Sample records for conceptual site model

  1. Uncertainty and the Conceptual Site Model

    NASA Astrophysics Data System (ADS)

    Price, V.; Nicholson, T. J.

    2007-12-01

    Our focus is on uncertainties in the underlying conceptual framework upon which all subsequent steps in numerical and/or analytical modeling efforts depend. Experienced environmental modelers recognize the value of selecting an optimal conceptual model from several competing site models, but usually do not formally explore possible alternative models, in part due to incomplete or missing site data, as well as relevant regional data for establishing boundary conditions. The value in and approach for developing alternative conceptual site models (CSM) is demonstrated by analysis of case histories. These studies are based on reported flow or transport modeling in which alternative site models are formulated using data that were not available to, or not used by, the original modelers. An important concept inherent to model abstraction of these alternative conceptual models is that it is "Far better an approximate answer to the right question, which is often vague, than the exact answer to the wrong question, which can always be made precise." (Tukey, 1962) The case histories discussed here illustrate the value of formulating alternative models and evaluating them using site-specific data: (1) Charleston Naval Site where seismic characterization data allowed significant revision of the CSM and subsequent contaminant transport modeling; (2) Hanford 300-Area where surface- and ground-water interactions affecting the unsaturated zone suggested an alternative component to the site model; (3) Savannah River C-Area where a characterization report for a waste site within the modeled area was not available to the modelers, but provided significant new information requiring changes to the underlying geologic and hydrogeologic CSM's used; (4) Amargosa Desert Research Site (ADRS) where re-interpretation of resistivity sounding data and water-level data suggested an alternative geologic model. Simple 2-D spreadsheet modeling of the ADRS with the revised CSM provided an improved

  2. Evaluating Conceptual Site Models with Multicomponent Reactive Transport Modeling

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Heffner, D.; Price, V.; Temples, T. J.; Nicholson, T. J.

    2005-05-01

    Modeling ground-water flow and multicomponent reactive chemical transport is a useful approach for testing conceptual site models and assessing the design of monitoring networks. A graded approach with three conceptual site models is presented here with a field case of tetrachloroethene (PCE) transport and biodegradation near Charleston, SC. The first model assumed a one-layer homogeneous aquifer structure with semi-infinite boundary conditions, in which an analytical solution of the reactive solute transport can be obtained with BIOCHLOR (Aziz et al., 1999). Due to the over-simplification of the aquifer structure, this simulation cannot reproduce the monitoring data. In the second approach we used GMS to develop the conceptual site model, a layer-cake multi-aquifer system, and applied a numerical module (MODFLOW and RT3D within GMS) to solve the flow and reactive transport problem. The results were better than the first approach but still did not fit the plume well because the geological structures were still inadequately defined. In the third approach we developed a complex conceptual site model by interpreting log and seismic survey data with Petra and PetraSeis. We detected a major channel and a younger channel, through the PCE source area. These channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Results using the third conceptual site model agree well with the monitoring concentration data. This study confirms that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004). Numerical modeling in this case provides key insight into the hydrogeology and geochemistry of the field site for predicting contaminant transport in the future. Finally, critical monitoring points and performance indicator parameters are selected for future monitoring to confirm system

  3. [Case study on health risk assessment based on site-specific conceptual model].

    PubMed

    Zhong, Mao-Sheng; Jiang, Lin; Yao, Jue-Jun; Xia, Tian-Xiang; Zhu, Xiao-Ying; Han, Dan; Zhang, Li-Na

    2013-02-01

    Site investigation was carried out on an area to be redeveloped as a subway station, which is right downstream of the groundwater of a former chemical plant. The results indicate the subsurface soil and groundwater in the area are both polluted heavily by 1,2-dichloroethane, which was caused by the chemical plant upstream with the highest concentration was 104.08 mg.kg-1 for soil sample at 8.6 m below ground and the highest concentration was 18500 microg.L-1 for groundwater. Further, a site-specific contamination conceptual model, giving consideration to the specific structure configuration of the station, was developed, and the corresponding risk calculation equation was derived. The carcinogenic risks calculated with models developed on the generic site conceptual model and derived herein on the site-specific conceptual model were compared. Both models indicate that the carcinogenic risk is significantly higher than the acceptable level which is 1 x 10(-6). The comparison result reveals that the risk calculated with the former models for soil and groundwater are higher than the one calculated with the latter models by 2 times and 1.5 times, respectively. The finding in this paper indicates that the generic risk assessment model may underestimate the risk if specific site conditions and structure configuration are not considered.

  4. Mass discharge estimation from contaminated sites: Multi-model solutions for assessment of conceptual uncertainty

    NASA Astrophysics Data System (ADS)

    Thomsen, N. I.; Troldborg, M.; McKnight, U. S.; Binning, P. J.; Bjerg, P. L.

    2012-04-01

    Mass discharge estimates are increasingly being used in the management of contaminated sites. Such estimates have proven useful for supporting decisions related to the prioritization of contaminated sites in a groundwater catchment. Potential management options can be categorised as follows: (1) leave as is, (2) clean up, or (3) further investigation needed. However, mass discharge estimates are often very uncertain, which may hamper the management decisions. If option 1 is incorrectly chosen soil and water quality will decrease, threatening or destroying drinking water resources. The risk of choosing option 2 is to spend money on remediating a site that does not pose a problem. Choosing option 3 will often be safest, but may not be the optimal economic solution. Quantification of the uncertainty in mass discharge estimates can therefore greatly improve the foundation for selecting the appropriate management option. The uncertainty of mass discharge estimates depends greatly on the extent of the site characterization. A good approach for uncertainty estimation will be flexible with respect to the investigation level, and account for both parameter and conceptual model uncertainty. We propose a method for quantifying the uncertainty of dynamic mass discharge estimates from contaminant point sources on the local scale. The method considers both parameter and conceptual uncertainty through a multi-model approach. The multi-model approach evaluates multiple conceptual models for the same site. The different conceptual models consider different source characterizations and hydrogeological descriptions. The idea is to include a set of essentially different conceptual models where each model is believed to be realistic representation of the given site, based on the current level of information. Parameter uncertainty is quantified using Monte Carlo simulations. For each conceptual model we calculate a transient mass discharge estimate with uncertainty bounds resulting from

  5. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and to identify aspects about which additional information needed to effectively support remedy decisions.more » this document summarizes the conceptual model of iodine behavior relevant to iodine in the subsurface environment at the Hanford site.« less

  6. Triad Issue Paper: Using Geophysical Tools to Develop the Conceptual Site Model

    EPA Pesticide Factsheets

    This technology bulletin explains how hazardous-waste site professionals can use geophysical tools to provide information about subsurface conditions to create a more representative conceptual site model (CSM).

  7. SITE CHARACTERIZATION TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND TRANSPORT MODELS FOR MONITORING CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  8. The site-scale saturated zone flow model for Yucca Mountain: Calibration of different conceptual models and their impact on flow paths

    USGS Publications Warehouse

    Zyvoloski, G.; Kwicklis, E.; Eddebbarh, A.-A.; Arnold, B.; Faunt, C.; Robinson, B.A.

    2003-01-01

    This paper presents several different conceptual models of the Large Hydraulic Gradient (LHG) region north of Yucca Mountain and describes the impact of those models on groundwater flow near the potential high-level repository site. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain. This model is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. The numerical model is calibrated by matching available water level measurements using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM and parameter estimation software PEST) and model setup allows for efficient calibration of multiple conceptual models. Until now, the Large Hydraulic Gradient has been simulated using a low-permeability, east-west oriented feature, even though direct evidence for this feature is lacking. In addition to this model, we investigate and calibrate three additional conceptual models of the Large Hydraulic Gradient, all of which are based on a presumed zone of hydrothermal chemical alteration north of Yucca Mountain. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the potential repository that record differences in the predicted groundwater flow regime. The results show that Large Hydraulic Gradient can be represented with the alternate conceptual models that include the hydrothermally altered zone. The predicted pathways are mildly sensitive to the choice of the conceptual model and more sensitive to the quality of calibration in the vicinity on the repository. These differences are most likely due to different degrees of fit of model to data, and do not represent important differences in hydrologic conditions for the different conceptual models. ?? 2002 Elsevier Science B

  9. Environmental Cleanup Best Management Practices: Effective Use of the Project Life Cycle Conceptual Site Model

    EPA Pesticide Factsheets

    This fact sheet is the first in a series of documents that address conceptual site models (CSMs). This fact sheet summarizes how environmental practitioners can use CSMs to achieve, communicate, and maintain stakeholder consensus.

  10. Three-dimensional conceptual model for the Hanford Site unconfined aquifer system: FY 1994 status report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thorne, P.D.; Chamness, M.A.; Vermeul, V.R.

    This report documents work conducted during the fiscal year 1994 to development an improved three-dimensional conceptual model of ground-water flow in the unconfined aquifer system across the Hanford Site Ground-Water Surveillance Project, which is managed by Pacific Northwest Laboratory. The main objective of the ongoing effort to develop an improved conceptual model of ground-water flow is to provide the basis for improved numerical report models that will be capable of accurately predicting the movement of radioactive and chemical contaminant plumes in the aquifer beneath Hanford. More accurate ground-water flow models will also be useful in assessing the impacts of changesmore » in facilities and operations. For example, decreasing volumes of operational waste-water discharge are resulting in a declining water table in parts of the unconfined aquifer. In addition to supporting numerical modeling, the conceptual model also provides a qualitative understanding of the movement of ground water and contaminants in the aquifer.« less

  11. A Bayesian belief network approach for assessing uncertainty in conceptual site models at contaminated sites

    NASA Astrophysics Data System (ADS)

    Thomsen, Nanna I.; Binning, Philip J.; McKnight, Ursula S.; Tuxen, Nina; Bjerg, Poul L.; Troldborg, Mads

    2016-05-01

    A key component in risk assessment of contaminated sites is in the formulation of a conceptual site model (CSM). A CSM is a simplified representation of reality and forms the basis for the mathematical modeling of contaminant fate and transport at the site. The CSM should therefore identify the most important site-specific features and processes that may affect the contaminant transport behavior at the site. However, the development of a CSM will always be associated with uncertainties due to limited data and lack of understanding of the site conditions. CSM uncertainty is often found to be a major source of model error and it should therefore be accounted for when evaluating uncertainties in risk assessments. We present a Bayesian belief network (BBN) approach for constructing CSMs and assessing their uncertainty at contaminated sites. BBNs are graphical probabilistic models that are effective for integrating quantitative and qualitative information, and thus can strengthen decisions when empirical data are lacking. The proposed BBN approach facilitates a systematic construction of multiple CSMs, and then determines the belief in each CSM using a variety of data types and/or expert opinion at different knowledge levels. The developed BBNs combine data from desktop studies and initial site investigations with expert opinion to assess which of the CSMs are more likely to reflect the actual site conditions. The method is demonstrated on a Danish field site, contaminated with chlorinated ethenes. Four different CSMs are developed by combining two contaminant source zone interpretations (presence or absence of a separate phase contamination) and two geological interpretations (fractured or unfractured clay till). The beliefs in each of the CSMs are assessed sequentially based on data from three investigation stages (a screening investigation, a more detailed investigation, and an expert consultation) to demonstrate that the belief can be updated as more information

  12. Innovations in Site Characterization Case Study: The Role of a Conceptual Site Model for Expedited Site Characterization Using the Triad Approach at the Poudre River Site, Fort Collins, Colorado

    EPA Pesticide Factsheets

    This case study examines how systematic planning, an evolving conceptual site model (CSM), dynamic work strategies, and real time measurement technologies can be used to unravel complex contaminant distribution patterns...

  13. Conceptual Model of Iodine Behavior in the Subsurface at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Lee, Brady D.; Johnson, Christian D.

    Isotopes of iodine were generated during plutonium production within the nine production reactors at the U.S. Department of Energy Hanford Site. The short half-life 131I that was released from the fuel into the atmosphere during the dissolution process (when the fuel was dissolved) in the Hanford Site 200 Area is no longer present at concentrations of concern in the environment. The long half-life 129I generated at the Hanford Site during reactor operations was (1) stored in single-shell and double-shell tanks, (2) discharged to liquid disposal sites (e.g., cribs and trenches), (3) released to the atmosphere during fuel reprocessing operations, ormore » (4) captured by off-gas absorbent devices (silver reactors) at chemical separations plants (PUREX, B-Plant, T-Plant, and REDOX). Releases of 129I to the subsurface have resulted in several large, though dilute, plumes in the groundwater. There is also 129I remaining in the vadose zone beneath disposal or leak locations. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, factors that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. In addition, its behavior in subsurface is different from that of other more common and important contaminants (e.g., U, Cr and Tc) in terms of sorption (adsorption and precipitation), and aqueous phase species transformation via redox reactions. Thus, the conceptual model also needs to both describe known contaminant and biogeochemical process information and identify aspects about which additional information is needed to effectively support remedy decisions.« less

  14. SAMPLING PROTOCOLS TO SUPPORT DEVELOPMENT OF CONCEPTUAL SITE MODELS AND CLEANUP DECISIONS FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The ability to make reliable decisions about the extent of subsurface contamination and approaches to restoration of contaminated ground water is dependent on the development of an accurate conceptual site model (CSM). The accuracy of the CSM is dependent on the quality of site ...

  15. Refining the site conceptual model at a former uranium mill site in Riverton, Wyoming, USA

    DOE PAGES

    Dam, William; Campbell, Sam; Johnson, Ray; ...

    2015-07-07

    Milling activities at a former uranium mill site near Riverton, Wyoming, USA, contaminated the shallow groundwater beneath and downgradient of the site. Although the mill operated for <6 years (1958-1963), its impact remains an environmental liability. Groundwater modeling predicted that contaminant concentrations were declining steadily, which confirmed the conceptual site model (CSM). However, local flooding in 2010 mobilized contaminants that migrated downgradient from the Riverton site and resulted in a dramatic increase in groundwater contaminant concentrations. This observation indicated that the original CSM was inadequate to explain site conditions and needed to be refined. In response to the new observationsmore » after the flood, a collaborative investigation to better understand site conditions and processes commenced. This investigation included installing 103 boreholes to collect soil and groundwater samples, sampling and analysis of evaporite minerals along the bank of the Little Wind River, an analysis of evaportranspiration in the shallow aquifer, and sampling naturally organic-rich sediments near groundwater discharge areas. The enhanced characterization revealed that the existing CSM did not account for high uranium concentrations in groundwater remaining on the former mill site and groundwater plume stagnation near the Little Wind River. Observations from the flood and subsequent investigations indicate that additional characterization is still needed to continue refining the CSM and determine the viability of the natural flushing compliance strategy. Additional sampling, analysis, and testing of soil and groundwater are necessary to investigate secondary contaminant sources, mobilization of contaminants during floods, geochemical processes, contaminant plume stagnation, distribution of evaporite minerals and organic-rich sediments, and mechanisms and rates of contaminant transfer from soil to groundwater. Future data collection will be used to

  16. Assessment of Alternative Conceptual Models Using Reactive Transport Modeling with Monitoring Data

    NASA Astrophysics Data System (ADS)

    Dai, Z.; Price, V.; Heffner, D.; Hodges, R.; Temples, T.; Nicholson, T.

    2005-12-01

    Monitoring data proved very useful in evaluating alternative conceptual models, simulating contaminant transport behavior, and reducing uncertainty. A graded approach using three alternative conceptual site models was formulated to simulate a field case of tetrachloroethene (PCE) transport and biodegradation. These models ranged from simple to complex in their representation of subsurface heterogeneities. The simplest model was a single-layer homogeneous aquifer that employed an analytical reactive transport code, BIOCHLOR (Aziz et al., 1999). Due to over-simplification of the aquifer structure, this simulation could not reproduce the monitoring data. The second model consisted of a multi-layer conceptual model, in combination with numerical modules, MODFLOW and RT3D within GMS, to simulate flow and reactive transport. Although the simulation results from the second model were comparatively better than those from the simple model, they still did not adequately reproduce the monitoring well concentrations because the geological structures were still inadequately defined. Finally, a more realistic conceptual model was formulated that incorporated heterogeneities and geologic structures identified from well logs and seismic survey data using the Petra and PetraSeis software. This conceptual model included both a major channel and a younger channel that were detected in the PCE source area. In this model, these channels control the local ground-water flow direction and provide a preferential chemical transport pathway. Simulation results using this conceptual site model proved compatible with the monitoring concentration data. This study demonstrates that the bias and uncertainty from inadequate conceptual models are much larger than those introduced from an inadequate choice of model parameter values (Neuman and Wierenga, 2003; Meyer et al., 2004; Ye et al., 2004). This case study integrated conceptual and numerical models, based on interpreted local hydrogeologic and

  17. Implementation of nursing conceptual models: observations of a multi-site research team.

    PubMed

    Shea, H; Rogers, M; Ross, E; Tucker, D; Fitch, M; Smith, I

    1989-01-01

    The general acceptance by nursing of the nursing process as the methodology of practice enabled nurses to have a common grounding for practice, research and theory development in the 1970s. It has become clear, however, that the nursing process is just that--a process. What is sorely needed is the nursing content for that process and consequently in the past 10 years nursing theorists have further developed their particular conceptual models (CM). Three major teaching hospitals in Toronto have instituted a conceptual model (CM) of nursing as a basis of nursing practice. Mount Sinai Hospital has adopted Roy's adaptation model; Sunnybrook Medical Centre, Kings's goal attainment model; and Toronto General Hospital, Orem's self-care deficit theory model. All of these hospitals are affiliated through a series of cross appointments with the Faculty of Nursing at the University of Toronto. Two community hospitals, Mississauga and Scarborough General, have also adopted Orem's model and are related to the University through educational, community and interest groups. A group of researchers from these hospitals and the University of Toronto have proposed a collaborative project to determine what impact using a conceptual model will make on nursing practice. Discussions among the participants of this research group indicate that there are observations associated with instituting conceptual models that can be identified early in the process of implementation. These observations may be of assistance to others contemplating the implementation of conceptually based practice in their institution.

  18. Transient Inverse Calibration of Site-Wide Groundwater Model to Hanford Operational Impacts from 1943 to 1996--Alternative Conceptual Model Considering Interaction with Uppermost Basalt Confined Aquifer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vermeul, Vincent R.; Cole, Charles R.; Bergeron, Marcel P.

    2001-08-29

    The baseline three-dimensional transient inverse model for the estimation of site-wide scale flow parameters, including their uncertainties, using data on the transient behavior of the unconfined aquifer system over the entire historical period of Hanford operations, has been modified to account for the effects of basalt intercommunication between the Hanford unconfined aquifer and the underlying upper basalt confined aquifer. Both the baseline and alternative conceptual models (ACM-1) considered only the groundwater flow component and corresponding observational data in the 3-Dl transient inverse calibration efforts. Subsequent efforts will examine both groundwater flow and transport. Comparisons of goodness of fit measures andmore » parameter estimation results for the ACM-1 transient inverse calibrated model with those from previous site-wide groundwater modeling efforts illustrate that the new 3-D transient inverse model approach will strengthen the technical defensibility of the final model(s) and provide the ability to incorporate uncertainty in predictions related to both conceptual model and parameter uncertainty. These results, however, indicate that additional improvements are required to the conceptual model framework. An investigation was initiated at the end of this basalt inverse modeling effort to determine whether facies-based zonation would improve specific yield parameter estimation results (ACM-2). A description of the justification and methodology to develop this zonation is discussed.« less

  19. 1994 conceptual model of the carbon tetrachloride contamination in the 200 West Area at the Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohay, V.J.

    1994-08-01

    Between 1955 and 1973, a total of 363,000 to 580,000 L (577,000 to kg) of liquid carbon tetrachloride, in mixtures with other organic and aqueous, actinide-bearing fluids, were discharged to the soil column at three disposal facilities -- the 216-Z-9 Trench, the 216-Z-lA TiTe Field, and the 216-Z-18 Crib -- in the 200 West Area at the Hanford Site. In the mid-1980`s, dissolved carbon tetrachloride was found in the uppermost aquifer beneath the disposal facilities, and in late 1990, the US Environmental Protection Agency and the Washington State Department of Ecology requested that the US Department of Energy proceed withmore » planning and implementation of an expedited response action (ERA) to minimize additional carbon tetrachloride contamination of the groundwater. In February 1992, soil vapor extraction was initiated to remove carbon tetrachloride from the unsaturated zone beneath these disposal facilities. By May 1994, a total of 10,560 L (16,790 kg) of carbon tetrachloride had been removed, amounting to an estimated 2% of the discharged inventory. In the spring of 1991, the Volatile Organic Compounds -- Arid Integrated Demonstration (VOC-Arid ID) program selected the carbon tetrachloride-contaminated site for demonstration and deployment of new technologies for evaluation and cleanup of volatile organic compounds and associated contaminants in soils and groundwater at arid sites. Site investigations conducted in support of both the ERA and the VOC-Arid ID have been integrated because of their shared objective to refine the conceptual model of the site and to promote efficiency. Site characterization data collected in fiscal year 1993 have supported and led to refinement of the conceptual model of the carbon tetrachloride site.« less

  20. Brownfields Green Avenue Sites: Technical Memorandum - Conceptual Design for Sustainable Redevelopment

    EPA Pesticide Factsheets

    This technical memorandum briefly describes the site and proposed conceptual site plan, indicates conceptual design considerations, specifies recommended green and sustainable features, and offers other recommendations

  1. Conceptual Model of Uranium in the Vadose Zone for Acidic and Alkaline Wastes Discharged at the Hanford Site Central Plateau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Szecsody, James E.; Qafoku, Nikolla

    2014-09-01

    Historically, uranium was disposed in waste solutions of varying waste chemistry at the Hanford Site Central Plateau. The character of how uranium was distributed in the vadose zone during disposal, how it has continued to migrate through the vadose zone, and the magnitude of potential impacts on groundwater are strongly influenced by geochemical reactions in the vadose zone. These geochemical reactions can be significantly influenced by the disposed-waste chemistry near the disposal location. This report provides conceptual models and supporting information to describe uranium fate and transport in the vadose zone for both acidic and alkaline wastes discharged at amore » substantial number of waste sites in the Hanford Site Central Plateau. The conceptual models include consideration of how co-disposed acidic or alkaline fluids influence uranium mobility in terms of induced dissolution/precipitation reactions and changes in uranium sorption with a focus on the conditions near the disposal site. This information, when combined with the extensive information describing uranium fate and transport at near background pH conditions, enables focused characterization to support effective fate and transport estimates for uranium in the subsurface.« less

  2. Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, Jesse D.; Jason Magalen; Craig Jones

    This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of amore » wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.« less

  3. Food web conceptual model

    USGS Publications Warehouse

    Hartman, Rosemary; Brown, Larry R.; Hobbs, Jim

    2017-01-01

    This chapter describes a general model of food webs within tidal wetlands and represents how physical features of the wetland affect the structure and function of the food web. This conceptual model focuses on how the food web provides support for (or may reduce support for) threatened fish species. This model is part of a suite of conceptual models designed to guide monitoring of restoration sites throughout the San Francisco Estuary (SFE), but particularly within the Sacramento-San Joaquin Delta (Delta) and Suisun Marsh. The conceptual models have been developed based on the Delta Regional Ecosystem Restoration Implementation Plan (DRERIP) models, and are designed to aid in the identification and evaluation of monitoring metrics for tidal wetland restoration projects. Many tidal restoration sites in the Delta are being constructed to comply with environmental regulatory requirements associated with the operation of the Central Valley Project and State Water Project. These include the Biological Opinions for Delta Smelt (Hypomesus transpacificus) and salmonids (U.S. Fish and Wildlife Service 2008; National Marine Fisheries Service 2009), and the Incidental Take Permit for Longfin Smelt (Spirinchus thaleichthyes) (California Department of Fish and Wildlife 2009). These regulatory requirements are based on the hypothesis that the decline of listed fish species is due in part to a decline in productivity of the food web (phytoplankton and zooplankton in particular) or alterations in the food web such that production is consumed by other species in the Estuary (Sommer et al. 2007; Baxter et al. 2010; Brown et al. 2016a). Intertidal wetlands and shallow subtidal habitat can be highly productive, so restoring areas of tidal wetlands may result in a net increase in productivity that will provide food web support for these fish species. However, other factors such as invasive bivalves that reduce phytoplankton and zooplankton biomass and invasive predatory fishes that may

  4. Conceptual site models as a tool in evaluating ecological health: the case of the Department of Energy's Amchitka Island nuclear test site.

    PubMed

    Burger, Joanna; Mayer, Henry J; Greenberg, Michael; Powers, Charles W; Volz, Conrad D; Gochfeld, Michael

    2006-07-01

    Managers of contaminated sites are faced with options ranging from monitoring natural attenuation to complete removal of contaminants to meet residential health standards. Conceptual site models (CSMs) are one tool used by the U.S. Department of Energy (DOE) and other environmental managers to understand, track, help with decisions, and communicate with the public about the risk from contamination. CSMs are simplified graphical representations of the sources, releases, transport and exposure pathways, and receptors, along with possible barriers to interdict pathways and reduce exposure. In this article, three CSMs are created using Amchitka Island, where the remaining contamination is from underground nuclear test shot cavities containing large quantities of numerous radionuclides in various physical and chemical forms: (1) a typical underground nuclear test shot CSM (modeled after other sites), (2) an expanded CSM with more complex receptors, and (3) a regional CSM that takes into account contaminant pathways from sources other than Amchitka. The objective was to expand the CSM used by DOE to be more responsive to different types of receptors. Amchitka Island differs from other DOE test shot sites because it is surrounded by a marine environment that is highly productive and has a high biodiversity, and the source of contamination is underground, not on the surface. The surrounding waters of the Bering Sea and North Pacific Ocean are heavily exploited by commercial fisheries and provide the United States and other countries with a significant proportion of its seafood. It is proposed that the CSMs on Amchitka Island should focus more on the pathways of exposure and critical receptors, rather than sources and blocks. Further, CSMs should be incorporated within a larger regional model because of the potentially rapid transport within ocean ecosystems. The large number of migratory or highly mobile species that pass by Amchitka provide the potential for a direct

  5. Groundwater monitoring program plan and conceptual site model for the Al-Tuwaitha Nuclear Research Center in Iraq.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John Robin; Cochran, John Russell

    2013-07-01

    The Radiation Protection Center of the Iraqi Ministry of Environment is developing a groundwater monitoring program (GMP) for the Al-Tuwaitha Nuclear Research Center located near Baghdad, Iraq. The Al-Tuwaitha Nuclear Research Center was established in about 1960 and is currently being cleaned-up and decommissioned by Iraqs Ministry of Science and Technology. This Groundwater Monitoring Program Plan (GMPP) and Conceptual Site Model (CSM) support the Radiation Protection Center by providing: A CSM describing the hydrogeologic regime and contaminant issues, recommendations for future groundwater characterization activities, and descriptions of the organizational elements of a groundwater monitoring program. The Conceptual Site Model identifiesmore » a number of potential sources of groundwater contamination at Al-Tuwaitha. The model also identifies two water-bearing zones (a shallow groundwater zone and a regional aquifer). The depth to the shallow groundwater zone varies from approximately 7 to 10 meters (m) across the facility. The shallow groundwater zone is composed of a layer of silty sand and fine sand that does not extend laterally across the entire facility. An approximately 4-m thick layer of clay underlies the shallow groundwater zone. The depth to the regional aquifer varies from approximately 14 to 17 m across the facility. The regional aquifer is composed of interfingering layers of silty sand, fine-grained sand, and medium-grained sand. Based on the limited analyses described in this report, there is no severe contamination of the groundwater at Al-Tuwaitha with radioactive constituents. However, significant data gaps exist and this plan recommends the installation of additional groundwater monitoring wells and conducting additional types of radiological and chemical analyses.« less

  6. Conceptual ecological models to guide integrated landscape monitoring of the Great Basin

    USGS Publications Warehouse

    Miller, D.M.; Finn, S.P.; Woodward, Andrea; Torregrosa, Alicia; Miller, M.E.; Bedford, D.R.; Brasher, A.M.

    2010-01-01

    The Great Basin Integrated Landscape Monitoring Pilot Project was developed in response to the need for a monitoring and predictive capability that addresses changes in broad landscapes and waterscapes. Human communities and needs are nested within landscapes formed by interactions among the hydrosphere, geosphere, and biosphere. Understanding the complex processes that shape landscapes and deriving ways to manage them sustainably while meeting human needs require sophisticated modeling and monitoring. This document summarizes current understanding of ecosystem structure and function for many of the ecosystems within the Great Basin using conceptual models. The conceptual ecosystem models identify key ecological components and processes, identify external drivers, develop a hierarchical set of models that address both site and landscape attributes, inform regional monitoring strategy, and identify critical gaps in our knowledge of ecosystem function. The report also illustrates an approach for temporal and spatial scaling from site-specific models to landscape models and for understanding cumulative effects. Eventually, conceptual models can provide a structure for designing monitoring programs, interpreting monitoring and other data, and assessing the accuracy of our understanding of ecosystem functions and processes.

  7. Integrating intrusive and nonintrusive characterization methods to achieve a conceptual site model for the SLDA FUSRAP site - 8265.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, L. A.; Peterson, J. M.; Frothingham, D. G.

    2008-01-01

    trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders.« less

  8. Combined Estimation of Hydrogeologic Conceptual Model and Parameter Uncertainty

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meyer, Philip D.; Ye, Ming; Neuman, Shlomo P.

    2004-03-01

    The objective of the research described in this report is the development and application of a methodology for comprehensively assessing the hydrogeologic uncertainties involved in dose assessment, including uncertainties associated with conceptual models, parameters, and scenarios. This report describes and applies a statistical method to quantitatively estimate the combined uncertainty in model predictions arising from conceptual model and parameter uncertainties. The method relies on model averaging to combine the predictions of a set of alternative models. Implementation is driven by the available data. When there is minimal site-specific data the method can be carried out with prior parameter estimates basedmore » on generic data and subjective prior model probabilities. For sites with observations of system behavior (and optionally data characterizing model parameters), the method uses model calibration to update the prior parameter estimates and model probabilities based on the correspondence between model predictions and site observations. The set of model alternatives can contain both simplified and complex models, with the requirement that all models be based on the same set of data. The method was applied to the geostatistical modeling of air permeability at a fractured rock site. Seven alternative variogram models of log air permeability were considered to represent data from single-hole pneumatic injection tests in six boreholes at the site. Unbiased maximum likelihood estimates of variogram and drift parameters were obtained for each model. Standard information criteria provided an ambiguous ranking of the models, which would not justify selecting one of them and discarding all others as is commonly done in practice. Instead, some of the models were eliminated based on their negligibly small updated probabilities and the rest were used to project the measured log permeabilities by kriging onto a rock volume containing the six boreholes. These four

  9. Conceptual modeling framework to support development of site-specific selenium criteria for Lake Koocanusa, Montana, U.S.A., and British Columbia, Canada

    USGS Publications Warehouse

    Jenni, Karen E.; Naftz, David L.; Presser, Theresa S.

    2017-10-16

    The U.S. Geological Survey, working with the Montana Department of Environmental Quality and the British Columbia Ministry of the Environment and Climate Change Strategy, has developed a conceptual modeling framework that can be used to provide structured and scientifically based input to the Lake Koocanusa Monitoring and Research Working Group as they consider potential site-specific selenium criteria for Lake Koocanusa, a transboundary reservoir located in Montana and British Columbia. This report describes that modeling framework, provides an example of how it can be applied, and outlines possible next steps for implementing the framework.

  10. Empirical evaluation of the conceptual model underpinning a regional aquatic long-term monitoring program using causal modelling

    USGS Publications Warehouse

    Irvine, Kathryn M.; Miller, Scott; Al-Chokhachy, Robert K.; Archer, Erik; Roper, Brett B.; Kershner, Jeffrey L.

    2015-01-01

    Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered for regional status and trend estimation can also provide insights on why a stream may deviate from reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road density, percent grazing, and percent forest within a catchment affect instream biological condition. We found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites accounted for a significant portion of the maximum possible variation explainable in biological condition among managed sites. However, the biological significance of the direct effects of anthropogenic drivers on instream temperature and fine sediments were minimal or not detected. Consequently, there was weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it is imperative to identify both land use practices and mechanisms that have led to degraded conditions (i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual model underpinning the long-term monitoring program provided an opportunity for learning and, consequently, we discuss survey design elements that require modification to achieve question driven monitoring, a necessary step in the practice of

  11. The conceptualization model problem—surprise

    NASA Astrophysics Data System (ADS)

    Bredehoeft, John

    2005-03-01

    The foundation of model analysis is the conceptual model. Surprise is defined as new data that renders the prevailing conceptual model invalid; as defined here it represents a paradigm shift. Limited empirical data indicate that surprises occur in 20-30% of model analyses. These data suggest that groundwater analysts have difficulty selecting the appropriate conceptual model. There is no ready remedy to the conceptual model problem other than (1) to collect as much data as is feasible, using all applicable methods—a complementary data collection methodology can lead to new information that changes the prevailing conceptual model, and (2) for the analyst to remain open to the fact that the conceptual model can change dramatically as more information is collected. In the final analysis, the hydrogeologist makes a subjective decision on the appropriate conceptual model. The conceptualization problem does not render models unusable. The problem introduces an uncertainty that often is not widely recognized. Conceptual model uncertainty is exacerbated in making long-term predictions of system performance. C'est le modèle conceptuel qui se trouve à base d'une analyse sur un modèle. On considère comme une surprise lorsque le modèle est invalidé par des données nouvelles; dans les termes définis ici la surprise est équivalente à un change de paradigme. Des données empiriques limitées indiquent que les surprises apparaissent dans 20 à 30% des analyses effectuées sur les modèles. Ces données suggèrent que l'analyse des eaux souterraines présente des difficultés lorsqu'il s'agit de choisir le modèle conceptuel approprié. Il n'existe pas un autre remède au problème du modèle conceptuel que: (1) rassembler autant des données que possible en utilisant toutes les méthodes applicables—la méthode des données complémentaires peut conduire aux nouvelles informations qui vont changer le modèle conceptuel, et (2) l'analyste doit rester ouvert au fait

  12. Conceptual and logical level of database modeling

    NASA Astrophysics Data System (ADS)

    Hunka, Frantisek; Matula, Jiri

    2016-06-01

    Conceptual and logical levels form the top most levels of database modeling. Usually, ORM (Object Role Modeling) and ER diagrams are utilized to capture the corresponding schema. The final aim of business process modeling is to store its results in the form of database solution. For this reason, value oriented business process modeling which utilizes ER diagram to express the modeling entities and relationships between them are used. However, ER diagrams form the logical level of database schema. To extend possibilities of different business process modeling methodologies, the conceptual level of database modeling is needed. The paper deals with the REA value modeling approach to business process modeling using ER-diagrams, and derives conceptual model utilizing ORM modeling approach. Conceptual model extends possibilities for value modeling to other business modeling approaches.

  13. Conceptual models of information processing

    NASA Technical Reports Server (NTRS)

    Stewart, L. J.

    1983-01-01

    The conceptual information processing issues are examined. Human information processing is defined as an active cognitive process that is analogous to a system. It is the flow and transformation of information within a human. The human is viewed as an active information seeker who is constantly receiving, processing, and acting upon the surrounding environmental stimuli. Human information processing models are conceptual representations of cognitive behaviors. Models of information processing are useful in representing the different theoretical positions and in attempting to define the limits and capabilities of human memory. It is concluded that an understanding of conceptual human information processing models and their applications to systems design leads to a better human factors approach.

  14. NADM Conceptual Model 1.0 -- A Conceptual Model for Geologic Map Information

    USGS Publications Warehouse

    ,

    2004-01-01

    Executive Summary -- The NADM Data Model Design Team was established in 1999 by the North American Geologic Map Data Model Steering Committee (NADMSC) with the purpose of drafting a geologic map data model for consideration as a standard for developing interoperable geologic map-centered databases by state, provincial, and federal geological surveys. The model is designed to be a technology-neutral conceptual model that can form the basis for a web-based interchange format using evolving information technology (e.g., XML, RDF, OWL), and guide implementation of geoscience databases in a common conceptual framework. The intended purpose is to allow geologic information sharing between geologic map data providers and users, independent of local information system implementation. The model emphasizes geoscience concepts and relationships related to information presented on geologic maps. Design has been guided by an informal requirements analysis, documentation of existing databases, technology developments, and other standardization efforts in the geoscience and computer-science communities. A key aspect of the model is the notion that representation of the conceptual framework (ontology) that underlies geologic map data must be part of the model, because this framework changes with time and understanding, and varies between information providers. The top level of the model distinguishes geologic concepts, geologic representation concepts, and metadata. The geologic representation part of the model provides a framework for representing the ontology that underlies geologic map data through a controlled vocabulary, and for establishing the relationships between this vocabulary and a geologic map visualization or portrayal. Top-level geologic classes in the model are Earth material (substance), geologic unit (parts of the Earth), geologic age, geologic structure, fossil, geologic process, geologic relation, and geologic event.

  15. Derivation of a GIS-based watershed-scale conceptual model for the St. Jones River Delaware from habitat-scale conceptual models.

    PubMed

    Reiter, Michael A; Saintil, Max; Yang, Ziming; Pokrajac, Dragoljub

    2009-08-01

    Conceptual modeling is a useful tool for identifying pathways between drivers, stressors, Valued Ecosystem Components (VECs), and services that are central to understanding how an ecosystem operates. The St. Jones River watershed, DE is a complex ecosystem, and because management decisions must include ecological, social, political, and economic considerations, a conceptual model is a good tool for accommodating the full range of inputs. In 2002, a Four-Component, Level 1 conceptual model was formed for the key habitats of the St. Jones River watershed, but since the habitat level of resolution is too fine for some important watershed-scale issues we developed a functional watershed-scale model using the existing narrowed habitat-scale models. The narrowed habitat-scale conceptual models and associated matrices developed by Reiter et al. (2006) were combined with data from the 2002 land use/land cover (LULC) GIS-based maps of Kent County in Delaware to assemble a diagrammatic and numerical watershed-scale conceptual model incorporating the calculated weight of each habitat within the watershed. The numerical component of the assembled watershed model was subsequently subjected to the same Monte Carlo narrowing methodology used for the habitat versions to refine the diagrammatic component of the watershed-scale model. The narrowed numerical representation of the model was used to generate forecasts for changes in the parameters "Agriculture" and "Forest", showing that land use changes in these habitats propagated through the results of the model by the weighting factor. Also, the narrowed watershed-scale conceptual model identified some key parameters upon which to focus research attention and management decisions at the watershed scale. The forecast and simulation results seemed to indicate that the watershed-scale conceptual model does lead to different conclusions than the habitat-scale conceptual models for some issues at the larger watershed scale.

  16. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-06-01

    Yucca Mountain is an arid site proposed for consideration as the United States' first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500-1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5-4.5 mm/yr, or 2-3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  17. Evolution of the conceptual model of unsaturated zone hydrology at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Flint, Alan L.; Flint, Lorraine E.; Bodvarsson, Gudmundur S.; Kwicklis, Edward M.; Fabryka-Martin, June

    2001-01-01

    Yucca Mountain is an arid site proposed for consideration as the United States’ first underground high-level radioactive waste repository. Low rainfall (approximately 170 mm/yr) and a thick unsaturated zone (500–1000 m) are important physical attributes of the site because the quantity of water likely to reach the waste and the paths and rates of movement of the water to the saturated zone under future climates would be major factors in controlling the concentrations and times of arrival of radionuclides at the surrounding accessible environment. The framework for understanding the hydrologic processes that occur at this site and that control how quickly water will penetrate through the unsaturated zone to the water table has evolved during the past 15 yr. Early conceptual models assumed that very small volumes of water infiltrated into the bedrock (0.5–4.5 mm/yr, or 2–3 percent of rainfall), that much of the infiltrated water flowed laterally within the upper nonwelded units because of capillary barrier effects, and that the remaining water flowed down faults with a small amount flowing through the matrix of the lower welded, fractured rocks. It was believed that the matrix had to be saturated for fractures to flow. However, accumulating evidence indicated that infiltration rates were higher than initially estimated, such as infiltration modeling based on neutron borehole data, bomb-pulse isotopes deep in the mountain, perched water analyses and thermal analyses. Mechanisms supporting lateral diversion did not apply at these higher fluxes, and the flux calculated in the lower welded unit exceeded the conductivity of the matrix, implying vertical flow of water in the high permeability fractures of the potential repository host rock, and disequilibrium between matrix and fracture water potentials. The development of numerical modeling methods and parameter values evolved concurrently with the conceptual model in order to account for the observed field data

  18. Conceptual Model of Climate Change Impacts at LANL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dewart, Jean Marie

    Goal 9 of the LANL FY15 Site Sustainability Plan (LANL 2014a) addresses Climate Change Adaptation. As part of Goal 9, the plan reviews many of the individual programs the Laboratory has initiated over the past 20 years to address climate change impacts to LANL (e.g. Wildland Fire Management Plan, Forest Management Plan, etc.). However, at that time, LANL did not yet have a comprehensive approach to climate change adaptation. To fill this gap, the FY15 Work Plan for the LANL Long Term Strategy for Environmental Stewardship and Sustainability (LANL 2015) included a goal of (1) establishing a comprehensive conceptual modelmore » of climate change impacts at LANL and (2) establishing specific climate change indices to measure climate change and impacts at Los Alamos. Establishing a conceptual model of climate change impacts will demonstrate that the Laboratory is addressing climate change impacts in a comprehensive manner. This paper fulfills the requirement of goal 1. The establishment of specific indices of climate change at Los Alamos (goal 2), will improve our ability to determine climate change vulnerabilities and assess risk. Future work will include prioritizing risks, evaluating options/technologies/costs, and where appropriate, taking actions. To develop a comprehensive conceptual model of climate change impacts, we selected the framework provided in the National Oceanic and Atmospheric Administration (NOAA) Climate Resilience Toolkit (http://toolkit.climate.gov/).« less

  19. A Multivariate Model of Conceptual Change

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Heddy, Benjamin; Bailey, MarLynn; Farley, John

    2016-01-01

    The present study used the Cognitive Reconstruction of Knowledge Model (CRKM) model of conceptual change as a framework for developing and testing how key cognitive, motivational, and emotional variables are linked to conceptual change in physics. This study extends an earlier study developed by Taasoobshirazi and Sinatra ("J Res Sci…

  20. Integrating Intrusive and Non-intrusive Characterization Methods To Achieve A Conceptual Site Model For The SLDA FUSRAP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durham, L.A.; Peterson, J.M.; Frothingham, D.G.

    2008-07-01

    trenches. The data and information from these sources were used to refine the conceptual site model, complete the RI/FS, and support the ongoing remedial design and action, which will achieve site closure acceptable to all stakeholders. (authors)« less

  1. Framework for Uncertainty Assessment - Hanford Site-Wide Groundwater Flow and Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bergeron, M. P.; Cole, C. R.; Murray, C. J.; Thorne, P. D.; Wurstner, S. K.

    2002-05-01

    Pacific Northwest National Laboratory is in the process of development and implementation of an uncertainty estimation methodology for use in future site assessments that addresses parameter uncertainty as well as uncertainties related to the groundwater conceptual model. The long-term goals of the effort are development and implementation of an uncertainty estimation methodology for use in future assessments and analyses being made with the Hanford site-wide groundwater model. The basic approach in the framework developed for uncertainty assessment consists of: 1) Alternate conceptual model (ACM) identification to identify and document the major features and assumptions of each conceptual model. The process must also include a periodic review of the existing and proposed new conceptual models as data or understanding become available. 2) ACM development of each identified conceptual model through inverse modeling with historical site data. 3) ACM evaluation to identify which of conceptual models are plausible and should be included in any subsequent uncertainty assessments. 4) ACM uncertainty assessments will only be carried out for those ACMs determined to be plausible through comparison with historical observations and model structure identification measures. The parameter uncertainty assessment process generally involves: a) Model Complexity Optimization - to identify the important or relevant parameters for the uncertainty analysis; b) Characterization of Parameter Uncertainty - to develop the pdfs for the important uncertain parameters including identification of any correlations among parameters; c) Propagation of Uncertainty - to propagate parameter uncertainties (e.g., by first order second moment methods if applicable or by a Monte Carlo approach) through the model to determine the uncertainty in the model predictions of interest. 5)Estimation of combined ACM and scenario uncertainty by a double sum with each component of the inner sum (an individual CCDF

  2. Conceptual IT model

    NASA Astrophysics Data System (ADS)

    Arnaoudova, Kristina; Stanchev, Peter

    2015-11-01

    The business processes are the key asset for every organization. The design of the business process models is the foremost concern and target among an organization's functions. Business processes and their proper management are intensely dependent on the performance of software applications and technology solutions. The paper is attempt for definition of new Conceptual model of IT service provider, it could be examined as IT focused Enterprise model, part of Enterprise Architecture (EA) school.

  3. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Joe Iovenitti

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  4. Conceptualizing Telehealth in Nursing Practice: Advancing a Conceptual Model to Fill a Virtual Gap.

    PubMed

    Nagel, Daniel A; Penner, Jamie L

    2016-03-01

    Increasingly nurses use various telehealth technologies to deliver health care services; however, there has been a lag in research and generation of empirical knowledge to support nursing practice in this expanding field. One challenge to generating knowledge is a gap in development of a comprehensive conceptual model or theoretical framework to illustrate relationships of concepts and phenomena inherent to adoption of a broad range of telehealth technologies to holistic nursing practice. A review of the literature revealed eight published conceptual models, theoretical frameworks, or similar entities applicable to nursing practice. Many of these models focus exclusively on use of telephones and four were generated from qualitative studies, but none comprehensively reflect complexities of bridging nursing process and elements of nursing practice into use of telehealth. The purpose of this article is to present a review of existing conceptual models and frameworks, discuss predominant themes and features of these models, and present a comprehensive conceptual model for telehealth nursing practice synthesized from this literature for consideration and further development. This conceptual model illustrates characteristics of, and relationships between, dimensions of telehealth practice to guide research and knowledge development in provision of holistic person-centered care delivery to individuals by nurses through telehealth technologies. © The Author(s) 2015.

  5. Model averaging techniques for quantifying conceptual model uncertainty.

    PubMed

    Singh, Abhishek; Mishra, Srikanta; Ruskauff, Greg

    2010-01-01

    In recent years a growing understanding has emerged regarding the need to expand the modeling paradigm to include conceptual model uncertainty for groundwater models. Conceptual model uncertainty is typically addressed by formulating alternative model conceptualizations and assessing their relative likelihoods using statistical model averaging approaches. Several model averaging techniques and likelihood measures have been proposed in the recent literature for this purpose with two broad categories--Monte Carlo-based techniques such as Generalized Likelihood Uncertainty Estimation or GLUE (Beven and Binley 1992) and criterion-based techniques that use metrics such as the Bayesian and Kashyap Information Criteria (e.g., the Maximum Likelihood Bayesian Model Averaging or MLBMA approach proposed by Neuman 2003) and Akaike Information Criterion-based model averaging (AICMA) (Poeter and Anderson 2005). These different techniques can often lead to significantly different relative model weights and ranks because of differences in the underlying statistical assumptions about the nature of model uncertainty. This paper provides a comparative assessment of the four model averaging techniques (GLUE, MLBMA with KIC, MLBMA with BIC, and AIC-based model averaging) mentioned above for the purpose of quantifying the impacts of model uncertainty on groundwater model predictions. Pros and cons of each model averaging technique are examined from a practitioner's perspective using two groundwater modeling case studies. Recommendations are provided regarding the use of these techniques in groundwater modeling practice.

  6. Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report - December 2016.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Copland, John R.

    This Tijeras Arroyo Groundwater Current Conceptual Model and Corrective Measures Evaluation Report (CCM/CME Report) has been prepared by the U.S. Department of Energy (DOE) and Sandia Corporation (Sandia) to meet requirements under the Sandia National Laboratories-New Mexico (SNL/NM) Compliance Order on Consent (the Consent Order). The Consent Order, entered into by the New Mexico Environment Department (NMED), DOE, and Sandia, became effective on April 29, 2004. The Consent Order identified the Tijeras Arroyo Groundwater (TAG) Area of Concern (AOC) as an area of groundwater contamination requiring further characterization and corrective action. This report presents an updated Conceptual Site Model (CSM)more » of the TAG AOC that describes the contaminant release sites, the geological and hydrogeological setting, and the distribution and migration of contaminants in the subsurface. The dataset used for this report includes the analytical results from groundwater samples collected through December 2015.« less

  7. Evaluating the Functionality of Conceptual Models

    NASA Astrophysics Data System (ADS)

    Mehmood, Kashif; Cherfi, Samira Si-Said

    Conceptual models serve as the blueprints of information systems and their quality plays decisive role in the success of the end system. It has been witnessed that majority of the IS change-requests results due to deficient functionalities in the information systems. Therefore, a good analysis and design method should ensure that conceptual models are functionally correct and complete, as they are the communicating mediator between the users and the development team. Conceptual model is said to be functionally complete if it represents all the relevant features of the application domain and covers all the specified requirements. Our approach evaluates the functional aspects on multiple levels of granularity in addition to providing the corrective actions or transformation for improvement. This approach has been empirically validated by practitioners through a survey.

  8. Comparison of a Conceptual Groundwater Model and Physically Based Groundwater Mode

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; Griffiths, J.; Moore, C.; Woods, R. A.

    2017-12-01

    Groundwater is a vital resource for human activities including agricultural practice and urban water demand. Hydrologic modelling is an important way to study groundwater recharge, movement and discharge, and its response to both human activity and climate change. To understand the groundwater hydrologic processes nationally in New Zealand, we have developed a conceptually based groundwater flow model, which is fully integrated into a national surface-water model (TopNet), and able to simulate groundwater recharge, movement, and interaction with surface water. To demonstrate the capability of this groundwater model (TopNet-GW), we applied the model to an irrigated area with water shortage and pollution problems in the upper Ruamahanga catchment in Great Wellington Region, New Zealand, and compared its performance with a physically-based groundwater model (MODFLOW). The comparison includes river flow at flow gauging sites, and interaction between groundwater and river. Results showed that the TopNet-GW produced similar flow and groundwater interaction patterns as the MODFLOW model, but took less computation time. This shows the conceptually-based groundwater model has the potential to simulate national groundwater process, and could be used as a surrogate for the more physically based model.

  9. Performance measurement for people with multiple chronic conditions: conceptual model.

    PubMed

    Giovannetti, Erin R; Dy, Sydney; Leff, Bruce; Weston, Christine; Adams, Karen; Valuck, Tom B; Pittman, Aisha T; Blaum, Caroline S; McCann, Barbara A; Boyd, Cynthia M

    2013-10-01

    Improving quality of care for people with multiple chronic conditions (MCCs) requires performance measures reflecting the heterogeneity and scope of their care. Since most existing measures are disease specific, performance measures must be refined and new measures must be developed to address the complexity of care for those with MCCs. To describe development of the Performance Measurement for People with Multiple Chronic Conditions (PM-MCC) conceptual model. Framework development and a national stakeholder panel. We used reviews of existing conceptual frameworks of performance measurement, review of the literature on MCCs, input from experts in the multistakeholder Steering Committee, and public comment. The resulting model centers on the patient and family goals and preferences for care in the context of multiple care sites and providers, the type of care they are receiving, and the national priority domains for healthcare quality measurement. This model organizes measures into a comprehensive framework and identifies areas where measures are lacking. In this context, performance measures can be prioritized and implemented at different levels, in the context of patients' overall healthcare needs.

  10. A conceptual model for vision rehabilitation.

    PubMed

    Roberts, Pamela S; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2016-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines.

  11. OWL references in ORM conceptual modelling

    NASA Astrophysics Data System (ADS)

    Matula, Jiri; Belunek, Roman; Hunka, Frantisek

    2017-07-01

    Object Role Modelling methodology is the fact-based type of conceptual modelling. The aim of the paper is to emphasize a close connection to OWL documents and its possible mutual cooperation. The definition of entities or domain values is an indispensable part of the conceptual schema design procedure defined by the ORM methodology. Many of these entities are already defined in OWL documents. Therefore, it is not necessary to declare entities again, whereas it is possible to utilize references from OWL documents during modelling of information systems.

  12. SITE CHARACTERIZATION TO SUPPORT MODEL DEVELOPMENT FOR CONTAMINANTS IN GROUND WATER

    EPA Science Inventory

    The development of conceptual and predictive models is an important tool to guide site characterization in support of monitoring contaminants in ground water. The accuracy of predictive models is limited by the adequacy of the input data and the assumptions made to constrain mod...

  13. A conceptual model for vision rehabilitation

    PubMed Central

    Roberts, Pamela S.; Rizzo, John-Ross; Hreha, Kimberly; Wertheimer, Jeffrey; Kaldenberg, Jennifer; Hironaka, Dawn; Riggs, Richard; Colenbrander, August

    2017-01-01

    Vision impairments are highly prevalent after acquired brain injury (ABI). Conceptual models that focus on constructing intellectual frameworks greatly facilitate comprehension and implementation of practice guidelines in an interprofessional setting. The purpose of this article is to provide a review of the vision literature in ABI, describe a conceptual model for vision rehabilitation, explain its potential clinical inferences, and discuss its translation into rehabilitation across multiple practice settings and disciplines. PMID:27997671

  14. An Empirical Study of Enterprise Conceptual Modeling

    NASA Astrophysics Data System (ADS)

    Anaby-Tavor, Ateret; Amid, David; Fisher, Amit; Ossher, Harold; Bellamy, Rachel; Callery, Matthew; Desmond, Michael; Krasikov, Sophia; Roth, Tova; Simmonds, Ian; de Vries, Jacqueline

    Business analysts, business architects, and solution consultants use a variety of practices and methods in their quest to understand business. The resulting work products could end up being transitioned into the formal world of software requirement definitions or as recommendations for all kinds of business activities. We describe an empirical study about the nature of these methods, diagrams, and home-grown conceptual models as reflected in real practice at IBM. We identify the models as artifacts of "enterprise conceptual modeling". We study important features of these models, suggest practical classifications, and discuss their usage. Our survey shows that the "enterprise conceptual modeling" arena presents a variety of descriptive models, each used by a relatively small group of colleagues. Together they form a "long tail" that extends from "drawings" on one end to "standards" on the other.

  15. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zachara, John M.; Freshley, Mark D.; Last, George V.

    2012-11-01

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactionsmore » between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.« less

  16. A Structural Equation Model of Conceptual Change in Physics

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Sinatra, Gale M.

    2011-01-01

    A model of conceptual change in physics was tested on introductory-level, college physics students. Structural equation modeling was used to test hypothesized relationships among variables linked to conceptual change in physics including an approach goal orientation, need for cognition, motivation, and course grade. Conceptual change in physics…

  17. Unifying Screening Processes Within the PROSPR Consortium: A Conceptual Model for Breast, Cervical, and Colorectal Cancer Screening

    PubMed Central

    Kim, Jane J.; Schapira, Marilyn M.; Tosteson, Anna N. A.; Zauber, Ann G.; Geiger, Ann M.; Kamineni, Aruna; Weaver, Donald L.; Tiro, Jasmin A.

