is IDyOT (Information Dynamics of Thinking), which derives sentence-like structures by learning statistical sequential regularities over a suitable corpus. Although IDyOT is designed at a level more abstract than the neural, so it is a model of cognitive function, rather than neural processing, there are strong similarities between the composite structures developed in IDyOT and the NBA. We hypothesize that these similarities form the basis of a combined architecture in which the individual strengths of each architecture are integrated. We outline and discuss the characteristics of this combined architecture, emphasizing the representation and processing of conceptual structures. PMID:28848460
Conceptual design of an aircraft automated coating removal system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baker, J.E.; Draper, J.V.; Pin, F.G.
1996-05-01
Paint stripping of the U.S. Air Force`s large transport aircrafts is currently a labor-intensive, manual process. Significant reductions in costs, personnel and turnaround time can be accomplished by the judicious use of automation in some process tasks. This paper presents the conceptual design of a coating removal systems for the tail surfaces of the C-5 plane. Emphasis is placed on the technology selection to optimize human-automation synergy with respect to overall costs, throughput, quality, safety, and reliability. Trade- offs between field-proven vs. research-requiring technologies, and between expected gain vs. cost and complexity, have led to a conceptual design which ismore » semi-autonomous (relying on the human for task specification and disturbance handling) yet incorporates sensor- based automation (for sweep path generation and tracking, surface following, stripping quality control and tape/breach handling).« less
ERIC Educational Resources Information Center
Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.
2011-01-01
This is the first in a series of five articles describing a national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we describe the process by which we designed four new surveys to assess general education astronomy students' conceptual cosmology knowledge. These surveys focused…
Government conceptual estimating for contracting and management
NASA Technical Reports Server (NTRS)
Brown, J. A.
1986-01-01
The use of the Aerospace Price Book, a cost index, and conceptual cost estimating for cost-effective design and construction of space facilities is discussed. The price book consists of over 200 commonly used conceptual elements and 100 systems summaries of projects such as launch pads, processing facilities, and air locks. The cost index is composed of three divisions: (1) bid summaries of major Shuttle projects, (2) budget cost data sheets, and (3) cost management summaries; each of these divisions is described. Conceptual estimates of facilities and ground support equipment are required to provide the most probable project cost for budget, funding, and project approval purposes. Similar buildings, systems, and elements already designed are located in the cost index in order to make the best rough order of magnitude conceptual estimates for development of Space Shuttle facilities. An example displaying the applicability of the conceptual cost estimating procedure for the development of the KSC facilities is presented.
Ergonomics action research II: a framework for integrating HF into work system design.
Neumann, W P; Village, J
2012-01-01
This paper presents a conceptual framework that can support efforts to integrate human factors (HF) into the work system design process, where improved and cost-effective application of HF is possible. The framework advocates strategies of broad stakeholder participation, linking of performance and health goals, and process focussed change tools that can help practitioners engage in improvements to embed HF into a firm's work system design process. Recommended tools include business process mapping of the design process, implementing design criteria, using cognitive mapping to connect to managers' strategic goals, tactical use of training and adopting virtual HF (VHF) tools to support the integration effort. Consistent with organisational change research, the framework provides guidance but does not suggest a strict set of steps. This allows more adaptability for the practitioner who must navigate within a particular organisational context to secure support for embedding HF into the design process for improved operator wellbeing and system performance. There has been little scientific literature about how a practitioner might integrate HF into a company's work system design process. This paper proposes a framework for this effort by presenting a coherent conceptual framework, process tools, design tools and procedural advice that can be adapted for a target organisation.
System Engineering Concept Demonstration, Effort Summary. Volume 1
1992-12-01
involve only the system software, user frameworks and user tools. U •User Tool....s , Catalyst oExternal 00 Computer Framwork P OSystems • •~ Sysytem...analysis, synthesis, optimization, conceptual design of Catalyst. The paper discusses the definition, design, test, and evaluation; operational concept...This approach will allow system engineering The conceptual requirements for the Process Model practitioners to recognize and tailor the model. This
NASA Astrophysics Data System (ADS)
Javahery, Homa; Deichman, Alexander; Seffah, Ahmed; Taleb, Mohamed
Patterns are a design tool to capture best practices, tackling problems that occur in different contexts. A user interface (UI) design pattern spans several levels of design abstraction ranging from high-level navigation to low-level idioms detailing a screen layout. One challenge is to combine a set of patterns to create a conceptual design that reflects user experiences. In this chapter, we detail a user-centered design (UCD) framework that exploits the novel idea of using personas and patterns together. Personas are used initially to collect and model user experiences. UI patterns are selected based on personas pecifications; these patterns are then used as building blocks for constructing conceptual designs. Through the use of a case study, we illustrate how personas and patterns can act as complementary techniques in narrowing the gap between two major steps in UCD: capturing users and their experiences, and building an early design based on that information. As a result of lessons learned from the study and by refining our framework, we define a more systematic process called UX-P (User Experiences to Pattern), with a supporting tool. The process introduces intermediate analytical steps and supports designers in creating usable designs.
Bench scale demonstration and conceptual engineering for DETOX{sup SM} catalyzed wet oxidation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moslander, J.; Bell, R.; Robertson, D.
1994-06-01
Laboratory and bench scale studies of the DETOX{sup SM} catalyzed wet oxidation process have been performed with the object of developing the process for treatment of hazardous and mixed wastes. Reaction orders, apparent rates, and activation energies have been determined for a range of organic waste surrogates. Reaction intermediates and products have been analyzed. Metals` fates have been determined. Bench scale units have been designed, fabricated, and tested with solid and liquid organic waste surrogates. Results from the laboratory and bench scale studies have been used to develop conceptual designs for application of the process to hazardous and mixed wastes.
ERIC Educational Resources Information Center
Dixon, Raymond A.; Johnson, Scott D.
2012-01-01
A cognitive construct that is important when solving engineering design problems is executive control process, or metacognition. It is a central feature of human consciousness that enables one "to be aware of, monitor, and control mental processes." The framework for this study was conceptualized by integrating the model for creative design, which…
Data base architecture for instrument characteristics critical to spacecraft conceptual design
NASA Technical Reports Server (NTRS)
Rowell, Lawrence F.; Allen, Cheryl L.
1990-01-01
Spacecraft designs are driven by the payloads and mission requirements that they support. Many of the payload characteristics, such as mass, power requirements, communication requirements, moving parts, and so forth directly affect the choices for the spacecraft structural configuration and its subsystem design and component selection. The conceptual design process, which translates mission requirements into early spacecraft concepts, must be tolerant of frequent changes in the payload complement and resource requirements. A computer data base was designed and implemented for the purposes of containing the payload characteristics pertinent for spacecraft conceptual design, tracking the evolution of these payloads over time, and enabling the integration of the payload data with engineering analysis programs for improving the efficiency in producing spacecraft designs. In-house tools were used for constructing the data base and for performing the actual integration with an existing program for optimizing payload mass locations on the spacecraft.
Aircraft conceptual design - an adaptable parametric sizing methodology
NASA Astrophysics Data System (ADS)
Coleman, Gary John, Jr.
Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to meet current aerospace challenges. Overarching goal is to avoid the reoccurring situation of optimizing an already ill-fated solution.
Issues and Design Drivers for Deep Space Habitats
NASA Technical Reports Server (NTRS)
Rucker, Michelle A.; Anderson, Molly
2012-01-01
A cross-disciplinary team of scientists and engineers applied expertise gained in Lunar Lander development to the conceptual design of a long-duration, deep space habitat for Near Earth Asteroid (NEA) missions. The design reference mission involved two launches to assemble 5-modules for a 380-day round trip mission carrying 4 crew members. The conceptual design process yielded a number of interesting debates, some of which could be significant design drivers in a detailed Deep Space Habitat (DSH) design. These issues included: Design to minimize crew radiation exposure, launch loads, communications challenges, docking system and hatch commonality, pointing and visibility, consumables, and design for contingency operations.
Paul V. Ellefson; Michael A. Kilgore; Kenneth E. Skog; Christopher D. Risbrudt
2011-01-01
Transfer of technologies produced by research is critical to innovation within all organizations. The intent of this paper is to take stock of the conceptual underpinnings of technology transfer processes as they relate to wood utilization research and to identify conditions that promote the successful transfer of research results. Conceptually, research utilization...
NASA Astrophysics Data System (ADS)
Lin, Huan-Chun; Chen, Su-Chin; Tsai, Chen-Chen
2014-05-01
The contents of engineering design should indeed contain both science and art fields. However, the art aspect is too less discussed to cause an inharmonic impact with natural surroundings, and so are check dams. This study would like to seek more opportunities of check dams' harmony with nearby circumstances. According to literatures review of philosophy and cognition science fields, we suggest a thinking process of three phases to do check dams design work for reference. The first phase, conceptualization, is to list critical problems, such as the characteristics of erosion or deposition, and translate them into some goal situations. The second phase, transformation, is to use cognition methods such as analogy, association and metaphors to shape an image and prototypes. The third phase, formation, is to decide the details of the construction, such as stable safety analysis of shapes or materials. According to the previous descriptions, Taiwan's technological codes or papers about check dam design mostly emphasize the first and third phases, still quite a few lacks of the second phase. We emphases designers shouldn't ignore any phase of the framework especially the second one, or they may miss some chances to find more suitable solutions. Otherwise, this conceptual framework is simple to apply and we suppose it's a useful tool to design a more harmonic check dam with nearby natural landscape. Key Words: check dams, design thinking process, conceptualization, transformation, formation.
ERIC Educational Resources Information Center
Reeder, Kevin
2005-01-01
In order to facilitate the selection/prioritization process and bridge the gap of design research to design conceptualization, students need to visualize the big picture that describes how the research categories such as "user," "marketing," "functional/mechanical research" are related. This is achieved through the use of a visual storyboard. The…
Conceptual design of a piloted Mars sprint life support system
NASA Technical Reports Server (NTRS)
Cullingford, H. S.; Novara, M.
1988-01-01
This paper presents the conceptual design of a life support system sustaining a crew of six in a piloted Mars sprint. The requirements and constraints of the system are discussed along with its baseline performance parameters. An integrated operation is achieved with air, water, and waste processing and supplemental food production. The design philosophy includes maximized reliability considerations, regenerative operations, reduced expendables, and fresh harvest capability. The life support system performance will be described with characteristics of the associated physical-chemical subsystems and a greenhouse.
Design concepts for an on-board coherent optical image processor
NASA Technical Reports Server (NTRS)
Husain-Abidi, A. S.
1972-01-01
On-board spacecraft image data processing systems for transmitting processed data rather than raw data are discussed. A brief history of the development of the optical data processing techniques is presented along with the conceptual design of a coherent optical system with a noncoherent image input.
A Conceptual Design Study of a High Temperature Solar Thermal Receiver
NASA Technical Reports Server (NTRS)
Robertson, C. S.; Ehde, C. L.; Stacy, L. E.; Abujawdeh, S. S.; Narayanan, R.; Mccreight, L. R.; Gatti, A.; Rauch, H. W., Sr.
1980-01-01
A conceptual design was made for a solar thermal receiver capable of operation in the 1095 to 1650 C (2000 to 3000 F) temperature range. This receiver is designed for use with a two-axis paraboloidal concentrator in the 25 to 150 kW sub t power range, and is intended for industrial process heat, Brayton engines, or chemical/fuels reactions. Three concepts were analyzed parametrically. One was selected for conceptual design. Its key feature is a helical coiled tube of sintered silicon nitride which serves as the heat exchanger between the incident solar radiation and the working fluid. A mechanical design of this concept was prepared, and both thermal and stress analysis performed. The analysis showed good performance, low potential cost in mass production, and adaptability to both Brayton cycle engines and chemical/fuels production.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey
2009-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Rotorcraft Conceptual Design Environment
NASA Technical Reports Server (NTRS)
Johnson, Wayne; Sinsay, Jeffrey D.
2010-01-01
Requirements for a rotorcraft conceptual design environment are discussed, from the perspective of a government laboratory. Rotorcraft design work in a government laboratory must support research, by producing technology impact assessments and defining the context for research and development; and must support the acquisition process, including capability assessments and quantitative evaluation of designs, concepts, and alternatives. An information manager that will enable increased fidelity of analysis early in the design effort is described. This manager will be a framework to organize information that describes the aircraft, and enable movement of that information to and from analyses. Finally, a recently developed rotorcraft system analysis tool is described.
Aircraft Conceptual Design Using Vehicle Sketch Pad
NASA Technical Reports Server (NTRS)
Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.
2010-01-01
Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
2017-07-27
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
Development of the hybrid sulfur cycle for use with concentrated solar heat. I. Conceptual design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorensek, Maximilian B.; Corgnale, Claudio; Summers, William A.
We propose a detailed conceptual design of a solar hybrid sulfur (HyS) cycle. Numerous design tradeoffs, including process operating conditions and strategies, methods of integration with solar energy sources, and solar design options were considered. A baseline design was selected, and process flowsheets were developed. Pinch analyses were performed to establish the limiting energy efficiency. Detailed material and energy balances were completed, and a full stream table prepared. Design assumptions include use of: location in the southwest US desert, falling particle concentrated solar receiver, indirect heat transfer via pressurized helium, continuous operation with thermal energy storage, liquid-fed electrolyzer with PBImore » membrane, and bayonet-type acid decomposer. Thermochemical cycle efficiency for the HyS process was estimated to be 35.0%, LHV basis. The solar-to-hydrogen (STH) energy conversion ratio was 16.9%. This thus exceeds the Year 2015 DOE STCH target of STH >10%, and shows promise for meeting the Year 2020 target of 20%.« less
Conceptual design and structural analysis for an 8.4-m telescope
NASA Astrophysics Data System (ADS)
Mendoza, Manuel; Farah, Alejandro; Ruiz Schneider, Elfego
2004-09-01
This paper describes the conceptual design of the optics support structures of a telescope with a primary mirror of 8.4 m, the same size as a Large Binocular Telescope (LBT) primary mirror. The design goal is to achieve a structure for supporting the primary and secondary mirrors and keeping them joined as rigid as possible. With this purpose an optimization with several models was done. This iterative design process includes: specifications development, concepts generation and evaluation. Process included Finite Element Analysis (FEA) as well as other analytical calculations. Quality Function Deployment (QFD) matrix was used to obtain telescope tube and spider specifications. Eight spiders and eleven tubes geometric concepts were proposed. They were compared in decision matrixes using performance indicators and parameters. Tubes and spiders went under an iterative optimization process. The best tubes and spiders concepts were assembled together. All assemblies were compared and ranked according to their performance.
System Level Uncertainty Assessment for Collaborative RLV Design
NASA Technical Reports Server (NTRS)
Charania, A. C.; Bradford, John E.; Olds, John R.; Graham, Matthew
2002-01-01
A collaborative design process utilizing Probabilistic Data Assessment (PDA) is showcased. Given the limitation of financial resources by both the government and industry, strategic decision makers need more than just traditional point designs, they need to be aware of the likelihood of these future designs to meet their objectives. This uncertainty, an ever-present character in the design process, can be embraced through a probabilistic design environment. A conceptual design process is presented that encapsulates the major engineering disciplines for a Third Generation Reusable Launch Vehicle (RLV). Toolsets consist of aerospace industry standard tools in disciplines such as trajectory, propulsion, mass properties, cost, operations, safety, and economics. Variations of the design process are presented that use different fidelities of tools. The disciplinary engineering models are used in a collaborative engineering framework utilizing Phoenix Integration's ModelCenter and AnalysisServer environment. These tools allow the designer to join disparate models and simulations together in a unified environment wherein each discipline can interact with any other discipline. The design process also uses probabilistic methods to generate the system level output metrics of interest for a RLV conceptual design. The specific system being examined is the Advanced Concept Rocket Engine 92 (ACRE-92) RLV. Previous experience and knowledge (in terms of input uncertainty distributions from experts and modeling and simulation codes) can be coupled with Monte Carlo processes to best predict the chances of program success.
NASA Technical Reports Server (NTRS)
Lin, C. H.; Meyer, M. S.
1983-01-01
The systems engineering aspects of developing a conceptual design of the Space Station Environmental Control and Life Support System (ECLSS) are discussed. Topics covered include defining system requirements and groundrules for approach, formulating possible cycle closure options, and establishing a system-level mass balance on the essential materials processed in oxygen and water cycles. Consideration is also given to the performance of a system trade-off study to determine the best degree of cycle closure for the ECLSS, and the construction of a conceptual design of the ECLSS with subsystem performance specifications and candidate concepts. For the optimum balance between development costs, technological risks, and resupply penalties, a partially closed cycle ECLSS option is suggested.
ERIC Educational Resources Information Center
Sahhyar; Nst, Febriani Hastini
2017-01-01
The purpose of this research was to analyze the physics cognitive competence and science process skill of students using scientific inquiry learning model based on conceptual change better than using conventional learning. The research type was quasi experiment and two group pretest-posttest designs were used in this study. The sample were Class…
NASA Astrophysics Data System (ADS)
Juszczyk, Michał; Leśniak, Agnieszka; Zima, Krzysztof
2013-06-01
Conceptual cost estimation is important for construction projects. Either underestimation or overestimation of building raising cost may lead to failure of a project. In the paper authors present application of a multicriteria comparative analysis (MCA) in order to select factors influencing residential building raising cost. The aim of the analysis is to indicate key factors useful in conceptual cost estimation in the early design stage. Key factors are being investigated on basis of the elementary information about the function, form and structure of the building, and primary assumptions of technological and organizational solutions applied in construction process. The mentioned factors are considered as variables of the model which aim is to make possible conceptual cost estimation fast and with satisfying accuracy. The whole analysis included three steps: preliminary research, choice of a set of potential variables and reduction of this set to select the final set of variables. Multicriteria comparative analysis is applied in problem solution. Performed analysis allowed to select group of factors, defined well enough at the conceptual stage of the design process, to be used as a describing variables of the model.
Lee, Heewon; Contento, Isobel R; Koch, Pamela
2013-03-01
To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, Choice, Control & Change, designed to promote dietary and physical activity behaviors that reduce obesity risk. A process evaluation study based on a systematic conceptual model. Five middle schools in New York City. Five hundred sixty-two students in 20 classes and their science teachers (n = 8). Based on the model, teacher professional development, teacher implementation, and student reception were evaluated. Also measured were teacher characteristics, teachers' curriculum evaluation, and satisfaction with teaching the curriculum. Descriptive statistics and Spearman ρ correlation for quantitative analysis and content analysis for qualitative data were used. Mean score of the teacher professional development evaluation was 4.75 on a 5-point scale. Average teacher implementation rate was 73%, and the student reception rate was 69%. Ongoing teacher support was highly valued by teachers. Teacher satisfaction with teaching the curriculum was highly correlated with student satisfaction (P < .05). Teacher perception of amount of student work was negatively correlated with implementation and with student satisfaction (P < .05). Use of a systematic conceptual model and comprehensive process measures improves understanding of the implementation process and helps educators to better implement interventions as designed. Copyright © 2013 Society for Nutrition Education and Behavior. Published by Elsevier Inc. All rights reserved.
Johannesen, Kasper M; Claxton, Karl; Sculpher, Mark J; Wailoo, Allan J
2018-02-01
This paper presents a conceptual framework to analyse the design of the cost-effectiveness appraisal process of new healthcare technologies. The framework characterises the appraisal processes as a diagnostic test aimed at identifying cost-effective (true positive) and non-cost-effective (true negative) technologies. Using the framework, factors that influence the value of operating an appraisal process, in terms of net gain to population health, are identified. The framework is used to gain insight into current policy questions including (a) how rigorous the process should be, (b) who should have the burden of proof, and (c) how optimal design changes when allowing for appeals, price reductions, resubmissions, and re-evaluations. The paper demonstrates that there is no one optimal appraisal process and the process should be adapted over time and to the specific technology under assessment. Optimal design depends on country-specific features of (future) technologies, for example, effect, price, and size of the patient population, which might explain the difference in appraisal processes across countries. It is shown that burden of proof should be placed on the producers and that the impact of price reductions and patient access schemes on the producer's price setting should be considered when designing the appraisal process. Copyright © 2017 John Wiley & Sons, Ltd.
A climate responsive urban design tool: a platform to improve energy efficiency in a dry hot climate
NASA Astrophysics Data System (ADS)
El Dallal, Norhan; Visser, Florentine
2017-09-01
In the Middle East and North Africa (MENA) region, new urban developments should address the climatic conditions to improve outdoor comfort and to reduce the energy consumption of buildings. This article describes a design tool that supports climate responsive design for a dry hot climate. The approach takes the climate as an initiator for the conceptual urban form with a more energy-efficient urban morphology. The methodology relates the different passive strategies suitable for major climate conditions in MENA region (dry-hot) to design parameters that create the urban form. This parametric design approach is the basis for a tool that generates conceptual climate responsive urban forms so as to assist the urban designer early in the design process. Various conceptual scenarios, generated by a computational model, are the results of the proposed platform. A practical application of the approach is conducted on a New Urban Community in Aswan (Egypt), showing the economic feasibility of the resulting urban form and morphology, and the proposed tool.
Defining Support Requirements During Conceptual Design of Reusable Launch Vehicles
NASA Technical Reports Server (NTRS)
Morris, W. D.; White, N. H.; Davis, W. T.; Ebeling, C. E.
1995-01-01
Current methods for defining the operational support requirements of new systems are data intensive and require significant design information. Methods are being developed to aid in the analysis process of defining support requirements for new launch vehicles during their conceptual design phase that work with the level of information available during this phase. These methods will provide support assessments based on the vehicle design and the operating scenarios. The results can be used both to define expected support requirements for new launch vehicle designs and to help evaluate the benefits of using new technologies. This paper describes the models, their current status, and provides examples of their use.
ERIC Educational Resources Information Center
Shiyko, Mariya P.; Ram, Nilam
2011-01-01
Researchers have been making use of ecological momentary assessment (EMA) and other study designs that sample feelings and behaviors in real time and in naturalistic settings to study temporal dynamics and contextual factors of a wide variety of psychological, physiological, and behavioral processes. As EMA designs become more widespread,…
A Holistic Approach for Risk Management During Design
NASA Technical Reports Server (NTRS)
Meshkat, Leila
2006-01-01
In this paper, an approach for the identification, assessment, mitigation and continuous management of risks during the process of designing a space mission is presented. This approach has been developed by observing the risk patterns that occur at the Project Design Center of the Jet Propulsion Laboratory (TeamX) which develops conceptual, concurrent design of Space Missions. TeamX develops an end-to-end conceptual design of a Space Mission in a matter of one or two weeks. As the risk chair in TeamX, the author has had the opportunity to observe the risk patterns that occur during design over the course of many design sessions. This paper introduces an abstraction and generalization of those patterns. Risk is defined as anything that can go wrong, along with its approximate likelihood and consequence. The indicators, and causes, and effects of these risks are cross cutting across the multiple levels of people and processes involved in the design, and the actual design product itself.
Phase A design study of microgravity fluoride fiber puller
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Smith, Guy A.; Kosten, Susan
1994-01-01
Improved transmission properties for fluoride fibers due to space processing has great potential for commercial benefits. Phase A design study will determine conceptual feasibility and provide initial definition of the technical requirements and design issues for space.
Design requirements for operational earth resources ground data processing
NASA Technical Reports Server (NTRS)
Baldwin, C. J.; Bradford, L. H.; Burnett, E. S.; Hutson, D. E.; Kinsler, B. A.; Kugle, D. R.; Webber, D. S.
1972-01-01
Realistic tradeoff data and evaluation techniques were studied that permit conceptual design of operational earth resources ground processing systems. Methodology for determining user requirements that utilize the limited information available from users is presented along with definitions of sensor capabilities projected into the shuttle/station era. A tentative method is presented for synthesizing candidate ground processing concepts.
ERIC Educational Resources Information Center
Mantyla, Terhi
2013-01-01
In teaching physics, the history of physics offers fruitful starting points for designing instruction. I introduce here an approach that uses historical cognitive processes to enhance the conceptual development of pre-service physics teachers' knowledge. It applies a method called cognitive-historical approach, introduced to the cognitive sciences…
A Conceptual Model and Assessment Template for Capacity Evaluation in Adult Guardianship
ERIC Educational Resources Information Center
Moye, Jennifer; Butz, Steven W.; Marson, Daniel C.; Wood, Erica
2007-01-01
Purpose: We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. Design and Methods: We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity…
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Neil, D.J.; Colcord, A.R.; Bery, M.K.
The objective of this project is to design, fabricate, and operate a fermentation facility which will demonstrate on a pilot-scale level (3 oven-dry tons (ODT) per day of feedstock) the economic and technical feasibility of producing anhydrous ethyl alcohol from lignocellulosic biomass residues (wood, corn stover, and wheat straw principally). The resultant process development unit (PDU) will be flexibly designed so as to evaluate current and projected unit operations, materials of construction, chemical and enzymatic systems which offer the potential of significant technological and economic breakthroughs in alcohol production from biomass. The principal focus of the project is to generatemore » fuels from biomass. As such, in addition to alcohol which can be used as a transportation fuel, by-products are to be directed where possible to fuel applications. The project consists of two parts: (1) conceptual design, and (2) detailed engineering design. The first quarter's activities have focused on a critical review of several aspects of the conceptual design of the 3 ODT/day PDU, viz.: (1) biomass cost, availability, and characterization; (2) pretreatment processes for lignocellulosic residues; (3) hydrolytic processes (enzymatic and acidic); (4) fermentation processes; (5) alcohol recovery systems; (6) by-product streams utilization; and (7) process economics.« less
A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process
NASA Technical Reports Server (NTRS)
Mukhopadhyay, Vivek
2007-01-01
A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.
NASA Astrophysics Data System (ADS)
Symeonidis, Iphigenia Sofia
This paper aims to elucidate guiding concepts for the design of powerful undergraduate bioinformatics degrees which will lead to a conceptual framework for the curriculum. "Powerful" here should be understood as having truly bioinformatics objectives rather than enrichment of existing computer science or life science degrees on which bioinformatics degrees are often based. As such, the conceptual framework will be one which aims to demonstrate intellectual honesty in regards to the field of bioinformatics. A synthesis/conceptual analysis approach was followed as elaborated by Hurd (1983). The approach takes into account the following: bioinfonnatics educational needs and goals as expressed by different authorities, five undergraduate bioinformatics degrees case-studies, educational implications of bioinformatics as a technoscience and approaches to curriculum design promoting interdisciplinarity and integration. Given these considerations, guiding concepts emerged and a conceptual framework was elaborated. The practice of bioinformatics was given a closer look, which led to defining tool-integration skills and tool-thinking capacity as crucial areas of the bioinformatics activities spectrum. It was argued, finally, that a process-based curriculum as a variation of a concept-based curriculum (where the concepts are processes) might be more conducive to the teaching of bioinformatics given a foundational first year of integrated science education as envisioned by Bialek and Botstein (2004). Furthermore, the curriculum design needs to define new avenues of communication and learning which bypass the traditional disciplinary barriers of academic settings as undertaken by Tador and Tidmor (2005) for graduate studies.
Using a theory-driven conceptual framework in qualitative health research.
Macfarlane, Anne; O'Reilly-de Brún, Mary
2012-05-01
The role and merits of highly inductive research designs in qualitative health research are well established, and there has been a powerful proliferation of grounded theory method in the field. However, tight qualitative research designs informed by social theory can be useful to sensitize researchers to concepts and processes that they might not necessarily identify through inductive processes. In this article, we provide a reflexive account of our experience of using a theory-driven conceptual framework, the Normalization Process Model, in a qualitative evaluation of general practitioners' uptake of a free, pilot, language interpreting service in the Republic of Ireland. We reflect on our decisions about whether or not to use the Model, and describe our actual use of it to inform research questions, sampling, coding, and data analysis. We conclude with reflections on the added value that the Model and tight design brought to our research.
Use of Concurrent Engineering in Space Mission Design
NASA Technical Reports Server (NTRS)
Wall, S.
2000-01-01
In recent years, conceptual-phase (proposal level) design of space missions has been improved considerably. Team structures, tool linkage, specialized facilities known as design centers and scripted processes have been demonstrated to cut proposal-level engineering design time from a few months to a few weeks.
Inclusion by Design: Engineering Inclusive Practices in Secondary Schools
ERIC Educational Resources Information Center
Dukes, Charles; Lamar-Dukes, Pamela
2009-01-01
In order to help teachers understand the importance of intentional design for inclusive education, this article describes the design process an engineer might use when designing a new project. If teachers learn to think like engineers, it is possible for them to design inclusive education. This conceptual design can then be combined with…
Silicon ribbon study program. [dendritic crystals for use in solar cells
NASA Technical Reports Server (NTRS)
Seidensticker, R. G.; Duncan, C. S.
1975-01-01
The feasibility is studied of growing wide, thin silicon dendritic web for solar cell fabrication and conceptual designs are developed for the apparatus required. An analysis of the mechanisms of dendritic web growth indicated that there were no apparent fundamental limitations to the process. The analysis yielded quantitative guidelines for the thermal conditions required for this mode of crystal growth. Crucible designs were then investigated: the usual quartz crucible configurations and configurations in which silicon itself is used for the crucible. The quartz crucible design is feasible and is incorporated into a conceptual design for a laboratory scale crystal growth facility capable of semi-automated quasi-continuous operation.
A Rapid, Flexible Approach to Conceptual Space Mission Tradespace Definition and Exploration
NASA Technical Reports Server (NTRS)
Girerd, Andre R.
2005-01-01
This paper provides an overview of the Mission Tradespace Tool (MTT), a methodology and software framework developed to improve JPL's early design process by offering a rapid, structured, and inexpensive way to identify feasible design architectures from a wide array of candidate architectures. There has been a growing consensus at JPL that to improve the quality of service offered to design customers it is desirable to explore a wide tradespace of candidate architectures prior to forming a conceptual design baseline. This paper describes the rationale behind the MTT's approach to meet this need. Notable features of the framework are introduced and explained.
NASA Technical Reports Server (NTRS)
Welstead, Jason
2014-01-01
This research focused on incorporating stability and control into a multidisciplinary de- sign optimization on a Boeing 737-class advanced concept called the D8.2b. A new method of evaluating the aircraft handling performance using quantitative evaluation of the sys- tem to disturbances, including perturbations, continuous turbulence, and discrete gusts, is presented. A multidisciplinary design optimization was performed using the D8.2b transport air- craft concept. The con guration was optimized for minimum fuel burn using a design range of 3,000 nautical miles. Optimization cases were run using xed tail volume coecients, static trim constraints, and static trim and dynamic response constraints. A Cessna 182T model was used to test the various dynamic analysis components, ensuring the analysis was behaving as expected. Results of the optimizations show that including stability and con- trol in the design process drastically alters the optimal design, indicating that stability and control should be included in conceptual design to avoid system level penalties later in the design process.
Forest fire advanced system technology (FFAST) conceptual design study
NASA Technical Reports Server (NTRS)
Nichols, J. David; Warren, John R.
1987-01-01
The National Aeronautics and Space Administration's Jet Propulsion Laboratory (JPL) and the U.S. Department of Agriculture (USDA) Forest Service completed a conceptual design study that defined an integrated forest fire detection and mapping system that will be based upon technology available in the 1990s. Potential system configuration options in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include airborne mounted, thermal infrared (IR) linear array detectors, automatic onboard georeferencing and signal processing, geosynchronous satellite communications links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. The conceptual design study defined the preferred system configuration that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
Cognitive Invariants of Geographic Event Conceptualization: What Matters and What Refines?
NASA Astrophysics Data System (ADS)
Klippel, Alexander; Li, Rui; Hardisty, Frank; Weaver, Chris
Behavioral experiments addressing the conceptualization of geographic events are few and far between. Our research seeks to address this deficiency by developing an experimental framework on the conceptualization of movement patterns. In this paper, we report on a critical experiment that is designed to shed light on the question of cognitively salient invariants in such conceptualization. Invariants have been identified as being critical to human information processing, particularly for the processing of dynamic information. In our experiment, we systematically address cognitive invariants of one class of geographic events: single entity movement patterns. To this end, we designed 72 animated icons that depict the movement patterns of hurricanes around two invariants: size difference and topological equivalence class movement patterns endpoints. While the endpoint hypothesis, put forth by Regier (2007), claims a particular focus of human cognition to ending relations of events, other research suggests that simplicity principles guide categorization and, additionally, that static information is easier to process than dynamic information. Our experiments show a clear picture: Size matters. Nonetheless, we also find categorization behaviors consistent with experiments in both the spatial and temporal domain, namely that topology refines these behaviors and that topological equivalence classes are categorized consistently. These results are critical steppingstones in validating spatial formalism from a cognitive perspective and cognitively grounding work on ontologies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Sahir, Asad; Tan, Eric
This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructurecompatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptionsmore » outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis.« less
A Functional Framework for Database Management Systems.
1980-02-01
Furctionat Approach 13 7.2. Objects in a 080S 14 ".2.1. ExternaL Objects 15 ;.2.2. Conceptual Objects 15 -. 2.3. Internal Objects 15 7.2.4. Externat...standpoint of their ’-efinitional and conceptual goals. 2. To make it posibLe to define arc specify the neeos as the ’irst phase cf the design process...methods. This ain is analogcus to the one in which programming language techrotogy has beer captured and supported through the conceptual lan;4age
Conceptualizing strategic environmental assessment: Principles, approaches and research directions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noble, Bram, E-mail: b.noble@usask.ca; Nwanekezie, Kelechi
Increasing emphasis has been placed in recent years on transitioning strategic environmental assessment (SEA) away from its environmental impact assessment (EIA) roots. Scholars have argued the need to conceptualize SEA as a process designed to facilitate strategic thinking, thus enabling transitions toward sustainability. The practice of SEA, however, remains deeply rooted in the EIA tradition and scholars and practitioners often appear divided on the nature and purpose of SEA. This paper revisits the strategic principles of SEA and conceptualizes SEA as a multi-faceted and multi-dimensional assessment process. It is suggested that SEA can be conceptualized as series of approaches operatingmore » along a spectrum from less to more strategic – from impact assessment-based to strategy-based – with each approach to SEA differentiated by the specific objectives of SEA application and the extent to which strategic principles are reflected in its design and implementation. Advancing the effectiveness of SEA requires a continued research agenda focused on improving the traditional SEA approach, as a tool to assess the impacts of policies, plans and programs (PPPs). Realizing the full potential of SEA, however, requires a new research agenda — one focused on the development and testing of a deliberative governance approach to SEA that can facilitate strategic innovations in PPP formulation and drive transitions in short-term policy and initiatives based on longer-term thinking. - Highlights: • SEA facilitates strategic thinking, enabling transitions toward sustainability. • SEA is conceptualized as a spectrum of approaches, from IA-based to strategy-based. • Each approach variably emphasizes strategic principles in its design and practice. • There is no one conceptualization of SEA that is best, SEA is fit for PPP purpose. • Research is needed to advance SEA to facilitate strategic PPP transformations.« less
Process wastewater treatability study for Westinghouse fluidized-bed coal gasification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winton, S.L.; Buvinger, B.J.; Evans, J.M.
1983-11-01
In the development of a synthetic fuels facility, water usage and wastewater treatment are major areas of concern. Coal gasification processes generally produce relatively large volumes of gas condensates. These wastewaters are typically composed of a variety of suspended and dissolved organic and inorganic solids and dissolved gaseous contaminants. Fluidized-bed coal gasification (FBG) processes are no exception to this rule. The Department of Energy's Morgantown Energy Technology Center (METC), the Gas Research Institute (GRI), and the Environmental Protection Agency (EPA/IERLRTP) recognized the need for a FBG treatment program to provide process design data for FBG wastewaters during the environmental, health,more » and safety characterization of the Westinghouse Process Development Unit (PDU). In response to this need, METC developed conceptual designs and a program plan to obtain process design and performance data for treating wastewater from commercial-scale Westinghouse-based synfuels plants. As a result of this plan, METC, GRI, and EPA entered into a joint program to develop performance data, design parameters, conceptual designs, and cost estimates for treating wastewaters from a FBG plant. Wastewater from the Westinghouse PDU consists of process quench and gas cooling condensates which are similar to those produced by other FBG processes such as U-Gas, and entrained-bed gasification processes such as Texaco. Therefore, wastewater from this facility was selected as the basis for this study. This paper outlines the current program for developing process design and cost data for the treatment of these wastewaters.« less
ERIC Educational Resources Information Center
Chiu, Mei-Hung; Guo, Chorng-Jee; Treagust, David F.
2007-01-01
In this article, we discuss several aspects of the national project, the National Science Concept Learning Study, designed to assess elementary, middle, and secondary students' conceptual understanding in science. After a short introduction to provide some history of the project, we describe the processes used in the integrative study, the…
NASA Technical Reports Server (NTRS)
Ziese, James M.
1992-01-01
A design tool of figure of merit was developed that allows the operability of a propulsion system design to be measured. This Launch Operations Index (LOI) relates Operations Efficiency to System Complexity. The figure of Merit can be used by conceptual designers to compare different propulsion system designs based on their impact on launch operations. The LOI will improve the design process by making sure direct launch operations experience is a necessary feedback to the design process.
Team Learning: Collective Reflection Processes in Teacher Teams
ERIC Educational Resources Information Center
Ohlsson, Jon
2013-01-01
Purpose: The purpose of this paper is to contribute to further studies of theoretical and conceptual understanding of teachers' team learning processes, with a main focus on team work, team atmosphere, and collective reflections. Design/methodology/approach: The empirical study was designed as a multi-case study in a research and development…
Idea-Based Learning: A Course Design Process to Promote Conceptual Understanding
ERIC Educational Resources Information Center
Hansen , Edmund J.
2011-01-01
Synthesizing the best current thinking about learning, course design, and promoting student achievement, this is a guide to developing college instruction that has clear purpose, is well integrated into the curriculum, and improves student learning in predictable and measurable ways. The process involves developing a transparent course blueprint,…
ERIC Educational Resources Information Center
Shanahan, Lynn E.; McVee, Mary B.; Slivestri, Katarina N.; Haq, Kate
2016-01-01
This conceptual article addresses the question: What are the disciplinary literacy practices surrounding the Engineering Design Process (EDP) at the elementary level? Recent attention has focused on developing science, technology, engineering, and math (STEM) skills for U.S. students. In the United States, the Next Generation Science Standards and…
NASA Astrophysics Data System (ADS)
Maksimov, N. V.; Tikhomirov, G. V.; Golitsyna, O. L.
2017-01-01
The main problems and circumstances that influence the processes of creating effective knowledge management systems were described. These problems particularly include high species diversity of instruments for knowledge representation, lack of adequate lingware, including formal representation of semantic relationships. For semantic data descriptions development a conceptual model of the subject area and a conceptual-lexical system should be designed on proposals of ISO-15926 standard. It is proposed to conduct an information integration of educational and production processes on the basis of information systems technologies. Integrated knowledge management system information environment combines both traditional information resources and specific information resources of subject domain including task context and implicit/tacit knowledge.
NASA Astrophysics Data System (ADS)
Sivret, J.; Millar, D. L.; Lyle, G.
2017-12-01
This research conducts a formal risk assessment for cryogenic fueled equipment in underground environments. These include fans, load haul dump units, and trucks. The motivating advantage is zero-emissions production in the subsurface and simultaneous provision of cooling for ultra deep mine workings. The driving force of the engine is the expansion of the reboiled cryogen following flash evaporation using ambient temperature heat. The cold exhaust mixes with warm mine air and cools the latter further. The use of cryogens as ‘fuel’ leads to much increased fuel transport volumes and motivates special considerations for distribution infrastructure and process including: cryogenic storage, distribution, handling, and transfer systems. Detailed specification of parts and equipment, numerical modelling and preparation of design drawings are used to articulate the concept. The conceptual design process reveals new hazards and risks that the mining industry has not yet encountered, which may yet stymie execution. The major unwanted events include the potential for asphyxiation due to oxygen deficient atmospheres, or physical damage to workers due to exposure to sub-cooled liquids and cryogenic gases. The Global Minerals Industry Risk Management (GMIRM) framework incorporates WRAC and Bow-Tie techniques and is used to identify, assess and mitigate risks. These processes operate upon the competing conceptual designs to identify and eliminate high risk options and improve the safety of the lower risk designs.
Defining and Building an Enriched Learning and Information Environment.
ERIC Educational Resources Information Center
Goodrum, David A.; And Others
1993-01-01
Discusses the development of an Enriched Learning and Information Environment (ELIE). Highlights include technology-based and theory-based frameworks for defining ELIEs; a socio-technical definition; a conceptual prototype; a participatory design process, including iterative design through rapid prototyping; and design issues for technology…
Aircraft Conceptual Design and Risk Analysis Using Physics-Based Noise Prediction
NASA Technical Reports Server (NTRS)
Olson, Erik D.; Mavris, Dimitri N.
2006-01-01
An approach was developed which allows for design studies of commercial aircraft using physics-based noise analysis methods while retaining the ability to perform the rapid trade-off and risk analysis studies needed at the conceptual design stage. A prototype integrated analysis process was created for computing the total aircraft EPNL at the Federal Aviation Regulations Part 36 certification measurement locations using physics-based methods for fan rotor-stator interaction tones and jet mixing noise. The methodology was then used in combination with design of experiments to create response surface equations (RSEs) for the engine and aircraft performance metrics, geometric constraints and take-off and landing noise levels. In addition, Monte Carlo analysis was used to assess the expected variability of the metrics under the influence of uncertainty, and to determine how the variability is affected by the choice of engine cycle. Finally, the RSEs were used to conduct a series of proof-of-concept conceptual-level design studies demonstrating the utility of the approach. The study found that a key advantage to using physics-based analysis during conceptual design lies in the ability to assess the benefits of new technologies as a function of the design to which they are applied. The greatest difficulty in implementing physics-based analysis proved to be the generation of design geometry at a sufficient level of detail for high-fidelity analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-29
... aquifer (U.S. EPA, 1987, Sole Source Aquifer Designation Decision Process, Petition Review Guidance... the petition; U.S. Geological Survey, 2011, Conceptual Model and Numerical Simulation of the...
Integration of Off-Track Sonic Boom Analysis in Conceptual Design of Supersonic Aircraft
NASA Technical Reports Server (NTRS)
Ordaz, Irian; Li, Wu
2011-01-01
A highly desired capability for the conceptual design of aircraft is the ability to rapidly and accurately evaluate new concepts to avoid adverse trade decisions that may hinder the development process in the later stages of design. Evaluating the robustness of new low-boom concepts is important for the conceptual design of supersonic aircraft. Here, robustness means that the aircraft configuration has a low-boom ground signature at both under- and off-track locations. An integrated process for off-track boom analysis is developed to facilitate the design of robust low-boom supersonic aircraft. The integrated off-track analysis can also be used to study the sonic boom impact and to plan future flight trajectories where flight conditions and ground elevation might have a significant effect on ground signatures. The key enabler for off-track sonic boom analysis is accurate computational fluid dynamics (CFD) solutions for off-body pressure distributions. To ensure the numerical accuracy of the off-body pressure distributions, a mesh study is performed with Cart3D to determine the mesh requirements for off- body CFD analysis and comparisons are made between the Cart3D and USM3D results. The variations in ground signatures that result from changes in the initial location of the near-field waveform are also examined. Finally, a complete under- and off-track sonic boom analysis is presented for two distinct supersonic concepts to demonstrate the capability of the integrated analysis process.
Conceptual design report for the project to install leak detection in FAST-FT-534/548/549
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galloway, K.J.
1992-07-01
This report provides conceptual designs and design recommendations for installing secondary containment and leak detection systems for three sumps at the Fluorinel and Storage Facility (FAST), CPP-666. The FAST facility is located at the Idaho Chemical Processing Plant (ICPP) at the Idaho National Engineering Laboratory (INEL). The three sumps receive various materials from the FAST water treatment process. This project involves sump upgrades to meet appropriate environmental requirements. The steps include: providing sump modifications or designs for the installation of leak chases and/or leakage accumulation, coating the sump concrete with a chemical resistant sealant (except for sump VES-FT-534 which ismore » already lined with stainless steel) to act as secondary containment, lining the sumps with a primary containment system, and providing a means to detect and remove primary containment leakage that may occur.« less
Application of Concurrent Engineering Methods to the Design of an Autonomous Aerial Robot
1991-12-01
power within the system, either airborne or at a ground station, was left to the team’s discretion. Data link from the aerial vehicle to the ground...Design Process 1 4 10 0% Conceptual 100% Preliminary 100% Detailed 100% Design Freedom Kowledge About the Design TIME INTO THE DESIGN PROCESS Figure 15...mission planning and control tasks was accomplished. Key system issues regarding power up and component initialization procedures began to be addressed
NASA Astrophysics Data System (ADS)
Gürbüz, Ramazan
2010-09-01
The purpose of this study is to investigate and compare the effects of activity-based and traditional instructions on students' conceptual development of certain probability concepts. The study was conducted using a pretest-posttest control group design with 80 seventh graders. A developed 'Conceptual Development Test' comprising 12 open-ended questions was administered on both groups of students before and after the intervention. The data were analysed using analysis of covariance, with the pretest as covariate. The results revealed that activity-based instruction (ABI) outperformed the traditional counterpart in the development of probability concepts. Furthermore, ABI was found to contribute students' conceptual development of the concept of 'Probability of an Event' the most, whereas to the concept of 'Sample Space' the least. As a consequence, it can be deduced that the designed instructional process was effective in the instruction of probability concepts.
Management of the Cs/Sr Capsule Project at the Hanford Site. Technology Readiness Assessment Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
The Federal Project Director (FPD) for the U.S. Department of Energy (DOE), Richland Operations Office (RL) Waste Management and D&D Division (WMD) requested a Technology Readiness Assessment (TRA) for the Management of the Cesium/Strontium Capsule Storage Project (MCSCP) at the Waste Encapsulation and Storage Facility (WESF) on the Hanford Site in Washington State. The MCSCP CD-1 TRA was performed by a team selected in collaboration between the Office of Environmental Management (EM) Chief Engineer (EM-3.3) and RL, WMD FPD. The TRA Team included subject matter and technical experts having experience in cask storage, process engineering, and system design who weremore » independent of the MCSCP, and the team was led by the Director of Operations and Processes from the EM Chief Engineer's Office (EM-3.32). Movement of the Cs/Sr capsules to dry storage, based on information from the conceptual design, involves (1) capsule packaging, (2) capsule transfer, and (3) capsule storage. The project has developed a conceptual process, described in 30059-R-02, "NAC Conceptual Design Report for the Management of the Cesium and Strontium Capsules Project", which identifies the five major activities in the process to complete the transfer from storage pool to pad-mounted cask storage. The process, shown schematically in Figure 1, is comprised of the following process steps: (1) loading capsules into the UCS; (2) UCS processing; (3) UCS insertion into the TSC Basket; (4) cask transport from WESF to CSA and (5) extended storage at the CSA.« less
Haarhoff, Beverly; Gibson, Kerry; Flett, Ross
2011-05-01
CBT case conceptualization is considered to be a key competency. Prior to the publication in 2009 of Kuyken, Padesky and Dudley's book, little has been documented concerning methods for training conceptualization skills and the conceptualization process is usually perceived as predominantly an intellectual process. In this paper, the Declarative-Procedural-Reflective model of therapist skill acquisition provides a route to understanding how different kinds of knowledge systems can be integrated to enhance therapist skill acquisition. Sixteen recent graduates of a postgraduate diploma in cognitive behaviour therapy worked independently through a self-practice/self-reflection workbook designed to lead them through a series of CBT interventions commonly used to elicit the information required for a CBT conceptualization. The participants' self-reflections were thematically analyzed and uncovered the following inter-related themes: increased theoretical understanding of the CBT model, self-awareness, empathy, conceptualization of the therapeutic relationship, and adaptation of clinical interventions and practice. A tentative conclusion reached, based on the self-reflections of the participants, was that targeted self-practice/self-reflection enhanced case conceptualization skill by consolidating the Declarative, Procedural and Reflective systems important in therapist skill acquisition. © British Association for Behavioural and Cognitive Psychotherapies 2011
Wolfs, Vincent; Villazon, Mauricio Florencio; Willems, Patrick
2013-01-01
Applications such as real-time control, uncertainty analysis and optimization require an extensive number of model iterations. Full hydrodynamic sewer models are not sufficient for these applications due to the excessive computation time. Simplifications are consequently required. A lumped conceptual modelling approach results in a much faster calculation. The process of identifying and calibrating the conceptual model structure could, however, be time-consuming. Moreover, many conceptual models lack accuracy, or do not account for backwater effects. To overcome these problems, a modelling methodology was developed which is suited for semi-automatic calibration. The methodology is tested for the sewer system of the city of Geel in the Grote Nete river basin in Belgium, using both synthetic design storm events and long time series of rainfall input. A MATLAB/Simulink(®) tool was developed to guide the modeller through the step-wise model construction, reducing significantly the time required for the conceptual modelling process.
ERIC Educational Resources Information Center
Gerlach, Jonathan W.
2010-01-01
How many of our students come to the classroom with little background knowledge about the world around them and how things work? To help students develop conceptual understanding and explore the design process, the author brought the NASA "Engineering Design Challenges" program to his school district, redeveloped for elementary students. In this…
Research environments that promote integrity.
Jeffers, Brenda Recchia; Whittemore, Robin
2005-01-01
The body of empirical knowledge about research integrity and the factors that promote research integrity in nursing research environments remains small. To propose an internal control model as an innovative framework for the design and structure of nursing research environments that promote integrity. An internal control model is adapted to illustrate its use for conceptualizing and designing research environments that promote integrity. The internal control model integrates both the organizational elements necessary to promote research integrity and the processes needed to assess research environments. The model provides five interrelated process components within which any number of research integrity variables and processes may be used and studied: internal control environment, risk assessment, internal control activities, monitoring, and information and communication. The components of the proposed research integrity internal control model proposed comprise an integrated conceptualization of the processes that provide reasonable assurance that research integrity will be promoted within the nursing research environment. Schools of nursing can use the model to design, implement, and evaluate systems that promote research integrity. The model process components need further exploration to substantiate the use of the model in nursing research environments.
The magnet designation process: a qualitative approach using Donabedian's conceptual framework.
Upenieks, Valda V; Abelew, Sheryl
2006-01-01
Twelve nurse leaders and 12 registered nurses from 2 hospitals were interviewed to gain an understanding on the process for preparing for magnet designation. These leaders and nurses provided insight into whether a cultural shift within the organization was occurring while striving for magnet designation and the level of staff nurses' engagement during the process. Donabedian's framework provided the conceptual context for this study. According to Donabedian, stable organizational structures will influence professional nursing processes and result in better outcomes as measured by magnet status. The authors discuss how a magnet culture is achieved when structural factors such as adequate staffing and pay are present before building the processes, as well as the ways certain ingredients such as professional governance councils need to be primed to achieve the desired magnet outcome. However, transforming the culture into a "valued-practice" magnet organization entails a paradigm shift marked by the willingness to share information and the depth and breadth of commitment toward staff engagement in fulfilling the mission of a culture that truly values nursing expertise.
1988-07-01
quantity of air which requires processing. Recirculation systems were designed for two of the painting facilities included in this study. In designing the...BACKGROUND AND PURPOSE .... ................ .... 57 B. DESIGN CONSIDERATIONS .... ............... .... 58 1. Safety Standards .......... ............... 58...65 5. Conceptual Design .... ................ ... 68 V CONCLUSIONS AND RECOMMENDATIONS ............... .. 72 A. CONCLUSIONS
Conceptual design of a data reduction system
NASA Technical Reports Server (NTRS)
1983-01-01
A telemetry data processing system was defined of the Data Reduction. Data reduction activities in support of the developmental flights of the Space Shuttle were used as references against which requirements are assessed in general terms. A conceptual system design believed to offer significant throughput for the anticipated types of data reduction activities is presented. The design identifies the use of a large, intermediate data store as a key element in a complex of high speed, single purpose processors, each of which performs predesignated, repetitive operations on either raw or partially processed data. The recommended approach to implement the design concept is to adopt an established interface standard and rely heavily on mature or promising technologies which are considered main stream of the integrated circuit industry. The design system concept, is believed to be implementable without reliance on exotic devices and/or operational procedures. Numerical methods were employed to examine the feasibility of digital discrimination of FDM composite signals, and of eliminating line frequency noises in data measurements.
Conceptual design of thermal energy storage systems for near term electric utility applications
NASA Technical Reports Server (NTRS)
Hall, E. W.; Hausz, W.; Anand, R.; Lamarche, N.; Oplinger, J.; Katzer, M.
1979-01-01
Potential concepts for near term electric utility applications were identified. The most promising ones for conceptual design were evaluated for their economic feasibility and cost benefits. The screening process resulted in selecting two coal-fired and two nuclear plants for detailed conceptual design. The coal plants utilized peaking turbines and the nuclear plants varied the feedwater extraction to change power output. It was shown that the performance and costs of even the best of these systems could not compete in near term utility applications with cycling coal plants and typical gas turbines available for peaking power. Lower electricity costs, greater flexibility of operation, and other benefits can be provided by cycling coal plants for greater than 1500 hours of peaking or by gas turbines for less than 1500 hours if oil is available and its cost does not increase significantly.
NASA Technical Reports Server (NTRS)
Goldman, A. M., Jr.
1980-01-01
An experimental 20/30 GHz communications satellite conceptual design is described which employs multiple-beam paraboloid reflector antennas coupled to a TDMA transponder. It is shown that the satellite employs solid state GaAs FET power amplifiers and low noise amplifiers while signal processing and switching takes place on-board the spacecraft. The proposed areas to be served by this satellite would be the continental U.S. plus Alaska, Hawaii, Puerto Rico, and the Virgin Islands, as well as southern Canada and Mexico City. Finally, attention is given to the earth stations which are designed to be low cost.
Swanson, Dena Phillips; Spencer, Margaret Beale; Harpalani, Vinay; Dupree, Davido; Noll, Elizabeth; Ginzburg, Sofia; Seaton, Gregory
2003-01-01
As the US population becomes more diverse in the 21st century, researchers face many conceptual and methodological challenges in working with diverse populations. We discuss these issues for racially and ethnically diverse youth, using Spencer's phenomenological variant of ecological systems theory (PVEST) as a guiding framework. We present a brief historical background and discuss recurring conceptual flaws in research on diverse youth, presenting PVEST as a corrective to these flaws. We highlight the interaction of race, culture, socioeconomic status, and various contexts of development with identity formation and other salient developmental processes. Challenges in research design and interpretation of data are also covered with regard to both assessment of contexts and developmental processes. We draw upon examples from neighborhood assessments, ethnic identity development, and attachment research to illustrate conceptual and methodological challenges, and we discuss strategies to address these challenges. The policy implications of our analysis are also considered.
Reflective Subjects in Kant and Architectural Design Education
ERIC Educational Resources Information Center
Rawes, Peg
2007-01-01
In architectural design education, students develop drawing, conceptual, and critical skills which are informed by their ability to reflect upon the production of ideas in design processes and in the urban, environmental, social, historical, and cultural context that define architecture and the built environment. Reflective actions and thinking…
Positioning Design Epistemology and Its Applications in Education Technology
ERIC Educational Resources Information Center
Tsai, Chin-Chung; Chai, Ching Sing; Wong, Benjamin Koon Siak; Hong, Huang-Yao; Tan, Seng Chee
2013-01-01
This position paper proposes to broaden the conception of personal epistemology to include design epistemology that foregrounds the importance of creativity, collaboration, and design thinking. Knowledge creation process, we argue, can be explicated using Popper's ontology of three worlds of objects. In short, conceptual artifacts (World 3)…
1984-06-29
effort that requires hard copy documentation. As a result, there are generally numerous delays in providing current quality information. In the FoF...process have had fixed controls or were based on " hard -coded" information. A template, for example, is hard -coded information defining the shape of a...represents soft-coded control information. (Although manual handling of punch tapes still possess some of the limitations of " hard -coded" controls
The effect of conceptual metaphors through guided inquiry on student's conceptual change
NASA Astrophysics Data System (ADS)
Menia, Meli; Mudzakir, Ahmad; Rochintaniawati, Diana
2017-05-01
The purpose of this study was to identify student's conceptual change of global warming after integrated science learning based guided inquiry through conceptual metaphors. This study used a quasi-experimental with a nonequivalent control group design. The subject was students of two classes of one of MTsN Salido. Data was collected using conceptual change test (pretest and posttest), observation sheet to observe the learning processes, questionnaire sheet to identify students responses, and interview to identifyteacher'srespons of science learning with conceptual metaphors. The results showed that science learning based guided inquiry with conceptual metaphors is better than science learning without conceptual metaphors. The average of posttest experimental class was 79,40 and control class was 66,09. The student's conceptual change for two classes changed significantly byusing mann whitney U testwith P= 0,003(P less than sig. value, P< 0,05). This means that there was differenceson student's conceptual changebeetwen integrated science learning based guided inquiry with conceptual metaphors class and integrated science learning without conceptual metaphors class. The study also showed that teachers and studentsgive positive responsesto implementation of integrated science learning based guided inquiry with conceptual metaphors.
Nuclear driven water decomposition plant for hydrogen production
NASA Technical Reports Server (NTRS)
Parker, G. H.; Brecher, L. E.; Farbman, G. H.
1976-01-01
The conceptual design of a hydrogen production plant using a very-high-temperature nuclear reactor (VHTR) to energize a hybrid electrolytic-thermochemical system for water decomposition has been prepared. A graphite-moderated helium-cooled VHTR is used to produce 1850 F gas for electric power generation and 1600 F process heat for the water-decomposition process which uses sulfur compounds and promises performance superior to normal water electrolysis or other published thermochemical processes. The combined cycle operates at an overall thermal efficiency in excess of 45%, and the overall economics of hydrogen production by this plant have been evaluated predicated on a consistent set of economic ground rules. The conceptual design and evaluation efforts have indicated that development of this type of nuclear-driven water-decomposition plant will permit large-scale economic generation of hydrogen in the 1990s.
CHEMICAL RECLAMATION OF SCRAP RUBBER
A conceptual, commercial-scale plant design was formulated for processing 22,500 t/yr of scrap rubber tires to hydrocarbon fuel gases, oils, petrochemicals (principally ethylene and aromatic liquids), and carbon black. The process is based upon molten salt (zinc chloride) pyrolys...
Engineering Information System (EIS)
1992-01-31
be availabe and usefu for creating powerful tailored contro and mangeen functions. Mode and Framwork Wirth further elaboration of the EIS portio of...control data and activities of the engineering process. The EIM is a conceptual model of administrative and electroic design information. It records...of the access opeations are derived from the instance variable name and type. An attribute conceptually holds one or more instances of a basic type
ERIC Educational Resources Information Center
She, Hsiao-Ching
2002-01-01
Examines the process of students' conceptual changes with regard to air pressure and buoyancy as a result of teaching with the dual situated learning model. Uses a model designed according to the students' ontological viewpoint on science concepts as well as the nature of these concepts. (Contains 40 references.) (Author/YDS)
Sanocki, Thomas; Dyson, Mary C
2012-01-01
Letter identification is a critical front end of the reading process. In general, conceptualizations of the identification process have emphasized arbitrary sets of distinctive features. However, a richer view of letter processing incorporates principles from the field of type design, including an emphasis on uniformities across letters within a font. The importance of uniformities is supported by a small body of research indicating that consistency of font increases letter identification efficiency. We review design concepts and the relevant literature, with the goal of stimulating further thinking about letter processing during reading.
Automation of the aircraft design process
NASA Technical Reports Server (NTRS)
Heldenfels, R. R.
1974-01-01
The increasing use of the computer to automate the aerospace product development and engineering process is examined with emphasis on structural analysis and design. Examples of systems of computer programs in aerospace and other industries are reviewed and related to the characteristics of aircraft design in its conceptual, preliminary, and detailed phases. Problems with current procedures are identified, and potential improvements from optimum utilization of integrated disciplinary computer programs by a man/computer team are indicated.
ERIC Educational Resources Information Center
Bae, Kyoung-Il; Kim, Jung-Hyun; Huh, Soon-Young
2003-01-01
Discusses process information sharing among participating organizations in a virtual enterprise and proposes a federated process framework and system architecture that provide a conceptual design for effective implementation of process information sharing supporting the autonomy and agility of the organizations. Develops the framework using an…
Intelligent design of permanent magnet synchronous motor based on CBR
NASA Astrophysics Data System (ADS)
Li, Cong; Fan, Beibei
2018-05-01
Aiming at many problems in the design process of Permanent magnet synchronous motor (PMSM), such as the complexity of design process, the over reliance on designers' experience and the lack of accumulation and inheritance of design knowledge, a design method of PMSM Based on CBR is proposed in order to solve those problems. In this paper, case-based reasoning (CBR) methods of cases similarity calculation is proposed for reasoning suitable initial scheme. This method could help designers, by referencing previous design cases, to make a conceptual PMSM solution quickly. The case retain process gives the system self-enrich function which will improve the design ability of the system with the continuous use of the system.
2012-03-22
world’s first powered and controlled flying machine. Numerous flight designs and tests were done by scientists, engineers, and flight enthusiasts...conceptual flight and preliminary designs before they could control the craft with three-axis control and the correct airfoil design . These pioneers...analysis support. Although wind tunnel testing can provide data to predict and develop control surface designs , few SUAV operators opt to utilize wind
NASA Technical Reports Server (NTRS)
Robers, James L.; Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
Only recently have engineers begun making use of Artificial Intelligence (AI) tools in the area of conceptual design. To continue filling this void in the design process, a prototype knowledge-based system, called STRUTEX has been developed to initially configure a structure to support point loads in two dimensions. This prototype was developed for testing the application of AI tools to conceptual design as opposed to being a testbed for new methods for improving structural analysis and optimization. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user. How the system is constructed to interact with the user is described. Of special interest is the information flow between the knowledge base and the data base under control of the algorithmic main program. Examples of computed and refined structures are presented during the explanation of the system.
NASA Technical Reports Server (NTRS)
Geiselhart, Karl A.; Ozoroski, Lori P.; Fenbert, James W.; Shields, Elwood W.; Li, Wu
2011-01-01
This paper documents the development of a conceptual level integrated process for design and analysis of efficient and environmentally acceptable supersonic aircraft. To overcome the technical challenges to achieve this goal, a conceptual design capability which provides users with the ability to examine the integrated solution between all disciplines and facilitates the application of multidiscipline design, analysis, and optimization on a scale greater than previously achieved, is needed. The described capability is both an interactive design environment as well as a high powered optimization system with a unique blend of low, mixed and high-fidelity engineering tools combined together in the software integration framework, ModelCenter. The various modules are described and capabilities of the system are demonstrated. The current limitations and proposed future enhancements are also discussed.
Why Process Improvement Training Fails
ERIC Educational Resources Information Center
Lu, Dawei; Betts, Alan
2011-01-01
Purpose: The purpose of this paper is to explore the underlying reasons why providing process improvement training, by itself, may not be sufficient to achieve the desired outcome of improved processes; and to attempt a conceptual framework of management training for more effective improvement. Design/methodology/approach: Two similar units within…
ERIC Educational Resources Information Center
Seay, Jeffrey R.; Eden, Mario R.
2008-01-01
This paper introduces, via case study example, the benefit of including risk assessment methodology and inherently safer design practices into the curriculum for chemical engineering students. This work illustrates how these tools can be applied during the earliest stages of conceptual process design. The impacts of decisions made during…
Organizational Learning and Product Design Management: Towards a Theoretical Model.
ERIC Educational Resources Information Center
Chiva-Gomez, Ricardo; Camison-Zornoza, Cesar; Lapiedra-Alcami, Rafael
2003-01-01
Case studies of four Spanish ceramics companies were used to construct a theoretical model of 14 factors essential to organizational learning. One set of factors is related to the conceptual-analytical phase of the product design process and the other to the creative-technical phase. All factors contributed to efficient product design management…
Peavey, Erin; Vander Wyst, Kiley B
2017-10-01
This article provides critical examination and comparison of the conceptual meaning and underlying assumptions of the concepts evidence-based design (EBD) and research-informed design (RID) in order to facilitate practical use and theoretical development. In recent years, EBD has experienced broad adoption, yet it has been simultaneously critiqued for rigidity and misapplication. Many practitioners are gravitating to the term RID to describe their method of integrating knowledge into the design process. However, the term RID lacks a clear definition and the blurring of terms has the potential to weaken advances made integrating research into practice. Concept analysis methods from Walker and Avant were used to define the concepts for comparison. Conceptual definitions, process descriptions, examples (i.e., model cases), and methods of evaluation are offered for EBD and RID. Although EBD and RID share similarities in meaning, the two terms are distinct. When comparing evidence based (EB) and research informed, EB is a broad base of information types (evidence) that are narrowly applied (based), while the latter references a narrow slice of information (research) that is broadly applied (informed) to create an end product of design. Much of the confusion between the use of the concepts EBD and RID arises out of differing perspectives between the way practitioners and academics understand the underlying terms. The authors hope this article serves to generate thoughtful dialogue, which is essential to the development of a discipline, and look forward to the contribution of the readership.
NASA Astrophysics Data System (ADS)
Hermita, N.; Suhandi, A.; Syaodih, E.; Samsudin, A.; Marhadi, H.; Sapriadil, S.; Zaenudin, Z.; Rochman, C.; Mansur, M.; Wibowo, F. C.
2018-05-01
Now a day, conceptual change is the most valuable issues in the science education perspective, especially in the elementary education. Researchers have already dialed with the aim of the research to increase level conceptual change process on the electric conceptions through Visual Multimedia Supported Conceptual Change Text (VMMSCCText). We have ever utilized research and development method namely 3D-1I stands for Define, Design, Development, and Implementation. The 27 pre-service elementary teachers were involved in the research. The battery function in circuit electric conception is the futuristic concept which should have been learned by the students. Moreover, the data which was collected reports that static about 0%, disorientation about 0%, reconstruction about 55.6%, and construction about 25.9%. It can be concluded that the implementation of VMMSCCText to pre-service elementary teachers are increased to level conceptual change categories.
Conceptual ecological models to guide integrated landscape monitoring of the Great Basin
Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.
2010-01-01
The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.
Coal feed component testing for CDIF
NASA Technical Reports Server (NTRS)
Pearson, C. V.; Snyder, B. K.; Fornek, T. E.
1977-01-01
Investigations conducted during the conceptual design of the Montana MHD Component Development and Integration Facility (CDIF) identified commercially available processing and feeding equipment potentially suitable for use in a reference design. Tests on sub-scale units of this equipment indicated that they would perform as intended.
Towards a theoretical clarification of biomimetics using conceptual tools from engineering design.
Drack, M; Limpinsel, M; de Bruyn, G; Nebelsick, J H; Betz, O
2017-12-13
Many successful examples of biomimetic products are available, and most research efforts in this emerging field are directed towards the development of specific applications. The theoretical and conceptual underpinnings of the knowledge transfer between biologists, engineers and architects are, however, poorly investigated. The present article addresses this gap. We use a 'technomorphic' approach, i.e. the application of conceptual tools derived from engineering design, to better understand the processes operating during a typical biomimetic research project. This helps to elucidate the formal connections between functions, working principles and constructions (in a broad sense)-because the 'form-function-relationship' is a recurring issue in biology and engineering. The presented schema also serves as a conceptual framework that can be implemented for future biomimetic projects. The concepts of 'function' and 'working principle' are identified as the core elements in the biomimetic knowledge transfer towards applications. This schema not only facilitates the development of a common language in the emerging science of biomimetics, but also promotes the interdisciplinary dialogue among its subdisciplines.
Conversion of Component-Based Point Definition to VSP Model and Higher Order Meshing
NASA Technical Reports Server (NTRS)
Ordaz, Irian
2011-01-01
Vehicle Sketch Pad (VSP) has become a powerful conceptual and parametric geometry tool with numerous export capabilities for third-party analysis codes as well as robust surface meshing capabilities for computational fluid dynamics (CFD) analysis. However, a capability gap currently exists for reconstructing a fully parametric VSP model of a geometry generated by third-party software. A computer code called GEO2VSP has been developed to close this gap and to allow the integration of VSP into a closed-loop geometry design process with other third-party design tools. Furthermore, the automated CFD surface meshing capability of VSP are demonstrated for component-based point definition geometries in a conceptual analysis and design framework.
Lunar lander conceptual design: Lunar base systems study task 2.2
NASA Technical Reports Server (NTRS)
1988-01-01
This study is a first look at the problem of building a lunar lander to support a small lunar surface base. One lander, which can land 25 metric tons, one way, or take a 6 metric ton crew capsule up and down is desired. A series of trade studies are used to narrow the choices and provide some general guidelines. Given a rough baseline, the systems are then reviewed. A conceptual design is then produced. The process was only carried through one iteration. Many more iterations are needed. Assumptions and groundrules are considered.
Conceptual design for aerospace vehicles
NASA Technical Reports Server (NTRS)
Gratzer, Louis B.
1989-01-01
The designers of aircraft and more recently, aerospace vehicles have always struggled with the problems of evolving their designs to produce a machine which would perform its assigned task(s) in some optimum fashion. Almost invariably this involved dealing with more variables and constraints than could be handled in any computationally feasible way. With the advent of the electronic digital computer, the possibilities for introducing more variable and constraints into the initial design process led to greater expectations for improvement in vehicle (system) efficiency. The creation of the large scale systems necessary to achieve optimum designs has, for many reason, proved to be difficult. From a technical standpoint, significant problems arise in the development of satisfactory algorithms for processing of data from the various technical disciplines in a way that would be compatible with the complex optimization function. Also, the creation of effective optimization routines for multi-variable and constraint situations which could lead to consistent results has lagged. The current capability for carrying out the conceptual design of an aircraft on an interdisciplinary bases was evaluated to determine the need for extending this capability, and if necessary, to recommend means by which this could be carried out. Based on a review of available documentation and individual consultations, it appears that there is extensive interest at Langley Research Center as well as in the aerospace community in providing a higher level of capability that meets the technical challenges. By implication, the current design capability is inadequate and it does not operate in a way that allows the various technical disciplines to participate and cooperately interact in the design process. Based on this assessment, it was concluded that substantial effort should be devoted to developing a computer-based conceptual design system that would provide the capability needed for the near-term as well as framework for development of more advanced methods to serve future needs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, Abhijit; Sahir, A. H.; Tan, Eric
This report was developed as part of the U.S. Department of Energy’s Bioenergy Technologies Office’s efforts to enable the development of technologies for the production of infrastructure-compatible, cost-competitive liquid hydrocarbon fuels from biomass. Specifically, this report details two conceptual designs based on projected product yields and quality improvements via catalyst development and process integration. It is expected that these research improvements will be made within the 2022 timeframe. The two conversion pathways detailed are (1) in situ and (2) ex situ upgrading of vapors produced from the fast pyrolysis of biomass. While the base case conceptual designs and underlying assumptionsmore » outline performance metrics for feasibility, it should be noted that these are only two of many other possibilities in this area of research. Other promising process design options emerging from the research will be considered for future techno-economic analysis. Both the in situ and ex situ conceptual designs, using the underlying assumptions, project MFSPs of approximately $3.5/gallon gasoline equivalent (GGE). The performance assumptions for the ex situ process were more aggressive with higher distillate (diesel-range) products. This was based on an assumption that more favorable reaction chemistry (such as coupling) can be made possible in a separate reactor where, unlike in an in situ upgrading reactor, one does not have to deal with catalyst mixing with biomass char and ash, which pose challenges to catalyst performance and maintenance. Natural gas was used for hydrogen production, but only when off gases from the process was not sufficient to meet the needs; natural gas consumption is insignificant in both the in situ and ex situ base cases. Heat produced from the burning of char, coke, and off-gases allows for the production of surplus electricity which is sold to the grid allowing a reduction of approximately 5¢/GGE in the MFSP.« less
Implementation of a Distributed Object-Oriented Database Management System
1989-03-01
and heuristic algorithms. A method for determining ueit allocation by splitting relations in the conceptual schema base on queries and updates is...level framworks can provide to the user the appearance of many tools to be closely integrated. In particular, the KBSA tools use many high level...development process should begin first with conceptual design of the system. Approximately one month should be used to decide how the new projects
Conceptual model of iCAL4LA: Proposing the components using comparative analysis
NASA Astrophysics Data System (ADS)
Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul
2016-08-01
This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.
Conceptual change strategies in teaching genetics
NASA Astrophysics Data System (ADS)
Batzli, Laura Elizabeth
The purpose of this study was to evaluate the effectiveness of utilizing conceptual change strategies when teaching high school genetics. The study examined the effects of structuring instruction to provide students with cognitive situations which promote conceptual change, specifically instruction was structured to elicit students' prior knowledge. The goal of the study was that the students would not only be able to solve genetics problems and define basic terminology but they would also have constructed more scientific schemas of the actual processes involved in inheritance. This study is based on the constructivist theory of learning and conceptual change research which suggest that students are actively involved in the process of relating new information to prior knowledge as they construct new knowledge. Two sections of biology II classes received inquiry based instruction and participated in structured cooperative learning groups. However, the unique difference in the treatment group's instruction was the use of structured thought time and the resulting social interaction between the students. The treatment group students' instructional design allowed students to socially construct their cognitive knowledge after elicitation of their prior knowledge. In contrast, the instructional design for the control group students allowed them to socially construct their cognitive knowledge of genetics without the individually structured thought time. The results indicated that the conceptual change strategies with individually structured thought time improved the students' scientific mastery of genetics concepts and they maintained fewer post instructional alternative conceptions. Although all students gained the ability to correctly solve genetics problems, the treatment group students were able to explain the processes involved in terms of meiosis. The treatment group students were also able to better apply their knowledge to novel genetic situations. The implications for genetics instruction from these results were discussed.
Design of a Slowed-Rotor Compound Helicopter for Future Joint Service Missions
NASA Technical Reports Server (NTRS)
Silva, Christopher; Yeo, Hyeonsoo; Johnson, Wayne R.
2010-01-01
A slowed-rotor compound helicopter has been synthesized using the NASA Design and Analysis of Rotorcraft (NDARC) conceptual design software. An overview of the design process and the capabilities of NDARC are presented. The benefits of trading rotor speed, wing-rotor lift share, and trim strategies are presented for an example set of sizing conditions and missions.
Study on light weight design of truss structures of spacecrafts
NASA Astrophysics Data System (ADS)
Zeng, Fuming; Yang, Jianzhong; Wang, Jian
2015-08-01
Truss structure is usually adopted as the main structure form for spacecrafts due to its high efficiency in supporting concentrated loads. Light-weight design is now becoming the primary concern during conceptual design of spacecrafts. Implementation of light-weight design on truss structure always goes through three processes: topology optimization, size optimization and composites optimization. During each optimization process, appropriate algorithm such as the traditional optimality criterion method, mathematical programming method and the intelligent algorithms which simulate the growth and evolution processes in nature will be selected. According to the practical processes and algorithms, combined with engineering practice and commercial software, summary is made for the implementation of light-weight design on truss structure for spacecrafts.
From conceptual modeling to a map
NASA Astrophysics Data System (ADS)
Gotlib, Dariusz; Olszewski, Robert
2018-05-01
Nowadays almost every map is a component of the information system. Design and production of maps requires the use of specific rules for modeling information systems: conceptual, application and data modelling. While analyzing various stages of cartographic modeling the authors ask the question: at what stage of this process a map occurs. Can we say that the "life of the map" begins even before someone define its form of presentation? This question is particularly important at the time of exponentially increasing number of new geoinformation products. During the analysis of the theory of cartography and relations of the discipline to other fields of knowledge it has been attempted to define a few properties of cartographic modeling which distinguish the process from other methods of spatial modeling. Assuming that the map is a model of reality (created in the process of cartographic modeling supported by domain-modeling) the article proposes an analogy of the process of cartographic modeling to the scheme of conceptual modeling presented in ISO 19101 standard.
Energy storage flywheel housing design concept development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coppa, A.P.
1982-03-12
A low cost vehicular flywheel housing conceptual design has been obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheetmore » metal components for automotive vehicles provided the following budgetary quotations for steel housings, including hardened steel containment rings, based on the conceptual design: housing for 15 in. OD, 0.25 kw. hr. rotor: $50; and housing for 18 in. OD, 0.25 kw. hr. rotor: $58. These prices are based on a production rate of 10/sup 6/ units per year and include tooling. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.« less
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Furnace Facility (SSFF) is a modular facility for materials research in the microgravity environment of the Space Station Freedom (SSF). The SSFF is designed for crystal growth and solidification research in the fields of electronic and photonic materials, metals and alloys, and glasses and ceramics and will allow for experimental determination of the role of gravitational forces in the solidification process. The facility will provide a capability for basic scientific research and will evaluate the commercial viability of low-gravity processing of selected technologically important materials. The facility is designed to support a complement of furnace modules as outlined in the Science Capabilities Requirements Document (SCRD). The SSFF is a three rack facility that provides the functions, interfaces, and equipment necessary for the processing of the furnaces and consists of two main parts: the SSFF Core Rack and the two Experiment Racks. The facility is designed to accommodate two experimenter-provided furnace modules housed within the two experiment racks, and is designed to operate these two furnace modules simultaneously. The SCRD specifies a wide range of furnace requirements and serves as the basis for the SSFF conceptual design. SSFF will support automated processing during the man-tended operations and is also designed for crew interface during the permanently manned configuration. The facility is modular in design and facilitates changes as required, so the SSFF is adept to modifications, maintenance, reconfiguration, and technology evolution.
AI/OR computational model for integrating qualitative and quantitative design methods
NASA Technical Reports Server (NTRS)
Agogino, Alice M.; Bradley, Stephen R.; Cagan, Jonathan; Jain, Pramod; Michelena, Nestor
1990-01-01
A theoretical framework for integrating qualitative and numerical computational methods for optimally-directed design is described. The theory is presented as a computational model and features of implementations are summarized where appropriate. To demonstrate the versatility of the methodology we focus on four seemingly disparate aspects of the design process and their interaction: (1) conceptual design, (2) qualitative optimal design, (3) design innovation, and (4) numerical global optimization.
Investigating Preservice Mathematics Teachers' Manipulative Material Design Processes
ERIC Educational Resources Information Center
Sandir, Hakan
2016-01-01
Students use concrete manipulatives to form an imperative affiliation between conceptual and procedural knowledge (Balka, 1993). Hence, it is necessary to design specific mathematics manipulatives that focus on different mathematical concepts. Preservice teachers need to know how to make and use manipulatives that stimulate students' thinking as…
Design Environment for Novel Vertical Lift Vehicles: DELIVER
NASA Technical Reports Server (NTRS)
Theodore, Colin
2016-01-01
This is a 20 minute presentation discussing the DELIVER vision. DELIVER is part of the ARMD Transformative Aeronautics Concepts Program, particularly the Convergent Aeronautics Solutions Project. The presentation covers the DELIVER vision, transforming markets, conceptual design process, challenges addressed, technical content, and FY2016 key activities.
Hinshaw, Stephen P
2002-10-01
Advances in conceptualization and statistical modeling, on the one hand, and enhanced appreciation of transactional pathways, gene-environment correlations and interactions, and moderator and mediator variables, on the other, have heightened awareness of the need to consider factors and processes that explain the development and maintenance of psychopathology. With a focus on attentional problems, impulsivity, and disruptive behavior patterns, I address the kinds of conceptual approaches most likely to lead to advances regarding explanatory models in the field. Findings from my own research program on processes and mechanisms reveal both promise and limitations. Progress will emanate from use of genetically informative designs, blends of variable and person-centered research, explicit testing of developmental processes, systematic approaches to moderation and mediation, exploitation of "natural experiments," and the conduct of prevention and intervention trials designed to accentuate explanation as well as outcome. In all, breakthroughs will occur only with advances in translational research-linking basic and applied science-and with the further development of transactional, systemic approaches to explanation.
Onboard experiment data support facility, task 1 report. [space shuttles
NASA Technical Reports Server (NTRS)
1975-01-01
The conceptual design and specifications are developed for an onboard experiment data support facility (OEDSF) to provide end to end processing of data from various payloads on board space shuttles. Classical data processing requirements are defined and modeled. Onboard processing requirements are analyzed. Specifications are included for an onboard processor.