    2015-01-01

    General frameworks of the cancer screening process are available, but none directly compare the process in detail across different organ sites. This limits the ability of medical and public health professionals to develop and evaluate coordinated screening programs that apply resources and population management strategies available for one cancer site to other sites. We present a trans-organ conceptual model that incorporates a single screening episode for breast, cervical, and colorectal cancers into a unified framework based on clinical guidelines and protocols; the model concepts could be expanded to other organ sites. The model covers four types of care in the screening process: risk assessment, detection, diagnosis, and treatment. Interfaces between different provider teams (eg, primary care and specialty care), including communication and transfer of responsibility, may occur when transitioning between types of care. Our model highlights across each organ site similarities and differences in steps, interfaces, and transitions in the screening process and documents the conclusion of a screening episode. This model was developed within the National Cancer Institute–funded consortium Population-based Research Optimizing Screening through Personalized Regimens (PROSPR). PROSPR aims to optimize the screening process for breast, cervical, and colorectal cancer and includes seven research centers and a statistical coordinating center. Given current health care reform initiatives in the United States, this conceptual model can facilitate the development of comprehensive quality metrics for cancer screening and promote trans-organ comparative cancer screening research. PROSPR findings will support the design of interventions that improve screening outcomes across multiple cancer sites. PMID:25957378

  18. Conceptual Questions and Challenge Problems

    NASA Astrophysics Data System (ADS)

    Nurrenbern, Susan C.; Robinson, William R.

    1998-11-01

    The JCE Internet Conceptual Question and Challenge Problem Web site is a source of questions and problems that can be used in teaching and assessing conceptual understanding and problem solving in chemistry. Here you can find a library of free-response and multiple-choice conceptual questions and challenge problems, tips for writing these questions and problems, and a discussion of types of conceptual questions. This site is intended to be a means of sharing conceptual questions and challenge problems among chemical educators. This is a living site that will grow as you share conceptual questions and challenge problems and as we find new sources of information. We would like to make this site as inclusive as possible. Please share your questions and problems with us and alert us to references or Web sites that could be included on the site. You can use email, fax, or regular mail. Email: nurrenbern@purdue.edu or wrrobin@purdue.edu Fax: 765/494-0239 Mailing address: Susan C. Nurrenbern or William R. Robinson; Department of Chemistry; Purdue University; 1393 Brown Building; West Lafayette, IN 47907-1393. The Conceptual Questions and Challenge Problems Web site can be found here.

  19. A Conceptual Framework for SAHRA Integrated Multi-resolution Modeling in the Rio Grande Basin

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Gupta, H.; Springer, E.; Wagener, T.; Brookshire, D.; Duffy, C.

    2004-12-01

    The sustainable management of water resources in a river basin requires an integrated analysis of the social, economic, environmental and institutional dimensions of the problem. Numerical models are commonly used for integration of these dimensions and for communication of the analysis results to stakeholders and policy makers. The National Science Foundation Science and Technology Center for Sustainability of semi-Arid Hydrology and Riparian Areas (SAHRA) has been developing integrated multi-resolution models to assess impacts of climate variability and land use change on water resources in the Rio Grande Basin. These models not only couple natural systems such as surface and ground waters, but will also include engineering, economic and social components that may be involved in water resources decision-making processes. This presentation will describe the conceptual framework being developed by SAHRA to guide and focus the multiple modeling efforts and to assist the modeling team in planning, data collection and interpretation, communication, evaluation, etc. One of the major components of this conceptual framework is a Conceptual Site Model (CSM), which describes the basin and its environment based on existing knowledge and identifies what additional information must be collected to develop technically sound models at various resolutions. The initial CSM is based on analyses of basin profile information that has been collected, including a physical profile (e.g., topographic and vegetative features), a man-made facility profile (e.g., dams, diversions, and pumping stations), and a land use and ecological profile (e.g., demographics, natural habitats, and endangered species). Based on the initial CSM, a Conceptual Physical Model (CPM) is developed to guide and evaluate the selection of a model code (or numerical model) for each resolution to conduct simulations and predictions. A CPM identifies, conceptually, all the physical processes and engineering and socio

  20. Uncertainty Analysis Framework - Hanford Site-Wide Groundwater Flow and Transport Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Murray, Christopher J.

    2001-11-09

    Pacific Northwest National Laboratory (PNNL) embarked on a new initiative to strengthen the technical defensibility of the predictions being made with a site-wide groundwater flow and transport model at the U.S. Department of Energy Hanford Site in southeastern Washington State. In FY 2000, the focus of the initiative was on the characterization of major uncertainties in the current conceptual model that would affect model predictions. The long-term goals of the initiative are the development and implementation of an uncertainty estimation methodology in future assessments and analyses using the site-wide model. This report focuses on the development and implementation of anmore » uncertainty analysis framework.« less

  1. Force-directed visualization for conceptual data models

    NASA Astrophysics Data System (ADS)

    Battigaglia, Andrew; Sutter, Noah

    2017-03-01

    Conceptual data models are increasingly stored in an eXtensible Markup Language (XML) format because of its portability between different systems and the ability of databases to use this format for storing data. However, when attempting to capture business or design needs, an organized graphical format is preferred in order to facilitate communication to receive as much input as possible from users and subject-matter experts. Existing methods of achieving this conversion suffer from problems of not being specific enough to capture all of the needs of conceptual data modeling and not being able to handle a large number of relationships between entities. This paper describes an implementation for a modeling solution to clearly illustrate conceptual data models stored in XML formats in well organized and structured diagrams. A force layout with several different parameters is applied to the diagram to create both compact and easily traversable relationships between entities.

  2. Conceptual Web Users' Actions Prediction for Ontology-Based Browsing Recommendations

    NASA Astrophysics Data System (ADS)

    Robal, Tarmo; Kalja, Ahto

    The Internet consists of thousands of web sites with different kinds of structures. However, users are browsing the web according to their informational expectations towards the web site searched, having an implicit conceptual model of the domain in their minds. Nevertheless, people tend to repeat themselves and have partially shared conceptual views while surfing the web, finding some areas of web sites more interesting than others. Herein, we take advantage of the latter and provide a model and a study on predicting users' actions based on the web ontology concepts and their relations.

  3. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development

    PubMed Central

    2016-01-01

    Background Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. Objectives The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. Methods A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. Results The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one’s choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Conclusions Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other

  4. Conceptual Models in Health Informatics Research: A Literature Review and Suggestions for Development.

    PubMed

    Gray, Kathleen; Sockolow, Paulina

    2016-02-24

    Contributing to health informatics research means using conceptual models that are integrative and explain the research in terms of the two broad domains of health science and information science. However, it can be hard for novice health informatics researchers to find exemplars and guidelines in working with integrative conceptual models. The aim of this paper is to support the use of integrative conceptual models in research on information and communication technologies in the health sector, and to encourage discussion of these conceptual models in scholarly forums. A two-part method was used to summarize and structure ideas about how to work effectively with conceptual models in health informatics research that included (1) a selective review and summary of the literature of conceptual models; and (2) the construction of a step-by-step approach to developing a conceptual model. The seven-step methodology for developing conceptual models in health informatics research explained in this paper involves (1) acknowledging the limitations of health science and information science conceptual models; (2) giving a rationale for one's choice of integrative conceptual model; (3) explicating a conceptual model verbally and graphically; (4) seeking feedback about the conceptual model from stakeholders in both the health science and information science domains; (5) aligning a conceptual model with an appropriate research plan; (6) adapting a conceptual model in response to new knowledge over time; and (7) disseminating conceptual models in scholarly and scientific forums. Making explicit the conceptual model that underpins a health informatics research project can contribute to increasing the number of well-formed and strongly grounded health informatics research projects. This explication has distinct benefits for researchers in training, research teams, and researchers and practitioners in information, health, and other disciplines.

  5. Unifying screening processes within the PROSPR consortium: a conceptual model for breast, cervical, and colorectal cancer screening.

    PubMed

    Beaber, Elisabeth F; Kim, Jane J; Schapira, Marilyn M; Tosteson, Anna N A; Zauber, Ann G; Geiger, Ann M; Kamineni, Aruna; Weaver, Donald L; Tiro, Jasmin A

    2015-06-01

    General frameworks of the cancer screening process are available, but none directly compare the process in detail across different organ sites. This limits the ability of medical and public health professionals to develop and evaluate coordinated screening programs that apply resources and population management strategies available for one cancer site to other sites. We present a trans-organ conceptual model that incorporates a single screening episode for breast, cervical, and colorectal cancers into a unified framework based on clinical guidelines and protocols; the model concepts could be expanded to other organ sites. The model covers four types of care in the screening process: risk assessment, detection, diagnosis, and treatment. Interfaces between different provider teams (eg, primary care and specialty care), including communication and transfer of responsibility, may occur when transitioning between types of care. Our model highlights across each organ site similarities and differences in steps, interfaces, and transitions in the screening process and documents the conclusion of a screening episode. This model was developed within the National Cancer Institute-funded consortium Population-based Research Optimizing Screening through Personalized Regimens (PROSPR). PROSPR aims to optimize the screening process for breast, cervical, and colorectal cancer and includes seven research centers and a statistical coordinating center. Given current health care reform initiatives in the United States, this conceptual model can facilitate the development of comprehensive quality metrics for cancer screening and promote trans-organ comparative cancer screening research. PROSPR findings will support the design of interventions that improve screening outcomes across multiple cancer sites. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Data Modeling & the Infrastructural Nature of Conceptual Tools

    ERIC Educational Resources Information Center

    Lesh, Richard; Caylor, Elizabeth; Gupta, Shweta

    2007-01-01

    The goal of this paper is to demonstrate the infrastructural nature of many modern conceptual technologies. The focus of this paper is on conceptual tools associated with elementary types of data modeling. We intend to show a variety of ways in which these conceptual tools not only express thinking, but also mold and shape thinking. And those ways…

  7. Installing the earth station of Ka-band satellite frequency in Malaysia: conceptual framework for site decision

    NASA Astrophysics Data System (ADS)

    Mahmud, M. R.; Reba, M. N. M.; Jaw, S. W.; Arsyad, A.; Ibrahim, M. A. M.

    2017-05-01

    This paper developed a conceptual framework in determining the suitable location in installing the earth station for Ka-band satellite communication in Malaysia. This current evolution of high throughput satellites experienced major challenge due to Malaysian climate. Because Ka-band frequency is highly attenuated by the rainfall; it is an enormous challenge to define the most appropriate site for the static communication. Site diversity, a measure to anticipate this conflict by choosing less attenuated region and geographically change the transmission strategy on season basis require accurate spatio-temporal information on the geographical, environmental and hydro-climatology at local scale. Prior to that request, this study developed a conceptual framework to cater the needs. By using the digital spatial data, acquired from site measurement and remote sensing, the proposed framework applied a multiple criteria analysis to perform the tasks of site selection. With the advancement of high resolution remotely sensed data, site determination can be conducted as in Malaysia; accommodating a new, fast, and effective satellite communication. The output of this study is one of the pioneer contributions to create a high tech-society.

  8. Conceptual Frameworks in the Doctoral Research Process: A Pedagogical Model

    ERIC Educational Resources Information Center

    Berman, Jeanette; Smyth, Robyn

    2015-01-01

    This paper contributes to consideration of the role of conceptual frameworks in the doctoral research process. Through reflection on the two authors' own conceptual frameworks for their doctoral studies, a pedagogical model has been developed. The model posits the development of a conceptual framework as a core element of the doctoral…

  9. From conceptual modeling to a map

    NASA Astrophysics Data System (ADS)

    Gotlib, Dariusz; Olszewski, Robert

    2018-05-01

    Nowadays almost every map is a component of the information system. Design and production of maps requires the use of specific rules for modeling information systems: conceptual, application and data modelling. While analyzing various stages of cartographic modeling the authors ask the question: at what stage of this process a map occurs. Can we say that the "life of the map" begins even before someone define its form of presentation? This question is particularly important at the time of exponentially increasing number of new geoinformation products. During the analysis of the theory of cartography and relations of the discipline to other fields of knowledge it has been attempted to define a few properties of cartographic modeling which distinguish the process from other methods of spatial modeling. Assuming that the map is a model of reality (created in the process of cartographic modeling supported by domain-modeling) the article proposes an analogy of the process of cartographic modeling to the scheme of conceptual modeling presented in ISO 19101 standard.

  10. [Public health conceptual models and paradigms].

    PubMed

    Hernández-Girón, Carlos; Orozco-Núñez, Emanuel; Arredondo-López, Armando

    2012-01-01

    The epidemiological transition model proposed by Omhran at the beginning of the 1970s (decreased fecundity rate and increased life expectancy), together with modifications in lifestyles and diet, showed increased mortality due to chronically degenerative causes. This essay thus discusses and makes a comparative analysis of some currents of thought, taking as its common thread an analysis of epidemiological change identified in different eras or stages and relationships with some public health models or conceptual frameworks. Discussing public health paradigms leads to a historical recapitulation of conceptual models ranging from magical-religious conceptions to ecological and socio-medical models. M. Susser proposed 3 eras in this discipline's evolution in his speech on the future of the epidemiology. The epidemiological changes analysed through different approaches constitute elements of analysis that all models discussed in this essay include to delimit the contributions and variables so determining them.

  11. Best Practices for Environmental Site Management: A Practical Guide for Applying Environmental Sequence Stratigraphy to Improve Conceptual Site Models

    EPA Science Inventory

    Presented here is a practical guide on the application of the geologic principles of sequence stratigraphy and facies models to the characterization of stratigraphic heterogeneity at hazardous waste sites. This technology is applicable to sites underlain by clastic aquifers (int...

  12. Iodine conceptual model at Hanford: Aqueous speciation and interactions with minerals

    NASA Astrophysics Data System (ADS)

    Qafoku, N. P.; Lawter, A.; McElroy, E.; Szecsody, J. E.; Lee, B.; Truex, M. J.; Smith, F.; Kerisit, S.; Freedman, V. L.

    2017-12-01

    Isotopes of iodine were generated during plutonium production at the U.S. Department of Energy Hanford Site. The fate and transport of 129I in the environment and potential remediation technologies are currently being studied as part of environmental remediation activities at the Hanford Site. A conceptual model describing the nature and extent of subsurface contamination, processes and reactions that control plume behavior, and factors relevant to potential remediation processes is needed to support environmental remedy decisions. Because 129I is an uncommon contaminant, relevant remediation experience and scientific literature are limited. As part of the effort to develop a comprehensive conceptual model of iodine at the Hanford subsurface, we conducted a series of bench-scale experiments to determine the extent of iodine interactions with minerals, abiotic and biotic species transformation via electron transfer reactions, and mechanisms of iodine aqueous species attentuation (i.e., adsorption and co-precipitation). We will also present data collected from solid phase characterization efforts using SEM/EDS, SEM/FIB, TEM/SAED, XANES and NanoSIMS. Interactions of iodine species with natural organic matter are also important; we determined the identity of organic matter compounds at Hanford and their affinity for different aqueous iodine species (i.e., iodate and iodide) using FTICR-MS along with tandem mass spectrometry (MS/MS) to verify organo-iodide/iodate binding. Finally, we used a variety of molecular dymanic calculations to identify energetically competitive incorporation scenarios, and determine incorporation limits and charge compensation mechanisms.

  13. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity

    PubMed Central

    Marson, Daniel

    2016-01-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. PMID:27506235

  14. Conceptualizing Peatlands in a Physically-Based Spatially Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Downer, Charles; Wahl, Mark

    2017-04-01

    In as part of a research effort focused on climate change effects on permafrost near Fairbanks, Alaska, it became apparent that peat soils, overlain by thick sphagnum moss, had a considerable effect on the overall hydrology. Peatlands represent a confounding mixture of vegetation, soils, and water that present challenges for conceptualizing and parametrizing hydrologic models. We employed the Gridded Surface Subsurface Hydrologic Analysis Model (GSSHA) in our analysis of the Caribou Poker Creek Experimental Watershed (CPCRW). GSSHA is a physically-based, spatially distributed, watershed model developed by the U.S. Army to simulate important streamflow-generating processes (Downer and Ogden, 2004). The model enables simulation of surface water and groundwater interactions, as well as soil temperature and frozen ground effects on subsurface water movement. The test site is a 104 km2 basin located in the Yukon-Tanana Uplands of the Northern Plateaus Physiographic Province centered on 65˚10' N latitude and 147˚30' W longitude. The area lies above the Chattanika River floodplain and is characterized by rounded hilltops with gentle slopes and alluvium-floored valleys having minimal relief (Wahrhaftig, 1965) underlain by a mica shist of the Birch Creek formation (Rieger et al., 1972). The region has a cold continental climate characterized by short warm summers and long cold winters. Observed stream flows indicated significant groundwater contribution with sustained base flows even during dry periods. A site visit exposed the presence of surface water flows indicating a mixed basin that would require both surface and subsurface simulation capability to properly capture the response. Soils in the watershed are predominately silt loam underlain by shallow fractured bedrock. Throughout much of the basin, a thick layer of live sphagnum moss and fine peat covers the ground surface. A restrictive layer of permafrost is found on north facing slopes. The combination of thick

  15. Conceptual Modeling via Logic Programming

    DTIC Science & Technology

    1990-01-01

    Define User Interface and Query Language L i1W= Ltl k.l 4. Define Procedures for Specifying Output S . Select Logic Programming Language 6. Develop ...baseline s change model. sessions and baselines. It was changed 6. Develop Methodology for C 31 Users. considerably with the advent of the window This...Model Development : Implica- for Conceptual Modeling Via Logic tions for Communications of a Cognitive Programming. Marina del Rey, Calif.: Analysis of

  16. Validation of the Continuum of Care Conceptual Model for Athletic Therapy

    PubMed Central

    Lafave, Mark R.; Butterwick, Dale; Eubank, Breda

    2015-01-01

    Utilization of conceptual models in field-based emergency care currently borrows from existing standards of medical and paramedical professions. The purpose of this study was to develop and validate a comprehensive conceptual model that could account for injuries ranging from nonurgent to catastrophic events including events that do not follow traditional medical or prehospital care protocols. The conceptual model should represent the continuum of care from the time of initial injury spanning to an athlete's return to participation in their sport. Finally, the conceptual model should accommodate both novices and experts in the AT profession. This paper chronicles the content validation steps of the Continuum of Care Conceptual Model for Athletic Therapy (CCCM-AT). The stages of model development were domain and item generation, content expert validation using a three-stage modified Ebel procedure, and pilot testing. Only the final stage of the modified Ebel procedure reached a priori 80% consensus on three domains of interest: (1) heading descriptors; (2) the order of the model; (3) the conceptual model as a whole. Future research is required to test the use of the CCCM-AT in order to understand its efficacy in teaching and practice within the AT discipline. PMID:26464897

  17. Conceptual Models and Guidelines for Clinical Assessment of Financial Capacity.

    PubMed

    Marson, Daniel

    2016-09-01

    The ability to manage financial affairs is a life skill of critical importance, and neuropsychologists are increasingly asked to assess financial capacity across a variety of settings. Sound clinical assessment of financial capacity requires knowledge and appreciation of applicable clinical conceptual models and principles. However, the literature has presented relatively little conceptual guidance for clinicians concerning financial capacity and its assessment. This article seeks to address this gap. The article presents six clinical models of financial capacity : (1) the early gerontological IADL model of Lawton, (2) the clinical skills model and (3) related cognitive psychological model developed by Marson and colleagues, (4) a financial decision-making model adapting earlier decisional capacity work of Appelbaum and Grisso, (5) a person-centered model of financial decision-making developed by Lichtenberg and colleagues, and (6) a recent model of financial capacity in the real world developed through the Institute of Medicine. Accompanying presentation of the models is discussion of conceptual and practical perspectives they represent for clinician assessment. Based on the models, the article concludes by presenting a series of conceptually oriented guidelines for clinical assessment of financial capacity. In summary, sound assessment of financial capacity requires knowledge and appreciation of clinical conceptual models and principles. Awareness of such models, principles and guidelines will strengthen and advance clinical assessment of financial capacity. © The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. The Cancer Family Caregiving Experience: An Updated and Expanded Conceptual Model

    PubMed Central

    Fletcher, Barbara Swore; Miaskowski, Christine; Given, Barbara; Schumacher, Karen

    2011-01-01

    Objective The decade from 2000–2010 was an era of tremendous growth in family caregiving research specific to the cancer population. This research has implications for how cancer family caregiving is conceptualized, yet the most recent comprehensive model of cancer family caregiving was published ten years ago. Our objective was to develop an updated and expanded comprehensive model of the cancer family caregiving experience, derived from concepts and variables used in research during past ten years. Methods A conceptual model was developed based on cancer family caregiving research published from 2000–2010. Results Our updated and expanded model has three main elements: 1) the stress process, 2) contextual factors, and 3) the cancer trajectory. Emerging ways of conceptualizing the relationships between and within model elements are addressed, as well as an emerging focus on caregiver-patient dyads as the unit of analysis. Conclusions Cancer family caregiving research has grown dramatically since 2000 resulting in a greatly expanded conceptual landscape. This updated and expanded model of the cancer family caregiving experience synthesizes the conceptual implications of an international body of work and demonstrates tremendous progress in how cancer family caregiving research is conceptualized. PMID:22000812

  19. Tumor heterogeneity and progression: conceptual foundations for modeling.

    PubMed

    Greller, L D; Tobin, F L; Poste, G

    1996-01-01

    A conceptual foundation for modeling tumor progression, growth, and heterogeneity is presented. The purpose of such models is to aid understanding, test ideas, formulate experiments, and to model cancer 'in machina' to address the dynamic features of tumor cell heterogeneity, progression, and growth. The descriptive capabilities of such an approach provides a consistent language for qualitatively reasoning about tumor behavior. This approach provides a schema for building conceptual models that combine three key phenomenological driving elements: growth, progression, and genetic instability. The growth element encompasses processes contributing to changes in tumor bulk and is distinct from progression per se. The progression element subsumes a broad collection of processes underlying phenotypic progression. The genetics elements represents heritable changes which potentially affect tumor character and behavior. Models, conceptual and mathematical, can be built for different tumor situations by drawing upon the interaction of these three distinct driving elements. These models can be used as tools to explore a diversity of hypotheses concerning dynamic changes in cellular populations during tumor progression, including the generation of intratumor heterogeneity. Such models can also serve to guide experimentation and to gain insight into dynamic aspects of complex tumor behavior.

  20. A New Method for Conceptual Modelling of Information Systems

    NASA Astrophysics Data System (ADS)

    Gustas, Remigijus; Gustiene, Prima

    Service architecture is not necessarily bound to the technical aspects of information system development. It can be defined by using conceptual models that are independent of any implementation technology. Unfortunately, the conventional information system analysis and design methods cover just a part of required modelling notations for engineering of service architectures. They do not provide effective support to maintain semantic integrity between business processes and data. Service orientation is a paradigm that can be applied for conceptual modelling of information systems. The concept of service is rather well understood in different domains. It can be applied equally well for conceptualization of organizational and technical information system components. This chapter concentrates on analysis of the differences between service-oriented modelling and object-oriented modelling. Service-oriented method is used for semantic integration of information system static and dynamic aspects.

  1. A Conceptual Model for Episodes of Acute, Unscheduled Care.

    PubMed

    Pines, Jesse M; Lotrecchiano, Gaetano R; Zocchi, Mark S; Lazar, Danielle; Leedekerken, Jacob B; Margolis, Gregg S; Carr, Brendan G

    2016-10-01

    We engaged in a 1-year process to develop a conceptual model representing an episode of acute, unscheduled care. Acute, unscheduled care includes acute illnesses (eg, nausea and vomiting), injuries, or exacerbations of chronic conditions (eg, worsening dyspnea in congestive heart failure) and is delivered in emergency departments, urgent care centers, and physicians' offices, as well as through telemedicine. We began with a literature search to define an acute episode of care and to identify existing conceptual models used in health care. In accordance with this information, we then drafted a preliminary conceptual model and collected stakeholder feedback, using online focus groups and concept mapping. Two technical expert panels reviewed the draft model, examined the stakeholder feedback, and discussed ways the model could be improved. After integrating the experts' comments, we solicited public comment on the model and made final revisions. The final conceptual model includes social and individual determinants of health that influence the incidence of acute illness and injury, factors that affect care-seeking decisions, specific delivery settings where acute care is provided, and outcomes and costs associated with the acute care system. We end with recommendations for how researchers, policymakers, payers, patients, and providers can use the model to identify and prioritize ways to improve acute care delivery. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  2. Why College Students Cheat: A Conceptual Model of Five Factors

    ERIC Educational Resources Information Center

    Yu, Hongwei; Glanzer, Perry L.; Johnson, Byron R.; Sriram, Rishi; Moore, Brandon

    2018-01-01

    Though numerous studies have identified factors associated with academic misconduct, few have proposed conceptual models that could make sense of multiple factors. In this study, we used structural equation modeling (SEM) to test a conceptual model of five factors using data from a relatively large sample of 2,503 college students. The results…

  3. The ACTIVE conceptual framework as a structural equation model.

    PubMed

    Gross, Alden L; Payne, Brennan R; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M; Farias, Sarah; Giovannetti, Tania; Ip, Edward H; Marsiske, Michael; Rebok, George W; Schaie, K Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N

    2018-01-01

    Background/Study Context: Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of people who show

  4. The ACTIVE conceptual framework as a structural equation model

    PubMed Central

    Gross, Alden L.; Payne, Brennan R.; Casanova, Ramon; Davoudzadeh, Pega; Dzierzewski, Joseph M.; Farias, Sarah; Giovannetti, Tania; Ip, Edward H.; Marsiske, Michael; Rebok, George W.; Schaie, K. Warner; Thomas, Kelsey; Willis, Sherry; Jones, Richard N.

    2018-01-01

    Background/Study Context Conceptual frameworks are analytic models at a high level of abstraction. Their operationalization can inform randomized trial design and sample size considerations. Methods The Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) conceptual framework was empirically tested using structural equation modeling (N=2,802). ACTIVE was guided by a conceptual framework for cognitive training in which proximal cognitive abilities (memory, inductive reasoning, speed of processing) mediate treatment-related improvement in primary outcomes (everyday problem-solving, difficulty with activities of daily living, everyday speed, driving difficulty), which in turn lead to improved secondary outcomes (health-related quality of life, health service utilization, mobility). Measurement models for each proximal, primary, and secondary outcome were developed and tested using baseline data. Each construct was then combined in one model to evaluate fit (RMSEA, CFI, normalized residuals of each indicator). To expand the conceptual model and potentially inform future trials, evidence of modification of structural model parameters was evaluated by age, years of education, sex, race, and self-rated health status. Results Preconceived measurement models for memory, reasoning, speed of processing, everyday problem-solving, instrumental activities of daily living (IADL) difficulty, everyday speed, driving difficulty, and health-related quality of life each fit well to the data (all RMSEA < .05; all CFI > .95). Fit of the full model was excellent (RMSEA = .038; CFI = .924). In contrast with previous findings from ACTIVE regarding who benefits from training, interaction testing revealed associations between proximal abilities and primary outcomes are stronger on average by nonwhite race, worse health, older age, and less education (p < .005). Conclusions Empirical data confirm the hypothesized ACTIVE conceptual model. Findings suggest that the types of

  5. Thoughts About Nursing Conceptual Models and the "Medical Model".

    PubMed

    Fawcett, Jacqueline

    2017-01-01

    This essay, written to celebrate the 30th anniversary of Nursing Science Quarterly, focuses on the distinctions between the discipline of nursology and the trade of medicine. The distinctions are drawn from content found in nursing conceptual models and from literature about the elusive content of the so-called "medical model."

  6. Challenges in Requirements Engineering: A Research Agenda for Conceptual Modeling

    NASA Astrophysics Data System (ADS)

    March, Salvatore T.; Allen, Gove N.

    Domains for which information systems are developed deal primarily with social constructions—conceptual objects and attributes created by human intentions and for human purposes. Information systems play an active role in these domains. They document the creation of new conceptual objects, record and ascribe values to their attributes, initiate actions within the domain, track activities performed, and infer conclusions based on the application of rules that govern how the domain is affected when socially-defined and identified causal events occur. Emerging applications of information technologies evaluate such business rules, learn from experience, and adapt to changes in the domain. Conceptual modeling grammars aimed at representing their system requirements must include conceptual objects, socially-defined events, and the rules pertaining to them. We identify challenges to conceptual modeling research and pose an ontology of the artificial as a step toward meeting them.

  7. Implications of Simulation Conceptual Model Development for Simulation Management and Uncertainty Assessment

    NASA Technical Reports Server (NTRS)

    Pace, Dale K.

    2000-01-01

    A simulation conceptual model is a simulation developers way of translating modeling requirements (i. e., what is to be represented by the simulation or its modification) into a detailed design framework (i. e., how it is to be done), from which the software, hardware, networks (in the case of distributed simulation), and systems/equipment that will make up the simulation can be built or modified. A conceptual model is the collection of information which describes a simulation developers concept about the simulation and its pieces. That information consists of assumptions, algorithms, characteristics, relationships, and data. Taken together, these describe how the simulation developer understands what is to be represented by the simulation (entities, actions, tasks, processes, interactions, etc.) and how that representation will satisfy the requirements to which the simulation responds. Thus the conceptual model is the basis for judgment about simulation fidelity and validity for any condition that is not specifically tested. The more perspicuous and precise the conceptual model, the more likely it is that the simulation development will both fully satisfy requirements and allow demonstration that the requirements are satisfied (i. e., validation). Methods used in simulation conceptual model development have significant implications for simulation management and for assessment of simulation uncertainty. This paper suggests how to develop and document a simulation conceptual model so that the simulation fidelity and validity can be most effectively determined. These ideas for conceptual model development apply to all simulation varieties. The paper relates these ideas to uncertainty assessments as they relate to simulation fidelity and validity. The paper also explores implications for simulation management from conceptual model development methods, especially relative to reuse of simulation components.

  8. Supporting user-defined granularities in a spatiotemporal conceptual model

    USGS Publications Warehouse

    Khatri, V.; Ram, S.; Snodgrass, R.T.; O'Brien, G. M.

    2002-01-01

    Granularities are integral to spatial and temporal data. A large number of applications require storage of facts along with their temporal and spatial context, which needs to be expressed in terms of appropriate granularities. For many real-world applications, a single granularity in the database is insufficient. In order to support any type of spatial or temporal reasoning, the semantics related to granularities needs to be embedded in the database. Specifying granularities related to facts is an important part of conceptual database design because under-specifying the granularity can restrict an application, affect the relative ordering of events and impact the topological relationships. Closely related to granularities is indeterminacy, i.e., an occurrence time or location associated with a fact that is not known exactly. In this paper, we present an ontology for spatial granularities that is a natural analog of temporal granularities. We propose an upward-compatible, annotation-based spatiotemporal conceptual model that can comprehensively capture the semantics related to spatial and temporal granularities, and indeterminacy without requiring new spatiotemporal constructs. We specify the formal semantics of this spatiotemporal conceptual model via translation to a conventional conceptual model. To underscore the practical focus of our approach, we describe an on-going case study. We apply our approach to a hydrogeologic application at the United States Geologic Survey and demonstrate that our proposed granularity-based spatiotemporal conceptual model is straightforward to use and is comprehensive.

  9. Conceptual Model Learning Objects and Design Recommendations for Small Screens

    ERIC Educational Resources Information Center

    Churchill, Daniel

    2011-01-01

    This article presents recommendations for the design of conceptual models for applications via handheld devices such as personal digital assistants and some mobile phones. The recommendations were developed over a number of years through experience that involves design of conceptual models, and applications of these multimedia representations with…

  10. A Common Core for Active Conceptual Modeling for Learning from Surprises

    NASA Astrophysics Data System (ADS)

    Liddle, Stephen W.; Embley, David W.

    The new field of active conceptual modeling for learning from surprises (ACM-L) may be helpful in preserving life, protecting property, and improving quality of life. The conceptual modeling community has developed sound theory and practices for conceptual modeling that, if properly applied, could help analysts model and predict more accurately. In particular, we need to associate more semantics with links, and we need fully reified high-level objects and relationships that have a clear, formal underlying semantics that follows a natural, ontological approach. We also need to capture more dynamic aspects in our conceptual models to more accurately model complex, dynamic systems. These concepts already exist, and the theory is well developed; what remains is to link them with the ideas needed to predict system evolution, thus enabling risk assessment and response planning. No single researcher or research group will be able to achieve this ambitious vision alone. As a starting point, we recommend that the nascent ACM-L community agree on a common core model that supports all aspects—static and dynamic—needed for active conceptual modeling in support of learning from surprises. A common core will more likely gain the traction needed to sustain the extended ACM-L research effort that will yield the advertised benefits of learning from surprises.

  11. Tolerance of uncertainty: Conceptual analysis, integrative model, and implications for healthcare.

    PubMed

    Hillen, Marij A; Gutheil, Caitlin M; Strout, Tania D; Smets, Ellen M A; Han, Paul K J

    2017-05-01

    Uncertainty tolerance (UT) is an important, well-studied phenomenon in health care and many other important domains of life, yet its conceptualization and measurement by researchers in various disciplines have varied substantially and its essential nature remains unclear. The objectives of this study were to: 1) analyze the meaning and logical coherence of UT as conceptualized by developers of UT measures, and 2) develop an integrative conceptual model to guide future empirical research regarding the nature, causes, and effects of UT. A narrative review and conceptual analysis of 18 existing measures of Uncertainty and Ambiguity Tolerance was conducted, focusing on how measure developers in various fields have defined both the "uncertainty" and "tolerance" components of UT-both explicitly through their writings and implicitly through the items constituting their measures. Both explicit and implicit conceptual definitions of uncertainty and tolerance vary substantially and are often poorly and inconsistently specified. A logically coherent, unified understanding or theoretical model of UT is lacking. To address these gaps, we propose a new integrative definition and multidimensional conceptual model that construes UT as the set of negative and positive psychological responses-cognitive, emotional, and behavioral-provoked by the conscious awareness of ignorance about particular aspects of the world. This model synthesizes insights from various disciplines and provides an organizing framework for future research. We discuss how this model can facilitate further empirical and theoretical research to better measure and understand the nature, determinants, and outcomes of UT in health care and other domains of life. Uncertainty tolerance is an important and complex phenomenon requiring more precise and consistent definition. An integrative definition and conceptual model, intended as a tentative and flexible point of departure for future research, adds needed breadth

  12. Problem-oriented patient record model as a conceptual foundation for a multi-professional electronic patient record.

    PubMed

    De Clercq, Etienne

    2008-09-01

    It is widely accepted that the development of electronic patient records, or even of a common electronic patient record, is one possible way to improve cooperation and data communication between nurses and physicians. Yet, little has been done so far to develop a common conceptual model for both medical and nursing patient records, which is a first challenge that should be met to set up a common electronic patient record. In this paper, we describe a problem-oriented conceptual model and we show how it may suit both nursing and medical perspectives in a hospital setting. We started from existing nursing theory and from an initial model previously set up for primary care. In a hospital pilot site, a multi-disciplinary team refined this model using one large and complex clinical case (retrospective study) and nine ongoing cases (prospective study). An internal validation was performed through hospital-wide multi-professional interviews and through discussions around a graphical user interface prototype. To assess the consistency of the model, a computer engineer specified it. Finally, a Belgian expert working group performed an external assessment of the model. As a basis for a common patient record we propose a simple problem-oriented conceptual model with two levels of meta-information. The model is mapped with current nursing theories and it includes the following concepts: "health care element", "health approach", "health agent", "contact", "subcontact" and "service". These concepts, their interrelationships and some practical rules for using the model are illustrated in this paper. Our results are compatible with ongoing standardization work at the Belgian and European levels. Our conceptual model is potentially a foundation for a multi-professional electronic patient record that is problem-oriented and therefore patient-centred.

  13. The Sim-SEQ Project: Comparison of Selected Flow Models for the S-3 Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukhopadhyay, Sumit; Doughty, Christine A.; Bacon, Diana H.

    Sim-SEQ is an international initiative on model comparison for geologic carbon sequestration, with an objective to understand and, if possible, quantify model uncertainties. Model comparison efforts in Sim-SEQ are at present focusing on one specific field test site, hereafter referred to as the Sim-SEQ Study site (or S-3 site). Within Sim-SEQ, different modeling teams are developing conceptual models of CO2 injection at the S-3 site. In this paper, we select five flow models of the S-3 site and provide a qualitative comparison of their attributes and predictions. These models are based on five different simulators or modeling approaches: TOUGH2/EOS7C, STOMP-CO2e,more » MoReS, TOUGH2-MP/ECO2N, and VESA. In addition to model-to-model comparison, we perform a limited model-to-data comparison, and illustrate how model choices impact model predictions. We conclude the paper by making recommendations for model refinement that are likely to result in less uncertainty in model predictions.« less

  14. Conceptual modeling for Prospective Health Technology Assessment.

    PubMed

    Gantner-Bär, Marion; Djanatliev, Anatoli; Prokosch, Hans-Ulrich; Sedlmayr, Martin

    2012-01-01

    Prospective Health Technology Assessment (ProHTA) is a new and innovative approach to analyze and assess new technologies, methods and procedures in health care. Simulation processes are used to model innovations before the cost-intensive design and development phase. Thus effects on patient care, the health care system as well as health economics aspects can be estimated. To generate simulation models a valid information base is necessary and therefore conceptual modeling is most suitable. Project-specifically improved methods and characteristics of simulation modeling are combined in the ProHTA Conceptual Modeling Process and initially implemented for acute ischemic stroke treatment in Germany. Additionally the project aims at simulation of other diseases and health care systems as well. ProHTA is an interdisciplinary research project within the Cluster of Excellence for Medical Technology - Medical Valley European Metropolitan Region Nuremberg (EMN), which is funded by the German Federal Ministry of Education and Research (BMBF), project grant No. 01EX1013B.

  15. Developing rural palliative care: validating a conceptual model.

    PubMed

    Kelley, Mary Lou; Williams, Allison; DeMiglio, Lily; Mettam, Hilary

    2011-01-01

    The purpose of this research was to validate a conceptual model for developing palliative care in rural communities. This model articulates how local rural healthcare providers develop palliative care services according to four sequential phases. The model has roots in concepts of community capacity development, evolves from collaborative, generalist rural practice, and utilizes existing health services infrastructure. It addresses how rural providers manage challenges, specifically those related to: lack of resources, minimal community understanding of palliative care, health professionals' resistance, the bureaucracy of the health system, and the obstacles of providing services in rural environments. Seven semi-structured focus groups were conducted with interdisciplinary health providers in 7 rural communities in two Canadian provinces. Using a constant comparative analysis approach, focus group data were analyzed by examining participants' statements in relation to the model and comparing emerging themes in the development of rural palliative care to the elements of the model. The data validated the conceptual model as the model was able to theoretically predict and explain the experiences of the 7 rural communities that participated in the study. New emerging themes from the data elaborated existing elements in the model and informed the requirement for minor revisions. The model was validated and slightly revised, as suggested by the data. The model was confirmed as being a useful theoretical tool for conceptualizing the development of rural palliative care that is applicable in diverse rural communities.

  16. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  17. MODELING TO EVOLVE UNDERSTANDING OF THE SHALLOW GROUND WATER FLOW SYSTEM BENEATH THE LIZZIE RESEARCH SITE, NC

    EPA Science Inventory

    The purpose of the modeling effort presented here is to evolve a conceptual model of ground-water flow at the Lizzie, NC research site using analytic solutions and field observations. The resulting analytic element parameterization of boundary conditions, aquifer transmissivitie...

  18. Development of a semi-automated model identification and calibration tool for conceptual modelling of sewer systems.

    PubMed

    Wolfs, Vincent; Villazon, Mauricio Florencio; Willems, Patrick

    2013-01-01

    Applications such as real-time control, uncertainty analysis and optimization require an extensive number of model iterations. Full hydrodynamic sewer models are not sufficient for these applications due to the excessive computation time. Simplifications are consequently required. A lumped conceptual modelling approach results in a much faster calculation. The process of identifying and calibrating the conceptual model structure could, however, be time-consuming. Moreover, many conceptual models lack accuracy, or do not account for backwater effects. To overcome these problems, a modelling methodology was developed which is suited for semi-automatic calibration. The methodology is tested for the sewer system of the city of Geel in the Grote Nete river basin in Belgium, using both synthetic design storm events and long time series of rainfall input. A MATLAB/Simulink(®) tool was developed to guide the modeller through the step-wise model construction, reducing significantly the time required for the conceptual modelling process.

  19. Development of Conceptual Models for Internet Search: A Case Study.

    ERIC Educational Resources Information Center

    Uden, Lorna; Tearne, Stephen; Alderson, Albert

    This paper describes the creation and evaluation of a World Wide Web-based courseware module, using conceptual models based on constructivism, that teaches novices how to use the Internet for searching. Questionnaires and interviews were used to understand the difficulties of a group of novices. The conceptual model of the experts for the task was…

  20. Administrator Training and Development: Conceptual Model.

    ERIC Educational Resources Information Center

    Boardman, Gerald R.

    A conceptual model for an individualized training program for school administrators integrates processes, characteristics, and tasks through theory training and application. Based on an application of contingency theory, it provides a system matching up administrative candidates' needs in three areas (administrative process, administrative…

  1. Conceptual model for partnership and sustainability in global health.

    PubMed

    Leffers, Jeanne; Mitchell, Emma

    2011-01-01

    Although nursing has a long history of service to the global community, the profession lacks a theoretical and empirical base for nurses to frame their global practice. A study using grounded theory methodology to investigate partnership and sustainability for global health led to the development of a conceptual model. Interviews were conducted with 13 global health nurse experts. Themes from the interviews were: components for engagement, mutual goal setting, cultural bridging, collaboration, capacity building, leadership, partnership, ownership, and sustainability. Next, the identified themes were reviewed in the literature in order to evaluate their conceptual relationships. Finally, careful comparison of the interview transcripts and the supporting literature led to the Conceptual Framework for Partnership and Sustainability in Global Health Nursing. The model posits that engagement and partnership must precede any planning and intervention in order to create sustainable interventions. This conceptual framework will offer nurses important guidance for global health nursing practice. © 2010 Wiley Periodicals, Inc.

  2. Conceptual astronomy: A novel model for teaching postsecondary science courses

    NASA Astrophysics Data System (ADS)

    Zeilik, Michael; Schau, Candace; Mattern, Nancy; Hall, Shannon; Teague, Kathleen W.; Bisard, Walter

    1997-10-01

    An innovative, conceptually based instructional model for teaching large undergraduate astronomy courses was designed, implemented, and evaluated in the Fall 1995 semester. This model was based on cognitive and educational theories of knowledge and, we believe, is applicable to other large postsecondary science courses. Major components were: (a) identification of the basic important concepts and their interrelationships that are necessary for connected understanding of astronomy in novice students; (b) use of these concepts and their interrelationships throughout the design, implementation, and evaluation stages of the model; (c) identification of students' prior knowledge and misconceptions; and (d) implementation of varied instructional strategies targeted toward encouraging conceptual understanding in students (i.e., instructional concept maps, cooperative small group work, homework assignments stressing concept application, and a conceptually based student assessment system). Evaluation included the development and use of three measures of conceptual understanding and one of attitudes toward studying astronomy. Over the semester, students showed very large increases in their understanding as assessed by a conceptually based multiple-choice measure of misconceptions, a select-and-fill-in concept map measure, and a relatedness-ratings measure. Attitudes, which were slightly positive before the course, changed slightly in a less favorable direction.

  3. Improved Conceptual Models Methodology (ICoMM) for Validation of Non-Observable Systems

    DTIC Science & Technology

    2015-12-01

    distribution is unlimited IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE SYSTEMS by Sang M. Sok December 2015...REPORT TYPE AND DATES COVERED Dissertation 4. TITLE AND SUBTITLE IMPROVED CONCEPTUAL MODELS METHODOLOGY (ICoMM) FOR VALIDATION OF NON-OBSERVABLE...importance of the CoM. The improved conceptual model methodology (ICoMM) is developed in support of improving the structure of the CoM for both face and

  4. Showing Automatically Generated Students' Conceptual Models to Students and Teachers

    ERIC Educational Resources Information Center

    Perez-Marin, Diana; Pascual-Nieto, Ismael

    2010-01-01

    A student conceptual model can be defined as a set of interconnected concepts associated with an estimation value that indicates how well these concepts are used by the students. It can model just one student or a group of students, and can be represented as a concept map, conceptual diagram or one of several other knowledge representation…

  5. Developing Terrestrial Trophic Models for Petroleum and Natural Gas Exploration and Production Sites: The Oklahoma Tallgrass Prairie Preserve Example

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevenson, M; Coty, J; Stewart, J

    This document details procedures to be used when constructing a conceptual terrestrial trophic model for natural gas and oil exploration and production sites. A site conceptual trophic model is intended for use in evaluating ecological impacts of oil and brine releases at E&P sites from a landscape or ecosystem perspective. The terrestrial trophic model protocol was developed using an example site, the Tallgrass Prairie Preserve (TPP) in Oklahoma. The procedure focuses on developing a terrestrial trophic model using information found in the primary literature, and augmented using site-specific research where available. Although the TPP has been the subject of considerablemore » research and public interest since the high-profile reintroduction of bison (Bison bison) in 1993, little formal work has been done to develop a food web for the plant and animal communities found at the preserve. We describe how to divide species into guilds using explicit criteria on the basis of resource use and spatial distribution. For the TPP, sixteen guilds were developed for use in the trophic model, and the relationships among these guilds were analyzed. A brief discussion of the results of this model is provided, along with considerations for its use and areas for further study.« less

  6. Comparison of Conceptual and Neural Network Rainfall-Runoff Models

    NASA Astrophysics Data System (ADS)

    Vidyarthi, V. K.; Jain, A.

    2014-12-01

    Rainfall-runoff (RR) model is a key component of any water resource application. There are two types of techniques usually employed for RR modeling: physics based and data-driven techniques. Although the physics based models have been used for operational purposes for a very long time, they provide only reasonable accuracy in modeling and forecasting. On the other hand, the Artificial Neural Networks (ANNs) have been reported to provide superior modeling performance; however, they have not been acceptable by practitioners, decision makers and water resources engineers as operational tools. The ANNs one of the data driven techniques, became popular for efficient modeling of the complex natural systems in the last couple of decades. In this paper, the comparative results for conceptual and ANN models in RR modeling are presented. The conceptual models were developed by the use of rainfall-runoff library (RRL) and genetic algorithm (GA) was used for calibration of these models. Feed-forward neural network model structure trained by Levenberg-Marquardt (LM) training algorithm has been adopted here to develop all the ANN models. The daily rainfall, runoff and various climatic data derived from Bird creek basin, Oklahoma, USA were employed to develop all the models included here. Daily potential evapotranspiration (PET), which was used in conceptual model development, was calculated by the use of Penman equation. The input variables were selected on the basis of correlation analysis. The performance evaluation statistics such as average absolute relative error (AARE), Pearson's correlation coefficient (R) and threshold statistics (TS) were used for assessing the performance of all the models developed here. The results obtained in this study show that the ANN models outperform the conventional conceptual models due to their ability to learn the non-linearity and complexity inherent in data of rainfall-runoff process in a more efficient manner. There is a strong need to

  7. Conceptual Models and the Future of Special Education

    ERIC Educational Resources Information Center

    Kauffman, James M.

    2007-01-01

    A medical model has advantages over a legal model in thinking about special education, especially in responding supportively to difference, meeting individual needs, and practicing prevention. The legal conceptual model now dominates thinking about special education, but a medical model promises a brighter future for special education and for…

  8. Towards a Model of Technology Adoption: A Conceptual Model Proposition

    NASA Astrophysics Data System (ADS)

    Costello, Pat; Moreton, Rob

    A conceptual model for Information Communication Technology (ICT) adoption by Small Medium Enterprises (SMEs) is proposed. The research uses several ICT adoption models as its basis with theoretical underpinning provided by the Diffusion of Innovation theory and the Technology Acceptance Model (TAM). Taking an exploratory research approach the model was investigated amongst 200 SMEs whose core business is ICT. Evidence from this study demonstrates that these SMEs face the same issues as all other industry sectors. This work points out weaknesses in SMEs environments regarding ICT adoption and suggests what they may need to do to increase the success rate of any proposed adoption. The methodology for development of the framework is described and recommendations made for improved Government-led ICT adoption initiatives. Application of the general methodology has resulted in new opportunities to embed the ethos and culture surrounding the issues into the framework of new projects developed as a result of Government intervention. A conceptual model is proposed that may lead to a deeper understanding of the issues under consideration.

  9. Application of the human needs conceptual model to dental hygiene practice.

    PubMed

    Darby, M L; Walsh, M M

    2000-01-01

    The Human Needs Conceptual Model is relevant to dental hygiene because of the need for dental hygienists to be client focused, humanistic, and accountable in practice. Application of the Human Needs Conceptual Model provides a formal framework for identifying and understanding the unique needs of the client that can be met through dental hygiene care. Practitioners find that the Human Needs Conceptual Model can not only help them in assessment and diagnosis, but also in client education, decision-making, care implementation, and the evaluation of treatment outcomes. By using the model, the dental hygienist is able to manage client care humanistically and holistically, and ensure that care is client-centered rather than task-oriented. With the model, a professional practice can be made operational.

  10. Conceptual Models of Depression in Primary Care Patients: A Comparative Study

    PubMed Central

    Karasz, Alison; Garcia, Nerina; Ferri, Lucia

    2009-01-01

    Conventional psychiatric treatment models are based on a biopsychiatric model of depression. A plausible explanation for low rates of depression treatment utilization among ethnic minorities and the poor is that members of these communities do not share the cultural assumptions underlying the biopsychiatric model. The study examined conceptual models of depression among depressed patients from various ethnic groups, focusing on the degree to which patients’ conceptual models ‘matched’ a biopsychiatric model of depression. The sample included 74 primary care patients from three ethnic groups screening positive for depression. We administered qualitative interviews assessing patients’ conceptual representations of depression. The analysis proceeded in two phases. The first phase involved a strategy called ‘quantitizing’ the qualitative data. A rating scheme was developed and applied to the data by a rater blind to study hypotheses. The data was subjected to statistical analyses. The second phase of the analysis involved the analysis of thematic data using standard qualitative techniques. Study hypotheses were largely supported. The qualitative analysis provided a detailed picture of primary care patients’ conceptual models of depression and suggested interesting directions for future research. PMID:20182550

  11. Leading Generative Groups: A Conceptual Model

    ERIC Educational Resources Information Center

    London, Manuel; Sobel-Lojeski, Karen A.; Reilly, Richard R.

    2012-01-01

    This article presents a conceptual model of leadership in generative groups. Generative groups have diverse team members who are expected to develop innovative solutions to complex, unstructured problems. The challenge for leaders of generative groups is to balance (a) establishing shared goals with recognizing members' vested interests, (b)…

  12. A conceptual modeling framework for discrete event simulation using hierarchical control structures.

    PubMed

    Furian, N; O'Sullivan, M; Walker, C; Vössner, S; Neubacher, D

    2015-08-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM's applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models' system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example.

  13. On the Performance of Alternate Conceptual Ecohydrological Models for Streamflow Prediction

    NASA Astrophysics Data System (ADS)

    Naseem, Bushra; Ajami, Hoori; Cordery, Ian; Sharma, Ashish

    2016-04-01

    A merging of a lumped conceptual hydrological model with two conceptual dynamic vegetation models is presented to assess the performance of these models for simultaneous simulations of streamflow and leaf area index (LAI). Two conceptual dynamic vegetation models with differing representation of ecological processes are merged with a lumped conceptual hydrological model (HYMOD) to predict catchment scale streamflow and LAI. The merged RR-LAI-I model computes relative leaf biomass based on transpiration rates while the RR-LAI-II model computes above ground green and dead biomass based on net primary productivity and water use efficiency in response to soil moisture dynamics. To assess the performance of these models, daily discharge and 8-day MODIS LAI product for 27 catchments of 90 - 1600km2 in size located in the Murray - Darling Basin in Australia are used. Our results illustrate that when single-objective optimisation was focussed on maximizing the objective function for streamflow or LAI, the other un-calibrated predicted outcome (LAI if streamflow is the focus) was consistently compromised. Thus, single-objective optimization cannot take into account the essence of all processes in the conceptual ecohydrological models. However, multi-objective optimisation showed great strength for streamflow and LAI predictions. Both response outputs were better simulated by RR-LAI-II than RR-LAI-I due to better representation of physical processes such as net primary productivity (NPP) in RR-LAI-II. Our results highlight that simultaneous calibration of streamflow and LAI using a multi-objective algorithm proves to be an attractive tool for improved streamflow predictions.

  14. Dynamic knowledge representation using agent-based modeling: ontology instantiation and verification of conceptual models.

    PubMed

    An, Gary

    2009-01-01

    The sheer volume of biomedical research threatens to overwhelm the capacity of individuals to effectively process this information. Adding to this challenge is the multiscale nature of both biological systems and the research community as a whole. Given this volume and rate of generation of biomedical information, the research community must develop methods for robust representation of knowledge in order for individuals, and the community as a whole, to "know what they know." Despite increasing emphasis on "data-driven" research, the fact remains that researchers guide their research using intuitively constructed conceptual models derived from knowledge extracted from publications, knowledge that is generally qualitatively expressed using natural language. Agent-based modeling (ABM) is a computational modeling method that is suited to translating the knowledge expressed in biomedical texts into dynamic representations of the conceptual models generated by researchers. The hierarchical object-class orientation of ABM maps well to biomedical ontological structures, facilitating the translation of ontologies into instantiated models. Furthermore, ABM is suited to producing the nonintuitive behaviors that often "break" conceptual models. Verification in this context is focused at determining the plausibility of a particular conceptual model, and qualitative knowledge representation is often sufficient for this goal. Thus, utilized in this fashion, ABM can provide a powerful adjunct to other computational methods within the research process, as well as providing a metamodeling framework to enhance the evolution of biomedical ontologies.

  15. Conceptual Model of Quantities, Units, Dimensions, and Values

    NASA Technical Reports Server (NTRS)

    Rouquette, Nicolas F.; DeKoenig, Hans-Peter; Burkhart, Roger; Espinoza, Huascar

    2011-01-01

    JPL collaborated with experts from industry and other organizations to develop a conceptual model of quantities, units, dimensions, and values based on the current work of the ISO 80000 committee revising the International System of Units & Quantities based on the International Vocabulary of Metrology (VIM). By providing support for ISO 80000 in SysML via the International Vocabulary of Metrology (VIM), this conceptual model provides, for the first time, a standard-based approach for addressing issues of unit coherence and dimensional analysis into the practice of systems engineering with SysML-based tools. This conceptual model provides support for two kinds of analyses specified in the International Vocabulary of Metrology (VIM): coherence of units as well as of systems of units, and dimension analysis of systems of quantities. To provide a solid and stable foundation, the model for defining quantities, units, dimensions, and values in SysML is explicitly based on the concepts defined in VIM. At the same time, the model library is designed in such a way that extensions to the ISQ (International System of Quantities) and SI Units (Systeme International d Unites) can be represented, as well as any alternative systems of quantities and units. The model library can be used to support SysML user models in various ways. A simple approach is to define and document libraries of reusable systems of units and quantities for reuse across multiple projects, and to link units and quantity kinds from these libraries to Unit and QuantityKind stereotypes defined in SysML user models.