NASA Technical Reports Server (NTRS)
Mulqueen, John; Maples, C. Dauphne; Fabisinski, Leo, III
2012-01-01
This paper provides an overview of Systems Engineering as it is applied in a conceptual design space systems department at the National Aeronautics and Space Administration (NASA) Marshall Spaceflight Center (MSFC) Advanced Concepts Office (ACO). Engineering work performed in the NASA MFSC's ACO is targeted toward the Exploratory Research and Concepts Development life cycle stages, as defined in the International Council on Systems Engineering (INCOSE) System Engineering Handbook. This paper addresses three ACO Systems Engineering tools that correspond to three INCOSE Technical Processes: Stakeholder Requirements Definition, Requirements Analysis, and Integration, as well as one Project Process Risk Management. These processes are used to facilitate, streamline, and manage systems engineering processes tailored for the earliest two life cycle stages, which is the environment in which ACO engineers work. The role of systems engineers and systems engineering as performed in ACO is explored in this paper. The need for tailoring Systems Engineering processes, tools, and products in the ever-changing engineering services ACO provides to its customers is addressed.
A Learning Design Ontology Based on the IMS Specification
ERIC Educational Resources Information Center
Amorim, Ricardo R.; Lama, Manuel; Sanchez, Eduardo; Riera, Adolfo; Vila, Xose A.
2006-01-01
In this paper, we present an ontology to represent the semantics of the IMS Learning Design (IMS LD) specification, a meta-language used to describe the main elements of the learning design process. The motivation of this work relies on the expressiveness limitations found on the current XML-Schema implementation of the IMS LD conceptual model. To…
NASA Technical Reports Server (NTRS)
Biess, J. J.; Yu, Y.; Middlebrook, R. D.; Schoenfeld, A. D.
1974-01-01
A review is given of future power processing systems planned for the next 20 years, and the state-of-the-art of power processing design modeling and analysis techniques used to optimize power processing systems. A methodology of modeling and analysis of power processing equipment and systems has been formulated to fulfill future tradeoff studies and optimization requirements. Computer techniques were applied to simulate power processor performance and to optimize the design of power processing equipment. A program plan to systematically develop and apply the tools for power processing systems modeling and analysis is presented so that meaningful results can be obtained each year to aid the power processing system engineer and power processing equipment circuit designers in their conceptual and detail design and analysis tasks.
Individual differences in emotionality and peri-traumatic processing.
Logan, Shanna; O'Kearney, Richard
2012-06-01
Recent cognitive models propose that intrusive trauma memories arise and persist because high levels of emotional arousal triggered by the trauma disrupt conceptual processing of elements of the event, while enhancing sensory/perceptual processing. A trauma film analogue design was used to investigate if the predicted facilitating effects on intrusions from inhibiting conceptual processing and predicted attenuating effects on intrusions from inhibiting sensory processing are moderated by individual differences in emotionality. One hundred and five non-clinical participants viewed a traumatic film while undertaking a conceptual interference task, a sensory interference task, or no interference task. Participants recorded the frequency and intensity of intrusions over the following week. There was no facilitating effect for the conceptual interference task compared to no interference task. A significant attenuation of the frequency of intrusions was evident for those undertaking sensory interference (ŋ(2) = .04). This effect, however, was only present for those with high trait anxiety (d = .82) and not for those with low trait anxiety (d = .08). Relative to high trait anxious controls, high anxious participants who undertook sensory interference also reported lower intensity of intrusions (d = .66). This is the first trauma film analogue study to show that the attenuating effect of concurrent sensory/perceptual processing on the frequency and intensity of subsequent intrusions is evident only for people with high trait anxiety. The results have implications for conceptual models of intrusion development and for their application to the prevention of post traumatic distress. Copyright © 2011 Elsevier Ltd. All rights reserved.
Woodward, Andrea; Beever, Erik A.
2011-01-01
More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the Unified Ecoregions of Alaska. Ecoregional models were then developed to illustrate resources and processes that operate at spatial scales larger than individual refuges within each ecoregion. Conceptual models also were developed for adjacent marine areas, designated as the North Pacific, Bering Sea, and Beaufort-Chukchi Sea Marine Ecoregions. Although many more conceptual models will be required to support development of a regional monitoring program, these definitions of ecoregions and associated conceptual models are an important foundation.
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Sensmeier, mark D.; Stewart, Bret A.
2006-01-01
Algorithms for rapid generation of moderate-fidelity structural finite element models of air vehicle structures to allow more accurate weight estimation earlier in the vehicle design process have been developed. Application of these algorithms should help to rapidly assess many structural layouts before the start of the preliminary design phase and eliminate weight penalties imposed when actual structure weights exceed those estimated during conceptual design. By defining the structural topology in a fully parametric manner, the structure can be mapped to arbitrary vehicle configurations being considered during conceptual design optimization. Recent enhancements to this approach include the porting of the algorithms to a platform-independent software language Python, and modifications to specifically consider morphing aircraft-type configurations. Two sample cases which illustrate these recent developments are presented.
Conceptual design of a monitoring system for the Charters of Freedom
NASA Technical Reports Server (NTRS)
Cutts, J. A.
1984-01-01
A conceptual design of a monitoring system for the Charters of Freedom was developed for the National Archives and Records Service. The monitoring system would be installed at the National Archives and used to document the condition of the Charters as part of a regular inspection program. The results of an experimental measurements program that led to the definition of analysis system requirements are presented, a conceptual design of the monitoring system is described and the alternative approaches to implementing this design were discussed. The monitoring system is required to optically detect and measure deterioration in documents that are permanently encapsulated in glass cases. An electronic imaging system with the capability for precise photometric measurements of the contrast of the script on the documents can perform this task. Two general types of imaging systems are considered (line and area array), and their suitability for performing these required measurements are compared. A digital processing capability for analyzing the electronic imaging data is also required, and several optional levels of complexity for this digital analysis system are evaluated.
A Summary of the NASA Design Environment for Novel Vertical Lift Vehicles (DELIVER) Project
NASA Technical Reports Server (NTRS)
Theodore, Colin R.
2018-01-01
The number of new markets and use cases being developed for vertical take-off and landing vehicles continues to explode, including the highly publicized urban air taxi and package deliver applications. There is an equally exploding variety of novel vehicle configurations and sizes that are being proposed to fill these new market applications. The challenge for vehicle designers is that there is currently no easy and consistent way to go from a compelling mission or use case to a vehicle that is best configured and sized for the particular mission. This is because the availability of accurate and validated conceptual design tools for these novel types and sizes of vehicles have not kept pace with the new markets and vehicles themselves. The Design Environment for Novel Vertical Lift Vehicles (DELIVER) project was formulated to address this vehicle design challenge by demonstrating the use of current conceptual design tools, that have been used for decades to design and size conventional rotorcraft, applied to these novel vehicle types, configurations and sizes. In addition to demonstrating the applicability of current design and sizing tools to novel vehicle configurations and sizes, DELIVER also demonstrated the addition of key transformational technologies of noise, autonomy, and hybrid-electric and all-electric propulsion into the vehicle conceptual design process. Noise is key for community acceptance, autonomy and the need to operate autonomously are key for efficient, reliable and safe operations, and electrification of the propulsion system is a key enabler for these new vehicle types and sizes. This paper provides a summary of the DELIVER project and shows the applicability of current conceptual design and sizing tools novel vehicle configurations and sizes that are being proposed for urban air taxi and package delivery type applications.
hydrodeoxygenation of guaiacol under ex situ catalytic fast pyrolysis conditions," Top. Catal. (2015) " ;Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast Pyrolysis of Biomass: A
ERIC Educational Resources Information Center
Brown, James Dean
Some issues in the design of classroom research on second language teaching are discussed, with the intention of helping the researcher avoid conceptual pitfalls that may cripple the study later in the process. This begins with an examination of concerns in sampling, including definition of a population to be studied, alternative sampling…
An Administrative Model for Virtual Website Hosting.
ERIC Educational Resources Information Center
Kandies, Jerry
The process of creating and maintaining a World Wide Web homepage for a national organization--the Association of Collegiate Business Schools and Programs (ACBSP)--is detailed in this paper. The logical design confines the conceptual relationships among the components of the Web pages and their hyperlinks, whereas the physical design concerns…
Integrating PCR Theory and Bioinformatics into a Research-oriented Primer Design Exercise
ERIC Educational Resources Information Center
Robertson, Amber L.; Phillips, Allison R.
2008-01-01
Polymerase chain reaction (PCR) is a conceptually difficult technique that embodies many fundamental biological processes. Traditionally, students have struggled to analyze PCR results due to an incomplete understanding of the biological concepts (theory) of DNA replication and strand complementarity. Here we describe the design of a novel…
Program Fighter: An Evaluation.
ERIC Educational Resources Information Center
Hull, David G.; Fowler, Wallace T.
A computer program for the sizing of subsonic and supersonic fighter planes was adapted for use in an aerospace engineering course at the University of Texas at Austin. FIGHTER uses classroom notation and separate subroutines for different disciplines to implement the conceptual design process. Input consists of a set of design variables and a set…
Biomimetic design processes in architecture: morphogenetic and evolutionary computational design.
Menges, Achim
2012-03-01
Design computation has profound impact on architectural design methods. This paper explains how computational design enables the development of biomimetic design processes specific to architecture, and how they need to be significantly different from established biomimetic processes in engineering disciplines. The paper first explains the fundamental difference between computer-aided and computational design in architecture, as the understanding of this distinction is of critical importance for the research presented. Thereafter, the conceptual relation and possible transfer of principles from natural morphogenesis to design computation are introduced and the related developments of generative, feature-based, constraint-based, process-based and feedback-based computational design methods are presented. This morphogenetic design research is then related to exploratory evolutionary computation, followed by the presentation of two case studies focusing on the exemplary development of spatial envelope morphologies and urban block morphologies.
MODIS Information, Data, and Control System (MIDACS) system specifications and conceptual design
NASA Technical Reports Server (NTRS)
Han, D.; Salomonson, V.; Ormsby, J.; Ardanuy, P.; Mckay, A.; Hoyt, D.; Jaffin, S.; Vallette, B.; Sharts, B.; Folta, D.
1988-01-01
The MODIS Information, Data, and Control System (MIDACS) Specifications and Conceptual Design Document discusses system level requirements, the overall operating environment in which requirements must be met, and a breakdown of MIDACS into component subsystems, which include the Instrument Support Terminal, the Instrument Control Center, the Team Member Computing Facility, the Central Data Handling Facility, and the Data Archive and Distribution System. The specifications include sizing estimates for the processing and storage capacities of each data system element, as well as traffic analyses of data flows between the elements internally, and also externally across the data system interfaces. The specifications for the data system, as well as for the individual planning and scheduling, control and monitoring, data acquisition and processing, calibration and validation, and data archive and distribution components, do not yet fully specify the data system in the complete manner needed to achieve the scientific objectives of the MODIS instruments and science teams. The teams have not yet been formed; however, it was possible to develop the specifications and conceptual design based on the present concept of EosDIS, the Level-1 and Level-2 Functional Requirements Documents, the Operations Concept, and through interviews and meetings with key members of the scientific community.
Thermochemical Conversion Techno-Economic Analysis | Bioenergy | NREL
Conversion Techno-Economic Analysis Thermochemical Conversion Techno-Economic Analysis NREL's Thermochemical Conversion Analysis team focuses on the conceptual process design and techno-economic analysis , detailed process models, and TEA developed under this project provide insights into the potential economic
Instructional Screencast: A Research Conceptual Framework
ERIC Educational Resources Information Center
Abdul Razak, Muhammad Razuan; Mohamad Ali, Ahmad Zamzuri
2016-01-01
The literature review indicates that the benefit of screencast as an instructional media has not clearly proved effective for all categories of students. This is due to the individual differences in processing the information. Inadequate screencast design will cause strain to students' cognitive process which might impede learning. This…
Team Software Process (TSP) Body of Knowledge (BOK)
2010-07-01
styles that correspond stereotypical extremes of group control and coordination, as shown in Figure 5. closed, random, open, and synchronous group ...and confirming the resolutions • managing the design change process and coordinating changes with the configuration control board • reporting...members. 123 | CMU/SEI-2010-TR-020 4. Coaching – Obtain a lead coach and the coaches for each team. 5. Conceptual design – Form a working group of
Give Design a Chance: A Case for a Human Centered Approach to Operational Art
2017-03-30
strategy development and operational art. This demands fuller integration of the Army Design Methodology (ADM) and the Military Decision Making Process...MDMP). This monograph proposes a way of thinking and planning that goes beyond current Army doctrinal methodologies to address the changing...between conceptual and detailed planning. 15. SUBJECT TERMS Design; Army Design Methodology (ADM); Human Centered; Strategy; Operational Art
Two mechanisms of constructive recollection: Perceptual recombination and conceptual fluency.
Doss, Manoj K; Bluestone, Maximilian R; Gallo, David A
2016-11-01
Recollection is constructive and prone to distortion, but the mechanisms through which recollections can become embellished with rich yet illusory details are still debated. According to the conceptual fluency hypothesis, abstract semantic or conceptual activation increases the familiarity of a nonstudied event, causing one to falsely attribute imagined features to actual perception. In contrast, according to the perceptual recombination hypothesis, details from actually perceived events are partially recollected and become erroneously bound to a nonstudied event, again causing a detailed yet false recollection. Here, we report the first experiments aimed at disentangling these 2 mechanisms. Participants imagined pictures of common objects, and then they saw an actual picture of some of the imagined objects. We next presented misinformation associated with these studied items, designed to increase conceptual fluency (i.e., semantically related words) or perceptual recombination (i.e., perceptually similar picture fragments). Finally, we tested recollection for the originally seen pictures using verbal labels as retrieval cues. Consistent with conceptual fluency, processing-related words increased false recollection of pictures that were never seen, and consistent with perceptual recombination, processing picture fragments further increased false recollection. We also found that conceptual fluency was more short-lived than perceptual recombination, further dissociating these 2 mechanisms. These experiments provide strong evidence that conceptual fluency and perceptual recombination independently contribute to the constructive aspects of recollection. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Yusof, Wan Zaiyana Mohd; Fadzline Muhamad Tamyez, Puteri
2018-04-01
The definition of innovation does not help the entrepreneurs, business person or innovator to truly grasp what it means to innovate, hence we hear that government has spend millions of ringgit on “innovation” by doing R & D. However, the result has no avail in terms of commercial value. Innovation can be defined as the exploitation of commercialization of an idea or invention to create economic or social value. Most Entrepreneurs and business managers, regard innovation as creating economic value, while forgetting that innovation also create value for society or the environment. The ultimate goal as Entrepreneur, inventor or researcher is to exploit innovation to create value. As changes happen in society and economy, organizations and enterprises have to keep up and this requires innovation. This conceptual paper is to study the radical design driven innovation in the Malaysian furniture industry as a business model which the overall aim of the study is to examine the radical design driven innovation in Malaysia and how it compares with findings from Western studies. This paper will familiarize readers with the innovation and describe the radical design driven perspective that is adopted in its conceptual framework and design process.
Conceptual design studies of the Electron Cyclotron launcher for DEMO reactor
NASA Astrophysics Data System (ADS)
Moro, Alessandro; Bruschi, Alex; Franke, Thomas; Garavaglia, Saul; Granucci, Gustavo; Grossetti, Giovanni; Hizanidis, Kyriakos; Tigelis, Ioannis; Tran, Minh-Quang; Tsironis, Christos
2017-10-01
A demonstration fusion power plant (DEMO) producing electricity for the grid at the level of a few hundred megawatts is included in the European Roadmap [1]. The engineering design and R&D for the electron cyclotron (EC), ion cyclotron and neutral beam systems for the DEMO reactor is being performed by Work Package Heating and Current Drive (WPHCD) in the framework of EUROfusion Consortium activities. The EC target power to the plasma is about 50 MW, in which the required power for NTM control and burn control is included. EC launcher conceptual design studies are here presented, showing how the main design drivers of the system have been taken into account (physics requirements, reactor relevant operations, issues related to its integration as in-vessel components). Different options for the antenna are studied in a parameters space including a selection of frequencies, injection angles and launch points to get the best performances for the antenna configuration, using beam tracing calculations to evaluate plasma accessibility and deposited power. This conceptual design studies comes up with the identification of possible limits, constraints and critical issues, essential in the selection process of launcher setup solution.
Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models
Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael
2009-01-01
Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic processes represented in the parameter sets resulting from each model were comparable at individual watersheds, but varied between watersheds. The models were unable to show, however, whether hydrologic processes other than those included in the original conceptual models were major contributors to streamflow. Supplemental simulations of agricultural chemical transport could improve the ability to assess conceptual models.
Automated Space Processing Payloads Study. Volume 1: Executive Summary
NASA Technical Reports Server (NTRS)
1975-01-01
An investigation is described which examined the extent to which the experiment hardware and operational requirements can be met by automatic control and material handling devices; payload and system concepts are defined which make extensive use of automation technology. Topics covered include experiment requirements and hardware data, capabilities and characteristics of industrial automation equipment and controls, payload grouping, automated payload conceptual design, space processing payload preliminary design, automated space processing payloads for early shuttle missions, and cost and scheduling.
Faith Moves Mountains: an Appalachian cervical cancer prevention program.
Schoenberg, Nancy E; Hatcher, Jennifer; Dignan, Mark B; Shelton, Brent; Wright, Sherry; Dollarhide, Kaye F
2009-01-01
To provide a conceptual description of Faith Moves Mountains (FMM), an intervention designed to reduce the disproportionate burden of cervical cancer among Appalachian women. FMM, a community-based participatory research program designed and implemented in collaboration with churches in rural, southeastern Kentucky, aims to increase cervical cancer screening (Pap tests) through a multiphase process of educational programming and lay health counseling. We provide a conceptual overview to key elements of the intervention, including programmatic development, theoretical basis, intervention approach and implementation, and evaluation procedures. After numerous modifications, FMM has recruited and retained over 400 women, 30 churches, and has become a change agent in the community.
NASA Astrophysics Data System (ADS)
Milana; Khan, M. K.; Munive, J. E.
2014-07-01
The importance of maintenance has escalated significantly by the increasing of automation in manufacturing process. This condition switches traditional maintenance perspective of inevitable cost into the business competitive driver. Consequently, maintenance strategy and operation decision needs to be synchronized to business and manufacturing concerns. This paper shows the development of conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO). The framework of KBIMSO is elaborated to show the process of how the KBIMSO works to reach the maintenance decision. By considering the multi-criteria of maintenance decision making, the KB system embedded with GAP and AHP to support integrated maintenance strategy and operation which is novel in this area. The KBIMSO is useful to review the existing maintenance system and give reasonable recommendation of maintenance decisions in respect to business and manufacturing perspective.
Innovation and design approaches within prospective ergonomics.
Liem, André; Brangier, Eric
2012-01-01
In this conceptual article the topic of "Prospective Ergonomics" will be discussed within the context of innovation, design thinking and design processes & methods. Design thinking is essentially a human-centred innovation process that emphasises observation, collaboration, interpretation, visualisation of ideas, rapid concept prototyping and concurrent business analysis, which ultimately influences innovation and business strategy. The objective of this project is to develop a roadmap for innovation, involving consumers, designers and business people in an integrative process, which can be applied to product, service and business design. A theoretical structure comprising of Innovation perspectives (1), Worldviews supported by rationalist-historicist and empirical-idealistic dimensions (2) and Models of "design" reasoning (3) precedes the development and classification of existing methods as well as the introduction of new ones.
A Conceptual Level Design for a Static Scheduler for Hard Real-Time Systems
1988-03-01
The design of hard real - time systems is gaining a great deal of attention in the software engineering field as more and more real-world processes are...for these hard real - time systems . PSDL, as an executable design language, is supported by an execution support system consisting of a static scheduler, dynamic scheduler, and translator.
Image Processing In Laser-Beam-Steering Subsystem
NASA Technical Reports Server (NTRS)
Lesh, James R.; Ansari, Homayoon; Chen, Chien-Chung; Russell, Donald W.
1996-01-01
Conceptual design of image-processing circuitry developed for proposed tracking apparatus described in "Beam-Steering Subsystem For Laser Communication" (NPO-19069). In proposed system, desired frame rate achieved by "windowed" readout scheme in which only pixels containing and surrounding two spots read out and others skipped without being read. Image data processed rapidly and efficiently to achieve high frequency response.
Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing
NASA Technical Reports Server (NTRS)
Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.
2007-01-01
Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.
Effect of perceptual load on conceptual processing: an extension of Vermeulen's theory.
Xie, Jiushu; Wang, Ruiming; Sun, Xun; Chang, Song
2013-10-01
The effect of color and shape load on conceptual processing was studied. Perceptual load effects have been found in visual and auditory conceptual processing, supporting the theory of embodied cognition. However, whether different types of visual concepts, such as color and shape, share the same perceptual load effects is unknown. In the current experiment, 32 participants were administered simultaneous perceptual and conceptual tasks to assess the relation between perceptual load and conceptual processing. Keeping color load in mind obstructed color conceptual processing. Hence, perceptual processing and conceptual load shared the same resources, suggesting embodied cognition. Color conceptual processing was not affected by shape pictures, indicating that different types of properties within vision were separate.
Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs
NASA Technical Reports Server (NTRS)
Booske, John H.; Kory, Carol L.; Gallagher, D.; van der Weide, Daniel W.; Limbach, S; Gustafson, P; Lee, W.-J.; Gallagher, S.; Jain, K.
2001-01-01
Summary form only given. The Terahertz (THz) region of the electromagnetic spectrum (approx.300-3000 GHz) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.01-10.0 W continuous wave), efficient (>1 %), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and relatively inexpensive. Micro-machined Vacuum Electron Devices (micro-VEDs) represent a promising solution. We describe prospects for miniature, THz-regime TWTs fabricated using micromachining techniques. Several approx.600 GHz conceptual designs are compared. Their expected performance has been analyzed using SD, 2.51), and 3D TWT codes. A folded waveguide (FWG) TWT forward-wave amplifier design is presented based on a Northrop Grumman (NGC) optimized design procedure. This conceptual device is compared to the simulated performance of a novel, micro-VED helix TWT. Conceptual FWG TWT backward-wave amplifiers and oscillators are also discussed. A scaled (100 GHz) FWG TWT operating at a relatively low voltage (-12 kV) is under development at NGC. Also, actual-size micromachining experiments are planned to evaluate the feasibility of arrays of micro-VED TWTs. Progress and results of these efforts are described. This work was supported, in part by AFOSR, ONR, and NSF.
NASA Astrophysics Data System (ADS)
Farid, V. L.; Wonorahardjo, S.
2018-05-01
The implementation of Green Building criteria is relatively new in architectural practice, especially in Indonesia. Consequently, the integration of these criteria into design process has the potential to change the design process itself. The implementation of the green building criteria into the conventional design process will be discussed in this paper. The concept of this project is to design a residential unit with a natural air-conditioning system. To achieve this purpose, the Green Building criteria has been implemented since the beginning of the design process until the detailing process on the end of the project. Several studies was performed throughout the design process, such as: (1) Conceptual review, where several professionally proved theories related to Tropical Architecture and passive design are used for a reference, and (2) Computer simulations, such as Computational Fluid Dynamics (CFD) and wind tunnel simulation, used to represent the dynamic response of the surrounding environment towards the building. Hopefully this paper may become a reference for designing a green residential building.
The initial conceptualization and design of a meteorological satellite
NASA Technical Reports Server (NTRS)
Greenfield, S. M.
1982-01-01
The meteorological satellite had its substantive origin in the analytical process that helped initiate America's military satellite program. Its impetus lay in the desire to acquire current meteorological information in large areas for which normal meteorological observational data were not available on a day-to-day basis. Serious consideration was given to the feasibility of reconnaissance from meteorological satellites. The conceptualization of a meteorological satellite is discussed along with the early research which gave substance to that concept.
A conceptual framework for the domain of evidence-based design.
Ulrich, Roger S; Berry, Leonard L; Quan, Xiaobo; Parish, Janet Turner
2010-01-01
The physical facilities in which healthcare services are performed play an important role in the healing process. Evidence-based design in healthcare is a developing field of study that holds great promise for benefiting key stakeholders: patients, families, physicians, and nurses, as well as other healthcare staff and organizations. In this paper, the authors present and discuss a conceptual framework intended to capture the current domain of evidence-based design in healthcare. In this framework, the built environment is represented by nine design variable categories: audio environment, visual environment, safety enhancement, wayfinding system, sustainability, patient room, family support spaces, staff support spaces, and physician support spaces. Furthermore, a series of matrices is presented that indicates knowledge gaps concerning the relationship between specific healthcare facility design variable categories and participant and organizational outcomes. From this analysis, the authors identify fertile research opportunities from the perspectives of key stakeholders.
A Conceptual Design for a Reliable Optical Bus (ROBUS)
NASA Technical Reports Server (NTRS)
Miner, Paul S.; Malekpour, Mahyar; Torres, Wilfredo
2002-01-01
The Scalable Processor-Independent Design for Electromagnetic Resilience (SPIDER) is a new family of fault-tolerant architectures under development at NASA Langley Research Center (LaRC). The SPIDER is a general-purpose computational platform suitable for use in ultra-reliable embedded control applications. The design scales from a small configuration supporting a single aircraft function to a large distributed configuration capable of supporting several functions simultaneously. SPIDER consists of a collection of simplex processing elements communicating via a Reliable Optical Bus (ROBUS). The ROBUS is an ultra-reliable, time-division multiple access broadcast bus with strictly enforced write access (no babbling idiots) providing basic fault-tolerant services using formally verified fault-tolerance protocols including Interactive Consistency (Byzantine Agreement), Internal Clock Synchronization, and Distributed Diagnosis. The conceptual design of the ROBUS is presented in this paper including requirements, topology, protocols, and the block-level design. Verification activities, including the use of formal methods, are also discussed.
Energy-storage-flywheel housing-design-concept development
NASA Astrophysics Data System (ADS)
Coppa, A. P.
1981-09-01
A low cost vehicular flywheel housing conceptual design was obtained by resorting to well developed mass production sheet metal fabrication processes and inexpensive materials. Two versions of the design, based on different rotor sizes, are described. The rotors are of the General Electric hybrid type and have the following dimensions: 15 in. OD x 1.50 in. thickness and 18 in. OD x 1.00 in. thickness. Both rotors have a maximum operating energy capacity of 0.25 kw. hr and close to identical weight and energy density values of 16.0 lb. and 15.6 whr/lb respectively. A leading mass producer of sheet metal components for automotive vehicles provided budgetary quotations for steel housings. Information is included on: the design analysis, results of rotor burst testing and the conceptual design requirements for containment vacuum, safe response to vehicle collision, noise suppression, and structural performance.
An object-oriented software approach for a distributed human tracking motion system
NASA Astrophysics Data System (ADS)
Micucci, Daniela L.
2003-06-01
Tracking is a composite job involving the co-operation of autonomous activities which exploit a complex information model and rely on a distributed architecture. Both information and activities must be classified and related in several dimensions: abstraction levels (what is modelled and how information is processed); topology (where the modelled entities are); time (when entities exist); strategy (why something happens); responsibilities (who is in charge of processing the information). A proper Object-Oriented analysis and design approach leads to a modular architecture where information about conceptual entities is modelled at each abstraction level via classes and intra-level associations, whereas inter-level associations between classes model the abstraction process. Both information and computation are partitioned according to level-specific topological models. They are also placed in a temporal framework modelled by suitable abstractions. Domain-specific strategies control the execution of the computations. Computational components perform both intra-level processing and intra-level information conversion. The paper overviews the phases of the analysis and design process, presents major concepts at each abstraction level, and shows how the resulting design turns into a modular, flexible and adaptive architecture. Finally, the paper sketches how the conceptual architecture can be deployed into a concrete distribute architecture by relying on an experimental framework.
NASA Technical Reports Server (NTRS)
1974-01-01
The task phase concerned with the requirements, design, and planning studies for the carry-on laboratory (COL) began with a definition of biomedical research areas and candidate research equipment, and then went on to develop conceptual layouts for COL which were each evaluated in order to arrive at a final conceptual design. Each step in this design/evaluation process concerned itself with man/systems integration research and hardware, and life support and protective systems research and equipment selection. COL integration studies were also conducted and include attention to electrical power and data management requirements, operational considerations, and shuttle/Spacelab interface specifications. A COL program schedule was compiled, and a cost analysis was finalized which takes into account work breakdown, annual funding, and cost reduction guidelines.
Supracolloidal fullerene-like cages: design principles and formation mechanisms.
Li, Zhan-Wei; Zhu, You-Liang; Lu, Zhong-Yuan; Sun, Zhao-Yan
2016-11-30
How to create novel desired structures by rational design of building blocks represents a significant challenge in materials science. Here we report a conceptually new design principle for creating supracolloidal fullerene-like cages through the self-assembly of soft patchy particles interacting via directional nonbonded interactions by mimicking non-planar sp 2 hybridized carbon atoms in C 60 . Our numerical investigations demonstrate that the rational design of patch configuration, size, and interaction can drive soft three-patch particles to reversibly self-assemble into a vast collection of supracolloidal fullerene-like cages. We further elucidate the formation mechanisms of supracolloidal fullerene-like cages by analyzing the structural characteristics and the formation process. Our results provide conceptual and practical guidance towards the experimental realization of supracolloidal fullerene-like cages, as well as a new perspective on understanding the fullerene formation mechanisms.
Conceptual design of a water treatment system to support a manned Mars colony
NASA Technical Reports Server (NTRS)
1988-01-01
The initial tasks addressed by the Prairie View A&M University team were the conceptual design of a breathable-air manufacturing system, a means of drilling for underground water, and a method for storing water for future use. Subsequently, the design objective of the team for the 1987-1988 academic year was the conceptual design of an integrated system for the supply of quality water for biological consumption, farming, residential and industrial use. The source of water for these applications is assumed to be artesian or subsurface. The first step of the project was to establish design criteria and major assumptions. The second step of the effort was to generate a block diagram of the expected treatment system and assign tasks to individual students. The list of processes for water purification and wastewater treatment given above suggests that there will be a need for on-site chemicals manufacturing for ion-exchange regeneration and disinfection. The third step of the project was to establish a basis for the design capacity of the system. A total need of 10,000 gal/day was assumed to be required. It was also assumed that 30,000 gallon raw-water intake volume is needed to produce the desired effluent volume.
The Co-Creation-Wheel: A Four-Dimensional Model of Collaborative Interorganistional Innovation
ERIC Educational Resources Information Center
Ehlen, Corry; van der Klink, Marcel; Stoffers, Jol; Boshuizen, Henny
2017-01-01
Purpose: This study aims to design and validate a conceptual and practical model of co-creation. Co-creation, to design collaborative new products, services and processes in contact with users, has become more and more important because organisations increasingly require multidisciplinary collaboration inside and outside the organisation to…
Goal-Based Learning: Conceptual Design "Jump-Start" Workbook.
ERIC Educational Resources Information Center
Montgomery, Joel R.
This workbook explains the process of using the goal-based learning (GBL) approach to accelerating performance change to design an education or training program. The first half of the workbook, which focuses on the nature and benefits of GBL, discusses the following topics: shifting the focus of education; differences between lecture-based and…
NASA Technical Reports Server (NTRS)
Brown, J. A.
1983-01-01
Kennedy Space Center cost Index aids in conceptual design cost estimates. Report discusses development of KSC Cost Index since January 1974. Index since January 1974. Index provides management, design engineers, and estimators an up-to-data reference for local labor and material process. Also provides mount and rate of change in these costs used to predict future construction costs.
Inertial Energy Storage for Spacecraft
NASA Technical Reports Server (NTRS)
Rodriguez, G. E.
1984-01-01
The feasibility of inertial energy storage in a spacecraft power system is evaluated on the basis of a conceptual integrated design that encompasses a composite rotor, magnetic suspension and a permanent magnet (PM) motor/generator for a 3-kW orbital average payload at a bus distribution voltage of 250 volts dc. The conceptual design, is referred to as a Mechanical Capacitor. The baseline power system configuration selected is a series system employing peak-power-tracking for a Low Earth-Orbiting application. Power processing, required in the motor/generator, provides potential alternative that can only be achieved in systems with electrochemical energy storage by the addition of power processing components. One such alternative configuration provides for peak-power-tracking of the solar array and still maintains a regulated bus, without the expense of additional power processing components. Precise speed control of the two counterrotating wheels is required to reduce interaction with the attitude control system (ACS) or alternatively, used to perform attitude control functions.
Innovation Process Design: A Change Management and Innovation Dimension Perspective
NASA Astrophysics Data System (ADS)
Peisl, Thomas; Reger, Veronika; Schmied, Juergen
The authors propose an innovative approach to the management of innovation integrating business, process, and maturity dimensions. Core element of the concept is the adaptation of ISO/IEC 15504 to the innovation process including 14 innovation drivers. Two managerial models are applied to conceptualize and visualize the respective innovation strategies, the Balanced Scorecard and a Barriers in Change Processes Model. An illustrative case study shows a practical implementation process.
NASA Astrophysics Data System (ADS)
Darmawan, Tofiq Dwiki; Priadythama, Ilham; Herdiman, Lobes
2018-02-01
Welding and drilling are main processes of making chair frame from metal material. Commonly, chair frame construction includes many arcs which bring difficulties for its welding and drilling process. In UNS industrial engineering integrated practicum there are welding fixtures which use to fixing frame component position for welding purpose. In order to achieve exact holes position for assembling purpose, manual drilling processes were conducted after the frame was joined. Unfortunately, after it was welded the frame material become hard and increase drilling tools wear rate as well as reduce holes position accuracy. The previous welding fixture was not equipped with clamping system and cannot accommodate drilling process. To solve this problem, our idea is to reorder the drilling process so that it can be execute before welding. Thus, this research aims to propose conceptual design of modular fixture which can integrate welding and drilling process. We used Generic Product Development Process to address the design concept. We collected design requirements from 3 source, jig and fixture theoretical concepts, user requirements, and clamping part standards. From 2 alternatives fixture tables, we propose the first which equipped with mounting slots instead of holes. We test the concept by building a full sized prototype and test its works by conducting welding and drilling of a student chair frame. Result from the welding and drilling trials showed that the holes are on precise position after welding. Based on this result, we conclude that the concept can be a consideration for application in UNS Industrial Engineering Integrated Practicum.
The effect of requirements prioritization on avionics system conceptual design
NASA Astrophysics Data System (ADS)
Lorentz, John
This dissertation will provide a detailed approach and analysis of a new collaborative requirements prioritization methodology that has been used successfully on four Coast Guard avionics acquisition and development programs valued at $400M+. A statistical representation of participant study results will be discussed and analyzed in detail. Many technically compliant projects fail to deliver levels of performance and capability that the customer desires. Some of these systems completely meet "threshold" levels of performance; however, the distribution of resources in the process devoted to the development and management of the requirements does not always represent the voice of the customer. This is especially true for technically complex projects such as modern avionics systems. A simplified facilitated process for prioritization of system requirements will be described. The collaborative prioritization process, and resulting artifacts, aids the systems engineer during early conceptual design. All requirements are not the same in terms of customer priority. While there is a tendency to have many thresholds inside of a system design, there is usually a subset of requirements and system performance that is of the utmost importance to the design. These critical capabilities and critical levels of performance typically represent the reason the system is being built. The systems engineer needs processes to identify these critical capabilities, the associated desired levels of performance, and the risks associated with the specific requirements that define the critical capability. The facilitated prioritization exercise is designed to collaboratively draw out these critical capabilities and levels of performance so they can be emphasized in system design. Developing the purpose, scheduling and process for prioritization events are key elements of systems engineering and modern project management. The benefits of early collaborative prioritization flow throughout the project schedule, resulting in greater success during system deployment and operational testing. This dissertation will discuss the data and findings from participant studies, present a literature review of systems engineering and design processes, and test the hypothesis that the prioritization process had no effect on stakeholder sentiment related to the conceptual design. In addition, the "Requirements Rationalization" process will be discussed in detail. Avionics, like many other systems, has transitioned from a discrete electronics engineering, hard engineering discipline to incorporate software engineering as a core process of the technology development cycle. As with other software-based systems, avionics now has significant soft system attributes that must be considered in the design process. The boundless opportunities that exist in software design demand prioritization to focus effort onto the critical functions that the software must provide. This has been a well documented and understood phenomenon in the software development community for many years. This dissertation will attempt to link the effect of software integrated avionics to the benefits of prioritization of requirements in the problem space and demonstrate the sociological and technical benefits of early prioritization practices.
NASA Astrophysics Data System (ADS)
Roshanian, Jafar; Jodei, Jahangir; Mirshams, Mehran; Ebrahimi, Reza; Mirzaee, Masood
A new automated multi-level of fidelity Multi-Disciplinary Design Optimization (MDO) methodology has been developed at the MDO Laboratory of K.N. Toosi University of Technology. This paper explains a new design approach by formulation of developed disciplinary modules. A conceptual design for a small, solid-propellant launch vehicle was considered at two levels of fidelity structure. Low and medium level of fidelity disciplinary codes were developed and linked. Appropriate design and analysis codes were defined according to their effect on the conceptual design process. Simultaneous optimization of the launch vehicle was performed at the discipline level and system level. Propulsion, aerodynamics, structure and trajectory disciplinary codes were used. To reach the minimum launch weight, the Low LoF code first searches the whole design space to achieve the mission requirements. Then the medium LoF code receives the output of the low LoF and gives a value near the optimum launch weight with more details and higher fidelity.
3S (Safeguards, Security, Safety) based pyroprocessing facility safety evaluation plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ku, J.H.; Choung, W.M.; You, G.S.
The big advantage of pyroprocessing for the management of spent fuels against the conventional reprocessing technologies lies in its proliferation resistance since the pure plutonium cannot be separated from the spent fuel. The extracted materials can be directly used as metal fuel in a fast reactor, and pyroprocessing reduces drastically the volume and heat load of the spent fuel. KAERI has implemented the SBD (Safeguards-By-Design) concept in nuclear fuel cycle facilities. The goal of SBD is to integrate international safeguards into the entire facility design process since the very beginning of the design phase. This paper presents a safety evaluationmore » plan using a conceptual design of a reference pyroprocessing facility, in which 3S (Safeguards, Security, Safety)-By-Design (3SBD) concept is integrated from early conceptual design phase. The purpose of this paper is to establish an advanced pyroprocessing hot cell facility design concept based on 3SBD for the successful realization of pyroprocessing technology with enhanced safety and proliferation resistance.« less
Conceptual modeling for Prospective Health Technology Assessment.
Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin
2012-01-01
Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.
We've Come a Long Way, Baby (But We're Not There Yet): Gender Past, Present, and Future.
Liben, Lynn S
2016-01-01
Gender has long been, and continues to be, a powerful predictor of developmental experiences and outcomes. Observations drawn from personal history, developmental science, and life beyond the academy show that historically, gender constraints have diminished in some ways, but remain robust in others. Reviewed are children's constructive processes that--in interaction with the embedding ecology--foster the emergence and persistence of gendered phenomena. Reviews of interventions designed to increase girls' science participation demonstrate the need to evaluate both intended and unintended program consequences. Discussion of the single-sex schooling debate shows the importance of foundational conceptualizations of gender, and illuminates research-to-policy processes. After identifying newly emerging gender conceptualizations, the concluding section highlights the need to consider how gender conceptualizations do and should affect science and society. © 2016 The Author. Child Development © 2016 Society for Research in Child Development, Inc.
Conceptual design of an in-space cryogenic fluid management facility, executive summary
NASA Technical Reports Server (NTRS)
Willen, G. S.; Riemer, D. H.; Hustvedt, D. C.
1981-01-01
The conceptual design of a Spacelab experiment to develop the technology associated with low gravity propellant management is summarized. The preliminary facility definition, conceptual design and design analysis, and facility development plan, including schedule and cost estimates for the facility, are presented.
An advanced telerobotic system for shuttle payload changeout room processing applications
NASA Technical Reports Server (NTRS)
Sklar, M.; Wegerif, D.
1989-01-01
To potentially alleviate the inherent difficulties in the ground processing of the Space Shuttle and its associated payloads, a teleoperated, semi-autonomous robotic processing system for the Payload Changeout Room (PCR) is now in the conceptual stages. The complete PCR robotic system as currently conceived is described and critical design issues and the required technologies are discussed.