  16. EUReKA! A Conceptual Model of Emotion Understanding

    PubMed Central

    Castro, Vanessa L.; Cheng, Yanhua; Halberstadt, Amy G.; Grühn, Daniel

    2015-01-01

    The field of emotion understanding is replete with measures, yet lacks an integrated conceptual organizing structure. To identify and organize skills associated with the recognition and knowledge of emotions, and to highlight the focus of emotion understanding as localized in the self, in specific others, and in generalized others, we introduce the conceptual framework of Emotion Understanding in Recognition and Knowledge Abilities (EUReKA). We then categorize fifty-six existing methods of emotion understanding within this framework to highlight current gaps and future opportunities in assessing emotion understanding across the lifespan. We hope the EUReKA model provides a systematic and integrated framework for conceptualizing and measuring emotion understanding for future research. PMID:27594904

  17. Semantic Description of Educational Adaptive Hypermedia Based on a Conceptual Model

    ERIC Educational Resources Information Center

    Papasalouros, Andreas; Retalis, Symeon; Papaspyrou, Nikolaos

    2004-01-01

    The role of conceptual modeling in Educational Adaptive Hypermedia Applications (EAHA) is especially important. A conceptual model of an educational application depicts the instructional solution that is implemented, containing information about concepts that must be ac-quired by learners, tasks in which learners must be involved and resources…

  18. Service Level Decision-making in Rural Physiotherapy: Development of Conceptual Models.

    PubMed

    Adams, Robyn; Jones, Anne; Lefmann, Sophie; Sheppard, Lorraine

    2016-06-01

    Understanding decision-making about health service provision is increasingly important in an environment of increasing demand and constrained resources. Multiple factors are likely to influence decisions about which services will be provided, yet workforce is the most noted factor in the rural physiotherapy literature. This paper draws together results obtained from exploration of service level decision-making (SLDM) to propose 'conceptual' models of rural physiotherapy SLDM. A prioritized qualitative approach enabled exploration of participant perspectives about rural physiotherapy decision-making. Stakeholder perspectives were obtained through surveys and in-depth interviews. Interviews were transcribed verbatim and reviewed by participants. Participant confidentiality was maintained by coding both participants and sites. A system theory-case study heuristic provided a framework for exploration across sites within the investigation area: a large area of one Australian state with a mix of regional, rural and remote communities. Thirty-nine surveys were received from participants in 11 communities. Nineteen in-depth interviews were conducted with physiotherapists and key decision-makers. Results reveal the complexity of factors influencing rural physiotherapy service provision and the value of a systems approach when exploring decision-making about rural physiotherapy service provision. Six key features were identified that formed the rural physiotherapy SLDM system: capacity and capability; contextual influences; layered decision-making; access issues; value and beliefs; and tensions and conflict. Rural physiotherapy SLDM is not a one-dimensional process but results from the complex interaction of clusters of systems issues. Decision-making about physiotherapy service provision is influenced by both internal and external factors. Similarities in influencing factors and the iterative nature of decision-making emerged, which enabled linking physiotherapy SLDM with

  19. The Site-Scale Saturated Zone Flow Model for Yucca Mountain

    NASA Astrophysics Data System (ADS)

    Al-Aziz, E.; James, S. C.; Arnold, B. W.; Zyvoloski, G. A.

    2006-12-01

    This presentation provides a reinterpreted conceptual model of the Yucca Mountain site-scale flow system subject to all quality assurance procedures. The results are based on a numerical model of site-scale saturated zone beneath Yucca Mountain, which is used for performance assessment predictions of radionuclide transport and to guide future data collection and modeling activities. This effort started from the ground up with a revised and updated hydrogeologic framework model, which incorporates the latest lithology data, and increased grid resolution that better resolves the hydrogeologic framework, which was updated throughout the model domain. In addition, faults are much better represented using the 250× 250- m2 spacing (compared to the previous model's 500× 500-m2 spacing). Data collected since the previous model calibration effort have been included and they comprise all Nye County water-level data through Phase IV of their Early Warning Drilling Program. Target boundary fluxes are derived from the newest (2004) Death Valley Regional Flow System model from the US Geologic Survey. A consistent weighting scheme assigns importance to each measured water-level datum and boundary flux extracted from the regional model. The numerical model is calibrated by matching these weighted water level measurements and boundary fluxes using parameter estimation techniques, along with more informal comparisons of the model to hydrologic and geochemical information. The model software (hydrologic simulation code FEHM~v2.24 and parameter estimation software PEST~v5.5) and model setup facilitates efficient calibration of multiple conceptual models. Analyses evaluate the impact of these updates and additional data on the modeled potentiometric surface and the flowpaths emanating from below the repository. After examining the heads and permeabilities obtained from the calibrated models, we present particle pathways from the proposed repository and compare them to those from the

  20. A conceptual modeling framework for discrete event simulation using hierarchical control structures

    PubMed Central

    Furian, N.; O’Sullivan, M.; Walker, C.; Vössner, S.; Neubacher, D.

    2015-01-01

    Conceptual Modeling (CM) is a fundamental step in a simulation project. Nevertheless, it is only recently that structured approaches towards the definition and formulation of conceptual models have gained importance in the Discrete Event Simulation (DES) community. As a consequence, frameworks and guidelines for applying CM to DES have emerged and discussion of CM for DES is increasing. However, both the organization of model-components and the identification of behavior and system control from standard CM approaches have shortcomings that limit CM’s applicability to DES. Therefore, we discuss the different aspects of previous CM frameworks and identify their limitations. Further, we present the Hierarchical Control Conceptual Modeling framework that pays more attention to the identification of a models’ system behavior, control policies and dispatching routines and their structured representation within a conceptual model. The framework guides the user step-by-step through the modeling process and is illustrated by a worked example. PMID:26778940

  1. Towards methodical modelling: Differences between the structure and output dynamics of multiple conceptual models

    NASA Astrophysics Data System (ADS)

    Knoben, Wouter; Woods, Ross; Freer, Jim

    2016-04-01

    Conceptual hydrologic models consist of a certain arrangement of spatial and temporal dynamics consisting of stores, fluxes and transformation functions, depending on the modeller's choices and intended use. They have the advantages of being computationally efficient, being relatively easy model structures to reconfigure and having relatively low input data demands. This makes them well-suited for large-scale and large-sample hydrology, where appropriately representing the dominant hydrologic functions of a catchment is a main concern. Given these requirements, the number of parameters in the model cannot be too high, to avoid equifinality and identifiability issues. This limits the number and level of complexity of dominant hydrologic processes the model can represent. Specific purposes and places thus require a specific model and this has led to an abundance of conceptual hydrologic models. No structured overview of these models exists and there is no clear method to select appropriate model structures for different catchments. This study is a first step towards creating an overview of the elements that make up conceptual models, which may later assist a modeller in finding an appropriate model structure for a given catchment. To this end, this study brings together over 30 past and present conceptual models. The reviewed model structures are simply different configurations of three basic model elements (stores, fluxes and transformation functions), depending on the hydrologic processes the models are intended to represent. Differences also exist in the inner workings of the stores, fluxes and transformations, i.e. the mathematical formulations that describe each model element's intended behaviour. We investigate the hypothesis that different model structures can produce similar behavioural simulations. This can clarify the overview of model elements by grouping elements which are similar, which can improve model structure selection.

  2. Self-Presentation: A Conceptualization and Model.

    ERIC Educational Resources Information Center

    Schlenker, Barry R.

    This paper provides a conceptual definition and model of self-presentational behavior. Self-presentation is defined as the attempt to control self-relevant images before real or imagined others. Several aspects of the definition are discussed along with the notion that people's self-presentations represent the choice of the most desirable images…

  3. Preliminary conceptual models of the occurrence, fate, and transport of chlorinated solvents in karst regions of Tennessee

    USGS Publications Warehouse

    Wolfe, W.J.; Haugh, C.J.; Webbers, Ank; Diehl, T.H.

    1997-01-01

    Published and unpublished reports and data from 22 contaminated sites in Tennessee were reviewed to develop preliminary conceptual models of the behavior of chlorinated solvents in karst aquifers. Chlorinated solvents are widely used in many industrial operations. High density and volatility, low viscosity, and solubilities that are low in absolute terms but high relative to drinkingwater standards make chlorinated solvents mobile and persistent contaminants that are difficult to find or remove when released into the groundwater system. The major obstacle to the downward migration of chlorinated solvents in the subsurface is the capillary pressure of small openings. In karst aquifers, chemical dissolution has enlarged joints, bedding planes, and other openings that transmit water. Because the resulting karst conduits are commonly too large to develop significant capillary pressures, chlorinated solvents can migrate to considerable depth in karst aquifers as dense nonaqueous-phase liquids (DNAPL?s). Once chlorinated DNAPL accumulates in a karst aquifer, it becomes a source for dissolved-phase contamination of ground water. A relatively small amount of chlorinated DNAPL has the potential to contaminate ground water over a significant area for decades or longer. Conceptual models are needed to assist regulators and site managers in characterizing chlorinated-solvent contamination in karst settings and in evaluating clean-up alternatives. Five preliminary conceptual models were developed, emphasizing accumulation sites for chlorinated DNAPL in karst aquifers. The models were developed for the karst regions of Tennessee, but are intended to be transferable to similar karst settings elsewhere. The five models of DNAPL accumulation in karst settings are (1) trapping in regolith, (2) pooling at the top of bedrock, (3) pooling in bedrock diffuse-flow zones, (4) pooling in karst conduits, and (5) pooling in isolation from active ground-water flow. More than one conceptual

  4. Conceptual Modeling Framework for E-Area PA HELP Infiltration Model Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    A conceptual modeling framework based on the proposed E-Area Low-Level Waste Facility (LLWF) closure cap design is presented for conducting Hydrologic Evaluation of Landfill Performance (HELP) model simulations of intact and subsided cap infiltration scenarios for the next E-Area Performance Assessment (PA).

  5. Hydrogeologic framework, hydrology, and refined conceptual model of groundwater flow for Coastal Plain aquifers at the Standard Chlorine of Delaware, Inc. Superfund Site, New Castle County, Delaware, 2005-12

    USGS Publications Warehouse

    Brayton, Michael J.; Cruz, Roberto M.; Myers, Luke; Degnan, James R.; Raffensperger, Jeff P.

    2015-01-01

    The regional hydrogeologic framework indicates that the site is underlain by Coastal Plain sediments of the Columbia, Merchantville, and Potomac Formations. Two primary aquifers underlying the site, the Columbia and the upper Potomac, are separated by the Merchantville Formation confining unit. Local groundwater flow in the surficial (Columbia) aquifer is controlled by topography and generally flows northward and discharges to nearby surface water. Regional flow within the Potomac aquifer is towards the southeast, and is strongly influenced by major water withdrawals locally. Previous investigations at the site indicated that contaminants, primarily benzene and chlorinated benzene compounds, were present in the Columbia aquifer in most locations; however, there were only limited detections in the upper Potomac aquifer as of 2004. From 2005 through 2012, the USGS designed a monitoring network, assisted with exploratory drilling, collected data at monitoring wells, conducted geophysical surveys, evaluated water-level responses in wells during pumping of a production well, and evaluated major aquifer withdrawals. Data collected through these efforts were used to refine the local conceptual flow system. The refined conceptual flow system for the site includes: (a) identification of gaps in confining units in the study area, (b) identification and correlation of multiple water-bearing sand intervals within the upper Potomac Formation, (c) connections between groundwater and surface water, (d) connections between shallow and deeper groundwater, (e) new water-level (or potentiometric surface) maps and inferred flow directions, and (f) identification of major local pumping well influences. The implications of the revised conceptual flow system on the occurrence and movement of site contaminants are that the resulting detection of contaminants in the upper Potomac aquifer at specific well locations can be attributed primarily to either advective lateral transport, direct

  6. Teacher Emotion Research: Introducing a Conceptual Model to Guide Future Research

    ERIC Educational Resources Information Center

    Fried, Leanne; Mansfield, Caroline; Dobozy, Eva

    2015-01-01

    This article reports on the development of a conceptual model of teacher emotion through a review of teacher emotion research published between 2003 and 2013. By examining 82 publications regarding teacher emotion, the main aim of the review was to identify how teacher emotion was conceptualised in the literature and develop a conceptual model to…

  7. Applying a Conceptual Model in Sport Sector Work- Integrated Learning Contexts

    ERIC Educational Resources Information Center

    Agnew, Deborah; Pill, Shane; Orrell, Janice

    2017-01-01

    This paper applies a conceptual model for work-integrated learning (WIL) in a multidisciplinary sports degree program. Two examples of WIL in sport will be used to illustrate how the conceptual WIL model is being operationalized. The implications for practice are that curriculum design must recognize a highly flexible approach to the nature of…

  8. Life cycle cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1993-01-01

    This paper documents progress to date by the University of Dayton on the development of a life cycle cost model for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of a life cycle cost model. Cost categories are initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. The focus will be on operations and maintenance costs and other recurring costs. Secondary tasks performed concurrent with the development of the life cycle costing model include continual support and upgrade of the R&M model. The primary result of the completed research will be a methodology and a computer implementation of the methodology to provide for timely cost analysis in support of the conceptual design activities. The major objectives of this research are: to obtain and to develop improved methods for estimating manpower, spares, software and hardware costs, facilities costs, and other cost categories as identified by NASA personnel; to construct a life cycle cost model of a space transportation system for budget exercises and performance-cost trade-off analysis during the conceptual and development stages; to continue to support modifications and enhancements to the R&M model; and to continue to assist in the development of a simulation model to provide an integrated view of the operations and support of the proposed system.

  9. Modelling in Primary School: Constructing Conceptual Models and Making Sense of Fractions

    ERIC Educational Resources Information Center

    Shahbari, Juhaina Awawdeh; Peled, Irit

    2017-01-01

    This article describes sixth-grade students' engagement in two model-eliciting activities offering students the opportunity to construct mathematical models. The findings show that students utilized their knowledge of fractions including conceptual and procedural knowledge in constructing mathematical models for the given situations. Some students…

  10. An Integrative-Interactive Conceptual Model for Curriculum Development.

    ERIC Educational Resources Information Center

    Al-Ibrahim, Abdul Rahman H.

    1982-01-01

    The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)

  11. Conceptual Commitments of the LIDA Model of Cognition

    NASA Astrophysics Data System (ADS)

    Franklin, Stan; Strain, Steve; McCall, Ryan; Baars, Bernard

    2013-06-01

    Significant debate on fundamental issues remains in the subfields of cognitive science, including perception, memory, attention, action selection, learning, and others. Psychology, neuroscience, and artificial intelligence each contribute alternative and sometimes conflicting perspectives on the supervening problem of artificial general intelligence (AGI). Current efforts toward a broad-based, systems-level model of minds cannot await theoretical convergence in each of the relevant subfields. Such work therefore requires the formulation of tentative hypotheses, based on current knowledge, that serve to connect cognitive functions into a theoretical framework for the study of the mind. We term such hypotheses "conceptual commitments" and describe the hypotheses underlying one such model, the Learning Intelligent Distribution Agent (LIDA) Model. Our intention is to initiate a discussion among AGI researchers about which conceptual commitments are essential, or particularly useful, toward creating AGI agents.

  12. Conceptual models for cumulative risk assessment.

    PubMed

    Linder, Stephen H; Sexton, Ken

    2011-12-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive "family" of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects.

  13. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research

    PubMed Central

    Carter-Harris, Lisa; Davis, Lorie L.; Rawl, Susan M.

    2017-01-01

    Purpose To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Methods Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Results Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. Conclusion This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development. PMID:28304262

  14. Lung Cancer Screening Participation: Developing a Conceptual Model to Guide Research.

    PubMed

    Carter-Harris, Lisa; Davis, Lorie L; Rawl, Susan M

    2016-11-01

    To describe the development of a conceptual model to guide research focused on lung cancer screening participation from the perspective of the individual in the decision-making process. Based on a comprehensive review of empirical and theoretical literature, a conceptual model was developed linking key psychological variables (stigma, medical mistrust, fatalism, worry, and fear) to the health belief model and precaution adoption process model. Proposed model concepts have been examined in prior research of either lung or other cancer screening behavior. To date, a few studies have explored a limited number of variables that influence screening behavior in lung cancer specifically. Therefore, relationships among concepts in the model have been proposed and future research directions presented. This proposed model is an initial step to support theoretically based research. As lung cancer screening becomes more widely implemented, it is critical to theoretically guide research to understand variables that may be associated with lung cancer screening participation. Findings from future research guided by the proposed conceptual model can be used to refine the model and inform tailored intervention development.

  15. A conceptual disease model for adult Pompe disease.

    PubMed

    Kanters, Tim A; Redekop, W Ken; Rutten-Van Mölken, Maureen P M H; Kruijshaar, Michelle E; Güngör, Deniz; van der Ploeg, Ans T; Hakkaart, Leona

    2015-09-15

    Studies in orphan diseases are, by nature, confronted with small patient populations, meaning that randomized controlled trials will have limited statistical power. In order to estimate the effectiveness of treatments in orphan diseases and extrapolate effects into the future, alternative models might be needed. The purpose of this study is to develop a conceptual disease model for Pompe disease in adults (an orphan disease). This conceptual model describes the associations between the most important levels of health concepts for Pompe disease in adults, from biological parameters via physiological parameters, symptoms and functional indicators to health perceptions and final health outcomes as measured in terms of health-related quality of life. The structure of the Wilson-Cleary health outcomes model was used as a blueprint, and filled with clinically relevant aspects for Pompe disease based on literature and expert opinion. Multiple observations per patient from a Dutch cohort study in untreated patients were used to quantify the relationships between the different levels of health concepts in the model by means of regression analyses. Enzyme activity, muscle strength, respiratory function, fatigue, level of handicap, general health perceptions, mental and physical component scales and utility described the different levels of health concepts in the Wilson-Cleary model for Pompe disease. Regression analyses showed that functional status was affected by fatigue, muscle strength and respiratory function. Health perceptions were affected by handicap. In turn, self-reported quality of life was affected by health perceptions. We conceptualized a disease model that incorporated the mechanisms believed to be responsible for impaired quality of life in Pompe disease. The model provides a comprehensive overview of various aspects of Pompe disease in adults, which can be useful for both clinicians and policymakers to support their multi-faceted decision making.

  16. Multi-model groundwater-management optimization: reconciling disparate conceptual models

    NASA Astrophysics Data System (ADS)

    Timani, Bassel; Peralta, Richard

    2015-09-01

    Disagreement among policymakers often involves policy issues and differences between the decision makers' implicit utility functions. Significant disagreement can also exist concerning conceptual models of the physical system. Disagreement on the validity of a single simulation model delays discussion on policy issues and prevents the adoption of consensus management strategies. For such a contentious situation, the proposed multi-conceptual model optimization (MCMO) can help stakeholders reach a compromise strategy. MCMO computes mathematically optimal strategies that simultaneously satisfy analogous constraints and bounds in multiple numerical models that differ in boundary conditions, hydrogeologic stratigraphy, and discretization. Shadow prices and trade-offs guide the process of refining the first MCMO-developed `multi-model strategy into a realistic compromise management strategy. By employing automated cycling, MCMO is practical for linear and nonlinear aquifer systems. In this reconnaissance study, MCMO application to the multilayer Cache Valley (Utah and Idaho, USA) river-aquifer system employs two simulation models with analogous background conditions but different vertical discretization and boundary conditions. The objective is to maximize additional safe pumping (beyond current pumping), subject to constraints on groundwater head and seepage from the aquifer to surface waters. MCMO application reveals that in order to protect the local ecosystem, increased groundwater pumping can satisfy only 40 % of projected water demand increase. To explore the possibility of increasing that pumping while protecting the ecosystem, MCMO clearly identifies localities requiring additional field data. MCMO is applicable to other areas and optimization problems than used here. Steps to prepare comparable sub-models for MCMO use are area-dependent.

  17. Navigating Tensions Between Conceptual and Metaconceptual Goals in the Use of Models

    NASA Astrophysics Data System (ADS)

    Delgado, Cesar

    2015-04-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in J Sci Educ Technol 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build metaconceptual understanding. Technology can transform teaching and learning by turning models into interactive simulations that learners can investigate. This paper identifies four characteristics of models and simulations that support conceptual learning but misconstrue models and science at a metaconceptual level. Ahistorical models combine the characteristics of several historical models; they conveniently compile ideas but misrepresent the history of science (Gilbert in Int J Sci Math Educ 2(2):115-130, 2004). Teleological models explain behavior in terms of a final cause; they can lead to useful heuristics but imply purpose in processes driven by chance and probability (Talanquer in Int J Sci Educ 29(7):853-870, 2007). Epistemological overreach occurs when models or simulations imply greater certainty and knowledge about phenomena than warranted; conceptualizing nature as being well known (e.g., having a mathematical structure) poses the danger of conflating model and reality or data and theory. Finally, models are inevitably ontologically impoverished. Real-world deviations and many variables are left out of models, as models' role is to simplify. Models and simulations also lose much of the sensory data present in phenomena. Teachers, designers, and professional development designers and facilitators must thus navigate the tension between conceptual and metaconceptual learning when using models and simulations. For each characteristic, examples are provided, along with recommendations for instruction and design. Prompts for explicit reflective activities around models are provided for each characteristic

  18. From conceptual model to remediation: bioavailability, a key to clean up heavy metal contaminated soils.

    NASA Astrophysics Data System (ADS)

    Petruzzelli, Gianniantonio; Pedron, Francesca; Pezzarossa, Beatrice

    2013-04-01

    Processes of metal bioavailability in the soil To know the bioavailability processes at site specific levels is essential to understand in detail the risks associated with pollution, and to support the decision-making process, i.e. description of the conceptual model and choice of clean up technologies. It is particularly important to assess how chemical, physical and biological processes in the soil affect the reactions leading to adsorption, precipitation or release of contaminants. The measurement of bioavailability One of the main difficulties in the practical application of the bioavailability concept in soil remediation is the lack of consensus on the method to be used to measure bioavailability. The best strategy is to apply a series of tests to assess bioavailability, since no applicable method is universally valid under all conditions. As an example, bioavailability tests for phytotechnology application should consider two distinct aspects: a physico-chemical driven solubilization process and a physiologically driven uptake process. Soil and plant characteristics strongly influence bioavailability. Bioavailability as a tool in remediation strategies Bioavailability can be used at all stages in remediation strategies: development of the conceptual model, evaluation of risk assessment, and selection of the best technology, considering different scenarios and including different environmental objectives. Two different strategies can be followed: the reduction and the increase of bioavailability. Procedures that reduce bioavailability aim to prevent the movement of pollutants from the soil to the living organisms, essentially by: i) removal of the labile phase of the contaminant, i.e. the fraction which is intrinsic to the processes of bioavailability (phytostabilization); ii) conversion of the labile fraction into a stable fraction (precipitation or adsorption); iii) increase of the resistance to mass transfer of the contaminants (inertization). Procedures

  19. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article is to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of papers, the authors consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. They specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type to the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure, and which characteristics of the problem might be most easily represented in a specific modeling method, are presented. Each section contains a number of recommendations that were iterated among the authors, as well as the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making.

  20. [Impact of small-area context on health: proposing a conceptual model].

    PubMed

    Voigtländer, S; Mielck, A; Razum, O

    2012-11-01

    Recent empirical studies stress the impact of features related to the small-area context on individual health. However, so far there exists no standard explanatory model that integrates the different kinds of such features and that conceptualises their relation to individual characteristics of social inequality. A review of theoretical publications on the relationship between social position and health as well as existing conceptual models for the impact of features related to the small-area context on health was undertaken. In the present article we propose a conceptual model for the health impact of the small-area context. This model conceptualises the location of residence as one dimension of social inequality that affects health through the resources as well as stressors which are inherent in the small-area context. The proposed conceptual model offers an orientation for future empirical studies and can serve as a basis for further discussions concerning the health relevance of the small-area context. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Re-Conceptualizing Intimacy and Distance in Instructional Models

    ERIC Educational Resources Information Center

    Ketterer, John J.

    2006-01-01

    The idea that distance education lacks intimacy and is therefore inferior is based on an embedded metaphor that sustains a restricted and limiting mental model of ideal instruction. The authors analyze alternative conceptualizations of intimacy, space, and place as factors in the development of effective instructional models. They predict that the…

  2. Conceptual Model of Research to Reduce Stigma Related to Mental Disorders in Adolescents

    PubMed Central

    Pinto-Foltz, Melissa D.; Logsdon, M. Cynthia

    2010-01-01

    Purpose: To explicate an initial conceptual model that is amenable to testing and guiding anti-stigma interventions with adolescents. Design/Sources Used: Multidisciplinary research and theoretical articles were reviewed. . Conclusions: The conceptual model may guide anti-stigma interventions, and undergo testing and refinement in the future to reflect scientific advances in stigma reduction among adolescents. Use of a conceptual model enhances empirical evaluation of anti-stigma interventions yielding a casual explanation for the intervention effects and enhances clinical applicability of interventions across settings. PMID:19916813

  3. Conceptual Models for Cumulative Risk Assessment

    PubMed Central

    Sexton, Ken

    2011-01-01

    In the absence of scientific consensus on an appropriate theoretical framework, cumulative risk assessment and related research have relied on speculative conceptual models. We argue for the importance of theoretical backing for such models and discuss 3 relevant theoretical frameworks, each supporting a distinctive “family” of models. Social determinant models postulate that unequal health outcomes are caused by structural inequalities; health disparity models envision social and contextual factors acting through individual behaviors and biological mechanisms; and multiple stressor models incorporate environmental agents, emphasizing the intermediary role of these and other stressors. The conclusion is that more careful reliance on established frameworks will lead directly to improvements in characterizing cumulative risk burdens and accounting for disproportionate adverse health effects. PMID:22021317

  4. Conceptual Change Texts in Chemistry Teaching: A Study on the Particle Model of Matter

    ERIC Educational Resources Information Center

    Beerenwinkel, Anne; Parchmann, Ilka; Grasel, Cornelia

    2011-01-01

    This study explores the effect of a conceptual change text on students' awareness of common misconceptions on the particle model of matter. The conceptual change text was designed based on principles of text comprehensibility, of conceptual change instruction and of instructional approaches how to introduce the particle model. It was evaluated in…

  5. Groundwater Fate and Transport Modeling for Texarkana Wood Preserving Company Superfund Site, Texarkana, Texas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnett, Ronald Chester

    Fate and transport model results are presented for the Texarkana Wood Preserving Company (TWPC)superfund site. The conceptual model assumes two sources of contamination, specifically, the areas around the old and new process areas. Recent data show the presence of non-aqueous phase liquids (NAPL) in the aquifer that are also sources of dissolved contamination in the aquifer. A flow model was constructed and calibrated against measured hydraulic heads at permanent monitoring wells. Good matches were obtained between model simulated heads and most measured heads. An unexplained exception occurs at monitoring well MW-13 down gradient of the site beyond the measured contaminantmore » plume where the model predicts heads that are more than 2 ft. lower than reported field measurements. Adjusting hydraulic parameters in the model could not account for this anomaly and still preserve the head matches at other wells. There is likely a moderate deficiency in the conceptual model or perhaps a data error. Other information such as substantial amounts of infiltrating surface water in the area or a correction in surveyed elevation would improve the flow model. A particle tracking model calculated a travel time from the new process area to the Day’s Creek discharge location on the order of 40 years. Travel times from the old process area to Day’s Creek were calculated to be on the order of 80 years. While these calculations are subject to some uncertainty, travel times of decades are indicated.« less

  6. OBO to UML: Support for the development of conceptual models in the biomedical domain.

    PubMed

    Waldemarin, Ricardo C; de Farias, Cléver R G

    2018-04-01

    A conceptual model abstractly defines a number of concepts and their relationships for the purposes of understanding and communication. Once a conceptual model is available, it can also be used as a starting point for the development of a software system. The development of conceptual models using the Unified Modeling Language (UML) facilitates the representation of modeled concepts and allows software developers to directly reuse these concepts in the design of a software system. The OBO Foundry represents the most relevant collaborative effort towards the development of ontologies in the biomedical domain. The development of UML conceptual models in the biomedical domain may benefit from the use of domain-specific semantics and notation. Further, the development of these models may also benefit from the reuse of knowledge contained in OBO ontologies. This paper investigates the support for the development of conceptual models in the biomedical domain using UML as a conceptual modeling language and using the support provided by the OBO Foundry for the development of biomedical ontologies, namely entity kind and relationship types definitions provided by the Basic Formal Ontology (BFO) and the OBO Core Relations Ontology (OBO Core), respectively. Further, the paper investigates the support for the reuse of biomedical knowledge currently available in OBOFFF ontologies in the development these conceptual models. The paper describes a UML profile for the OBO Core Relations Ontology, which basically defines a number of stereotypes to represent BFO entity kinds and OBO Core relationship types definitions. The paper also presents a support toolset consisting of a graphical editor named OBO-RO Editor, which directly supports the development of UML models using the extensions defined by our profile, and a command-line tool named OBO2UML, which directly converts an OBOFFF ontology into a UML model. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Ecological risk assessment conceptual model formulation for nonindigenous species.

    PubMed

    Landis, Wayne G

    2004-08-01

    This article addresses the application of ecological risk assessment at the regional scale to the prediction of impacts due to invasive or nonindigenous species (NIS). The first section describes risk assessment, the decision-making process, and introduces regional risk assessment. A general conceptual model for the risk assessment of NIS is then presented based upon the regional risk assessment approach. Two diverse examples of the application of this approach are presented. The first example is based upon the dynamics of introduced plasmids into bacteria populations. The second example is the application risk assessment approach to the invasion of a coastal marine site of Cherry Point, Washington, USA by the European green crab. The lessons learned from the two examples demonstrate that assessment of the risks of invasion of NIS will have to incorporate not only the characteristics of the invasive species, but also the other stresses and impacts affecting the region of interest.

  8. A Conceptual Model To Assist Educational Leaders Manage Change.

    ERIC Educational Resources Information Center

    Cochren, John R.

    This paper presents a conceptual model to help school leaders manage change effectively. The model was developed from a literature review of theory development and model construction. Specifically, the paper identifies the major components that inhibit organizational change, and synthesizes the most salient features of these components through a…

  9. Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force--2.

    PubMed

    Roberts, Mark; Russell, Louise B; Paltiel, A David; Chambers, Michael; McEwan, Phil; Krahn, Murray

    2012-01-01

    The appropriate development of a model begins with understanding the problem that is being represented. The aim of this article was to provide a series of consensus-based best practices regarding the process of model conceptualization. For the purpose of this series of articles, we consider the development of models whose purpose is to inform medical decisions and health-related resource allocation questions. We specifically divide the conceptualization process into two distinct components: the conceptualization of the problem, which converts knowledge of the health care process or decision into a representation of the problem, followed by the conceptualization of the model itself, which matches the attributes and characteristics of a particular modeling type with the needs of the problem being represented. Recommendations are made regarding the structure of the modeling team, agreement on the statement of the problem, the structure, perspective, and target population of the model, and the interventions and outcomes represented. Best practices relating to the specific characteristics of model structure and which characteristics of the problem might be most easily represented in a specific modeling method are presented. Each section contains a number of recommendations that were iterated among the authors, as well as among the wider modeling taskforce, jointly set up by the International Society for Pharmacoeconomics and Outcomes Research and the Society for Medical Decision Making. Copyright © 2012 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Students as Partners: Reflections on a Conceptual Model

    ERIC Educational Resources Information Center

    Healey, Mick; Flint, Abbi; Harrington, Kathy

    2016-01-01

    This article reflects on a conceptual model for mapping the work that fits under the broad heading of students as partners in learning and teaching in higher education (Healey, Flint, & Harrington, 2014). We examine the nature and purpose of the model with reference to specific examples, and reflect on the potential and actual uses of the…

  11. A Systematic Review of Conceptual Frameworks of Medical Complexity and New Model Development.

    PubMed

    Zullig, Leah L; Whitson, Heather E; Hastings, Susan N; Beadles, Chris; Kravchenko, Julia; Akushevich, Igor; Maciejewski, Matthew L

    2016-03-01

    Patient complexity is often operationalized by counting multiple chronic conditions (MCC) without considering contextual factors that can affect patient risk for adverse outcomes. Our objective was to develop a conceptual model of complexity addressing gaps identified in a review of published conceptual models. We searched for English-language MEDLINE papers published between 1 January 2004 and 16 January 2014. Two reviewers independently evaluated abstracts and all authors contributed to the development of the conceptual model in an iterative process. From 1606 identified abstracts, six conceptual models were selected. One additional model was identified through reference review. Each model had strengths, but several constructs were not fully considered: 1) contextual factors; 2) dynamics of complexity; 3) patients' preferences; 4) acute health shocks; and 5) resilience. Our Cycle of Complexity model illustrates relationships between acute shocks and medical events, healthcare access and utilization, workload and capacity, and patient preferences in the context of interpersonal, organizational, and community factors. This model may inform studies on the etiology of and changes in complexity, the relationship between complexity and patient outcomes, and intervention development to improve modifiable elements of complex patients.

  12. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    to infer rock type and temperature (However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region).

  13. Developing Conceptual Models of Biodegradation: Lessons Learned From a Long-Term Study of a Crude-Oil Contaminant Plume

    NASA Astrophysics Data System (ADS)

    Cozzarelli, I. M.; Esaid, H. I.; Bekins, B. A.; Eganhouse, R. P.; Baedecker, M.

    2002-05-01

    Assessment of natural attenuation as a remedial option requires understanding the long-term fate of contaminant compounds. The development of correct conceptual models of biodegradation requires observations at spatial and temporal scales appropriate for the reactions being measured. For example, the availability of electron acceptors such as solid-phase iron oxides may vary at the cm scale due to aquifer heterogeneities. Characterizing the distribution of these oxides may require small-scale measurements over time scales of tens of years in order to assess their impact on the fate of contaminants. The long-term study of natural attenuation of hydrocarbons in a contaminant plume near Bemidji, MN provides insight into how natural attenuation of hydrocarbons evolves over time. The sandy glacial-outwash aquifer at this USGS Toxic Substances Hydrology research site was contaminated by crude oil in 1979. During the 16 years that data have been collected the shape and extent of the contaminant plume changed as redox reactions, most notably iron reduction, progressed over time. Investigation of the controlling microbial reactions in this system required a systematic and multi-scaled approach. Early indications of plume shrinkage were observed over a time scale of a few years, based on observation well data. These changes were associated with iron reduction near the crude-oil source. The depletion of Fe (III) oxides near the contaminant source caused the dissolved iron concentrations to increase and spread downgradient at a rate of approximately 3 m/year. The zone of maximum benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations has also spread within the anoxic plume. Subsequent analyses of sediment and water, collected at small-scale cm intervals from cores in the contaminant plume, provided insight into the evolution of redox zones at smaller scales. Contaminants, such as ortho-xylene, that appeared to be contained near the oil source based on the larger

  14. Organizational intellectual capital and the role of the nurse manager: A proposed conceptual model.

    PubMed

    Gilbert, Jason H; Von Ah, Diane; Broome, Marion E

    Nurse managers must leverage both the human capital and social capital of the teams they lead in order to produce quality outcomes. Little is known about the relationship between human capital and social capital and how these concepts may work together to produce organizational outcomes through leadership of nurses. The purpose of this article was to explore the concepts of human capital and social capital as they relate to nursing leadership in health care organizations. Specific aims included (a) to synthesize the literature related to human capital and social capital in leadership, (b) to refine the conceptual definitions of human capital and social capital with associated conceptual antecedents and consequences, and (c) to propose a synthesized conceptual model guiding further empirical research of social capital and human capital in nursing leadership. A systematic integrative review of leadership literature using criteria informed by Whittemore and Knafl (2005) was completed. CINAHL Plus with Full Text, Academic Search Premier, Business Source Premier, Health Business FullTEXT, MEDLINE, and PsychINFO databases were searched for the years 1995 to 2016 using terms "human capital," "social capital," and "management." Analysis of conceptual definitions, theoretical and conceptual models, antecedents and consequences, propositions or hypotheses, and empirical support for 37 articles fitting review criteria resulted in the synthesis of the proposed Gilbert Conceptual Model of Organizational Intellectual Capital. The Gilbert Conceptual Model of Organizational Intellectual Capital advances the propositions of human capital theory and social capital theory and is the first model to conceptualize the direct and moderating effects that nurse leaders have on the human capital and social capital of the teams they lead. This model provides a framework for further empirical study and may have implications for practice, organizational policy, and education related to nursing

  15. Conceptual Site Treatment Plan Laboratory for Energy-Related Health Research Environmental Restoration Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, T.E.

    1993-10-01

    The Federal Facilities Compliance Act (the Act) of 1992 waives sovereign immunity for federal facilities for fines and penalties under the provisions of the Resource Recovery and Conservation Act, state, interstate, and local hazardous and solid waste management requirements. However, for three years the Act delays the waiver for violations involving US Department of Energy (DOE) facilities. The Act, however, requires that the DOE prepare a Conceptual Site Treatment Plan (CSTP) for each of its sites that generate or store mixed wastes (MWs). The purpose of the CSTP is to present DOE`s preliminary evaluations of the development of treatment capacitiesmore » and technologies for treating a site`s MW. This CSTP presents the preliminary capacity and technology evaluation for the Laboratory for Energy-Related Health Research (LEHR). The five identified MW streams at LEHR are evaluated to the extent possible given available information. Only one MW stream is sufficiently well defined to permit a technology evaluation to be performed. Two other MW streams are in the process of being characterized so that an evaluation can be performed. The other two MW streams will be generated by the decommissioning of inactive facilities onsite within the next five years.« less

  16. A Conceptual Model For Effluent-Dependent Riverine Environments

    NASA Astrophysics Data System (ADS)

    Murphy, M. T.; Meyerhoff, R. D.; Osterkamp, W. R.; Smith, E. L.; Hawkins, R. H.

    2001-12-01

    The Arid West Water Quality Research Project (WQRP) is a multi-year, EPA-funded scientific endeavor directed by the Pima County, Wastewater Management Department in southern Arizona and focussed upon several interconnected ecological questions. These questions are crucial to water quality management in the arid and semi arid western US. A key component has been the ecological, hydrological and geomorphological investigation of habitat created by the discharge of treated effluent into ephemeral streams. Such environments are fundamentally different from the dry streams or rivers they displace; however, they are clearly not the perennial streams they superficially resemble. Under Arizona State regulations, such streams can bear the use designation of "Effluent Dependent Waters," or EDWs. Before this investigation, a hydrological/ecological conceptual model for these unique ecosystems had not been published. We have constructed one for general review that is designed to direct future work in the WQRP. The project investigated ten representative, yet contrasting EDW sites distributed throughout arid areas of the western US, to gather both historical and reconnaissance level field data, including in-stream and riparian, habitat and morphometric fluvial data. In most cases, the cross sectional area of the prior channel is oversized relative to the discharge of the introduced effluent. Where bed control is absent, the channels are incised downstream of the discharge point, further suggesting a disequilibrium between the channel and the regulated effluent flow. Several of the studied stream systems primarily convey storm water and are aggradational, exhibiting braided or anastomizing channels, high energy bedforms, and spatially dynamic interfluves. Active channels are formed in response to individual storm events and can be highly dynamic in both location and cross-sectional morphology. This poses a geomorphological challenge in the selection of a discharge point. We

  17. [Self-Determination in Medical Rehabilitation - Development of a Conceptual Model for Further Theoretical Discussion].

    PubMed

    Senin, Tatjana; Meyer, Thorsten

    2018-01-22

    Aim was to gather theoretical knowledge about self-determination and to develop a conceptual model for medical rehabilitation- which serves as a basis for discussion. We performed a literature research in electronic databases. Various theories and research results were adopted and transferred to the context of medical rehabilitation and into a conceptual model. The conceptual model of self-determination reflects on a continuum which forms of self-determination may be present in situations of medical rehabilitation treatments. The location on the continuum depends theoretically on the manifestation of certain internal and external factors that may influence each other. The model provides a first conceptualization of self-determination focusing on medical rehabilitation which should be further refined and tested empirically. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  19. Chlorine-36 data at Yucca Mountain: Statistical tests of conceptual models for unsaturated-zone flow

    USGS Publications Warehouse

    Campbell, K.; Wolfsberg, A.; Fabryka-Martin, J.; Sweetkind, D.

    2003-01-01

    An extensive set of chlorine-36 (36Cl) data has been collected in the Exploratory Studies Facility (ESF), an 8-km-long tunnel at Yucca Mountain, Nevada, for the purpose of developing and testing conceptual models of flow and transport in the unsaturated zone (UZ) at this site. At several locations, the measured values of 36Cl/Cl ratios for salts leached from rock samples are high enough to provide strong evidence that at least a small component of bomb-pulse 36Cl, fallout from atmospheric testing of nuclear devices in the 1950s and 1960s, was measured, implying that some fraction of the water traveled from the ground surface through 200-300 m of unsaturated rock to the level of the ESF during the last 50 years. These data are analyzed here using a formal statistical approach based on log-linear models to evaluate alternative conceptual models for the distribution of such fast flow paths. The most significant determinant of the presence of bomb-pulse 36Cl in a sample from the welded Topopah Spring unit (TSw) is the structural setting from which the sample was collected. Our analysis generally supports the conceptual model that a fault that cuts through the nonwelded Paintbrush tuff unit (PTn) that overlies the TSw is required in order for bomb-pulse 36Cl to be transmitted to the sample depth in less than 50 years. Away from PTn-cutting faults, the ages of water samples at the ESF appear to be a strong function of the thickness of the nonwelded tuff between the ground surface and the ESF, due to slow matrix flow in that unit. ?? 2002 Elsevier Science B.V. All rights reserved.

  20. Nutrient supply and mercury dynamics in marine ecosystems: a conceptual model.

    PubMed

    Driscoll, Charles T; Chen, Celia Y; Hammerschmidt, Chad R; Mason, Robert P; Gilmour, Cynthia C; Sunderland, Elsie M; Greenfield, Ben K; Buckman, Kate L; Lamborg, Carl H

    2012-11-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  1. Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model

    PubMed Central

    Chen, Celia Y.; Hammerschmidt, Chad R.; Mason, Robert P.; Gilmour, Cynthia C.; Sunderland, Elsie M.; Greenfield, Ben K.; Buckman, Kate L.; Lamborg, Carl H.

    2013-01-01

    There is increasing interest and concern over the impacts of mercury (Hg) inputs to marine ecosystems. One of the challenges in assessing these effects is that the cycling and trophic transfer of Hg are strongly linked to other contaminants and disturbances. In addition to Hg, a major problem facing coastal waters is the impacts of elevated nutrient, particularly nitrogen (N), inputs. Increases in nutrient loading alter coastal ecosystems in ways that should change the transport, transformations and fate of Hg, including increases in fixation of organic carbon and deposition to sediments, decreases in the redox status of sediments and changes in fish habitat. In this paper we present a conceptual model which suggests that increases in loading of reactive N to marine ecosystems might alter Hg dynamics, decreasing bioavailabilty and trophic transfer. This conceptual model is most applicable to coastal waters, but may also be relevant to the pelagic ocean. We present information from case studies that both support and challenge this conceptual model, including marine observations across a nutrient gradient; results of a nutrient-trophic transfer Hg model for pelagic and coastal ecosystems; observations of Hg species, and nutrients from coastal sediments in the northeastern U.S.; and an analysis of fish Hg concentrations in estuaries under different nutrient loadings. These case studies suggest that changes in nutrient loading can impact Hg dynamics in coastal and open ocean ecosystems. Unfortunately none of the case studies is comprehensive; each only addresses a portion of the conceptual model and has limitations. Nevertheless, our conceptual model has important management implications. Many estuaries near developed areas are impaired due to elevated nutrient inputs. Widespread efforts are underway to control N loading and restore coastal ecosystem function. An unintended consequence of nutrient control measures could be to exacerbate problems associated with Hg

  2. Pesticide fate on catchment scale: conceptual modelling of stream CSIA data

    NASA Astrophysics Data System (ADS)

    Lutz, Stefanie R.; van der Velde, Ype; Elsayed, Omniea F.; Imfeld, Gwenaël; Lefrancq, Marie; Payraudeau, Sylvain; van Breukelen, Boris M.

    2017-10-01

    Compound-specific stable isotope analysis (CSIA) has proven beneficial in the characterization of contaminant degradation in groundwater, but it has never been used to assess pesticide transformation on catchment scale. This study presents concentration and carbon CSIA data of the herbicides S-metolachlor and acetochlor from three locations (plot, drain, and catchment outlets) in a 47 ha agricultural catchment (Bas-Rhin, France). Herbicide concentrations at the catchment outlet were highest (62 µg L-1) in response to an intense rainfall event following herbicide application. Increasing δ13C values of S-metolachlor and acetochlor by more than 2 ‰ during the study period indicated herbicide degradation. To assist the interpretation of these data, discharge, concentrations, and δ13C values of S-metolachlor were modelled with a conceptual mathematical model using the transport formulation by travel-time distributions. Testing of different model setups supported the assumption that degradation half-lives (DT50) increase with increasing soil depth, which can be straightforwardly implemented in conceptual models using travel-time distributions. Moreover, model calibration yielded an estimate of a field-integrated isotopic enrichment factor as opposed to laboratory-based assessments of enrichment factors in closed systems. Thirdly, the Rayleigh equation commonly applied in groundwater studies was tested by our model for its potential to quantify degradation on catchment scale. It provided conservative estimates on the extent of degradation as occurred in stream samples. However, largely exceeding the simulated degradation within the entire catchment, these estimates were not representative of overall degradation on catchment scale. The conceptual modelling approach thus enabled us to upscale sample-based CSIA information on degradation to the catchment scale. Overall, this study demonstrates the benefit of combining monitoring and conceptual modelling of concentration

  3. A conceptual and disease model framework for osteoporotic kyphosis.

    PubMed

    Bayliss, M; Miltenburger, C; White, M; Alvares, L

    2013-09-01

    This paper presents a multi-method research project to develop a conceptual framework for measuring outcomes in studies of osteoporotic kyphosis. The research involved literature research and qualitative interviews among clinicians who treat patients with kyphosis and among patients with the condition. Kyphosis due to at least one vertebral compression fracture is prevalent among osteoporotic patients, resulting in well-documented symptoms and impact on functioning and well-being. A three-part study led to development of a conceptual measurement framework for comprehensive assessment of symptoms, impact, and treatment benefit for kyphosis. A literature-based disease model (DM) was developed and tested with physicians (n = 10) and patients (n = 10), and FDA guidelines were used to develop a final disease model and a conceptual framework. The DM included signs, symptoms, causes/triggers, exacerbations, and functional status associated with kyphosis. The DM was largely confirmed, but physicians and patients added several concepts related to impact on functioning, and some concepts were not confirmed and removed from the DM. This study confirms the need for more comprehensive assessment of health outcomes in kyphosis, as most current studies omit key concepts.

  4. A high-resolution conceptual model for diffuse organic micropollutant loads in streams

    NASA Astrophysics Data System (ADS)

    Stamm, Christian; Honti, Mark; Ghielmetti, Nico

    2013-04-01

    The ecological state of surface waters has become the dominant aspect in water quality assessments. Toxicity is a key determinant of the ecological state, but organic micropollutants (OMP) are seldom monitored with the same spatial and temporal frequency as for example nutrients, mainly due the demanding analytical methods and costs. However, diffuse transport pathways are at least equally complex for OMPs as for nutrients and there are still significant knowledge gaps. Moreover, concentrations of the different compounds would need to be known with fairly high temporal resolution because acute toxicity can be as important as the chronic one. Fully detailed mechanistic models of diffuse OMP loads require an immense set of site-specific knowledge and are rarely applicable for catchments lacking an exceptional monitoring coverage. Simple empirical methods are less demanding but usually work with more temporal aggregation and that's why they have limited possibilities to support the estimation of the ecological state. This study presents a simple conceptual model that aims to simulate the concentrations of selected organic micropollutants with daily resolution at 11 locations in the stream network of a small catchment (46 km2). The prerequisite is a known hydrological and meteorological background (daily discharge, precipitation and air temperature time series), a land use map and some historic measurements of the desired compounds. The model is conceptual in the sense that all important diffuse transport pathways are simulated separately, but each with a simple empirical process rate. Consequently, some site-specific observations are required to calibrate the model, but afterwards the model can be used for forecasting and scenario analysis as the calibrated process rates typically describe invariant properties of the catchment. We simulated 6 different OMPs from the categories of agricultural and urban pesticides and urban biocides. The application of agricultural

  5. Constructing a Conceptual Model Linking Drivers and Ecosystem Services in Piedmont Streams

    DTIC Science & Technology

    2011-04-01

    to the Virginia-Maryland border and is bound by the Appalachian Mountains and Blue Ridge to the northwest and the Atlantic Coastal Plain to the south...demand on freshwater ecosystem services, and a growing appreciation for the value of functioning ecosystems, the Appalachian Piedmont has developed a...the model and how it can be adapted and ap - plied for specific projects. A FRAMEWORK FOR CONCEPTUAL MODELING The general approach to conceptual

  6. River City High School Guidance Services: A Conceptual Model.

    ERIC Educational Resources Information Center

    American Coll. Testing Program, Iowa City, IA.

    This model describes how the guidance staff at a hypothetical high school communicated the effectiveness of the guidance program to students, parents, teachers, and administrators. A description of the high school is presented, and guidance services and personnel are described. A conceptual model responding to student needs is outlined along with…

  7. Ames expedited site characterization demonstration at the former manufactured gas plant site, Marshalltown, Iowa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bevolo, A.J.; Kjartanson, B.H.; Wonder, J.D.

    1996-03-01

    The goal of the Ames Expedited Site Characterization (ESC) project is to evaluate and promote both innovative technologies (IT) and state-of-the-practice technologies (SOPT) for site characterization and monitoring. In April and May 1994, the ESC project conducted site characterization, technology comparison, and stakeholder demonstration activities at a former manufactured gas plant (FMGP) owned by Iowa Electric Services (IES) Utilities, Inc., in Marshalltown, Iowa. Three areas of technology were fielded at the Marshalltown FMGP site: geophysical, analytical and data integration. The geophysical technologies are designed to assess the subsurface geological conditions so that the location, fate and transport of the targetmore » contaminants may be assessed and forecasted. The analytical technologies/methods are designed to detect and quantify the target contaminants. The data integration technology area consists of hardware and software systems designed to integrate all the site information compiled and collected into a conceptual site model on a daily basis at the site; this conceptual model then becomes the decision-support tool. Simultaneous fielding of different methods within each of the three areas of technology provided data for direct comparison of the technologies fielded, both SOPT and IT. This document reports the results of the site characterization, technology comparison, and ESC demonstration activities associated with the Marshalltown FMGP site. 124 figs., 27 tabs.« less

  8. Patient-Clinician Communication About Pain: A Conceptual Model and Narrative Review.

    PubMed

    Henry, Stephen G; Matthias, Marianne S

    2018-02-01

    Productive patient-clinician communication is an important component of effective pain management, but we know little about how patients and clinicians actually talk about pain in clinical settings and how it might be improved to produce better patient outcomes. The objective of this review was to create a conceptual model of patient-clinician communication about noncancer pain, review and synthesize empirical research in this area, and identify priorities for future research. A conceptual model was developed that drew on existing pain and health communication research. CINAHL, EMBASE, and PubMed were searched to find studies reporting empirical data on patient-clinician communication about noncancer pain; results were supplemented with manual searches. Studies were categorized and analyzed to identify crosscutting themes and inform model development. The conceptual model comprised the following components: contextual factors, clinical interaction, attitudes and beliefs, and outcomes. Thirty-nine studies met inclusion criteria and were analyzed based on model components. Studies varied widely in quality, methodology, and sample size. Two provisional conclusions were identified: contrary to what is often reported in the literature, discussions about analgesics are most frequently characterized by patient-clinician agreement, and self-presentation during patient-clinician interactions plays an important role in communication about pain and opioids. Published studies on patient-clinician communication about noncancer pain are few and diverse. The conceptual model presented here can help to identify knowledge gaps and guide future research on communication about pain. Investigating the links between communication and pain-related outcomes is an important priority for future research. © 2018 American Academy of Pain Medicine. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  9. Use of theoretical and conceptual frameworks in qualitative research.

    PubMed

    Green, Helen Elise

    2014-07-01

    To debate the definition and use of theoretical and conceptual frameworks in qualitative research. There is a paucity of literature to help the novice researcher to understand what theoretical and conceptual frameworks are and how they should be used. This paper acknowledges the interchangeable usage of these terms and researchers' confusion about the differences between the two. It discusses how researchers have used theoretical and conceptual frameworks and the notion of conceptual models. Detail is given about how one researcher incorporated a conceptual framework throughout a research project, the purpose for doing so and how this led to a resultant conceptual model. Concepts from Abbott (1988) and Witz ( 1992 ) were used to provide a framework for research involving two case study sites. The framework was used to determine research questions and give direction to interviews and discussions to focus the research. Some research methods do not overtly use a theoretical framework or conceptual framework in their design, but this is implicit and underpins the method design, for example in grounded theory. Other qualitative methods use one or the other to frame the design of a research project or to explain the outcomes. An example is given of how a conceptual framework was used throughout a research project. Theoretical and conceptual frameworks are terms that are regularly used in research but rarely explained. Textbooks should discuss what they are and how they can be used, so novice researchers understand how they can help with research design. Theoretical and conceptual frameworks need to be more clearly understood by researchers and correct terminology used to ensure clarity for novice researchers.

  10. CASE STUDY: SITE CONCEPTUAL MODEL FOR ENHANCED MNA OF ARSENIC

    EPA Science Inventory

    Field investigations have been conducted to understand the fate of arsenic in contaminated ground water during discharge into the Halls Brook Holding Area (HBHA) Pond at the Industri-Plex Superfund Site in Massachusetts. The ground water plume contains elevated levels of arsenic...

  11. Developing a Conceptual Model of STEAM Teaching Practices

    ERIC Educational Resources Information Center

    Quigley, Cassie F.; Herro, Dani; Jamil, Faiza M.

    2017-01-01

    STEAM, where the "A" represents arts and humanities, is considered a transdisciplinary learning process that has the potential to increase diverse participation in science, technology, engineering, and math (STEM) fields. However, a well-defined conceptual model that clearly articulates essential components of the STEAM approach is…

  12. Conceptual model of sediment processes in the upper Yuba River watershed, Sierra Nevada, CA

    USGS Publications Warehouse

    Curtis, J.A.; Flint, L.E.; Alpers, Charles N.; Yarnell, S.M.