A unified approach for composite cost reporting and prediction in the ACT program
NASA Technical Reports Server (NTRS)
Freeman, W. Tom; Vosteen, Louis F.; Siddiqi, Shahid
1991-01-01
The Structures Technology Program Office (STPO) at NASA Langley Research Center has held two workshops with representatives from the commercial airframe companies to establish a plan for development of a standard cost reporting format and a cost prediction tool for conceptual and preliminary designers. This paper reviews the findings of the workshop representatives with a plan for implementation of their recommendations. The recommendations of the cost tracking and reporting committee will be implemented by reinstituting the collection of composite part fabrication data in a format similar to the DoD/NASA Structural Composites Fabrication Guide. The process of data collection will be automated by taking advantage of current technology with user friendly computer interfaces and electronic data transmission. Development of a conceptual and preliminary designers' cost prediction model will be initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design (CAD) programs is assessed.
School Psychology as a Relational Enterprise: The Role and Process of Qualitative Methodology
ERIC Educational Resources Information Center
Newman, Daniel S.; Clare, Mary M.
2016-01-01
The purpose of this article is to explore the application of qualitative research to establishing a more complete understanding of relational processes inherent in school psychology practice. We identify the building blocks of rigorous qualitative research design through a conceptual overview of qualitative paradigms, methodologies, methods (i.e.,…
Developing a Web-Based Hiring Resource at a State Medical College
ERIC Educational Resources Information Center
Drane, Daniel, III
2017-01-01
This study uses a sequential, mixed method, action research, quantitative to qualitative research design. The purpose of this study was to develop a useful standardized hiring process at a state medical college that brings clarity to the hiring process and policies. Two conceptual frameworks guided the innovations in this study--communities of…
Bissonnette, Sarah A.; Combs, Elijah D.; Nagami, Paul H.; Byers, Victor; Fernandez, Juliana; Le, Dinh; Realin, Jared; Woodham, Selina; Smith, Julia I.; Tanner, Kimberly D.
2017-01-01
While there have been concerted efforts to reform undergraduate biology toward teaching students to organize their conceptual knowledge like experts, there are few tools that attempt to measure this. We previously developed the Biology Card Sorting Task (BCST), designed to probe how individuals organize their conceptual biological knowledge. Previous results showed the BCST could differentiate between different populations, namely non–biology majors (NBM) and biology faculty (BF). In this study, we administered the BCST to three additional populations, using a cross-sectional design: entering biology majors (EBM), advanced biology majors (ABM), and biology graduate students (BGS). Intriguingly, ABM did not initially sort like experts any more frequently than EBM. However, once the deep-feature framework was revealed, ABM were able to sort like experts more readily than did EBM. These results are consistent with the conclusion that biology education enables advanced biology students to use an expert-like conceptual framework. However, these results are also consistent with a process of “selection,” wherein students who persist in the major may have already had an expert-like conceptual framework to begin with. These results demonstrate the utility of the BCST in measuring differences between groups of students over the course of their undergraduate education. PMID:28213584
ERIC Educational Resources Information Center
Cardenas-Claros, Monica Stella; Gruba, Paul A.
2013-01-01
This paper proposes a theoretical framework for the conceptualization and design of help options in computer-based second language (L2) listening. Based on four empirical studies, it aims at clarifying both conceptualization and design (CoDe) components. The elements of conceptualization consist of a novel four-part classification of help options:…
Multiparadigm Design Environments
1992-01-01
following results: 1. New methods for programming in terms of conceptual models 2. Design of object-oriented languages 3. Compiler optimization and...experimented with object-based methods for programming directly in terms of conceptual models, object-oriented language design, computer program...expect the3e results to have a strong influence on future ,,j :- ...... L ! . . • a mm ammmml ll Illlll • l I 1 Conceptual Programming Conceptual
Conceptual Design of the Chornobyl New Safe Confinement - an Overview
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulishenko, Valery N.; Hogg, Charles; Schmieman, Eric A.
2006-05-01
The Object Shelter, constructed over the Chornobyl nuclear power plant that was destroyed by a 1986 accident, is at risk of collapse. The Consortium of Bechtel, Electricité De France, and Battelle, in cooperation with subcontractor КСК, recently completed the conceptual design for a New Safe Confinement (NSC) building to reduce Shelter corrosion, to mitigate the consequences of potential collapse, and to enable the safe deconstruction of unstable structures. The arch-shaped NSC will be constructed at a distance from the Shelter to minimize radiation exposure to construction workers, and then slid into place over the Shelter. After sliding, cranes and othermore » tools inside the NSC will be remotely operated for deconstruction of the Shelter. The NSC is designed for a 100-year life. Bechtel designed the arch structure and was responsible for project management functions. Electricité De France designed the foundations and designed deconstruction of the Object Shelter unstable elements. Battelle performed safety analyses and environmental impact assessment. КСК (a consortium of КIЕЛ [KIEP], НДIБК [NIISK], and МНТЦ [ISTC]), as a working partner in all aspects of the design and analysis processes, was the Ukrainian licensed engineer for conceptual design. The design is currently being reviewed by Ukrainian regulatory authorities. An open international tender for detailed design and construction is anticipated to be announced by the European Bank for Reconstruction and Development in December, 2003, with two-stage bid evaluation beginning in April, 2004.« less
NASA Technical Reports Server (NTRS)
1981-01-01
The results of magnet system special investigations listed below are summarized: 4 Tesla Magnet Alternate Design Study; 6 Tesla Magnet Manufacturability Study. The conceptual design for a 4 Tesla superconducting magnet system for use with an alternate (supersonic) ETF power train is described, and estimated schedule and cost are identified. The magnet design is scaled from the ETF 6 T Tesla design. Results of a manufacturability study and a revised schedule and cost estimate for the ETF 6 T magnet are reported. Both investigations are extensions of the conceptual design of a 6 T magnet system performed earlier as a part of the overall MED-ETF conceptual design described in Conceptual Design Engineering Report (CDER) Vol. V, System Design Description (SDD) 503 dated September, 1981, DOE/NASA/0224-1; NASA CR-165/52.
Open Vehicle Sketch Pad Aircraft Modeling Strategies
NASA Technical Reports Server (NTRS)
Hahn, Andrew S.
2013-01-01
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity, picking tools and methods with the appropriate balance of characteristics to achieve the goals of the study, while staying within the available resources. Identifying geometric details that are important, and those that are not, is critical to making modeling and methodology choices. This is true for both the low-order analysis methods traditionally used in Conceptual design as well as the highest-order analyses available. This paper will highlight some of Conceptual design's characteristics that drive the designer s choices as well as modeling examples for several aircraft configurations using the open source version of the Vehicle Sketch Pad (Open VSP) aircraft Conceptual design geometry modeler.
NASA Technical Reports Server (NTRS)
Harper, R. E.; Alger, L. S.; Babikyan, C. A.; Butler, B. P.; Friend, S. A.; Ganska, R. J.; Lala, J. H.; Masotto, T. K.; Meyer, A. J.; Morton, D. P.
1992-01-01
Digital computing systems needed for Army programs such as the Computer-Aided Low Altitude Helicopter Flight Program and the Armored Systems Modernization (ASM) vehicles may be characterized by high computational throughput and input/output bandwidth, hard real-time response, high reliability and availability, and maintainability, testability, and producibility requirements. In addition, such a system should be affordable to produce, procure, maintain, and upgrade. To address these needs, the Army Fault Tolerant Architecture (AFTA) is being designed and constructed under a three-year program comprised of a conceptual study, detailed design and fabrication, and demonstration and validation phases. Described here are the results of the conceptual study phase of the AFTA development. Given here is an introduction to the AFTA program, its objectives, and key elements of its technical approach. A format is designed for representing mission requirements in a manner suitable for first order AFTA sizing and analysis, followed by a discussion of the current state of mission requirements acquisition for the targeted Army missions. An overview is given of AFTA's architectural theory of operation.
Gas-Grain Simulation Facility (GGSF). Volume 2: Conceptual design definition
NASA Technical Reports Server (NTRS)
Zamel, James M.
1993-01-01
This document is Volume 2 of the Final Report for the Phase A Study of the Gas-Grain Simulation Facility (GGSF), and presents the GGSF Conceptual Design. It is a follow-on to the Volume 1 Facility Definition Study, NASA report CR 177606. The development of a conceptual design for a Space Station Freedom (SSF) facility that will be used for investigating particle interactions in varying environments, including various gas mixtures, pressures, and temperatures is delineated. It's not possible to study these experiments on earth due to the long reaction times associated with this type of phenomena, hence the need for extended periods of microgravity. The particle types will vary in composition (solids and liquids), sizes (from submicrons to centimeters), and concentrations (from single particles to 10(exp 10) per cubic centimeter). The results of the experiments pursued in the GGSF will benefit a variety of scientific inquiries. These investigations span such diverse topics as the formation of planets and planetary rings, cloud and haze processes in planetary atmospheres, the composition and structure of astrophysical objects, and the viability of airborne microbes (e.g., in a manned spacecraft).
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1994-01-01
NASA is responsible for developing much of the nation's future space technology. Cost estimates for new programs are required early in the planning process so that decisions can be made accurately. Because of the long lead times required to develop space hardware, the cost estimates are frequently required 10 to 15 years before the program delivers hardware. The system design in conceptual phases of a program is usually only vaguely defined and the technology used is so often state-of-the-art or beyond. These factors combine to make cost estimating for conceptual programs very challenging. This paper describes an effort to develop parametric cost estimating methods for space systems in the conceptual design phase. The approach is to identify variables that drive cost such as weight, quantity, development culture, design inheritance and time. The nature of the relationships between the driver variables and cost will be discussed. In particular, the relationship between weight and cost will be examined in detail. A theoretical model of cost will be developed and tested statistically against a historical database of major research and development projects.
The opportunities and challenges of guided inquiry science for students with special needs
NASA Astrophysics Data System (ADS)
Miller, Marianne
Research in science education has been conducted with various goals for instruction. Four outcomes identified include: immediate and delayed recall, literal comprehension, science skills and processes, and conceptual understanding. The promise of developing important thinking skills exists for all students if science instruction is designed to teach students the products of science and the principled process of inquiry. Guided inquiry science seeks to develop conceptual understanding through the pursuit of meaningful questions using scientific problem solving to conduct investigations that are thoughtfully generated and evaluated. Using a social constructivist perspective, this study examines the learning experiences of four students, identified by their teachers as learning disabled or underachieving. Four case studies are presented of the students' participation in a guided inquiry investigation of the behavior of light. Measures of conceptual understanding included pre- and post-instruction assessments, interviews, journal writing, videotapes, and fieldnotes. All four students demonstrated improved conceptual understanding of light. Five patterns of relationships influenced the development of the students' thinking. First, differences in the culture of the two classrooms altered the learning environment, Second, the nature of teacher interaction with the target students affected conceptual understanding. Third, interactions with peers modified the learning experiences for the identified students. Fourth, the conceptual and procedural complexity of the tasks increased the tendency for the students to lose focus. Finally, the literacy requirements of the work were challenging for these students.
Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models
NASA Astrophysics Data System (ADS)
Delgado, Cesar
2015-04-01
Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic
Faith Moves Mountains: An Appalachian Cervical Cancer Prevention Program
Schoenberg, Nancy E.; Hatcher, Jennifer; Dignan, Mark B.; Shelton, Brent; Wright, Sherry; Dollarhide, Kaye F.
2009-01-01
Objective To provide a conceptual description of Faith Moves Mountains (FMM), an intervention designed to reduce the disproportionate burden of cervical cancer among Appalachian women. Methods FMM, a community-based participatory research program designed and implemented in collaboration with churches in rural, southeastern Kentucky, aims to increase cervical cancer screening (Pap tests) through a multiphase process of educational programming and lay health counseling. Results We provide a conceptual overview to key elements of the intervention, including programmatic development, theoretical basis, intervention approach and implementation, and evaluation procedures. Conclusions After numerous modifications, FMM has recruited and retained over 400 women, 30 churches, and has become a change agent in the community. PMID:19320612
Conceptual design for the space station Freedom modular combustion facility
NASA Technical Reports Server (NTRS)
1989-01-01
A definition study and conceptual design for a combustion science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module is being performed. This modular, user-friendly facility, called the Modular Combustion Facility, will be available for use by industry, academic, and government research communities in the mid-1990's. The Facility will support research experiments dealing with the study of combustion and its byproducts. Because of the lack of gravity-induced convection, research into the mechanisms of combustion in the absence of gravity will help to provide a better understanding of the fundamentals of the combustion process. The background, current status, and future activities of the effort are covered.
A New Method for Conceptual Modelling of Information Systems
NASA Astrophysics Data System (ADS)
Gustas, Remigijus; Gustiene, Prima
Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.
A Problem-Solving Conceptual Framework and Its Implications in Designing Problem-Posing Tasks
ERIC Educational Resources Information Center
Singer, Florence Mihaela; Voica, Cristian
2013-01-01
The links between the mathematical and cognitive models that interact during problem solving are explored with the purpose of developing a reference framework for designing problem-posing tasks. When the process of solving is a successful one, a solver successively changes his/her cognitive stances related to the problem via transformations that…
Designing Their Own: Increasing Urban High School Teacher Capacity for Creating Interim Assessments
ERIC Educational Resources Information Center
Ado, Kathryn
2013-01-01
This case study analyzes and documents factors that affect teacher learning and instructional practices in connection to the design your own (DYO) interim or periodic assessment process at one newly developed high school in New York City. Examining these factors through Riggan and Nabors Olah's (2011) conceptual framework offers insights into the…
Negative Results: Conceptual and Methodological Dimensions in Single-Case Intervention Research
ERIC Educational Resources Information Center
Kratochwill, Thomas R.; Levin, Joel R.; Horner, Robert H.
2018-01-01
The central roles of science in the field of remedial and special education are to (a) identify basic laws of nature and (b) apply those laws in the design of practices that achieve socially valued outcomes. The scientific process is designed to allow demonstration of specific (typically positive) outcomes, and to assist in the attribution of…
Code of Federal Regulations, 2010 CFR
2010-10-01
... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...
Code of Federal Regulations, 2013 CFR
2013-10-01
... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...
Code of Federal Regulations, 2012 CFR
2012-10-01
... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...
Code of Federal Regulations, 2011 CFR
2011-10-01
... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...
Code of Federal Regulations, 2014 CFR
2014-10-01
... designed for use in a succession of experimental programs over a longer period of time. Examples of loop...) Experimental development of equipment, processes, or devices, including assembly, fitting, installation... for the purpose of conducting a test or experiment. The design may be only conceptual in character...
To master or perform? Exploring relations between achievement goals and conceptual change learning.
Ranellucci, John; Muis, Krista R; Duffy, Melissa; Wang, Xihui; Sampasivam, Lavanya; Franco, Gina M
2013-09-01
Research is needed to explore conceptual change in relation to achievement goal orientations and depth of processing. To address this need, we examined relations between achievement goals, use of deep versus shallow processing strategies, and conceptual change learning using a think-aloud protocol. Seventy-three undergraduate students were assessed on their prior knowledge and misconceptions about Newtonian mechanics, and then reported their achievement goals and participated in think-aloud protocols while reading Newtonian physics texts. A mastery-approach goal orientation positively predicted deep processing strategies, shallow processing strategies, and conceptual change. In contrast, a performance-approach goal orientation did not predict either of the processing strategies, but negatively predicted conceptual change. A performance-avoidance goal orientation negatively predicted deep processing strategies and conceptual change. Moreover, deep and shallow processing strategies positively predicted conceptual change as well as recall. Finally, both deep and shallow processing strategies mediated relations between mastery-approach goals and conceptual change. Results provide some support for Dole and Sinatra's (1998) Cognitive Reconstruction of Knowledge Model of conceptual change but also challenge specific facets with regard to the role of depth of processing in conceptual change. © 2012 The British Psychological Society.
Reducing Design Risk Using Robust Design Methods: A Dual Response Surface Approach
NASA Technical Reports Server (NTRS)
Unal, Resit; Yeniay, Ozgur; Lepsch, Roger A. (Technical Monitor)
2003-01-01
Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Risk here is defined as the variability in the estimated (output) performance characteristic of interest resulting from the uncertainties in the values of several disciplinary design and/or operational parameters. Uncertainties from one discipline (and/or subsystem) may propagate to another, through linking parameters and the final system output may have a significant accumulation of risk. This variability can result in significant deviations from the expected performance. Therefore, an estimate of variability (which is called design risk in this study) together with the expected performance characteristic value (e.g. mean empty weight) is necessary for multidisciplinary optimization for a robust design. Robust design in this study is defined as a solution that minimizes variability subject to a constraint on mean performance characteristics. Even though multidisciplinary design optimization has gained wide attention and applications, the treatment of uncertainties to quantify and analyze design risk has received little attention. This research effort explores the dual response surface approach to quantify variability (risk) in critical performance characteristics (such as weight) during conceptual design.
Apramian, Tavis; Watling, Christopher; Lingard, Lorelei; Cristancho, Sayra
2015-10-01
Surgical research struggles to describe the relationship between procedural variations in daily practice and traditional conceptualizations of evidence. The problem has resisted simple solutions, in part, because we lack a solid understanding of how surgeons conceptualize and interact around variation, adaptation, innovation, and evidence in daily practice. This grounded theory study aims to describe the social processes that influence how procedural variation is conceptualized in the surgical workplace. Using the constructivist grounded theory methodology, semi-structured interviews with surgeons (n = 19) from four North American academic centres were collected and analysed. Purposive sampling targeted surgeons with experiential knowledge of the role of variations in the workplace. Theoretical sampling was conducted until a theoretical framework representing key processes was conceptually saturated. Surgical procedural variation was influenced by three key processes. Seeking improvement was shaped by having unsolved procedural problems, adapting in the moment, and pursuing personal opportunities. Orienting self and others to variations consisted of sharing stories of variations with others, taking stock of how a variation promoted personal interests, and placing trust in peers. Acting under cultural and material conditions was characterized by being wary, positioning personal image, showing the logic of a variation, and making use of academic resources to do so. Our findings include social processes that influence how adaptations are incubated in surgical practice and mature into innovations. This study offers a language for conceptualizing the sociocultural influences on procedural variations in surgery. Interventions to change how surgeons interact with variations on a day-to-day basis should consider these social processes in their design. © 2015 John Wiley & Sons, Ltd.
Planning for Materials Processing in Space
NASA Technical Reports Server (NTRS)
1977-01-01
A systems design study to describe the conceptual evolution, the institutional interrelationshiphs, and the basic physical requirements to implement materials processing in space was conducted. Planning for a processing era, rather than hardware design, was emphasized. Product development in space was examined in terms of fluid phenomena, phase separation, and heat and mass transfer. The effect of materials processing on the environment was studied. A concept for modular, unmanned orbiting facilities using the modified external tank of the space shuttle is presented. Organizational and finding structures which would provide for the efficient movement of materials from user to space are discussed.
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Forbes, John C.; Xenofos, George D.; Farrow, John L.; Tyler, Tom; Williams, Robert; Sargent, Scott; Moharos, Jozsef
2004-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a full-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrumentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors.
Hercules Single-Stage Reusable Vehicle (HSRV) Operating Base
NASA Technical Reports Server (NTRS)
Moon, Michael J.; McCleskey, Carey M.
2017-01-01
Conceptual design for the layout of lunar-planetary surface support systems remains an important area needing further master planning. This paper explores a structured approach to organize the layout of a Mars-based site equipped for routinely flying a human-scale reusable taxi system. The proposed Hercules Transportation System requires a surface support capability to sustain its routine, affordable, and dependable operation. The approach organizes a conceptual Hercules operating base through functional station sets. The station set approach will allow follow-on work to trade design approaches and consider technologies for more efficient flow of material, energy, and information at future Mars bases and settlements. The station set requirements at a Mars site point to specific capabilities needed. By drawing from specific Hercules design characteristics, the technology requirements for surface-based systems will come into greater focus. This paper begins a comprehensive process for documenting functional needs, architectural design methods, and analysis techniques necessary for follow-on concept studies.
A method for scenario-based risk assessment for robust aerospace systems
NASA Astrophysics Data System (ADS)
Thomas, Victoria Katherine
In years past, aircraft conceptual design centered around creating a feasible aircraft that could be built and could fly the required missions. More recently, aircraft viability entered into conceptual design, allowing that the product's potential to be profitable should also be examined early in the design process. While examining an aerospace system's feasibility and viability early in the design process is extremely important, it is also important to examine system risk. In traditional aerospace systems risk analysis, risk is examined from the perspective of performance, schedule, and cost. Recently, safety and reliability analysis have been brought forward in the design process to also be examined during late conceptual and early preliminary design. While these analyses work as designed, existing risk analysis methods and techniques are not designed to examine an aerospace system's external operating environment and the risks present there. A new method has been developed here to examine, during the early part of concept design, the risk associated with not meeting assumptions about the system's external operating environment. The risks are examined in five categories: employment, culture, government and politics, economics, and technology. The risks are examined over a long time-period, up to the system's entire life cycle. The method consists of eight steps over three focus areas. The first focus area is Problem Setup. During problem setup, the problem is defined and understood to the best of the decision maker's ability. There are four steps in this area, in the following order: Establish the Need, Scenario Development, Identify Solution Alternatives, and Uncertainty and Risk Identification. There is significant iteration between steps two through four. Focus area two is Modeling and Simulation. In this area the solution alternatives and risks are modeled, and a numerical value for risk is calculated. A risk mitigation model is also created. The four steps involved in completing the modeling and simulation are: Alternative Solution Modeling, Uncertainty Quantification, Risk Assessment, and Risk Mitigation. Focus area three consists of Decision Support. In this area a decision support interface is created that allows for game playing between solution alternatives and risk mitigation. A multi-attribute decision making process is also implemented to aid in decision making. A demonstration problem inspired by Airbus' mid 1980s decision to break into the widebody long-range market was developed to illustrate the use of this method. The results showed that the method is able to capture additional types of risk than previous analysis methods, particularly at the early stages of aircraft design. It was also shown that the method can be used to help create a system that is robust to external environmental factors. The addition of an external environment risk analysis in the early stages of conceptual design can add another dimension to the analysis of feasibility and viability. The ability to take risk into account during the early stages of the design process can allow for the elimination of potentially feasible and viable but too-risky alternatives. The addition of a scenario-based analysis instead of a traditional probabilistic analysis enabled uncertainty to be effectively bound and examined over a variety of potential futures instead of only a single future. There is also potential for a product to be groomed for a specific future that one believes is likely to happen, or for a product to be steered during design as the future unfolds.
DRACO Flowpath Performance and Environments
NASA Technical Reports Server (NTRS)
Komar, D. R.; McDonald, Jon
1999-01-01
The Advanced Space Transportation (AST) project office has challenged NASA to design, manufacture, ground-test and flight-test an axisymmetric, hydrocarbon-fueled, flight-weight, ejector-ramjet engine system testbed no later than 2005. To accomplish this, a multi-center NASA team has been assembled. The goal of this team, led by NASA-Marshall Space Flight Center (MSFC), is to develop propulsion technologies that demonstrate rocket and airbreathing combined-cycle operation (DRACO). Current technical activities include flowpath conceptual design, engine systems conceptual design, and feasibility studies investigating the integration and operation of the DRACO engine with a Lockheed D-21B drone. This paper focuses on the activities of the Flowpath Systems Product Development Team (PDT), led by NASA-Glenn Research Center (GRC) and supported by NASA-MSFC and TechLand Research, Inc. The objective of the Flowpath PDT at the start of the DRACO program was to establish a conceptual design of the flowpath aerodynamic lines, determine the preliminary performance, define the internal environments, and support the DRACO testbed concept feasibility studies. To accomplish these tasks, the PDT convened to establish a baseline flowpath concept. With the conceptual lines defined, cycle analysis tasks were planned and the flowpath performance and internal environments were defined. Additionally, sensitivity studies investigating the effects of inlet reference area, combustion performance, and combustor/nozzle materials selection were performed to support the Flowpath PDT design process. Results of these tasks are the emphasis of this paper and are intended to verify the feasibility of the DRACO flowpath and engine system as well as identify the primary technical challenges inherent in the flight-weight design of an advanced propulsion technology demonstration engine. Preliminary cycle performance decks were developed to support the testbed concept feasibility studies but are not discussed further in this paper.
Toward Right-Fidelity Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Sinsay, Jeffrey D.; Johnson, Wayne
2010-01-01
The aviation Advanced Design Office (ADO) of the US Army Aeroflightdynamics Directorate (AMRDEC) performs conceptual design of advanced Vertical Takeoff and Landing (VTOL) concepts in support of the Army's development and acquisition of new aviation systems. In particular, ADO engages in system synthesis to assess the impact of new technologies and their application to satisfy emerging warfighter needs and requirements. Fundamental to ADO being successful in accomplishing its role; is the ability to evaluate a wide array of proposed air vehicle concepts, and independently synthesize new concepts to inform Army and DoD decision makers about the tradespace in which decisions will be made (Figure 1). ADO utilizes a conceptual design (CD) process in the execution of its role. Benefiting from colocation with NASA rotorcraft researchers at the Ames Research Center, ADO and NASA have engaged in a survey of the current rotorcraft PD practices and begun the process of improving those capabilities to enable effective design and development of the next generation of VTOL systems. A unique aspect of CD in ADO is the fact that actual designs developed in-house are not intended to move forward in the development process. Rather, they are used as reference points in discussions about requirements development and technology impact. The ultimate products of ADO CD efforts are technology impact assessments and specifications which guide industry design activity. The fact that both the requirement and design are variables in the tradespace adds to the complexity of the CD process. A frequent need is ability to assess the relative "cost" of variations in requirement for a diverse set of VTOL configurations. Each of these configurations may have fundamentally different response characteristics to this requirement variation, and such insight into how different requirements drive different designs is a critical insight ADO attempts to provide decision makers. The processes and tools utilized are driven by the timeline in which questions must be answered. This can range from quick "back-of-the-envelope" assessments of a configuration made in an afternoon, to more detailed tradespace explorations that can take upwards of a year to complete. A variety of spreadsheet based tools and conceptual design codes are currently in use. The in-house developed conceptual sizing code RC (Rotorcraft) has been the preferred tool of choice for CD activity for a number of years. Figure 2 illustrates the long standing coupling between RC and solid modeling tools for layout, as well as a number of ad-hoc interfaces with external analyses. RC contains a sizing routine that is built around the use of momentum theory for rotors, classic finite wing theory, a referred parameter engine model, and semi-emperical weight estimation techniques. These methods lend themselves to rapid solutions, measured in seconds and minutes. The successful use of RC, however requires careful consideration of model input parameters and judicious comparison with existing aircraft to avoid unjustified extrapolation of results. RC is in fact a legacy of a series of codes whose development started in the early 1970s, and is best suited to the study of conventional helicopters and XV-15 style tiltrotors. Other concepts have been analyzed with RC, but typically it became necessary to modify the source code and methods for each unique configuration. Recent activity has lead to the development of a new code, NASA Design and Analysis of Rotorcraft (NDARC). NDARC uses a similar level of analytical fidelity as RC, but is built on a new framework intended to improve modularity and ability to rapidly model a wider array of concepts. Critical to achieving this capability is the decomposition of the aircraft system into a series of fundamental components which can then be assembled to form a wide-array of configurations. The paper will provide an overview of NDARC and its capabilities.
This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations
ERIC Educational Resources Information Center
De Corte, Erik; Verschaffel, Lieven
Design and results of an investigation attempting to analyze and improve children's solution processes in elementary addition and subtraction problems are described. As background for the study, a conceptual model was developed based on previous research. One dimension of the model relates to the characteristics of the tasks (numerical versus word…
The SWATH Concept: Designing Superior Operability into a Surface Displacement Ship
1975-12-01
ACKNOWLEDGMENTS 140 REFERENCES 141 —^f* • ■ " mil,. .„.. • LIST OF FIGURES Page 1 — Artist’s Concept of a 4000-Ton ", WATH Combatant 4 2 ~ The...the design process for SWATH combatants is iterative. At either the feasibility or conceptual stage, the designer starts with a "reasonable" hull...parameters, the multitude of design factors and innumerable combinations thereof constitute a difficult synthesis problem. Because they are
Human Factors Considerations in System Design
NASA Technical Reports Server (NTRS)
Mitchell, C. M. (Editor); Vanbalen, P. M. (Editor); Moe, K. L. (Editor)
1983-01-01
Human factors considerations in systems design was examined. Human factors in automated command and control, in the efficiency of the human computer interface and system effectiveness are outlined. The following topics are discussed: human factors aspects of control room design; design of interactive systems; human computer dialogue, interaction tasks and techniques; guidelines on ergonomic aspects of control rooms and highly automated environments; system engineering for control by humans; conceptual models of information processing; information display and interaction in real time environments.
Improvement of Automated POST Case Success Rate Using Support Vector Machines
NASA Technical Reports Server (NTRS)
Zwack, Mathew R.; Dees, Patrick D.
2017-01-01
During early conceptual design of complex systems, concept down selection can have a large impact upon program life-cycle cost. Therefore, any concepts selected during early design will inherently commit program costs and affect the overall probability of program success. For this reason it is important to consider as large a design space as possible in order to better inform the down selection process. For conceptual design of launch vehicles, trajectory analysis and optimization often presents the largest obstacle to evaluating large trade spaces. This is due to the sensitivity of the trajectory discipline to changes in all other aspects of the vehicle design. Small deltas in the performance of other subsystems can result in relatively large fluctuations in the ascent trajectory because the solution space is non-linear and multi-modal. In order to help capture large design spaces for new launch vehicles, the authors have performed previous work seeking to automate the execution of the industry standard tool, Program to Optimize Simulated Trajectories (POST). This work initially focused on implementation of analyst heuristics to enable closure of cases in an automated fashion, with the goal of applying the concepts of design of experiments (DOE) and surrogate modeling to enable near instantaneous throughput of vehicle cases.3 As noted in [4] work was then completed to improve the DOE process by utilizing a graph theory based approach to connect similar design points.
Measuring patient-perceived hospital service quality: a conceptual framework.
Pai, Yogesh P; Chary, Satyanarayana T
2016-04-18
Purpose - Although measuring healthcare service quality is not a new phenomenon, the instruments used to measure are timeworn. With the shift in focus to patient centric processes in hospitals and recognizing healthcare to be different compared to other services, service quality measurement needs to be tuned specifically to healthcare. The purpose of this paper is to design a conceptual framework for measuring patient perceived hospital service quality (HSQ), based on existing service quality literature. Design/methodology/approach - Using HSQ theories, expanding existing healthcare service models and literature, a conceptual framework is proposed to measure HSQ. The paper outlines patient perceived service quality dimensions. Findings - An instrument for measuring HSQ dimensions is developed and compared with other service quality measuring instruments. The latest dimensions are in line with previous studies, but a relationship dimension is added. Practical implications - The framework empowers managers to assess healthcare quality in corporate, public and teaching hospitals. Originality/value - The paper helps academics and practitioners to assess HSQ from a patient perspective.
Architectural design of the science complex at Elizabeth City State University
NASA Technical Reports Server (NTRS)
Jahromi, Soheila
1993-01-01
This paper gives an overall view of the architectural design process and elements in taking an idea from conception to execution. The project presented is an example for this process. Once the need for a new structure is established, an architect studies the requirements, opinions and limits in creating a structure that people will exist in, move through, and use. Elements in designing a building include factors such as volume and surface, light and form changes of scale and view, movement and stasis. Some of the other factors are functions and physical conditions of construction. Based on experience, intuition, and boundaries, an architect will utilize all elements in creating a new building. In general, the design process begins with studying the spatial needs which develop into an architectural program. A comprehensive and accurate architectural program is essential for having a successful building. The most attractive building which does not meet the functional needs of its users has failed at the primary reason for its existence. To have a good program an architect must have a full understanding of the daily functions that will take place in the building. The architectural program along with site characteristics are among a few of the important guidelines in studying the form, adjacencies, and circulation for the structure itself and also in relation to the adjacent structures. Conceptual studies are part of the schematic design, which is the first milestone in the design process. The other reference points are design development and construction documents. At each milestone, review and coordination with all the consultants is established, and the user is essential in refining the project. In design development phase, conceptual diagrams take shape, and architectural, structural, mechanical, and electrical systems are developed. The final phase construction documents convey all the information required to construct the building. The design process and elements described were applied in the following project.
The impact of CmapTools utilization towards students' conceptual change on optics topic
NASA Astrophysics Data System (ADS)
Rofiuddin, Muhammad Rifqi; Feranie, Selly
2017-05-01
Science teachers need to help students identify their prior ideas and modify them based on scientific knowledge. This process is called as conceptual change. One of essential tools to analyze students' conceptual change is by using concept map. Concept Maps are graphical representations of knowledge that are comprised of concepts and the relationships between them. Constructing concept map is implemented by adapting the role of technology to support learning process, as it is suitable with Educational Ministry Regulation No.68 year 2013. Institute for Human and Machine Cognition (IHMC) has developed CmapTools, a client-server software for easily construct and visualize concept maps. This research aims to investigate secondary students' conceptual change after experiencing five-stage conceptual teaching model by utilizing CmapTools in learning Optics. Weak experimental method through one group pretest-posttest design is implemented in this study to collect preliminary and post concept map as qualitative data. Sample was taken purposively of 8th grade students (n= 22) at one of private schools Bandung, West Java. Conceptual change based on comparison of preliminary and post concept map construction is assessed based on rubric of concept map scoring and structure. Results shows significance conceptual change differences at 50.92 % that is elaborated into concept map element such as prepositions and hierarchical level in high category, cross links in medium category and specific examples in low category. All of the results are supported with the students' positive response towards CmapTools utilization that indicates improvement of motivation, interest, and behavior aspect towards Physics lesson.
Adaptive design lessons from professional architects
NASA Astrophysics Data System (ADS)
Geiger, Ray W.; Snell, J. T.
1993-09-01
Psychocybernetic systems engineering design conceptualization is mimicking the evolutionary path of habitable environmental design and the professional practice of building architecture, construction, and facilities management. In pursuing better ways to design cellular automata and qualification classifiers in a design process, we have found surprising success in exploring certain more esoteric approaches, e.g., the vision of interdisciplinary artistic discovery in and around creative problem solving. Our evaluation in research into vision and hybrid sensory systems associated with environmental design and human factors has led us to discover very specific connections between the human spirit and quality design. We would like to share those very qualitative and quantitative parameters of engineering design, particularly as it relates to multi-faceted and future oriented design practice. Discussion covers areas of case- based techniques of cognitive ergonomics, natural modeling sources, and an open architectural process of means/goal satisfaction, qualified by natural repetition, gradation, rhythm, contrast, balance, and integrity of process.
Conceptual Model Learning Objects and Design Recommendations for Small Screens
ERIC Educational Resources Information Center
Churchill, Daniel
2011-01-01
This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…
Renn, Jürgen
2015-01-01
ABSTRACT This paper introduces a conceptual framework for the evolution of complex systems based on the integration of regulatory network and niche construction theories. It is designed to apply equally to cases of biological, social and cultural evolution. Within the conceptual framework we focus especially on the transformation of complex networks through the linked processes of externalization and internalization of causal factors between regulatory networks and their corresponding niches and argue that these are an important part of evolutionary explanations. This conceptual framework extends previous evolutionary models and focuses on several challenges, such as the path‐dependent nature of evolutionary change, the dynamics of evolutionary innovation and the expansion of inheritance systems. J. Exp. Zool. (Mol. Dev. Evol.) 324B: 565–577, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution published by Wiley Periodicals, Inc. PMID:26097188
Solar energy for process heat: Design/cost studies of four industrial retrofit applications
NASA Technical Reports Server (NTRS)
French, R. L.; Bartera, R. E.
1978-01-01
Five specific California plants with potentially attractive solar applications were identified in a process heat survey. These five plants were visited, process requirements evaluated, and conceptual solar system designs were generated. Four DOE (ERDA) sponsored solar energy system demonstration projects were also reviewed and compared to the design/cost cases included in this report. In four of the five cases investigated, retrofit installations providing significant amounts of thermal energy were found to be feasible. The fifth was rejected because of the condition of the building involved, but the process (soap making) appears to be an attractive potential solar application. Costs, however, tend to be high. Several potential areas for cost reduction were identified including larger collector modules and higher duty cycles.
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1990-01-01
A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.
Evans, Vyvyan
2016-01-01
Recent research in language and cognitive science proposes that the linguistic system evolved to provide an “executive” control system on the evolutionarily more ancient conceptual system (e.g., Barsalou et al., 2008; Evans, 2009, 2015a,b; Bergen, 2012). In short, the claim is that embodied representations in the linguistic system interface with non-linguistic representations in the conceptual system, facilitating rich meanings, or simulations, enabling linguistically mediated communication. In this paper I build on these proposals by examining the nature of what I identify as design features for this control system. In particular, I address how the ideational function of language—our ability to deploy linguistic symbols to convey meanings of great complexity—is facilitated. The central proposal of this paper is as follows. The linguistic system of any given language user, of any given linguistic system—spoken or signed—facilitates access to knowledge representation—concepts—in the conceptual system, which subserves this ideational function. In the most general terms, the human meaning-making capacity is underpinned by two distinct, although tightly coupled representational systems: the conceptual system and the linguistic system. Each system contributes to meaning construction in qualitatively distinct ways. This leads to the first design feature: given that the two systems are representational—they are populated by semantic representations—the nature and function of the representations are qualitatively different. This proposed design feature I term the bifurcation in semantic representation. After all, it stands to reason that if a linguistic system has a different function, vis-à-vis the conceptual system, which is of far greater evolutionary antiquity, then the semantic representations will be complementary, and as such, qualitatively different, reflecting the functional distinctions of the two systems, in collectively giving rise to meaning. I consider the nature of these qualitatively distinct representations. And second, language itself is adapted to the conceptual system—the semantic potential—that it marshals in the meaning construction process. Hence, a linguistic system itself exhibits a bifurcation, in terms of the symbolic resources at its disposal. This design feature I dub the birfucation in linguistic organization. As I shall argue, this relates to two distinct reference strategies available for symbolic encoding in language: what I dub words-to-world reference and words-to-words reference. In slightly different terms, this design feature of language amounts to a distinction between a lexical subsystem, and a grammatical subsystem. PMID:26925000
Evans, Vyvyan
2016-01-01
Recent research in language and cognitive science proposes that the linguistic system evolved to provide an "executive" control system on the evolutionarily more ancient conceptual system (e.g., Barsalou et al., 2008; Evans, 2009, 2015a,b; Bergen, 2012). In short, the claim is that embodied representations in the linguistic system interface with non-linguistic representations in the conceptual system, facilitating rich meanings, or simulations, enabling linguistically mediated communication. In this paper I build on these proposals by examining the nature of what I identify as design features for this control system. In particular, I address how the ideational function of language-our ability to deploy linguistic symbols to convey meanings of great complexity-is facilitated. The central proposal of this paper is as follows. The linguistic system of any given language user, of any given linguistic system-spoken or signed-facilitates access to knowledge representation-concepts-in the conceptual system, which subserves this ideational function. In the most general terms, the human meaning-making capacity is underpinned by two distinct, although tightly coupled representational systems: the conceptual system and the linguistic system. Each system contributes to meaning construction in qualitatively distinct ways. This leads to the first design feature: given that the two systems are representational-they are populated by semantic representations-the nature and function of the representations are qualitatively different. This proposed design feature I term the bifurcation in semantic representation. After all, it stands to reason that if a linguistic system has a different function, vis-à-vis the conceptual system, which is of far greater evolutionary antiquity, then the semantic representations will be complementary, and as such, qualitatively different, reflecting the functional distinctions of the two systems, in collectively giving rise to meaning. I consider the nature of these qualitatively distinct representations. And second, language itself is adapted to the conceptual system-the semantic potential-that it marshals in the meaning construction process. Hence, a linguistic system itself exhibits a bifurcation, in terms of the symbolic resources at its disposal. This design feature I dub the birfucation in linguistic organization. As I shall argue, this relates to two distinct reference strategies available for symbolic encoding in language: what I dub words-to-world reference and words-to-words reference. In slightly different terms, this design feature of language amounts to a distinction between a lexical subsystem, and a grammatical subsystem.
Integrating Flight Dynamics & Control Analysis and Simulation in Rotorcraft Conceptual Design
NASA Technical Reports Server (NTRS)
Lawrence, Ben; Berger, Tom; Tischler, Mark B.; Theodore, Colin R; Elmore, Josh; Gallaher, Andrew; Tobias, Eric L.