    2005-01-01

    This study examines the development of a conceptual model of sediment processes in the upper Yuba River watershed; and we hypothesize how components of the conceptual model may be spatially distributed using a geographical information system (GIS). The conceptual model illustrates key processes controlling sediment dynamics in the upper Yuba River watershed and was tested and revised using field measurements, aerial photography, and low elevation videography. Field reconnaissance included mass wasting and channel storage inventories, assessment of annual channel change in upland tributaries, and evaluation of the relative importance of sediment sources and transport processes. Hillslope erosion rates throughout the study area are relatively low when compared to more rapidly eroding landscapes such as the Pacific Northwest and notable hillslope sediment sources include highly erodible andesitic mudflows, serpentinized ultramafics, and unvegetated hydraulic mine pits. Mass wasting dominates surface erosion on the hillslopes; however, erosion of stored channel sediment is the primary contributor to annual sediment yield. We used GIS to spatially distribute the components of the conceptual model and created hillslope erosion potential and channel storage models. The GIS models exemplify the conceptual model in that landscapes with low potential evapotranspiration, sparse vegetation, steep slopes, erodible geology and soils, and high road densities display the greatest hillslope erosion potential and channel storage increases with increasing stream order. In-channel storage in upland tributaries impacted by hydraulic mining is an exception. Reworking of stored hydraulic mining sediment in low-order tributaries continues to elevate upper Yuba River sediment yields. Finally, we propose that spatially distributing the components of a conceptual model in a GIS framework provides a guide for developing more detailed sediment budgets or numerical models making it an

  13. Risk factors for pressure ulcer development in critically Ill patients: a conceptual model to guide research.

    PubMed

    Benoit, Richard; Mion, Lorraine

    2012-08-01

    This paper presents a proposed conceptual model to guide research on pressure ulcer risk in critically ill patients, who are at high risk for pressure ulcer development. However, no conceptual model exists that guides risk assessment in this population. Results from a review of prospective studies were evaluated for design quality and level of statistical reporting. Multivariate findings from studies having high or medium design quality by the National Institute of Health and Clinical Excellence standards were conceptually grouped. The conceptual groupings were integrated into Braden and Bergstrom's (Braden and Bergstrom [1987] Rehabilitation Nursing, 12, 8-12, 16) conceptual model, retaining their original constructs and augmenting their concept of intrinsic factors for tissue tolerance. The model could enhance consistency in research on pressure ulcer risk factors. Copyright © 2012 Wiley Periodicals, Inc.

  14. Educational Criteria for Evaluating Simple Class Diagrams Made by Novices for Conceptual Modeling

    ERIC Educational Resources Information Center

    Kayama, Mizue; Ogata, Shinpei; Asano, David K.; Hashimoto, Masami

    2016-01-01

    Conceptual modeling is one of the most important learning topics for higher education and secondary education. The goal of conceptual modeling in this research is to draw a class diagram using given notation to satisfy the given requirements. In this case, the subjects are asked to choose concepts to satisfy the given requirements and to correctly…

  15. Robust Bayesian Experimental Design for Conceptual Model Discrimination

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Tsai, F. T. C.

    2015-12-01

    A robust Bayesian optimal experimental design under uncertainty is presented to provide firm information for model discrimination, given the least number of pumping wells and observation wells. Firm information is the maximum information of a system can be guaranteed from an experimental design. The design is based on the Box-Hill expected entropy decrease (EED) before and after the experiment design and the Bayesian model averaging (BMA) framework. A max-min programming is introduced to choose the robust design that maximizes the minimal Box-Hill EED subject to that the highest expected posterior model probability satisfies a desired probability threshold. The EED is calculated by the Gauss-Hermite quadrature. The BMA method is used to predict future observations and to quantify future observation uncertainty arising from conceptual and parametric uncertainties in calculating EED. Monte Carlo approach is adopted to quantify the uncertainty in the posterior model probabilities. The optimal experimental design is tested by a synthetic 5-layer anisotropic confined aquifer. Nine conceptual groundwater models are constructed due to uncertain geological architecture and boundary condition. High-performance computing is used to enumerate all possible design solutions in order to identify the most plausible groundwater model. Results highlight the impacts of scedasticity in future observation data as well as uncertainty sources on potential pumping and observation locations.

  16. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan

    2012-06-01

    The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.

  17. Development of a Conceptual Chum Salmon Emergence Model for Ives Island

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Christopher J.; Geist, David R.; Arntzen, Evan V.

    2011-02-09

    The objective of the study described herein was to develop a conceptual model of chum salmon emergence that was based on empirical water temperature of the riverbed and river in specific locations where chum salmon spawn in the Ives Island area. The conceptual model was developed using water temperature data that have been collected in the past and are currently being collected in the Ives Island area. The model will be useful to system operators who need to estimate the complete distribution of chum salmon emergence (first emergence through final emergence) in order to balance chum salmon redd protection andmore » power system operation.« less

  18. Evaluation of the US DOE's conceptual model of hydrothermal activity at Yucca Mountain, Nevada

    NASA Astrophysics Data System (ADS)

    Dublyansky, Y. V.

    2014-08-01

    A unique conceptual model describing the conductive heating of rocks in the thick unsaturated zone of Yucca Mountain, Nevada by a silicic pluton emplaced several kilometers away is accepted by the US Department of Energy (DOE) as an explanation of the elevated depositional temperatures measured in fluid inclusions in secondary fluorite and calcite. Acceptance of this model allowed the DOE to keep from considering hydrothermal activity in the performance assessment of the proposed high-level nuclear waste disposal facility. The evaluation presented in this paper shows that no computational modeling results have yet produced a satisfactory match with the empirical benchmark data, specifically with age and fluid inclusion data that indicate high temperatures (up to ca. 80 °C) in the unsaturated zone of Yucca Mountain. Auxiliary sub-models complementing the DOE model, as well as observations at a natural analog site, have also been evaluated. Summarily, the model cannot be considered as validated. Due to the lack of validation, the reliance on this model must be discontinued and the appropriateness of decisions which rely on this model must be re-evaluated.

  19. A beginner's guide to writing the nursing conceptual model-based theoretical rationale.

    PubMed

    Gigliotti, Eileen; Manister, Nancy N

    2012-10-01

    Writing the theoretical rationale for a study can be a daunting prospect for novice researchers. Nursing's conceptual models provide excellent frameworks for placement of study variables, but moving from the very abstract concepts of the nursing model to the less abstract concepts of the study variables is difficult. Similar to the five-paragraph essay used by writing teachers to assist beginning writers to construct a logical thesis, the authors of this column present guidelines that beginners can follow to construct their theoretical rationale. This guide can be used with any nursing conceptual model but Neuman's model was chosen here as the exemplar.

  20. A Multiperspectival Conceptual Model of Transformative Meaning Making

    ERIC Educational Resources Information Center

    Freed, Maxine

    2009-01-01

    Meaning making is central to transformative learning, but little work has explored how meaning is constructed in the process. Moreover, no meaning-making theory adequately captures its characteristics and operations during radical transformation. The purpose of this dissertation was to formulate and specify a multiperspectival conceptual model of…

  1. A Scoping Review: Conceptualizations and Pedagogical Models of Learning in Nursing Simulation

    ERIC Educational Resources Information Center

    Poikela, Paula; Teräs, Marianne

    2015-01-01

    Simulations have been implemented globally in nursing education for years with diverse conceptual foundations. The aim of this scoping review is to examine the literature regarding the conceptualizations of learning and pedagogical models in nursing simulations. A scoping review of peer-reviewed articles published between 2000 and 2013 was…

  2. Navigating Tensions between Conceptual and Metaconceptual Goals in the Use of Models

    ERIC Educational Resources Information Center

    Delgado, Cesar

    2015-01-01

    Science education involves learning about phenomena at three levels: concrete (facts and generalizations), conceptual (concepts and theories), and metaconceptual (epistemology) (Snir et al. in "J Sci Educ Technol" 2(2):373-388, 1993). Models are key components in science, can help build conceptual understanding, and may also build…

  3. A conceptual network model of the air transportation system. the basic level 1 model.

    DOT National Transportation Integrated Search

    1971-04-01

    A basic conceptual model of the entire Air Transportation System is being developed to serve as an analytical tool for studying the interactions among the system elements. The model is being designed to function in an interactive computer graphics en...

  4. Conceptual Modeling in the Time of the Revolution: Part II

    NASA Astrophysics Data System (ADS)

    Mylopoulos, John

    Conceptual Modeling was a marginal research topic at the very fringes of Computer Science in the 60s and 70s, when the discipline was dominated by topics focusing on programs, systems and hardware architectures. Over the years, however, the field has moved to centre stage and has come to claim a central role both in Computer Science research and practice in diverse areas, such as Software Engineering, Databases, Information Systems, the Semantic Web, Business Process Management, Service-Oriented Computing, Multi-Agent Systems, Knowledge Management, and more. The transformation was greatly aided by the adoption of standards in modeling languages (e.g., UML), and model-based methodologies (e.g., Model-Driven Architectures) by the Object Management Group (OMG) and other standards organizations. We briefly review the history of the field over the past 40 years, focusing on the evolution of key ideas. We then note some open challenges and report on-going research, covering topics such as the representation of variability in conceptual models, capturing model intentions, and models of laws.

  5. Towards Smart and Resilient City: A Conceptual Model

    NASA Astrophysics Data System (ADS)

    Arafah, Y.; Winarso, H.; Suroso, D. S. A.

    2018-05-01

    This paper aims to compare five smart city models selected based on a number of specific criteria. Following the comparison and assessment performed, we draw conclusions and further linkages identifying the components and characters found in resilient cities. The purpose of this analysis is to produce a new approach and concept: the “smart and resilient city.” Through in-depth literature study, this paper analyzes five conceptual smart city models deemed to have a background, point of view, and benchmark towards software group, as they focus on welfare, inclusion, social equality, and competitiveness. Analyzing the strategies, methods, and techniques of five smart city models, this paper concludes that there has been no inclusion of resilience concepts in the assessment, especially in the context of natural disasters. Basically, the models are also interrelated and there are some things that overlap. As a recommendation, there is a model that tries to combine the components and character of smart city and resilient city into one entity that is embedded as a whole in a conceptual picture towards the new concept, the “smart and resilient city”. The concept of smart city and resilient city go hand in hand with each other and thus are interrelated. Therefore, it is imperative to study that concept deeper, in this case primarily in the context of disaster.

  6. Development of a hydrogeological conceptual wetland model in the data-scarce north-eastern region of Kilombero Valley, Tanzania

    NASA Astrophysics Data System (ADS)

    Burghof, Sonja; Gabiri, Geofrey; Stumpp, Christine; Chesnaux, Romain; Reichert, Barbara

    2018-02-01

    Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.

  7. Our evolving conceptual model of the coastal eutrophication problem

    USGS Publications Warehouse

    Cloern, James E.

    2001-01-01

    A primary focus of coastal science during the past 3 decades has been the question: How does anthropogenic nutrient enrichment cause change in the structure or function of nearshore coastal ecosystems? This theme of environmental science is recent, so our conceptual model of the coastal eutrophication problem continues to change rapidly. In this review, I suggest that the early (Phase I) conceptual model was strongly influenced by limnologists, who began intense study of lake eutrophication by the 1960s. The Phase I model emphasized changing nutrient input as a signal, and responses to that signal as increased phytoplankton biomass and primary production, decomposition of phytoplankton-derived organic matter, and enhanced depletion of oxygen from bottom waters. Coastal research in recent decades has identified key differences in the responses of lakes and coastal-estuarine ecosystems to nutrient enrichment. The contemporary (Phase II) conceptual model reflects those differences and includes explicit recognition of (1) system-specific attributes that act as a filter to modulate the responses to enrichment (leading to large differences among estuarine-coastal systems in their sensitivity to nutrient enrichment); and (2) a complex suite of direct and indirect responses including linked changes in: water transparency, distribution of vascular plants and biomass of macroalgae, sediment biogeochemistry and nutrient cycling, nutrient ratios and their regulation of phytoplankton community composition, frequency of toxic/harmful algal blooms, habitat quality for metazoans, reproduction/growth/survival of pelagic and benthic invertebrates, and subtle changes such as shifts in the seasonality of ecosystem functions. Each aspect of the Phase II model is illustrated here with examples from coastal ecosystems around the world. In the last section of this review I present one vision of the next (Phase III) stage in the evolution of our conceptual model, organized around 5

  8. Landscape evolution and agricultural land salinization in coastal area: A conceptual model.

    PubMed

    Bless, Aplena Elen; Colin, François; Crabit, Armand; Devaux, Nicolas; Philippon, Olivier; Follain, Stéphane

    2018-06-01

    Soil salinization is a major threat to agricultural lands. Among salt-affected lands, coastal areas could be considered as highly complex systems, where salinization degradation due to anthropogenic pressure and climate-induced changes could significantly alter system functioning. For such complex systems, conceptual models can be used as evaluation tools in a preliminary step to identify the main evolutionary processes responsible for soil and water salinization. This study aimed to propose a conceptual model for water fluxes in a coastal area affected by salinity, which can help to identify the relationships between agricultural landscape evolution and actual salinity. First, we conducted field investigations from 2012 to 2016, mainly based on both soil (EC 1/5 ) and water (EC w ) electrical conductivity survey. This allowed us to characterize spatial structures for EC 1/5 and EC w and to identify the river as a preponderant factor in land salinization. Subsequently, we proposed and used a conceptual model for water fluxes and conducted a time analysis (1962-2012) for three of its main constitutive elements, namely climate, river, and land systems. When integrated within the conceptual model framework, it appeared that the evolution of all constitutive elements since 1962 was responsible for the disruption of system equilibrium, favoring overall salt accumulation in the soil root zone. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Groundwater modelling in conceptual hydrological models - introducing space

    NASA Astrophysics Data System (ADS)

    Boje, Søren; Skaugen, Thomas; Møen, Knut; Myrabø, Steinar

    2017-04-01

    The tiny Sæternbekken Minifelt (Muren) catchment (7500 m2) in Bærumsmarka, Norway, was during the 1990s, densely instrumented with more than a 100 observation points for measuring groundwater levels. The aim was to investigate the link between shallow groundwater dynamics and runoff. The DDD (Distance Distribution Dynamics) model is a newly developed rainfall-runoff model used operationally by the Norwegian Flood-Forecasting service at NVE. The model estimates the capacity of the subsurface reservoir at different levels of saturation and predicts overland flow. The subsurface in the DDD model has a 2-D representation that calculates the saturated and unsaturated soil moisture along a hillslope representing the entire catchment in question. The groundwater observations from more than two decades ago are used to verify assumptions of the subsurface reservoir in the DDD model and to validate its spatial representation of the subsurface reservoir. The Muren catchment will, during 2017, be re-instrumented in order to continue the work to bridge the gap between conceptual hydrological models, with typically single value or 0-dimension representation of the subsurface, and models with more realistic 2- or 3-dimension representation of the subsurface.

  10. A Conceptual Model of the World of Work.

    ERIC Educational Resources Information Center

    VanRooy, William H.

    The conceptual model described in this paper resulted from the need to organize a body of knowledge related to the world of work which would enable curriculum developers to prepare accurate, realistic instructional materials. The world of work is described by applying Malinowski's scientific study of the structural components of culture. It is…

  11. A Conceptual Model of Career Development to Enhance Academic Motivation

    ERIC Educational Resources Information Center

    Collins, Nancy Creighton

    2010-01-01

    The purpose of this study was to develop, refine, and validate a conceptual model of career development to enhance the academic motivation of community college students. To achieve this end, a straw model was built from the theoretical and empirical research literature. The model was then refined and validated through three rounds of a Delphi…

  12. A Conceptual Model of the Information Requirements of Nursing Organizations

    PubMed Central

    Miller, Emmy

    1989-01-01

    Three related issues play a role in the identification of the information requirements of nursing organizations. These issues are the current state of computer systems in health care organizations, the lack of a well-defined data set for nursing, and the absence of models representing data and information relevant to clinical and administrative nursing practice. This paper will examine current methods of data collection, processing, and storage in clinical and administrative nursing practice for the purpose of identifying the information requirements of nursing organizations. To satisfy these information requirements, database technology can be used; however, a model for database design is needed that reflects the conceptual framework of nursing and the professional concerns of nurses. A conceptual model of the types of data necessary to produce the desired information will be presented and the relationships among data will be delineated.

  13. Fostering radical conceptual change through dual-situated learning model

    NASA Astrophysics Data System (ADS)

    She, Hsiao-Ching

    2004-02-01

    This article examines how the Dual-Situated Learning Model (DSLM) facilitates a radical change of concepts that involve the understanding of matter, process, and hierarchical attributes. The DSLM requires knowledge of students' prior beliefs of science concepts and the nature of these concepts. In addition, DSLM also serves two functions: it creates dissonance with students' prior knowledge by challenging their epistemological and ontological beliefs about science concepts, and it provides essential mental sets for students to reconstruct a more scientific view of the concepts. In this study, the concept heat transfer: heat conduction and convection, which requires an understanding of matter, process, and hierarchical attributes, was chosen to examine how DSLM can facilitate radical conceptual change among students. Results show that DSLM has great potential to foster a radical conceptual change process in learning heat transfer. Radical conceptual change can definitely be achieved and does not necessarily involve a slow or gradual process.

  14. Ontology-Driven Business Modelling: Improving the Conceptual Representation of the REA Ontology

    NASA Astrophysics Data System (ADS)

    Gailly, Frederik; Poels, Geert

    Business modelling research is increasingly interested in exploring how domain ontologies can be used as reference models for business models. The Resource Event Agent (REA) ontology is a primary candidate for ontology-driven modelling of business processes because the REA point of view on business reality is close to the conceptual modelling perspective on business models. In this paper Ontology Engineering principles are employed to reengineer REA in order to make it more suitable for ontology-driven business modelling. The new conceptual representation of REA that we propose uses a single representation formalism, includes a more complete domain axiomatizat-ion (containing definitions of concepts, concept relations and ontological axioms), and is proposed as a generic model that can be instantiated to create valid business models. The effects of these proposed improvements on REA-driven business modelling are demonstrated using a business modelling example.

  15. CONCEPTUAL MODELS AND METHODS TO GUIDE DIAGNOSTIC RESEARCH INTO CAUSES OF IMPAIRMENT TO AQUATIC ECOSYSTEMS

    EPA Science Inventory

    Methods and conceptual models to guide the development of tools for diagnosing the causes of biological impairment within aquatic ecosystems of the United States are described in this report. The conceptual models developed here address nutrients, suspended and bedded sediments (...

  16. Design Oriented Structural Modeling for Airplane Conceptual Design Optimization

    NASA Technical Reports Server (NTRS)

    Livne, Eli

    1999-01-01

    The main goal for research conducted with the support of this grant was to develop design oriented structural optimization methods for the conceptual design of airplanes. Traditionally in conceptual design airframe weight is estimated based on statistical equations developed over years of fitting airplane weight data in data bases of similar existing air- planes. Utilization of such regression equations for the design of new airplanes can be justified only if the new air-planes use structural technology similar to the technology on the airplanes in those weight data bases. If any new structural technology is to be pursued or any new unconventional configurations designed the statistical weight equations cannot be used. In such cases any structural weight estimation must be based on rigorous "physics based" structural analysis and optimization of the airframes under consideration. Work under this grant progressed to explore airframe design-oriented structural optimization techniques along two lines of research: methods based on "fast" design oriented finite element technology and methods based on equivalent plate / equivalent shell models of airframes, in which the vehicle is modelled as an assembly of plate and shell components, each simulating a lifting surface or nacelle / fuselage pieces. Since response to changes in geometry are essential in conceptual design of airplanes, as well as the capability to optimize the shape itself, research supported by this grant sought to develop efficient techniques for parametrization of airplane shape and sensitivity analysis with respect to shape design variables. Towards the end of the grant period a prototype automated structural analysis code designed to work with the NASA Aircraft Synthesis conceptual design code ACS= was delivered to NASA Ames.

  17. Some problems with social cognition models: a pragmatic and conceptual analysis.

    PubMed

    Ogden, Jane

    2003-07-01

    Empirical articles published between 1997 and 2001 from 4 health psychology journals that tested or applied 1 or more social cognition models (theory of reasoned action, theory of planned behavior, health belief model, and protection motivation theory; N = 47) were scrutinized for their pragmatic and conceptual basis. In terms of their pragmatic basis, these 4 models were useful for guiding research. The analysis of their conceptual basis was less positive. First, these models do not enable the generation of hypotheses because their constructs are unspecific; they therefore cannot be tested. Second, they focus on analytic truths rather than synthetic ones, and the conclusions resulting from their application are often true by definition rather than by observation. Finally, they may create and change both cognitions and behavior rather than describe them.

  18. A year 2003 conceptual model for the U.S. telecommunications infrastructure.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cox, Roger Gary; Reinert, Rhonda K.

    2003-12-01

    To model the telecommunications infrastructure and its role and robustness to shocks, we must characterize the business and engineering of telecommunications systems in the year 2003 and beyond. By analogy to environmental systems modeling, we seek to develop a 'conceptual model' for telecommunications. Here, the conceptual model is a list of high-level assumptions consistent with the economic and engineering architectures of telecommunications suppliers and customers, both today and in the near future. We describe the present engineering architectures of the most popular service offerings, and describe the supplier markets in some detail. We also develop a characterization of the customermore » base for telecommunications services and project its likely response to disruptions in service, base-lining such conjectures against observed behaviors during 9/11.« less

  19. Computer-based creativity enhanced conceptual design model for non-routine design of mechanical systems

    NASA Astrophysics Data System (ADS)

    Li, Yutong; Wang, Yuxin; Duffy, Alex H. B.

    2014-11-01

    Computer-based conceptual design for routine design has made great strides, yet non-routine design has not been given due attention, and it is still poorly automated. Considering that the function-behavior-structure(FBS) model is widely used for modeling the conceptual design process, a computer-based creativity enhanced conceptual design model(CECD) for non-routine design of mechanical systems is presented. In the model, the leaf functions in the FBS model are decomposed into and represented with fine-grain basic operation actions(BOA), and the corresponding BOA set in the function domain is then constructed. Choosing building blocks from the database, and expressing their multiple functions with BOAs, the BOA set in the structure domain is formed. Through rule-based dynamic partition of the BOA set in the function domain, many variants of regenerated functional schemes are generated. For enhancing the capability to introduce new design variables into the conceptual design process, and dig out more innovative physical structure schemes, the indirect function-structure matching strategy based on reconstructing the combined structure schemes is adopted. By adjusting the tightness of the partition rules and the granularity of the divided BOA subsets, and making full use of the main function and secondary functions of each basic structure in the process of reconstructing of the physical structures, new design variables and variants are introduced into the physical structure scheme reconstructing process, and a great number of simpler physical structure schemes to accomplish the overall function organically are figured out. The creativity enhanced conceptual design model presented has a dominant capability in introducing new deign variables in function domain and digging out simpler physical structures to accomplish the overall function, therefore it can be utilized to solve non-routine conceptual design problem.

  20. Inverse modeling of BTEX dissolution and biodegradation at the Bemidji, MN crude-oil spill site

    USGS Publications Warehouse

    Essaid, H.I.; Cozzarelli, I.M.; Eganhouse, R.P.; Herkelrath, W.N.; Bekins, B.A.; Delin, G.N.

    2003-01-01

    The U.S. Geological Survey (USGS) solute transport and biodegradation code BIOMOC was used in conjunction with the USGS universal inverse modeling code UCODE to quantify field-scale hydrocarbon dissolution and biodegradation at the USGS Toxic Substances Hydrology Program crude-oil spill research site located near Bemidji, MN. This inverse modeling effort used the extensive historical data compiled at the Bemidji site from 1986 to 1997 and incorporated a multicomponent transport and biodegradation model. Inverse modeling was successful when coupled transport and degradation processes were incorporated into the model and a single dissolution rate coefficient was used for all BTEX components. Assuming a stationary oil body, we simulated benzene, toluene, ethylbenzene, m,p-xylene, and o-xylene (BTEX) concentrations in the oil and ground water, respectively, as well as dissolved oxygen. Dissolution from the oil phase and aerobic and anaerobic degradation processes were represented. The parameters estimated were the recharge rate, hydraulic conductivity, dissolution rate coefficient, individual first-order BTEX anaerobic degradation rates, and transverse dispersivity. Results were similar for simulations obtained using several alternative conceptual models of the hydrologic system and biodegradation processes. The dissolved BTEX concentration data were not sufficient to discriminate between these conceptual models. The calibrated simulations reproduced the general large-scale evolution of the plume, but did not reproduce the observed small-scale spatial and temporal variability in concentrations. The estimated anaerobic biodegradation rates for toluene and o-xylene were greater than the dissolution rate coefficient. However, the estimated anaerobic biodegradation rates for benzene, ethylbenzene, and m,p-xylene were less than the dissolution rate coefficient. The calibrated model was used to determine the BTEX mass balance in the oil body and groundwater plume

  1. Tidal oscillation of sediment between a river and a bay: A conceptual model

    USGS Publications Warehouse

    Ganju, N.K.; Schoellhamer, D.H.; Warner, J.C.; Barad, M.F.; Schladow, S.G.

    2004-01-01

    A conceptual model of fine sediment transport between a river and a bay is proposed, based on observations at two rivers feeding the same bay. The conceptual model consists of river, transitional, and bay regimes. Within the transitional regime, resuspension, advection, and deposition create a mass of sediment that oscillates landward and seaward. While suspended, this sediment mass forms an estuarine turbidity maximum. At slack tides this sediment mass temporarily deposits on the bed, creating landward and seaward deposits. Tidal excursion and slack tide deposition limit the range of the sediment mass. To verify this conceptual model, data from two small tributary rivers of San Pablo Bay are presented. Tidal variability of suspended-sediment concentration markedly differs between the landward and seaward deposits, allowing interpretation of the intratidal movement of the oscillating sediment mass. Application of this model in suitable estuaries will assist in numerical model calibration as well as in data interpretation. A similar model has been applied to some larger-scale European estuaries, which bear a geometric resemblance to the systems analyzed in this study. ?? 2004 Elsevier Ltd. All rights reserved.

  2. Prevention through Design Adoption Readiness Model (PtD ARM): An integrated conceptual model.

    PubMed

    Weidman, Justin; Dickerson, Deborah E; Koebel, Charles T

    2015-01-01

    Prevention through Design (PtD), eliminating hazards at the design-stage of tools and systems, is the optimal method of mitigating occupational health and safety risks. A recent National Institute of Safety and Health initiative has established a goal to increase adoption of PtD innovation in industry. The construction industry has traditionally lagged behind other sectors in the adoption of innovation, in general; and of safety and health prevention innovation, in particular. Therefore, as a first step toward improving adoption trends in this sector, a conceptual model was developed to describe the parameters and causal relationships that influence and predict construction stakeholder "adoption readiness" for PtD technology innovation. This model was built upon three well-established theoretical frameworks: the Health Belief Model, the Diffusion of Innovation Model, and the Technology Acceptance Model. Earp and Ennett's model development methodology was employed to build a depiction of the key constructs and directionality and magnitude of relationships among them. Key constructs were identified from the literature associated with the three theoretical frameworks, with special emphasis given to studies related to construction or OHS technology adoption. A conceptual model is presented. Recommendations for future research are described and include confirmatory structural equation modeling of model parameters and relationships, additional descriptive investigation of barriers to adoption in some trade sectors, and design and evaluation of an intervention strategy.

  3. Conceptualizing Programme Evaluation

    ERIC Educational Resources Information Center

    Hassan, Salochana

    2013-01-01

    The main thrust of this paper deals with the conceptualization of theory-driven evaluation pertaining to a tutor training programme. Conceptualization of evaluation, in this case, is an integration between a conceptualization model as well as a theoretical framework in the form of activity theory. Existing examples of frameworks of programme…

  4. A conceptual data model and modelling language for fields and agents

    NASA Astrophysics Data System (ADS)

    de Bakker, Merijn; de Jong, Kor; Schmitz, Oliver; Karssenberg, Derek

    2016-04-01

    Modelling is essential in order to understand environmental systems. Environmental systems are heterogeneous because they consist of fields and agents. Fields have a value defined everywhere at all times, for example surface elevation and temperature. Agents are bounded in space and time and have a value only within their bounds, for example biomass of a tree crown or the speed of a car. Many phenomena have properties of both fields and agents. Although many systems contain both fields and agents and integration of these concepts would be required for modelling, existing modelling frameworks concentrate on either agent-based or field-based modelling and are often low-level programming frameworks. A concept is lacking that integrates fields and agents in a way that is easy to use for modelers who are not software engineers. To address this issue, we develop a conceptual data model that represents fields and agents uniformly. We then show how the data model can be used in a high-level modelling language. The data model represents fields and agents in space-time. Also relations and networks can be represented using the same concepts. Using the conceptual data model we can represent static and mobile agents that may have spatial and temporal variation within their extent. The concepts we use are phenomenon, property set, item, property, domain and value. The phenomenon is the thing that is modelled, which can be any real world thing, for example trees. A phenomenon usually consists of several items, e.g. single trees. The domain is the spatiotemporal location and/or extent for which the items in the phenomenon are defined. Multiple different domains can coexist for a given phenomenon. For example a domain describing the extent of the trees and a domain describing the stem locations. The same goes for the property, which is an attribute of the thing that is being modeled. A property has a value, which is possibly discretized, for example the biomass over the tree crown

  5. The Value of Conceptual Models in Coping with Complexity and Interdisciplinarity in Environmental Sciences Education

    ERIC Educational Resources Information Center

    Fortuin, Karen P. J.; van Koppen, C. S. A.; Leemans, Rik

    2011-01-01

    Conceptual models are useful for facing the challenges of environmental sciences curriculum and course developers and students. These challenges are inherent to the interdisciplinary and problem-oriented character of environmental sciences curricula. In this article, we review the merits of conceptual models in facing these challenges. These…

  6. The EBM-DPSER Conceptual Model: Integrating Ecosystem Services into the DPSIR Framework

    PubMed Central

    Kelble, Christopher R.; Loomis, Dave K.; Lovelace, Susan; Nuttle, William K.; Ortner, Peter B.; Fletcher, Pamela; Cook, Geoffrey S.; Lorenz, Jerry J.; Boyer, Joseph N.

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  7. The EBM-DPSER conceptual model: integrating ecosystem services into the DPSIR framework.

    PubMed

    Kelble, Christopher R; Loomis, Dave K; Lovelace, Susan; Nuttle, William K; Ortner, Peter B; Fletcher, Pamela; Cook, Geoffrey S; Lorenz, Jerry J; Boyer, Joseph N

    2013-01-01

    There is a pressing need to integrate biophysical and human dimensions science to better inform holistic ecosystem management supporting the transition from single species or single-sector management to multi-sector ecosystem-based management. Ecosystem-based management should focus upon ecosystem services, since they reflect societal goals, values, desires, and benefits. The inclusion of ecosystem services into holistic management strategies improves management by better capturing the diversity of positive and negative human-natural interactions and making explicit the benefits to society. To facilitate this inclusion, we propose a conceptual model that merges the broadly applied Driver, Pressure, State, Impact, and Response (DPSIR) conceptual model with ecosystem services yielding a Driver, Pressure, State, Ecosystem service, and Response (EBM-DPSER) conceptual model. The impact module in traditional DPSIR models focuses attention upon negative anthropomorphic impacts on the ecosystem; by replacing impacts with ecosystem services the EBM-DPSER model incorporates not only negative, but also positive changes in the ecosystem. Responses occur as a result of changes in ecosystem services and include inter alia management actions directed at proactively altering human population or individual behavior and infrastructure to meet societal goals. The EBM-DPSER conceptual model was applied to the Florida Keys and Dry Tortugas marine ecosystem as a case study to illustrate how it can inform management decisions. This case study captures our system-level understanding and results in a more holistic representation of ecosystem and human society interactions, thus improving our ability to identify trade-offs. The EBM-DPSER model should be a useful operational tool for implementing EBM, in that it fully integrates our knowledge of all ecosystem components while focusing management attention upon those aspects of the ecosystem most important to human society and does so within

  8. ITE CHARACTERIZATION TO SUPPORT CONCEPTUAL MODEL DEVELOPMENT FOR SUBSURFACE RADIONUCLIDE TRANSPORT

    EPA Science Inventory

    Remediation of radionuclide contaminants in ground water often begins with the development of conceptual and analytical models that guide our understanding of the processes controlling radionuclide transport. The reliability of these models is often predicated on the collection o...

  9. Propulsion System Models for Rotorcraft Conceptual Design

    NASA Technical Reports Server (NTRS)

    Johnson, Wayne

    2014-01-01

    The conceptual design code NDARC (NASA Design and Analysis of Rotorcraft) was initially implemented to model conventional rotorcraft propulsion systems, consisting of turboshaft engines burning jet fuel, connected to one or more rotors through a mechanical transmission. The NDARC propulsion system representation has been extended to cover additional propulsion concepts, including electric motors and generators, rotor reaction drive, turbojet and turbofan engines, fuel cells and solar cells, batteries, and fuel (energy) used without weight change. The paper describes these propulsion system components, the architecture of their implementation in NDARC, and the form of the models for performance and weight. Requirements are defined for improved performance and weight models of the new propulsion system components. With these new propulsion models, NDARC can be used to develop environmentally-friendly rotorcraft designs.

  10. Turnaround Time Modeling for Conceptual Rocket Engines

    NASA Technical Reports Server (NTRS)

    Nix, Michael; Staton, Eric J.

    2004-01-01

    Recent years have brought about a paradigm shift within NASA and the Space Launch Community regarding the performance of conceptual design. Reliability, maintainability, supportability, and operability are no longer effects of design; they have moved to the forefront and are affecting design. A primary focus of this shift has been a planned decrease in vehicle turnaround time. Potentials for instituting this decrease include attacking the issues of removing, refurbishing, and replacing the engines after each flight. less, it is important to understand the operational affects of an engine on turnaround time, ground support personnel and equipment. One tool for visualizing this relationship involves the creation of a Discrete Event Simulation (DES). A DES model can be used to run a series of trade studies to determine if the engine is meeting its requirements, and, if not, what can be altered to bring it into compliance. Using DES, it is possible to look at the ways in which labor requirements, parallel maintenance versus serial maintenance, and maintenance scheduling affect the overall turnaround time. A detailed DES model of the Space Shuttle Main Engines (SSME) has been developed. Trades may be performed using the SSME Processing Model to see where maintenance bottlenecks occur, what the benefits (if any) are of increasing the numbers of personnel, or the number and location of facilities, in addition to trades previously mentioned, all with the goal of optimizing the operational turnaround time and minimizing operational cost. The SSME Processing Model was developed in such a way that it can easily be used as a foundation for developing DES models of other operational or developmental reusable engines. Performing a DES on a developmental engine during the conceptual phase makes it easier to affect the design and make changes to bring about a decrease in turnaround time and costs.

  11. CONCEPTUAL MODEL DEVELOPMENT AND INFORMATION MANAGEMENT FRAMEWORK FOR DIAGNOSTICS RESEARCH

    EPA Science Inventory

    Conceptual model development will focus on the effects of habitat alteration, nutrients,suspended and bedded sediments, and toxic chemicals on appropriate endpoints (individuals, populations, communities, ecosystems) across spatial scales (habitats, water body, watershed, region)...

  12. What Is FRBR? A Conceptual Model for the Bibliographic Universe

    ERIC Educational Resources Information Center

    Tillett, Barbara

    2005-01-01

    From 1992 to 1995 the IFLA Study Group on Functional Requirements for Bibliographic Records (FRBR) developed an entity relationship model as a generalised view of the bibliographic universe, intended to be independent of any cataloguing code or implementation. The FRBR report itself includes a description of the conceptual model (the entities,…

  13. Implications of conceptual channel representation on SWAT streamflow and sediment modeling

    USDA-ARS?s Scientific Manuscript database

    Hydrologic modeling outputs are influenced by how a watershed system is represented. Channel routing is a typical example of the mathematical conceptualization of watershed landscape and processes in hydrologic modeling. We investigated the sensitivity of accuracy, equifinality, and uncertainty of...

  14. Conceptual hydrogeological model of a coastal hydrosystem in the mediterranean

    NASA Astrophysics Data System (ADS)

    Mitropapas, Anastasios; Pouliaris, Christos; Apostolopoulos, Georgios; Vasileiou, Eleni; Schüth, Christoph; Vienken, Thomas; Dietrich, Peter; Kallioras, Andreas

    2016-04-01

    Groundwater resources management in the Mediterranean basin is an issue of paramount importance that becomes a necessity in the case of the coastal hydrosystems. Coastal aquifers are considered very sensitive ecosystems that are subject to several stresses being of natural or anthropogenic origin. The coastal hydrosystem of Lavrion can be used as a reference site that incorporates multi-disciplinary environmental problems, which are typical for Circum-Mediterranean. This study presents the synthesis of a wide range of field activities within the area of Lavrion including the monitoring of water resources within all hydrologic zones (surface, unsaturated and saturated) and geophysical (invasive and non-invasive) surveys. Different monitoring approaches -targeting to the collection of hydrochemical, geophysical, geological, hydrological data- were applied, that proved to provide a sound characterization of the groundwater flows within the coastal karstic system in connection to the surrounding water bodies of the study area. The above are used as input parameters process during the development of the conceptual model of the coastal hydrosystem of Lavrion. Key-words: Coastal hydrosystems, Mediterranean basin, seawater intrusion

  15. A conceptual model of children's cognitive adaptation to physical disability.

    PubMed

    Bernardo, M L

    1982-11-01

    Increasing numbers of children are being required to adapt to lifelong illness and disability. While numerous studies exist on theories of adaptation, reaction to illness, and children's concepts of self and of illness, an integrated view of children's ability to conceptualize themselves, their disabilities and possible adaptations has not been formulated. In this article an attempt has been made to integrate models of adaptation to disability and knowledge about children's cognitive development using Piagetian theory of cognitive development and Crate's stages of adaptation to chronic illness. This conceptually integrated model can be used as a departure point for studies to validate the applicability of Piaget's theory to the development of the physically disabled child and to clinically assess the adaptational stages available to the child at various developmental stages.

  16. Navigating Cultural Worlds and Negotiating Identities: A Conceptual Model

    ERIC Educational Resources Information Center

    Mistry, Jayanthi; Wu, Jean

    2010-01-01

    For children from culturally and linguistically diverse backgrounds the ability to maintain flexible identities and integrate multiple facets of self is a crucial developmental task. We present a conceptual model for the development of expertise in navigating across cultures, delineating how community characteristics interact with family and…

  17. Testing an integral conceptual model of frailty.

    PubMed

    Gobbens, Robbert J; van Assen, Marcel A; Luijkx, Katrien G; Schols, Jos M

    2012-09-01

    This paper is a report of a study conducted to test three hypotheses derived from an integral conceptual model of frailty.   The integral model of frailty describes the pathway from life-course determinants to frailty to adverse outcomes. The model assumes that life-course determinants and the three domains of frailty (physical, psychological, social) affect adverse outcomes, the effect of disease(s) on adverse outcomes is mediated by frailty, and the effect of frailty on adverse outcomes depends on the life-course determinants. In June 2008 a questionnaire was sent to a sample of community-dwelling people, aged 75 years and older (n = 213). Life-course determinants and frailty were assessed using the Tilburg frailty indicator. Adverse outcomes were measured using the Groningen activity restriction scale, the WHOQOL-BREF and questions regarding healthcare utilization. The effect of seven self-reported chronic diseases was examined. Life-course determinants, chronic disease(s), and frailty together explain a moderate to large part of the variance of the seven continuous adverse outcomes (26-57%). All these predictors together explained a significant part of each of the five dichotomous adverse outcomes. The effect of chronic disease(s) on all 12 adverse outcomes was mediated at least partly by frailty. The effect of frailty domains on adverse outcomes did not depend on life-course determinants. Our finding that the adverse outcomes are differently and uniquely affected by the three domains of frailty (physical, psychological, social), and life-course determinants and disease(s), emphasizes the importance of an integral conceptual model of frailty. © 2011 Blackwell Publishing Ltd.

  18. Transient Inverse Calibration of Hanford Site-Wide Groundwater Model to Hanford Operational Impacts - 1943 to 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Charles R.; Bergeron, Marcel P.; Wurstner, Signe K.

    2001-05-31

    This report describes a new initiative to strengthen the technical defensibility of predictions made with the Hanford site-wide groundwater flow and transport model. The focus is on characterizing major uncertainties in the current model. PNNL will develop and implement a calibration approach and methodology that can be used to evaluate alternative conceptual models of the Hanford aquifer system. The calibration process will involve a three-dimensional transient inverse calibration of each numerical model to historical observations of hydraulic and water quality impacts to the unconfined aquifer system from Hanford operations since the mid-1940s.

  19. A conceptual model and assessment template for capacity evaluation in adult guardianship.

    PubMed

    Moye, Jennifer; Butz, Steven W; Marson, Daniel C; Wood, Erica

    2007-10-01

    We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity assessment were integrated, through expert group consensus and external review by legal and health care professionals, to form a conceptual model and template. The model and template provide a structure for conducting and documenting a capacity evaluation in guardianship by using six assessment domains of interest to the courts: (a) medical condition, (b) cognition, (c) functional abilities, (d) values, (e) risk of harm and level of supervision needed, and (f) means to enhance capacity. The template also addresses the participation of the person in the guardianship hearing, confidentiality and privilege issues, and certification by the examiner. An online version of the template can be adapted to address specific jurisdictional requirements. A conceptual model and evaluation template provide a useful cross-jurisdictional format for conducting and documenting capacity assessments of older adults in guardianship proceedings. The template may be particularly useful to clinicians for providing courts with information to support limited guardianship orders.

  20. Modeling CH 4 and CO 2 cycling using porewater stable isotopes in a thermokarst bog in Interior Alaska: results from three conceptual reaction networks

    DOE PAGES

    Neumann, Rebecca B.; Blazewicz, Steven J.; Conaway, Christopher H.; ...

    2015-12-16

    Quantifying rates of microbial carbon transformation in peatlands is essential for gaining mechanistic understanding of the factors that influence methane emissions from these systems, and for predicting how emissions will respond to climate change and other disturbances. In this study, we used porewater stable isotopes collected from both the edge and center of a thermokarst bog in Interior Alaska to estimate in situ microbial reaction rates. We expected that near the edge of the thaw feature, actively thawing permafrost and greater abundance of sedges would increase carbon, oxygen and nutrient availability, enabling faster microbial rates relative to the center ofmore » the thaw feature. We developed three different conceptual reaction networks that explained the temporal change in porewater CO2, CH4, δ13C-CO2 and δ13C-CH4. All three reaction-network models included methane production, methane oxidation and CO2 production, and two of the models included homoacetogenesis — a reaction not previously included in isotope-based porewater models. All three models fit the data equally well, but rates resulting from the models differed. Most notably, inclusion of homoacetogenesis altered the modeled pathways of methane production when the reaction was directly coupled to methanogenesis, and it decreased gross methane production rates by up to a factor of five when it remained decoupled from methanogenesis. The ability of all three conceptual reaction networks to successfully match the measured data indicate that this technique for estimating in-situ reaction rates requires other data and information from the site to confirm the considered set of microbial reactions. Despite these differences, all models indicated that, as expected, rates were greater at the edge than in the center of the thaw bog, that rates at the edge increased more during the growing season than did rates in the center, and that the ratio of acetoclastic to hydrogenotrophic methanogenesis was

  1. Probabilistic models of cognition: conceptual foundations.

    PubMed

    Chater, Nick; Tenenbaum, Joshua B; Yuille, Alan

    2006-07-01

    Remarkable progress in the mathematics and computer science of probability has led to a revolution in the scope of probabilistic models. In particular, 'sophisticated' probabilistic methods apply to structured relational systems such as graphs and grammars, of immediate relevance to the cognitive sciences. This Special Issue outlines progress in this rapidly developing field, which provides a potentially unifying perspective across a wide range of domains and levels of explanation. Here, we introduce the historical and conceptual foundations of the approach, explore how the approach relates to studies of explicit probabilistic reasoning, and give a brief overview of the field as it stands today.

  2. Strategies to Move From Conceptual Models to Quantifying Resilience in FEW Systems

    NASA Astrophysics Data System (ADS)

    Padowski, J.; Adam, J. C.; Boll, J.; Barber, M. E.; Cosens, B.; Goldsby, M.; Fortenbery, R.; Fowler, A.; Givens, J.; Guzman, C. D.; Hampton, S. E.; Harrison, J.; Huang, M.; Katz, S. L.; Kraucunas, I.; Kruger, C. E.; Liu, M.; Luri, M.; Malek, K.; Mills, A.; McLarty, D.; Pickering, N. B.; Rajagopalan, K.; Stockle, C.; Richey, A.; Voisin, N.; Witinok-Huber, B.; Yoder, J.; Yorgey, G.; Zhao, M.

    2017-12-01

    Understanding interdependencies within Food-Energy-Water (FEW) systems is critical to maintain FEW security. This project examines how coordinated management of physical (e.g., reservoirs, aquifers, and batteries) and non-physical (e.g., water markets, social capital, and insurance markets) storage systems across the three sectors promotes resilience. Coordination increases effective storage within the overall system and enhances buffering against shocks at multiple scales. System-wide resilience can be increased with innovations in technology (e.g., smart systems and energy storage) and institutions (e.g., economic systems and water law). Using the Columbia River Basin as our geographical study region, we use an integrated approach that includes a continuum of science disciplines, moving from theory to practice. In order to understand FEW linkages, we started with detailed, connected conceptual models of the food, energy, water, and social systems to identify where key interdependencies (i.e., overlaps, stocks, and flows) exist within and between systems. These are used to identify stress and opportunity points, develop innovation solutions across FEW sectors, remove barriers to the adoption of solutions, and quantify increases in system-wide resilience to regional and global change. The conceptual models act as a foundation from which we can identify key drivers, parameters, time steps, and variables of importance to build and improve existing systems dynamic and biophysical models. Our process of developing conceptual models and moving to integrated modeling is critical and serves as a foundation for coupling quantitative components with economic and social domain components and analyses of how these interact through time and space. This poster provides a description of this process that pulls together conceptual maps and integrated modeling output to quantify resilience across all three of the FEW sectors (a.k.a. "The Resilience Calculator"). Companion posters

  3. Mapping the Territory: A Conceptual Model of Scholastic Journalism.

    ERIC Educational Resources Information Center

    Arnold, Mary

    1991-01-01

    Describes scholastic journalism as the teaching of secondary school students to gather, process, and present information to an audience. Offers a model focusing upon scholastic journalism's conceptual areas of law and ethics, history and cultural diversity, technology and financial support, media and content, pedagogy, and working context as a…

  4. Conceptual Model for Quality of Life among Adults With Congenital or Early Deafness

    PubMed Central

    Kushalnagar, P; McKee, M; Smith, SR; Hopper, M; Kavin, D; Atcherson, SR

    2015-01-01

    Background A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. Objective: To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Methods Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Results Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Conclusions Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. PMID:24947577

  5. Conceptual model for quality of life among adults with congenital or early deafness.

    PubMed

    Kushalnagar, Poorna; McKee, Michael; Smith, Scott R; Hopper, Melinda; Kavin, Denise; Atcherson, Samuel R

    2014-07-01

    A conceptual model of health-related quality of life (QoL) is needed to describe key themes that impact perceived QoL in adults with congenital or early deafness. To revise University of Washington Center for Disability Policy and Research's conceptual model of health promotion and QoL, with suggestions for applying the model to improving programs or services that target deaf adults with early deafness. Purposive and theoretical sampling of 35 adults who were born or became deaf early was planned in a 1-year study. In-depth semi-structured interviews probed deaf adult participants' perceptions about quality of life as a deaf individual. Data saturation was reached at the 17th interview with 2 additional interviews for validation, resulting in a total sample of 19 deaf adults. Coding and thematic analysis were conducted to develop the conceptual model. Our conceptual model delineates the relationships between health status (self-acceptance, coping with limitations), intrinsic (functional communication skills, navigating barriers/self-advocacy, resilience) and extrinsic (acceptance by others, access to information, educating others) factors in their influence on deaf adult quality of life outcomes at home, college, work, and in the community. Findings demonstrate the need for the programs and services to consider not only factors intrinsic to the deaf individual but also extrinsic factors in enhancing perceived quality of life outcomes among people with a range of functional hearing and language preferences, including American Sign Language. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Enhancing climate literacy through the use of an interdisciplinary global change framework and conceptual models

    NASA Astrophysics Data System (ADS)

    Bean, J. R.; Zoehfeld, K.; Mitchell, K.; Levine, J.; White, L. D.

    2016-12-01

    Understanding climate change and how to mitigate the causes and consequences of anthropogenic activities are essential components of the Next Generations Science Standards. To comprehend climate change today and why current rates and magnitudes of change are of concern, students must understand the various factors that drive Earth system processes and also how they interrelate. The Understanding Global Change web resource in development from the UC Museum of Paleontology will provide science educators with a conceptual framework, graphical models, lessons, and assessment templates for teaching NGSS aligned, interdisciplinary, climate change curricula. To facilitate students learning about the Earth as a dynamic, interacting system of ongoing processes, the Understanding Global Change site will provide explicit conceptual links for the causes of climate change (e.g., burning of fossil fuels, deforestation), Earth system processes (e.g., Earth's energy budget, water cycle), and the changes scientists measure in the Earth system (e.g., temperature, precipitation). The conceptual links among topics will be presented in a series of storyboards that visually represent relationships and feedbacks among components of the Earth system and will provide teachers with guides for implementing NGSS-aligned climate change instruction that addresses physical science, life sciences, Earth and space science, and engineering performance expectations. These visualization and instructional methods are used by teachers during professional development programs at UC Berkeley and the Smithsonian National Museum of Natural History and are being tested in San Francisco Bay Area classrooms.

  7. Pattern of students' conceptual change on magnetic field based on students' mental models

    NASA Astrophysics Data System (ADS)

    Hamid, Rimba; Widodo, Ari; Sopandi, Wahyu

    2017-05-01

    Students understanding about natural phenomena can be identified by analyzing their mental model. Changes in students' mental model are good indicator of students' conceptual change. This research aims at identifying students' conceptual change by analyzing changes in students' mental model. Participants of the study were twenty five elementary school students. Data were collected through throughout the lessons (prior to the lessons, during the lessons and after the lessons) based on students' written responses and individual interviews. Lessons were designed to facilitate students' conceptual change by allowing students to work in groups of students who have the similar ideas. Therefore, lessons were students-directed. Changes of students' ideas in every stage of the lessons were identified and analyzed. The results showed that there are three patterns of students' mental models, namely type of scientific (44%), analogous to everyday life (52%), and intuitive (4%). Further analyses of the pattern of their conceptual change identifies four different patterns, i.e. consistently correct (20%), consistently incomplete (16%), changing from incorrect to incomplete (8%), changing from incomplete to complete (32%), changing from complete to incorrect (4%), and changing from incorrect to complete (4%). This study suggest that the process of learning science does not move in a linear and progressive ways, rather they move in random and may move backward and forward.

  8. Raft River Geothermal Area Data Models - Conceptual, Logical and Fact Models

    DOE Data Explorer

    Cuyler, David

    2012-07-19

    Conceptual and Logical Data Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses at Raft River a. Logical Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 b. Fact Model for Geothermal Data Concerning Wells, Fields, Power Plants and Related Analyses, David Cuyler 2010 Derived from Tables, Figures and other Content in Reports from the Raft River Geothermal Project: "Technical Report on the Raft River Geothermal Resource, Cassia County, Idaho," GeothermEx, Inc., August 2002. "Results from the Short-Term Well Testing Program at the Raft River Geothermal Field, Cassia County, Idaho," GeothermEx, Inc., October 2004.

  9. Moving from Victim to Survivor of Cultural Violence: A Conceptual Model

    ERIC Educational Resources Information Center

    Salazar, Carmen F.; Casto, Challon

    2008-01-01

    The authors propose the Moving From Victim to Survivor of Cultural Violence model, using the stages of D. W. Sue and D. Sue's (1999) Racial/Cultural Identity Development model. This conceptual model describes the process of first overcoming internalized sexism, domestic abuse, sexual harassment, rape, and other forms of oppression and then healing…

  10. Enabling new graduate midwives to work in midwifery continuity of care models: A conceptual model for implementation.

    PubMed

    Cummins, Allison M; Catling, Christine; Homer, Caroline S E

    2017-12-04

    High-level evidence demonstrates midwifery continuity of care is beneficial for women and babies. Women have limited access to midwifery continuity of care models in Australia. One of the factors limiting women's access is recruiting enough midwives to work in continuity. Our research found that newly graduated midwives felt well prepared to work in midwifery led continuity of care models, were well supported to work in the models and the main driver to employing them was a need to staff the models. However limited opportunities exist for new graduate midwives to work in midwifery continuity of care. The aim of this paper therefore is to describe a conceptual model developed to enable new graduate midwives to work in midwifery continuity of care models. The findings from a qualitative study were synthesised with the existing literature to develop a conceptual model that enables new graduate midwives to work in midwifery continuity of care. The model contains the essential elements to enable new graduate midwives to work in midwifery continuity of care models. Each of the essential elements discussed are to assist midwifery managers, educators and new graduates to facilitate the organisational changes required to accommodate new graduates. The conceptual model is useful to show maternity services how to enable new graduate midwives to work in midwifery continuity of care models. Copyright © 2017 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.

  11. Hydrogeologic setting and conceptual hydrologic model of the Spring Creek basin, Centre County, Pennsylvania

    USGS Publications Warehouse

    Fulton, John W.; Koerkle, Edward H.; McAuley, Steven D.; Hoffman, Scott A.; Zarr, Linda F.

    2005-01-01

    The Spring Creek Basin, Centre County, Pa., is experiencing some of the most rapid growth and development within the Commonwealth. This trend has resulted in land-use changes and increased water use, which will affect the quantity and quality of stormwater runoff, surface water, ground water, and aquatic resources within the basin. The U.S. Geological Survey (USGS), in cooperation with the ClearWater Conservancy (CWC), Spring Creek Watershed Community (SCWC), and Spring Creek Watershed Commission (SCWCm), has developed a Watershed Plan (Plan) to assist decision makers in water-resources planning. One element of the Plan is to provide a summary of the basin characteristics and a conceptual model that incorporates the hydrogeologic characteristics of the basin. The report presents hydrogeologic data for the basin and presents a conceptual model that can be used as the basis for simulating surface-water and ground-water flow within the basin. Basin characteristics; sources of data referenced in this text; physical characteristics such as climate, physiography, topography, and land use; hydrogeologic characteristics; and water-quality characteristics are discussed. A conceptual model is a simplified description of the physical components and interaction of the surface- and ground-water systems. The purpose for constructing a conceptual model is to simplify the problem and to organize the available data so that the system can be analyzed accurately. Simplification is necessary, because a complete accounting of a system, such as Spring Creek, is not possible. The data and the conceptual model could be used in development of a fully coupled numerical model that dynamically links surface water, ground water, and land-use changes. The model could be used by decision makers to manage water resources within the basin and as a prototype that is transferable to other watersheds.

  12. Operations and support cost modeling of conceptual space vehicles

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles

    1994-01-01

    The University of Dayton is pleased to submit this annual report to the National Aeronautics and Space Administration (NASA) Langley Research Center which documents the development of an operations and support (O&S) cost model as part of a larger life cycle cost (LCC) structure. It is intended for use during the conceptual design of new launch vehicles and spacecraft. This research is being conducted under NASA Research Grant NAG-1-1327. This research effort changes the focus from that of the first two years in which a reliability and maintainability model was developed to the initial development of an operations and support life cycle cost model. Cost categories were initially patterned after NASA's three axis work breakdown structure consisting of a configuration axis (vehicle), a function axis, and a cost axis. A revised cost element structure (CES), which is currently under study by NASA, was used to established the basic cost elements used in the model. While the focus of the effort was on operations and maintenance costs and other recurring costs, the computerized model allowed for other cost categories such as RDT&E and production costs to be addressed. Secondary tasks performed concurrent with the development of the costing model included support and upgrades to the reliability and maintainability (R&M) model. The primary result of the current research has been a methodology and a computer implementation of the methodology to provide for timely operations and support cost analysis during the conceptual design activities.

  13. Eating disorders and non-suicidal self-injury: Structural equation modelling of a conceptual model.

    PubMed

    Vieira, Ana Isabel; Machado, Bárbara C; Moreira, Célia S; Machado, Paulo P P; Brandão, Isabel; Roma-Torres, António; Gonçalves, Sónia

    2018-06-14

    Evidence suggests several risk factors for both eating disorders (ED) and nonsuicidal self-injury (NSSI), but the relationships between these factors are not well understood. Considering our previous work and a conceptual model, this cross-sectional study aimed to assess the relationships among distal and proximal factors for the presence of NSSI in ED. We assessed 245 ED patients with the Oxford Risk Factor Interview for ED. Structural equation modelling revealed that both distal and proximal factors were related to the presence of NSSI in ED, disclosing a mediating role of the proximal factors. Stressful life events mediated the relationship between childhood sexual abuse, peer aggression, and both ED and NSSI. Childhood physical abuse was related to ED and NSSI via substance use, negative self-evaluation, and suicide attempts. Findings provided support for the conceptual model and highlight the possible mechanisms by which psychosocial factors may lead to ED and NSSI. Copyright © 2018 John Wiley & Sons, Ltd and Eating Disorders Association.

  14. Impacts of Quaternary History on Critical Zone Structure and Processes: Examples and a Conceptual Model from the Intensively Managed Landscapes Critical Zone Observatory

    NASA Astrophysics Data System (ADS)

    Anders, Alison M.; Bettis, E. Arthur; Grimley, David A.; Stumpf, Andrew J.; Kumar, Praveen

    2018-03-01

    The concept of a critical zone (CZ) supporting terrestrial life has fostered groundbreaking interdisciplinary science addressing complex interactions among water, soil, rock, air and life near Earth’s surface. Pioneering work has focused on the CZ in areas with residual soils and steady-state or erosional topography. CZ evolution in these areas is conceptualized as progressive weathering of local bedrock (e.g. in the flow-through reactor model). However, this model is not applicable to areas in which weathering profiles form in transported materials including the formerly glaciated portion of the Central Lowland of North America. We present a new conceptual model of CZ evolution in landscapes impacted by continental glaciation based on investigations at three study sites in the Intensively Managed Landscapes Critical Zone Observatory (IML-CZO) The IML-CZO is devoted to the study of CZ processes in a region characterized by thick surficial deposits resulting from multiple continental glaciations, with bedrock at depths of up to 150 m. Here the physical (glacial ice, loess, developing soil profiles) and biological (microbes, tundra, forest, prairie) components of the CZ vary significantly in time. Moreover, the spatial relationships between mineral components of the CZ record a history of glacial-interglacial cycles and landscape evolution. We present cross-sections from IML-CZO sites to provide specific examples of how environmental change is recorded by the structure of the mineral components of the CZ. We build on these examples to create an idealized model of CZ evolution through a glacial cycle that represents the IML-CZO sites and other areas of low relief that have experienced continental glaciation. In addition, we identify two main characteristics of CZ structure which should be included in a conceptual model of CZ development in the IML-CZO and similar settings: (1) mineral components have diverse origins and transport trajectories including alteration in

  15. Understanding Co-development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    NASA Astrophysics Data System (ADS)

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-04-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling practices became more challenging, student discussion occurred more often, from what to model to providing explanations for the phenomenon. Students came to argue about evidence that supported their model and how the model could explain target and related phenomena. This finding adds to the literature that modeling practice can help students improve conceptual understanding of subject knowledge as well as epistemic understanding.

  16. A Conceptual Model for Multidimensional Analysis of Documents

    NASA Astrophysics Data System (ADS)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  17. Conceptualizations of Creativity: Comparing Theories and Models of Giftedness

    ERIC Educational Resources Information Center

    Miller, Angie L.

    2012-01-01

    This article reviews seven different theories of giftedness that include creativity as a component, comparing and contrasting how each one conceptualizes creativity as a part of giftedness. The functions of creativity vary across the models, suggesting that while the field of gifted education often cites the importance of creativity, the…

  18. [Application analysis of Nursing Care Systematization according to Horta's Conceptual Model].

    PubMed

    da Cunha, Sandra Maria Botelho; Barros, Alba Lúcia Botura Leite

    2005-01-01

    This study has as purpose to analyse the implementation of the Nursing Care Systematization in a private hospital in medical surgical units. Results evidenced that the Horta's Conceptual Model was present only in part of nursing hystory instrument, that the remaining phases of nursing process were not inter-related and that there was a lack of coherence of the prescribed actions in relation to the patient's health condition. From the results of the study it can be concluded that the model used for Nursing Care Systematization is eclectic, not obeying therefore, only to Horta's conceptual model; the totality of the data had not been collected in some phases of the nursing process; there is no correlation of the phases in the majority of analyzed patient records; diagnostic and planning phases do not comprise the phases of the nursing process as proposed by Horta.

  19. Impact of Learning Model Based on Cognitive Conflict toward Student’s Conceptual Understanding

    NASA Astrophysics Data System (ADS)

    Mufit, F.; Festiyed, F.; Fauzan, A.; Lufri, L.

    2018-04-01

    The problems that often occur in the learning of physics is a matter of misconception and low understanding of the concept. Misconceptions do not only happen to students, but also happen to college students and teachers. The existing learning model has not had much impact on improving conceptual understanding and remedial efforts of student misconception. This study aims to see the impact of cognitive-based learning model in improving conceptual understanding and remediating student misconceptions. The research method used is Design / Develop Research. The product developed is a cognitive conflict-based learning model along with its components. This article reports on product design results, validity tests, and practicality test. The study resulted in the design of cognitive conflict-based learning model with 4 learning syntaxes, namely (1) preconception activation, (2) presentation of cognitive conflict, (3) discovery of concepts & equations, (4) Reflection. The results of validity tests by some experts on aspects of content, didactic, appearance or language, indicate very valid criteria. Product trial results also show a very practical product to use. Based on pretest and posttest results, cognitive conflict-based learning models have a good impact on improving conceptual understanding and remediating misconceptions, especially in high-ability students.

  20. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    USGS Publications Warehouse

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  1. Conceptual Models of Social Determinants of Health: A Narrative Review

    PubMed Central

    HOSSEINI SHOKOUH, Sayyed Morteza; ARAB, Mohammad; EMAMGHOLIPOUR, Sara; RASHIDIAN, Arash; MONTAZERI, Ali; ZABOLI, Rouhollah

    2017-01-01

    Background: There are several conflicting conceptual models to explain social determinants of health (SDH) as responsible for most health inequalities. This study aimed to present these models in historical perspective and provide main component of SDH models as an SES indicators. Methods: This was a narrative study using international databases to retrieve literature dealing with conceptual models of SDH. All publication in English language until Mar 2015 was included. The CASP and PRISMA were used to summarize the literature. Results: Overall, 248 publications were retrieved and screened. After exclusion of irrelevant and duplicates, 94 citations were found to be relevant and 21 publications included in this review. In general, 21 models of SDH were found: some models presented before year 1995(n=4), some models presented between 1995 and 2005 (n=13) and some models presented after 2005 (n=4). However, we found three categories of indicators that contribute to SDH models and that were classic factors, fixed and demographic factors and proxy factors. Conclusion: Reduction of socioeconomic inequalities in health requires understanding of mechanisms and causal pathways; therefore, every country needs to design the specific model. As the available models are for developed countries, lack of a specific model for developing ones is tangible. As there is no gold standard related to SES indicators, therefore, it is proposed to use the various indicators based on life course approach, which leads to understanding and adopting effective policy interventions. PMID:28540259

  2. The nature of generalized anxiety disorder and pathological worry: current evidence and conceptual models.

    PubMed

    Brown, T A

    1997-10-01

    To examine the nature and conceptualization of generalized anxiety disorder (GAD) and chronic worry as well as data bearing on the validity of GAD as a distinct diagnosis. Narrative literature review. Although a wealth of data have been obtained on the epidemiology, genetics, and nature of GAD, many important questions remain regarding the validity of current conceptual models of pathological worry and the discriminability of GAD from certain emotional disorders (for instance, mood disorders) and higher-order trait vulnerability dimensions (for example, negative affect). Because the constituent features of GAD are salient to current conceptual models of emotional disorders (for example, models that implicate negative affect or worry/anxious apprehension as vulnerability factors), research on the nature of GAD and its associated features should provide important information on the pathogenesis, course, and co-occurrence of the entire range of anxiety and mood disorders.

  3. Development and validation of a mass casualty conceptual model.

    PubMed

    Culley, Joan M; Effken, Judith A

    2010-03-01

    To develop and validate a conceptual model that provides a framework for the development and evaluation of information systems for mass casualty events. The model was designed based on extant literature and existing theoretical models. A purposeful sample of 18 experts validated the model. Open-ended questions, as well as a 7-point Likert scale, were used to measure expert consensus on the importance of each construct and its relationship in the model and the usefulness of the model to future research. Computer-mediated applications were used to facilitate a modified Delphi technique through which a panel of experts provided validation for the conceptual model. Rounds of questions continued until consensus was reached, as measured by an interquartile range (no more than 1 scale point for each item); stability (change in the distribution of responses less than 15% between rounds); and percent agreement (70% or greater) for indicator questions. Two rounds of the Delphi process were needed to satisfy the criteria for consensus or stability related to the constructs, relationships, and indicators in the model. The panel reached consensus or sufficient stability to retain all 10 constructs, 9 relationships, and 39 of 44 indicators. Experts viewed the model as useful (mean of 5.3 on a 7-point scale). Validation of the model provides the first step in understanding the context in which mass casualty events take place and identifying variables that impact outcomes of care. This study provides a foundation for understanding the complexity of mass casualty care, the roles that nurses play in mass casualty events, and factors that must be considered in designing and evaluating information-communication systems to support effective triage under these conditions.

  4. A conceptual precipitation-runoff modeling suite: Model selection, calibration and predictive uncertainty assessment

    Treesearch

    Tyler Jon Smith

    2008-01-01

    In Montana and much of the Rocky Mountain West, the single most important parameter in forecasting the controls on regional water resources is snowpack. Despite the heightened importance of snowpack, few studies have considered the representation of uncertainty in coupled snowmelt/hydrologic conceptual models. Uncertainty estimation provides a direct interpretation of...

  5. Technology, Demographic Characteristics and E-Learning Acceptance: A Conceptual Model Based on Extended Technology Acceptance Model

    ERIC Educational Resources Information Center

    Tarhini, Ali; Elyas, Tariq; Akour, Mohammad Ali; Al-Salti, Zahran

    2016-01-01

    The main aim of this paper is to develop an amalgamated conceptual model of technology acceptance that explains how individual, social, cultural and organizational factors affect the students' acceptance and usage behaviour of the Web-based learning systems. More specifically, the proposed model extends the Technology Acceptance Model (TAM) to…

  6. A Conceptual Model for Analysing Management Development in the UK Hospitality Industry

    ERIC Educational Resources Information Center

    Watson, Sandra

    2007-01-01

    This paper presents a conceptual, contingent model of management development. It explains the nature of the UK hospitality industry and its potential influence on MD practices, prior to exploring dimensions and relationships in the model. The embryonic model is presented as a model that can enhance our understanding of the complexities of the…

  7. A Conceptual Model for Increasing Use of Electronic Medical Records by Primary Care Physicians Through End-User Support.

    PubMed

    Randhawa, Gurprit K

    2017-01-01

    A conceptual model for exploring the relationship between end-user support (EUS) and electronic medical record (EMR) use by primary care physicians is presented. The model was developed following a review of conceptual and theoretical frameworks related to technology adoption/use and EUS. The model includes (a) one core construct (facilitating conditions), (b) four antecedents and one postcedent of facilitating conditions, and (c) four moderators. EMR use behaviour is the key outcome of the model. The proposed conceptual model should be tested. The model may be used to inform planning and decision-making for EMR implementations to increase EMR use for benefits realization.

  8. A Conceptual Model of the Pasadena Housing System

    NASA Technical Reports Server (NTRS)

    Hirshberg, Alan S.; Barber, Thomas A.

    1971-01-01

    During the last 5 years, there have been several attempts at applying systems analysis to complex urban problems. This paper describes one such attempt by a multidisciplinary team of students, engineers, professors, and community representatives. The Project organization is discussed and the interaction of the different disciplines (the process) described. The two fundamental analysis questions posed by the Project were: "Why do houses deteriorate?" and "Why do people move?" The analysis of these questions led to the development of a conceptual system model of housing in Pasadena. The major elements of this model are described, and several conclusions drawn from it are presented.

  9. Designing Public Library Websites for Teens: A Conceptual Model

    ERIC Educational Resources Information Center

    Naughton, Robin Amanda

    2012-01-01

    The main goal of this research study was to develop a conceptual model for the design of public library websites for teens (TLWs) that would enable designers and librarians to create library websites that better suit teens' information needs and practices. It bridges a gap in the research literature between user interface design in human-computer…

  10. Establishing the Conceptual Model to Connect Stress with Geoelectric Signals

    NASA Astrophysics Data System (ADS)

    Chen, H. J.; Chen, C. C.; Ouillon, G.; Sornette, D.

    2017-12-01

    In this study, we conceptualize a completely novel model combining the seismic microruptures occurring within a generalized Burridge-Knopoff spring-block model, with the nucleation and propagation of geoelectric pulses within a coupled electrokinetic system (modelled with a series of RLC circuits). In particular, it is able to reproduce the unipolar pulses that have often been reported before large seismic events, as well as the observed anomalies in the statistical moments of the ambient electric field. This model is thus likely to open a new era of modeling and analyses of geoelectric precursors to earthquakes.

  11. Nitrate removal in deep sediments of a nitrogen-rich river network: A test of a conceptual model

    USGS Publications Warehouse

    Stelzer, Robert S.; Bartsch, Lynn

    2012-01-01

    Many estimates of nitrogen removal in streams and watersheds do not include or account for nitrate removal in deep sediments, particularly in gaining streams. We developed and tested a conceptual model for nitrate removal in deep sediments in a nitrogen-rich river network. The model predicts that oxic, nitrate-rich groundwater will become depleted in nitrate as groundwater upwelling through sediments encounters a zone that contains buried particulate organic carbon, which promotes redox conditions favorable for nitrate removal. We tested the model at eight sites in upwelling reaches of lotic ecosystems in the Waupaca River Watershed that varied by three orders of magnitude in groundwater nitrate concentration. We measured denitrification potential in sediment core sections to 30 cm and developed vertical nitrate profiles to a depth of about 1 m with peepers and piezometer nests. Denitrification potential was higher, on average, in shallower core sections. However, core sections deeper than 5 cm accounted for 70%, on average, of the depth-integrated denitrification potential. Denitrification potential increased linearly with groundwater nitrate concentration up to 2 mg NO3-N/L but the relationship broke down at higher concentrations (> 5 mg NO3-N/L), a pattern that suggests nitrate saturation. At most sites groundwater nitrate declined from high concentrations at depth to much lower concentrations prior to discharge into the surface water. The profiles suggested that nitrate removal occurred at sediment depths between 20 and 40 cm. Dissolved oxygen concentrations were much higher in deep sediments than in pore water at 5 cm sediment depth at most locations. The substantial denitrification potential in deep sediments coupled with the declines in nitrate and dissolved oxygen concentrations in upwelling groundwater suggest that our conceptual model for nitrate removal in deep sediments is applicable to this river network. Our results suggest that nitrate removal rates

  12. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  13. Conceptual Model for Mitigating Human - Wildlife Conflict based on System Thinking

    NASA Astrophysics Data System (ADS)

    Patana, Pindi; Mawengkang, Herman; Silvi Lydia, Maya

    2018-01-01

    In conservation process it is unavoidably that conflict incidents may occur among the people and wild-life in the surrounding of the conservation area. Mitigating conflict between wildlife and people is considered a top conservation priority, particularly in landscapes where high densities of people and wildlife co-occur. This conflict is also happened in Leuser conservation area located in the border of North Sumatra and Aceh province, Indonesia. Easing the conflict problem is very difficult. This paper proposes a conceptual model based on system thinking to explore factors that may have great influence on the conflict and to figure out mitigating the conflict. We show how this conceptual framework can be utilized to analyze the conflict occur and further how it could used to develop a multi- criteria decision model.

  14. [Design of a conceptual model on the transference of public health research results in Honduras].

    PubMed

    Macías-Chapula, César A

    2012-01-01

    To design a conceptual model on the transference of public health research results at the local, context level. Using systems thinking concepts, a soft systems approach (SSM) was used to analyse and solve what was perceived as a problem situation related to the transference of research results within Honduras public health system. A bibliometric analysis was also conducted to enrich the problem situation. Six root definitions were defined and modeled as relevant to the expressed problem situation. This led to the development of the conceptual model. The model obtained identified four levels of resolution as derived from the human activities involved in the transference of research results: 1) those of the researchers; 2) the information/documentation professionals; 3) health staff; and 4) the population/society. These actors/ clients and their activities were essential to the functioning of the model since they represent what the model is and does. SSM helped to design the conceptual model. The bibliometric analysis was relevant to construct the rich image of the problem situation.

  15. A conceptual model to empower software requirements conflict detection and resolution with rule-based reasoning

    NASA Astrophysics Data System (ADS)

    Ahmad, Sabrina; Jalil, Intan Ermahani A.; Ahmad, Sharifah Sakinah Syed

    2016-08-01

    It is seldom technical issues which impede the process of eliciting software requirements. The involvement of multiple stakeholders usually leads to conflicts and therefore the need of conflict detection and resolution effort is crucial. This paper presents a conceptual model to further improve current efforts. Hence, this paper forwards an improved conceptual model to assist the conflict detection and resolution effort which extends the model ability and improves overall performance. The significant of the new model is to empower the automation of conflicts detection and its severity level with rule-based reasoning.

  16. A Conceptual Model for Effective Distance Learning in Higher Education

    ERIC Educational Resources Information Center

    Farajollahi, Mehran; Zare, Hosein; Hormozi, Mahmood; Sarmadi, Mohammad Reza; Zarifsanaee, Nahid

    2010-01-01

    The present research aims at presenting a conceptual model for effective distance learning in higher education. Findings of this research shows that an understanding of the technological capabilities and learning theories especially constructive theory and independent learning theory and communicative and interaction theory in Distance learning is…

  17. Purpose and Pedagogy: A Conceptual Model for an ePortfolio

    ERIC Educational Resources Information Center

    Buyarski, Catherine A.; Aaron, Robert W.; Hansen, Michele J.; Hollingsworth, Cynthia D.; Johnson, Charles A.; Kahn, Susan; Landis, Cynthia M.; Pedersen, Joan S.; Powell, Amy A.

    2015-01-01

    This conceptual model emerged from the need to balance multiple purposes and perspectives associated with developing an ePortfolio designed to promote student development and success. A comprehensive review of literature from various disciplines, theoretical frameworks, and scholarship, including self-authorship, reflection, ePortfolio pedagogy,…

  18. Meaning in Life: A conceptual model for disaster nursing practice.

    PubMed

    Noviana, Uki; Miyazaki, Misako; Ishimaru, Mina

    2016-04-01

    This study aimed to develop a conceptual model for understanding meaning in life (MIL) using respondents' quotations in the primary qualitative studies. The primary studies were selected from the PsycINFO, PsycARTICLES and CINAHL databases using keywords 'meaning in life', 'meaning of life', 'purpose in life' and 'will to meaning'. Respondents' quotations in the primary studies were analysed interpretatively to identify MIL from the respondents' perspectives. The data were synthesized to integrate findings from 10 selected primary studies. The findings identified (i) six sources of MIL (e.g. having a significant others, having new experiences and performing spiritual activities); (ii) eight components of MIL (e.g. focusing on self, connecting to others, contributing to others and having a sense of direction and purpose); and (iii) the emotional outcomes of having MIL: happiness, satisfaction and joy. Through a discussion of the findings, a conceptual model of MIL emerged. © 2016 John Wiley & Sons Australia, Ltd.

  19. Scientific and conceptual flaws of coercive treatment models in addiction.

    PubMed

    Uusitalo, Susanne; van der Eijk, Yvette

    2016-01-01

    In conceptual debates on addiction, neurobiological research has been used to support the idea that addicted drug users lack control over their addiction-related actions. In some interpretations, this has led to coercive treatment models, in which, the purpose is to 'restore' control. However, neurobiological studies that go beyond what is typically presented in conceptual debates paint a different story. In particular, they indicate that though addiction has neurobiological manifestations that make the addictive behaviour difficult to control, it is possible for individuals to reverse these manifestations through their own efforts. Thus, addicted individuals should not be considered incapable of making choices voluntarily, simply on the basis that addiction has neurobiological manifestations, and coercive treatment models of addiction should be reconsidered in this respect. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  20. The Role of Model Building in Problem Solving and Conceptual Change

    ERIC Educational Resources Information Center

    Lee, Chwee Beng; Jonassen, David; Teo, Timothy

    2011-01-01

    This study examines the effects of the activity of building systems models for school-based problems on problem solving and on conceptual change in elementary science classes. During a unit on the water cycle in an Asian elementary school, students constructed systems models of the water cycle. We found that representing ill-structured problems as…

  1. What if ? On alternative conceptual models and the problem of their implementation

    NASA Astrophysics Data System (ADS)

    Neuberg, Jurgen

    2015-04-01

    Seismic and other monitoring techniques rely on a set of conceptual models on the base of which data sets can be interpreted. In order to do this on an operational level in volcano observatories these models need to be tested and ready for an interpretation in a timely manner. Once established, scientists in charge advising stakeholders and decision makers often stick firmly to these models to avoid confusion by giving alternative versions of interpretations to non-experts. This talk gives an overview of widely accepted conceptual models to interpret seismic and deformation data, and highlights in a few case studies some of the arising problems. Aspects covered include knowledge transfer between research institutions and observatories, data sharing, the problem of up-taking advice, and some hidden problems which turn out to be much more critical in assessing volcanic hazard than the actual data interpretation.

  2. Misrepresentation and amendment of soil moisture in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Although many conceptual models are very effective in simulating river runoff, their soil moisture schemes are generally not realistic in comparison with the reality (i.e., getting the right answers for the wrong reasons). This study reveals two significant misrepresentations in those models through a case study using the Xinanjiang model which is representative of many well-known conceptual hydrological models. The first is the setting of the upper limit of its soil moisture at the field capacity, due to the 'holding excess runoff' concept (i.e., runoff begins on repletion of its storage to the field capacity). The second is neglect of capillary rise of water movement. A new scheme is therefore proposed to overcome those two issues. The amended model is as effective as its original form in flow modelling, but represents more logically realistic soil water processes. The purpose of the study is to enable the hydrological model to get the right answers for the right reasons. Therefore, the new model structure has a better capability in potentially assimilating soil moisture observations to enhance its real-time flood forecasting accuracy. The new scheme is evaluated in the Pontiac catchment of the USA through a comparison with satellite observed soil moisture. The correlation between the XAJ and the observed soil moisture is enhanced significantly from 0.64 to 0.70. In addition, a new soil moisture term called SMDS (Soil Moisture Deficit to Saturation) is proposed to complement the conventional SMD (Soil Moisture Deficit).

  3. Ancient numerical daemons of conceptual hydrological modeling: 1. Fidelity and efficiency of time stepping schemes

    NASA Astrophysics Data System (ADS)

    Clark, Martyn P.; Kavetski, Dmitri

    2010-10-01

    A major neglected weakness of many current hydrological models is the numerical method used to solve the governing model equations. This paper thoroughly evaluates several classes of time stepping schemes in terms of numerical reliability and computational efficiency in the context of conceptual hydrological modeling. Numerical experiments are carried out using 8 distinct time stepping algorithms and 6 different conceptual rainfall-runoff models, applied in a densely gauged experimental catchment, as well as in 12 basins with diverse physical and hydroclimatic characteristics. Results show that, over vast regions of the parameter space, the numerical errors of fixed-step explicit schemes commonly used in hydrology routinely dwarf the structural errors of the model conceptualization. This substantially degrades model predictions, but also, disturbingly, generates fortuitously adequate performance for parameter sets where numerical errors compensate for model structural errors. Simply running fixed-step explicit schemes with shorter time steps provides a poor balance between accuracy and efficiency: in some cases daily-step adaptive explicit schemes with moderate error tolerances achieved comparable or higher accuracy than 15 min fixed-step explicit approximations but were nearly 10 times more efficient. From the range of simple time stepping schemes investigated in this work, the fixed-step implicit Euler method and the adaptive explicit Heun method emerge as good practical choices for the majority of simulation scenarios. In combination with the companion paper, where impacts on model analysis, interpretation, and prediction are assessed, this two-part study vividly highlights the impact of numerical errors on critical performance aspects of conceptual hydrological models and provides practical guidelines for robust numerical implementation.

  4. Sources of Sex Discrimination in Educational Systems: A Conceptual Model

    ERIC Educational Resources Information Center

    Kutner, Nancy G.; Brogan, Donna

    1976-01-01

    A conceptual model is presented relating numerous variables contributing to sexism in American education. Discrimination is viewed as intervening between two sets of interrelated independent variables and the dependent variable of sex inequalities in educational attainment. Sex-role orientation changes are the key to significant change in the…

  5. Testing a Conceptual Model of Working through Self-Defeating Patterns

    ERIC Educational Resources Information Center

    Wei, Meifen; Ku, Tsun-Yao

    2007-01-01

    The present study developed and examined a conceptual model of working through self-defeating patterns. Participants were 390 college students at a large midwestern university. Results indicated that self-defeating patterns mediated the relations between attachment and distress. Also, self-esteem mediated the link between self-defeating patterns…

  6. On the mutual relationship between conceptual models and datasets in geophysical monitoring of volcanic systems

    NASA Astrophysics Data System (ADS)

    Neuberg, J. W.; Thomas, M.; Pascal, K.; Karl, S.

    2012-04-01

    Geophysical datasets are essential to guide particularly short-term forecasting of volcanic activity. Key parameters are derived from these datasets and interpreted in different ways, however, the biggest impact on the interpretation is not determined by the range of parameters but controlled through the parameterisation and the underlying conceptual model of the volcanic process. On the other hand, the increasing number of sophisticated geophysical models need to be constrained by monitoring data, to transform a merely numerical exercise into a useful forecasting tool. We utilise datasets from the "big three", seismology, deformation and gas emissions, to gain insight in the mutual relationship between conceptual models and constraining data. We show that, e.g. the same seismic dataset can be interpreted with respect to a wide variety of different models with very different implications to forecasting. In turn, different data processing procedures lead to different outcomes even though they are based on the same conceptual model. Unsurprisingly, the most reliable interpretation will be achieved by employing multi-disciplinary models with overlapping constraints.

  7. Revising a conceptual model of partnership and sustainability in global health.

    PubMed

    Upvall, Michele J; Leffers, Jeanne M

    2018-05-01

    Models to guide global health partnerships are rare in the nursing literature. The Conceptual Model for Partnership and Sustainability in Global Health while significant was based on Western perspectives. The purpose of this study was to revise the model to include the voice of nurses from low- and middle-resource countries. Grounded theory was used to maintain fidelity with the design in the original model. A purposive sample of 15 participants from a variety of countries in Africa, the Caribbean, and Southeast Asia and having extensive experience in global health partnerships were interviewed. Skype recordings and in-person interviews were audiotaped using the same questions as the original study. Theoretical coding and a comparison of results with the original study was completed independently by the researchers. The process of global health partnerships was expanded from the original model to include engagement processes and processes for ongoing partnership development. New concepts of Transparency, Expanded World View, and Accompaniment were included as well as three broad themes: Geopolitical Influence, Power differential/Inequities, and Collegial Friendships. The revised conceptual model embodies a more comprehensive model of global health partnerships with representation of nurses from low- and middle-resource countries. © 2018 Wiley Periodicals, Inc.

  8. A conceptual holding model for veterinary applications.

    PubMed

    Ferrè, Nicola; Kuhn, Werner; Rumor, Massimo; Marangon, Stefano

    2014-05-01

    Spatial references are required when geographical information systems (GIS) are used for the collection, storage and management of data. In the veterinary domain, the spatial component of a holding (of animals) is usually defined by coordinates, and no other relevant information needs to be interpreted or used for manipulation of the data in the GIS environment provided. Users trying to integrate or reuse spatial data organised in such a way, frequently face the problem of data incompatibility and inconsistency. The root of the problem lies in differences with respect to syntax as well as variations in the semantic, spatial and temporal representations of the geographic features. To overcome these problems and to facilitate the inter-operability of different GIS, spatial data must be defined according to a \\"schema\\" that includes the definition, acquisition, analysis, access, presentation and transfer of such data between different users and systems. We propose an application \\"schema\\" of holdings for GIS applications in the veterinary domain according to the European directive framework (directive 2007/2/EC--INSPIRE). The conceptual model put forward has been developed at two specific levels to produce the essential and the abstract model, respectively. The former establishes the conceptual linkage of the system design to the real world, while the latter describes how the system or software works. The result is an application \\"schema\\" that formalises and unifies the information-theoretic foundations of how to spatially represent a holding in order to ensure straightforward information-sharing within the veterinary community.

  9. Equivalent plate modeling for conceptual design of aircraft wing structures

    NASA Technical Reports Server (NTRS)

    Giles, Gary L.

    1995-01-01

    This paper describes an analysis method that generates conceptual-level design data for aircraft wing structures. A key requirement is that this data must be produced in a timely manner so that is can be used effectively by multidisciplinary synthesis codes for performing systems studies. Such a capability is being developed by enhancing an equivalent plate structural analysis computer code to provide a more comprehensive, robust and user-friendly analysis tool. The paper focuses on recent enhancements to the Equivalent Laminated Plate Solution (ELAPS) analysis code that significantly expands the modeling capability and improves the accuracy of results. Modeling additions include use of out-of-plane plate segments for representing winglets and advanced wing concepts such as C-wings along with a new capability for modeling the internal rib and spar structure. The accuracy of calculated results is improved by including transverse shear effects in the formulation and by using multiple sets of assumed displacement functions in the analysis. Typical results are presented to demonstrate these new features. Example configurations include a C-wing transport aircraft, a representative fighter wing and a blended-wing-body transport. These applications are intended to demonstrate and quantify the benefits of using equivalent plate modeling of wing structures during conceptual design.

  10. Development of a geodatabase and conceptual model of the hydrogeologic units beneath air force plant 4 and Naval Air Station-Joint Reserve Base Carswell Field, Fort Worth, Texas

    USGS Publications Warehouse

    Shah, Sachin D.

    2004-01-01

    Air Force Plant 4 and adjacent Naval Air Station-Joint Reserve Base Carswell Field at Fort Worth, Texas, constitute a government-owned, contractor-operated facility that has been in operation since 1942. Contaminants from AFP4, primarily volatile organic compounds and metals, have entered the ground-water-flow system through leakage from waste-disposal sites and from manufacturing processes. The U.S. Geological Survey developed a comprehensive geodatabase of temporal and spatial environmental information associated with the hydrogeologic units (alluvial aquifer, Goodland-Walnut confining unit, and Paluxy aquifer) beneath the facility and a three-dimensional conceptual model of the hydrogeologic units integrally linked to the geodatabase. The geodatabase design uses a thematic layer approach to create layers of feature data using a geographic information system. The various features are separated into relational tables in the geodatabase on the basis of how they interact and correspond to one another. Using the geodatabase, geographic data at the site are manipulated to produce maps, allow interactive queries, and perform spatial analyses. The conceptual model for the study area comprises computer-generated, three-dimensional block diagrams of the hydrogeologic units. The conceptual model provides a platform for visualization of hydrogeologic-unit sections and surfaces and for subsurface environmental analyses. The conceptual model is based on three structural surfaces and two thickness configurations of the study area. The three structural surfaces depict the altitudes of the tops of the three hydrogeologic units. The two thickness configurations are those of the alluvial aquifer and the Goodland-Walnut confining unit. The surface of the alluvial aquifer was created using a U.S. Geological Survey 10-meter digital elevation model. The 2,130 point altitudes of the top of the Goodland-Walnut unit were compiled from lithologic logs from existing wells, available soil

  11. A New Conceptual Model for Understanding International Students' College Needs

    ERIC Educational Resources Information Center

    Alfattal, Eyad

    2016-01-01

    This study concerns the theory and practice of international marketing in higher education with the purpose of exploring a conceptual model for understanding international students' needs in the context of a four-year college in the United States. A transcendental phenomenological design was employed to investigate the essence of international…

  12. AFB/open cycle gas turbine conceptual design study

    NASA Technical Reports Server (NTRS)

    Dickinson, T. W.; Tashjian, R.

    1983-01-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  13. AFB/open cycle gas turbine conceptual design study

    NASA Astrophysics Data System (ADS)

    Dickinson, T. W.; Tashjian, R.

    1983-09-01

    Applications of coal fired atmospheric fluidized bed gas turbine systems in industrial cogeneration are identified. Based on site-specific conceptual designs, the potential benefits of the AFB/gas turbine system were compared with an atmospheric fluidized design steam boiler/steam turbine system. The application of these cogeneration systems at four industrial plant sites is reviewed. A performance and benefit analysis was made along with a study of the representativeness of the sites both in regard to their own industry and compared to industry as a whole. A site was selected for the conceptual design, which included detailed site definition, AFB/gas turbine and AFB/steam turbine cogeneration system designs, detailed cost estimates, and comparative performance and benefit analysis. Market and benefit analyses identified the potential market penetration for the cogeneration technologies and quantified the potential benefits.

  14. A CONCEPTUAL MODEL FOR MULTI-SCALAR ASSESSMENTS OF ESTUARINE ECOLOGICAL INTEGRITY

    EPA Science Inventory

    A conceptual model was developed that relates an estuarine system's anthropogenic inputs to it's ecological integrity. Ecological integrity is operationally defined as an emergent property of an ecosystem that exists when the structural components are complete and the functional ...

  15. Ecosystem conceptual model- Mercury

    USGS Publications Warehouse

    Alpers, Charles N.; Eagles-Smith, Collin A.; Foe, Chris; Klasing, Susan; Marvin-DiPasquale, Mark C.; Slotton, Darell G.; Windham-Myers, Lisamarie

    2008-01-01

    mercury conceptual model and its four submodels (1. Methylation, 2. Bioaccumulation, 3. Human Health Effects, and 4. Wildlife Heath Effects) can be used to understand the general relationships among drivers and outcomes associated with mercury cycling in the Delta. Several linkages between important drivers and outcomes have been identified as important but highly uncertain (i.e. poorly understood). For example, there may be significant wildlife health effect of mercury on mammals and reptiles in the Delta, but there is currently very little or no information about it. The characteristics of such linkages are important when prioritizing and funding restoration projects and associated monitoring in the Delta and its tributaries.

  16. Three-dimensional DFN Model Development and Calibration: A Case Study for Pahute Mesa, Nevada National Security Site

    NASA Astrophysics Data System (ADS)

    Pham, H. V.; Parashar, R.; Sund, N. L.; Pohlmann, K.

    2017-12-01

    Pahute Mesa, located in the north-western region of the Nevada National Security Site, is an area where numerous underground nuclear tests were conducted. The mesa contains several fractured aquifers that can potentially provide high permeability pathways for migration of radionuclides away from testing locations. The BULLION Forced-Gradient Experiment (FGE) conducted on Pahute Mesa injected and pumped solute and colloid tracers from a system of three wells for obtaining site-specific information about the transport of radionuclides in fractured rock aquifers. This study aims to develop reliable three-dimensional discrete fracture network (DFN) models to simulate the BULLION FGE as a means for computing realistic ranges of important parameters describing fractured rock. Multiple conceptual DFN models were developed using dfnWorks, a parallelized computational suite developed by Los Alamos National Laboratory, to simulate flow and conservative particle movement in subsurface fractured rocks downgradient from the BULLION test. The model domain is 100x200x100 m and includes the three tracer-test wells of the BULLION FGE and the Pahute Mesa Lava-flow aquifer. The model scenarios considered differ from each other in terms of boundary conditions and fracture density. For each conceptual model, a number of statistically equivalent fracture network realizations were generated using data from fracture characterization studies. We adopt the covariance matrix adaptation-evolution strategy (CMA-ES) as a global local stochastic derivative-free optimization method to calibrate the DFN models using groundwater levels and tracer breakthrough data obtained from the three wells. Models of fracture apertures based on fracture type and size are proposed and the values of apertures in each model are estimated during model calibration. The ranges of fracture aperture values resulting from this study are expected to enhance understanding of radionuclide transport in fractured rocks and

  17. Patient-reported outcomes in insomnia: development of a conceptual framework and endpoint model.

    PubMed

    Kleinman, Leah; Buysse, Daniel J; Harding, Gale; Lichstein, Kenneth; Kalsekar, Anupama; Roth, Thomas

    2013-01-01

    This article describes qualitative research conducted with patients with clinical diagnoses of insomnia and focuses on the development of a conceptual framework and endpoint model that identifies a hierarchy and interrelationships of potential outcomes in insomnia research. Focus groups were convened to discuss how patients experience insomnia and to generate items for patient-reported questionnaires on insomnia and associated daytime consequences. Results for the focus group produced two conceptual frameworks: one for sleep and one for daytime impairment. Each conceptual framework consists of hypothesized domains and items in each domain based on patient language taken from the focus group. These item pools may ultimately serve as a basis to develop new questionnaires to assess insomnia.

  18. Geographers in the Post-Industrial Age: A Conceptual Curriculum Model for Geography.

    ERIC Educational Resources Information Center

    Verduin-Muller, Henriette

    The document describes a conceptual curriculum model for designing original geographical curriculum materials. The model emanated from a series of research projects at the Geographical Institute's Department of Geography for Education at the Rijksuniversiteit of Utrecht, the Netherlands. The objective of the research was to gain insight into the…

  19. Conceptual ecological models to support detection of ecological change on Alaska National Wildlife Refuges

    USGS Publications Warehouse

    Woodward, Andrea; Beever, Erik A.

    2011-01-01

    More than 31 million hectares of land are protected and managed in 16 refuges by the U.S. Fish and Wildlife Service (USFWS) in Alaska. The vastness and isolation of Alaskan refuges give rise to relatively intact and complete ecosystems. The potential for these lands to provide habitat for trust species is likely to be altered, however, due to global climate change, which is having dramatic effects at high latitudes. The ability of USFWS to effectively manage these lands in the future will be enhanced by a regional inventory and monitoring program that integrates and supplements monitoring currently being implemented by individual refuges. Conceptual models inform monitoring programs in a number of ways, including summarizing important ecosystem components and processes as well as facilitating communication, discussion and debate about the nature of the system and important management issues. This process can lead to hypotheses regarding future changes, likely results of alternative management actions, identification of monitoring indicators, and ultimately, interpretation of monitoring results. As a first step towards developing a monitoring program, the 16 refuges in Alaska each created a conceptual model of their refuge and the landscape context. Models include prominent ecosystem components, drivers, and processes by which components are linked or altered. The Alaska refuge system also recognizes that designing and implementing monitoring at regional and ecoregional extents has numerous scientific, fiscal, logistical, and political advantages over monitoring conducted exclusively at refuge-specific scales. Broad-scale monitoring is particularly advantageous for examining phenomena such as climate change because effects are best interpreted at broader spatial extents. To enable an ecoregional perspective, a rationale was developed for deriving ecoregional boundaries for four ecoregions (Polar, Interior Alaska, Bering Coast, and North Pacific Coast) from the

  20. Multi-Decadal Coastal Behavioural States From A Fusion Of Geohistorical Conceptual Modelling With 2-D Morphodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Goodwin, I. D.; Mortlock, T.

    2016-02-01

    Geohistorical archives of shoreline and foredune planform geometry provides a unique evidence-based record of the time integral response to coupled directional wave climate and sediment supply variability on annual to multi-decadal time scales. We develop conceptual shoreline modelling from the geohistorical shoreline archive using a novel combination of methods, including: LIDAR DEM and field mapping of coastal geology; a decadal-scale climate reconstruction of sea-level pressure, marine windfields, and paleo-storm synoptic type and frequency, and historical bathymetry. The conceptual modelling allows for the discrimination of directional wave climate shifts and the relative contributions of cross-shore and along-shore sand supply rates at multi-decadal resolution. We present regional examples from south-eastern Australia over a large latitudinal gradient from subtropical Queensland (S 25°) to mid-latitude Bass Strait (S 40°) that illustrate the morphodynamic evolution and reorganization to wave climate change. We then use the conceptual modeling to inform a two-dimensional coupled spectral wave-hydrodynamic-morphodynamic model to investigate the shoreface response to paleo-directional wind and wave climates. Unlike one-line shoreline modelling, this fully dynamical approach allows for the investigation of cumulative and spatial bathymetric change due to wave-induced currents, as well as proxy-shoreline change. The fusion of the two modeling approaches allows for: (i) the identification of the natural range of coastal planform geometries in response to wave climate shifts; and, (ii) the decomposition of the multidecadal coastal change into the cross-shore and along-shore sand supply drivers, according to the best-matching planforms.

  1. Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics

    NASA Astrophysics Data System (ADS)

    Yang, Wendy H.; McNicol, Gavin; Teh, Yit Arn; Estera-Molina, Katerina; Wood, Tana E.; Silver, Whendee L.

    2017-09-01

    Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamics—in which the water table position determines the vertical distribution of methanogenesis and methanotrophy—versus an emerging model in which methanogenesis and methanotrophy can both occur throughout the soil profile due to spatially heterogeneous redox and anaerobic CH4 oxidation. We simultaneously measured gross CH4 production and oxidation in situ across a microtopographical gradient in a drained temperate peatland and ex situ along the soil profile, giving us novel insight into the component fluxes of landscape-level net CH4 fluxes. Net CH4 fluxes varied among landforms (p < 0.001), ranging from 180.3 ± 81.2 mg C m-2 d-1 in drainage ditches to -0.7 ± 1.2 mg C m-2 d-1 in the highest landform. Contrary to prediction by the classical conceptual model, variability in methanogenesis alone drove the landscape-level net CH4 flux patterns. Consistent with the emerging model, freshly collected soils from above the water table produced CH4 within anaerobic microsites. Even in soil from beneath the water table, gross CH4 production was best predicted by the methanogenic fraction of carbon mineralization, an index of highly reducing microsites. We measured low rates of anaerobic CH4 oxidation, which may have been limited by relatively low in situ CH4 concentrations in the hummock/hollow soil profile. Our study revealed complex CH4 dynamics better represented by the emerging heterogeneous conceptual model than the classical model based on redox strata.

  2. A Conceptual Model for Analysing Collaborative Work and Products in Groupware Systems

    NASA Astrophysics Data System (ADS)

    Duque, Rafael; Bravo, Crescencio; Ortega, Manuel

    Collaborative work using groupware systems is a dynamic process in which many tasks, in different application domains, are carried out. Currently, one of the biggest challenges in the field of CSCW (Computer-Supported Cooperative Work) research is to establish conceptual models which allow for the analysis of collaborative activities and their resulting products. In this article, we propose an ontology that conceptualizes the required elements which enable an analysis to infer a set of analysis indicators, thus evaluating both the individual and group work and the artefacts which are produced.

  3. Modelling surface water-groundwater interaction with a conceptual approach: model development and application in New Zealand

    NASA Astrophysics Data System (ADS)

    Yang, J.; Zammit, C.; McMillan, H. K.

    2016-12-01

    As in most countries worldwide, water management in lowland areas is a big concern for New Zealand due to its economic importance for water related human activities. As a result, the estimation of available water resources in these areas (e.g., for irrigation and water supply purpose) is crucial and often requires an understanding of complex hydrological processes, which are often characterized by strong interactions between surface water and groundwater (usually expressed as losing and gaining rivers). These processes are often represented and simulated using integrated physically based hydrological models. However models with physically based groundwater modules typically require large amount of non-readily available geologic and aquifer information and are computationally intensive. Instead, this paper presents a conceptual groundwater model that is fully integrated into New Zealand's national hydrological model TopNet based on TopModel concepts (Beven, 1992). Within this conceptual framework, the integrated model can simulate not only surface processes, but also groundwater processes and surface water-groundwater interaction processes (including groundwater flow, river-groundwater interaction, and groundwater interaction with external watersheds). The developed model was applied to two New Zealand catchments with different hydro-geological and climate characteristics (Pareora catchment in the Canterbury Plains and Grey catchment on the West Coast). Previous studies have documented strong interactions between the river and groundwater, based on the analysis of a large number of concurrent flow measurements and associated information along the river main stem. Application of the integrated hydrological model indicates flow simulation (compared to the original hydrological model conceptualisation) during low flow conditions are significantly improved and further insights on local river dynamics are gained. Due to its conceptual characteristics and low level of

  4. The Prince Edward Island Conceptual Model for Nursing: a nursing perspective of primary health care.

    PubMed

    Munro, M; Gallant, M; MacKinnon, M; Dell, G; Herbert, R; MacNutt, G; McCarthy, M J; Murnaghan, D; Robertson, K

    2000-06-01

    The philosophy of primary health care (PHC) recognizes that health is a product of individual, social, economic, and political factors and that people have a right and a duty, individually and collectively, to participate in the course of their own health. The majority of nursing models cast the client in a dependent role and do not conceptualize health in a social, economic, and political context. The Prince Edward Island Conceptual Model for Nursing is congruent with the international move towards PHC. It guides the nurse in practising in the social and political environment in which nursing and health care take place. This model features a nurse/client partnership, the goal being to encourage clients to act on their own behalf. The conceptualization of the environment as the collective influence of the determinants of health gives both nurse and client a prominent position in the sociopolitical arena of health and health care.

  5. Stakeholder Participation in System Change: A New Conceptual Model.

    PubMed

    O'Rourke, Tammy; Higuchi, Kathryn S; Hogg, William

    2016-08-01

    A recent change in Canada's primary care system led to the introduction of Nurse Practitioner-Led clinics. The literature suggests that stakeholders can influence system change initiatives. However, very little is known about healthcare stakeholder motivations, particularly stakeholders who are seen as resistors to change. To examine stakeholder participation in the system change process that led to the introduction of the first Nurse Practitioner-Led clinic in Ontario. This single case study included two site visits, semistructured individual tape-recorded interviews, and the examination of relevant public documents. Qualitative content analysis was used to analyze the data. Sixteen individuals from different healthcare sectors and professions participated in the interviews and 20 documents were reviewed. Six key themes emerged from the data. Linking Evidence to Action The findings from the study present a new perspective on stakeholder participation that includes both those who supported the proposed change and those who advocated for a different change. The findings identify stakeholder activities used to shape, share, and protect their visions for system change. The conceptual model presented in this study adds to the understanding of challenges and complexities involved in healthcare system change. Understanding why and how stakeholders participate in change can help healthcare leaders in planning activities to enhance stakeholder involvement in healthcare system change. © 2016 Sigma Theta Tau International.

  6. Conceptualising forensic science and forensic reconstruction. Part I: A conceptual model.

    PubMed

    Morgan, R M

    2017-11-01

    There has been a call for forensic science to actively return to the approach of scientific endeavour. The importance of incorporating an awareness of the requirements of the law in its broadest sense, and embedding research into both practice and policy within forensic science, is arguably critical to achieving such an endeavour. This paper presents a conceptual model (FoRTE) that outlines the holistic nature of trace evidence in the 'endeavour' of forensic reconstruction. This model offers insights into the different components intrinsic to transparent, reproducible and robust reconstructions in forensic science. The importance of situating evidence within the whole forensic science process (from crime scene to court), of developing evidence bases to underpin each stage, of frameworks that offer insights to the interaction of different lines of evidence, and the role of expertise in decision making are presented and their interactions identified. It is argued that such a conceptual model has value in identifying the future steps for harnessing the value of trace evidence in forensic reconstruction. It also highlights that there is a need to develop a nuanced approach to reconstructions that incorporates both empirical evidence bases and expertise. A conceptual understanding has the potential to ensure that the endeavour of forensic reconstruction has its roots in 'problem-solving' science, and can offer transparency and clarity in the conclusions and inferences drawn from trace evidence, thereby enabling the value of trace evidence to be realised in investigations and the courts. Copyright © 2017 The Author. Published by Elsevier B.V. All rights reserved.

  7. Conceptual model of iCAL4LA: Proposing the components using comparative analysis

    NASA Astrophysics Data System (ADS)

    Ahmad, Siti Zulaiha; Mutalib, Ariffin Abdul

    2016-08-01

    This paper discusses an on-going study that initiates an initial process in determining the common components for a conceptual model of interactive computer-assisted learning that is specifically designed for low achieving children. This group of children needs a specific learning support that can be used as an alternative learning material in their learning environment. In order to develop the conceptual model, this study extracts the common components from 15 strongly justified computer assisted learning studies. A comparative analysis has been conducted to determine the most appropriate components by using a set of specific indication classification to prioritize the applicability. The results of the extraction process reveal 17 common components for consideration. Later, based on scientific justifications, 16 of them were selected as the proposed components for the model.

  8. From Conceptual Frameworks to Mental Models for Astronomy: Students' Perceptions

    ERIC Educational Resources Information Center

    Pundak, David; Liberman, Ido; Shacham, Miri

    2017-01-01

    Considerable debate exists among discipline-based astronomy education researchers about how students change their perceptions in science and astronomy. The study questioned the development of astronomical models among students in institutions of higher education by examining how college students change their initial conceptual frameworks and…

  9. Development and testing of a fast conceptual river water quality model.

    PubMed

    Keupers, Ingrid; Willems, Patrick

    2017-04-15

    Modern, model based river quality management strongly relies on river water quality models to simulate the temporal and spatial evolution of pollutant concentrations in the water body. Such models are typically constructed by extending detailed hydrodynamic models with a component describing the advection-diffusion and water quality transformation processes in a detailed, physically based way. This approach is too computational time demanding, especially when simulating long time periods that are needed for statistical analysis of the results or when model sensitivity analysis, calibration and validation require a large number of model runs. To overcome this problem, a structure identification method to set up a conceptual river water quality model has been developed. Instead of calculating the water quality concentrations at each water level and discharge node, the river branch is divided into conceptual reservoirs based on user information such as location of interest and boundary inputs. These reservoirs are modelled as Plug Flow Reactor (PFR) and Continuously Stirred Tank Reactor (CSTR) to describe advection and diffusion processes. The same water quality transformation processes as in the detailed models are considered but with adjusted residence times based on the hydrodynamic simulation results and calibrated to the detailed water quality simulation results. The developed approach allows for a much faster calculation time (factor 10 5 ) without significant loss of accuracy, making it feasible to perform time demanding scenario runs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. A conceptual life-history model for pallid and shovelnose sturgeon

    USGS Publications Warehouse

    Wildhaber, Mark L.; DeLonay, Aaron J.; Papoulias, Diana M.; Galat, David L.; Jacobson, Robert B.; Simpkins, Darin G.; Braaten, P. J.; Korschgen, Carl E.; Mac, Michael J.

    2007-01-01

    Intensive management of the Missouri and Mississippi Rivers has resulted in dramatic physical changes to these rivers. These changes have been implicated as causative agents in the decline of pallid sturgeon. The pallid sturgeon, federally listed as endangered, is endemic to the turbid waters of the Missouri River and the Lower Mississippi River. The sympatric shovelnose sturgeon historically was more common and widespread than the pallid sturgeon. Habitat alteration, river regulation, pollution, and over-harvest have resulted in the now predictable patterns of decline and localized extirpation of sturgeon across species and geographic areas. Symptomatic of this generalized pattern of decline is poor reproductive success, and low or no recruitment of wild juveniles to the adult population. The purpose of this report is to introduce a conceptual life-history model of the factors that affect reproduction, growth, and survival of shovelnose and pallid sturgeons. The conceptual model provided here was developed to organize the understanding about the complex life history of Scaphirhynchus sturgeons. It was designed to be used for communication, planning, and to provide the structure for a population-forecasting model. These models are intended to be dynamic and responsive to new information and changes in river management, thereby providing scientists, stakeholders, and managers with ways to improve understanding of the effects of management actions on the ecological requirements of Scaphirhynchus sturgeons. As new scientific knowledge becomes available, it could be included in the model in many ways at various integration levels.

  11. Using combined hydrological variables for extracting functional signatures of catchments to better assess the acceptability of model structures in conceptual catchment modelling

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Hrachowitz, M.; RUIZ, L.; Gascuel-odoux, C.; Savenije, H.

    2013-12-01

    While most hydrological models reproduce the general flow dynamics of a system, they frequently fail to adequately mimic system internal processes. This is likely to make them inadequate to simulate solutes transport. For example, the hysteresis between storage and discharge, which is often observed in shallow hard-rock aquifers, is rarely well reproduced by models. One main reason is that this hysteresis has little weight in the calibration because objective functions are based on time series of individual variables. This reduces the ability of classical calibration/validation procedures to assess the relevance of the conceptual hypothesis associated with hydrological models. Calibrating models on variables derived from the combination of different individual variables (like stream discharge and groundwater levels) is a way to insure that models will be accepted based on their consistency. Here we therefore test the value of this more systems-like approach to test different hypothesis on the behaviour of a small experimental low-land catchment in French Brittany (ORE AgrHys) where a high hysteresis is observed on the stream flow vs. shallow groundwater level relationship. Several conceptual models were applied to this site, and calibrated using objective functions based on metrics of this hysteresis. The tested model structures differed with respect to the storage function in each reservoir, the storage-discharge function in each reservoir, the deep loss expressions (as constant or variable fraction), the number of reservoirs (from 1 to 4) and their organization (parallel, series). The observed hysteretic groundwater level-discharge relationship was not satisfactorily reproduced by most of the tested models except for the most complex ones. Those were thus more consistent, their underlying hypotheses are probably more realistic even though their performance for simulating observed stream flow was decreased. Selecting models based on such systems-like approach is

  12. Conceptualizing race in economic models of medical utilization: a case study of community-based elders and the emergency room.

    PubMed Central

    White-Means, S I

    1995-01-01

    There is no consensus on the appropriate conceptualization of race in economic models of health care. This is because race is rarely the primary focus for analysis of the market. This article presents an alternative framework for conceptualizing race in health economic models. A case study is analyzed to illustrate the value of the alternative conceptualization. The case study findings clearly document the importance of model stratification according to race. Moreover, the findings indicate that empirical results are improved when medical utilization models are refined in a way that reflects the unique experiences of the population that is studied. PMID:7721593

  13. Integrating O/S models during conceptual design, part 1

    NASA Technical Reports Server (NTRS)

    Ebeling, Charles E.

    1994-01-01

    The University of Dayton is pleased to submit this report to the National Aeronautics and Space Administration (NASA), Langley Research Center, which integrates a set of models for determining operational capabilities and support requirements during the conceptual design of proposed space systems. This research provides for the integration of the reliability and maintainability (R&M) model, both new and existing simulation models, and existing operations and support (O&S) costing equations in arriving at a complete analysis methodology. Details concerning the R&M model and the O&S costing model may be found in previous reports accomplished under this grant (NASA Research Grant NAG1-1327). In the process of developing this comprehensive analysis approach, significant enhancements were made to the R&M model, updates to the O&S costing model were accomplished, and a new simulation model developed. This is the 1st part of a 3 part technical report.

  14. Conceptual Thermal Treatment Technologies Feasibility Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suer, A.

    1996-02-28

    This report presents a conceptual Thermal Treatment Technologies Feasibility Study (FS) for the Savannah River Site (SRS) focusing exclusively on thermal treatment technologies for contaminated soil, sediment, or sludge remediation projects.