2016-01-01
The development of a toolset, SIMPLI-FLYD ('SIMPLIfied FLight dynamics for conceptual Design') is described. SIMPLI-FLYD is a collection of tools that perform flight dynamics and control modeling and analysis of rotorcraft conceptual designs including a capability to evaluate the designs in an X-Plane-based real-time simulation. The establishment of this framework is now facilitating the exploration of this new capability, in terms of modeling fidelity and data requirements, and the investigation of which stability and control and handling qualities requirements are appropriate for conceptual design. Illustrative design variation studies for single main rotor and tiltrotor vehicle configurations show sensitivity of the stability and control characteristics and an approach to highlight potential weight savings by identifying over-design.
Smith, Chris; Vannak, Uk; Sokhey, Ly; Ngo, Thoai D; Gold, Judy; Free, Caroline
2016-01-05
The objective of this paper is to outline the formative research process used to develop the MOTIF mobile phone-based (mHealth) intervention to support post-abortion family planning in Cambodia. The formative research process involved literature reviews, interviews and focus group discussions with clients, and consultation with clinicians and organisations implementing mHealth activities in Cambodia. This process led to the development of a conceptual framework and the intervention. Key findings from the formative research included identification of the main reasons for non-use of contraception and patterns of mobile phone use in Cambodia. We drew on components of existing interventions and behaviour change theory to develop a conceptual framework. A multi-faceted voice-based intervention was designed to address health concerns and other key determinants of contraception use. Formative research was essential in order to develop an appropriate mHealth intervention to support post-abortion contraception in Cambodia. Each component of the formative research contributed to the final intervention design.
, NREL, NBC, 2015-present Staff Engineer, NREL, NBC, 2012-present Post-Doctoral Researcher, NREL, NBC Bio-Oil via Ex Situ Catalytic Fast Pyrolysis and Hydrotreating," Fuel (2017) "An Biorefining (2016) "Conceptual Process Design and Techno-Economic Assessment of Ex Situ Catalytic Fast
Students’ conceptions on white light and implications for teaching and learning about colour
NASA Astrophysics Data System (ADS)
Haagen-Schützenhöfer, Claudia
2017-07-01
The quality of learning processes is mainly determined by the extent to which students’ conceptions are addressed and thus conceptual change is triggered. Colour phenomena are a topic within initial instruction of optics which is challenging. A physically adequate concept of white light is crucial for being able to grasp the processes underlying colour formation. Our previous research suggests that misconceptions on white light may influence the conceptual understanding of colour phenomena. For the design of a learning environment on light and colours, the literature was reviewed. Then an explorative interview study with participants (N = 32), with and without instruction in introductory optics, was carried out. In addition, the representations used for white light in Austrian physics schoolbooks were analysed. Based on the results of the literature review, the interview study and the schoolbook analysis, a learning environment was designed and tested in teaching experiments. The results indicate that learners often lack an adequate concept of white light even after instruction in introductory optics. This seems to cause learning difficulties concerning colour phenomena. On the other hand, the evaluation of our learning environment showed that students are able to gain a good conceptual understanding of colour phenomena if instruction takes these content specific learning difficulties into account.
Conceptual design of a device to measure hand swelling in a micro-gravity environment
NASA Technical Reports Server (NTRS)
Hysinger, Christopher L.
1993-01-01
In the design of pressurized suits for use by astronauts in space, proper fit is an important consideration. One particularly difficult aspect of the suit design is the design of the gloves. If the gloves of the suit do not fit properly, the grip strength of the astronaut can be decreased by as much as fifty percent. These gloves are designed using an iterative process and can cost over 1.5 million dollars. Glove design is further complicated by the way the body behaves in a micro-gravity environment. In a micro-gravity setting, fluid from the lower body tends to move into the upper body. Some of this fluid collects in the hands and causes the hands to swell. Therefore, a pair of gloves that fit well on earth may not fit well when they are used in space. The conceptual design process for a device which can measure the swelling that occurs in the hands in a micro-gravity environment is described. This process involves developing a specifications list and function structure for the device and generating solution variants for each of the sub functions. The solution variants are then filtered, with the variants that violate any of the specifications being discarded. After acceptable solution variants are obtained, they are combined to form design concepts. These design concepts are evaluated against a set of criteria and the design concepts are ranked in order of preference. Through this process, the two most plausible design concepts were an ultrasonic imaging technique and a laser mapping technique. Both of these methods create a three dimensional model of the hand, from which the amount of swelling can be determined. In order to determine which of the two solutions will actually work best, a further analysis will need to be performed.
NASA Technical Reports Server (NTRS)
Zwack, Matthew R.; Dees, Patrick D.; Holt, James B.
2016-01-01
Decisions made during early conceptual design can have a profound impact on life-cycle cost (LCC). Widely accepted that nearly 80% of LCC is committed. Decisions made during early design must be well informed. Advanced Concepts Office (ACO) at Marshall Space Flight Center aids in decision making for launch vehicles. Provides rapid turnaround pre-phase A and phase A studies. Provides customer with preliminary vehicle sizing information, vehicle feasibility, and expected performance.
Issues in developing valid assessments of speech pathology students' performance in the workplace.
McAllister, Sue; Lincoln, Michelle; Ferguson, Alison; McAllister, Lindy
2010-01-01
Workplace-based learning is a critical component of professional preparation in speech pathology. A validated assessment of this learning is seen to be 'the gold standard', but it is difficult to develop because of design and validation issues. These issues include the role and nature of judgement in assessment, challenges in measuring quality, and the relationship between assessment and learning. Valid assessment of workplace-based performance needs to capture the development of competence over time and account for both occupation specific and generic competencies. This paper reviews important conceptual issues in the design of valid and reliable workplace-based assessments of competence including assessment content, process, impact on learning, measurement issues, and validation strategies. It then goes on to share what has been learned about quality assessment and validation of a workplace-based performance assessment using competency-based ratings. The outcomes of a four-year national development and validation of an assessment tool are described. A literature review of issues in conceptualizing, designing, and validating workplace-based assessments was conducted. Key factors to consider in the design of a new tool were identified and built into the cycle of design, trialling, and data analysis in the validation stages of the development process. This paper provides an accessible overview of factors to consider in the design and validation of workplace-based assessment tools. It presents strategies used in the development and national validation of a tool COMPASS, used in an every speech pathology programme in Australia, New Zealand, and Singapore. The paper also describes Rasch analysis, a model-based statistical approach which is useful for establishing validity and reliability of assessment tools. Through careful attention to conceptual and design issues in the development and trialling of workplace-based assessments, it has been possible to develop the world's first valid and reliable national assessment tool for the assessment of performance in speech pathology.
A probabilistic methodology for radar cross section prediction in conceptual aircraft design
NASA Astrophysics Data System (ADS)
Hines, Nathan Robert
System effectiveness has increasingly become the prime metric for the evaluation of military aircraft. As such, it is the decision maker's/designer's goal to maximize system effectiveness. Industry and government research documents indicate that all future military aircraft will incorporate signature reduction as an attempt to improve system effectiveness and reduce the cost of attrition. Today's operating environments demand low observable aircraft which are able to reliably take out valuable, time critical targets. Thus it is desirable to be able to design vehicles that are balanced for increased effectiveness. Previous studies have shown that shaping of the vehicle is one of the most important contributors to radar cross section, a measure of radar signature, and must be considered from the very beginning of the design process. Radar cross section estimation should be incorporated into conceptual design to develop more capable systems. This research strives to meet these needs by developing a conceptual design tool that predicts radar cross section for parametric geometries. This tool predicts the absolute radar cross section of the vehicle as well as the impact of geometry changes, allowing for the simultaneous tradeoff of the aerodynamic, performance, and cost characteristics of the vehicle with the radar cross section. Furthermore, this tool can be linked to a campaign theater analysis code to demonstrate the changes in system and system of system effectiveness due to changes in aircraft geometry. A general methodology was developed and implemented and sample computer codes applied to prototype the proposed process. Studies utilizing this radar cross section tool were subsequently performed to demonstrate the capabilities of this method and show the impact that various inputs have on the outputs of these models. The F/A-18 aircraft configuration was chosen as a case study vehicle to perform a design space exercise and to investigate the relative impact of shaping parameters on radar cross section. Finally, two unique low observable configurations were analyzed to examine the impact of shaping for stealthiness.
Development of a representational conceptual evaluation in the first law of thermodynamics
NASA Astrophysics Data System (ADS)
Sriyansyah, S. P.; Suhandi, A.
2016-08-01
As part of an ongoing research to investigate student consistency in understanding the first law of thermodynamics, a representational conceptual evaluation (RCET) has been developed to assess student conceptual understanding, representational consistency, and scientific consistency in the introductory physics course. Previous physics education research findings were used to develop the test. RCET items were 30 items which designed as an isomorphic multiple-choice test with three different representations concerning the concept of work, heat, first law of thermodynamics, and its application in the thermodynamic processes. Here, we present preliminary measures of the validity and reliability of the instrument, including the classical test statistics. This instrument can be used to measure the intended concept in the first law of thermodynamics and it will give the consistent results with the ability to differentiate well between high-achieving students and low-achieving students and also students at different level. As well as measuring the effectiveness of the learning process in the concept of the first law of thermodynamics.
Cronin, Timothy J; Lawrence, Katherine A; Taylor, Kate; Norton, Peter J; Kazantzis, Nikolaos
2015-05-01
Between-session interventions, or homework, are crucial to a range of psychological therapies, including cognitive behavior therapy (CBT). Therapeutic interventions often involve experiencing emotions and situations, or examining strongly held views about their problems, that clients can find distressing. Hence, the clinician faces a particular challenge in collaborating with the client to carry out these interventions between sessions. In this article, we convey how this process in CBT requires not only a consideration of the theoretically meaningful determinants of adherence behavior but also a sophisticated cognitive case conceptualization. Using case material, we illustrate the interplay between in-session design, planning, and review of between-session interventions and the conceptualization. We also include a distinction between generic elements of the therapeutic relationship and CBT-specific elements. The case material also attends to the person of the therapist, and his or her own cognitive and emotional reactions occurring throughout the process of discussing between-session interventions. © 2015 Wiley Periodicals, Inc.
NASA Technical Reports Server (NTRS)
Quick, Jason
2009-01-01
The Upper Stage (US) section of the National Aeronautics and Space Administration's (NASA) Ares I rocket will require internal access platforms for maintenance tasks performed by humans inside the vehicle. Tasks will occur during expensive critical path operations at Kennedy Space Center (KSC) including vehicle stacking and launch preparation activities. Platforms must be translated through a small human access hatch, installed in an enclosed worksite environment, support the weight of ground operators and be removed before flight - and their design must minimize additional vehicle mass at attachment points. This paper describes the application of a user-centered conceptual design process and the unique challenges encountered within NASA's systems engineering culture focused on requirements and "heritage hardware". The NASA design team at Marshall Space Flight Center (MSFC) initiated the user-centered design process by studying heritage internal access kits and proposing new design concepts during brainstorming sessions. Simultaneously, they partnered with the Technology Transfer/Innovative Partnerships Program to research inflatable structures and dynamic scaffolding solutions that could enable ground operator access. While this creative, technology-oriented exploration was encouraged by upper management, some design stakeholders consistently opposed ideas utilizing novel, untested equipment. Subsequent collaboration with an engineering consulting firm improved the technical credibility of several options, however, there was continued resistance from team members focused on meeting system requirements with pre-certified hardware. After a six-month idea-generating phase, an intensive six-week effort produced viable design concepts that justified additional vehicle mass while optimizing the human factors of platform installation and use. Although these selected final concepts closely resemble heritage internal access platforms, challenges from the application of the user-centered process provided valuable lessons for improving future collaborative conceptual design efforts.
Conceptual design for the Space Station Freedom fluid physics/dynamics facility
NASA Technical Reports Server (NTRS)
Thompson, Robert L.; Chucksa, Ronald J.; Omalley, Terence F.; Oeftering, Richard C.
1993-01-01
A study team at NASA's Lewis Research Center has been working on a definition study and conceptual design for a fluid physics and dynamics science facility that will be located in the Space Station Freedom's baseline U.S. Laboratory module. This modular, user-friendly facility, called the Fluid Physics/Dynamics Facility, will be available for use by industry, academic, and government research communities in the late 1990's. The Facility will support research experiments dealing with the study of fluid physics and dynamics phenomena. Because of the lack of gravity-induced convection, research into the mechanisms of fluids in the absence of gravity will help to provide a better understanding of the fundamentals of fluid processes. This document has been prepared as a final version of the handout for reviewers at the Fluid Physics/Dynamics Facility Assessment Workshop held at Lewis on January 24 and 25, 1990. It covers the background, current status, and future activities of the Lewis Project Study Team effort. It is a revised and updated version of a document entitled 'Status Report on the Conceptual Design for the Space Station Fluid Physics/Dynamics Facility', dated January 1990.
Newman Unit 1 advanced solar repowering advanced conceptual design. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less
Space Station Furnace Facility. Volume 2: Requirements definition and conceptual design study
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Project is divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. TBE was awarded a research study entitled, 'Space Station Furnace Facility Requirements Definition and Conceptual Design Study' on June 2, 1989. This report addresses the definition study phase only. Phase 2 is to be complete after completion of phase 1. The contract encompassed a requirements definition study and culminated in hardware/facility conceptual designs and hardware demonstration development models to test these conceptual designs. The study was divided into two parts. Part 1 (the basic part of the effort) encompassed preliminary requirements definition and assessment; conceptional design of the SSFF Core; fabrication of mockups; and preparation for the support of a conceptional design review (CoDR). Part 2 (the optional part of the effort) included detailed definition of the engineering and design requirements, as derived from the science requirements; refinement of the conceptual design of the SSFF Core; fabrication and testing of the 'breadboards' or development models; and preparation for and support of a requirements definition review.
Flexible and fast: linguistic shortcut affects both shallow and deep conceptual processing.
Connell, Louise; Lynott, Dermot
2013-06-01
Previous research has shown that people use linguistic distributional information during conceptual processing, and that it is especially useful for shallow tasks and rapid responding. Using two conceptual combination tasks, we showed that this linguistic shortcut extends to the processing of novel stimuli, is used in both successful and unsuccessful conceptual processing, and is evident in both shallow and deep conceptual tasks. Specifically, as predicted by the ECCo theory of conceptual combination, people use the linguistic shortcut as a "quick-and-dirty" guide to whether the concepts are likely to combine into a coherent conceptual representation, in both shallow sensibility judgment and deep interpretation generation tasks. Linguistic distributional frequency predicts both the likelihood and the time course of rejecting a novel word compound as nonsensical or uninterpretable. However, it predicts the time course of successful processing only in shallow sensibility judgment, because the deeper conceptual process of interpretation generation does not allow the linguistic shortcut to suffice. Furthermore, the effects of linguistic distributional frequency are independent of any effects of conventional word frequency. We discuss the utility of the linguistic shortcut as a cognitive triage mechanism that can optimize processing in a limited-resource conceptual system.
HYFIRE II: fusion/high-temperature electrolysis conceptual-design study. Annual report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fillo, J.A.
1983-08-01
As in the previous HYFIRE design study, the current study focuses on coupling a Tokamak fusion reactor with a high-temperature blanket to a High-Temperature Electrolyzer (HTE) process to produce hydrogen and oxygen. Scaling of the STARFIRE reactor to allow a blanket power to 6000 MW(th) is also assumed. The primary difference between the two studies is the maximum inlet steam temperature to the electrolyzer. This temperature is decreased from approx. 1300/sup 0/ to approx. 1150/sup 0/C, which is closer to the maximum projected temperature of the Westinghouse fuel cell design. The process flow conditions change but the basic design philosophymore » and approaches to process design remain the same as before. Westinghouse assisted in the study in the areas of systems design integration, plasma engineering, balance-of-plant design, and electrolyzer technology.« less
Study unique artistic lopburi province for design brass tea set of bantahkrayang community
NASA Astrophysics Data System (ADS)
Pliansiri, V.; Seviset, S.
2017-07-01
The objectives of this study were as follows: 1) to study the production process of handcrafted Brass Tea Set; and 2) to design and develop the handcrafted of Brass Tea Set. The process of design was started by mutual analytical processes and conceptual framework for product design, Quality Function Deployment, Theory of Inventive Problem Solving, Principles of Craft Design, and Principle of Reverse Engineering. The experts in field of both Industrial Product Design and Brass Handicraft Product, have evaluated the Brass Tea Set design and created prototype of Brass tea set by the sample of consumers who have ever bought the Brass Tea Set of Bantahkrayang Community on this research. The statistics methods used were percentage, mean ({{{\\overline X}} = }) and standard deviation (S.D.) 3. To assess consumer satisfaction toward of handcrafted Brass tea set was at the high level.
NASA Technical Reports Server (NTRS)
Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.
1993-01-01
Engineers are an extraordinarily diverse group of professionals, but an attribute common to all engineers is their use of information. Engineering can be conceptualized as an information processing system that must deal with work-related uncertainty through patterns of technical communications. Throughout the process, data, information, and tacit knowledge are being acquired, produced, transferred, and utilized. While acknowledging that other models exist, we have chosen to view the information-seeking behavior of engineers within a conceptual framework of the engineer as an information processor. This article uses the chosen framework to discuss information-seeking behavior of engineers, reviewing selected literature and empirical studies from library and information science, management, communications, and sociology. The article concludes by proposing a research agenda designed to extend our current, limited knowledge of the way engineers process information.
ERIC Educational Resources Information Center
Hunt, Leslie; Karl, Rita
This paper provides an account of the instructional design and development process used by a team of students enrolled in a graduate level course in distance education as the team members conceptualized and created two prototype World Wide Web-based instructional modules, aimed at grades 5 through 12, for the Lunar and Planetary Institute's Mars…
Design concepts for a composite door frame system for general automotive applications
NASA Technical Reports Server (NTRS)
Tauber, J. A.
1976-01-01
Conceptual design, manufacturing process, and costs are explored to determine the feasibility of replacing present steel parts in automotive door structures with various composite materials. The problems of conforming to present anti-intrusion specifications with advanced materials are examined and discussed. Modest weight reductions, at competitive costs, were identified for the utilization of specific composite materials in automotive door structures.
Training and business performance: the mediating role of absorptive capacities.
Hernández-Perlines, Felipe; Moreno-García, Juan; Yáñez-Araque, Benito
2016-01-01
Training has been the focus of considerable conceptual and empirical attention but is considered a relevant factor for competitive edge in companies because it has a positive impact on business performance. This study is justified by the need for deeper analysis of the process involving the transfer of training into performance. This paper's originality lies in the implementation of the absorptive capacities approach as an appropriate conceptual framework for designing a model that reflects the connection between training and business performance through absorptive capacities. Based on the above conceptual framework and using the dual methodological implementation, a new method of analyzing the relationship between training and performance was obtained: efforts in training will not lead to performance without the mediation of absorptive. Training turns into performance if absorptive capacities are involved in this process. The suggested model becomes an appropriate framework for explaining the process of transformation of training into organizational performance, in which absorptive capacities play a key role. The findings obtained can go further owing to fs/QCA: of the different absorptive capacities, that of exploitation is a necessary condition to achieve better organizational performance. Therefore, training based on absorptive capacity will guide and facilitate the design of appropriate human resource strategies so that training results in improved performance. This conclusion is relevant for the development of a new facet of absorptive capacities by relating it to training and resulting in first-level implications for human resource management.
Conceptual design study: Forest Fire Advanced System Technology (FFAST)
NASA Technical Reports Server (NTRS)
Nichols, J. D.; Warren, J. R.
1986-01-01
An integrated forest fire detection and mapping system that will be based upon technology available in the 1990s was defined. Uncertainties in emerging and advanced technologies related to the conceptual design were identified and recommended for inclusion as preferred system components. System component technologies identified for an end-to-end system include thermal infrared, linear array detectors, automatic georeferencing and signal processing, geosynchronous satellite communication links, and advanced data integration and display. Potential system configuration options were developed and examined for possible inclusion in the preferred system configuration. The preferred system configuration will provide increased performance and be cost effective over the system currently in use. Forest fire management user requirements and the system component emerging technologies were the basis for the system configuration design. A preferred system configuration was defined that warrants continued refinement and development, examined economic aspects of the current and preferred system, and provided preliminary cost estimates for follow-on system prototype development.
NASA Astrophysics Data System (ADS)
Liu, Lei
The dissertation aims to achieve two goals. First, it attempts to establish a new theoretical framework---the collaborative scientific conceptual change model, which explicitly attends to social factor and epistemic practices of science, to understand conceptual change. Second, it report the findings of a classroom study to investigate how to apply this theoretical framework to examine the trajectories of collaborative scientific conceptual change in a CSCL environment and provide pedagogical implications. Two simulations were designed to help students make connections between the macroscopic substances and the aperceptual microscopic entities and underlying processes. The reported study was focused on analyzing the aggregated data from all participants and the video and audio data from twenty focal groups' collaborative activities and the process of their conceptual development in two classroom settings. Mixed quantitative and qualitative analyses were applied to analyze the video/audio data. The results found that, overall participants showed significant improvements from pretest to posttest on system understanding. Group and teacher effect as well as group variability were detected in both students' posttest performance and their collaborative activities, and variability emerged in group interaction. Multiple data analyses found that attributes of collaborative discourse and epistemic practices made a difference in student learning. Generating warranted claims in discourse as well as the predicting, coordinating theory-evidence, and modifying knowledge in epistemic practices had an impact on student's conceptual understanding. However, modifying knowledge was found negatively related to students' learning effect. The case studies show how groups differed in using the computer tools as a medium to conduct collaborative discourse and epistemic practices. Only with certain combination of discourse features and epistemic practices can the group interaction lead to successful convergent understanding. The results of the study imply that the collaborative scientific conceptual change model is an effective framework to study conceptual change and the simulation environment may mediate the development of successful collaborative interactions (including collaborative discourse and epistemic practices) that lead to collaborative scientific conceptual change.
Designing Effective Supports for Causal Reasoning
ERIC Educational Resources Information Center
Jonassen, David H.; Ionas, Ioan Gelu
2008-01-01
Causal reasoning represents one of the most basic and important cognitive processes that underpin all higher-order activities, such as conceptual understanding and problem solving. Hume called causality the "cement of the universe" [Hume (1739/2000). Causal reasoning is required for making predictions, drawing implications and…
Newman Unit 1 advanced solar repowering. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1982-04-01
The five appendices give the selection process and system specification of the Newman Unit 1 solar repowering system, including the conceptual design drawings and diagrams; input data for the simulation program; and a review of the most important characteristics of the existing plant. (LEW)
Evaluation of Conceptual Frameworks Applicable to the Study of Isolation Precautions Effectiveness
Crawford, Catherine; Shang, Jingjing
2015-01-01
Aims A discussion of conceptual frameworks applicable to the study of isolation precautions effectiveness according to Fawcett and DeSanto-Madeya’s (2013) evaluation technique and their relative merits and drawbacks for this purpose Background Isolation precautions are recommended to control infectious diseases with high morbidity and mortality, but effectiveness is not established due to numerous methodological challenges. These challenges, such as identifying empirical indicators and refining operational definitions, could be alleviated though use of an appropriate conceptual framework. Design Discussion paper Data Sources In mid-April 2014, the primary author searched five electronic, scientific literature databases for conceptual frameworks applicable to study isolation precautions, without limiting searches by publication date. Implications for Nursing By reviewing promising conceptual frameworks to support isolation precautions effectiveness research, this paper exemplifies the process to choose an appropriate conceptual framework for empirical research. Hence, researchers may build on these analyses to improve study design of empirical research in multiple disciplines, which may lead to improved research and practice. Conclusion Three frameworks were reviewed: the epidemiologic triad of disease, Donabedian’s healthcare quality framework and the Quality Health Outcomes model. Each has been used in nursing research to evaluate health outcomes and contains concepts relevant to nursing domains. Which framework can be most useful likely depends on whether the study question necessitates testing multiple interventions, concerns pathogen-specific characteristics and yields cross-sectional or longitudinal data. The Quality Health Outcomes model may be slightly preferred as it assumes reciprocal relationships, multi-level analysis and is sensitive to cultural inputs. PMID:26179813
The Contribution of Conceptual Frameworks to Knowledge Translation Interventions in Physical Therapy
Gervais, Mathieu-Joël; Hunt, Matthew
2015-01-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. PMID:25060959
Hudon, Anne; Gervais, Mathieu-Joël; Hunt, Matthew
2015-04-01
There is growing recognition of the importance of knowledge translation activities in physical therapy to ensure that research findings are integrated into clinical practice, and increasing numbers of knowledge translation interventions are being conducted. Although various frameworks have been developed to guide and facilitate the process of translating knowledge into practice, these tools have been infrequently used in physical therapy knowledge translation studies to date. Knowledge translation in physical therapy implicates multiple stakeholders and environments and involves numerous steps. In light of this complexity, the use of explicit conceptual frameworks by clinicians and researchers conducting knowledge translation interventions is associated with a range of potential benefits. This perspective article argues that such frameworks are important resources to promote the uptake of new evidence in physical therapist practice settings. Four key benefits associated with the use of conceptual frameworks in designing and implementing knowledge translation interventions are identified, and limits related to their use are considered. A sample of 5 conceptual frameworks is evaluated, and how they address common barriers to knowledge translation in physical therapy is assessed. The goal of this analysis is to provide guidance to physical therapists seeking to identify a framework to support the design and implementation of a knowledge translation intervention. Finally, the use of a conceptual framework is illustrated through a case example. Increased use of conceptual frameworks can have a positive impact on the field of knowledge translation in physical therapy and support the development and implementation of robust and effective knowledge translation interventions that help span the research-practice gap. © 2015 American Physical Therapy Association.
NASA Technical Reports Server (NTRS)
Parnell, Gregory S.; Rowell, William F.; Valusek, John R.
1987-01-01
In recent years there has been increasing interest in applying the computer based problem solving techniques of Artificial Intelligence (AI), Operations Research (OR), and Decision Support Systems (DSS) to analyze extremely complex problems. A conceptual framework is developed for successfully integrating these three techniques. First, the fields of AI, OR, and DSS are defined and the relationships among the three fields are explored. Next, a comprehensive adaptive design methodology for AI and OR modeling within the context of a DSS is described. These observations are made: (1) the solution of extremely complex knowledge problems with ill-defined, changing requirements can benefit greatly from the use of the adaptive design process, (2) the field of DSS provides the focus on the decision making process essential for tailoring solutions to these complex problems, (3) the characteristics of AI, OR, and DSS tools appears to be converging rapidly, and (4) there is a growing need for an interdisciplinary AI/OR/DSS education.
Lunar surface transportation systems conceptual design lunar base systems study Task 5.2
NASA Technical Reports Server (NTRS)
1988-01-01
Conceptual designs for three categories of lunar surface transportation were described. The level of understanding for the capabilities and design approach varies between the vehicles representing these categories. A summary of the vehicle categories and current state of conceptual design is provided. Finally, a brief evaluation and discussion is provided for a systematic comparison of transportation categories and effectiveness in supporting transportation objectives.
Using conceptual maps to assess students' climate change understanding and misconceptions
NASA Astrophysics Data System (ADS)
Gautier, C.
2011-12-01
The complex and interdisciplinary nature of climate change science poses special challenges for educators in helping students understand the climate system, and how it is evolving under natural and anthropogenic forcing. Students and citizens alike have existing mental models that may limit their perception and processing of the multiple relationships between processes (e.g., feedback) that arise in global change science, and prevent adoption of complex scientific concepts. Their prior knowledge base serves as the scaffold for all future learning and grasping its range and limitations serves as an important basis upon which to anchor instruction. Different instructional strategies can be adopted to help students understand the inherently interdisciplinary topic of global climate change, its interwoven human and natural causes, and the connections it has with society through a complex range of political, social, technological and economic factors. One assessment method for students' understanding of global climate change with its many uncertainties, whether associated with the workings of the climate system or with respect to social, cultural and economic processes that mediate human responses to changes within the system, is through the use of conceptual maps. When well designed, they offer a representation of students' mental model prior and post instruction. We will present two conceptual mapping activities used in the classroom to assess students' knowledge and understanding about global climate change and uncover misconceptions. For the first one, concept maps will be used to demonstrate evidence of learning and conceptual change, while for the second we will show how conceptual maps can provide information about gaps in knowledge and misconceptions students have about the topic.
4MOST systems engineering: from conceptual design to preliminary design review
NASA Astrophysics Data System (ADS)
Bellido-Tirado, Olga; Frey, Steffen; Barden, Samuel C.; Brynnel, Joar; Giannone, Domenico; Haynes, Roger; de Jong, Roelof S.; Phillips, Daniel; Schnurr, Olivier; Walcher, Jakob; Winkler, Roland
2016-08-01
The 4MOST Facility is a high-multiplex, wide-field, brief-fed spectrograph system for the ESO VISTA telescope. It aims to create a world-class spectroscopic survey facility unique in its combination of wide-field multiplex, spectral resolution, spectral coverage, and sensitivity. At the end of 2014, after a successful concept optimization design phase, 4MOST entered into its Preliminary Design Phase. Here we present the process and tools adopted during the Preliminary Design Phase to define the subsystems specifications, coordinate the interface control documents and draft the system verification procedures.
Bayesian design of decision rules for failure detection
NASA Technical Reports Server (NTRS)
Chow, E. Y.; Willsky, A. S.
1984-01-01
The formulation of the decision making process of a failure detection algorithm as a Bayes sequential decision problem provides a simple conceptualization of the decision rule design problem. As the optimal Bayes rule is not computable, a methodology that is based on the Bayesian approach and aimed at a reduced computational requirement is developed for designing suboptimal rules. A numerical algorithm is constructed to facilitate the design and performance evaluation of these suboptimal rules. The result of applying this design methodology to an example shows that this approach is potentially a useful one.
Hamilton, Maryellen; Geraci, Lisa
2006-01-01
According to leading theories, the picture superiority effect is driven by conceptual processing, yet this effect has been difficult to obtain using conceptual implicit memory tests. We hypothesized that the picture superiority effect results from conceptual processing of a picture's distinctive features rather than a picture's semantic features. To test this hypothesis, we used 2 conceptual implicit general knowledge tests; one cued conceptually distinctive features (e.g., "What animal has large eyes?") and the other cued semantic features (e.g., "What animal is the figurehead of Tootsie Roll?"). Results showed a picture superiority effect only on the conceptual test using distinctive cues, supporting our hypothesis that this effect is mediated by conceptual processing of a picture's distinctive features.
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Originally, computer programs for engineering design focused on detailed geometric design. Later, computer programs for algorithmically performing the preliminary design of specific well-defined classes of objects became commonplace. However, due to the need for extreme flexibility, it appears unlikely that conventional programming techniques will prove fruitful in developing computer aids for engineering conceptual design. The use of symbolic processing techniques, such as object-oriented programming and constraint propagation, facilitate such flexibility. Object-oriented programming allows programs to be organized around the objects and behavior to be simulated, rather than around fixed sequences of function- and subroutine-calls. Constraint propagation allows declarative statements to be understood as designating multi-directional mathematical relationships among all the variables of an equation, rather than as unidirectional assignments to the variable on the left-hand side of the equation, as in conventional computer programs. The research has concentrated on applying these two techniques to the development of a general-purpose computer aid for engineering conceptual design. Object-oriented programming techniques are utilized to implement a user-extensible database of design components. The mathematical relationships which model both geometry and physics of these components are managed via constraint propagation. In addition, to this component-based hierarchy, special-purpose data structures are provided for describing component interactions and supporting state-dependent parameters. In order to investigate the utility of this approach, a number of sample design problems from the field of aerospace engineering were implemented using the prototype design tool, Rubber Airplane. The additional level of organizational structure obtained by representing design knowledge in terms of components is observed to provide greater convenience to the program user, and to result in a database of engineering information which is easier both to maintain and to extend.
Multidisciplinary optimization of an HSCT wing using a response surface methodology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, A.A.; Grossman, B.; Mason, W.H.
1994-12-31
Aerospace vehicle design is traditionally divided into three phases: conceptual, preliminary, and detailed. Each of these design phases entails a particular level of accuracy and computational expense. While there are several computer programs which perform inexpensive conceptual-level aircraft multidisciplinary design optimization (MDO), aircraft MDO remains prohibitively expensive using preliminary- and detailed-level analysis tools. This occurs due to the expense of computational analyses and because gradient-based optimization requires the analysis of hundreds or thousands of aircraft configurations to estimate design sensitivity information. A further hindrance to aircraft MDO is the problem of numerical noise which occurs frequently in engineering computations. Computermore » models produce numerical noise as a result of the incomplete convergence of iterative processes, round-off errors, and modeling errors. Such numerical noise is typically manifested as a high frequency, low amplitude variation in the results obtained from the computer models. Optimization attempted using noisy computer models may result in the erroneous calculation of design sensitivities and may slow or prevent convergence to an optimal design.« less
NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information
,
2004-01-01
Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.
STARS Conceptual Framework for Reuse Processes (CFRP). Volume 2: application Version 1.0
1993-09-30
Analysis and Design DISA/CIM process x OProcess [DIS93] Feature-Oriented Domain SEI process x Analysis ( FODA ) [KCH+90] JIAWG Object-Oriented Domain JIAWG...Domain Analysis ( FODA ) Feasibility Study. Technical Report CMU/S[1 ,N. I R 21. Soft- ware Engineering Institute, Carnegie Mellon University, Pittsburgh...Electronic Systems Center Air Force Materiel Command, USAF Hanscom AFB, MA 01731-5000 Prepared by: The Boeing Company , IBM, Unisys Corporation, Defense
A conceptual framework for managing clinical processes.
Buffone, G J; Moreau, D
1997-01-01
Reengineering of the health care delivery system is underway, as is the transformation of the processes and methods used for recording information describing patient care (i.e., the development of a computer-based record). This report describes the use of object-oriented analysis and design to develop and implement clinical process reengineering as well as the organization of clinical data. In addition, the facility of the proposed framework for implementing workflow computing is discussed.
Menninghaus, Winfried; Bohrn, Isabel C; Knoop, Christine A; Kotz, Sonja A; Schlotz, Wolff; Jacobs, Arthur M
2015-10-01
Studies on rhetorical features of language have reported both enhancing and adverse effects on ease of processing. We hypothesized that two explanations may account for these inconclusive findings. First, the respective gains and losses in ease of processing may apply to different dimensions of language processing (specifically, prosodic and semantic processing) and different types of fluency (perceptual vs. conceptual) and may well allow for an integration into a more comprehensive framework. Second, the effects of rhetorical features may be sensitive to interactions with other rhetorical features; employing a feature separately or in combination with others may then predict starkly different effects. We designed a series of experiments in which we expected the same rhetorical features of the very same sentences to exert adverse effects on semantic (conceptual) fluency and enhancing effects on prosodic (perceptual) fluency. We focused on proverbs that each employ three rhetorical features: rhyme, meter, and brevitas (i.e., artful shortness). The presence of these target features decreased ease of conceptual fluency (semantic comprehension) while enhancing perceptual fluency as reflected in beauty and succinctness ratings that were mainly driven by prosodic features. The rhetorical features also predicted choices for persuasive purposes, yet only for the sentence versions featuring all three rhetorical features; the presence of only one or two rhetorical features had an adverse effect on the choices made. We suggest that the facilitating effects of a combination of rhyme, meter, and rhetorical brevitas on perceptual (prosodic) fluency overcompensated for their adverse effects on conceptual (semantic) fluency, thus resulting in a total net gain both in processing ease and in choices for persuasive purposes. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
Design for application of the DETOX{sup SM} wet oxidation process to mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bell, R.A.; Dhooge, P.M.
1994-04-01
Conceptual engineering has been performed for application of the DETOX{sup SM} wet oxidation process to treatment of specific mixed waste types. Chemical compositions, mass balances, energy balances, temperatures, pressures, and flows have been used to define design parameters for treatment units capable of destroying 5. Kg per hour of polychlorinated biphenyls and 25. Kg per hour of tributyl phosphate. Equipment for the units has been sized and materials of construction have been specified. Secondary waste streams have been defined. Environmental safety and health issues in design have been addressed. Capital and operating costs have been estimated based on the conceptualmore » designs.« less
Enabling Rapid Naval Architecture Design Space Exploration
NASA Technical Reports Server (NTRS)
Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri
2011-01-01
Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.
Unconscious memory bias in depression: perceptual and conceptual processes.
Watkins, P C; Martin, C K; Stern, L D
2000-05-01
Mood-congruent memory (MCM) bias in depression was investigated using 4 different implicit memory tests. Two of the implicit tests were perceptually driven, and 2 were conceptually driven. Depressed participants and nondepressed controls were assigned to 1 of 4 implicit memory tests after studying positive and negative adjectives. Results showed no MCM bias in the perceptually driven tests. MCM was demonstrated in 1 of the conceptually driven tests, but only for adjectives that were conceptually encoded. Results support the theory that mood-congruent processes in depression are limited to conceptual processing. However, activation of conceptual processes may not be sufficient for demonstrating mood congruency.
Turnaround Time Modeling for Conceptual Rocket Engines
NASA Technical Reports Server (NTRS)
Nix, Michael; Staton, Eric J.
2004-01-01
Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.
ERIC Educational Resources Information Center
Echeverria, Alejandro; Barrios, Enrique; Nussbaum, Miguel; Amestica, Matias; Leclerc, Sandra
2012-01-01
Computer simulations combined with games have been successfully used to teach conceptual physics. However, there is no clear methodology for guiding the design of these types of games. To remedy this, we propose a structured methodology for the design of conceptual physics games that explicitly integrates the principles of the intrinsic…
NASA Technical Reports Server (NTRS)
Wiley, Lowell F.
1985-01-01
The study results from the conceptual design and programmatics segment of the Space Platform and Station Accommodation for Life Sciences Research Facilities. The results and significant findings of the conceptual design and programmatics were generated by these tasks: (1) the review and update engineering and science requirements; (2) analysis of life sciences mission transition scenario; (3) the review and update of key trade issues; (4) the development of conceptual definition and designs; and (5) the development of the work breakdown schedule and its dictionary, program schedule, and estimated costs.
Multidisciplinary design and optimization (MDO) methodology for the aircraft conceptual design
NASA Astrophysics Data System (ADS)
Iqbal, Liaquat Ullah
An integrated design and optimization methodology has been developed for the conceptual design of an aircraft. The methodology brings higher fidelity Computer Aided Design, Engineering and Manufacturing (CAD, CAE and CAM) Tools such as CATIA, FLUENT, ANSYS and SURFCAM into the conceptual design by utilizing Excel as the integrator and controller. The approach is demonstrated to integrate with many of the existing low to medium fidelity codes such as the aerodynamic panel code called CMARC and sizing and constraint analysis codes, thus providing the multi-fidelity capabilities to the aircraft designer. The higher fidelity design information from the CAD and CAE tools for the geometry, aerodynamics, structural and environmental performance is provided for the application of the structured design methods such as the Quality Function Deployment (QFD) and the Pugh's Method. The higher fidelity tools bring the quantitative aspects of a design such as precise measurements of weight, volume, surface areas, center of gravity (CG) location, lift over drag ratio, and structural weight, as well as the qualitative aspects such as external geometry definition, internal layout, and coloring scheme early in the design process. The performance and safety risks involved with the new technologies can be reduced by modeling and assessing their impact more accurately on the performance of the aircraft. The methodology also enables the design and evaluation of the novel concepts such as the blended (BWB) and the hybrid wing body (HWB) concepts. Higher fidelity computational fluid dynamics (CFD) and finite element analysis (FEA) allow verification of the claims for the performance gains in aerodynamics and ascertain risks of structural failure due to different pressure distribution in the fuselage as compared with the tube and wing design. The higher fidelity aerodynamics and structural models can lead to better cost estimates that help reduce the financial risks as well. This helps in achieving better designs with reduced risk in lesser time and cost. The approach is shown to eliminate the traditional boundary between the conceptual and the preliminary design stages, combining the two into one consolidated preliminary design phase. Several examples for the validation and utilization of the Multidisciplinary Design and Optimization (MDO) Tool are presented using missions for the Medium and High Altitude Long Range/Endurance Unmanned Aerial Vehicles (UAVs).
Reinventing The Design Process: Teams and Models
NASA Technical Reports Server (NTRS)
Wall, Stephen D.