  15. An analogue conceptual rainfall-runoff model for educational purposes

    NASA Astrophysics Data System (ADS)

    Herrnegger, Mathew; Riedl, Michael; Schulz, Karsten

    2016-04-01

    Conceptual rainfall-runoff models, in which runoff processes are modelled with a series of connected linear and non-linear reservoirs, remain widely applied tools in science and practice. Additionally, the concept is appreciated in teaching due to its somewhat simplicity in explaining and exploring hydrological processes of catchments. However, when a series of reservoirs are used, the model system becomes highly parametrized and complex and the traceability of the model results becomes more difficult to explain to an audience not accustomed to numerical modelling. Since normally the simulations are performed with a not visible digital code, the results are also not easily comprehensible. This contribution therefore presents a liquid analogue model, in which a conceptual rainfall-runoff model is reproduced by a physical model. This consists of different acrylic glass containers representing different storage components within a catchment, e.g. soil water or groundwater storage. The containers are equipped and connected with pipes, in which water movement represents different flow processes, e.g. surface runoff, percolation or base flow. Water from a storage container is pumped to the upper part of the model and represents effective rainfall input. The water then flows by gravity through the different pipes and storages. Valves are used for controlling the flows within the analogue model, comparable to the parameterization procedure in numerical models. Additionally, an inexpensive microcontroller-based board and sensors are used to measure storage water levels, with online visualization of the states as time series data, building a bridge between the analogue and digital world. The ability to physically witness the different flows and water levels in the storages makes the analogue model attractive to the audience. Hands-on experiments can be performed with students, in which different scenarios or catchment types can be simulated, not only with the analogue but

  16. OTEC riser cable system, Phase II: conceptual design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1980-10-01

    Studies are summarized of conceptual designs of riser cable systems for OTEC pilot plants of both the spar and plantship configurations located at sites off the southeast coast of Puerto Rico. The studies utilize a baseline pilot plant riser cable, the design of which has been developed and reported on in other reports. Baseline riser cable systems for OTEC pilot plants are identified, system hardware consistent with these designs are conceptualized, and comparisons of the various system concepts are provided. It is concluded that there are three riser cable systems feasible for a spar pilot plant platform at the Puntamore » Yeguas site, and two riser cable systems feasible at the plantship pilot plant at the Punta Tuna site. Recommendations for further investigations in the areas of materials, hardware design and pre-installation site surveys are also addressed.« less

  17. Examining the Etiology of Reading Disability as Conceptualized by the Hybrid Model

    ERIC Educational Resources Information Center

    Erbeli, Florina; Hart, Sara A.; Wagner, Richard K.; Taylor, Jeanette

    2018-01-01

    A fairly recent definition of reading disability (RD) is that in the form of a hybrid model. The model views RD as a latent construct that is manifested through various observable unexpected impairments in reading-related skills and through inadequate response to intervention. The current report evaluated this new conceptualization of RD from an…

  18. Open challenges in structure-based virtual screening: Receptor modeling, target flexibility consideration and active site water molecules description.

    PubMed

    Spyrakis, Francesca; Cavasotto, Claudio N

    2015-10-01

    Structure-based virtual screening is currently an established tool in drug lead discovery projects. Although in the last years the field saw an impressive progress in terms of algorithm development, computational performance, and retrospective and prospective applications in ligand identification, there are still long-standing challenges where further improvement is needed. In this review, we consider the conceptual frame, state-of-the-art and recent developments of three critical "structural" issues in structure-based drug lead discovery: the use of homology modeling to accurately model the binding site when no experimental structures are available, the necessity of accounting for the dynamics of intrinsically flexible systems as proteins, and the importance of considering active site water molecules in lead identification and optimization campaigns. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Applying a Cognitive-Affective Model of Conceptual Change to Professional Development

    NASA Astrophysics Data System (ADS)

    Ebert, Ellen K.; Crippen, Kent J.

    2010-04-01

    This study evaluated Gregoire’s (2003) Cognitive-Affective Conceptual Change model (CAMCC) for predicting and assessing conceptual change in science teachers engaged in a long-term professional development project set in a large school district in the southwestern United States. A multiple case study method with data from three teacher participants was used to understand the process of integrating and applying a reform message of inquiry based science teaching. Data sources included: responses to example teaching scenarios, reflective essays, lesson plans, classroom observations, and action research projects. Findings show that the CAMCC functioned well in predicting how these teachers made decisions that impacted how they processed the reform message. When the reform message was communicated in such a way as to initiate stress appraisal, conceptual change occurred, producing changes in classroom practice. If the reform message did not initiate stress appraisal, teachers rejected the professional development message and developed heuristic responses. In order to further research and improve practice, propositions for assessments related to the CAMCC are provided.

  20. A conceptual framework for a long-term economic model for the treatment of attention-deficit/hyperactivity disorder.

    PubMed

    Nagy, Balázs; Setyawan, Juliana; Coghill, David; Soroncz-Szabó, Tamás; Kaló, Zoltán; Doshi, Jalpa A

    2017-06-01

    Models incorporating long-term outcomes (LTOs) are not available to assess the health economic impact of attention-deficit/hyperactivity disorder (ADHD). Develop a conceptual modelling framework capable of assessing long-term economic impact of ADHD therapies. Literature was reviewed; a conceptual structure for the long-term model was outlined with attention to disease characteristics and potential impact of treatment strategies. The proposed model has four layers: i) multi-state short-term framework to differentiate between ADHD treatments; ii) multiple states being merged into three core health states associated with LTOs; iii) series of sub-models in which particular LTOs are depicted; iv) outcomes collected to be either used directly for economic analyses or translated into other relevant measures. This conceptual model provides a framework to assess relationships between short- and long-term outcomes of the disease and its treatment, and to estimate the economic impact of ADHD treatments throughout the course of the disease.

  1. Examining the influence of formative assessment on conceptual accumulation and conceptual change

    NASA Astrophysics Data System (ADS)

    Tomita, Miki K.

    This study explored the effect of formative assessment on student achievement in science. Research in science education has shown that students enter science classrooms with previously formed explanatory models of the natural world; these naive "mental models" have a substantial influence on their learning of scientific conceptions. In general, conceptual change describes the pathway from pre-instructional or prior conceptions to a post-instructional or desired conception. Conceptual change involves a fundamental restructuring of a network of concepts rather than fitting new concepts into an existing conceptual network or structure. Research has shown that conceptual change is difficult to promote; for example, students may accumulate multiple conceptions over the course of instruction, including both new misconceptions and more scientifically-sound conceptions. Hellden and Solomon (2004) found that although students tended to evoke the same, less-scientific conceptions over time, they could produce more scientifically-sound conceptions during interviews with appropriate prompting; thus, students undergo conceptual accumulation rather than conceptual change. Students can recall scientifically-sound conceptions they have learned and may use them to reason, but they do so in partnership or hybridization with their less-scientific prior conceptions. Formative assessment, which focuses on providing immediate feedback by acting upon student understanding during the course of instruction, and conceptual change have both been linked to increased student achievement. Formative assessment is an instructional strategy that helps teachers to assess students' current understanding, identify the gap between current understanding and expected understanding, and provide immediate and useful feedback to students on how to close the gap. Formative assessment ranges from formal (e.g. embedded, planned-for interactions between teacher and entire class) to informal (e.g. on

  2. Towards an Integrated Conceptual Model of International Student Adjustment and Adaptation

    ERIC Educational Resources Information Center

    Schartner, Alina; Young, Tony Johnstone

    2016-01-01

    Despite a burgeoning body of empirical research on "the international student experience", the area remains under-theorized. The literature to date lacks a guiding conceptual model that captures the adjustment and adaptation trajectories of this unique, growing, and important sojourner group. In this paper, we therefore put forward a…

  3. The relevance of the philosophical 'mind-body problem' for the status of psychosomatic medicine: a conceptual analysis of the biopsychosocial model.

    PubMed

    Van Oudenhove, Lukas; Cuypers, Stefaan

    2014-05-01

    Psychosomatic medicine, with its prevailing biopsychosocial model, aims to integrate human and exact sciences with their divergent conceptual models. Therefore, its own conceptual foundations, which often remain implicit and unknown, may be critically relevant. We defend the thesis that choosing between different metaphysical views on the 'mind-body problem' may have important implications for the conceptual foundations of psychosomatic medicine, and therefore potentially also for its methods, scientific status and relationship with the scientific disciplines it aims to integrate: biomedical sciences (including neuroscience), psychology and social sciences. To make this point, we introduce three key positions in the philosophical 'mind-body' debate (emergentism, reductionism, and supervenience physicalism) and investigate their consequences for the conceptual basis of the biopsychosocial model in general and its 'psycho-biological' part ('mental causation') in particular. Despite the clinical merits of the biopsychosocial model, we submit that it is conceptually underdeveloped or even flawed, which may hamper its use as a proper scientific model.

  4. Conceptual model for collision detection and avoidance for runway incursion prevention

    NASA Astrophysics Data System (ADS)

    Latimer, Bridgette A.

    The Federal Aviation Administration (FAA), National Transportation and Safety Board (NTSB), National Aeronautics and Space Administration (NASA), numerous corporate entities, and research facilities have each come together to determine ways to make air travel safer and more efficient. These efforts have resulted in the development of a concept known as the Next Generation (Next Gen) of Aircraft or Next Gen. The Next Gen concept promises to be a clear departure from the way in which aircraft operations are performed today. The Next Gen initiatives require that modifications are made to the existing National Airspace System (NAS) concept of operations, system level requirements, software (SW) and hardware (HW) requirements, SW and HW designs and implementations. A second example of the changes in the NAS is the shift away from air traffic controllers having the responsibility for separation assurance. In the proposed new scheme of free flight, each aircraft would be responsible for assuring that it is safely separated from surrounding aircraft. Free flight would allow the separation minima for enroute aircraft to be reduced from 2000 nautical miles (nm) to 1000 nm. Simply put "Free Flight is a concept of air traffic management that permits pilots and controllers to share information and work together to manage air traffic from pre-flight through arrival without compromising safety [107]." The primary goal of this research project was to create a conceptual model that embodies the essential ingredients needed for a collision detection and avoidance system. This system was required to operate in two modes: air traffic controller's perspective and pilot's perspective. The secondary goal was to demonstrate that the technologies, procedures, and decision logic embedded in the conceptual model were able to effectively detect and avoid collision risks from both perspectives. Embodied in the conceptual model are five distinct software modules: Data Acquisition, State

  5. The ISO Edi Conceptual Model Activity and Its Relationship to OSI.

    ERIC Educational Resources Information Center

    Fincher, Judith A.

    1990-01-01

    The edi conceptual model is being developed to define common structures, services, and processes that syntax-specific standards like X12 and EDIFACT could adopt. Open Systems Interconnection (OSI) is of interest to edi because of its potential to help enable global interoperability across Electronic Data Interchange (EDI) functional groups. A…

  6. A Conceptual Model for Teaching Critical Thinking in a Knowledge Economy

    ERIC Educational Resources Information Center

    Chadwick, Clifton

    2011-01-01

    Critical thinking, viewed as rational and analytic thinking, is crucial for participation in a knowledge economy and society. This article provides a brief presentation of the importance of teaching critical thinking in a knowledge economy; suggests a conceptual model for teaching thinking; examines research on the historical role of teachers in…

  7. Optimal observation network design for conceptual model discrimination and uncertainty reduction

    NASA Astrophysics Data System (ADS)

    Pham, Hai V.; Tsai, Frank T.-C.

    2016-02-01

    This study expands the Box-Hill discrimination function to design an optimal observation network to discriminate conceptual models and, in turn, identify a most favored model. The Box-Hill discrimination function measures the expected decrease in Shannon entropy (for model identification) before and after the optimal design for one additional observation. This study modifies the discrimination function to account for multiple future observations that are assumed spatiotemporally independent and Gaussian-distributed. Bayesian model averaging (BMA) is used to incorporate existing observation data and quantify future observation uncertainty arising from conceptual and parametric uncertainties in the discrimination function. In addition, the BMA method is adopted to predict future observation data in a statistical sense. The design goal is to find optimal locations and least data via maximizing the Box-Hill discrimination function value subject to a posterior model probability threshold. The optimal observation network design is illustrated using a groundwater study in Baton Rouge, Louisiana, to collect additional groundwater heads from USGS wells. The sources of uncertainty creating multiple groundwater models are geological architecture, boundary condition, and fault permeability architecture. Impacts of considering homoscedastic and heteroscedastic future observation data and the sources of uncertainties on potential observation areas are analyzed. Results show that heteroscedasticity should be considered in the design procedure to account for various sources of future observation uncertainty. After the optimal design is obtained and the corresponding data are collected for model updating, total variances of head predictions can be significantly reduced by identifying a model with a superior posterior model probability.

  8. Application of the human needs conceptual model of dental hygiene to the role of the clinician : part II.

    PubMed

    Walsh, M M; Darby, M

    1993-01-01

    In summary, the theories of Maslow and of Yura and Walsh have been highlighted as background for understanding the human needs conceptual model of dental hygiene. In addition, 11 human needs have been identified and defined as being especially related to dental hygiene care, and a sample evaluation tool for their clinical assessment and a dental hygiene care plan have been presented. The four concepts of client, environment, health/oral health, and dental hygiene actions explained in terms of human need theory, and the 11 human needs related to dental hygiene care constitute the human needs conceptual model of dental hygiene. Within the framework of the human needs conceptual model of dental hygiene, the dental hygiene process is a systematic approach to dental hygiene care that involves assessment of the 11 human needs related to dental hygiene care; analysis of deficits in these needs; determination of the dental hygiene care plan based on identified deficits; implementation of dental hygiene interventions stated in the care plan; and evaluation of the effectiveness of dental hygiene interventions in achieving specific goals, including subsequent reassessment and revision of the dental hygiene care plan. This human needs conceptual model for dental hygiene provides a guide for comprehensive and humanistic client care. This model allows the dental hygienist to view each client (whether an individual or a group) holistically to prevent oral disease and to promote health and wellness. Dental hygiene theorists are encouraged to expand this model or to develop additional conceptual models based on dental hygiene's paradigm.

  9. Introductory Biology Students' Conceptual Models and Explanations of the Origin of Variation

    ERIC Educational Resources Information Center

    Bray Speth, Elena; Shaw, Neil; Momsen, Jennifer; Reinagel, Adam; Le, Paul; Taqieddin, Ranya; Long, Tammy

    2014-01-01

    Mutation is the key molecular mechanism generating phenotypic variation, which is the basis for evolution. In an introductory biology course, we used a model-based pedagogy that enabled students to integrate their understanding of genetics and evolution within multiple case studies. We used student-generated conceptual models to assess…

  10. Using Analogy and Model to Enhance Conceptual Change in Thai Middle School Students

    ERIC Educational Resources Information Center

    Wichaidit, Sittichai; Wongyounoi, Somson; Dechsri, Precharn; Chaivisuthangkura, Parin

    2011-01-01

    This study examined conceptual change of Thai middle school students after learning photosynthesis with analogy and model. The analogy mapped key features from the analog (cooking food) to the target concept (photosynthesis). Modeling photosynthesis activity provided the opportunity for students to understand how plants use sugar to synthesize…

  11. Learning Goal Orientation, Formal Mentoring, and Leadership Competence in HRD: A Conceptual Model

    ERIC Educational Resources Information Center

    Kim, Sooyoung

    2007-01-01

    Purpose: The purpose of this paper is to suggest a conceptual model of formal mentoring as a leadership development initiative including "learning goal orientation", "mentoring functions", and "leadership competencies" as key constructs of the model. Design/methodology/approach: Some empirical studies, though there are not many, will provide…

  12. Career and Technical Education (CTE) Student Success in Community Colleges: A Conceptual Model

    ERIC Educational Resources Information Center

    Hirschy, Amy S.; Bremer, Christine D.; Castellano, Marisa

    2011-01-01

    Career and technical education (CTE) students pursuing occupational associate's degrees or certificates differ from students seeking academic majors at 2-year institutions in several ways. This article examines several theoretical models of student persistence and offers a conceptual model of student success focused on CTE students in community…

  13. Analogue Study of Actinide Transport at Sites in Russia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, A P; Simmons, A M; Halsey, W G

    2003-02-12

    The U. S. Department of Energy (DOE) and the Russian Academy of Sciences (RAS) are engaged in a three-year cooperative study to observe the behavior of actinides in the natural environment at selected disposal sites and/or contamination sites in Russia. The purpose is to develop experimental data and models for actinide speciation, mobilization and transport processes in support of geologic repository design, safety and performance analyses. Currently at the mid-point of the study, the accomplishments to date include: evaluation of existing data and data needs, site screening and selection, initial data acquisition, and development of preliminary conceptual models.

  14. How much expert knowledge is it worth to put in conceptual hydrological models?

    NASA Astrophysics Data System (ADS)

    Antonetti, Manuel; Zappa, Massimiliano

    2017-04-01

    Both modellers and experimentalists agree on using expert knowledge to improve our conceptual hydrological simulations on ungauged basins. However, they use expert knowledge differently for both hydrologically mapping the landscape and parameterising a given hydrological model. Modellers use generally very simplified (e.g. topography-based) mapping approaches and put most of the knowledge for constraining the model by defining parameter and process relational rules. In contrast, experimentalists tend to invest all their detailed and qualitative knowledge about processes to obtain a spatial distribution of areas with different dominant runoff generation processes (DRPs) as realistic as possible, and for defining plausible narrow value ranges for each model parameter. Since, most of the times, the modelling goal is exclusively to simulate runoff at a specific site, even strongly simplified hydrological classifications can lead to satisfying results due to equifinality of hydrological models, overfitting problems and the numerous uncertainty sources affecting runoff simulations. Therefore, to test to which extent expert knowledge can improve simulation results under uncertainty, we applied a typical modellers' modelling framework relying on parameter and process constraints defined based on expert knowledge to several catchments on the Swiss Plateau. To map the spatial distribution of the DRPs, mapping approaches with increasing involvement of expert knowledge were used. Simulation results highlighted the potential added value of using all the expert knowledge available on a catchment. Also, combinations of event types and landscapes, where even a simplified mapping approach can lead to satisfying results, were identified. Finally, the uncertainty originated by the different mapping approaches was compared with the one linked to meteorological input data and catchment initial conditions.

  15. Knowledge Restructuring in Biology: Testing a Punctuated Model of Conceptual Change

    ERIC Educational Resources Information Center

    Mintzes, Joel; Quinn, Heather J.

    2007-01-01

    Emerging from a human constructivist view of learning and a punctuated model of conceptual change, these studies explored differences in the structural complexity and content validity of knowledge about prehistoric life depicted in concept maps by learners ranging in age from approximately 10 to 20 years. Study 1 (cross-age) explored the…

  16. A Retrospective Evaluation of Remote Pharmacist Interventions in a Telepharmacy Service Model Using a Conceptual Framework

    PubMed Central

    Murante, Lori J.; Moffett, Lisa M.

    2014-01-01

    Abstract Objectives: This retrospective cross-sectional study evaluated a telepharmacy service model using a conceptual framework to compare documented remote pharmacist interventions by year, hospital, and remote pharmacist and across rural hospitals with or without an on-site rural hospital pharmacist. Materials and Methods: Documented remote pharmacist interventions for patients at eight rural hospitals in the Midwestern United States during prospective prescription order review/entry from 2008 to 2011 were extracted from RxFusion® database (a home-grown system, i.e., internally developed program at The Nebraska Medical Center (TNMC) for capturing remote pharmacist-documented intervention data). The study authors conceptualized an analytical framework, mapping the 37 classes of remote pharmacist interventions to three broader-level definitions: (a) intervention, eight categories (interaction/potential interaction, contraindication, adverse effects, anticoagulation monitoring, drug product selection, drug regimen, summary, and recommendation), (b) patient medication management, two categories (therapy review and action), and (c) health system-centered medication use process, four categories (prescribing, transcribing and documenting, administering, and monitoring). Frequencies of intervention levels were compared by year, hospital, remote pharmacist, and hospital pharmacy status (with a remote pharmacist and on-site pharmacist or with a remote pharmacist only) using chi-squared test and univariate logistic regression analyses, as appropriate. Results: For 450,000 prescription orders 19,222 remote pharmacist interventions were documented. Frequency of interventions significantly increased each year (36% in 2009, 55% in 2010, and 7% in 2011) versus the baseline year (2008, 3%) when service started. The frequency of interventions also differed significantly across the eight hospitals and 16 remote pharmacists for the three defined intervention levels and categories

  17. Conceptual Model of Weight Management in Overweight and Obese African-American Females.

    PubMed

    Sutton, Suzanne M; Magwood, Gayenell S; Nemeth, Lynne S; Jenkins, Carolyn M

    2017-04-01

    Weight management of overweight and obese (OWO) African-American females (AAFs) is a poorly defined concept, leading to ineffective treatment of overweight and obesity, prevention of health sequelae, and risk reduction. A conceptual model of the phenomenon of weight management in OWO AAFs was developed through dimensional analysis of the literature. Constructs were identified and sorted into the dimensions of perspective, context, conditions, process, and consequences and integrated into an explanatory matrix. Through dimensional analysis, weight management in OWO AAFs was characterized as a multidimensional concept, defined from the perspective of weight loss in community-dwelling AAFs. Behaviors associated with weight management are strongly influenced by intrinsic factors and extrinsic conditions, which influence engagement in the processes and consequences of weight management. The resulting conceptual model of weight management in OWO AAFs provides a framework for research interventions applicable in a variety of settings. © 2016 Wiley Periodicals, Inc.

  18. A conceptual model to facilitate amphibian conservation in the northern Great Plains

    USGS Publications Warehouse

    Mushnet, David M.; Euliss, Ned H.; Stockwell, Craig A.

    2012-01-01

    As pressures on agricultural landscapes to meet worldwide resource needs increase, amphibian populations face numerous threats including habitat destruction, chemical contaminants, disease outbreaks, wetland sedimentation, and synergistic effects of these perturbations. To facilitate conservation planning, we developed a conceptual model depicting elements critical for amphibian conservation in the northern Great Plains. First, we linked upland, wetland, and landscape features to specific ecological attributes. Ecological attributes included adult survival; reproduction and survival to metamorphosis; and successful dispersal and recolonization. Second, we linked ecosystem drivers, ecosystem stressors, and ecological effects of the region to each ecological attribute. Lastly, we summarized information on these ecological attributes and the drivers, stressors, and effects that work in concert to influence the maintenance of viable and genetically diverse amphibian populations in the northern Great Plains. While our focus was on the northern Great Plains, our conceptual model can be tailored to other geographic regions and taxa.

  19. Conceptualization of Approaches and Thought Processes Emerging in Validating of Model in Mathematical Modeling in Technology Aided Environment

    ERIC Educational Resources Information Center

    Hidiroglu, Çaglar Naci; Bukova Güzel, Esra

    2013-01-01

    The aim of the present study is to conceptualize the approaches displayed for validation of model and thought processes provided in mathematical modeling process performed in technology-aided learning environment. The participants of this grounded theory study were nineteen secondary school mathematics student teachers. The data gathered from the…

  20. Conceptual heuristic models of the interrelationships between obesity and the occupational environment

    PubMed Central

    Pandalai, Sudha P; Schulte, Paul A; Miller, Diane B

    2015-01-01

    Objective Research and interventions targeting the relationship between work, its attendant occupational hazards, and obesity are evolving but merit further consideration in the public health arena. In this discussion paper, conceptual heuristic models are described examining the role of obesity as both a risk factor and health outcome in the occupational setting. Methods PubMed was searched using specific criteria from 2000 and onwards for evidence to support conceptual models in which obesity serves as a risk factor for occupational disease or an outcome of occupational exposures. Nine models are presented: four where obesity is a risk factor and five where it is an adverse effect. Results A broad range of work-related health effects are associated with obesity including musculoskeletal disorders, asthma, liver disease, and cardiovascular disease, among others. Obesity can be associated with occupational hazards such as shift work, sedentary work, job stress, and exposure to some chemicals. Conclusion Identification of combinations of risk factors pertinent to obesity in the occupational environment will provide important guidance for research and prevention. PMID:23588858

  1. Site-wide seismic risk model for Savannah River Site nuclear facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, S.A.; Shay, R.S.; Durant, W.S.

    1993-09-01

    The 200,000 acre Savannah River Site (SRS) has nearly 30 nuclear facilities spread throughout the site. The safety of each facility has been established in facility-specific safety analysis reports (SARs). Each SAR contains an analysis of risk from seismic events to both on-site workers and the off-site population. Both radiological and chemical releases are considered, and air and water pathways are modeled. Risks to the general public are generally characterized by evaluating exposure to the maximally exposed individual located at the SRS boundary and to the off-site population located within 50 miles. Although the SARs are appropriate methods for studyingmore » individual facility risks, there is a class of accident initiators that can simultaneously affect several of all of the facilities, Examples include seismic events, strong winds or tornados, floods, and loss of off-site electrical power. Overall risk to the off-site population from such initiators is not covered by the individual SARs. In such cases multiple facility radionuclide or chemical releases could occur, and off-site exposure would be greater than that indicated in a single facility SAR. As a step towards an overall site-wide risk model that adequately addresses multiple facility releases, a site-wide seismic model for determining off-site risk has been developed for nuclear facilities at the SRS. Risk from seismic events up to the design basis earthquake (DBE) of 0.2 g (frequency of 2.0E-4/yr) is covered by the model. Present plans include expanding the scope of the model to include other types of initiators that can simultaneously affect multiple facilities.« less

  2. Precipitation-centered Conceptual Model for Sub-humid Uplands in Lampasas Cut Plains, TX

    NASA Astrophysics Data System (ADS)

    Potter, S. R.; Tu, M.; Wilcox, B. P.

    2011-12-01

    Conceptual understandings of dominant hydrological processes, system interactions and feedbacks, and external forcings operating within catchments often defy simple definition and explanation, especially catchments encompassing transition zones, degraded landscapes, rapid development, and where climate forcings exhibit large variations across time and space. However, it is precisely those areas for which understanding and knowledge are most needed to innovate sustainable management strategies and counter past management blunders and failed restoration efforts. The cut plain of central Texas is one such area. Complex geographic and climatic factors lead to spatially and temporally variable precipitation having frequent dry periods interrupted by intense high-volume precipitation. Fort Hood, an army post located in the southeast cut plain contains landscapes ranging from highly degraded to nearly pristine with a topography mainly comprised of flat-topped mesas separated by broad u-shaped valleys. To understand the hydrology of the area and responses to wet-dry cycles we analyzed 4-years of streamflow and rainfall from 8 catchments, sized between 1819 and 16,000 ha. Since aquifer recharge/discharge and surface stream-groundwater interactions are unimportant, we hypothesized a simple conceptual model driven by precipitation and radiative forcings and having stormflow, baseflow, ET, and two hypothetical storage components. The key storage component was conceptualized as a buffer that was highly integrated with the ET component and exerted controls on baseflow. Radiative energy controlled flux from the buffer to ET. We used the conceptual model in making a bimonthly hydrologic budget, which included buffer volumes and a deficit-surplus indicator. Through the analysis, we were led to speculate that buffer capacity plays key roles in these landscapes and even relatively minor changes in capacity, due to soil compaction for example, might lead to ecological shifts. The

  3. Sediment carbon fate in phreatic karst (Part 1): Conceptual model development

    NASA Astrophysics Data System (ADS)

    Husic, A.; Fox, J.; Agouridis, C.; Currens, J.; Ford, W.; Taylor, C.

    2017-06-01

    Recent research has paid increased attention to quantifying the fate of carbon pools within fluvial networks, but few, if any, studies consider the fate of sediment organic carbon in fluviokarst systems despite that karst landscapes cover 12% of the earth's land surface. The authors develop a conceptual model of sediment carbon fate in karst terrain with specific emphasis upon phreatic karst conduits, i.e., those located below the groundwater table that have the potential to trap surface-derived sediment and turnover carbon. To assist with their conceptual model development, the authors study a phreatic system and apply a mixture of methods traditional and novel to karst studies, including electrical resistivity imaging, well drilling, instantaneous velocimetry, dye tracing, stage recording, discrete and continuous sediment and water quality sampling, and elemental and stable carbon isotope fingerprinting. Results show that the sediment transport carrying capacity of the phreatic karst water is orders of magnitude less than surface streams during storm-activated periods promoting deposition of fine sediments in the phreatic karst. However, the sediment transport carrying capacity is sustained long after the hydrologic event has ended leading to sediment resuspension and prolonged transport. The surficial fine grained laminae occurs in the subsurface karst system; but unlike surface streams, the light-limited conditions of the subsurface karst promotes constant heterotrophy leading to carbon turnover. The coupling of the hydrological processes leads to a conceptual model that frames phreatic karst as a biologically active conveyor of sediment carbon that recharges degraded organic carbon back to surface streams. For example, fluvial sediment is estimated to lose 30% of its organic carbon by mass during a one year temporary residence within the phreatic karst. It is recommended that scientists consider karst pathways when attempting to estimate organic matter stocks

  4. What Can Be Learned From a Laboratory Model of Conceptual Change? Descriptive Findings and Methodological Issues

    NASA Astrophysics Data System (ADS)

    Ohlsson, Stellan; Cosejo, David G.

    2014-07-01

    The problem of how people process novel and unexpected information— deep learning (Ohlsson in Deep learning: how the mind overrides experience. Cambridge University Press, New York, 2011)—is central to several fields of research, including creativity, belief revision, and conceptual change. Researchers have not converged on a single theory for conceptual change, nor has any one theory been decisively falsified. One contributing reason is the difficulty of collecting informative data in this field. We propose that the commonly used methodologies of historical analysis, classroom interventions, and developmental studies, although indispensible, can be supplemented with studies of laboratory models of conceptual change. We introduce re- categorization, an experimental paradigm in which learners transition from one definition of a categorical concept to another, incompatible definition of the same concept, a simple form of conceptual change. We describe a re-categorization experiment, report some descriptive findings pertaining to the effects of category complexity, the temporal unfolding of learning, and the nature of the learner's final knowledge state. We end with a brief discussion of ways in which the re-categorization model can be improved.

  5. Combining Different Conceptual Change Methods within 5E Model: A Sample Teaching Design of "Cell" Concept and its Organelles

    ERIC Educational Resources Information Center

    Urey, Mustafa; Calik, Muammer

    2008-01-01

    Since students' misconceptions are not completely remedied by means of only one conceptual change method, the authors assume that using different conceptual methods embedded within the 5E model will not only be more effective in enhancing students' conceptual understanding, but also may eliminate all students' misconceptions. The aim of this study…

  6. From Existence to Essence: A Conceptual Model for an Appalachian Studies Curriculum.

    ERIC Educational Resources Information Center

    Best, Billy F.

    Comprised of 4 chapters, this dissertation explores the existential premise "existence precedes essence" as applicable to development of a conceptual model for an Appalachian studies curriculum. Entitled "Personal Considerations: Pedagogy of a Hillbilly", the 1st chapter details the conflicts between the Appalachian institution…

  7. Workplace Commitment: A Conceptual Model Developed from Integrative Review of the Research

    ERIC Educational Resources Information Center

    Fornes, Sandra L.; Rocco, Tonette S.; Wollard, Karen K.

    2008-01-01

    This article investigates the previous research and theories of workplace commitment using content analysis and concept mapping. It provides a conceptual model of workplace commitment, integrating the literature on organizational commitment, occupational/career commitment, and individual commitment. The significance of this article lies in the…

  8. Responses of Aquatic Plants to Eutrophication in Rivers: A Revised Conceptual Model

    PubMed Central

    O’Hare, Matthew T.; Baattrup-Pedersen, Annette; Baumgarte, Inga; Freeman, Anna; Gunn, Iain D. M.; Lázár, Attila N.; Sinclair, Raeannon; Wade, Andrew J.; Bowes, Michael J.

    2018-01-01

    Compared to research on eutrophication in lakes, there has been significantly less work carried out on rivers despite the importance of the topic. However, over the last decade, there has been a surge of interest in the response of aquatic plants to eutrophication in rivers. This is an area of applied research and the work has been driven by the widespread nature of the impacts and the significant opportunities for system remediation. A conceptual model has been put forward to describe how aquatic plants respond to eutrophication. Since the model was created, there have been substantial increases in our understanding of a number of the underlying processes. For example, we now know the threshold nutrient concentrations at which nutrients no longer limit algal growth. We also now know that the physical habitat template of rivers is a primary selector of aquatic plant communities. As such, nutrient enrichment impacts on aquatic plant communities are strongly influenced, both directly and indirectly, by physical habitat. A new conceptual model is proposed that incorporates these findings. The application of the model to management, system remediation, target setting, and our understanding of multi-stressor systems is discussed. We also look to the future and the potential for new numerical models to guide management. PMID:29755484

  9. Adequate Security Protocols Adopt in a Conceptual Model in Identity Management for the Civil Registry of Ecuador

    NASA Astrophysics Data System (ADS)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2017-08-01

    We analyzed the problems of security of the information of the civil registries and identification at world level that are considered strategic. The objective is to adopt the appropriate security protocols in a conceptual model in the identity management for the Civil Registry of Ecuador. In this phase, the appropriate security protocols were determined in a Conceptual Model in Identity Management with Authentication, Authorization and Auditing (AAA). We used the deductive method and exploratory research to define the appropriate security protocols to be adopted in the identity model: IPSec, DNSsec, Radius, SSL, TLS, IEEE 802.1X EAP, Set. It was a prototype of the location of the security protocols adopted in the logical design of the technological infrastructure considering the conceptual model for Identity, Authentication, Authorization, and Audit management. It was concluded that the adopted protocols are appropriate for a distributed database and should have a direct relationship with the algorithms, which allows vulnerability and risk mitigation taking into account confidentiality, integrity and availability (CIA).

  10. Understanding the Patient Perspective of Seizure Severity in Epilepsy: Development of a Conceptual Model.

    PubMed

    Borghs, Simon; Tomaszewski, Erin L; Halling, Katarina; de la Loge, Christine

    2016-10-01

    For patients with uncontrolled epilepsy, the severity and postictal sequelae of seizures might be more impactful than their frequency. Seizure severity is often assessed using patient-reported outcome (PRO) instruments; however, evidence of content validity for existing instruments is lacking. Our aim was to understand the real-life experiences of patients with uncontrolled epilepsy. A preliminary conceptual model was developed. The model was refined through (1) a targeted literature review of qualitative research on seizure severity; (2) interviews with four clinical epilepsy experts to evaluate identified concepts; and (3) qualitative interviews with patients with uncontrolled epilepsy, gathering descriptions of symptoms and impacts of epilepsy, focusing on how patients experience and describe "seizure severity." Findings were summarized in a final conceptual model of seizure severity in epilepsy. Twenty-five patients (12 who experienced primary generalized tonic-clonic seizures and 13 who experienced partial-onset seizures) expressed 42 different symptoms and 26 different impacts related to seizures. The final conceptual model contained a wide range of concepts related to seizure frequency, symptoms, and duration. Our model identified several new concepts that characterize the patient experience of seizure severity. A seizure severity PRO instrument should cover a wide range of seizure symptoms alongside frequency and duration of seizures. This qualitative work reinforces the notion that measuring seizure frequency is insufficient and that seizure severity is important in defining the patient's experience of epilepsy. This model could be used to assess the content validity of existing PRO instruments, or could support the development of a new one.

  11. A Conceptual View of the Officer Procurement Model (TOPOPS). Technical Report No. 73-73.

    ERIC Educational Resources Information Center

    Akman, Allan; Nordhauser, Fred

    This report presents the conceptual design of a computer-based linear programing model of the Air Force officer procurement system called TOPOPS. The TOPOPS model is an aggregate model which simulates officer accession and training and is directed at optimizing officer procurement in terms of either minimizing cost or maximizing accession quality…

  12. Testing alternative conceptual models of seawater intrusion in a coastal aquifer using computer simulation, southern California, USA

    USGS Publications Warehouse

    Nishikawa, Tracy

    1997-01-01

    Two alternative conceptual models of the physical processes controlling seawater intrusion in a coastal basin in California, USA, were tested to identify a likely principal pathway for seawater intrusion. The conceptual models were tested by using a two-dimensional, finite-element groundwater flow and transport model. This pathway was identified by the conceptual model that best replicated the historical data. The numerical model was applied in cross section to a submarine canyon that is a main avenue for seawater to enter the aquifer system underlying the study area. Both models are characterized by a heterogeneous, layered, water-bearing aquifer. However, the first model is characterized by flat-lying aquifer layers and by a high value of hydraulic conductivity in the basal aquifer layer, which is thought to be a principal conduit for seawater intrusion. The second model is characterized by offshore folding, which was modeled as a very nearshore outcrop, thereby providing a shorter path for seawater to intrude. General conclusions are that: 1) the aquifer system is best modeled as a flat, heterogeneous, layered system; 2) relatively thin basal layers with relatively high values of hydraulic conductivity are the principal pathways for seawater intrusion; and 3) continuous clay layers of low hydraulic conductivity play an important role in controlling the movement of seawater.

  13. College Men's Meanings of Masculinities and Contextual Influences: Toward a Conceptual Model

    ERIC Educational Resources Information Center

    Harris, Frank, III

    2010-01-01

    Based on a grounded theory study involving 68 male undergraduates, a conceptual model of the meanings college men ascribe to masculinities is proposed in this article. The participants equated masculinities with "being respected," "being confident and self-assured," "assuming responsibility," and "embodying physical prowess." Contextual factors…

  14. [Nursing care systematization in rehabilitation unit, in accordance to Horta's conceptual model].

    PubMed

    Neves, Rinaldo de Souza

    2006-01-01

    The utilization of a conceptual model in the Nursing Attendance Systemization allows the development of activities based on theoretical references that can guide the implantation and the implementation of nursing proceedings in hospitals. In this article we examine the option made for the implementation of the Horta's conceptual model in the construction of a nursing attendance system in the Rehabilitation Unit of a public hospital located in the Federal District of Brazil. Through the utilization of these theoretical references it was possible to make available a data collection tool based on the basic human needs. The identification of these needs made possible the construction of the hierarchically disposed pyramid of the neurological patients' modified basic needs. Through this reference paper we intend to elaborate the prescription and nursing evolution based in the concepts and standards of the Horta's nursing process, making possible the inter-relationship of all phases of this attendance methodology.

  15. Improving conceptual models of water and carbon transfer through peat

    USGS Publications Warehouse

    McKenzie, Jeffery M.; Siegel, Donald I.; Rosenberry, Donald O.; Baird, Andrew J.; Belyea, Lisa R.; Comas, Xavier; Reeve, A.S.; Slater, Lee D.

    2009-01-01

    Northern peatlands store 500 × 1015 g of organic carbon and are very sensitive to climate change. There is a strong conceptual model of sources, sinks, and pathways of carbon within peatlands, but challenges remain both in understanding the hydrogeology and the linkages between carbon cycling and peat pore water flow. In this chapter, research findings from the glacial Lake Agassiz peatlands are used to develop a conceptual framework for peatland hydrogeology and identify four challenges related to northern peatlands yet to be addressed: (1) develop a better understanding of the extent and net impact of climate-driven groundwater flushing in peatlands; (2) quantify the complexities of heterogeneity on pore water flow and, in particular, reconcile contradictions between peatland hydrogeologic interpretations and isotopic data; (3) understand the hydrogeologic implications of free-phase methane production, entrapment, and release in peatlands; and (4) quantify the impact of arctic and subarctic warming on peatland hydrogeology and its linkage to carbon cycling.

  16. Development of a conceptual model of cancer caregiver health literacy.

    PubMed

    Yuen, E Y N; Dodson, S; Batterham, R W; Knight, T; Chirgwin, J; Livingston, P M

    2016-03-01

    Caregivers play a vital role in caring for people diagnosed with cancer. However, little is understood about caregivers' capacity to find, understand, appraise and use information to improve health outcomes. The study aimed to develop a conceptual model that describes the elements of cancer caregiver health literacy. Six concept mapping workshops were conducted with 13 caregivers, 13 people with cancer and 11 healthcare providers/policymakers. An iterative, mixed methods approach was used to analyse and synthesise workshop data and to generate the conceptual model. Six major themes and 17 subthemes were identified from 279 statements generated by participants during concept mapping workshops. Major themes included: access to information, understanding of information, relationship with healthcare providers, relationship with the care recipient, managing challenges of caregiving and support systems. The study extends conceptualisations of health literacy by identifying factors specific to caregiving within the cancer context. The findings demonstrate that caregiver health literacy is multidimensional, includes a broad range of individual and interpersonal elements, and is influenced by broader healthcare system and community factors. These results provide guidance for the development of: caregiver health literacy measurement tools; strategies for improving health service delivery, and; interventions to improve caregiver health literacy. © 2015 John Wiley & Sons Ltd.

  17. Conceptualization of an R&D Based Learning-to-Innovate Model for Science Education

    ERIC Educational Resources Information Center

    Lai, Oiki Sylvia

    2013-01-01

    The purpose of this research was to conceptualize an R & D based learning-to-innovate (LTI) model. The problem to be addressed was the lack of a theoretical L TI model, which would inform science pedagogy. The absorptive capacity (ACAP) lens was adopted to untangle the R & D LTI phenomenon into four learning processes: problem-solving via…

  18. CADDIS Volume 2. Sources, Stressors and Responses: Simple and Detailed Conceptual Model Diagram Downloads

    EPA Pesticide Factsheets

    Simple and detailed conceptual model diagram and associated narrative for ammonia, dissolved oxygen, flow alteration, herbicides, insecticides, ionic strength, metals, nutrients, ph, physical habitat, sediments, temperature, unspecified toxic chemicals.

  19. A Dyadic Approach: Applying a Developmental-Conceptual Model to Couples Coping with Chronic Illness

    ERIC Educational Resources Information Center

    Checton, Maria G.; Magsamen-Conrad, Kate; Venetis, Maria K.; Greene, Kathryn

    2015-01-01

    The purpose of the present study was to apply Berg and Upchurch's developmental-conceptual model toward a better understanding of how couples cope with chronic illness. Specifically, a model was hypothesized in which proximal factors (relational quality), dyadic appraisal (illness interference), and dyadic coping (partner support) influence…

  20. University Library Strategy Development: A Conceptual Model of Researcher Performance to Inform Service Delivery

    ERIC Educational Resources Information Center

    Maddox, Alexia; Zhao, Linlin

    2017-01-01

    This case study presents a conceptual model of researcher performance developed by Deakin University Library, Australia. The model aims to organize research performance data into meaningful researcher profiles, referred to as researcher typologies, which support the demonstration of research impact and value. Three dimensions shaping researcher…

  1. Visitors' conceptualizations of wilderness experiences

    Treesearch

    Erin Seekamp; Troy Hall; David Cole

    2012-01-01

    Despite 50 years of wilderness visitor experience research, it is not well understood how visitors conceptualize a wilderness experience. Diverging from etic approaches to wilderness visitor experience research, the research presented in this paper applied an emic approach to identify wilderness experience attributes. Specifically, qualitative data from 173 on-site...

  2. INEEL Subregional Conceptual Model Report; Volume 1 - Summary of Existing Knowledge of Natural and Anthropogenic Influences Governing Subsurface Contaminant Transport in the INEEL Subregion of the Eastern Snake River Plain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wichlacz, Paul Louis; Orr, Brennan

    2002-08-01

    The National Research Council has defined a conceptual model as ''an evolving hypothesis identifying the important features, processes, and events controlling fluid flow and contaminant transport of consequence at a specific field site in the context of a recognized problem''. Presently, several subregional conceptual models are under development at the Idaho National Engineering and Environmental Laboratory (INEEL). Additionally, facility-specific conceptual models have been described as part of INEEL environmental restoration activities. Compilation of these models is required to develop a comprehensive conceptual model that can be used to strategically plan for future groundwater research activities at the INEEL. Conceptual modelsmore » of groundwater flow and contaminant transport at the INEEL include the description of the geologic framework, matrix hydraulic properties, and inflows and outflows. They also include definitions of the contaminant source term and contaminant transport mechanisms. The geologic framework of the INEEL subregion is described by the geometry of the system, stratigraphic units within the system, and structural features that affect groundwater flow and contaminant transport. These elements define geohydrologic units that make up the Snake River Plain Aquifer (SRPA). The United States Geological Survey (USGS) conceptual model encompasses approximately 1,920 mi2 of the eastern Snake River Plain. The Waste Area Group (WAG)-10 model includes the USGS area and additional areas to the northeast and southeast. Both conceptual models are bounded to the northwest by the Pioneer Mountains, Lost River Range, and Lemhi Mountains. They are bounded to the southeast by groundwater flow paths determined from aquifer water-level contours. The upgradient extent of the USGS model is a water-level contour that includes the northeastern boundary of the INEEL. The WAG-10 model includes more of the Mud Lake area to utilize previous estimates of underflow

  3. A Conceptual/Cross-cultural Model for Teaching Anthropology in the Elementary School.

    ERIC Educational Resources Information Center

    Dynneson, Thomas L.

    A conceptual/cross-cultural model, developed to help elementary teachers cope with the problems of initiating cultural, ethnic, or anthropology studies, is presented in five sections. (1) A brief description of the structure and methodology of anthropology defines in outline form the fields of cultural and social anthropology, physical…

  4. A Conceptual Model and Assessment Template for Capacity Evaluation in Adult Guardianship

    ERIC Educational Resources Information Center

    Moye, Jennifer; Butz, Steven W.; Marson, Daniel C.; Wood, Erica

    2007-01-01

    Purpose: We develop a conceptual model and associated assessment template that is usable across state jurisdictions for evaluating the independent-living capacity of older adults in guardianship proceedings. Design and Methods: We used an iterative process in which legal provisions for guardianship and prevailing clinical practices for capacity…

  5. Groundwater modelling in decision support: reflections on a unified conceptual framework

    NASA Astrophysics Data System (ADS)

    Doherty, John; Simmons, Craig T.

    2013-11-01

    Groundwater models are commonly used as basis for environmental decision-making. There has been discussion and debate in recent times regarding the issue of model simplicity and complexity. This paper contributes to this ongoing discourse. The selection of an appropriate level of model structural and parameterization complexity is not a simple matter. Although the metrics on which such selection should be based are simple, there are many competing, and often unquantifiable, considerations which must be taken into account as these metrics are applied. A unified conceptual framework is introduced and described which is intended to underpin groundwater modelling in decision support with a direct focus on matters regarding model simplicity and complexity.

  6. A New Model to Facilitate Individualized Case Conceptualization and Treatment of Social Phobia: An Examination and Reaction to Moscovitch's Model

    ERIC Educational Resources Information Center

    Heimberg, Richard G.

    2009-01-01

    Moscovitch's (2009) model of social phobia is put forth as an integration and extension of previous cognitive-behavioral models. The author asserts that his approach overcomes a number of shortcomings of previous models and will serve to better guide case conceptualization, treatment planning, and intervention implementation for clients with…

  7. A three-dimensional conceptual model of the water quality distribution in the Albuquerque Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, D.

    1995-12-31

    It is possible to construct a conceptual model of the Albuquerque Basin`s geochemical characteristics and water quality distribution based on (1) the Hawley and Haase hydrogeological model, (2) water analyses from City of Albuquerque water wells, and (3) sound geological and chemical principles. Previous studies have characterized the water quality and geochemistry of the Albuquerque Basin from a two-dimensional perspective; however, to date, there has been no examination of the variation of water quality with depth within the Albuquerque Basin. The primary focus of this paper is to describe a first attempt at developing a conceptual understanding of the three-dimensionalmore » water quality distribution of the Albuquerque Basin based on the above three building blocks.« less

  8. Conceptual model of knowledge base system

    NASA Astrophysics Data System (ADS)

    Naykhanova, L. V.; Naykhanova, I. V.

    2018-05-01

    In the article, the conceptual model of the knowledge based system by the type of the production system is provided. The production system is intended for automation of problems, which solution is rigidly conditioned by the legislation. A core component of the system is a knowledge base. The knowledge base consists of a facts set, a rules set, the cognitive map and ontology. The cognitive map is developed for implementation of a control strategy, ontology - the explanation mechanism. Knowledge representation about recognition of a situation in the form of rules allows describing knowledge of the pension legislation. This approach provides the flexibility, originality and scalability of the system. In the case of changing legislation, it is necessary to change the rules set. This means that the change of the legislation would not be a big problem. The main advantage of the system is that there is an opportunity to be adapted easily to changes of the legislation.

  9. Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holt, R.M.

    1997-08-01

    The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, becausemore » the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.« less

  10. Understanding Co-Development of Conceptual and Epistemic Understanding through Modeling Practices with Mobile Internet

    ERIC Educational Resources Information Center

    Ryu, Suna; Han, Yuhwha; Paik, Seoung-Hey

    2015-01-01

    The present study explores how engaging in modeling practice, along with argumentation, leverages students' epistemic and conceptual understanding in an afterschool science/math class of 16 tenth graders. The study also explores how students used mobile Internet phones (smart phones) productively to support modeling practices. As the modeling…

  11. A conceptual model for determining career choice of CHROME alumna based on farmer's conceptual models

    NASA Astrophysics Data System (ADS)

    Moore, Lisa Simmons

    This qualitative program evaluation examines the career decision-making processes and career choices of nine, African American women who participated in the Cooperating Hampton Roads Organization for Minorities in Engineering (CHROME) and who graduated from urban, rural or suburban high schools in the year 2000. The CHROME program is a nonprofit, pre-college intervention program that encourages underrepresented minority and female students to enter science, technically related, engineering, and math (STEM) career fields. The study describes career choices and decisions made by each participant over a five-year period since high school graduation. Data was collected through an Annual Report, Post High School Questionnaires, Environmental Support Questionnaires, Career Choice Questionnaires, Senior Reports, and standardized open-ended interviews. Data was analyzed using a model based on Helen C. Farmer's Conceptual Models, John Ogbu's Caste Theory and Feminist Theory. The CHROME program, based on its stated goals and tenets, was also analyzed against study findings. Findings indicated that participants received very low levels of support from counselors and teachers to pursue STEM careers and high levels of support from parents and family, the CHROME program and financial backing. Findings of this study also indicated that the majority of CHROME alumna persisted in STEM careers. The most successful participants, in terms of undergraduate degree completion and occupational prestige, were the African American women who remained single, experienced no critical incidents, came from a middle class to upper middle class socioeconomic background, and did not have children.

  12. Long-Term Conceptual Retrieval by College Biology Majors Following Model-Based Instruction

    ERIC Educational Resources Information Center

    Dauer, Joseph T.; Long, Tammy M.

    2015-01-01

    One of the goals of college-level introductory biology is to establish a foundation of knowledge and skills that can be built upon throughout a biology curriculum. In a reformed introductory biology course, we used iterative model construction as a pedagogical tool to promote students' understanding about conceptual connections, particularly those…

  13. Evaluation of Alternative Conceptual Models Using Interdisciplinary Information: An Application in Shallow Groundwater Recharge and Discharge

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Bajcsy, P.; Valocchi, A. J.; Kim, C.; Wang, J.

    2007-12-01

    Natural systems are complex, thus extensive data are needed for their characterization. However, data acquisition is expensive; consequently we develop models using sparse, uncertain information. When all uncertainties in the system are considered, the number of alternative conceptual models is large. Traditionally, the development of a conceptual model has relied on subjective professional judgment. Good judgment is based on experience in coordinating and understanding auxiliary information which is correlated to the model but difficult to be quantified into the mathematical model. For example, groundwater recharge and discharge (R&D) processes are known to relate to multiple information sources such as soil type, river and lake location, irrigation patterns and land use. Although hydrologists have been trying to understand and model the interaction between each of these information sources and R&D processes, it is extremely difficult to quantify their correlations using a universal approach due to the complexity of the processes, the spatiotemporal distribution and uncertainty. There is currently no single method capable of estimating R&D rates and patterns for all practical applications. Chamberlin (1890) recommended use of "multiple working hypotheses" (alternative conceptual models) for rapid advancement in understanding of applied and theoretical problems. Therefore, cross analyzing R&D rates and patterns from various estimation methods and related field information will likely be superior to using only a single estimation method. We have developed the Pattern Recognition Utility (PRU), to help GIS users recognize spatial patterns from noisy 2D image. This GIS plug-in utility has been applied to help hydrogeologists establish alternative R&D conceptual models in a more efficient way than conventional methods. The PRU uses numerical methods and image processing algorithms to estimate and visualize shallow R&D patterns and rates. It can provide a fast initial

  14. Development of a Conceptual Model for Smoking Cessation: Physical Activity, Neurocognition, and Executive Functioning.

    PubMed

    Loprinzi, Paul D; Herod, Skyla M; Walker, Jerome F; Cardinal, Bradley J; Mahoney, Sara E; Kane, Christy

    2015-01-01

    Considerable research has shown adverse neurobiological effects of chronic alcohol use, including long-term and potentially permanent changes in the structure and function of the brain; however, much less is known about the neurobiological consequences of chronic smoking, as it has largely been ignored until recently. In this article, we present a conceptual model proposing the effects of smoking on neurocognition and the role that physical activity may play in this relationship as well as its role in smoking cessation. Pertinent published peer-reviewed articles deposited in PubMed delineating the pathways in the proposed model were reviewed. The proposed model, which is supported by emerging research, demonstrates a bidirectional relationship between smoking and executive functioning. In support of our conceptual model, physical activity may moderate this relationship and indirectly influence smoking behavior through physical activity-induced changes in executive functioning. Our model may have implications for aiding smoking cessation efforts through the promotion of physical activity as a mechanism for preventing smoking-induced deficits in neurocognition and executive function.

  15. Bayesian Assessment of the Uncertainties of Estimates of a Conceptual Rainfall-Runoff Model Parameters

    NASA Astrophysics Data System (ADS)

    Silva, F. E. O. E.; Naghettini, M. D. C.; Fernandes, W.

    2014-12-01

    This paper evaluated the uncertainties associated with the estimation of the parameters of a conceptual rainfall-runoff model, through the use of Bayesian inference techniques by Monte Carlo simulation. The Pará River sub-basin, located in the upper São Francisco river basin, in southeastern Brazil, was selected for developing the studies. In this paper, we used the Rio Grande conceptual hydrologic model (EHR/UFMG, 2001) and the Markov Chain Monte Carlo simulation method named DREAM (VRUGT, 2008a). Two probabilistic models for the residues were analyzed: (i) the classic [Normal likelihood - r ≈ N (0, σ²)]; and (ii) a generalized likelihood (SCHOUPS & VRUGT, 2010), in which it is assumed that the differences between observed and simulated flows are correlated, non-stationary, and distributed as a Skew Exponential Power density. The assumptions made for both models were checked to ensure that the estimation of uncertainties in the parameters was not biased. The results showed that the Bayesian approach proved to be adequate to the proposed objectives, enabling and reinforcing the importance of assessing the uncertainties associated with hydrological modeling.

  16. Statistical and Conceptual Model Testing Geomorphic Principles through Quantification in the Middle Rio Grande River, NM.

    NASA Astrophysics Data System (ADS)

    Posner, A. J.

    2017-12-01

    The Middle Rio Grande River (MRG) traverses New Mexico from Cochiti to Elephant Butte reservoirs. Since the 1100s, cultivating and inhabiting the valley of this alluvial river has required various river training works. The mid-20th century saw a concerted effort to tame the river through channelization, Jetty Jacks, and dam construction. A challenge for river managers is to better understand the interactions between a river training works, dam construction, and the geomorphic adjustments of a desert river driven by spring snowmelt and summer thunderstorms carrying water and large sediment inputs from upstream and ephemeral tributaries. Due to its importance to the region, a vast wealth of data exists for conditions along the MRG. The investigation presented herein builds upon previous efforts by combining hydraulic model results, digitized planforms, and stream gage records in various statistical and conceptual models in order to test our understanding of this complex system. Spatially continuous variables were clipped by a set of river cross section data that is collected at decadal intervals since the early 1960s, creating a spatially homogenous database upon which various statistical testing was implemented. Conceptual models relate forcing variables and response variables to estimate river planform changes. The developed database, represents a unique opportunity to quantify and test geomorphic conceptual models in the unique characteristics of the MRG. The results of this investigation provides a spatially distributed characterization of planform variable changes, permitting managers to predict planform at a much higher resolution than previously available, and a better understanding of the relationship between flow regime and planform changes such as changes to longitudinal slope, sinuosity, and width. Lastly, data analysis and model interpretation led to the development of a new conceptual model for the impact of ephemeral tributaries in alluvial rivers.

  17. Conceptualizing and Communicating River Restoration

    NASA Astrophysics Data System (ADS)

    Jacobosn, R. B.

    2007-12-01

    River restoration increasingly involves collaboration with stakeholders having diverse values and varying technical understanding. In cases where river restoration proceeds through collaborative processes, scientists are required to communicate complex understanding about riverine ecosystem processes to broad audiences. Of particular importance is communication of uncertainties in predictions of ecosystem responses to restoration actions, and how those uncertainties affect monitoring and evaluation strategies. I present a relatively simple conceptual model of how riverine ecosystems operate. The model, which has been used to conceptualize and communicate various river-restoration and management processes in the Lower Missouri River, emphasizes a) the interdependencies of driving regimes (for example, flow, sediment, and water quality), b) the filtering effect of management history, c) the typical hierarchical nature of information about how ecosystems operate, and d) how scientific understanding interacts with decision making. I provide an example of how the conceptual model has been used to illustrate the effects of extensive channel re-engineering of the Lower Missouri River which is intended to mitigate the effects of channelization and flow regulation on aquatic and flood-plain ecosystems. The conceptual model illustrates the logic for prioritizing investments in monitoring and evaluation, interactions among ecosystem components, tradeoffs between ecological and social-commercial benefits, and the feedback loop necessary for successful adaptive management.

  18. Interprofessional partnerships in chronic illness care: a conceptual model for measuring partnership effectiveness

    PubMed Central

    Butt, Gail; Markle-Reid, Maureen; Browne, Gina

    2008-01-01

    Introduction Interprofessional health and social service partnerships (IHSSP) are internationally acknowledged as integral for comprehensive chronic illness care. However, the evidence-base for partnership effectiveness is lacking. This paper aims to clarify partnership measurement issues, conceptualize IHSSP at the front-line staff level, and identify tools valid for group process measurement. Theory and methods A systematic literature review utilizing three interrelated searches was conducted. Thematic analysis techniques were supported by NVivo 7 software. Complexity theory was used to guide the analysis, ground the new conceptualization and validate the selected measures. Other properties of the measures were critiqued using established criteria. Results There is a need for a convergent view of what constitutes a partnership and its measurement. The salient attributes of IHSSP and their interorganizational context were described and grounded within complexity theory. Two measures were selected and validated for measurement of proximal group outcomes. Conclusion This paper depicts a novel complexity theory-based conceptual model for IHSSP of front-line staff who provide chronic illness care. The conceptualization provides the underpinnings for a comprehensive evaluative framework for partnerships. Two partnership process measurement tools, the PSAT and TCI are valid for IHSSP process measurement with consideration of their strengths and limitations. PMID:18493591

  19. Final ecosystem goods and services enhance societal relevance of contaminated-site remediation

    EPA Science Inventory

    Background/Question/Methods Exposure to environmental stressors can adversely affect both human health and ecological receptors and impacts on the latter influence the community's overall vulnerability. Risk assessment guidance promotes conceptual site models to integrate multip...

  20. The Behavioral Intervention Technology Model: An Integrated Conceptual and Technological Framework for eHealth and mHealth Interventions

    PubMed Central

    Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-01-01

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or “elements” (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user’s environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy

  1. The behavioral intervention technology model: an integrated conceptual and technological framework for eHealth and mHealth interventions.

    PubMed

    Mohr, David C; Schueller, Stephen M; Montague, Enid; Burns, Michelle Nicole; Rashidi, Parisa

    2014-06-05

    A growing number of investigators have commented on the lack of models to inform the design of behavioral intervention technologies (BITs). BITs, which include a subset of mHealth and eHealth interventions, employ a broad range of technologies, such as mobile phones, the Web, and sensors, to support users in changing behaviors and cognitions related to health, mental health, and wellness. We propose a model that conceptually defines BITs, from the clinical aim to the technological delivery framework. The BIT model defines both the conceptual and technological architecture of a BIT. Conceptually, a BIT model should answer the questions why, what, how (conceptual and technical), and when. While BITs generally have a larger treatment goal, such goals generally consist of smaller intervention aims (the "why") such as promotion or reduction of specific behaviors, and behavior change strategies (the conceptual "how"), such as education, goal setting, and monitoring. Behavior change strategies are instantiated with specific intervention components or "elements" (the "what"). The characteristics of intervention elements may be further defined or modified (the technical "how") to meet the needs, capabilities, and preferences of a user. Finally, many BITs require specification of a workflow that defines when an intervention component will be delivered. The BIT model includes a technological framework (BIT-Tech) that can integrate and implement the intervention elements, characteristics, and workflow to deliver the entire BIT to users over time. This implementation may be either predefined or include adaptive systems that can tailor the intervention based on data from the user and the user's environment. The BIT model provides a step towards formalizing the translation of developer aims into intervention components, larger treatments, and methods of delivery in a manner that supports research and communication between investigators on how to design, develop, and deploy BITs.

  2. Using NEON Data to Test and Refine Conceptual and Numerical Models of Soil Biogeochemical and Microbial Dynamics

    NASA Astrophysics Data System (ADS)

    Weintraub, S. R.; Stanish, L.; Ayers, E.

    2017-12-01

    Recent conceptual and numerical models have proposed new mechanisms that underpin key biogeochemical phenomena, including soil organic matter storage and ecosystem response to nitrogen deposition. These models seek to explicitly capture the ecological links among biota, especially microbes, and their physical and chemical environment to represent belowground pools and fluxes and how they respond to perturbation. While these models put forth exciting new concepts, their broad predictive abilities are unclear as some have been developed and tested against only small or regional datasets. The National Ecological Observatory Network (NEON) presents new opportunities to test and validate these models with multi-site data that span wide climatic, edaphic, and ecological gradients. NEON is measuring surface soil biogeochemical pools and fluxes along with diversity, abundance, and functional potential of soil microbiota at 47 sites distributed across the United States. This includes co-located measurements of soil carbon and nitrogen concentrations and stable isotopes, net nitrogen mineralization and nitrification rates, soil moisture, pH, microbial biomass, and community composition via 16S and ITS rRNA sequencing and shotgun metagenomic analyses. Early NEON data demonstrates that these wide edaphic and climatic gradients are related to changes in microbial community structure and functional potential, as well as element pools and process rates. Going forward, NEON's suite of standardized soil data has the potential to advance our understanding of soil communities and processes by allowing us to test the predictions of new soil biogeochemical frameworks and models. Here, we highlight several recently developed models that are ripe for this kind of data validation, and discuss key insights that may result. Further, we explore synergies with other networks, such as (i)LTER and (i)CZO, which may increase our ability to advance the frontiers of soil biogeochemical modeling.

  3. Comparisons with observational and experimental manipulation data imply needed conceptual changes to ESM land models

    NASA Astrophysics Data System (ADS)

    Riley, W. J.; Zhu, Q.; Tang, J.

    2016-12-01

    The land models integrated in Earth System Models (ESMs) are critical components necessary to predict soil carbon dynamics and carbon-climate interactions under a changing climate. Yet, these models have been shown to have poor predictive power when compared with observations and ignore many processes known to the observational communities to influence above and belowground carbon dynamics. Here I will report work to tightly couple observations and perturbation experiment results with development of an ESM land model (ALM), focusing on nutrient constraints of the terrestrial C cycle. Using high-frequency flux tower observations and short-term nitrogen and phosphorus perturbation experiments, we show that conceptualizing plant and soil microbe interactions as a multi-substrate, multi-competitor kinetic network allows for accurate prediction of nutrient acquisition. Next, using multiple-year FACE and fertilization response observations at many forest sites, we show that capturing the observed responses requires representation of dynamic allocation to respond to the resulting stresses. Integrating the mechanisms implied by these observations into ALM leads to much lower observational bias and to very different predictions of long-term soil and aboveground C stocks and dynamics, and therefore C-climate feedbacks. I describe how these types of observational constraints are being integrated into the open-source International Land Model Benchmarking (ILAMB) package, and end with the argument that consolidating as many observations of all sorts for easy use by modelers is an important goal to improve C-climate feedback predictions.

  4. Reducing structural uncertainty in conceptual hydrological modeling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2014-10-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modeling of a meso-scale Andean catchment (1515 km2) over a 30 year period (1982-2011). The modeling process was decomposed into six model-building decisions related to the following aspects of the system behavior: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modeling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain 8 model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modeling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  5. Reducing structural uncertainty in conceptual hydrological modelling in the semi-arid Andes

    NASA Astrophysics Data System (ADS)

    Hublart, P.; Ruelland, D.; Dezetter, A.; Jourde, H.

    2015-05-01

    The use of lumped, conceptual models in hydrological impact studies requires placing more emphasis on the uncertainty arising from deficiencies and/or ambiguities in the model structure. This study provides an opportunity to combine a multiple-hypothesis framework with a multi-criteria assessment scheme to reduce structural uncertainty in the conceptual modelling of a mesoscale Andean catchment (1515 km2) over a 30-year period (1982-2011). The modelling process was decomposed into six model-building decisions related to the following aspects of the system behaviour: snow accumulation and melt, runoff generation, redistribution and delay of water fluxes, and natural storage effects. Each of these decisions was provided with a set of alternative modelling options, resulting in a total of 72 competing model structures. These structures were calibrated using the concept of Pareto optimality with three criteria pertaining to streamflow simulations and one to the seasonal dynamics of snow processes. The results were analyzed in the four-dimensional (4-D) space of performance measures using a fuzzy c-means clustering technique and a differential split sample test, leading to identify 14 equally acceptable model hypotheses. A filtering approach was then applied to these best-performing structures in order to minimize the overall uncertainty envelope while maximizing the number of enclosed observations. This led to retain eight model hypotheses as a representation of the minimum structural uncertainty that could be obtained with this modelling framework. Future work to better consider model predictive uncertainty should include a proper assessment of parameter equifinality and data errors, as well as the testing of new or refined hypotheses to allow for the use of additional auxiliary observations.

  6. CONCEPTUAL BASIS FOR MULTI-ROUTE INTAKE DOSE MODELING USING AN ENERGY EXPENDITURE APPROACH

    EPA Science Inventory

    This paper provides the conceptual basis for a modeling logic that is currently being developed in the National Exposure Research Laboratory (NERL) of the U.S. Environmental Protection Agency ( EPA) for use in intake dose assessments involving substances that can enter the body...

  7. A Conceptual Modeling Approach for OLAP Personalization

    NASA Astrophysics Data System (ADS)

    Garrigós, Irene; Pardillo, Jesús; Mazón, Jose-Norberto; Trujillo, Juan

    Data warehouses rely on multidimensional models in order to provide decision makers with appropriate structures to intuitively analyze data with OLAP technologies. However, data warehouses may be potentially large and multidimensional structures become increasingly complex to be understood at a glance. Even if a departmental data warehouse (also known as data mart) is used, these structures would be also too complex. As a consequence, acquiring the required information is more costly than expected and decision makers using OLAP tools may get frustrated. In this context, current approaches for data warehouse design are focused on deriving a unique OLAP schema for all analysts from their previously stated information requirements, which is not enough to lighten the complexity of the decision making process. To overcome this drawback, we argue for personalizing multidimensional models for OLAP technologies according to the continuously changing user characteristics, context, requirements and behaviour. In this paper, we present a novel approach to personalizing OLAP systems at the conceptual level based on the underlying multidimensional model of the data warehouse, a user model and a set of personalization rules. The great advantage of our approach is that a personalized OLAP schema is provided for each decision maker contributing to better satisfy their specific analysis needs. Finally, we show the applicability of our approach through a sample scenario based on our CASE tool for data warehouse development.

  8. Conceptual framework of Tenaga Nasional Berhad (TNB) cost of service (COS) model

    NASA Astrophysics Data System (ADS)

    Zainudin, WNRA; Ishak, WWM; Sulaiman, NA

    2017-09-01

    One of Malaysia Electricity Supply Industry (MESI) objectives is to ensure Tenaga Nasional Berhad (TNB) economic viability based on a fair economic electricity pricing. In meeting such objective, a framework that investigates the effect of cost of service (COS) on revenue is in great need. This paper attempts to present a conceptual framework that illustrate the distribution of the COS among TNB’s various cost centres which are subsequently redistributed in varying quantities among all of its customer categories. A deep understanding on the concepts will ensure optimal allocation of COS elements between different sub activities of energy production processes can be achieved. However, this optimal allocation needs to be achieved with respect to the imposed TNB revenue constraint. Therefore, the methodology used for this conceptual approach is being modelled into four steps. Firstly, TNB revenue requirement is being examined to ensure the conceptual framework addressed the requirement properly. Secondly, the revenue requirement is unbundled between three major cost centres or business units consist of generation, transmission and distribution and the cost is classified based on demand, energy and customers related charges. Finally, the classified costs are being allocated to different customer categories i.e. Household, Commercial, and Industrial. In summary, this paper proposed a conceptual framework on the cost of specific services that TNB currently charging its customers and served as potential input into the process of developing revised electricity tariff rates. On that purpose, the finding of this COS study finds cost to serve customer varies with the voltage level that customer connected to, the timing and the magnitude of customer demand on the system. This COS conceptual framework could potentially be integrated into a particular tariff structure and serve as a useful tool for TNB.

  9. The importance of conceptual models in the reactive transport simulation of oxygen ingress in sparsely fractured crystalline rock.

    PubMed

    Macquarrie, K T B; Mayer, K U; Jin, B; Spiessl, S M

    2010-03-01

    Redox evolution in sparsely fractured crystalline rocks is a key, and largely unresolved, issue when assessing the geochemical suitability of deep geological repositories for nuclear waste. Redox zonation created by the influx of oxygenated waters has previously been simulated using reactive transport models that have incorporated a variety of processes, resulting in predictions for the depth of oxygen penetration that may vary greatly. An assessment and direct comparison of the various underlying conceptual models are therefore needed. In this work a reactive transport model that considers multiple processes in an integrated manner is used to investigate the ingress of oxygen for both single fracture and fracture zone scenarios. It is shown that the depth of dissolved oxygen migration is greatly influenced by the a priori assumptions that are made in the conceptual models. For example, the ability of oxygen to access and react with minerals in the rock matrix may be of paramount importance for single fracture conceptual models. For fracture zone systems, the abundance and reactivity of minerals within the fractures and thin matrix slabs between the fractures appear to provide key controls on O(2) attenuation. The findings point to the need for improved understanding of the coupling between the key transport-reaction feedbacks to determine which conceptual models are most suitable and to provide guidance for which parameters should be targeted in field and laboratory investigations. Copyright 2009 Elsevier B.V. All rights reserved.

  10. Adoption of the Hash algorithm in a conceptual model for the civil registry of Ecuador

    NASA Astrophysics Data System (ADS)

    Toapanta, Moisés; Mafla, Enrique; Orizaga, Antonio

    2018-04-01

    The Hash security algorithm was analyzed in order to mitigate information security in a distributed architecture. The objective of this research is to develop a prototype for the Adoption of the algorithm Hash in a conceptual model for the Civil Registry of Ecuador. The deductive method was used in order to analyze the published articles that have a direct relation with the research project "Algorithms and Security Protocols for the Civil Registry of Ecuador" and articles related to the Hash security algorithm. It resulted from this research: That the SHA-1 security algorithm is appropriate for use in Ecuador's civil registry; we adopted the SHA-1 algorithm used in the flowchart technique and finally we obtained the adoption of the hash algorithm in a conceptual model. It is concluded that from the comparison of the DM5 and SHA-1 algorithm, it is suggested that in the case of an implementation, the SHA-1 algorithm is taken due to the amount of information and data available from the Civil Registry of Ecuador; It is determined that the SHA-1 algorithm that was defined using the flowchart technique can be modified according to the requirements of each institution; the model for adopting the hash algorithm in a conceptual model is a prototype that can be modified according to all the actors that make up each organization.

  11. A Conceptual Model of Management Learning in Micro Businesses: Implications for Research and Policy

    ERIC Educational Resources Information Center

    Devins, David; Gold, Jeff; Johnson, Steve; Holden, Rick

    2005-01-01

    Purpose: This article proposes the development of a conceptual model to help understand the nature of management learning in the micro business context and to inform research and policy discourse. Design/Methodology/Approach: The model is developed on the basis of a literature search and review of academic and grey literature. Findings: The…

  12. Testing a Conceptual Change Model Framework for Visual Data

    ERIC Educational Resources Information Center

    Finson, Kevin D.; Pedersen, Jon E.

    2015-01-01

    An emergent data analysis technique was employed to test the veracity of a conceptual framework constructed around visual data use and instruction in science classrooms. The framework incorporated all five key components Vosniadou (2007a, 2007b) described as existing in a learner's schema: framework theory, presuppositions, conceptual domains,…

  13. A conceptual model for the growth, persistence, and blooming behavior of the benthic mat-forming diatom Didymosphenia geminata (Invited)

    NASA Astrophysics Data System (ADS)

    Cullis, J. D.; Gillis, C.; Bothwell, M.; Kilroy, C.; Packman, A. I.; Hassan, M. A.

    2010-12-01

    The nuisance diatom Didymosphenia geminata (didymo) presents an ecological paradox. How can this benthic algae produce such large amounts of biomass in cold, fast flowing, low nutrient streams? The aim of this paper is to present a conceptual model for the growth, persistence, and blooming behavior of this benthic mat-forming diatom that may help to explain this paradox. The conceptual model highlights the importance of distinguishing between mat thickness and cell growth. It presents evidence gathered from a range of existing studies around the world to support the proposed relationship between growth and light, nutrients and temperature as well as the importance of flood events and bed disturbance in mat removal. It is anticipated that this conceptual model will not only help in identifying the key controlling variables and set a framework for future studies but also support the future management of this nuisance algae. Summary of the conceptual model for didymo growth showing the proposed relationships for the growth of cells and mats with nutrients, radiation and water temperature and the dependence of removal on bed shear stress and the potential for physical bed disturbance.

  14. Conceptualizing gambling disorder with the process model of emotion regulation.

    PubMed

    Rogier, Guyonne; Velotti, Patrizia

    2018-06-25

    Introduction Nowadays, gambling disorder (GD) is a worldwide health issue and there is a growing need to both improve our understanding of this disorder and to tailor specific interventions for its treatment. Moreover, theoretical models and preliminary empirical results suggest that difficulty in regulating emotional states might be involved in GD. However, literature describing clinical and theoretical aspects of emotional dysregulation among pathological gamblers (PGs) shows a lack of systematic description. Objectives We aimed to provide, within an exhaustive theoretical framework of emotion regulation (ER) processing, empirical evidence supporting a conceptual model of GD as an ER affliction. Methods We commented on empirical evidence on the relationship between ER and GD in the light of two main conceptual models of emotion (dys)regulation. Results The results suggest there are actual deficits of ER processing among PGs, manifesting themselves through different ways and in different steps of the ER timeline. In addition, dysregulation of positive emotions may play a central role in GD. From a clinical point of view, we pointed out that deficits in ER might be multiple in nature and an assessment for GD should be accurate to identify the specific components accounting for the development and maintenance of the disorder. It should also orientate the clinician in selecting therapeutic objectives. Conclusions The nature of emotional states that are difficult to regulate might account for the GD severity and indicate the subtype of PGs the patient belongs to. Treatment programs should be tailored on the specificity of PGs.

  15. Evaluating the Classical Versus an Emerging Conceptual Model of Peatland Methane Dynamics

    Treesearch

    Wendy H. Yang; Gavin McNicol; Yit Arn Teh; Katerina Estera-Molina; Tana E. Wood; Whendee L. Silver

    2017-01-01

    Methane (CH4) is a potent greenhouse gas that is both produced and consumed in soils by microbially mediated processes sensitive to soil redox. We evaluated the classical conceptual model of peatland CH4 dynamics—in which the water table position determines the vertical distribution of methanogenesis and methanotrophy—...

  16. Conceptual model for quantifying pre-smolt production from flow-dependent physical habitat and water temperature

    USGS Publications Warehouse

    Williamson, S. C.; Bartholow, J. M.; Stalnaker, C. B.

    1993-01-01

    A conceptual model has been developed to test river regulation concepts by linking physical habitat and water temperature with salmonid population and production in cold water streams. Work is in progress to examine numerous questions as part of flow evaluation and habitat restoration programmes in the Trinity River of California and elsewhere. For instance, how much change in pre-smolt chinook salmon (Oncorhynchus tshawytscha) production in the Trinity River would result from a different annual instream allocation (i.e. up or down from 271 × 106 m3released in the late 1980s) and how much change in pre-smolt production would result from a different release pattern (i.e. different from the 8.5 m3 s−1 year-round release). The conceptual model is being used to: design, integrate and improve young-of-year population data collection efforts; test hypotheses that physical habitat significantly influences movement, growth and mortality of salmonid fishes; and analyse the relative severity of limiting factors during each life stage. The conceptual model, in conjunction with previously developed tools in the Instream Flow Incremental Methodology, should provide the means to more effectively manage a fishery resource below a regulated reservoir and to provide positive feedback to planning of annual reservoir operations.

  17. A conceptual model of psychosocial risk and protective factors for excessive gestational weight gain.

    PubMed

    Hill, Briony; Skouteris, Helen; McCabe, Marita; Milgrom, Jeannette; Kent, Bridie; Herring, Sharon J; Hartley-Clark, Linda; Gale, Janette

    2013-02-01

    nearly half of all women exceed the guideline recommended pregnancy weight gain for their Body Mass Index (BMI) category. Excessive gestational weight gain (GWG) is correlated positively with postpartum weight retention and is a predictor of long-term, higher BMI in mothers and their children. Psychosocial factors are generally not targeted in GWG behaviour change interventions, however, multifactorial, conceptual models that include these factors, may be useful in determining the pathways that contribute to excessive GWG. We propose a conceptual model, underpinned by health behaviour change theory, which outlines the psychosocial determinants of GWG, including the role of motivation and self-efficacy towards healthy behaviours. This model is based on a review of the existing literature in this area. there is increasing evidence to show that psychosocial factors, such as increased depressive symptoms, anxiety, lower self-esteem and body image dissatisfaction, are associated with excessive GWG. What is less known is how these factors might lead to excessive GWG. Our conceptual model proposes a pathway of factors that affect GWG, and may be useful for understanding the mechanisms by which interventions impact on weight management during pregnancy. This involves tracking the relationships among maternal psychosocial factors, including body image concerns, motivation to adopt healthy lifestyle behaviours, confidence in adopting healthy lifestyle behaviours for the purposes of weight management, and actual behaviour changes. health-care providers may improve weight gain outcomes in pregnancy if they assess and address psychosocial factors in pregnancy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Can Cultural Competency Reduce Racial And Ethnic Health Disparities? A Review And Conceptual Model

    PubMed Central

    Brach, Cindy; Fraserirector, Irene

    2016-01-01

    This article develops a conceptual model of cultural competency’s potential to reduce racial and ethnic health disparities, using the cultural competency and disparities literature to lay the foundation for the model and inform assessments of its validity. The authors identify nine major cultural competency techniques: interpreter services, recruitment and retention policies, training, coordinating with traditional healers, use of community health workers, culturally competent health promotion, including family/community members, immersion into another culture, and administrative and organizational accommodations. The conceptual model shows how these techniques could theoretically improve the ability of health systems and their clinicians to deliver appropriate services to diverse populations, thereby improving outcomes and reducing disparities. The authors conclude that while there is substantial research evidence to suggest that cultural competency should in fact work, health systems have little evidence about which cultural competency techniques are effective and less evidence on when and how to implement them properly. PMID:11092163

  19. Parenting around child snacking: development of a theoretically-guided, empirically informed conceptual model.

    PubMed

    Davison, Kirsten K; Blake, Christine E; Blaine, Rachel E; Younginer, Nicholas A; Orloski, Alexandria; Hamtil, Heather A; Ganter, Claudia; Bruton, Yasmeen P; Vaughn, Amber E; Fisher, Jennifer O

    2015-09-17

    Snacking contributes to excessive energy intakes in children. Yet factors shaping child snacking are virtually unstudied. This study examines food parenting practices specific to child snacking among low-income caregivers. Semi-structured interviews were conducted in English or Spanish with 60 low-income caregivers of preschool-aged children (18 non-Hispanic white, 22 African American/Black, 20 Hispanic; 92% mothers). A structured interview guide was used to solicit caregivers' definitions of snacking and strategies they use to decide what, when and how much snack their child eats. Interviews were audio-recorded, transcribed verbatim and analyzed using an iterative theory-based and grounded approach. A conceptual model of food parenting specific to child snacking was developed to summarize the findings and inform future research. Caregivers' descriptions of food parenting practices specific to child snacking were consistent with previous models of food parenting developed based on expert opinion [1, 2]. A few noteworthy differences however emerged. More than half of participants mentioned permissive feeding approaches (e.g., my child is the boss when it comes to snacks). As a result, permissive feeding was included as a higher order feeding dimension in the resulting model. In addition, a number of novel feeding approaches specific to child snacking emerged including child-centered provision of snacks (i.e., responding to a child's hunger cues when making decisions about snacks), parent unilateral decision making (i.e., making decisions about a child's snacks without any input from the child), and excessive monitoring of snacks (i.e., monitoring all snacks provided to and consumed by the child). The resulting conceptual model includes four higher order feeding dimensions including autonomy support, coercive control, structure and permissiveness and 20 sub-dimensions. This study formulates a language around food parenting practices specific to child snacking

  20. Applying Model Analysis to a Resource-Based Analysis of the Force and Motion Conceptual Evaluation

    ERIC Educational Resources Information Center

    Smith, Trevor I.; Wittmann, Michael C.; Carter, Tom

    2014-01-01

    Previously, we analyzed the Force and Motion Conceptual Evaluation in terms of a resources-based model that allows for clustering of questions so as to provide useful information on how students correctly or incorrectly reason about physics. In this paper, we apply model analysis to show that the associated model plots provide more information…

  1. Benefits of using a Social-Ecological Systems Approach to Conceptualize and Model Wetlands Restoration

    EPA Science Inventory

    Using a social-ecological systems (SES) perspective to examine wetland restoration helps decision-makers recognize interdependencies and relations between ecological and social components of coupled systems. Conceptual models are an invaluable tool to capture, visualize, and orga...

  2. Marital Aggression and Child Peer Competence: A Comparison of Three Conceptual Models

    PubMed Central

    Finger, Brent; Eiden, Rina D.; Edwards, Ellen P.; Leonard, Kenneth E.; Kachadourian, Lorig

    2013-01-01

    This study examined longitudinal data linking marital aggression with child peer competence in kindergarten. The study compared three conceptual models for understanding the relation between marital aggression and child peer competence. Model 1 examines the direct effects of marital aggression, parental alcoholism, and parenting on child peer competence, model 2 posits that this relation is mediated by child social problem solving abilities (social information processing theory), while model 3 proposes that the relation is mediated by parental warmth/sensitivity (spillover theory). Structural Equation Modeling was most supportive of models 1 and 3 indicating that parenting behavior, but not social problem solving, partially mediates the relation between marital conflict and child peer competence. PMID:24009468

  3. Decision Support System For Management Of Low-Level Radioactive Waste Disposal At The Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, G.; Yucel, V.; Desotell, L.

    2006-07-01

    The long-term safety of U.S. Department of Energy (DOE) low-level radioactive disposal facilities is assessed by conducting a performance assessment -- a systematic analysis that compares estimated risks to the public and the environment with performance objectives contained in DOE Manual 435.1-1, Radioactive Waste Management Manual. Before site operations, facilities design features such as final inventory, waste form characteristics, and closure cover design may be uncertain. Site operators need a modeling tool that can be used throughout the operational life of the disposal site to guide decisions regarding the acceptance of problematic waste streams, new disposal cell design, environmental monitoringmore » program design, and final site closure. In response to these needs the National Nuclear Security Administration Nevada Site Office (NNSA/NSO) has developed a decision support system for the Area 5 Radioactive Waste Management Site in Frenchman Flat on the Nevada Test Site. The core of the system is a probabilistic inventory and performance assessment model implemented in the GoldSim{sup R} simulation platform. The modeling platform supports multiple graphic capabilities that allow clear documentation of the model data sources, conceptual model, mathematical implementation, and results. The combined models have the capability to estimate disposal site inventory, contaminant concentrations in environmental media, and radiological doses to members of the public engaged in various activities at multiple locations. The model allows rapid assessment and documentation of the consequences of waste management decisions using the most current site characterization information, radionuclide inventory, and conceptual model. The model is routinely used to provide annual updates of site performance, evaluate the consequences of disposal of new waste streams, develop waste concentration limits, optimize the design of new disposal cells, and assess the adequacy of

  4. A conceptual model of physician work intensity: guidance for evaluating policies and practices to improve health care delivery.

    PubMed

    Horner, Ronnie D; Matthews, Gerald; Yi, Michael S

    2012-08-01

    Physician work intensity, although a major factor in determining the payment for medical services, may potentially affect patient health outcomes including quality of care and patient safety, and has implications for the redesign of medical practice to improve health care delivery. However, to date, there has been minimal research regarding the relationship between physician work intensity and either patient outcomes or the organization and management of medical practices. A theoretical model on physician work intensity will provide useful guidance to such inquiries. To describe an initial conceptual model to facilitate further investigations of physician work intensity. A conceptual model of physician work intensity is described using as its theoretical base human performance science relating to work intensity. For each of the theoretical components, we present relevant empirical evidence derived from a review of the current literature. The proposed model specifies that the level of work intensity experienced by a physician is a consequence of the physician performing the set of tasks (ie, demands) relating to a medical service. It is conceptualized that each medical service has an inherent level of intensity that is experienced by a physician as a function of factors relating to the physician, patient, and medical practice environment. The proposed conceptual model provides guidance to researchers as to the factors to consider in studies of how physician work intensity impacts patient health outcomes and how work intensity may be affected by proposed policies and approaches to health care delivery.

  5. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    PubMed

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Identification of the dominant hydrological process and appropriate model structure of a karst catchment through stepwise simplification of a complex conceptual model

    NASA Astrophysics Data System (ADS)

    Chang, Yong; Wu, Jichun; Jiang, Guanghui; Kang, Zhiqiang

    2017-05-01

    Conceptual models often suffer from the over-parameterization problem due to limited available data for the calibration. This leads to the problem of parameter nonuniqueness and equifinality, which may bring much uncertainty of the simulation result. How to find out the appropriate model structure supported by the available data to simulate the catchment is still a big challenge in the hydrological research. In this paper, we adopt a multi-model framework to identify the dominant hydrological process and appropriate model structure of a karst spring, located in Guilin city, China. For this catchment, the spring discharge is the only available data for the model calibration. This framework starts with a relative complex conceptual model according to the perception of the catchment and then this complex is simplified into several different models by gradually removing the model component. The multi-objective approach is used to compare the performance of these different models and the regional sensitivity analysis (RSA) is used to investigate the parameter identifiability. The results show this karst spring is mainly controlled by two different hydrological processes and one of the processes is threshold-driven which is consistent with the fieldwork investigation. However, the appropriate model structure to simulate the discharge of this spring is much simpler than the actual aquifer structure and hydrological processes understanding from the fieldwork investigation. A simple linear reservoir with two different outlets is enough to simulate this spring discharge. The detail runoff process in the catchment is not needed in the conceptual model to simulate the spring discharge. More complex model should need more other additional data to avoid serious deterioration of model predictions.

  7. Further Conceptualizing Ethnic and Racial Identity Research: The Social Identity Approach and Its Dynamic Model.

    PubMed

    Verkuyten, Maykel

    2016-11-01

    This article proposes a further conceptualization of ethnic and racial identity (ERI) as a fundamental topic in developmental research. Adding to important recent efforts to conceptually integrate and synthesize this field, it is argued that ERI research will be enhanced by more fully considering the implications of the social identity approach. These implications include (a) the conceptualization of social identity, (b) the importance of identity motives, (c) systematic ways for theorizing and examining the critical role of situational and societal contexts, and (d) a dynamic model of the relation between ERI and context. These implications have not been fully considered in the developmental literature but offer important possibilities for moving the field forward in new directions. © 2016 The Author. Child Development © 2016 Society for Research in Child Development, Inc.

  8. Remediation management of complex sites using an adaptive site management approach.

    PubMed

    Price, John; Spreng, Carl; Hawley, Elisabeth L; Deeb, Rula

    2017-12-15

    Complex sites require a disproportionate amount of resources for environmental remediation and long timeframes to achieve remediation objectives, due to their complex geologic conditions, hydrogeologic conditions, geochemical conditions, contaminant-related conditions, large scale of contamination, and/or non-technical challenges. A recent team of state and federal environmental regulators, federal agency representatives, industry experts, community stakeholders, and academia worked together as an Interstate Technology & Regulatory Council (ITRC) team to compile resources and create new guidance on the remediation management of complex sites. This article summarizes the ITRC team's recommended process for addressing complex sites through an adaptive site management approach. The team provided guidance for site managers and other stakeholders to evaluate site complexities and determine site remediation potential, i.e., whether an adaptive site management approach is warranted. Adaptive site management was described as a comprehensive, flexible approach to iteratively evaluate and adjust the remedial strategy in response to remedy performance. Key aspects of adaptive site management were described, including tools for revising and updating the conceptual site model (CSM), the importance of setting interim objectives to define short-term milestones on the journey to achieving site objectives, establishing a performance model and metrics to evaluate progress towards meeting interim objectives, and comparing actual with predicted progress during scheduled periodic evaluations, and establishing decision criteria for when and how to adapt/modify/revise the remedial strategy in response to remedy performance. Key findings will be published in an ITRC Technical and Regulatory guidance document in 2017 and free training webinars will be conducted. More information is available at www.itrc-web.org. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Refining and validating a conceptual model of Clinical Nurse Leader integrated care delivery.

    PubMed

    Bender, Miriam; Williams, Marjory; Su, Wei; Hites, Lisle

    2017-02-01

    To empirically validate a conceptual model of Clinical Nurse Leader integrated care delivery. There is limited evidence of frontline care delivery models that consistently achieve quality patient outcomes. Clinical Nurse Leader integrated care delivery is a promising nursing model with a growing record of success. However, theoretical clarity is necessary to generate causal evidence of effectiveness. Sequential mixed methods. A preliminary Clinical Nurse Leader practice model was refined and survey items developed to correspond with model domains, using focus groups and a Delphi process with a multi-professional expert panel. The survey was administered in 2015 to clinicians and administrators involved in Clinical Nurse Leader initiatives. Confirmatory factor analysis and structural equation modelling were used to validate the measurement and model structure. Final sample n = 518. The model incorporates 13 components organized into five conceptual domains: 'Readiness for Clinical Nurse Leader integrated care delivery'; 'Structuring Clinical Nurse Leader integrated care delivery'; 'Clinical Nurse Leader Practice: Continuous Clinical Leadership'; 'Outcomes of Clinical Nurse Leader integrated care delivery'; and 'Value'. Sample data had good fit with specified model and two-level measurement structure. All hypothesized pathways were significant, with strong coefficients suggesting good fit between theorized and observed path relationships. The validated model articulates an explanatory pathway of Clinical Nurse Leader integrated care delivery, including Clinical Nurse Leader practices that result in improved care dynamics and patient outcomes. The validated model provides a basis for testing in practice to generate evidence that can be deployed across the healthcare spectrum. © 2016 John Wiley & Sons Ltd.

  10. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education.

    PubMed

    Hervatis, Vasilis; Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-10-06

    Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators' decision making. A deductive case study approach was applied to develop the conceptual model. The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach.

  11. A Conceptual Analytics Model for an Outcome-Driven Quality Management Framework as Part of Professional Healthcare Education

    PubMed Central

    Loe, Alan; Barman, Linda; O'Donoghue, John; Zary, Nabil

    2015-01-01

    Background Preparing the future health care professional workforce in a changing world is a significant undertaking. Educators and other decision makers look to evidence-based knowledge to improve quality of education. Analytics, the use of data to generate insights and support decisions, have been applied successfully across numerous application domains. Health care professional education is one area where great potential is yet to be realized. Previous research of Academic and Learning analytics has mainly focused on technical issues. The focus of this study relates to its practical implementation in the setting of health care education. Objective The aim of this study is to create a conceptual model for a deeper understanding of the synthesizing process, and transforming data into information to support educators’ decision making. Methods A deductive case study approach was applied to develop the conceptual model. Results The analytics loop works both in theory and in practice. The conceptual model encompasses the underlying data, the quality indicators, and decision support for educators. Conclusions The model illustrates how a theory can be applied to a traditional data-driven analytics approach, and alongside the context- or need-driven analytics approach. PMID:27731840

  12. Rubber airplane: Constraint-based component-modeling for knowledge representation in computer-aided conceptual design

    NASA Technical Reports Server (NTRS)

    Kolb, Mark A.

    1990-01-01

    Viewgraphs on Rubber Airplane: Constraint-based Component-Modeling for Knowledge Representation in Computer Aided Conceptual Design are presented. Topics covered include: computer aided design; object oriented programming; airfoil design; surveillance aircraft; commercial aircraft; aircraft design; and launch vehicles.

  13. A picture is worth a thousand words: helping students visualize a conceptual model.

    PubMed

    Johnson, S E

    1989-01-01

    Communicating the functional applicability of a conceptual framework to nursing students can be a challenge of considerable magnitude. Nurse educators are convinced that nursing practice and process should stem from theory. However, when attempting to teach this, many educators have struggled with the expressions of confused, skeptical students. To provide a better understanding of a nursing model, the author uses a visual representation of the Neuman Systems Model variables. The student can then visualize application of the Model to nursing practice.

  14. Exploring the Postgraduate Research Climate and the Postgraduate Research Experience: A Conceptual Model

    ERIC Educational Resources Information Center

    Govender, K. K.

    2011-01-01

    The objective of this article is to develop a conceptual model aimed at improving the postgraduate research students' experience. Since postgraduate students "vote with their feet" an improved understanding of the postgraduate research service encounter may result in improving the quality of the encounter and so increasing throughput and…

  15. A Conceptual Three-Dimensional Model for Evaluating Community-Based Substance Abuse Prevention Programs.

    ERIC Educational Resources Information Center

    Albers, Eric C.; Santangelo, Linda K.; McKinlay, George; Cavote, Steve; Rock, Stephen L.; Evans, William

    2002-01-01

    Presents a three-dimensional model for conceptualizing existing prevention programs, defining and measuring effects of prevention programs, and making a connection between those programmatic effects, and the interests of the funder. This paper describes the methodology and its use for promoting the efficiency and effectiveness of substance abuse…

  16. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.

    PubMed

    Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max

    2017-12-01

    A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.

  17. Model My Watershed: Connecting Students' Conceptual Understanding of Watersheds to Real-World Decision Making

    ERIC Educational Resources Information Center

    Gill, Susan E.; Marcum-Dietrich, Nanette; Becker-Klein, Rachel

    2014-01-01

    The Model My Watershed (MMW) application, and associated curricula, provides students with meaningful opportunities to connect conceptual understanding of watersheds to real-world decision making. The application uses an authentic hydrologic model, TR-55 (developed by the U.S. Natural Resources Conservation Service), and real data applied in…

  18. Internal Models, Vestibular Cognition, and Mental Imagery: Conceptual Considerations.

    PubMed

    Mast, Fred W; Ellis, Andrew W

    2015-01-01

    Vestibular cognition has recently gained attention. Despite numerous experimental and clinical demonstrations, it is not yet clear what vestibular cognition really is. For future research in vestibular cognition, adopting a computational approach will make it easier to explore the underlying mechanisms. Indeed, most modeling approaches in vestibular science include a top-down or a priori component. We review recent Bayesian optimal observer models, and discuss in detail the conceptual value of prior assumptions, likelihood and posterior estimates for research in vestibular cognition. We then consider forward models in vestibular processing, which are required in order to distinguish between sensory input that is induced by active self-motion, and sensory input that is due to passive self-motion. We suggest that forward models are used not only in the service of estimating sensory states but they can also be drawn upon in an offline mode (e.g., spatial perspective transformations), in which interaction with sensory input is not desired. A computational approach to vestibular cognition will help to discover connections across studies, and it will provide a more coherent framework for investigating vestibular cognition.

  19. Developing a Learning Progression of Buoyancy to Model Conceptual Change: A Latent Class and Rule Space Model Analysis

    NASA Astrophysics Data System (ADS)

    Gao, Yizhu; Zhai, Xiaoming; Andersson, Björn; Zeng, Pingfei; Xin, Tao

    2018-06-01

    We applied latent class analysis and the rule space model to verify the cumulative characteristic of conceptual change by developing a learning progression for buoyancy. For this study, we first abstracted seven attributes of buoyancy and then developed a hypothesized learning progression for buoyancy. A 14-item buoyancy instrument was administered to 1089 8th grade students to verify and refine the learning progression. The results suggest four levels of progression during conceptual change when 8th grade students understand buoyancy. Students at level 0 can only master Density. When students progress to level 1, they can grasp Direction, Identification, Submerged volume, and Relative density on the basis of the prior level. Then, students gradually master Archimedes' theory as they reach level 2. The most advanced students can further grasp Relation with motion and arrive at level 3. In addition, this four-level learning progression can be accounted for by the Qualitative-Quantitative-Integrative explanatory model.

  20. Newman Unit 1 advanced solar repowering advanced conceptual design. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1982-04-01

    The Newman Unit 1 solar repowering design is a water/steam central receiver concept supplying superheated steam. The work reported is to develop a refined baseline conceptual design that has potential for construction and operation by 1986, makes use of existing solar thermal technology, and provides the best economics for this application. Trade studies performed in the design effort are described, both for the conceptual design of the overall system and for the subsystem conceptual design. System-level functional requirements, design, operation, performance, cost, safety, environmental, institutional, and regulatory considerations are described. Subsystems described include the collector, receiver, fossil energy, electrical powermore » generating, and master control subsystems, site and site facilities. The conceptual design, cost, and performance of each subsystem is discussed at length. A detailed economic analysis of the repowered unit is made to realistically assess the economics of the first repowered unit using present cost data for a limited production level for solar hardware. Finally, a development plan is given, including the design, procurement, construction, checkout, startup, performance validation, and commercial operation. (LEW)« less

  1. Understanding How Domestic Violence Support Services Promote Survivor Well-being: A Conceptual Model.

    PubMed

    Sullivan, Cris M

    2018-01-01

    Domestic violence (DV) victim service programs have been increasingly expected by legislators and funders to demonstrate that they are making a significant difference in the lives of those using their services. Alongside this expectation, they are being asked to describe the Theory of Change guiding how they believe their practices lead to positive results for survivors and their children. Having a widely accepted conceptual model is not just potentially useful to funders and policy makers as they help shape policy and practice -- it can also help programs continually reflect upon and improve their work. This paper describes the iterative and collaborative process undertaken to generate a conceptual model describing how DV victim services are expected to improve survivors' lives. The Social and Emotional Well-Being Framework guiding the model is an ideal structure to use to describe the goals and practices of DV programs because this framework: (1) accurately represents DV programs' goal of helping survivors and their children thrive; and (2) recognizes the importance of community, social, and societal context in influencing individuals' social and emotional well-being. The model was designed to guide practice and to generate new questions for research and evaluation that address individual, community, and systems factors that promote or hinder survivor safety and well-being.

  2. A Knowledge-Based and Model-Driven Requirements Engineering Approach to Conceptual Satellite Design

    NASA Astrophysics Data System (ADS)

    Dos Santos, Walter A.; Leonor, Bruno B. F.; Stephany, Stephan

    Satellite systems are becoming even more complex, making technical issues a significant cost driver. The increasing complexity of these systems makes requirements engineering activities both more important and difficult. Additionally, today's competitive pressures and other market forces drive manufacturing companies to improve the efficiency with which they design and manufacture space products and systems. This imposes a heavy burden on systems-of-systems engineering skills and particularly on requirements engineering which is an important phase in a system's life cycle. When this is poorly performed, various problems may occur, such as failures, cost overruns and delays. One solution is to underpin the preliminary conceptual satellite design with computer-based information reuse and integration to deal with the interdisciplinary nature of this problem domain. This can be attained by taking a model-driven engineering approach (MDE), in which models are the main artifacts during system development. MDE is an emergent approach that tries to address system complexity by the intense use of models. This work outlines the use of SysML (Systems Modeling Language) and a novel knowledge-based software tool, named SatBudgets, to deal with these and other challenges confronted during the conceptual phase of a university satellite system, called ITASAT, currently being developed by INPE and some Brazilian universities.

  3. The organization and dissolution of semantic-conceptual knowledge: is the 'amodal hub' the only plausible model?

    PubMed

    Gainotti, Guido

    2011-04-01

    In recent years, the anatomical and functional bases of conceptual activity have attracted a growing interest. In particular, Patterson and Lambon-Ralph have proposed the existence, in the anterior parts of the temporal lobes, of a mechanism (the 'amodal semantic hub') supporting the interactive activation of semantic representations in all modalities and for all semantic categories. The aim of then present paper is to discuss this model, arguing against the notion of an 'amodal' semantic hub, because we maintain, in agreement with the Damasio's construct of 'higher-order convergence zone', that a continuum exists between perceptual information and conceptual representations, whereas the 'amodal' account views perceptual informations only as a channel through which abstract semantic knowledge can be activated. According to our model, semantic organization can be better explained by two orthogonal higher-order convergence systems, concerning, on one hand, the right vs. left hemisphere and, on the other hand, the ventral vs. dorsal processing pathways. This model posits that conceptual representations may be mainly based upon perceptual activities in the right hemisphere and upon verbal mediation in the left side of the brain. It also assumes that conceptual knowledge based on the convergence of highly processed visual information with other perceptual data (and mainly concerning living categories) may be bilaterally represented in the anterior parts of the temporal lobes, whereas knowledge based on the integration of visual data with action schemata (namely knowledge of actions, body parts and artefacts) may be more represented in the left fronto-temporo-parietal areas. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. [Active ageing and success: A brief history of conceptual models].

    PubMed

    Petretto, Donatella Rita; Pili, Roberto; Gaviano, Luca; Matos López, Cristina; Zuddas, Carlo

    2016-01-01

    The aim of this paper is to analyse and describe different conceptual models of successful ageing, active and healthy ageing developed in Europe and in America in the 20° century, starting from Rowe and Kahn's original model (1987, 1997). A narrative review was conducted on the literature on successful ageing. Our review included definition of successful ageing from European and American scholars. Models were found that aimed to describe indexes of active and healthy ageing, models devoted to describe processes involved in successful ageing, and additional views that emphasise subjective and objective perception of successful ageing. A description is also given of critiques on previous models and remedies according to Martin et al. (2014) and strategies for successful ageing according to Jeste and Depp (2014). The need is discussed for the enhancement of Rowe and Kahn's model and other models with a more inclusive, universal description of ageing, incorporating scientific evidence regarding active ageing. Copyright © 2015 SEGG. Publicado por Elsevier España, S.L.U. All rights reserved.

  5. PIRPOSAL Model of Integrative STEM Education: Conceptual and Pedagogical Framework for Classroom Implementation

    ERIC Educational Resources Information Center

    Wells, John G.

    2016-01-01

    The PIRPOSAL model is both a conceptual and pedagogical framework intended for use as a pragmatic guide to classroom implementation of Integrative STEM Education. Designerly questioning prompted by a "need to know" serves as the basis for transitioning student designers within and among multiple phases while they progress toward an…

  6. Conceptual Resources in Self-Developed Explanatory Models: The Importance of Integrating Conscious and Intuitive Knowledge

    ERIC Educational Resources Information Center

    Cheng, Meng-Fei; Brown, David E.

    2010-01-01

    This study explores the spontaneous explanatory models children construct, critique, and revise in the context of tasks in which children need to predict, observe, and explain phenomena involving magnetism. It further investigates what conceptual resources students use, and in what ways they use them, to construct explanatory models, and the…

  7. Conceptualization of preferential flow for hillslope stability assessment

    NASA Astrophysics Data System (ADS)

    Kukemilks, Karlis; Wagner, Jean-Frank; Saks, Tomas; Brunner, Philip

    2018-03-01

    This study uses two approaches to conceptualize preferential flow with the goal to investigate their influence on hillslope stability. Synthetic three-dimensional hydrogeological models using dual-permeability and discrete-fracture conceptualization were subsequently integrated into slope stability simulations. The slope stability simulations reveal significant differences in slope stability depending on the preferential flow conceptualization applied, despite similar small-scale hydrogeological responses of the system. This can be explained by a local-scale increase of pore-water pressures observed in the scenario with discrete fractures. The study illustrates the critical importance of correctly conceptualizing preferential flow for slope stability simulations. It further demonstrates that the combination of the latest generation of physically based hydrogeological models with slope stability simulations allows for improvement to current modeling approaches through more complex consideration of preferential flow paths.

  8. Conceptual modelling to predict unobserved system states - the case of groundwater flooding in the UK Chalk

    NASA Astrophysics Data System (ADS)

    Hartmann, A. J.; Ireson, A. M.

    2017-12-01

    Chalk aquifers represent an important source of drinking water in the UK. Due to its fractured-porous structure, Chalk aquifers are characterized by highly dynamic groundwater fluctuations that enhance the risk of groundwater flooding. The risk of groundwater flooding can be assessed by physically-based groundwater models. But for reliable results, a-priori information about the distribution of hydraulic conductivities and porosities is necessary, which is often not available. For that reason, conceptual simulation models are often used to predict groundwater behaviour. They commonly require calibration by historic groundwater observations. Consequently, their prediction performance may reduce significantly, when it comes to system states that did not occur within the calibration time series. In this study, we calibrate a conceptual model to the observed groundwater level observations at several locations within a Chalk system in Southern England. During the calibration period, no groundwater flooding occurred. We then apply our model to predict the groundwater dynamics of the system at a time that includes a groundwater flooding event. We show that the calibrated model provides reasonable predictions before and after the flooding event but it over-estimates groundwater levels during the event. After modifying the model structure to include topographic information, the model is capable of prediction the groundwater flooding event even though groundwater flooding never occurred in the calibration period. Although straight forward, our approach shows how conceptual process-based models can be applied to predict system states and dynamics that did not occur in the calibration period. We believe such an approach can be transferred to similar cases, especially to regions where rainfall intensities are expected to trigger processes and system states that may have not yet been observed.

  9. Body composition, muscle capacity, and physical function in older adults: an integrated conceptual model.

    PubMed

    Brady, Anne O; Straight, Chad R; Evans, Ellen M

    2014-07-01

    The aging process leads to adverse changes in body composition (increases in fat mass and decreases in skeletal muscle mass), declines in physical function (PF), and ultimately increased risk for disability and loss of independence. Specific components of body composition or muscle capacity (strength and power) may be useful in predicting PF; however, findings have been mixed regarding the most salient predictor of PF. The development of a conceptual model potentially aids in understanding the interrelated factors contributing to PF with the factors of interest being physical activity, body composition, and muscle capacity. This article also highlights sex differences in these domains. Finally, factors known to affect PF, such as sleep, depression, fatigue, and self-efficacy, are discussed. Development of a comprehensive conceptual model is needed to better characterize the most salient factors contributing to PF and to subsequently inform the development of interventions to reduce physical disability in older adults.

  10. Guidance for the Development of Conceptual Models for a Problem Formulation Developed for Registration Review

    EPA Pesticide Factsheets

    Conceptual models for aquatic and terrestrial exposures. Graphic representation of predicted relationships between the ecological entities, both listed (threatened and endangered) and non-listed species, and the stressors to which they may be exposed.

  11. Conceptual Incoherence as a Result of the Use of Multiple Historical Models in School Textbooks

    ERIC Educational Resources Information Center

    Gericke, Niklas M.; Hagberg, Mariana

    2010-01-01

    This paper explores the occurrence of conceptual incoherence in upper secondary school textbooks resulting from the use of multiple historical models. Swedish biology and chemistry textbooks, as well as a selection of books from English speaking countries, were examined. The purpose of the study was to identify which models are used to represent…

  12. Exploring Conceptual Models for Community Engagement at Higher Education Institutions in South Africa

    ERIC Educational Resources Information Center

    Bender, Gerda

    2008-01-01

    A critical conceptual analysis of the South African Higher Education context reflects the lack of a structural and functional framework for the conceptualisation of community engagement (CE) in higher education. The purpose of this article is to explore a framework and model for the conceptualisation of CE for a better understanding of community…

  13. An Update on the Conceptual-Production Systems Model of Apraxia: Evidence from Stroke

    ERIC Educational Resources Information Center

    Stamenova, Vessela; Black, Sandra E.; Roy, Eric A.

    2012-01-01

    Limb apraxia is a neurological disorder characterized by an inability to pantomime and/or imitate gestures. It is more commonly observed after left hemisphere damage (LHD), but has also been reported after right hemisphere damage (RHD). The Conceptual-Production Systems model (Roy, 1996) suggests that three systems are involved in the control of…

  14. Engineering the IOOS: A Conceptual Design and Conceptual Operations Plan

    NASA Astrophysics Data System (ADS)

    Lampel, M.; Hood, C.; Kleinert, J.; Morgan, R. A.; Morris, P.

    2007-12-01

    The Integrated Ocean Observing System is the United States component in a world wide effort to provide global coverage of the world's oceans using the Global Ocean Observing System (GOOS). The US contribution includes systems supporting three major IOOS components: the Observation Subsystem, the Modeling and Analysis Subsystem, and the Data Management and Communications (DMAC) Subsystem. The assets to be used in these subsystems include hundreds of existing satellite sensors, buoy arrays, water level monitoring networks, wave monitoring networks, specialized systems for commerce, such as the Physical Oceanographic Real-Time System (PORTS®), and health and safety monitoring systems such as NOAA's (National Oceanic and Atmospheric Administration) Harmful Algal Bloom Forecasting System for the Gulf of Mexico. Conceptual design addresses the interconnectivity of these systems, while Conceptual Operations provides understanding of the motivators for interconnectivity and a methodology for how useful products are created and distributed. This paper will report on the conceptual design and the concept of operations devleoped by the authors under contract to NOAA.