1999-01-01
The future of space mission designing will be dramatically different from the past. Formerly, performance-driven paradigms emphasized data return with cost and schedule being secondary issues. Now and in the future, costs are capped and schedules fixed-these two variables must be treated as independent in the design process. Accordingly, JPL has redesigned its design process. At the conceptual level, design times have been reduced by properly defining the required design depth, improving the linkages between tools, and managing team dynamics. In implementation-phase design, system requirements will be held in crosscutting models, linked to subsystem design tools through a central database that captures the design and supplies needed configuration management and control. Mission goals will then be captured in timelining software that drives the models, testing their capability to execute the goals. Metrics are used to measure and control both processes and to ensure that design parameters converge through the design process within schedule constraints. This methodology manages margins controlled by acceptable risk levels. Thus, teams can evolve risk tolerance (and cost) as they would any engineering parameter. This new approach allows more design freedom for a longer time, which tends to encourage revolutionary and unexpected improvements in design.
Human Factors Evaluations of Two-Dimensional Spacecraft Conceptual Layouts
NASA Technical Reports Server (NTRS)
Kennedy, Kriss J.; Toups, Larry D.; Rudisill, Marianne
2010-01-01
Much of the human factors work done in support of the NASA Constellation lunar program has been with low fidelity mockups. These volumetric replicas of the future lunar spacecraft allow researchers to insert test subjects from the engineering and astronaut population and evaluate the vehicle design as the test subjects perform simulations of various operational tasks. However, lunar outpost designs must be evaluated without the use of mockups, creating a need for evaluation tools that can be performed on two-dimension conceptual spacecraft layouts, such as floor plans. A tool based on the Cooper- Harper scale was developed and applied to one lunar scenario, enabling engineers to select between two competing floor plan layouts. Keywords: Constellation, human factors, tools, processes, habitat, outpost, Net Habitable Volume, Cooper-Harper.
The Management of Instruction.
ERIC Educational Resources Information Center
Tosti, Donald T.; Harmon, N. Paul
A new conceptual approach to the analysis of educational systems is defined. It centers attention on the instructional management decision making process, which serves to mediate the activities of the students and learning environment, so that much of the present confusion surrounding the design of educational systems is eliminated. Instructional…
A Taxonomy of Knowledge Types for Use in Curriculum Design
ERIC Educational Resources Information Center
Carson, Robert N.
2004-01-01
This article proposes the use of a taxonomy to help curriculum planners distinguish between different kinds of knowledge. Nine categories are suggested: empirical, rational, conventional, conceptual, cognitive process skills, psychomotor, affective, narrative, and received. Analyzing lessons into the sources of their resident knowledge helps the…
Multidisciplinary eHealth Survey Evaluation Methods
ERIC Educational Resources Information Center
Karras, Bryant T.; Tufano, James T.
2006-01-01
This paper describes the development process of an evaluation framework for describing and comparing web survey tools. We believe that this approach will help shape the design, development, deployment, and evaluation of population-based health interventions. A conceptual framework for describing and evaluating web survey systems will enable the…
HIGHLIGHTS FROM TECHNICAL MANUAL ON HOOD SYSTEM CAPTURE OF PROCESS FUGITIVE PARTICULATE EMISSIONS
The paper discusses a technical manual whose emphasis is on the design and evaluation of actual hood systems used to control various fugitive particulate emission sources. Engineering analyses of the most important hood types are presented to provide a conceptual understanding of...
ERIC Educational Resources Information Center
Lippitt, Ronald O.
This paper develops a conceptual framework as a guide for research analysis and the designing of experimental interventions aimed at the improvement of the socialization process of the community. Socialization agents are the parents, older and like-age peers, formal education agencies, churches, leisure time child and youth serving agencies, legal…
Data management in an object-oriented distributed aircraft conceptual design environment
NASA Astrophysics Data System (ADS)
Lu, Zhijie
In the competitive global market place, aerospace companies are forced to deliver the right products to the right market, with the right cost, and at the right time. However, the rapid development of technologies and new business opportunities, such as mergers, acquisitions, supply chain management, etc., have dramatically increased the complexity of designing an aircraft. Therefore, the pressure to reduce design cycle time and cost is enormous. One way to solve such a dilemma is to develop and apply advanced engineering environments (AEEs), which are distributed collaborative virtual design environments linking researchers, technologists, designers, etc., together by incorporating application tools and advanced computational, communications, and networking facilities. Aircraft conceptual design, as the first design stage, provides major opportunity to compress design cycle time and is the cheapest place for making design changes. However, traditional aircraft conceptual design programs, which are monolithic programs, cannot provide satisfactory functionality to meet new design requirements due to the lack of domain flexibility and analysis scalability. Therefore, we are in need of the next generation aircraft conceptual design environment (NextADE). To build the NextADE, the framework and the data management problem are two major problems that need to be addressed at the forefront. Solving these two problems, particularly the data management problem, is the focus of this research. In this dissertation, in light of AEEs, a distributed object-oriented framework is firstly formulated and tested for the NextADE. In order to improve interoperability and simplify the integration of heterogeneous application tools, data management is one of the major problems that need to be tackled. To solve this problem, taking into account the characteristics of aircraft conceptual design data, a robust, extensible object-oriented data model is then proposed according to the distributed object-oriented framework. By overcoming the shortcomings of the traditional approach of modeling aircraft conceptual design data, this data model makes it possible to capture specific detailed information of aircraft conceptual design without sacrificing generality, which is one of the most desired features of a data model for aircraft conceptual design. Based upon this data model, a prototype of the data management system, which is one of the fundamental building blocks of the NextADE, is implemented utilizing the state of the art information technologies. Using a general-purpose integration software package to demonstrate the efficacy of the proposed framework and the data management system, the NextADE is initially implemented by integrating the prototype of the data management system with other building blocks of the design environment, such as disciplinary analyses programs and mission analyses programs. As experiments, two case studies are conducted in the integrated design environments. One is based upon a simplified conceptual design of a notional conventional aircraft; the other is a simplified conceptual design of an unconventional aircraft. As a result of the experiments, the proposed framework and the data management approach are shown to be feasible solutions to the research problems.
Abraham, Anna; Rutter, Barbara; Bantin, Trisha; Hermann, Christiane
2018-05-05
The aims of this fMRI study were two-fold. The first objective of the study was to verify whether the findings associated with a previous fMRI study could be replicated in which a novel event-related experimental design was developed which rendered it possible to investigate the brain basis of creative conceptual expansion. The ability to widen the boundaries of conceptual structures is integral to creative idea generation, which makes conceptual expansion a core component of creative cognition. Creative conceptual expansion led to the engagement of brain regions that are known to be involved in the access, storage and relational integration of conceptual knowledge in the original study. These included the anterior inferior frontal gyrus, the temporal poles and the lateral frontal pole. These findings in relation to the brain basis of creative conceptual expansion were replicated in the current study. The second objective of this study was to evaluate the brain basis of individual differences in creative conceptual expansion. The high creative group relative to the low creative group was shown to exhibit greater activity in regions of the semantic cognition network as well as the salience network during creative conceptual expansion. The findings are discussed from the point of view of classical hypotheses about information processing biases that explain individual differences in creativity including flat associative hierarchies, defocused attention and cognitive disinhibition. Copyright © 2018 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Watson, Rachel M.; Willford, John D.; Pfeifer, Mariel A.
2018-01-01
In this study, a problem-based capstone course was designed to assess the University of Wyoming Microbiology Program's skill-based and process-based student learning objectives. Students partnered with a local farm, a community garden, and a free downtown clinic in order to conceptualize, propose, perform, and present studies addressing problems…
ERIC Educational Resources Information Center
Kruse, Rebecca; Howes, Elaine V.; Carlson, Janet; Roth, Kathleen; Bourdelat-Parks, Brooke
2013-01-01
AAAS and BSCS are collaborating to develop and study a curriculum unit that supports students' ability to explain a variety of biological processes such as growth in chemical terms. The unit provides conceptual coherence between chemical processes in nonliving and living systems through the core idea of atom rearrangement and conservation during…
NASA Astrophysics Data System (ADS)
Zacharia, Zacharias C.; Lazaridou, Charalambia; Avraamidou, Lucy
2016-03-01
The purpose of this study was to examine the impact of mobile learning among young learners. Specifically, we investigated whether the use of mobile devices for data collection during field trips outside the classroom could enhance fourth graders' learning about the parts of the flower and their functions, flower pollinators and the process of pollination/fertilization, and the interrelationship between animals and plants, more than students' use of traditional means of data collection. For this purpose, we designed a pre-post experimental design study with two conditions: one in which participants used a mobile device for data collection and another using traditional means (e.g. sketching and note-taking). The sample comprised 48 fourth graders (24 in each condition), who studied the flower, its parts, and their functions. A conceptual test was administered to assess students' understanding before and after instruction. Moreover, the students' science notebooks and accompanying artifacts were used as a data source for examining students' progress during the study's intervention. The conceptual test and notebook data were analyzed statistically, whereas we used open coding for the artifacts. Findings revealed that using mobile devices for data collection enhanced students' conceptual understanding more than using traditional means of data collection.
Helitzer, Deborah L; Sussman, Andrew L; Hoffman, Richard M; Getrich, Christina M; Warner, Teddy D; Rhyne, Robert L
2014-08-01
Conceptual frameworks (CF) have historically been used to develop program theory. We re-examine the literature about the role of CF in this context, specifically how they can be used to create descriptive and prescriptive theories, as building blocks for a program theory. Using a case example of colorectal cancer screening intervention development, we describe the process of developing our initial CF, the methods used to explore the constructs in the framework and revise the framework for intervention development. We present seven steps that guided the development of our CF: (1) assemble the "right" research team, (2) incorporate existing literature into the emerging CF, (3) construct the conceptual framework, (4) diagram the framework, (5) operationalize the framework: develop the research design and measures, (6) conduct the research, and (7) revise the framework. A revised conceptual framework depicted more complicated inter-relationships of the different predisposing, enabling, reinforcing, and system-based factors. The updated framework led us to generate program theory and serves as the basis for designing future intervention studies and outcome evaluations. A CF can build a foundation for program theory. We provide a set of concrete steps and lessons learned to assist practitioners in developing a CF. Copyright © 2014 Elsevier Ltd. All rights reserved.
Vermeiren, Peter; Muñoz, Cynthia C; Ikejima, Kou
2016-12-15
Micro- and macroplastic accumulation threatens estuaries worldwide because of the often dense human populations, diverse plastic inputs and high potential for plastic degradation and storage in these ecosystems. Nonetheless, our understanding of plastic sources and sinks remains limited. We designed conceptual models of the local and estuary-wide transport of plastics. We identify processes affecting the position of plastics in the water column; processes related to the mixing of fresh and salt water; and processes resulting from the influences of wind, topography, and organism-plastic interactions. The models identify gaps in the spatial context of plastic-organisms interactions, the chemical behavior of plastics in estuaries, effects of wind on plastic suspension-deposition cycles, and the relative importance of processes affecting the position in the water column. When interpreted in the context of current understanding, sinks with high management potential can be identified. However, source-sink patterns vary among estuary types and with local scale processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
1989-01-01
The results of the refined conceptual design phase (task 5) of the Simulation Computer System (SCS) study are reported. The SCS is the computational portion of the Payload Training Complex (PTC) providing simulation based training on payload operations of the Space Station Freedom (SSF). In task 4 of the SCS study, the range of architectures suitable for the SCS was explored. Identified system architectures, along with their relative advantages and disadvantages for SCS, were presented in the Conceptual Design Report. Six integrated designs-combining the most promising features from the architectural formulations-were additionally identified in the report. The six integrated designs were evaluated further to distinguish the more viable designs to be refined as conceptual designs. The three designs that were selected represent distinct approaches to achieving a capable and cost effective SCS configuration for the PTC. Here, the results of task 4 (input to this task) are briefly reviewed. Then, prior to describing individual conceptual designs, the PTC facility configuration and the SSF systems architecture that must be supported by the SCS are reviewed. Next, basic features of SCS implementation that have been incorporated into all selected SCS designs are considered. The details of the individual SCS designs are then presented before making a final comparison of the three designs.
NASA Technical Reports Server (NTRS)
1976-01-01
The onboard experiment data support facility (OEDSF) will provide data processing support to various experiment payloads on board the space shuttle. The OEDSF study will define the conceptual design and generate specifications for an OEDSF which will meet the following objectives: (1) provide a cost-effective approach to end-to-end processing requirements, (2) service multiple disciplines (3) satisfy user needs, (4) reduce the amount and improve the quality of data collected, stored and processed, and (5) embody growth capacity.
Use of theoretical and conceptual frameworks in qualitative research.
Green, Helen Elise
2014-07-01
To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.
A methodology for designing aircraft to low sonic boom constraints
NASA Technical Reports Server (NTRS)
Mack, Robert J.; Needleman, Kathy E.
1991-01-01
A method for designing conceptual supersonic cruise aircraft to meet low sonic boom requirements is outlined and described. The aircraft design is guided through a systematic evolution from initial three view drawing to a final numerical model description, while the designer using the method controls the integration of low sonic boom, high supersonic aerodynamic efficiency, adequate low speed handling, and reasonable structure and materials technologies. Some experience in preliminary aircraft design and in the use of various analytical and numerical codes is required for integrating the volume and lift requirements throughout the design process.
The optimization air separation plants for combined cycle MHD-power plant applications
NASA Technical Reports Server (NTRS)
Juhasz, A. J.; Springmann, H.; Greenberg, R.
1980-01-01
Some of the design approaches being employed during a current supported study directed at developing an improved air separation process for the production of oxygen enriched air for magnetohydrodynamics (MHD) combustion are outlined. The ultimate objective is to arrive at conceptual designs of air separation plants, optimized for minimum specific power consumption and capital investment costs, for integration with MHD combined cycle power plants.
A Critical Review of Options for Tool and Workpiece Sensing
1989-06-02
Tool Temperature Control ." International Machine Tool Design Res., Vol. 7, pp. 465-75, 1967. 5. Cook, N. H., Subramanian, K., and Basile, S. A...if necessury and identify by block riumber) FIELD GROUP SUB-GROUP 1. Detectors 3. Control Equipment 1 08 2. Sensor Characteristics 4. Process Control ...will provide conceptual designs and recommend a system (Continued) 20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION 0
Model-Based Trade Space Exploration for Near-Earth Space Missions
NASA Technical Reports Server (NTRS)
Cohen, Ronald H.; Boncyk, Wayne; Brutocao, James; Beveridge, Iain
2005-01-01
We developed a capability for model-based trade space exploration to be used in the conceptual design of Earth-orbiting space missions. We have created a set of reusable software components to model various subsystems and aspects of space missions. Several example mission models were created to test the tools and process. This technique and toolset has demonstrated itself to be valuable for space mission architectural design.
An investigation and conceptual design of a holographic starfield and landmark tracker
NASA Technical Reports Server (NTRS)
Welch, J. D.
1973-01-01
The analysis, experiments, and design effort of this study have supported the feasibility of the basic holographic tracker concept. Image intensifiers and photoplastic recording materials were examined, along with a Polaroid rapid process silver halide material. Two reference beam, coherent optical matched filter technique was used for multiplexing spatial frequency filters for starfields. A 1 watt HeNe laser and an electro-optical readout are also considered.
Revising a conceptual model of partnership and sustainability in global health.
Upvall, Michele J; Leffers, Jeanne M
2018-05-01
Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.
A factory concept for processing and manufacturing with lunar material
NASA Technical Reports Server (NTRS)
Driggers, G. W.
1977-01-01
A conceptual design for an orbital factory sized to process 1.5 million metric tons per year of raw lunar fines into 0.3 million metric tons of manufacturing materials is presented. A conservative approach involving application of present earth-based technology leads to a design devoid of new inventions. Earth based counterparts to the factory machinery were used to generate subsystem masses and lumped parameters for volume and mass estimates. The results are considered to be conservative since technologies more advanced than those assumed are presently available in many areas. Some attributes of potential space processing technologies applied to material refinement and component manufacture are discussed.
Perceptual processing affects conceptual processing.
Van Dantzig, Saskia; Pecher, Diane; Zeelenberg, René; Barsalou, Lawrence W
2008-04-05
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task in alternation. Responses on the property-verification task were slower for those trials that were preceded by a perceptual trial in a different modality than for those that were preceded by a perceptual trial in the same modality. This finding of a modality-switch effect across perceptual processing and conceptual processing supports the hypothesis that perceptual and conceptual representations are partially based on the same systems. 2008 Cognitive Science Society, Inc.
The Topographic Design of River Channels for Form-Process Linkages.
Brown, Rocko A; Pasternack, Gregory B; Lin, Tin
2016-04-01
Scientists and engineers design river topography for a wide variety of uses, such as experimentation, site remediation, dam mitigation, flood management, and river restoration. A recent advancement has been the notion of topographical design to yield specific fluvial mechanisms in conjunction with natural or environmental flow releases. For example, the flow convergence routing mechanism, whereby shear stress and spatially convergent flow migrate or jump from the topographic high (riffle) to the low point (pool) from low to high discharge, is thought to be a key process able to maintain undular relief in gravel bedded rivers. This paper develops an approach to creating riffle-pool topography with a form-process linkage to the flow convergence routing mechanism using an adjustable, quasi equilibrium synthetic channel model. The link from form to process is made through conceptualizing form-process relationships for riffle-pool couplets into geomorphic covariance structures (GCSs) that are then quantitatively embedded in a synthetic channel model. Herein, GCSs were used to parameterize a geometric model to create five straight, synthetic river channels with varying combinations of bed and width undulations. Shear stress and flow direction predictions from 2D hydrodynamic modeling were used to determine if scenarios recreated aspects of the flow convergence routing mechanism. Results show that the creation of riffle-pool couplets that experience flow convergence in straight channels requires GCSs with covarying bed and width undulations in their topography as supported in the literature. This shows that GCSs are a useful way to translate conceptualizations of form-process linkages into quantitative models of channel form.
NASA Technical Reports Server (NTRS)
1981-01-01
The software package evaluation was designed to analyze commercially available, field-proven, production control or manufacturing resource planning management technology and software package. The analysis was conducted by comparing SRB production control software requirements and conceptual system design to software package capabilities. The methodology of evaluation and the findings at each stage of evaluation are described. Topics covered include: vendor listing; request for information (RFI) document; RFI response rate and quality; RFI evaluation process; and capabilities versus requirements.
NASA Technical Reports Server (NTRS)
Rigo, H. S.; Bercaw, R. W.; Burkhart, J. A.; Mroz, T. S.; Bents, D. J.; Hatch, A. M.
1981-01-01
A description and the design requirements for the 200 MWe (nominal) net output MHD Engineering Test Facility (ETF) Conceptual Design, are presented. Performance requirements for the plant are identified and process conditions are indicated at interface stations between the major systems comprising the plant. Also included are the description, functions, interfaces and requirements for each of these major systems. The lastest information (1980-1981) from the MHD technology program are integrated with elements of a conventional steam electric power generating plant.
Integrating post-manufacturing issues into design and manufacturing decisions
NASA Technical Reports Server (NTRS)
Eubanks, Charles F.
1996-01-01
An investigation is conducted on research into some of the fundamental issues underlying the design for manufacturing, service and recycling that affect engineering decisions early in the conceptual design phase of mechanical systems. The investigation focuses on a system-based approach to material selection, manufacturing methods and assembly processes related to overall product requirements, performance and life-cycle costs. Particular emphasis is placed on concurrent engineering decision support for post-manufacturing issues such as serviceability, recyclability, and product retirement.
Perceptual Processing Affects Conceptual Processing
ERIC Educational Resources Information Center
van Dantzig, Saskia; Pecher, Diane; Zeelenberg, Rene; Barsalou, Lawrence W.
2008-01-01
According to the Perceptual Symbols Theory of cognition (Barsalou, 1999), modality-specific simulations underlie the representation of concepts. A strong prediction of this view is that perceptual processing affects conceptual processing. In this study, participants performed a perceptual detection task and a conceptual property-verification task…
NASA Technical Reports Server (NTRS)
Kolb, Mark A.
1990-01-01
Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.
The potential application of the blackboard model of problem solving to multidisciplinary design
NASA Technical Reports Server (NTRS)
Rogers, J. L.
1989-01-01
Problems associated with the sequential approach to multidisciplinary design are discussed. A blackboard model is suggested as a potential tool for implementing the multilevel decomposition approach to overcome these problems. The blackboard model serves as a global database for the solution with each discipline acting as a knowledge source for updating the solution. With this approach, it is possible for engineers to improve the coordination, communication, and cooperation in the conceptual design process, allowing them to achieve a more optimal design from an interdisciplinary standpoint.
Small spacecraft power and thermal subsystems
NASA Technical Reports Server (NTRS)
Eakman, D.; Lambeck, R.; Mackowski, M.; Slifer, L., Jr.
1994-01-01
This white paper provides a general guide to the conceptual design of satellite power and thermal control subsystems with special emphasis on the unique design aspects associated with small satellites. The operating principles of these technologies are explained and performance characteristics of current and projected components are provided. A tutorial is presented on the design process for both power and thermal subsystems, with emphasis on unique issues relevant to small satellites. The ability of existing technology to meet future performance requirements is discussed. Conclusions and observations are presented that stress cost-effective, high-performance design solutions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Jesse D.; Jason Magalen; Craig Jones
This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of amore » wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.« less
The Relevance and Efficacy of Metacognition for Instructional Design in the Domain of Mathematics
ERIC Educational Resources Information Center
Baten, Elke; Praet, Magda; Desoete, Annemie
2017-01-01
The efficacy of metacognition as theory-based instructional principle or technique in general, and particularly in mathematics, is explored. Starting with an overview of different definitions, conceptualizations, assessment and training models originating from cognitive information processing theory, the role of metacognition in teaching and…
Animation-Based Learning in Geology: Impact of Animations Coupled with Seductive Details
ERIC Educational Resources Information Center
Clayton, Rodney L.
2016-01-01
Research is not clear on how to address the difficulty students have conceptualizing geologic processes and phenomena. This study investigated how animations coupled with seductive details effect learners' situational interest and emotions. A quantitative quasi-experimental study employing an independent-measures factorial design was used. The…
Self-Knowledge, Capacity and Sensitivity: Prerequisites to Authentic Leadership by School Principals
ERIC Educational Resources Information Center
Begley, Paul T.
2006-01-01
Purpose: The article proposes three prerequisites to authentic leadership by school principals: self-knowledge, a capacity for moral reasoning, and sensitivity to the orientations of others. Design/methodology/approach: A conceptual framework, based on research on the valuation processes of school principals and their strategic responses to…
Stories of Innovation: Roles, Perspectives, and Players
ERIC Educational Resources Information Center
Martens, Jon
2014-01-01
Purpose: This study aims to examine the roles of stories in the innovation process. Design/methodology/approach: An integrative literature review was used to identify and analyze studies that examined stories of innovation in various organizational settings. The conceptual framework of the review was based on three perspectives of organizational…
Guidelines for Media Selection.
ERIC Educational Resources Information Center
Heeren, Elske; Verwijs, Carla; Moonen, Jef
This paper presents two types of approaches to media selection--rational-choice approaches and social-influence approaches. It is argued that designers should combine the two types of approaches in a bottom-up/top-down media-selection process. As examples of the two types of approaches, two conceptual frameworks are described--task/media fit and…
A Conceptual Framework for Examining Knowledge Management in Higher Education Contexts
ERIC Educational Resources Information Center
Lee, Hae-Young; Roth, Gene L.
2009-01-01
Knowledge management is an on-going process that involves varied activities: diagnosis, design, and implementation of knowledge creation, knowledge transfer, and knowledge sharing. The primary goal of knowledge management, like other management theories or models, is to identify and leverage organizational and individual knowledge for the…
First Toronto Conference on Database Users. Systems that Enhance User Performance.
ERIC Educational Resources Information Center
Doszkocs, Tamas E.; Toliver, David
1987-01-01
The first of two papers discusses natural language searching as a user performance enhancement tool, focusing on artificial intelligence applications for information retrieval and problems with natural language processing. The second presents a conceptual framework for further development and future design of front ends to online bibliographic…
Instructional Uses of Instant Messaging (IM) during Classroom Lectures
ERIC Educational Resources Information Center
Kinzie, Mable B.; Whitaker, Stephen D.; Hofer, Mark J.
2005-01-01
Can "Information Age" learners effectively multi-task in the classroom? Can synchronous classroom activities be designed around conceptually related tasks, to encourage deeper processing and greater learning of classroom content? This research was undertaken to begin to address these questions. In this study, we explored the use of…
Integrated STEM: A New Primer for Teaching Technology Education
ERIC Educational Resources Information Center
Asunda, Paul A.; Mativo, John
2017-01-01
Part One of this article ("Technology and Engineering Teacher," 75(4), December/January, 2016) presented a process that science, math, engineering, and technology teachers could use to collaborate and design integrated STEM courses. A conceptual framework was discussed that could provide a premise that educators interested in delivery of…
Controlled Ecological Life Support Systems (CELSS) conceptual design option study
NASA Technical Reports Server (NTRS)
Oleson, Melvin; Olson, Richard L.
1986-01-01
Results are given of a study to explore options for the development of a Controlled Ecological Life Support System (CELSS) for a future Space Station. In addition, study results will benefit the design of other facilities such as the Life Sciences Research Facility, a ground-based CELSS demonstrator, and will be useful in planning longer range missions such as a lunar base or manned Mars mission. The objectives were to develop weight and cost estimates for one CELSS module selected from a set of preliminary plant growth unit (PGU) design options. Eleven Space Station CELSS module conceptual PGU designs were reviewed, components and subsystems identified and a sensitivity analysis performed. Areas where insufficient data is available were identified and divided into the categories of biological research, engineering research, and technology development. Topics which receive significant attention are lighting systems for the PGU, the use of automation within the CELSS system, and electric power requirements. Other areas examined include plant harvesting and processing, crop mix analysis, air circulation and atmosphere contaminant flow subsystems, thermal control considerations, utility routing including accessibility and maintenance, and nutrient subsystem design.
New approaches to optimization in aerospace conceptual design
NASA Technical Reports Server (NTRS)
Gage, Peter J.
1995-01-01
Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.
Gonzales, Ralph; Handley, Margaret A.; Ackerman, Sara; O’Sullivan, Patricia S.
2012-01-01
The authors describe a conceptual framework for implementation and dissemination science (IDS) and propose competencies for IDS training. Their framework is designed to facilitate the application of theories and methods from the distinct domains of clinical disciplines (e.g., medicine, public health), population sciences (e.g., biostatistics, epidemiology) and translational disciplines (e.g., social and behavioral sciences, business administration education). They explore three principles that guided the development of their conceptual framework: Behavior change among organizations and/or individuals (providers, patients) is inherent in the translation process; engagement of stakeholder organizations, health care delivery systems, and individuals is imperative to achieve effective translation and sustained improvements; and IDS research is iterative, benefiting from cycles and collaborative, bidirectional relationships. The authors propose seven domains for IDS training--team science, context identification, literature identification and assessment, community engagement, intervention design and research implementation, evaluation of effect of translational activity, behavioral change communication strategies--and define twelve IDS training competencies within these domains. As a model, they describe specific courses introduced at the University of California, San Francisco, which they designed to develop these competencies. The authors encourage other training programs and institutions to use (or adapt) the design principles, conceptual framework, And proposed competencies to evaluate their current IDS training needs and to support new program development. PMID:22373617
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
1968-12-12
The purpose of this Conceptual Facility Design Description (CFDD) is to provide a technical description of the Inert Gas Cell Examination Facility such that agreement with RDT on a Conceptual Design can be reached . The CFDD also serves to establish a common understanding of the facility concept among all responsible FFTF Project parties including the Architect Engineer and Reactor Designer. Included are functions and design requirements, a physical description of the facility, safety considerations, principles of operation, and maintenance principles.
Lunar base launch and landing facility conceptual design, 2nd edition
NASA Technical Reports Server (NTRS)
1988-01-01
This report documents the Lunar Base Launch and Landing Facility Conceptual Design study. The purpose of this study was to examine the requirements for launch and landing facilities for early lunar bases and to prepare conceptual designs for some of these facilities. The emphasis of this study is on the facilities needed from the first manned landing until permanent occupancy. Surface characteristics and flight vehicle interactions are described, and various facility operations are related. Specific recommendations for equipment, facilities, and evolutionary planning are made, and effects of different aspects of lunar development scenarios on facilities and operations are detailed. Finally, for a given scenario, a specific conceptual design is developed and presented.
NASA Astrophysics Data System (ADS)
Gette, Cody R.; Kryjevskaia, Mila; Stetzer, MacKenzie R.; Heron, Paula R. L.
2018-06-01
A growing body of scholarly work indicates that student performance on physics problems stems from many factors, including relevant conceptual understanding. However, in contexts in which significant conceptual difficulties have been documented via research, it can be difficult to pinpoint and isolate such factors because students' written and interview responses rarely reveal the full richness of their conscious and, perhaps more importantly, subconscious reasoning paths. In this investigation, informed by dual-process theories of reasoning and decision making as well as the theoretical construct of accessibility, we conducted a series of experiments in order to gain greater insight into the factors impacting student performance on the "five-block problem," which has been used in the literature to probe student thinking about buoyancy. In particular, we examined both the impact of problem design (including salient features and cueing) and the impact of targeted instruction focused on density-based arguments for sinking and floating and on neutral buoyancy. The investigation found that instructional modifications designed to remove the strong intuitive appeal of the first-available response led to significantly improved performance, without improving student conceptual understanding of the requisite buoyancy concepts. As such, our findings represent an important first step in identifying systematic strategies for using theories from cognitive science to guide the development and refinement of research-based instructional materials.
Sanvido, Olivier; Widmer, Franco; Winzeler, Michael; Bigler, Franz
2005-01-01
Genetically modified plants (GMPs) may soon be cultivated commercially in several member countries of the European Union (EU). According to EU Directive 2001/18/EC, post-market monitoring (PMM) for commercial GMP cultivation must be implemented, in order to detect and prevent adverse effects on human health and the environment. However, no general PMM strategies for GMP cultivation have been established so far. We present a conceptual framework for the design of environmental PMM for GMP cultivation based on current EU legislation and common risk analysis procedures. We have established a comprehensive structure of the GMP approval process, consisting of pre-market risk assessment (PMRA) as well as PMM. Both programs can be distinguished conceptually due to principles inherent to risk analysis procedures. The design of PMM programs should take into account the knowledge gained during approval for commercialization of a specific GMP and the decisions made in the environmental risk assessments (ERAs). PMM is composed of case-specific monitoring (CSM) and general surveillance. CSM focuses on anticipated effects of a specific GMP. Selection of case-specific indicators for detection of ecological exposure and effects, as well as definition of effect sizes, are important for CSM. General surveillance is designed to detect unanticipated effects on general safeguard subjects, such as natural resources, which must not be adversely affected by human activities like GMP cultivation. We have identified clear conceptual differences between CSM and general surveillance, and propose to adopt separate frameworks when developing either of the two programs. Common to both programs is the need to put a value on possible ecological effects of GMP cultivation. The structure of PMM presented here will be of assistance to industry, researchers, and regulators, when assessing GMPs during commercialization.
NASA Technical Reports Server (NTRS)
1984-01-01
The design, development and analysis of the 7.3 MW MOD-5A wind turbine generator is documented. There are four volumes. In Volume 2, book 1 the requirements and criteria for the design are presented. The conceptual design studies, which defined a baseline configuration and determined the weights, costs and sizes of each subsystem, are described. The development and optimization of the wind turbine generator are presented through the description of the ten intermediate configurations between the conceptual and final designs. Analyses of the system's load and dynamics are presented.
Conceptual Design Oriented Wing Structural Analysis and Optimization
NASA Technical Reports Server (NTRS)
Lau, May Yuen
1996-01-01
Airplane optimization has always been the goal of airplane designers. In the conceptual design phase, a designer's goal could be tradeoffs between maximum structural integrity, minimum aerodynamic drag, or maximum stability and control, many times achieved separately. Bringing all of these factors into an iterative preliminary design procedure was time consuming, tedious, and not always accurate. For example, the final weight estimate would often be based upon statistical data from past airplanes. The new design would be classified based on gross characteristics, such as number of engines, wingspan, etc., to see which airplanes of the past most closely resembled the new design. This procedure works well for conventional airplane designs, but not very well for new innovative designs. With the computing power of today, new methods are emerging for the conceptual design phase of airplanes. Using finite element methods, computational fluid dynamics, and other computer techniques, designers can make very accurate disciplinary-analyses of an airplane design. These tools are computationally intensive, and when used repeatedly, they consume a great deal of computing time. In order to reduce the time required to analyze a design and still bring together all of the disciplines (such as structures, aerodynamics, and controls) into the analysis, simplified design computer analyses are linked together into one computer program. These design codes are very efficient for conceptual design. The work in this thesis is focused on a finite element based conceptual design oriented structural synthesis capability (CDOSS) tailored to be linked into ACSYNT.
Fifth Graders as App Designers: How Diverse Learners Conceptualize Educational Apps
ERIC Educational Resources Information Center
Israel, Maya; Marino, Matthew T.; Basham, James D.; Spivak, Wenonoa
2013-01-01
Instructional designers are increasingly considering how to include students as participants in the design of instructional technologies. This study provides a lens into participatory design with students by examining how students conceptualized learning applications in science, technology, engineering, and mathematics (STEM) by designing paper…
Multi-Stage Hybrid Rocket Conceptual Design for Micro-Satellites Launch using Genetic Algorithm
NASA Astrophysics Data System (ADS)
Kitagawa, Yosuke; Kitagawa, Koki; Nakamiya, Masaki; Kanazaki, Masahiro; Shimada, Toru
The multi-objective genetic algorithm (MOGA) is applied to the multi-disciplinary conceptual design problem for a three-stage launch vehicle (LV) with a hybrid rocket engine (HRE). MOGA is an optimization tool used for multi-objective problems. The parallel coordinate plot (PCP), which is a data mining method, is employed in the post-process in MOGA for design knowledge discovery. A rocket that can deliver observing micro-satellites to the sun-synchronous orbit (SSO) is designed. It consists of an oxidizer tank containing liquid oxidizer, a combustion chamber containing solid fuel, a pressurizing tank and a nozzle. The objective functions considered in this study are to minimize the total mass of the rocket and to maximize the ratio of the payload mass to the total mass. To calculate the thrust and the engine size, the regression rate is estimated based on an empirical model for a paraffin (FT-0070) propellant. Several non-dominated solutions are obtained using MOGA, and design knowledge is discovered for the present hybrid rocket design problem using a PCP analysis. As a result, substantial knowledge on the design of an LV with an HRE is obtained for use in space transportation.
Results from conceptual design study of potential early commercial MHD/steam power plants
NASA Technical Reports Server (NTRS)
Hals, F.; Kessler, R.; Swallom, D.; Westra, L.; Zar, J.; Morgan, W.; Bozzuto, C.
1981-01-01
This paper presents conceptual design information for a potential early MHD power plant developed in the second phase of a joint study of such plants. Conceptual designs of plant components and equipment with performance, operational characteristics and costs are reported on. Plant economics and overall performance including full and part load operation are reviewed. Environmental aspects and the methods incorporated in plant design for emission control of sulfur and nitrogen oxides are reviewed. Results from reliability/availability analysis conducted are also included.
NASA Astrophysics Data System (ADS)
Viennot, Laurence; Décamp, Nicolas
2016-01-01
One key objective of physics teaching is the promotion of conceptual understanding. Additionally, the critical faculty is universally seen as a central quality to be developed in students. In recent years, however, teaching objectives have placed stronger emphasis on skills than on concepts, and there is a risk that conceptual structuring may be disregarded. The question therefore arises as to whether it is possible for students to develop a critical stance without a conceptual basis, leading in turn to the issue of possible links between the development of conceptual understanding and critical attitude. In an in-depth study to address these questions, the participants were seven prospective physics and chemistry teachers. The methodology included a ‘teaching interview’, designed to observe participants’ responses to limited explanations of a given phenomenon and their ensuing intellectual satisfaction or frustration. The explanatory task related to the physics of how a survival blanket works, requiring a full and appropriate system analysis of the blanket. The analysis identified five recurrent lines of reasoning and linked these to judgments of adequacy of explanation, based on metacognitive/affective (MCA) factors, intellectual (dis)satisfaction and critical stance. Recurrent themes and MCA factors were used to map the intellectual dynamics that emerged during the interview process. Participants’ critical attitude was observed to develop in strong interaction with their comprehension of the topic. The results suggest that most students need to reach a certain level of conceptual mastery before they can begin to question an oversimplified explanation, although one student’s replies show that a different intellectual dynamics is also possible. The paper ends with a discussion of the implications of these findings for future research and for decisions concerning teaching objectives and the design of learning environments.
Trumpp, Natalie M; Traub, Felix; Pulvermüller, Friedemann; Kiefer, Markus
2014-02-01
Classical theories of semantic memory assume that concepts are represented in a unitary amodal memory system. In challenging this classical view, pure or hybrid modality-specific theories propose that conceptual representations are grounded in the sensory-motor brain areas, which typically process sensory and action-related information. Although neuroimaging studies provided evidence for a functional-anatomical link between conceptual processing of sensory or action-related features and the sensory-motor brain systems, it has been argued that aspects of such sensory-motor activation may not directly reflect conceptual processing but rather strategic imagery or postconceptual elaboration. In the present ERP study, we investigated masked effects of acoustic and action-related conceptual features to probe unconscious automatic conceptual processing in isolation. Subliminal feature-specific ERP effects at frontocentral electrodes were observed, which differed with regard to polarity, topography, and underlying brain electrical sources in congruency with earlier findings under conscious viewing conditions. These findings suggest that conceptual acoustic and action representations can also be unconsciously accessed, thereby excluding any postconceptual strategic processes. This study therefore further substantiates a grounding of conceptual and semantic processing in action and perception.
Reasoning with case histories of process knowledge for efficient process development
NASA Technical Reports Server (NTRS)
Bharwani, Seraj S.; Walls, Joe T.; Jackson, Michael E.
1988-01-01
The significance of compiling case histories of empirical process knowledge and the role of such histories in improving the efficiency of manufacturing process development is discussed in this paper. Methods of representing important investigations as cases and using the information from such cases to eliminate redundancy of empirical investigations in analogous process development situations are also discussed. A system is proposed that uses such methods to capture the problem-solving framework of the application domain. A conceptual design of the system is presented and discussed.
Bergerbest, Dafna; Goshen-Gottstein, Yonatan
2002-12-01
In three experiments, we explored automatic influences of memory in a conceptual memory task, as affected by a levels-of-processing (LoP) manipulation. We also explored the origins of the LoP effect by examining whether the effect emerged only when participants in the shallow condition truncated the perceptual processing (the lexical-processing hypothesis) or even when the entire word was encoded in this condition (the conceptual-processing hypothesis). Using the process-dissociation procedure and an implicit association-generation task, we found that the deep encoding condition yielded higher estimates of automatic influences than the shallow condition. In support of the conceptual processing hypothesis, the LoP effect was found even when the shallow task did not lead to truncated processing of the lexical units. We suggest that encoding for meaning is a prerequisite for automatic processing on conceptual tests of memory.
Oxygen production on the Lunar materials processing frontier
NASA Technical Reports Server (NTRS)
Altenberg, Barbara H.
1992-01-01
During the pre-conceptual design phase of an initial lunar oxygen processing facility, it is essential to identify and compare the available processes and evaluate them in order to ensure the success of such an endeavor. The focus of this paper is to provide an overview of materials processing to produce lunar oxygen as one part of a given scenario of a developing lunar occupation. More than twenty-five techniques to produce oxygen from lunar materials have been identified. While it is important to continue research on any feasible method, not all methods can be implemented at the initial lunar facility. Hence, it is necessary during the pre-conceptual design phase to evaluate all methods and determine the leading processes for initial focus. Researchers have developed techniques for evaluating the numerous proposed methods in order to suggest which processes would be best to go to the Moon first. As one section in this paper, the recent evaluation procedures that have been presented in the literature are compared and contrasted. In general, the production methods for lunar oxygen fall into four categories: thermochemical, reactive solvent, pyrolytic, and electrochemical. Examples from two of the four categories are described, operating characteristics are contrasted, and terrestrial analogs are presented when possible. In addition to producing oxygen for use as a propellant and for life support, valuable co-products can be derived from some of the processes. This information is also highlighted in the description of a given process.
Conceptual size in developmental dyscalculia and dyslexia.
Gliksman, Yarden; Henik, Avishai
2018-02-01
People suffering from developmental dyscalculia (DD) are known to have impairment in numerical abilities and have been found to have weaker processing of countable magnitudes. However, not much research was done on their abilities to process noncountable magnitudes. An example of noncountable magnitude is conceptual size (e.g., mouse is small and elephant is big). Recently, we found that adults process conceptual size automatically. The current study examined automatic processing of conceptual size in students with DD and developmental dyslexia. Conceptual and physical sizes were manipulated orthogonally to create congruent (e.g., a physically small apple compared to a physically large violin) and incongruent (e.g., a physically large apple compared to a physically small violin) conditions. Participants were presented with 2 objects and had to choose the larger one. Each trial began with an instruction to respond to the physical or to the conceptual dimension. Control and the dyslexic groups presented automatic processing of both conceptual and physical sizes. The dyscalculic group presented automatic processing of physical size but not automaticity of processing conceptual size. Our results fit with previous findings of weaker magnitude representation in those with DD, specifically regarding noncountable magnitudes, and support theories of a shared neurocognitive substrate for different types of magnitudes. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Rapid Generation of Conceptual and Preliminary Design Aerodynamic Data by a Computer Aided Process
2000-06-01
methodologies, oftenpeculiar requirements such as flexibility and robustness of blended with sensible ’guess-estimated’ values. Due to peculiaremequirments...from the ’raw’ appropriate blending interpolation between the given data aerodynamic data is a process which certainly requires yields generally...like component patches are described by defining the evolution of a conic curve between two opposite boundary curves by means of blending functions
Linking microbial community structure and microbial processes: An empirical and conceptual overview
Bier, R.L.; Bernhardt, Emily S.; Boot, Claudia M.; Graham, Emily B.; Hall, Edward K.; Lennon, Jay T.; Nemergut, Diana R.; Osborne, Brooke B.; Ruiz-Gonzalez, Clara; Schimel, Joshua P.; Waldrop, Mark P.; Wallenstein, Matthew D.
2015-01-01
A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.
Designing an over-the-counter consumer decision-making tool for older adults.
Martin-Hammond, Aqueasha M; Abegaz, Tamirat; Gilbert, Juan E
2015-10-01
Older adults are at increased risk of adverse drug events due to medication. Older adults tend to take more medication and are at higher risk of chronic illness. Over-the-counter (OTC) medication does not require healthcare provider oversight and understanding OTC information is heavily dependent on a consumer's ability to understand and use the medication appropriately. Coupling health technology with effective communication is one approach to address the challenge of communicating health and improving health related tasks. However, the success of many health technologies also depends on how well the technology is designed and how well it addresses users needs. This is especially true for the older adult population. This paper describes (1) a formative study performed to understand how to design novel health technology to assist older adults with OTC medication information, and (2) how a user-centered design process helped to refine the initial assumptions of user needs and help to conceptualize the technology. An iterative design process was used. The process included two brainstorming and review sessions with human-computer interaction researchers and design sessions with older adults in the form of semi-structured interviews. Methods and principles of user-centered research and design were used to inform the research design. Two researchers with expertise in human-computer interaction performed expert reviews of early system prototypes. After initial prototypes were developed, seven older adults were engaged in semi-structured interviews to understand usability concerns and features and functionality older adults may find useful for selecting appropriate OTC medication. Eight usability concerns were discovered and addressed in the two rounds of expert review, and nine additional usability concerns were discovered in design sessions with older adults. Five themes emerged from the interview transcripts as recommendations for design. These recommendations represent opportunities for technology such as the one described in this paper to support older adults in the OTC decision-making process. This paper illustrates the use of an iterative user-centered process in the formative stages of design and its usefulness for understanding aspects of the technology design that are useful to older adults when making decisions about OTC medication. The technology support mechanisms included in the initial model were revised based on the results from the iterative design sessions and helped to refine and conceptualize the system being designed. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Wardany, Tahany; Lynch, Mathew; Gu, Wenjiong; Hsu, Arthur; Klecka, Michael; Nardi, Aaron; Viens, Daniel
This paper proposes an optimization framework enabling the integration of multi-scale / multi-physics simulation codes to perform structural optimization design for additively manufactured components. Cold spray was selected as the additive manufacturing (AM) process and its constraints were identified and included in the optimization scheme. The developed framework first utilizes topology optimization to maximize stiffness for conceptual design. The subsequent step applies shape optimization to refine the design for stress-life fatigue. The component weight was reduced by 20% while stresses were reduced by 75% and the rigidity was improved by 37%. The framework and analysis codes were implemented using Altair software as well as an in-house loading code. The optimized design was subsequently produced by the cold spray process.
Energy utilization: municipal waste incineration. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
LaBeck, M.F.
An assessment is made of the technical and economical feasibility of converting municipal waste into useful and useable energy. The concept presented involves retrofitting an existing municipal incinerator with the systems and equipment necessary to produce process steam and electric power. The concept is economically attractive since the cost of necessary waste heat recovery equipment is usually a comparatively small percentage of the cost of the original incinerator installation. Technical data obtained from presently operating incinerators designed specifically for generating energy, documents the technical feasibility and stipulates certain design constraints. The investigation includes a cost summary; description of process andmore » facilities; conceptual design; economic analysis; derivation of costs; itemized estimated costs; design and construction schedule; and some drawings.« less
A Conceptual Model of the Information Requirements of Nursing Organizations
Miller, Emmy
1989-01-01
Three related issues play a role in the identification of the information requirements of nursing organizations. These issues are the current state of computer systems in health care organizations, the lack of a well-defined data set for nursing, and the absence of models representing data and information relevant to clinical and administrative nursing practice. This paper will examine current methods of data collection, processing, and storage in clinical and administrative nursing practice for the purpose of identifying the information requirements of nursing organizations. To satisfy these information requirements, database technology can be used; however, a model for database design is needed that reflects the conceptual framework of nursing and the professional concerns of nurses. A conceptual model of the types of data necessary to produce the desired information will be presented and the relationships among data will be delineated.
Kozlowski, Steve W J; Chao, Georgia T
2018-01-01
Psychologists have studied small-group and team effectiveness for decades, and although there has been considerable progress, there remain significant challenges. Meta-analyses and systematic research have provided solid evidence for core team cognitive, motivational, affective, and behavioral processes that contribute to team effectiveness and empirical support for interventions that enhance team processes (e.g., team design, composition, training, and leadership); there has been substantial evidence for a science of team effectiveness. Nonetheless, there have also been concerns that team processes, which are inherently dynamic, have primarily been assessed as static constructs. Team-level processes and outcomes are multilevel phenomena that emerge, bottom-up from the interactions among team members over time, under the shifting demands of a work context. Thus, theoretical development that appropriately conceptualizes the multiple levels, process dynamics, and emergence of team phenomena over time are essential to advance understanding. Moreover, these conceptual advances necessitate innovative research methodologies to better capture team process dynamics. We explicate this foundation and then describe 2 promising streams of scientific inquiry-team interaction sensors and computational modeling-that are advancing new, unobtrusive measurement techniques and process-oriented research methods focused on understanding the dynamics of cohesion and cognition in teamwork. These are distinct lines of research, each endeavoring to advance the science, but doing so through the development of very different methodologies. We close by discussing the near-term research challenges and the potential long-term evolution of these innovative methods, with an eye toward the future for process-oriented theory and research on team effectiveness. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
How Analysts Cognitively “Connect the Dots”
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradel, Lauren; Self, Jessica S.; Endert, Alexander
2013-06-04
As analysts attempt to make sense of a collection of documents, such as intelligence analysis reports, they may wish to “connect the dots” between pieces of information that may initially seem unrelated. This process of synthesizing information between information requires users to make connections between pairs of documents, creating a conceptual story. We conducted a user study to analyze the process by which users connect pairs of documents and how they spatially arrange information. Users created conceptual stories that connected the dots using organizational strategies that ranged in complexity. We propose taxonomies for cognitive connections and physical structures used whenmore » trying to “connect the dots” between two documents. We compared the user-created stories with a data-mining algorithm that constructs chains of documents using co-occurrence metrics. Using the insight gained into the storytelling process, we offer design considerations for the existing data mining algorithm and corresponding tools to combine the power of data mining and the complex cognitive processing of analysts.« less
Configuration selection for a 450-passenger ultraefficient 2020 aircraft
NASA Astrophysics Data System (ADS)
Paulus, D.; Salmon, T.; Mohr, B.; Roessler, C.; Petersson, Ӧ.; Stroscher, F.; Baier, H.; Hornung, M.
2013-12-01
This paper describes the configuration selection process in the FP7 project ACFA (Active Control for Flexible Aircraft) 2020 in view of the Advisory Council for Aeronautics Research in Europe (ACARE) aims. The design process challenges and the comparison of a blended wing body (BWB) aircraft with a wide body carry-through wing box (CWB) configuration are described in detail. Furthermore, the interactions between the conceptual design and structural design using multidisciplinary design optimization (MDO) to rapidly generate and adapt structural models to design changes and provide early feedback of mass and center of gravity values for these nontraditional configurations are discussed. Comparison of the two concepts determined that the developed all-lifting BWB airframe has the potential for a significant reduced fuel consumption compared to the CWB.
Reeder, Blaine; Hills, Rebecca A.; Turner, Anne M.; Demiris, George
2014-01-01
Objectives The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. Design and Sample We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Measures Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Results Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Conclusion Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. PMID:24117760
NASA Technical Reports Server (NTRS)
1992-01-01
The Space Station Freedom Furnace (SSFF) Study was awarded on June 2, 1989, to Teledyne Brown Engineering (TBE) to define an advanced facility for materials research in the microgravity environment of Space Station Freedom (SSF). The SSFF will be designed for research in the solidification of metals and alloys, the crystal growth of electronic and electro-optical materials, and research in glasses and ceramics. The SSFF is one of the first 'facility' class payloads planned by the Microgravity Science and Applications Division (MSAD) of the Office of Space Science and Applications of NASA Headquarters. This facility is planned for early deployment during man-tended operations of the SSF with continuing operations through the Permanently Manned Configuration (PMC). The SSFF will be built around a general 'Core' facility which provides common support functions not provided by SSF, common subsystems which are best centralized, and common subsystems which are best distributed with each experiment module. The intent of the facility approach is to reduce the overall cost associated with implementing and operating a variety of experiments. This is achieved by reducing the launch mass and simplifying the hardware development and qualification processes associated with each experiment. The Core will remain on orbit and will require only periodic maintenance and upgrading while new Furnace Modules, samples, and consumables are developed, qualified, and transported to the SSF. The SSFF Study was divided into two phases: phase 1, a definition study phase, and phase 2, a design and development phase. The definition phase 1 is addressed. Phase 1 was divided into two parts. In the first part, the basic part of the effort, covered the preliminary definition and assessment of requirements; conceptual design of the SSFF; fabrication of mockups; and the preparation for and support of the Conceptual Design Review (CoDR). The second part, the option part, covered requirements update and documentation; refinement of the selected conceptual design through additional trades and analyses; design, fabrication, and test of the Development Model; and design, fabrication, and test of the Interrack Demonstration Unit; and support of the requirements definition review (RDR). The purpose of part 2 was to prove concept feasibility.
A Conceptual Framework for the Evaluation of Emergency Risk Communications
Lin, Leesa; Gamhewage, Gaya M.
2017-01-01
Objectives. To articulate a conceptual framework in support of evaluation activities in emergency risk communications (ERC). Methods. The framework proposed is based on a systematic review of the scientific literature (2001–2016) combined with data derived from a series of semistructured interviews with experts and practitioners in ERC, and it is designed to support local, national, and international public health organizations in implementing evaluation studies in ERC. Results. We identified a list of ERC outcomes from the full-text review of 152 articles and categorized these into 3 groups, depending upon the level at which the outcome was measured: (1) information environment, (2) population, and (3) public health system. We analyzed interviewees’ data from 18 interviews to identify practices and processes related to the effectiveness of ERC and included these as key structural components and processes in the developed evaluation framework. Conclusions. Researchers and public health practitioners interested in the evaluation of ERC can use the conceptual framework described in this article to guide the development of evaluation studies and methods for assessing communication outcomes related to public health emergencies. PMID:28892436
A Conceptual Framework for the Evaluation of Emergency Risk Communications.
Savoia, Elena; Lin, Leesa; Gamhewage, Gaya M
2017-09-01
To articulate a conceptual framework in support of evaluation activities in emergency risk communications (ERC). The framework proposed is based on a systematic review of the scientific literature (2001-2016) combined with data derived from a series of semistructured interviews with experts and practitioners in ERC, and it is designed to support local, national, and international public health organizations in implementing evaluation studies in ERC. We identified a list of ERC outcomes from the full-text review of 152 articles and categorized these into 3 groups, depending upon the level at which the outcome was measured: (1) information environment, (2) population, and (3) public health system. We analyzed interviewees' data from 18 interviews to identify practices and processes related to the effectiveness of ERC and included these as key structural components and processes in the developed evaluation framework. Researchers and public health practitioners interested in the evaluation of ERC can use the conceptual framework described in this article to guide the development of evaluation studies and methods for assessing communication outcomes related to public health emergencies.
NASA Astrophysics Data System (ADS)
Navarro, Manuel
2014-05-01
This paper presents a model of how children generate concrete concepts from perception through processes of differentiation and integration. The model informs the design of a novel methodology (evolutionary maps or emaps), whose implementation on certain domains unfolds the web of itineraries that children may follow in the construction of concrete conceptual knowledge and pinpoints, for each conception, the architecture of the conceptual change that leads to the scientific concept. Remarkably, the generative character of its syntax yields conceptions that, if unknown, amount to predictions that can be tested experimentally. Its application to the diurnal cycle (including the sun's trajectory in the sky) indicates that the model is correct and the methodology works (in some domains). Specifically, said emap predicts a number of exotic trajectories of the sun in the sky that, in the experimental work, were drawn spontaneously both on paper and a dome. Additionally, the application of the emaps theoretical framework in clinical interviews has provided new insight into other cognitive processes. The field of validity of the methodology and its possible applications to science education are discussed.
Waste Receiving and Processing Facility Module 2A: Advanced Conceptual Design Report. Volume 3A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Objective of this document is to provide descriptions of all WRAP 2A feed streams, including physical and chemical attributes, and describe the pathway that was used to select data for volume estimates. WRAP 2A is being designed for nonthermal treatment of contact-handled mixed low-level waste Category 1 and 3. It is based on immobilization and encapsulation treatment using grout or polymer.
EXPERIMENTAL MOLTEN-SALT-FUELED 30-Mw POWER REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alexander, L.G.; Kinyon, B.W.; Lackey, M.E.
1960-03-24
A preliminary design study was made of an experimental molten-salt- fueled power reactor. The reactor considered is a single-region homogeneous burner coupled with a Loeffler steam-generating cycle. Conceptual plant layouts, basic information on the major fuel circuit components, a process flowsheet, and the nuclear characteristics of the core are presented. The design plant electrical output is 10 Mw, and the total construction cost is estimated to be approximately ,000,000. (auth)
NASA Astrophysics Data System (ADS)
Hassan, Rania A.
In the design of complex large-scale spacecraft systems that involve a large number of components and subsystems, many specialized state-of-the-art design tools are employed to optimize the performance of various subsystems. However, there is no structured system-level concept-architecting process. Currently, spacecraft design is heavily based on the heritage of the industry. Old spacecraft designs are modified to adapt to new mission requirements, and feasible solutions---rather than optimal ones---are often all that is achieved. During the conceptual phase of the design, the choices available to designers are predominantly discrete variables describing major subsystems' technology options and redundancy levels. The complexity of spacecraft configurations makes the number of the system design variables that need to be traded off in an optimization process prohibitive when manual techniques are used. Such a discrete problem is well suited for solution with a Genetic Algorithm, which is a global search technique that performs optimization-like tasks. This research presents a systems engineering framework that places design requirements at the core of the design activities and transforms the design paradigm for spacecraft systems to a top-down approach rather than the current bottom-up approach. To facilitate decision-making in the early phases of the design process, the population-based search nature of the Genetic Algorithm is exploited to provide computationally inexpensive---compared to the state-of-the-practice---tools for both multi-objective design optimization and design optimization under uncertainty. In terms of computational cost, those tools are nearly on the same order of magnitude as that of standard single-objective deterministic Genetic Algorithm. The use of a multi-objective design approach provides system designers with a clear tradeoff optimization surface that allows them to understand the effect of their decisions on all the design objectives under consideration simultaneously. Incorporating uncertainties avoids large safety margins and unnecessary high redundancy levels. The focus on low computational cost for the optimization tools stems from the objective that improving the design of complex systems should not be achieved at the expense of a costly design methodology.
NASA Technical Reports Server (NTRS)
Rogers, James L.; Feyock, Stefan; Sobieszczanski-Sobieski, Jaroslaw
1988-01-01
The purpose of this research effort is to investigate the benefits that might be derived from applying artificial intelligence tools in the area of conceptual design. Therefore, the emphasis is on the artificial intelligence aspects of conceptual design rather than structural and optimization aspects. A prototype knowledge-based system, called STRUTEX, was developed to initially configure a structure to support point loads in two dimensions. This system combines numerical and symbolic processing by the computer with interactive problem solving aided by the vision of the user by integrating a knowledge base interface and inference engine, a data base interface, and graphics while keeping the knowledge base and data base files separate. The system writes a file which can be input into a structural synthesis system, which combines structural analysis and optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-04-01
The AGRI GRAIN POWER (AGP) Project, hereafter referred to as the Project, was formed to evaluate the commercial viability and assess the desireability of implementing a large grain based grass-roots anhydrous ethanol fuel project to be sited near Des Moines, Iowa. This report presents the results of a Project feasibility evaluation. The Project concept is based on involving a very strong managerial, financial and technical joint venture that is extremely expert in all facets of planning and implementing a large ethanol project; on locating the ethanol project at a highly desireable site; on utilizing a proven ethanol process; and onmore » developing a Project that is well suited to market requirements, resource availability and competitive factors. The Project conceptual design is presented in this volume.« less
The report discusses results of a conceptual design, cost, and evaluation study of energy recovery from landfill gas using a commercial phosphoric acid fuel cell power plant. The conceptual design of the fuel cell energy recovery system is described, and its economic and environm...
Conceptual design of a laser fusion power plant. Part I. An integrated facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This study is a new preliminary conceptual design and economic analysis of an inertial confinement fusion (ICF) power plant performed by Bechtel under the direction of Lawrence Livermore National Laboratory (LLNL). The purpose of a new conceptual design is to examine alternatives to the LLNL HYLIFE power plant and to incorporate information from the recent liquid metal cooled power plant conceptual design study (CDS) into the reactor system and balance of plant design. A key issue in the design of a laser fusion power plant is the degree of symmetry in the illumination of the target that will be requiredmore » for a proper burn. Because this matter is expected to remain unresolved for some time, another purpose of this study is to determine the effect of symmetry requirements on the total plant size, layout, and cost.« less
Cost-Driven Design of a Large Scale X-Plane
NASA Technical Reports Server (NTRS)
Welstead, Jason R.; Frederic, Peter C.; Frederick, Michael A.; Jacobson, Steven R.; Berton, Jeffrey J.
2017-01-01
A conceptual design process focused on the development of a low-cost, large scale X-plane was developed as part of an internal research and development effort. One of the concepts considered for this process was the double-bubble configuration recently developed as an advanced single-aisle class commercial transport similar in size to a Boeing 737-800 or Airbus A320. The study objective was to reduce the contractor cost from contract award to first test flight to less than $100 million, and having the first flight within three years of contract award. Methods and strategies for reduced cost are discussed.
Reeder, Blaine; Hills, Rebecca A; Turner, Anne M; Demiris, George
2014-01-01
The objectives of the study were to use persona-driven and scenario-based design methods to create a conceptual information system design to support public health nursing. We enrolled 19 participants from two local health departments to conduct an information needs assessment, create a conceptual design, and conduct a preliminary design validation. Interviews and thematic analysis were used to characterize information needs and solicit design recommendations from participants. Personas were constructed from participant background information, and scenario-based design was used to create a conceptual information system design. Two focus groups were conducted as a first iteration validation of information needs, personas, and scenarios. Eighty-nine information needs were identified. Two personas and 89 scenarios were created. Public health nurses and nurse managers confirmed the accuracy of information needs, personas, scenarios, and the perceived usefulness of proposed features of the conceptual design. Design artifacts were modified based on focus group results. Persona-driven design and scenario-based design are feasible methods to design for common work activities in different local health departments. Public health nurses and nurse managers should be engaged in the design of systems that support their work. © 2013 Wiley Periodicals, Inc.
Interplay Between the Object and Its Symbol: The Size-Congruency Effect
Shen, Manqiong; Xie, Jiushu; Liu, Wenjuan; Lin, Wenjie; Chen, Zhuoming; Marmolejo-Ramos, Fernando; Wang, Ruiming
2016-01-01
Grounded cognition suggests that conceptual processing shares cognitive resources with perceptual processing. Hence, conceptual processing should be affected by perceptual processing, and vice versa. The current study explored the relationship between conceptual and perceptual processing of size. Within a pair of words, we manipulated the font size of each word, which was either congruent or incongruent with the actual size of the referred object. In Experiment 1a, participants compared object sizes that were referred to by word pairs. Higher accuracy was observed in the congruent condition (e.g., word pairs referring to larger objects in larger font sizes) than in the incongruent condition. This is known as the size-congruency effect. In Experiments 1b and 2, participants compared the font sizes of these word pairs. The size-congruency effect was not observed. In Experiments 3a and 3b, participants compared object and font sizes of word pairs depending on a task cue. Results showed that perceptual processing affected conceptual processing, and vice versa. This suggested that the association between conceptual and perceptual processes may be bidirectional but further modulated by semantic processing. Specifically, conceptual processing might only affect perceptual processing when semantic information is activated. The current study PMID:27512529
Mechanical Design of a Performance Test Rig for the Turbine Air-Flow Task (TAFT)
NASA Technical Reports Server (NTRS)
Xenofos, George; Forbes, John; Farrow, John; Williams, Robert; Tyler, Tom; Sargent, Scott; Moharos, Jozsef
2003-01-01
To support development of the Boeing-Rocketdyne RS84 rocket engine, a fill-flow, reaction turbine geometry was integrated into the NASA-MSFC turbine air-flow test facility. A mechanical design was generated which minimized the amount of new hardware while incorporating all test and instrUmentation requirements. This paper provides details of the mechanical design for this Turbine Air-Flow Task (TAFT) test rig. The mechanical design process utilized for this task included the following basic stages: Conceptual Design. Preliminary Design. Detailed Design. Baseline of Design (including Configuration Control and Drawing Revision). Fabrication. Assembly. During the design process, many lessons were learned that should benefit future test rig design projects. Of primary importance are well-defined requirements early in the design process, a thorough detailed design package, and effective communication with both the customer and the fabrication contractors. The test rig provided steady and unsteady pressure data necessary to validate the computational fluid dynamics (CFD) code. The rig also helped characterize the turbine blade loading conditions. Test and CFD analysis results are to be presented in another JANNAF paper.
Jull, J; Whitehead, M; Petticrew, M; Kristjansson, E; Gough, D; Petkovic, J; Volmink, J; Weijer, C; Taljaard, M; Edwards, S; Mbuagbaw, L; Cookson, R; McGowan, J; Lyddiatt, A; Boyer, Y; Cuervo, L G; Armstrong, R; White, H; Yoganathan, M; Pantoja, T; Shea, B; Pottie, K; Norheim, O; Baird, S; Robberstad, B; Sommerfelt, H; Asada, Y; Wells, G; Tugwell, P; Welch, V
2017-01-01
Background Randomised controlled trials can provide evidence relevant to assessing the equity impact of an intervention, but such information is often poorly reported. We describe a conceptual framework to identify health equity-relevant randomised trials with the aim of improving the design and reporting of such trials. Methods An interdisciplinary and international research team engaged in an iterative consensus building process to develop and refine the conceptual framework via face-to-face meetings, teleconferences and email correspondence, including findings from a validation exercise whereby two independent reviewers used the emerging framework to classify a sample of randomised trials. Results A randomised trial can usefully be classified as ‘health equity relevant’ if it assesses the effects of an intervention on the health or its determinants of either individuals or a population who experience ill health due to disadvantage defined across one or more social determinants of health. Health equity-relevant randomised trials can either exclusively focus on a single population or collect data potentially useful for assessing differential effects of the intervention across multiple populations experiencing different levels or types of social disadvantage. Trials that are not classified as ‘health equity relevant’ may nevertheless provide information that is indirectly relevant to assessing equity impact, including information about individual level variation unrelated to social disadvantage and potentially useful in secondary modelling studies. Conclusion The conceptual framework may be used to design and report randomised trials. The framework could also be used for other study designs to contribute to the evidence base for improved health equity. PMID:28951402
Theory and Practice Meets in Industrial Process Design -Educational Perspective-
NASA Astrophysics Data System (ADS)
Aramo-Immonen, Heli; Toikka, Tarja
Software engineer should see himself as a business process designer in enterprise resource planning system (ERP) re-engineering project. Software engineers and managers should have design dialogue. The objective of this paper is to discuss the motives to study the design research in connection of management education in order to envision and understand the soft human issues in the management context. Second goal is to develop means of practicing social skills between designers and managers. This article explores the affective components of design thinking in industrial management domain. In the conceptual part of this paper are discussed concepts of network and project economy, creativity, communication, use of metaphors, and design thinking. Finally is introduced empirical research plan and first empirical results from design method experiments among the multi-disciplined groups of the master-level students of industrial engineering and management and software engineering.
Loads specification and embedded plate definition for the ITER cryoline system
NASA Astrophysics Data System (ADS)
Badgujar, S.; Benkheira, L.; Chalifour, M.; Forgeas, A.; Shah, N.; Vaghela, H.; Sarkar, B.
2015-12-01
ITER cryolines (CLs) are complex network of vacuum-insulated multi and single process pipe lines, distributed in three different areas at ITER site. The CLs will support different operating loads during the machine life-time; either considered as nominal, occasional or exceptional. The major loads, which form the design basis are inertial, pressure, temperature, assembly, magnetic, snow, wind, enforced relative displacement and are put together in loads specification. Based on the defined load combinations, conceptual estimation of reaction loads have been carried out for the lines located inside the Tokamak building. Adequate numbers of embedded plates (EPs) per line have been defined and integrated in the building design. The finalization of building EPs to support the lines, before the detailed design, is one of the major design challenges as the usual logic of the design may alter. At the ITER project level, it was important to finalize EPs to allow adequate design and timely availability of the Tokamak building. The paper describes the single loads, load combinations considered in load specification and the approach for conceptual load estimation and selection of EPs for Toroidal Field (TF) Cryoline as an example by converting the load combinations in two main load categories; pressure and seismic.
Mawocha, Samkeliso C; Fetters, Michael D; Legocki, Laurie J; Guetterman, Timothy C; Frederiksen, Shirley; Barsan, William G; Lewis, Roger J; Berry, Donald A; Meurer, William J
2017-06-01
Adaptive clinical trials use accumulating data from enrolled subjects to alter trial conduct in pre-specified ways based on quantitative decision rules. In this research, we sought to characterize the perspectives of key stakeholders during the development process of confirmatory-phase adaptive clinical trials within an emergency clinical trials network and to build a model to guide future development of adaptive clinical trials. We used an ethnographic, qualitative approach to evaluate key stakeholders' views about the adaptive clinical trial development process. Stakeholders participated in a series of multidisciplinary meetings during the development of five adaptive clinical trials and completed a Strengths-Weaknesses-Opportunities-Threats questionnaire. In the analysis, we elucidated overarching themes across the stakeholders' responses to develop a conceptual model. Four major overarching themes emerged during the analysis of stakeholders' responses to questioning: the perceived statistical complexity of adaptive clinical trials and the roles of collaboration, communication, and time during the development process. Frequent and open communication and collaboration were viewed by stakeholders as critical during the development process, as were the careful management of time and logistical issues related to the complexity of planning adaptive clinical trials. The Adaptive Design Development Model illustrates how statistical complexity, time, communication, and collaboration are moderating factors in the adaptive design development process. The intensity and iterative nature of this process underscores the need for funding mechanisms for the development of novel trial proposals in academic settings.
Design Studios in Instructional Design and Technology: What Are the Possibilities?
ERIC Educational Resources Information Center
Knowlton, Dave S.
2016-01-01
Design studios are an innovative way to educate Instructional Design and Technology (IDT) students. This article begins by addressing literature about IDT design studios. One conclusion from this literature is that IDT studios have been theoretically conceptualized. However, much of this conceptualization is insular to the field of IDT and only…
The ACTIVE conceptual framework as a structural equation model.
Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N
2018-01-01
Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show intervention effects on cognitive performance potentially may be different from those with the greatest chance of transfer to real-world activities.
AI applications to conceptual aircraft design
NASA Technical Reports Server (NTRS)
Chalfan, Kathryn M.
1990-01-01
This paper presents in viewgraph form several applications of artificial intelligence (AI) to the conceptual design of aircraft, including: an access manager for automated data management, AI techniques applied to optimization, and virtual reality for scientific visualization of the design prototype.
Geometric modeling for computer aided design
NASA Technical Reports Server (NTRS)
Schwing, James L.
1992-01-01
The goal was the design and implementation of software to be used in the conceptual design of aerospace vehicles. Several packages and design studies were completed, including two software tools currently used in the conceptual level design of aerospace vehicles. These tools are the Solid Modeling Aerospace Research Tool (SMART) and the Environment for Software Integration and Execution (EASIE). SMART provides conceptual designers with a rapid prototyping capability and additionally provides initial mass property analysis. EASIE provides a set of interactive utilities that simplify the task of building and executing computer aided design systems consisting of diverse, stand alone analysis codes that result in the streamlining of the exchange of data between programs, reducing errors and improving efficiency.
NASA Astrophysics Data System (ADS)
Norimatsu, T.; Kozaki, Y.; Shiraga, H.; Fujita, H.; Okano, K.; Members of LIFT Design Team
2017-11-01
We present the conceptual design of an experimental laser fusion plant known as the laser inertial fusion test (LIFT) reactor. The conceptual design aims at technically connecting a single-shot experiment and a commercial power plant. The LIFT reactor is designed on a three-phase scheme, where each phase has specific goals and the dedicated chambers of each phase are driven by the same laser. Technical issues related to the chamber technology including radiation safety to repeat burst mode operation are discussed in this paper.
MCD Process Model: A Systematic Approach to Curriculum Development in Black Studies.
ERIC Educational Resources Information Center
Miller, Howard J.
1986-01-01
Holds that Black Studies programs have had problems surviving because of (1) resistance to curriculum change in colleges and universities, (2) their lack of supporters in positions of administrative power, and (3) lack of an organized, conceptual approach to developing and implementing a Black Studies curriculum. Presents a model designed to…
ERIC Educational Resources Information Center
Kaiser, David Brian; Köhler, Thomas; Weith, Thomas
2016-01-01
This article aims to sketch a conceptual design for an information and knowledge management system in sustainability research projects. The suitable frameworks to implement knowledge transfer models constitute social communities, because the mutual exchange and learning processes among all stakeholders promote key sustainable developments through…
Reflections on Designing a MPA Service-Learning Component: Lessons Learned
ERIC Educational Resources Information Center
Roman, Alexandru V.
2015-01-01
This article provides the "lessons learned" from the experience of redesigning two sections (face-to-face and online) of a core master of public administration class as a service-learning course. The suggestions made here can be traced to the entire process of the project, from the "seed idea" through its conceptualization and…
Elementary School Consolidation and Reconfiguration: An Autoethnographic Case Study
ERIC Educational Resources Information Center
Winer, Ellen J.
2010-01-01
This qualitative study was designed to examine the processes and practices that occurred before, during and after consolidation of the four elementary schools in the Great Local School district with the goal of developing a conceptual framework to be utilized by school districts that plan on implementing a school consolidation or reconfiguration.…
Cost estimating methods for advanced space systems
NASA Technical Reports Server (NTRS)
Cyr, Kelley
1988-01-01
The development of parametric cost estimating methods for advanced space systems in the conceptual design phase is discussed. The process of identifying variables which drive cost and the relationship between weight and cost are discussed. A theoretical model of cost is developed and tested using a historical data base of research and development projects.
Speed Bumps: A Student-Friendly Guide to Qualitative Research.
ERIC Educational Resources Information Center
Weis, Lois; Fine, Michelle
This book is designed to help undergraduate and graduate students begin a discussion about the technicalities, politics, and ethics surrounding qualitative research, focusing on research in the interest of social justice. It offers a view of how two researchers have conceptualized their own research process and renders problematic many of the…
Theorising and Practitioners in HRD: The Role of Abductive Reasoning
ERIC Educational Resources Information Center
Gold, Jeff; Walton, John; Cureton, Peter; Anderson, Lisa
2011-01-01
Purpose: The purpose of this paper is to argue that abductive reasoning is a typical but usually unrecognised process used by HRD scholars and practitioners alike. Design/methodology/approach: This is a conceptual paper that explores recent criticism of traditional views of theory-building, based on the privileging of scientific theorising, which…
Developing a Multi-Year Learning Progression for Carbon Cycling in Socio-Ecological Systems
ERIC Educational Resources Information Center
Mohan, Lindsey; Chen, Jing; Anderson, Charles W.
2009-01-01
This study reports on our steps toward achieving a conceptually coherent and empirically validated learning progression for carbon cycling in socio-ecological systems. It describes an iterative process of designing and analyzing assessment and interview data from students in upper elementary through high school. The product of our development…
Analytic Networks in Music Task Definition.
ERIC Educational Resources Information Center
Piper, Richard M.
For a student to acquire the conceptual systems of a discipline, the designer must reflect that structure or analytic network in his curriculum. The four networks identified for music and used in the development of the Southwest Regional Laboratory (SWRL) Music Program are the variable-value, the whole-part, the process-stage, and the class-member…
ERIC Educational Resources Information Center
Hammer, Leslie B.; Kossek, Ellen Ernst; Anger, W. Kent; Bodner, Todd; Zimmerman, Kristi L.
2011-01-01
Drawing on a conceptual model integrating research on training, work-family interventions, and social support, we conducted a quasi-experimental field study to assess the impact of a supervisor training and self-monitoring intervention designed to increase supervisors' use of family-supportive supervisor behaviors. Pre- and postintervention…
ERIC Educational Resources Information Center
Gaffney, Janet S.; Paynter, Susan Y.
A literacy intervention is designed to produce accelerated change, moving student achievement rapidly and providing for sustained performance over time. Adopting a complex intervention is a problem-solving process that requires understanding of the conceptual congruity of all aspects of the theory, intervention, and training underlying the…
Driving Objectives and High-level Requirements for KP-Lab Technologies
ERIC Educational Resources Information Center
Lakkala, Minna; Paavola, Sami; Toikka, Seppo; Bauters, Merja; Markannen, Hannu; de Groot, Reuma; Ben Ami, Zvi; Baurens, Benoit; Jadin, Tanja; Richter, Christoph; Zoserl, Eva; Batatia, Hadj; Paralic, Jan; Babic, Frantisek; Damsa, Crina; Sins, Patrick; Moen, Anne; Norenes, Svein Olav; Bugnon, Alexandra; Karlgren, Klas; Kotzinons, Dimitris
2008-01-01
One of the central goals of the KP-Lab project is to co-design pedagogical methods and technologies for knowledge creation and practice transformation in an integrative and reciprocal manner. In order to facilitate this process user tasks, driving objectives and high-level requirements have been introduced as conceptual tools to mediate between…
Automated Generation of Finite-Element Meshes for Aircraft Conceptual Design
NASA Technical Reports Server (NTRS)
Li, Wu; Robinson, Jay
2016-01-01
This paper presents a novel approach for automated generation of fully connected finite-element meshes for all internal structural components and skins of a given wing-body geometry model, controlled by a few conceptual-level structural layout parameters. Internal structural components include spars, ribs, frames, and bulkheads. Structural layout parameters include spar/rib locations in wing chordwise/spanwise direction and frame/bulkhead locations in longitudinal direction. A simple shell thickness optimization problem with two load conditions is used to verify versatility and robustness of the automated meshing process. The automation process is implemented in ModelCenter starting from an OpenVSP geometry and ending with a NASTRAN 200 solution. One subsonic configuration and one supersonic configuration are used for numerical verification. Two different structural layouts are constructed for each configuration and five finite-element meshes of different sizes are generated for each layout. The paper includes various comparisons of solutions of 20 thickness optimization problems, as well as discussions on how the optimal solutions are affected by the stress constraint bound and the initial guess of design variables.
Retrofitting activated sludge systems to intermittent aeration for nitrogen removal.
Hanhan, O; Artan, N; Orhon, D
2002-01-01
The paper provides the basis and the conceptual approach of applying process kinetics and modelling to the design of alternating activated sludge systems for retrofitting existing activated sludge plants to intermittent aeration for nitrogen removal. It shows the significant role of the two specific parameters, namely, the aerated fraction and the cycle time ratio on process performance through model simulations and proposes a way to incorporate them into a design procedure using process stoichiometry and mass balance. It illustrates the effect of these parameters, together with the sludge age, in establishing the balance between the denitrification potential and the available nitrogen created in the anoxic/aerobic sequences of system operation.
Status of the ITER Cryodistribution
NASA Astrophysics Data System (ADS)
Chang, H.-S.; Vaghela, H.; Patel, P.; Rizzato, A.; Cursan, M.; Henry, D.; Forgeas, A.; Grillot, D.; Sarkar, B.; Muralidhara, S.; Das, J.; Shukla, V.; Adler, E.
2017-12-01
Since the conceptual design of the ITER Cryodistribution many modifications have been applied due to both system optimization and improved knowledge of the clients’ requirements. Process optimizations in the Cryoplant resulted in component simplifications whereas increased heat load in some of the superconducting magnet systems required more complicated process configuration but also the removal of a cold box was possible due to component arrangement standardization. Another cold box, planned for redundancy, has been removed due to the Tokamak in-Cryostat piping layout modification. In this proceeding we will summarize the present design status and component configuration of the ITER Cryodistribution with all changes implemented which aim at process optimization and simplification as well as operational reliability, stability and flexibility.
NASA Technical Reports Server (NTRS)
Sager, R. E.; Cox, D. W.
1983-01-01
Various conceptual designs for the secondary mirror actuator system to be used in the Shuttle Infrared Telescope Facility (SIRTF) were evaluated. In addition, a set of design concepts was developed to assist in the solution of problems crucial for optimum performance of the secondary mirror actuator system. A specific conceptual approach was presented along with a plan for developing that approach and identifying issues of critical importance in the developmental effort.
Conceptual design studies of 1985 commercial VTOL transports that utilized rotors, Volume 2
NASA Technical Reports Server (NTRS)
Magee, J. P.; Clark, R.; Alexander, H. R.
1974-01-01
Results of conceptual design studies of tilt rotor and tandem helicopter aircraft for a 200 nautical mile commercial short haul transport mission are presented. The trade study data used in selecting the design point aircraft and technology details necessary to support the design conclusions are included.
Design Features in Games for Health: Disciplinary and Interdisciplinary Expert Perspectives.
Kelley, Christina; Wilcox, Lauren; Ng, Wendy; Schiffer, Jade; Hammer, Jessica
2017-06-01
Games for health (G4H) aim to improve health outcomes and encourage behavior change. While existing theoretical frameworks describe features of both games and health interventions, there has been limited systematic investigation into how disciplinary and interdisciplinary stakeholders understand design features in G4H. We recruited 18 experts from the fields of game design, behavioral health, and games for health, and prompted them with 16 sample games. Applying methods including open card sorting and triading, we elicited themes and features (e.g., real-world interaction, game mechanics) around G4H. We found evidence of conceptual differences suggesting that a G4H perspective is not simply the sum of game and health perspectives. At the same time, we found evidence of convergence in stakeholder views, including areas where game experts provided insights about health and vice versa. We discuss how this work can be applied to provide conceptual tools, improve the G4H design process, and guide approaches to encoding G4H-related data for large-scale empirical analysis.
Design Features in Games for Health: Disciplinary and Interdisciplinary Expert Perspectives
Kelley, Christina; Wilcox, Lauren; Ng, Wendy; Schiffer, Jade; Hammer, Jessica
2017-01-01
Games for health (G4H) aim to improve health outcomes and encourage behavior change. While existing theoretical frameworks describe features of both games and health interventions, there has been limited systematic investigation into how disciplinary and interdisciplinary stakeholders understand design features in G4H. We recruited 18 experts from the fields of game design, behavioral health, and games for health, and prompted them with 16 sample games. Applying methods including open card sorting and triading, we elicited themes and features (e.g., real-world interaction, game mechanics) around G4H. We found evidence of conceptual differences suggesting that a G4H perspective is not simply the sum of game and health perspectives. At the same time, we found evidence of convergence in stakeholder views, including areas where game experts provided insights about health and vice versa. We discuss how this work can be applied to provide conceptual tools, improve the G4H design process, and guide approaches to encoding G4H–related data for large-scale empirical analysis. PMID:28868523
Design of Composite Structures Using Knowledge-Based and Case Based Reasoning
NASA Technical Reports Server (NTRS)
Lambright, Jonathan Paul
1996-01-01
A method of using knowledge based and case based reasoning to assist designers during conceptual design tasks of composite structures was proposed. The cooperative use of heuristics, procedural knowledge, and previous similar design cases suggests a potential reduction in design cycle time and ultimately product lead time. The hypothesis of this work is that the design process of composite structures can be improved by using Case-Based Reasoning (CBR) and Knowledge-Based (KB) reasoning in the early design stages. The technique of using knowledge-based and case-based reasoning facilitates the gathering of disparate information into one location that is easily and readily available. The method suggests that the inclusion of downstream life-cycle issues into the conceptual design phase reduces potential of defective, and sub-optimal composite structures. Three industry experts were interviewed extensively. The experts provided design rules, previous design cases, and test problems. A Knowledge Based Reasoning system was developed using the CLIPS (C Language Interpretive Procedural System) environment and a Case Based Reasoning System was developed using the Design Memory Utility For Sharing Experiences (MUSE) xviii environment. A Design Characteristic State (DCS) was used to document the design specifications, constraints, and problem areas using attribute-value pair relationships. The DCS provided consistent design information between the knowledge base and case base. Results indicated that the use of knowledge based and case based reasoning provided a robust design environment for composite structures. The knowledge base provided design guidance from well defined rules and procedural knowledge. The case base provided suggestions on design and manufacturing techniques based on previous similar designs and warnings of potential problems and pitfalls. The case base complemented the knowledge base and extended the problem solving capability beyond the existence of limited well defined rules. The findings indicated that the technique is most effective when used as a design aid and not as a tool to totally automate the composites design process. Other areas of application and implications for future research are discussed.
Perceptual and conceptual information processing in schizophrenia and depression.
Dreben, E K; Fryer, J H; McNair, D M
1995-04-01
Schizophrenic patients (n = 20), depressive patients (n = 20), and normal adults (n = 20) were compared on global vs local analyses of perceptual information using tachistoscopic tasks and on top-down vs bottom-up conceptual processing using card-sort tasks. The schizophrenic group performed more poorly on tasks requiring either global analyses (counting lines when distracting circles were present) or top-down conceptual processing (rule learning) than they did on tasks requiring local analyses (counting heterogeneous lines) or bottom-up processing (attribute identification). The schizophrenic group appeared not to use conceptually guided processing. Normal adults showed the reverse pattern. The depressive group performed similarly to the schizophrenic group on perceptual tasks but closer to the normal group on conceptual tasks, thereby appearing to be less dependent on a particular information-processing strategy. These deficits in organizational strategy may be related to the use of available processing resources as well as the allocation of attention.
Modular biowaste monitoring system conceptual design
NASA Technical Reports Server (NTRS)
Fogal, G. L.
1974-01-01
The objective of the study was to define requirements and generate a conceptual design for a Modular Biowaste Monitoring System for specifically supporting shuttle life science experimental and diagnostic programs.
Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model
ERIC Educational Resources Information Center
Berman, Jeanette; Smyth, Robyn
2015-01-01
This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…
The magic words: Using computers to uncover mental associations for use in magic trick design.
Williams, Howard; McOwan, Peter W
2017-01-01
The use of computational systems to aid in the design of magic tricks has been previously explored. Here further steps are taken in this direction, introducing the use of computer technology as a natural language data sourcing and processing tool for magic trick design purposes. Crowd sourcing of psychological concepts is investigated; further, the role of human associative memory and its exploitation in magical effects is explored. A new trick is developed and evaluated: a physical card trick partially designed by a computational system configured to search for and explore conceptual spaces readily understood by spectators.
Conceptual design of a Mars transportation system
NASA Astrophysics Data System (ADS)
1992-08-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
Conceptual design of a Mars transportation system
NASA Technical Reports Server (NTRS)
1992-01-01
In conjunction with NASA Marshall Space Flight Center and several major aerospace corporations the University of Minnesota has developed a scenario to place humans on Mars by the year 2016. The project took the form of a year-long design course in the senior design curricula at the University's Aerospace Engineering and Mechanics Department. Students worked with the instructor, teaching assistants and engineers in industry to develop a vehicle and the associated mission profile to fulfill the requirements of the Mars Transportation System. This report is a summary of the final design and the process though which the final product was developed.
CO2 laser ranging systems study
NASA Technical Reports Server (NTRS)
Filippi, C. A.
1975-01-01
The conceptual design and error performance of a CO2 laser ranging system are analyzed. Ranging signal and subsystem processing alternatives are identified, and their comprehensive evaluation yields preferred candidate solutions which are analyzed to derive range and range rate error contributions. The performance results are presented in the form of extensive tables and figures which identify the ranging accuracy compromises as a function of the key system design parameters and subsystem performance indexes. The ranging errors obtained are noted to be within the high accuracy requirements of existing NASA/GSFC missions with a proper system design.
Assessment of a Hospital Palliative Care Unit (HPCU) for Cancer Patients; A Conceptual Framework.
Rouhollahi, Mohammad Reza; Saghafinia, Masoud; Zandehdel, Kazem; Motlagh, Ali Ghanbari; Kazemian, Ali; Mohagheghi, Mohammad Ali; Tahmasebi, Mamak
2015-01-01
The first hospital palliative care unit (HPCU) in Iran (FARS-HPCU) has been established in 2008 in the Cancer Institute, which is the largest referral cancer center in the country. We attempted to assess the performance of the HPCU based on a comprehensive conceptual framework. The main aim of this study was to develop a conceptual framework for assessment of the HPCU performances through designing a value chain in line with the goals and the main processes (core and support). We collected data from a variety of sources, including international guidelines, international best practices, and expert opinions in the country and compared them with national policies and priorities. We also took into consideration the trend of the HPCU development in the Cancer Institute of Iran. Through benchmarking the gap area with the performance standards, some recommendations for better outcome are proposed. The framework for performance assessment consisted of 154 process indicators (PIs), based on which the main stakeholders of the HPCU (including staff, patients, and families) offered their scoring. The outcome revealed the state of the processes as well as the gaps. Despite a significant improvement in many processes and indicators, more development in the comprehensive and integrative aspects of FARS-HPCU performance is required. Consideration of all supportive and palliative requirements of the patients through interdisciplinary and collaborative approaches is recommended.
A conceptual framework for intelligent real-time information processing
NASA Technical Reports Server (NTRS)
Schudy, Robert
1987-01-01
By combining artificial intelligence concepts with the human information processing model of Rasmussen, a conceptual framework was developed for real time artificial intelligence systems which provides a foundation for system organization, control and validation. The approach is based on the description of system processing terms of an abstraction hierarchy of states of knowledge. The states of knowledge are organized along one dimension which corresponds to the extent to which the concepts are expressed in terms of the system inouts or in terms of the system response. Thus organized, the useful states form a generally triangular shape with the sensors and effectors forming the lower two vertices and the full evaluated set of courses of action the apex. Within the triangle boundaries are numerous processing paths which shortcut the detailed processing, by connecting incomplete levels of analysis to partially defined responses. Shortcuts at different levels of abstraction include reflexes, sensory motor control, rule based behavior, and satisficing. This approach was used in the design of a real time tactical decision aiding system, and in defining an intelligent aiding system for transport pilots.
Block 2 Solid Rocket Motor (SRM) conceptual design study, volume 1
NASA Technical Reports Server (NTRS)
1986-01-01
Segmented and monolithic Solid Rocket Motor (SRM) design concepts were evaluated with emphasis on joints and seals. Particular attention was directed to eliminating deficiencies in the SRM High Performance Motor (HPM). The selected conceptual design is described and discussed.
Conceptual Design of a Two Spool Compressor for the NASA Large Civil Tilt Rotor Engine
NASA Technical Reports Server (NTRS)
Veres, Joseph P.; Thurman, Douglas R.
2010-01-01
This paper focuses on the conceptual design of a two spool compressor for the NASA Large Civil Tilt Rotor engine, which has a design-point pressure ratio goal of 30:1 and an inlet weight flow of 30.0 lbm/sec. The compressor notional design requirements of pressure ratio and low-pressure compressor (LPC) and high pressure ratio compressor (HPC) work split were based on a previous engine system study to meet the mission requirements of the NASA Subsonic Rotary Wing Projects Large Civil Tilt Rotor vehicle concept. Three mean line compressor design and flow analysis codes were utilized for the conceptual design of a two-spool compressor configuration. This study assesses the technical challenges of design for various compressor configuration options to meet the given engine cycle results. In the process of sizing, the technical challenges of the compressor became apparent as the aerodynamics were taken into consideration. Mechanical constraints were considered in the study such as maximum rotor tip speeds and conceptual sizing of rotor disks and shafts. The rotor clearance-to-span ratio in the last stage of the LPC is 1.5% and in the last stage of the HPC is 2.8%. Four different configurations to meet the HPC requirements were studied, ranging from a single stage centrifugal, two axi-centrifugals, and all axial stages. Challenges of the HPC design include the high temperature (1,560deg R) at the exit which could limit the maximum allowable peripheral tip speed for centrifugals, and is dependent on material selection. The mean line design also resulted in the definition of the flow path geometry of the axial and centrifugal compressor stages, rotor and stator vane angles, velocity components, and flow conditions at the leading and trailing edges of each blade row at the hub, mean and tip. A mean line compressor analysis code was used to estimate the compressor performance maps at off-design speeds and to determine the required variable geometry reset schedules of the inlet guide vane and variable stators that would result in the transonic stages being aerodynamically matched with high efficiency and acceptable stall margins based on user specified maximum levels of rotor diffusion factor and relative velocity ratio.
The Role of Right and Left Parietal Lobes in the Conceptual Processing of Numbers
ERIC Educational Resources Information Center
Cappelletti, Marinella; Lee, Hwee Ling; Freeman, Elliot D.; Price, Cathy J.
2010-01-01
Neuropsychological and functional imaging studies have associated the conceptual processing of numbers with bilateral parietal regions (including intraparietal sulcus). However, the processes driving these effects remain unclear because both left and right posterior parietal regions are activated by many other conceptual, perceptual, attention,…
Shuttle/tethered satellite system conceptual design study
NASA Technical Reports Server (NTRS)
1976-01-01
A closed-loop control system was added to the tether reel which improves control over the tethered satellite. In addition to increasing the stability of the tethered satellite along local vertical, this control system is used for deployment and retrieval of tethered satellites. This conceptual design study describes a tether system for suspending a science payload at an altitude of 120 km from space shuttle orbiter flying at an altitude of 200 km. In addition to the hardware conceptual designs, various aspects concerning Orbiter accommodations are discussed.
Engineering design: A cognitive process approach
NASA Astrophysics Data System (ADS)
Strimel, Greg Joseph
The intent of this dissertation was to identify the cognitive processes used by advanced pre-engineering students to solve complex engineering design problems. Students in technology and engineering education classrooms are often taught to use an ideal engineering design process that has been generated mostly by educators and curriculum developers. However, the review of literature showed that it is unclear as to how advanced pre-engineering students cognitively navigate solving a complex and multifaceted problem from beginning to end. Additionally, it was unclear how a student thinks and acts throughout their design process and how this affects the viability of their solution. Therefore, Research Objective 1 was to identify the fundamental cognitive processes students use to design, construct, and evaluate operational solutions to engineering design problems. Research Objective 2 was to determine identifiers within student cognitive processes for monitoring aptitude to successfully design, construct, and evaluate technological solutions. Lastly, Research Objective 3 was to create a conceptual technological and engineering problem-solving model integrating student cognitive processes for the improved development of problem-solving abilities. The methodology of this study included multiple forms of data collection. The participants were first given a survey to determine their prior experience with engineering and to provide a description of the subjects being studied. The participants were then presented an engineering design challenge to solve individually. While they completed the challenge, the participants verbalized their thoughts using an established "think aloud" method. These verbalizations were captured along with participant observational recordings using point-of-view camera technology. Additionally, the participant design journals, design artifacts, solution effectiveness data, and teacher evaluations were collected for analysis to help achieve the research objectives of this study. Two independent coders then coded the video/audio recordings and the additional design data using Halfin's (1973) 17 mental processes for technological problem-solving. The results of this study indicated that the participants employed a wide array of mental processes when solving engineering design challenges. However, the findings provide a general analysis of the number of times participants employed each mental process, as well as the amount of time consumed employing the various mental processes through the different stages of the engineering design process. The results indicated many similarities between the students solving the problem, which may highlight voids in current technology and engineering education curricula. Additionally, the findings showed differences between the processes employed by participants that created the most successful solutions and the participants who developed the least effective solutions. Upon comparing and contrasting these processes, recommendations for instructional strategies to enhance a student's capability for solving engineering design problems were developed. The results also indicated that students, when left without teacher intervention, use a simplified and more natural process to solve design challenges than the 12-step engineering design process reported in much of the literature. Lastly, these data indicated that students followed two different approaches to solving the design problem. Some students employed a sequential and logical approach, while others employed a nebulous, solution centered trial-and-error approach to solving the problem. In this study the participants who were more sequential had better performing solutions. Examining these two approaches and the student cognition data enabled the researcher to generate a conceptual engineering design model for the improved teaching and development of engineering design problem solving.
Foureur, Maralyn; Davis, Deborah; Fenwick, Jennifer; Leap, Nicky; Iedema, Rick; Forbes, Ian; Homer, Caroline S E
2010-10-01
Recent advances in cross-disciplinary studies linking architecture and neuroscience have revealed that much of the built environment for health-care delivery may actually impair rather than improve health outcomes by disrupting effective communication and increasing patient and staff stress. This is also true for maternity care provision, where it is suggested that the design of the environment can also impact on the experiences and outcomes for birthing women. The aim of this paper is to describe the development of a conceptual model based on literature and understandings of design, communication, stress and model of care. The model explores potential relationships among a set of key variables that need to be considered by researchers wishing to determine the characteristics of optimal birth environments in relation to birth outcomes for women and infants. The conceptual model hypothesises that safe satisfying birth is reliant on the level of stress experienced by a woman and the staff around her, stress influences the quality of communication with women and between staff, and this process is mediated by the design of the birth unit and model of care. The conceptual model is offered as a starting point for researchers who have an appreciation of the complexity of birth and the ability to bring together colleagues from a range of disciplines to explore the pre-requisites for safe and effective maternity care in new ways. Copyright © 2010 Elsevier Ltd. All rights reserved.
Social responsibility: conceptualization and embodiment in a school of nursing.
Kelley, Maureen A; Connor, Ann; Kun, Karen E; Salmon, Marla E
2008-01-01
This paper describes how a school of nursing has conceptualized and embodied social responsibility in its core values, curricular design, admission standards, clinical practice, and service learning opportunities. The school's engagement in the process of practicing social responsibility and clarifying its meaning and application has made apparent the natural linkage between social responsibility and professionalism and the deep and complex relationship between social responsibility and nursing itself. It has also revealed how a commitment to social responsibility impacts and determines for whom nurses care. Claiming social responsibility as a core value and working to refine its meaning and place has increased the school's commitment to it, concomitantly impacting education, practice, and recruitment and evaluation of faculty and students. The school views the conceptualization of social responsibility as a deepening and unfolding evolution, rather than as a formulaic understanding, and expects that its ongoing work of claiming social responsibility as a core value will continue to be enriching.
Designing Class Methods from Dataflow Diagrams
NASA Astrophysics Data System (ADS)
Shoval, Peretz; Kabeli-Shani, Judith
A method for designing the class methods of an information system is described. The method is part of FOOM - Functional and Object-Oriented Methodology. In the analysis phase of FOOM, two models defining the users' requirements are created: a conceptual data model - an initial class diagram; and a functional model - hierarchical OO-DFDs (object-oriented dataflow diagrams). Based on these models, a well-defined process of methods design is applied. First, the OO-DFDs are converted into transactions, i.e., system processes that supports user task. The components and the process logic of each transaction are described in detail, using pseudocode. Then, each transaction is decomposed, according to well-defined rules, into class methods of various types: basic methods, application-specific methods and main transaction (control) methods. Each method is attached to a proper class; messages between methods express the process logic of each transaction. The methods are defined using pseudocode or message charts.
Conceptual design of a synchronous Mars telecommunications satellite
NASA Technical Reports Server (NTRS)
Badi, Deborah M.; Farmer, Jeffrey T.; Garn, Paul A.; Martin, Gary L.
1989-01-01
Future missions to Mars will require a communications system to link activities on the Martian surface with each other and with mission controllers on Earth. A conceptual design is presented for an aerosynchronous communications satellite to provide these links. The satellite provides the capability for voice, data/command, and video transmissions. The mission scenario assumed for the design is described, and a description of a single aerosynchronous satellite is explained. A viable spacecraft design is then presented. Communication band selection and channel allocation are discussed. The communications system conceptual design is presented along with the trades used in sizing each of the required antennas. Also, the analyses used to develop the supporting subsystem designs are described as is the communications impact on each subsystem design.
System Modeling of a large FPGA project: the SKA Tile Processing Module
NASA Astrophysics Data System (ADS)
Belli, C.; Comoretto, G.
Large projects like the SKA have an intrinsic complexity due to their scale. In this context, the application of a management design system becomes fundamental. For this purpose the SysML language, a UML customization for engineering applications, has been applied. As far as our work is concerned, we focused on the SKA Low Telescope - Tile Processing Module, designing diagrams at different detail levels. We designed a conceptual model of the TPM, primarily focusing on the main interfaces and the major data flows between product items. Functionalities are derived from use cases and allocated to hardware modules in order to guarantee the project's internal consistency and features. This model has been used both as internal documentation and as job specification, to commit part of the design to external entities.
DeMAID/GA an Enhanced Design Manager's Aid for Intelligent Decomposition
NASA Technical Reports Server (NTRS)
Rogers, J. L.
1996-01-01
Many companies are looking for new tools and techniques to aid a design manager in making decisions that can reduce the time and cost of a design cycle. One tool is the Design Manager's Aid for Intelligent Decomposition (DeMAID). Since the initial public release of DeMAID in 1989, much research has been done in the areas of decomposition, concurrent engineering, parallel processing, and process management; many new tools and techniques have emerged. Based on these recent research and development efforts, numerous enhancements have been added to DeMAID to further aid the design manager in saving both cost and time in a design cycle. The key enhancement, a genetic algorithm (GA), will be available in the next public release called DeMAID/GA. The GA sequences the design processes to minimize the cost and time in converging a solution. The major enhancements in the upgrade of DeMAID to DeMAID/GA are discussed in this paper. A sample conceptual design project is used to show how these enhancements can be applied to improve the design cycle.
Model-based Systems Engineering: Creation and Implementation of Model Validation Rules for MOS 2.0
NASA Technical Reports Server (NTRS)
Schmidt, Conrad K.
2013-01-01
Model-based Systems Engineering (MBSE) is an emerging modeling application that is used to enhance the system development process. MBSE allows for the centralization of project and system information that would otherwise be stored in extraneous locations, yielding better communication, expedited document generation and increased knowledge capture. Based on MBSE concepts and the employment of the Systems Modeling Language (SysML), extremely large and complex systems can be modeled from conceptual design through all system lifecycles. The Operations Revitalization Initiative (OpsRev) seeks to leverage MBSE to modernize the aging Advanced Multi-Mission Operations Systems (AMMOS) into the Mission Operations System 2.0 (MOS 2.0). The MOS 2.0 will be delivered in a series of conceptual and design models and documents built using the modeling tool MagicDraw. To ensure model completeness and cohesiveness, it is imperative that the MOS 2.0 models adhere to the specifications, patterns and profiles of the Mission Service Architecture Framework, thus leading to the use of validation rules. This paper outlines the process by which validation rules are identified, designed, implemented and tested. Ultimately, these rules provide the ability to maintain model correctness and synchronization in a simple, quick and effective manner, thus allowing the continuation of project and system progress.
NASA Technical Reports Server (NTRS)
Yeh, Hue-Hsia; Brown, Cheryl; Jeng, Frank
2012-01-01
Advanced Life Support Sizing Analysis Tool (ALSSAT) at the time of this reporting has been updated to version 6.0. A previous version was described in Tool for Sizing Analysis of the Advanced Life Support System (MSC- 23506), NASA Tech Briefs, Vol. 29, No. 12 (December 2005), page 43. To recapitulate: ALSSAT is a computer program for sizing and analyzing designs of environmental-control and life-support systems for spacecraft and surface habitats to be involved in exploration of Mars and the Moon. Of particular interest for analysis by ALSSAT are conceptual designs of advanced life-support (ALS) subsystems that utilize physicochemical and biological processes to recycle air and water and process human wastes to reduce the need of resource resupply. ALSSAT is a means of investigating combinations of such subsystems technologies featuring various alternative conceptual designs and thereby assisting in determining which combination is most cost-effective. ALSSAT version 6.0 has been improved over previous versions in several respects, including the following additions: an interface for reading sizing data from an ALS database, computational models of a redundant regenerative CO2 and Moisture Removal Amine Swing Beds (CAMRAS) for CO2 removal, upgrade of the Temperature & Humidity Control's Common Cabin Air Assembly to a detailed sizing model, and upgrade of the Food-management subsystem.
Space construction system analysis. Part 2: Platform definition
NASA Technical Reports Server (NTRS)
Hart, R. J.; Myers, H. L.; Abramson, R. D.; Dejong, P. N.; Donavan, R. D.; Greenberg, H. S.; Indrikis, J.; Jandrasi, J. S.; Manoff, M.; Mcbaine, C. K.
1980-01-01
The top level system requirements are summarized and the accompanying conceptual design for an engineering and technology verification platform (ETVP) system is presented. An encompassing statement of the system objectives which drive the system requirements is presented and the major mission and subsystem requirements are described with emphasis on the advanced communications technology mission payload. The platform design is defined and used as a reference configuration for an end to space construction analyses. The preferred construction methods and processes, the important interactions between the platform design and the construction system design and operation, and the technology development efforts required to support the design and space construction of the ETVP are outlined.
Dedicated nuclear facilities for electrolytic hydrogen production
NASA Technical Reports Server (NTRS)
Foh, S. E.; Escher, W. J. D.; Donakowski, T. D.
1979-01-01
An advanced technology, fully dedicated nuclear-electrolytic hydrogen production facility is presented. This plant will produce hydrogen and oxygen only and no electrical power will be generated for off-plant use. The conceptual design was based on hydrogen production to fill a pipeline at 1000 psi and a 3000 MW nuclear base, and the base-line facility nuclear-to-shaftpower and shaftpower-to-electricity subsystems, the water treatment subsystem, electricity-to-hydrogen subsystem, hydrogen compression, efficiency, and hydrogen production cost are discussed. The final conceptual design integrates a 3000 MWth high-temperature gas-cooled reactor operating at 980 C helium reactor-out temperature, direct dc electricity generation via acyclic generators, and high-current density, high-pressure electrolyzers based on the solid polymer electrolyte approach. All subsystems are close-coupled and optimally interfaced and pipeline hydrogen is produced at 1000 psi. Hydrogen costs were about half of the conventional nuclear electrolysis process.
NASA Astrophysics Data System (ADS)
Mikhalchenko, V. V.; Rubanik, Yu T.
2016-10-01
The work is devoted to the problem of cost-effective adaptation of coal mines to the volatile and uncertain market conditions. Conceptually it can be achieved through alignment of the dynamic characteristics of the coal mining system and power spectrum of market demand for coal product. In practical terms, this ensures the viability and competitiveness of coal mines. Transformation of dynamic characteristics is to be done by changing the structure of production system as well as corporate, logistics and management processes. The proposed methods and algorithms of control are aimed at the development of the theoretical foundations of adaptive optimization as basic methodology for coal mine enterprise management in conditions of high variability and uncertainty of economic and natural environment. Implementation of the proposed methodology requires a revision of the basic principles of open coal mining enterprises design.
Conceptual design of an intense positron source based on an LIA
NASA Astrophysics Data System (ADS)
Long, Ji-Dong; Yang, Zhen; Dong, Pan; Shi, Jin-Shui
2012-04-01
Accelerator based positron sources are widely used due to their high intensity. Most of these accelerators are RF accelerators. An LIA (linear induction accelerator) is a kind of high current pulsed accelerator used for radiography. A conceptual design of an intense pulsed positron source based on an LIA is presented in the paper. One advantage of an LIA is its pulsed power being higher than conventional accelerators, which means a higher amount of primary electrons for positron generations per pulse. Another advantage of an LIA is that it is very suitable to decelerate the positron bunch generated by bremsstrahlung pair process due to its ability to adjustably shape the voltage pulse. By implementing LIA cavities to decelerate the positron bunch before it is moderated, the positron yield could be greatly increased. These features may make the LIA based positron source become a high intensity pulsed positron source.
Integrating O/S models during conceptual design, part 1
NASA Technical Reports Server (NTRS)
Ebeling, Charles E.
1994-01-01
The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Stecklein, J. M.; Petro, A. J.; Stump, W. R.; Adorjan, A. S.; Chambers, T. V.; Donofrio, M.; Hirasaki, J. K.; Morris, O. G.; Nudd, G.; Rawlings, R. P.
1992-01-01
This paper is a first look at the problems of building a lunar lander to support a small lunar surface base. A series of trade studies was performed to define the lander. The initial trades concerned choosing number of stages, payload mass, parking orbit altitude, and propellant type. Other important trades and issues included plane change capability, propellant loading and maintenance location, and reusability considerations. Given a rough baseline, the systems were then reviewed. A conceptual design was then produced. The process was carried through only one iteration. Many more iterations are needed. A transportation system using reusable, aerobraked orbital transfer vehicles (OTV's) is assumed. These OTV's are assumed to be based and maintained at a low Earth orbit (LEO) space station, optimized for transportation functions. Single- and two-stage OTV stacks are considered. The OTV's make the translunar injection (TLI), lunar orbit insertion (LOI), and trans-Earth injection (TEI) burns, as well as midcourse and perigee raise maneuvers.
Saturno-Hernández, Pedro J; Gutiérrez-Reyes, Juan Pablo; Vieyra-Romero, Waldo Ivan; Romero-Martínez, Martín; O'Shea-Cuevas, Gabriel Jaime; Lozano-Herrera, Javier; Tavera-Martínez, Sonia; Hernández-Ávila, Mauricio
2016-01-01
To describe the conceptual framework and methods for implementation and analysis of the satisfaction survey of the Mexican System for Social Protection in Health. We analyze the methodological elements of the 2013, 2014 and 2015 surveys, including the instrument, sampling method and study design, conceptual framework, and characteristics and indicators of the analysis. The survey captures information on perceived quality and satisfaction. Sampling has national and State representation. Simple and composite indicators (index of satisfaction and rate of reported quality problems) are built and described. The analysis is completed using Pareto diagrams, correlation between indicators and association with satisfaction by means of multivariate models. The measurement of satisfaction and perceived quality is a complex but necessary process to comply with regulations and to identify strategies for improvement. The described survey presents a design and rigorous analysis focused on its utility for improving.
Lunar lander conceptual design
NASA Technical Reports Server (NTRS)
Lee, Joo Ahn; Carini, John; Choi, Andrew; Dillman, Robert; Griffin, Sean J.; Hanneman, Susan; Mamplata, Caesar; Stanton, Edward
1989-01-01
A conceptual design is presented of a Lunar Lander, which can be the primary vehicle to transport the equipment necessary to establish a surface lunar base, the crew that will man the base, and the raw materials which the Lunar Station will process. A Lunar Lander will be needed to operate in the regime between the lunar surface and low lunar orbit (LLO), up to 200 km. This lander is intended for the establishment and operation of a manned surface base on the moon and for the support of the Lunar Space Station. The lander will be able to fulfill the requirements of 3 basic missions: A mission dedicated to delivering maximum payload for setting up the initial lunar base; Multiple missions between LLO and lunar surface dedicated to crew rotation; and Multiple missions dedicated to cargo shipments within the regime of lunar surface and LLO. A complete set of structural specifications is given.
Conceptual-level workflow modeling of scientific experiments using NMR as a case study
Verdi, Kacy K; Ellis, Heidi JC; Gryk, Michael R
2007-01-01
Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment. PMID:17263870
Conceptual-level workflow modeling of scientific experiments using NMR as a case study.
Verdi, Kacy K; Ellis, Heidi Jc; Gryk, Michael R
2007-01-30
Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment.
Computer-aided operations engineering with integrated models of systems and operations
NASA Technical Reports Server (NTRS)
Malin, Jane T.; Ryan, Dan; Fleming, Land
1994-01-01
CONFIG 3 is a prototype software tool that supports integrated conceptual design evaluation from early in the product life cycle, by supporting isolated or integrated modeling, simulation, and analysis of the function, structure, behavior, failures and operation of system designs. Integration and reuse of models is supported in an object-oriented environment providing capabilities for graph analysis and discrete event simulation. Integration is supported among diverse modeling approaches (component view, configuration or flow path view, and procedure view) and diverse simulation and analysis approaches. Support is provided for integrated engineering in diverse design domains, including mechanical and electro-mechanical systems, distributed computer systems, and chemical processing and transport systems. CONFIG supports abstracted qualitative and symbolic modeling, for early conceptual design. System models are component structure models with operating modes, with embedded time-related behavior models. CONFIG supports failure modeling and modeling of state or configuration changes that result in dynamic changes in dependencies among components. Operations and procedure models are activity structure models that interact with system models. CONFIG is designed to support evaluation of system operability, diagnosability and fault tolerance, and analysis of the development of system effects of problems over time, including faults, failures, and procedural or environmental difficulties.
NASA Astrophysics Data System (ADS)
Zulfikar, Aldi; Girsang, Denni Yulius; Saepuzaman, Duden; Samsudin, Achmad
2017-05-01
Conceptual understanding is one of the most important aspects in the study of Physics because of it useful to understand principles behind certain phenomenon which happened. An innovative method was needed to strengthen and enhance student's conceptual understanding, especially regarding the abstract subject such as magnetic field. For this reason, worksheet and exploration sheet based on PDEODE*E (Predict, Discuss, Explain, Observe, Discuss, Explore, and Explain) that uses Gauss Meter application as the smartphone technology has been designed to answer the problem. The magnetic field strength in different mediums is the physics subject which covered in this research. The research was conducted with the aim to know how effective smartphone technology-based PDEODE*E could be implemented as a physics learning strategy. The result of this research shows that students could show improvements in conceptual understanding that shown by the conclusion that was constructed during the learning process. Based on this result, PDEODE*E could become a solution to strengthen students' conceptual understanding regarding physics subject, especially those that requires abstract thinking. This result also has shown that the application ofsmartphone technology could be used to support physics learning processes in the classroom, such as Gauss Meter in this research which used to measure the magnetic field, Light Meter which could be used in the concept of light, and Harmonicity Meter for the context of the sound wave.
NASA Technical Reports Server (NTRS)
Pace, Dale K.
2000-01-01
A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.
Attitudes of eighth-grade honors students toward the conceptual change methods of teaching science
NASA Astrophysics Data System (ADS)
Heide, Clifford Lee
1998-12-01
The study researched the attitude of eighth grade honors science students toward the steps of the conceptual change teaching method. The attitudes of 25 students in an honors 8th grade science class in the Greater Phoenix metropolitan area were assessed using a multi-method approach. A quantitative method (student survey) and a qualitative method (focus group) were triangulated for convergence. Since conceptual change is a relatively new reform teaching modality, the study assessed students' attitudes utilizing this method. Conceptual change teaching is characterized by connections between concepts and facts which are organized around key ideas. Knowledge connected through concepts is constantly revised and edited by students as they continue to learn and add new concepts. The results of this study produced evidence that the conceptual change method of teaching science and its six process steps have qualities that foster positive student attitude. The study demonstrated that students' attitudes toward science is positively influenced through the conceptual change teaching method by enabling students to: (1) choose problems and find solutions to those problems (student directed); (2) work together in large and small groups; (3) learn through student oral presentations; (4) perform hands-on laboratory experiences; (5) learn through conceptual understanding not memorization; (6) implement higher order learning skills to make connections from the lab to the real world. Teachers can use the information in the study to become aware of the positive and negative attitudes of students taught with the conceptual change method. Even if the conceptual change teaching strategy is not the modality utilized by an educator, the factors identified by this study that affect student attitude could be used to help a teacher design lesson plans that help foster positive student attitudes.
E-learning process maturity level: a conceptual framework
NASA Astrophysics Data System (ADS)
Rahmah, A.; Santoso, H. B.; Hasibuan, Z. A.
2018-03-01
ICT advancement is a sure thing with the impact influencing many domains, including learning in both formal and informal situations. It leads to a new mindset that we should not only utilize the given ICT to support the learning process, but also improve it gradually involving a lot of factors. These phenomenon is called e-learning process evolution. Accordingly, this study attempts to explore maturity level concept to provide the improvement direction gradually and progression monitoring for the individual e-learning process. Extensive literature review, observation, and forming constructs are conducted to develop a conceptual framework for e-learning process maturity level. The conceptual framework consists of learner, e-learning process, continuous improvement, evolution of e-learning process, technology, and learning objectives. Whilst, evolution of e-learning process depicted as current versus expected conditions of e-learning process maturity level. The study concludes that from the e-learning process maturity level conceptual framework, it may guide the evolution roadmap for e-learning process, accelerate the evolution, and decrease the negative impact of ICT. The conceptual framework will be verified and tested in the future study.
NASA Technical Reports Server (NTRS)
Freeman, William T.; Ilcewicz, L. B.; Swanson, G. D.; Gutowski, T.
1992-01-01
A conceptual and preliminary designers' cost prediction model has been initiated. The model will provide a technically sound method for evaluating the relative cost of different composite structural designs, fabrication processes, and assembly methods that can be compared to equivalent metallic parts or assemblies. The feasibility of developing cost prediction software in a modular form for interfacing with state of the art preliminary design tools and computer aided design programs is being evaluated. The goal of this task is to establish theoretical cost functions that relate geometric design features to summed material cost and labor content in terms of process mechanics and physics. The output of the designers' present analytical tools will be input for the designers' cost prediction model to provide the designer with a data base and deterministic cost methodology that allows one to trade and synthesize designs with both cost and weight as objective functions for optimization. The approach, goals, plans, and progress is presented for development of COSTADE (Cost Optimization Software for Transport Aircraft Design Evaluation).
System Synthesis in Preliminary Aircraft Design using Statistical Methods
NASA Technical Reports Server (NTRS)
DeLaurentis, Daniel; Mavris, Dimitri N.; Schrage, Daniel P.
1996-01-01
This paper documents an approach to conceptual and preliminary aircraft design in which system synthesis is achieved using statistical methods, specifically design of experiments (DOE) and response surface methodology (RSM). These methods are employed in order to more efficiently search the design space for optimum configurations. In particular, a methodology incorporating three uses of these techniques is presented. First, response surface equations are formed which represent aerodynamic analyses, in the form of regression polynomials, which are more sophisticated than generally available in early design stages. Next, a regression equation for an overall evaluation criterion is constructed for the purpose of constrained optimization at the system level. This optimization, though achieved in a innovative way, is still traditional in that it is a point design solution. The methodology put forward here remedies this by introducing uncertainty into the problem, resulting a solutions which are probabilistic in nature. DOE/RSM is used for the third time in this setting. The process is demonstrated through a detailed aero-propulsion optimization of a high speed civil transport. Fundamental goals of the methodology, then, are to introduce higher fidelity disciplinary analyses to the conceptual aircraft synthesis and provide a roadmap for transitioning from point solutions to probabalistic designs (and eventually robust ones).
Retrieval System for Calcined Waste for the Idaho Cleanup Project - 12104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eastman, Randy L.; Johnston, Beau A.; Lower, Danielle E.
This paper describes the conceptual approach to retrieve radioactive calcine waste, hereafter called calcine, from stainless steel storage bins contained within concrete vaults. The retrieval system will allow evacuation of the granular solids (calcine) from the storage bins through the use of stationary vacuum nozzles. The nozzles will use air jets for calcine fluidization and will be able to rotate and direct the fluidization or displacement of the calcine within the bin. Each bin will have a single retrieval system installed prior to operation to prevent worker exposure to the high radiation fields. The addition of an articulated camera armmore » will allow for operations monitoring and will be equipped with contingency tools to aid in calcine removal. Possible challenges (calcine bridging and rat-holing) associated with calcine retrieval and transport, including potential solutions for bin pressurization, calcine fluidization and waste confinement, are also addressed. The Calcine Disposition Project has the responsibility to retrieve, treat, and package HLW calcine. The calcine retrieval system has been designed to incorporate the functions and technical characteristics as established by the retrieval system functional analysis. By adequately implementing the highest ranking technical characteristics into the design of the retrieval system, the system will be able to satisfy the functional requirements. The retrieval system conceptual design provides the means for removing bulk calcine from the bins of the CSSF vaults. Top-down vacuum retrieval coupled with an articulating camera arm will allow for a robust, contained process capable of evacuating bulk calcine from bins and transporting it to the processing facility. The system is designed to fluidize, vacuum, transport and direct the calcine from its current location to the CSSF roof-top transport lines. An articulating camera arm, deployed through an adjacent access riser, will work in conjunction with the retrieval nozzle to aid in calcine fluidization, remote viewing, clumped calcine breaking and recovery from off-normal conditions. As the design of the retrieval system progresses from conceptual to preliminary, increasing attention will be directed toward detailed design and proof-of- concept testing. (authors)« less
The Conceptual Design of the Magdalena Ridge Observatory Interferometer
NASA Astrophysics Data System (ADS)
Buscher, D. F.; Creech-Eakman, M.; Farris, A.; Haniff, C. A.; Young, J. S.
We describe the scientific motivation for and conceptual design of the Magdalena Ridge Observatory Interferometer, an imaging interferometer designed to operate at visible and near-infrared wavelengths. The rationale for the major technical decisions in the interferometer design is discussed, the success of the concept is appraised, and the implications of this analysis for the design of future arrays are drawn out.
Reconceptualizing public participation in environmental assessment as EA civics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinclair, A. John, E-mail: jsincla@umanitoba.ca; Diduck, Alan P., E-mail: a.diduck@uwinnipeg.ca
Notwithstanding the considerable attention placed on creating meaningful opportunities for public participation in environmental assessment (EA), many participants and those who have reviewed participation processes often find practice sorely wanting. This reality stands in stark juxtaposition to future environmental governance needs, which will require increased openness, deliberation and transdisciplinary knowledge in order to deal with environmental change that is ever more uncertain, complex and conflictual. In this paper, our purpose was to consider how to meet those needs through reconceptualizing public participation as EA civics, founded on an active citizen base, deliberative in nature and orientated toward learning. We domore » this through developing a new conceptual model of next generation participation processes that is relevant at multiple spatial scales and institutional levels, is applicable to the entire assessment cycle and spans temporal scales through feedback loops. Our EA civics model builds on the “civics approach” to environmental governance and “action civics” by extending their core ideas to participation in EA. We did this by conducting an integrative literature review (including numerous papers we have contributed over the years) and reflecting on our own experiences as EA participants. We apply current thinking on public participation design to our EA civics conceptualization and highlight important design features that have received scant attention. We conclude that EA civics holds promise for fairer and more robust participation processes if all aspects of the model are considered and the actions related to each are implemented. - Highlights: • Consideration of the ‘civics approach’ and ‘action civics’ in an EA context • Conceptualization of public participation as EA civics • Reflection on the EA civics as a model of participation suitable for next generation assessment.« less