  15. Defining pharmacy and its practice: a conceptual model for an international audience

    PubMed Central

    Scahill, SL; Atif, M; Babar, ZU

    2017-01-01

    Background There is much fragmentation and little consensus in the use of descriptors for the different disciplines that make up the pharmacy sector. Globalization, reprofessionalization and the influx of other disciplines means there is a requirement for a greater degree of standardization. This has not been well addressed in the pharmacy practice research and education literature. Objectives To identify and define the various subdisciplines of the pharmacy sector and integrate them into an internationally relevant conceptual model based on narrative synthesis of the literature. Methods A literature review was undertaken to understand the fragmentation in dialogue surrounding definitions relating to concepts and practices in the context of the pharmacy sector. From a synthesis of this literature, the need for this model was justified. Key assumptions of the model were identified, and an organic process of development took place with the three authors engaging in a process of sense-making to theorize the model. Results The model is “fit for purpose” across multiple countries and includes two components making up the umbrella term “pharmaceutical practice”. The first component is the four conceptual dimensions, which outline the disciplines including social and administrative sciences, community pharmacy, clinical pharmacy and pharmaceutical sciences. The second component of the model describes the “acts of practice”: teaching, research and professional advocacy; service and academic enterprise. Conclusions This model aims to expose issues relating to defining pharmacy and its practice and to create dialogue. No model is perfect, but there are implications for what is posited in the areas of policy, education and practice and future research. The main point is the need for increased clarity, or at least beginning the discussion to increase the clarity of definition and consistency of meaning in-and-across the pharmacy sector locally, nationally and

  16. Defining pharmacy and its practice: a conceptual model for an international audience.

    PubMed

    Scahill, S L; Atif, M; Babar, Z U

    2017-01-01

    There is much fragmentation and little consensus in the use of descriptors for the different disciplines that make up the pharmacy sector. Globalization, reprofessionalization and the influx of other disciplines means there is a requirement for a greater degree of standardization. This has not been well addressed in the pharmacy practice research and education literature. To identify and define the various subdisciplines of the pharmacy sector and integrate them into an internationally relevant conceptual model based on narrative synthesis of the literature. A literature review was undertaken to understand the fragmentation in dialogue surrounding definitions relating to concepts and practices in the context of the pharmacy sector. From a synthesis of this literature, the need for this model was justified. Key assumptions of the model were identified, and an organic process of development took place with the three authors engaging in a process of sense-making to theorize the model. The model is "fit for purpose" across multiple countries and includes two components making up the umbrella term "pharmaceutical practice". The first component is the four conceptual dimensions, which outline the disciplines including social and administrative sciences, community pharmacy, clinical pharmacy and pharmaceutical sciences. The second component of the model describes the "acts of practice": teaching, research and professional advocacy; service and academic enterprise. This model aims to expose issues relating to defining pharmacy and its practice and to create dialogue. No model is perfect, but there are implications for what is posited in the areas of policy, education and practice and future research. The main point is the need for increased clarity, or at least beginning the discussion to increase the clarity of definition and consistency of meaning in-and-across the pharmacy sector locally, nationally and internationally.

  17. The implications of episodic nonequilibrium fracture-matrix flow on site suitability and total system performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nitao, J.J.; Buscheck, T.A.; Chesnut, D.A.

    1992-04-01

    We apply our work on fracture- and matrix-dominated flow to develop a conceptual model of hydrological flow processes in the unsaturated zone at Yucca Mountain. The possibility of fracture-dominated flow is discussed, and various deductions are made on its impact on natural and total system performance, site characterization activities, and site suitability determination.

  18. Using a Systematic Conceptual Model for a Process Evaluation of a Middle School Obesity Risk-Reduction Nutrition Curriculum Intervention: "Choice, Control & Change"

    ERIC Educational Resources Information Center

    Lee, Heewon; Contento, Isobel R.; Koch, Pamela

    2013-01-01

    Objective: To use and review a conceptual model of process evaluation and to examine the implementation of a nutrition education curriculum, "Choice, Control & Change", designed to promote dietary and physical activity behaviors that reduce obesity risk. Design: A process evaluation study based on a systematic conceptual model. Setting: Five…

  19. SAMPLING OF CONTAMINATED SITES

    EPA Science Inventory

    A critical aspect of characterization of the amount and species of contamination of a hazardous waste site is the sampling plan developed for that site. f the sampling plan is not thoroughly conceptualized before sampling takes place, then certain critical aspects of the limits o...

  20. Defining the end-point of mastication: A conceptual model.

    PubMed

    Gray-Stuart, Eli M; Jones, Jim R; Bronlund, John E

    2017-10-01

    The great risks of swallowing are choking and aspiration of food into the lungs. Both are rare in normal functioning humans, which is remarkable given the diversity of foods and the estimated 10 million swallows performed in a lifetime. Nevertheless, it remains a major challenge to define the food properties that are necessary to ensure a safe swallow. Here, the mouth is viewed as a well-controlled processor where mechanical sensory assessment occurs throughout the occlusion-circulation cycle of mastication. Swallowing is a subsequent action. It is proposed here that, during mastication, temporal maps of interfacial property data are generated, which the central nervous system compares against a series of criteria in order to be sure that the bolus is safe to swallow. To determine these criteria, an engineering hazard analysis tool, alongside an understanding of fluid and particle mechanics, is used to deduce the mechanisms by which food may deposit or become stranded during swallowing. These mechanisms define the food properties that must be avoided. By inverting the thinking, from hazards to ensuring safety, six criteria arise which are necessary for a safe-to-swallow bolus. A new conceptual model is proposed to define when food is safe to swallow during mastication. This significantly advances earlier mouth models. The conceptual model proposed in this work provides a framework of decision-making to define when food is safe to swallow. This will be of interest to designers of dietary foods, foods for dysphagia sufferers and will aid the further development of mastication robots for preparation of artificial boluses for digestion research. It enables food designers to influence the swallow-point properties of their products. For example, a product may be designed to satisfy five of the criteria for a safe-to-swallow bolus, which means the sixth criterion and its attendant food properties define the swallow-point. Alongside other organoleptic factors, these

  1. Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise

    PubMed Central

    Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max

    2017-01-01

    Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917

  2. Conceptual design and analysis of a dynamic scale model of the Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Davis, D. A.; Gronet, M. J.; Tan, M. K.; Thorne, J.

    1994-01-01

    This report documents the conceptual design study performed to evaluate design options for a subscale dynamic test model which could be used to investigate the expected on-orbit structural dynamic characteristics of the Space Station Freedom early build configurations. The baseline option was a 'near-replica' model of the SSF SC-7 pre-integrated truss configuration. The approach used to develop conceptual design options involved three sets of studies: evaluation of the full-scale design and analysis databases, conducting scale factor trade studies, and performing design sensitivity studies. The scale factor trade study was conducted to develop a fundamental understanding of the key scaling parameters that drive design, performance and cost of a SSF dynamic scale model. Four scale model options were estimated: 1/4, 1/5, 1/7, and 1/10 scale. Prototype hardware was fabricated to assess producibility issues. Based on the results of the study, a 1/4-scale size is recommended based on the increased model fidelity associated with a larger scale factor. A design sensitivity study was performed to identify critical hardware component properties that drive dynamic performance. A total of 118 component properties were identified which require high-fidelity replication. Lower fidelity dynamic similarity scaling can be used for non-critical components.

  3. Conceptual model of consumer’s willingness to eat functional foods

    PubMed

    Babicz-Zielinska, Ewa; Jezewska-Zychowicz, Maria

    The functional foods constitute the important segment of the food market. Among factors that determine the intentions to eat functional foods, the psychological factors play very important roles. Motives, attitudes and personality are key factors. The relationships between socio-demographic characteristics, attitudes and willingness to purchase functional foods were not fully confirmed. Consumers’ beliefs about health benefits from eaten foods seem to be a strong determinant of a choice of functional foods. The objective of this study was to determine relations between familiarity, attitudes, and beliefs in benefits and risks about functional foods and develop some conceptual models of willingness to eat. The sample of Polish consumers counted 1002 subjects at age 15+. The foods enriched with vitamins or minerals, and cholesterol-lowering margarine or drinks were considered. The questionnaire focused on familiarity with foods, attitudes, beliefs about benefits and risks of their consumption was constructed. The Pearson’s correlations and linear regression equations were calculated. The strongest relations appeared between attitudes, high health value and high benefits, (r = 0.722 and 0.712 for enriched foods, and 0.664 and 0.693 for cholesterol-lowering foods), and between high health value and high benefits (0.814 for enriched foods and 0.758 for cholesterol-lowering foods). The conceptual models based on linear regression of relations between attitudes and all other variables, considering or not the familiarity with the foods, were developed. The positive attitudes and declared consumption are more important for enriched foods. The beliefs on high health value and high benefits play the most important role in the purchase. The interrelations between different variables may be described by new linear regression models, with the beliefs in high benefits, positive attitudes and familiarity being most significant predictors. Health expectations and trust to

  4. A conceptual care model for individualized care approach in cardiac rehabilitation--combining both illness representation and self-efficacy.

    PubMed

    Lau-Walker, Margaret

    2006-02-01

    This paper analyses the two prominent psychological theories of patient response--illness representation and self-efficacy--and explore the possibilities of the development of a conceptual individualized care model that would make use of both theories. Analysis of the literature established common themes that were used as the basis to form a conceptual framework intended to assist in the joint application of these theories to therapeutic settings. Both theories emphasize personal experience, pre-construction of self, individual response to illness and treatment, and that the patients' beliefs are more influential in their recovery than the severity of the illness. Where the theories are most divergent is their application to therapeutic interventions, which reflects the different sources of influence that each theory emphasizes. Based on their similarities and differences it is possible to integrate the two theories into a conceptual care model. The Interactive Care Model combines both theories of patient response and provides an explicit framework for further research into the design of effective therapeutic interventions in rehabilitation care.

  5. The Role of Conceptual Frameworks in Collecting Multisite Qualitative Data.

    ERIC Educational Resources Information Center

    Lotto, Linda S.

    1983-01-01

    Examines the use of conceptual frameworks in collecting qualitative data from multiple sites. Presents strategies for devising frameworks that are flexible and general without sacrificing specificity. (JOW)

  6. The design of two sonic boom wind tunnel models from conceptual aircraft which cruise at Mach numbers of 2.0 and 3.0

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.; Needleman, Kathy E.

    1990-01-01

    A method for designing wind tunnel models of conceptual, low-boom, supersonic cruise aircraft is presented. Also included is a review of the procedures used to design the conceptual low-boom aircraft. In the discussion, problems unique to, and encountered during, the design of both the conceptual aircraft and the wind tunnel models are outlined. The sensitivity of low-boom characteristics in the aircraft design to control the volume and lift equivalent area distributions was emphasized. Solutions to these problems are reported; especially the two which led to the design of the wind tunnel model support stings.

  7. A preliminary assessment of water partitioning and ecohydrological coupling in northern headwaters using stable isotopes and conceptual runoff models

    PubMed Central

    Buttle, James; Carey, Sean K.; van Huijgevoort, Marjolein H. J.; Laudon, Hjalmar; McNamara, James P.; Mitchell, Carl P. J.; Spence, Chris; Gabor, Rachel S.; Soulsby, Chris

    2015-01-01

    Abstract We combined a conceptual rainfall‐runoff model and input–output relationships of stable isotopes to understand ecohydrological influences on hydrological partitioning in snow‐influenced northern catchments. Six sites in Sweden (Krycklan), Canada (Wolf Creek; Baker Creek; Dorset), Scotland (Girnock) and the USA (Dry Creek) span moisture and energy gradients found at high latitudes. A meta‐analysis was carried out using the Hydrologiska Byråns Vattenbalansavdelning (HBV) model to estimate the main storage changes characterizing annual water balances. Annual snowpack storage importance was ranked as Wolf Creek > Krycklan > Dorset > Baker Creek > Dry Creek > Girnock. The subsequent rate and longevity of melt were reflected in calibrated parameters that determine partitioning of waters between more rapid and slower flowpaths and associated variations in soil and groundwater storage. Variability of stream water isotopic composition depends on the following: (i) rate and duration of spring snowmelt; (ii) significance of summer/autumn rainfall; and (iii) relative importance of near‐surface and deeper flowpaths in routing water to the stream. Flowpath partitioning also regulates influences of summer evaporation on drainage waters. Deviations of isotope data from the Global Meteoric Water Line showed subtle effects of internal catchment processes on isotopic fractionation most likely through evaporation. Such effects are highly variable among sites and with seasonal differences at some sites. After accounting for climate, evaporative fractionation is strongest at sites where lakes and near‐surface runoff processes in wet riparian soils can mobilize isotopically enriched water during summer and autumn. Given close soil–vegetation coupling, this may result in spatial variability in soil water isotope pools available for plant uptake. We argue that stable isotope studies are crucial in addressing the many open questions on

  8. . Ecological conceptual models: a framework and case study on ecosystem management for South Florida sustainability

    USGS Publications Warehouse

    Gentile, J.H.; Harwell, M.A.; Cropper, W.; Harwell, C. C.; DeAngelis, Donald L.; Davis, S.; Ogden, J.C.; Lirman, D.

    2001-01-01

    The Everglades and South Florida ecosystems are the focus of national and international attention because of their current degraded and threatened state. Ecological risk assessment, sustainability and ecosystem and adaptive management principles and processes are being used nationally as a decision and policy framework for a variety of types of ecological assessments. The intent of this study is to demonstrate the application of these paradigms and principles at a regional scale. The effects-directed assessment approach used in this study consists of a retrospective, eco-epidemiological phase to determine the causes for the current conditions and a prospective predictive risk-based assessment using scenario analysis to evaluate future options. Embedded in these assessment phases is a process that begins with the identification of goals and societal preferences which are used to develop an integrated suite of risk-based and policy relevant conceptual models. Conceptual models are used to illustrate the linkages among management (societal) actions, environmental stressors, and societal/ecological effects, and provide the basis for developing and testing causal hypotheses. These models, developed for a variety of landscape units and their drivers, stressors, and endpoints, are used to formulate hypotheses to explain the current conditions. They are also used as the basis for structuring management scenarios and analyses to project the temporal and spatial magnitude of risk reduction and system recovery. Within the context of recovery, the conceptual models are used in the initial development of performance criteria for those stressors that are determined to be most important in shaping the landscape, and to guide the use of numerical models used to develop quantitative performance criteria in the scenario analysis. The results will be discussed within an ecosystem and adaptive management framework that provides the foundation for decision making.

  9. Ecological conceptual models: a framework and case study on ecosystem management for South Florida sustainability.

    PubMed

    Gentile, J H; Harwell, M A; Cropper, W; Harwell, C C; DeAngelis, D; Davis, S; Ogden, J C; Lirman, D

    2001-07-02

    The Everglades and South Florida ecosystems are the focus of national and international attention because of their current degraded and threatened state. Ecological risk assessment, sustainability, and ecosystem and adaptive management principles and processes are being used nationally as a decision and policy framework for a variety of types of ecological assessments. The intent of this study is to demonstrate the application of these paradigms and principles at a regional scale. The effects-directed assessment approach used in this study consists of a retrospective, eco-epidemiological phase to determine the causes for the current conditions and a prospective predictive risk-based assessment using scenario analysis to evaluate future options. Embedded in these assessment phases is a process that begins with the identification of goals and societal preferences which are used to develop an integrated suite of risk-based and policy relevant conceptual models. Conceptual models are used to illustrate the linkages among management (societal) actions, environmental stressors, and societal/ecological effects, and provide the basis for developing and testing causal hypotheses. These models, developed for a variety of landscape units and their drivers, stressors, and endpoints, are used to formulate hypotheses to explain the current conditions. They are also used as the basis for structuring management scenarios and analyses to project the temporal and spatial magnitude of risk reduction and system recovery. Within the context of recovery, the conceptual models are used in the initial development of performance criteria for those stressors that are determined to be most important in shaping the landscape, and to guide the use of numerical models used to develop quantitative performance criteria in the scenario analysis. The results will be discussed within an ecosystem and adaptive management framework that provides the foundation for decision making.

  10. Non-Volcanic release of CO2 in Italy: quantification, conceptual models and gas hazard

    NASA Astrophysics Data System (ADS)

    Chiodini, G.; Cardellini, C.; Caliro, S.; Avino, R.

    2011-12-01

    Central and South Italy are characterized by the presence of many reservoirs naturally recharged by CO2 of deep provenance. In the western sector, the reservoirs feed hundreds of gas emissions at the surface. Many studies in the last years were devoted to (i) elaborating a map of CO2 Earth degassing of the region; (ii) to asses the gas hazard; (iii) to develop methods suitable for the measurement of the gas fluxes from different types of emissions; (iv) to elaborate the conceptual model of Earth degassing and its relation with the seismic activity of the region and (v) to develop physical numerical models of CO2 air dispersion. The main results obtained are: 1) A general, regional map of CO2 Earth degassing in Central Italy has been elaborated. The total flux of CO2 in the area has been estimated in ~ 10 Mt/a which are released to the atmosphere trough numerous dangerous gas emissions or by degassing spring waters (~ 10 % of the CO2 globally estimated to be released by the Earth trough volcanic activity). 2) An on line, open access, georeferenced database of the main CO2 emissions (~ 250) was settled up (http://googas.ov.ingv.it). CO2 flux > 100 t/d characterise 14% of the degassing sites while CO2 fluxes from 100 t/d to 10 t/d have been estimated for about 35% of the gas emissions. 3) The sites of the gas emissions are not suitable for life: the gas causes many accidents to animals and people. In order to mitigate the gas hazard a specific model of CO2 air dispersion has been developed and applied to the main degassing sites. A relevant application regarded Mefite d'Ansanto, southern Apennines, which is the largest natural emission of low temperature CO2 rich gases, from non-volcanic environment, ever measured in the Earth (˜2000 t/d). Under low wind conditions, the gas flows along a narrow natural channel producing a persistent gas river which has killed over a period of time many people and animals. The application of the physical numerical model allowed us to

  11. Operation room tool handling and miscommunication scenarios: an object-process methodology conceptual model.

    PubMed

    Wachs, Juan P; Frenkel, Boaz; Dori, Dov

    2014-11-01

    Errors in the delivery of medical care are the principal cause of inpatient mortality and morbidity, accounting for around 98,000 deaths in the United States of America (USA) annually. Ineffective team communication, especially in the operation room (OR), is a major root of these errors. This miscommunication can be reduced by analyzing and constructing a conceptual model of communication and miscommunication in the OR. We introduce the principles underlying Object-Process Methodology (OPM)-based modeling of the intricate interactions between the surgeon and the surgical technician while handling surgical instruments in the OR. This model is a software- and hardware-independent description of the agents engaged in communication events, their physical activities, and their interactions. The model enables assessing whether the task-related objectives of the surgical procedure were achieved and completed successfully and what errors can occur during the communication. The facts used to construct the model were gathered from observations of various types of operations miscommunications in the operating room and its outcomes. The model takes advantage of the compact ontology of OPM, which is comprised of stateful objects - things that exist physically or informatically, and processes - things that transform objects by creating them, consuming them or changing their state. The modeled communication modalities are verbal and non-verbal, and errors are modeled as processes that deviate from the "sunny day" scenario. Using OPM refinement mechanism of in-zooming, key processes are drilled into and elaborated, along with the objects that are required as agents or instruments, or objects that these processes transform. The model was developed through an iterative process of observation, modeling, group discussions, and simplification. The model faithfully represents the processes related to tool handling that take place in an OR during an operation. The specification is at

  12. Estimating of the impact of land use changes using the conceptual hydrological model THESEUS??a case study

    NASA Astrophysics Data System (ADS)

    Wegehenkel, Martin

    As a result of a new agricultural funding policy established in 1992 by the European Community, it was assumed that up to 15-20% of arable land would have been set aside in the next years in the new federal states of north-eastern Germany, for example, Brandenburg. As one potential land use option, afforestation of these set aside areas was discussed to obtain deciduous forests. Since the mean annual precipitation in north-eastern Germany, Brandenburg is relatively low (480-530 mm y -1), an increase in interception and evapotranspiration loss by forests compared to arable land would lead to a reduction in ground water recharge. Experimental evidence to determine effects of such land use changes are rarely available. Therefore, there is a need for indirect methods to estimate the impact of afforestation on the water balance of catchments. In this paper, a conceptual hydrological model was verified and calibrated in two steps using data from the Stobber-catchment located in Brandenburg. In the first step, model outputs like daily evapotranspiration rates and soil water contents were verified on the basis of experimental data sets from two test locations. One test site with the land use arable land was located within the Stobber-catchment. The other test site with pine forest was located near by the catchment. In the second step, the model was used to estimate the impact of afforestation on catchment water balance and discharge. For that purpose, the model was calibrated against daily discharge measurements for the period 1995-1997. For a simple afforestation scenario, it was assumed that the area of forest increases from 34% up to 80% of the catchment area. The impact of this change in forest cover proportion was analyzed using the calibrated model. In case of increasing the proportion of forest cover in the catchment due to the scenario afforestation, the model predicts a reduction in discharge and an increase in evapotranspiration.

  13. Psychodynamic psychotherapy: a core conceptual model and its application.

    PubMed

    Corradi, Richard B

    2006-01-01

    Contemporary American psychiatry, influenced by the "biologic revolution" with its emphasis on a brain-disease model of mental illness, and operating in a managed care delivery system, is in danger of relinquishing its listening and talking functions--psychotherapy--in favor of prescribing drugs. However, despite remarkable advances in the neurosciences, there is still no pharmaceutical magic bullet. The author argues for the continued relevancy of psychotherapy and outlines a practical psychodynamic approach that utilizes fundamental analytic concepts. These concepts--transference, the dual theory of drives, the repetition compulsion, and mechanisms of defense--are described and their clinical application is illustrated. This core conceptual model has significant heuristic value in treating patients and in teaching psychotherapy to psychiatric residents. With its emphasis on the power of the doctor-patient relationship, it teaches residents an effective body of knowledge that helps them define their professional identity-as psychiatrists whose most effective therapeutic tool is themselves, not the drugs they dispense.

  14. [How does collective violence shape the health status of its victims? Conceptual model and design of the ISAVIC study].

    PubMed

    Larizgoitia, Itziar; Izarzugaza, Isabel; Markez, Iñaki; Fernández, Itziar; Iraurgi, Ioseba; Larizgoitia, Arantza; Ballesteros, Javier; Fernández-Liria, Alberto; Moreno, Florentino; Retolaza, Ander; Páez, Darío; Martín-Beristaín, Carlos; Alonso, Jordi

    2011-01-01

    Epidemiologic research on collective violence (violence exerted by and within groups in pursuit of political, social or economic goals) is very scarce despite its growing recognition as a major public health issue. This paper describes the conceptual model and design of one of the first research studies conducted in Spain aiming to assess the impact of collective violence in the health status of its victims (study known as ISAVIC, based on its Spanish title Impacto en la SAlud de la VIolencia Colectiva). Starting with a comprehensive but non-systematic review of the literature, the authors describe the sequelae likely produced by collective violence and propose a conceptual model to explain the nature of the relationships between collective violence and health status. The conceptual model informed the ISAVIC study design and its measurement instruments. The possible sequelae of collective violence, in the physical, emotional and social dimensions of health, are described. Also, the review distinguishes the likely impact in primary and secondary victims, as well as the interplay with the social environment. The mixed methodological design of the ISAVIC study supports the coherence of the conceptual model described. The ISAVIC study suggests that collective violence may affect the main dimensions of the health status of its victims, in intimate relation to the societal factors where it operates. It is necessary to validate these results with new studies. Copyright © 2010 SESPAS. Published by Elsevier Espana. All rights reserved.

  15. A Conceptual Measurement Model for eHealth Readiness: a Team Based Perspective

    PubMed Central

    Phillips, James; Poon, Simon K.; Yu, Dan; Lam, Mary; Hines, Monique; Brunner, Melissa; Power, Emma; Keep, Melanie; Shaw, Tim; Togher, Leanne

    2017-01-01

    Despite the shift towards collaborative healthcare and the increase in the use of eHealth technologies, there does not currently exist a model for the measurement of eHealth readiness in interdisciplinary healthcare teams. This research aims to address this gap in the literature through the development of a three phase methodology incorporating qualitative and quantitative methods. We propose a conceptual measurement model consisting of operationalized themes affecting readiness across four factors: (i) Organizational Capabilities, (ii) Team Capabilities, (iii) Patient Capabilities, and (iv) Technology Capabilities. The creation of this model will allow for the measurement of the readiness of interdisciplinary healthcare teams to use eHealth technologies to improve patient outcomes. PMID:29854207

  16. A Conceptual Model of Irritability Following Traumatic Brain Injury: A Qualitative, Participatory Research Study.

    PubMed

    Hammond, Flora M; Davis, Christine; Cook, James R; Philbrick, Peggy; Hirsch, Mark A

    2016-01-01

    Individuals with a history of traumatic brain injury (TBI) may have chronic problems with irritability, which can negatively affect their lives. (1) To describe the experience (thoughts and feelings) of irritability from the perspectives of multiple people living with or affected by the problem, and (2) to develop a conceptual model of irritability. Qualitative, participatory research. Forty-four stakeholders (individuals with a history of TBI, family members, community professionals, healthcare providers, and researchers) divided into 5 focus groups. Each group met 10 times to discuss the experience of irritability following TBI. Data were coded using grounded theory to develop themes, metacodes, and theories. Not applicable. A conceptual model emerged in which irritability has 5 dimensions: affective (related to moods and feelings); behavioral (especially in areas of self-regulation, impulse control, and time management); cognitive-perceptual (self-talk and ways of seeing the world); relational issues (interpersonal and family dynamics); and environmental (including environmental stimuli, change, disruptions in routine, and cultural expectations). This multidimensional model provides a framework for assessment, treatment, and future research aimed at better understanding irritability, as well as the development of assessment tools and treatment interventions.

  17. Cognitive Demand of Model Tracing Tutor Tasks: Conceptualizing and Predicting How Deeply Students Engage

    ERIC Educational Resources Information Center

    Kessler, Aaron M.; Stein, Mary Kay; Schunn, Christian D.

    2015-01-01

    Model tracing tutors represent a technology designed to mimic key elements of one-on-one human tutoring. We examine the situations in which such supportive computer technologies may devolve into mindless student work with little conceptual understanding or student development. To analyze the support of student intellectual work in the model…

  18. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation

    PubMed Central

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556

  19. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and Its Application to Data Representation.

    PubMed

    Veloz, Tomas; Desjardins, Sylvie

    2015-01-01

    Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  20. ICT and e-Governance: A Conceptual Model of e-DISC

    NASA Astrophysics Data System (ADS)

    Tejasvee, Sanjay; Sarangdevot, S. S.; Gahlot, Devendra; Gour, Vishal; Sandal, Shruti

    2010-11-01

    One of the most important objectives of e-governance is, proper distribution and delivery of government information and services to the citizens. By progression in resources of information technology, great opportunities comes to the government for serve information and services to the citizens and public sector in better manner. This paper intends to examine and explore the conceptual model of e-DISC (Effective Deliverance of Information and Services to the Citizens) The purpose of this paper is to gain a better understanding of e-government in India with the concept of e-DISC with ICTs and how to deal with challenges and barriers for successful e-DISC model with accuracy. The obtained results prove that the utilizing and by increasing interest in the new electronic, information, and communication technologies (ICTs) and e-DISC model in recent time, government improved the quality of e-governance and delivery of information and services and acknowledged the awareness of the system is also valuable.

  1. Conceptual Model of Military Women's Life Events and Well-Being.

    PubMed

    Segal, Mady W; Lane, Michelle D

    2016-01-01

    This article presents a life course conceptual model and applies it to the study of military women's experiences and the effect of those life events on their well-being. Of special concern are the effects on women serving in direct combat jobs, as well as in any specialties operating in a hostile environment. Drawing on previous research, the model considers and gives examples of how a woman's well-being is affected by events in her military career, her family life, and other areas of life. The article emphasizes the effects of intersections of multiple events, as well as how the effects on well-being are mediated or moderated by other factors, including individual characteristics, military contextual variables, and resources. The analysis also includes the impacts of preventative and treatment interventions, as well as of policies, programs, and practices. Based on the model and on previous research, questions for future research are posed. Reprint & Copyright © 2016 Association of Military Surgeons of the U.S.

  2. Quantification of uncertainties related to the regional application of a conceptual hydrological model in Benin (West Africa)

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Diekkrüger, B.

    2003-04-01

    A conceptual model is presented to simulate the water fluxes of regional catchments in Benin (West Africa). The model is applied in the framework of the IMPETUS project (an integrated approach to the efficient management of scarce water resources in West Africa) which aims to assess the effects of environmental and anthropogenic changes on the regional hydrological processes and on the water availability in Benin. In order to assess the effects of decreasing precipitation and increasing human activities on the hydrological processes in the upper Ouémé valley, a scenario analysis is performed to predict possible changes. Therefore a regional hydrological model is proposed which reproduces the recent hydrological processes, and which is able to consider the changes of landscape properties.The study presented aims to check the validity of the conceptual and lumped model under the conditions of the subhumid tree savannah and therefore analyses the importance of possible sources of uncertainty. Main focus is set on the uncertainties caused by input data, model parameters and model structure. As the model simulates the water fluxes at the catchment outlet of the Térou river (3133 km2) in a sufficient quality, first results of a scenario analysis are presented. Changes of interest are the expected future decrease in amount and temporal structure of the precipitation (e.g. minus X percent precipitation during the whole season versus minus X percent precipitation in the end of the rainy season, alternatively), the decrease in soil water storage capacity which is caused by erosion, and the increasing consumption of ground water for drinking water and agricultural purposes. Resuming from the results obtained, the perspectives of lumped and conceptual models are discussed with special regard to available management options of this kind of models. Advantages and disadvantages compared to alternative model approaches (process based, physics based) are discussed.

  3. Providing High-Quality Support Services to Home-Based Child Care: A Conceptual Model and Literature Review

    ERIC Educational Resources Information Center

    Bromer, Juliet; Korfmacher, Jon

    2017-01-01

    Research Findings: Home-based child care accounts for a significant proportion of nonparental child care arrangements for young children in the United States. Yet the early care and education field lacks clear models or pathways for how to improve quality in these settings. The conceptual model presented here articulates the components of…

  4. Interactions between marine biota and ENSO: a conceptual model analysis

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Timmermann, A.; Feudel, U.

    2011-01-01

    We develop a conceptual coupled atmosphere-ocean-ecosystem model for the tropical Pacific to investigate the interaction between marine biota and the El Niño-Southern Oscillation (ENSO). Ocean and atmosphere are represented by a two-box model for the equatorial Pacific cold tongue and the warm pool, including a simplified mixed layer scheme. Marine biota are represented by a three-component (nutrient, phytoplankton, and zooplankton) ecosystem model. The atmosphere-ocean model exhibits an oscillatory state which qualitatively captures the main physics of ENSO. During an ENSO cycle, the variation of nutrient upwelling, and, to a small extent, the variation of photosynthetically available radiation force an ecosystem oscillation. The simplified ecosystem in turn, due to the effect of phytoplankton on the absorption of shortwave radiation in the water column, leads to (1) a warming of the tropical Pacific, (2) a reduction of the ENSO amplitude, and (3) a prolongation of the ENSO period. We qualitatively investigate these bio-physical coupling mechanisms using continuation methods. It is demonstrated that bio-physical coupling may play a considerable role in modulating ENSO variability.

  5. Conceptual FOM design tool

    NASA Astrophysics Data System (ADS)

    Krause, Lee S.; Burns, Carla L.

    2000-06-01

    This paper discusses the research currently in progress to develop the Conceptual Federation Object Model Design Tool. The objective of the Conceptual FOM (C-FOM) Design Tool effort is to provide domain and subject matter experts, such as scenario developers, with automated support for understanding and utilizing available HLA simulation and other simulation assets during HLA Federation development. The C-FOM Design Tool will import Simulation Object Models from HLA reuse repositories, such as the MSSR, to populate the domain space that will contain all the objects and their supported interactions. In addition, the C-FOM tool will support the conversion of non-HLA legacy models into HLA- compliant models by applying proven abstraction techniques against the legacy models. Domain experts will be able to build scenarios based on the domain objects and interactions in both a text and graphical form and export a minimal FOM. The ability for domain and subject matter experts to effectively access HLA and non-HLA assets is critical to the long-term acceptance of the HLA initiative.

  6. Impact of parental acquired brain injury on children: Review of the literature and conceptual model.

    PubMed

    Tiar, Anna Maria Vitale; Dumas, Jean E

    2015-01-01

    Data on children's adjustment following parental acquired brain injury (ABI) are disparate and spare, and appear inconclusive. Nonetheless, they suggest that children's well-being is at risk, but often neglected. Indeed, lack of a unifying conceptual model makes it difficult to integrate available evidence, in order to circumscribe relevant factors and understand how these may influence children's outcomes in more or less favourable ways. The present review proposes the coping competence model as a theoretical framework apt to clarify these issues and organize the available evidence. In brief, the model states that impact of parental ABI on children reflects the extent of the challenges children face and their preponderant ways of coping with them, i.e. pro-socially, anti-socially or asocially. Evidence shows that children deal with some common socioaffective as well as achievement challenges. Further, it is consistent with the three main coping modalities supported by the model. Overall, children's outcomes appear variable, but clearly at risk and in need of special attention. This review summarizes these outcomes, raises conceptual as well as methodological questions to be addressed in future research and eventually presents relevant issues for support and clinical services.

  7. Aircraft Conceptual Design Using Vehicle Sketch Pad

    NASA Technical Reports Server (NTRS)

    Fredericks, William J.; Antcliff, Kevin R.; Costa, Guillermo; Deshpande, Nachiket; Moore, Mark D.; Miguel, Edric A. San; Snyder, Alison N.

    2010-01-01

    Vehicle Sketch Pad (VSP) is a parametric geometry modeling tool that is intended for use in the conceptual design of aircraft. The intent of this software is to rapidly model aircraft configurations without expending the expertise and time that is typically required for modeling with traditional Computer Aided Design (CAD) packages. VSP accomplishes this by using parametrically defined components, such as a wing that is defined by span, area, sweep, taper ratio, thickness to cord, and so on. During this phase of frequent design builds, changes to the model can be rapidly visualized along with the internal volumetric layout. Using this geometry-based approach, parameters such as wetted areas and cord lengths can be easily extracted for rapid external performance analyses, such as a parasite drag buildup. At the completion of the conceptual design phase, VSP can export its geometry to higher fidelity tools. This geometry tool was developed by NASA and is freely available to U.S. companies and universities. It has become integral to conceptual design in the Aeronautics Systems Analysis Branch (ASAB) here at NASA Langley Research Center and is currently being used at over 100 universities, aerospace companies, and other government agencies. This paper focuses on the use of VSP in recent NASA conceptual design studies to facilitate geometry-centered design methodology. Such a process is shown to promote greater levels of creativity, more rapid assessment of critical design issues, and improved ability to quickly interact with higher order analyses. A number of VSP vehicle model examples are compared to CAD-based conceptual design, from a designer perspective; comparisons are also made of the time and expertise required to build the geometry representations as well.

  8. Conceptual frameworks, geomorphic interpretation and storytelling: Tales from Lockyer Creek , Australia.

    NASA Astrophysics Data System (ADS)

    Croke, Jacky; Phillips, Jonathan; Van Dyke, Chris

    2017-04-01

    Earth science knowledge and insight begins with case studies, and theories should be derived from and ultimately evaluated against empirical, case study evidence. However, isolated case studies not linked conceptually to other locations or embedded within a broader framework are often of limited use beyond the study site. Geomorphic evidence and phenomena may be interpreted using a variety of conceptual frameworks (theories, models, laws, methodologies, etc.). The evidence may be, or at least appear to be, consistent with multiple frameworks, even when those constructs are derived from entirely different assumptions or frames of reference. Thus different interpretations and stories can be derived from the same evidence. Our purpose here is to illustrate this phenomenon via a case study from Lockyer Creek, southeast Queensland, Australia. Lockyer Creek is fast becoming one of Australia's most studied catchments with a wealth of data emerging following two extreme flood events in 2011 and 2013. Whilst the initial objective of the Big Flood project was to provide information on the frequency and magnitude of these extreme events, in essence the project revealed a rich 'story' of river evolution and adjustment which at first glance did not appear to 'fit' many established conceptual frameworks and theories. This presentation tells the tale of Lockyer Creek as it relates to selected key conceptual frameworks and importantly how this information can then be used for more effective catchment and flood management.

  9. Conceptual Modeling Techniques for Use Within the DoD Acquisition Community

    DTIC Science & Technology

    2013-02-14

    auditory, or kinesthetic information, but are there people more naturally adept at thinking conceptually? For those who showed greater conceptually...thinking ability, does being a visual, auditory, or kinesthetic learner correlate to this in any statistically significant manner? Does field

  10. Refinement of a Conceptual Model for Adolescent Readiness to Engage in End-of-Life Discussions.

    PubMed

    Bell, Cynthia J; Zimet, Gregory D; Hinds, Pamela S; Broome, Marion E; McDaniel, Anna M; Mays, Rose M; Champion, Victoria L

    Adolescents living with incurable cancer require ongoing support to process grief, emotions, and information as disease progresses including treatment options (phase 1 clinical trials and/or hospice/palliative care). Little is known about how adolescents become ready for such discussions. The purpose of this study was to explore the process of adolescent readiness for end-of-life preparedness discussions, generating a theoretical understanding for guiding clinical conversations when curative options are limited. We explored 2 in-depth cases across time using case-study methodology. An à priori conceptual model based on current end-of-life research guided data collection and analysis. Multiple sources including in-depth adolescent interviews generated data collection on model constructs. Analysis followed a logical sequence establishing a chain of evidence linking raw data to study conclusions. Synthesis and data triangulation across cases and time led to theoretical generalizations. Initially, we proposed a linear process of readiness with 3 domains: a cognitive domain (awareness), an emotional domain (acceptance), and a behavioral domain (willingness), which preceded preparedness. Findings led to conceptual model refinement showing readiness is a dynamic internal process that interacts with preparedness. Current awareness context facilitates the type of preparedness discussions (cognitive or emotional). Furthermore, social constraint inhibits discussions. Data support theoretical understanding of the dynamism of readiness. Future research that validates adolescent conceptualization will ensure age-appropriate readiness representation. Understanding the dynamic process of readiness for engaging in end-of-life preparedness provides clinician insight for guiding discussions that facilitate shared decision making and promote quality of life for adolescents and their families.

  11. Maintaining Sexual Desire in Long-Term Relationships: A Systematic Review and Conceptual Model.

    PubMed

    Mark, Kristen P; Lasslo, Julie A

    The most universally experienced sexual response is sexual desire. Though research on this topic has increased in recent years, low and high desire are still problematized in clinical settings and the broader culture. However, despite knowledge that sexual desire ebbs and flows both within and between individuals, and that problems with sexual desire are strongly linked to problems with relationships, there is a critical gap in understanding the factors that contribute to maintaining sexual desire in the context of relationships. This article offers a systematic review of the literature to provide researchers, educators, clinicians, and the broader public with an overview and a conceptual model of nonclinical sexual desire in long-term relationships. First, we systematically identified peer-reviewed, English-language articles that focused on the maintenance of sexual desire in the context of nonclinical romantic relationships. Second, we reviewed a total of 64 articles that met inclusion criteria and synthesized them into factors using a socioecological framework categorized as individual, interpersonal, and societal in nature. These findings are used to build a conceptual model of maintaining sexual desire in long-term relationships. Finally, we discuss the limitations of the existing research and suggest clear directions for future research.

  12. A conceptual mitigation model for asymmetric information of supply chain in seaweed cultivation

    NASA Astrophysics Data System (ADS)

    Teniwut, Wellem A.; Betaubun, Kamilius D.; Marimin; Djatna, Taufik

    2017-10-01

    Seaweed cultivation has a better advantage over other fisheries activity in terms of easiness on conducting the production and multiplier effect on coastal community welfare. The effect of seaweed farming on the prosperity of coastal community in Southeast Maluku started to take place in 2008, although in 2012 either number of production and workforce is declining rapidly. By solving this problem, this article also provided with identifying and analyzing the supply chain of seaweed cultivation in Southeast Maluku. Based on this analysis we have found that one of the main reasons of declining seaweed production and the number seaweed farmers was asymmetric information that occurred on seaweed supply chain in Southeast Maluku. The component of asymmetric risk was the quality of the seeds, price, information and technology and the knowledge of actual market of seaweed, especially by seaweed farmers. Therefore, it is essential to make a conceptual model on mitigation of asymmetric information on the supply chain of seaweed production. We proposed a conceptual model based on four perspectives, first was goal, criteria and sub-criteria, actor and the solution to mitigate asymmetric information supply chain on seaweed cultivation.

  13. FATE AND TRANSPORT MODELING OF CONTAMINANTS OF CONCERN FROM A CAFO IN AN AGRICULTURAL WATERSHED

    EPA Science Inventory

    The groundwater flow and transport modeling effort will require hydrogeological site characterization and the development of a conceptual flow model for the site. Site characterization will involve an assessment of both the surface and subsurface and be accomplished through joint...

  14. Conceptual-level workflow modeling of scientific experiments using NMR as a case study

    PubMed Central

    Verdi, Kacy K; Ellis, Heidi JC; Gryk, Michael R

    2007-01-01

    Background Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. Results We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Conclusion Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using

  15. Conceptual-level workflow modeling of scientific experiments using NMR as a case study.

    PubMed

    Verdi, Kacy K; Ellis, Heidi Jc; Gryk, Michael R

    2007-01-30

    Scientific workflows improve the process of scientific experiments by making computations explicit, underscoring data flow, and emphasizing the participation of humans in the process when intuition and human reasoning are required. Workflows for experiments also highlight transitions among experimental phases, allowing intermediate results to be verified and supporting the proper handling of semantic mismatches and different file formats among the various tools used in the scientific process. Thus, scientific workflows are important for the modeling and subsequent capture of bioinformatics-related data. While much research has been conducted on the implementation of scientific workflows, the initial process of actually designing and generating the workflow at the conceptual level has received little consideration. We propose a structured process to capture scientific workflows at the conceptual level that allows workflows to be documented efficiently, results in concise models of the workflow and more-correct workflow implementations, and provides insight into the scientific process itself. The approach uses three modeling techniques to model the structural, data flow, and control flow aspects of the workflow. The domain of biomolecular structure determination using Nuclear Magnetic Resonance spectroscopy is used to demonstrate the process. Specifically, we show the application of the approach to capture the workflow for the process of conducting biomolecular analysis using Nuclear Magnetic Resonance (NMR) spectroscopy. Using the approach, we were able to accurately document, in a short amount of time, numerous steps in the process of conducting an experiment using NMR spectroscopy. The resulting models are correct and precise, as outside validation of the models identified only minor omissions in the models. In addition, the models provide an accurate visual description of the control flow for conducting biomolecular analysis using NMR spectroscopy experiment.

  16. Corporate Supports for the Family Lives of Employees: A Conceptual Model for Program Planning and Evaluation.

    ERIC Educational Resources Information Center

    Bowen, Gary L.

    1988-01-01

    Presents a conceptual model depicting the effects of family-oriented benefits, policies, and services in the corporate sector, on employees' work and family lives. Discusses the model in the context of the historical development of, and recent expansions in, corporate supports for employees and their families, and the need for a work-family model…

  17. Hydrological hysteresis and its value for assessing process consistency in catchment conceptual models

    NASA Astrophysics Data System (ADS)

    Fovet, O.; Ruiz, L.; Hrachowitz, M.; Faucheux, M.; Gascuel-Odoux, C.

    2015-01-01

    While most hydrological models reproduce the general flow dynamics, they frequently fail to adequately mimic system-internal processes. In particular, the relationship between storage and discharge, which often follows annual hysteretic patterns in shallow hard-rock aquifers, is rarely considered in modelling studies. One main reason is that catchment storage is difficult to measure, and another one is that objective functions are usually based on individual variables time series (e.g. the discharge). This reduces the ability of classical procedures to assess the relevance of the conceptual hypotheses associated with models. We analysed the annual hysteric patterns observed between stream flow and water storage both in the saturated and unsaturated zones of the hillslope and the riparian zone of a headwater catchment in French Brittany (Environmental Research Observatory ERO AgrHys (ORE AgrHys)). The saturated-zone storage was estimated using distributed shallow groundwater levels and the unsaturated-zone storage using several moisture profiles. All hysteretic loops were characterized by a hysteresis index. Four conceptual models, previously calibrated and evaluated for the same catchment, were assessed with respect to their ability to reproduce the hysteretic patterns. The observed relationship between stream flow and saturated, and unsaturated storages led us to identify four hydrological periods and emphasized a clearly distinct behaviour between riparian and hillslope groundwaters. Although all the tested models were able to produce an annual hysteresis loop between discharge and both saturated and unsaturated storage, the integration of a riparian component led to overall improved hysteretic signatures, even if some misrepresentation remained. Such a system-like approach is likely to improve model selection.

  18. A conceptual model of plant responses to climate with implications for monitoring ecosystem change

    Treesearch

    C. David Bertelsen

    2013-01-01

    Climate change is affecting natural systems on a global scale and is particularly rapid in the Southwest. It is important to identify impacts of a changing climate before ecosystems become unstable. Recognizing plant responses to climate change requires knowledge of both species present and plant responses to variable climatic conditions. A conceptual model derived...

  19. Exploring international clinical education in US-based programs: identifying common practices and modifying an existing conceptual model of international service-learning.

    PubMed

    Pechak, Celia M; Black, Jill D

    2014-02-01

    Increasingly physical therapist students complete part of their clinical training outside of their home country. This trend is understudied. The purposes of this study were to: (1) explore, in depth, various international clinical education (ICE) programs; and (2) determine whether the Conceptual Model of Optimal International Service-Learning (ISL) could be applied or adapted to represent ICE. Qualitative content analysis was used to analyze ICE programs and consider modification of an existing ISL conceptual model for ICE. Fifteen faculty in the United States currently involved in ICE were interviewed. The interview transcriptions were systematically analyzed by two researchers. Three models of ICE practices emerged: (1) a traditional clinical education model where local clinical instructors (CIs) focus on the development of clinical skills; (2) a global health model where US-based CIs provide the supervision in the international setting, and learning outcomes emphasized global health and cultural competency; and (3) an ICE/ISL hybrid where US-based CIs supervise the students, and the foci includes community service. Additionally the data supported revising the ISL model's essential core conditions, components and consequence for ICE. The ICE conceptual model may provide a useful framework for future ICE program development and research.

  20. Monitored Natural Recovery at Contaminated Sediment Sites

    DTIC Science & Technology

    2009-05-01

    Cr(VI)  hexavalent  chromium   Cr(III)  trivalent   chromium   CSM  conceptual site model  DBT  dibutyltin  DELT  deformities, eroded fins, lesions, and...nickel sulfide complexes in Foundry Cove, NY (USEPA 2005c).  Hexavalent chromium (Cr(VI)) reduction, subsequent precipitation as trivalent chromium (Cr...established scientific findings—such as the reduction of hexavalent chromium (Cr(VI)) to trivalent chromium (Cr(III)) in reduced environments (Martello et

  1. COPEWELL: A Conceptual Framework and System Dynamics Model for Predicting Community Functioning and Resilience After Disasters.

    PubMed

    Links, Jonathan M; Schwartz, Brian S; Lin, Sen; Kanarek, Norma; Mitrani-Reiser, Judith; Sell, Tara Kirk; Watson, Crystal R; Ward, Doug; Slemp, Cathy; Burhans, Robert; Gill, Kimberly; Igusa, Tak; Zhao, Xilei; Aguirre, Benigno; Trainor, Joseph; Nigg, Joanne; Inglesby, Thomas; Carbone, Eric; Kendra, James M

    2018-02-01

    Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster. We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties. The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature. The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127-137).

  2. Community-Based Participatory Research Conceptual Model: Community Partner Consultation and Face Validity.

    PubMed

    Belone, Lorenda; Lucero, Julie E; Duran, Bonnie; Tafoya, Greg; Baker, Elizabeth A; Chan, Domin; Chang, Charlotte; Greene-Moton, Ella; Kelley, Michele A; Wallerstein, Nina

    2016-01-01

    A national community-based participatory research (CBPR) team developed a conceptual model of CBPR partnerships to understand the contribution of partnership processes to improved community capacity and health outcomes. With the model primarily developed through academic literature and expert consensus building, we sought community input to assess face validity and acceptability. Our research team conducted semi-structured focus groups with six partnerships nationwide. Participants validated and expanded on existing model constructs and identified new constructs based on "real-world" praxis, resulting in a revised model. Four cross-cutting constructs were identified: trust development, capacity, mutual learning, and power dynamics. By empirically testing the model, we found community face validity and capacity to adapt the model to diverse contexts. We recommend partnerships use and adapt the CBPR model and its constructs, for collective reflection and evaluation, to enhance their partnering practices and achieve their health and research goals. © The Author(s) 2014.

  3. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2015-04-25

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Development of Foundational Movement Skills: A Conceptual Model for Physical Activity Across the Lifespan.

    PubMed

    Hulteen, Ryan M; Morgan, Philip J; Barnett, Lisa M; Stodden, David F; Lubans, David R

    2018-03-09

    Evidence supports a positive association between competence in fundamental movement skills (e.g., kicking, jumping) and physical activity in young people. Whilst important, fundamental movement skills do not reflect the broad diversity of skills utilized in physical activity pursuits across the lifespan. Debate surrounds the question of what are the most salient skills to be learned which facilitate physical activity participation across the lifespan. In this paper, it is proposed that the term 'fundamental movement skills' be replaced with 'foundational movement skills'. The term 'foundational movement skills' better reflects the broad range of movement forms that increase in complexity and specificity and can be applied in a variety of settings. Thus, 'foundational movement skills' includes both traditionally conceptualized 'fundamental' movement skills and other skills (e.g., bodyweight squat, cycling, swimming strokes) that support physical activity engagement across the lifespan. A proposed conceptual model outlines how foundational movement skill competency can provide a direct or indirect pathway, via specialized movement skills, to a lifetime of physical activity. Foundational movement skill development is hypothesized to vary according to culture and/or geographical location. Further, skill development may be hindered or enhanced by physical (i.e., fitness, weight status) and psychological (i.e., perceived competence, self-efficacy) attributes. This conceptual model may advance the application of motor development principles within the public health domain. Additionally, it promotes the continued development of human movement in the context of how it leads to skillful performance and how movement skill development supports and maintains a lifetime of physical activity engagement.

  5. Conceptual model for dietary behaviour change at household level: a 'best-fit' qualitative study using primary data.

    PubMed

    Daivadanam, Meena; Wahlström, Rolf; Ravindran, T K Sundari; Thankappan, K R; Ramanathan, Mala

    2014-06-09

    Interventions having a strong theoretical basis are more efficacious, providing a strong argument for incorporating theory into intervention planning. The objective of this study was to develop a conceptual model to facilitate the planning of dietary intervention strategies at the household level in rural Kerala. Three focus group discussions and 17 individual interviews were conducted among men and women, aged between 23 and 75 years. An interview guide facilitated the process to understand: 1) feasibility and acceptability of a proposed dietary behaviour change intervention; 2) beliefs about foods, particularly fruits and vegetables; 3) decision-making in households with reference to food choices and access; and 4) to gain insights into the kind of intervention strategies that may be practical at community and household level. The data were analysed using a modified form of qualitative framework analysis, which combined both deductive and inductive reasoning. A priori themes were identified from relevant behaviour change theories using construct definitions, and used to index the meaning units identified from the primary qualitative data. In addition, new themes emerging from the data were included. The associations between the themes were mapped into four main factors and its components, which contributed to construction of the conceptual model. Thirteen of the a priori themes from three behaviour change theories (Trans-theoretical model, Health Belief model and Theory of Planned Behaviour) were confirmed or slightly modified, while four new themes emerged from the data. The conceptual model had four main factors and its components: impact factors (decisional balance, risk perception, attitude); change processes (action-oriented, cognitive); background factors (personal modifiers, societal norms); and overarching factors (accessibility, perceived needs and preferences), built around a three-stage change spiral (pre-contemplation, intention, action). Decisional

  6. Contributing towards a conceptual model of soil-landscape co-evolution: observations from historic mining sites in Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Raab, Thomas; Naeth, Anne; Hirsch, Florian; Raab, Alexandra

    2016-04-01

    characteristic geomorphology of the prairie can be found in landscape (i). Distinct differences are found in properties and types of soils in these four landscapes. Natural soils and pile soils characteristically differ in parent material and soil horizons. No information is gathered yet for the reclaimed soils and the landslides soils due to prohibited access. However, based on what we find at the former Diplomat Mine we can conclude that distribution, development and properties of unreclaimed soils in historical open cast mines in Alberta are primarily controlled by parent material and topography. The geomorphological set-up is dominating the trajectory of vegetation development and post-mining geomorphodynamics. Contrasting slope aspects determine micro climatic conditions and lead to different vegetation types. This has likely had an effect on soil development and soil properties (especially carbon stocks). Further studies will be conducted to quantify these differing soil properties to refine this conceptual model of initial pedogenesis and soil distribution on very young landforms in the prairie landscapes.

  7. CADDIS Volume 5. Causal Databases: Interactive Conceptual Diagrams (ICDs)

    EPA Pesticide Factsheets

    In Interactive Conceptual Diagram (ICD) section of CADDIS allows users to create conceptual model diagrams, search a literature-based evidence database, and then attach that evidence to their diagrams.

  8. Person-centred integrative diagnosis: conceptual bases and structural model.

    PubMed

    Mezzich, Juan E; Salloum, Ihsan M; Cloninger, C Robert; Salvador-Carulla, Luis; Kirmayer, Laurence J; Banzato, Claudio E M; Wallcraft, Jan; Botbol, Michel

    2010-11-01

    To review the conceptual bases of Person-centred Integrative Diagnosis (PID) as a component and contributor to person-centred psychiatry and medicine and to outline its design and development. An analysis was conducted of the historical roots of person-centred psychiatry and medicine, tracing them back to ancient Eastern and Western civilizations, to the vicissitudes of modern medicine, to recent clinical and conceptual developments, and to emerging efforts to reprioritize medicine from disease to patient to person in collaboration with the World Medical Association, the World Health Organization, the World Organization of Family Doctors, the World Federation for Mental Health, and numerous other global health entities, and with the coordinating support of the International Network for Person-centered Medicine. One of the prominent endeavours within the broad paradigmatic health development outlined above is the design of PID. This diagnostic model articulates science and humanism to obtain a diagnosis of the person (of the totality of the person's health, both ill and positive aspects), by the person (with clinicians extending themselves as full human beings), for the person (assisting the fulfillment of the person's health aspirations and life project), and with the person (in respectful and empowering relationship with the person who consults). This broader and deeper notion of diagnosis goes beyond the more restricted concepts of nosological and differential diagnoses. The proposed PID model is defined by 3 keys: broad informational domains, covering both ill health and positive health along 3 levels: health status, experience of health, and contributors to health; pluralistic descriptive procedures (categories, dimensions and narratives); and evaluative partnerships among clinicians, patients, and families. An unfolding research program is focused on the construction of a practical guide and its evaluation, followed by efforts to facilitate clinical

  9. A conceptual model exploring the relationship between HIV stigma and implementing HIV clinical trials in rural communities of North Carolina.

    PubMed

    Sengupta, Sohini; Strauss, Ronald P; Miles, Margaret S; Roman-Isler, Malika; Banks, Bahby; Corbie-Smith, Giselle

    2010-01-01

    HIV/AIDS disproportionately affects minority groups in the United States, especially in the rural southeastern states. Poverty and lack of access to HIV care, including clinical trials, are prevalent in these areas and contribute to HIV stigma. This is the first study to develop a conceptual model exploring the relationship between HIV stigma and the implementation of HIV clinical trials in rural contexts to help improve participation in those trials. We conducted focus groups with HIV service providers and community leaders, and individual interviews with people living with HIV/AIDS in six counties in rural North Carolina. Themes related to stigma were elicited. We classified the themes into theoretical constructs and developed a conceptual model. HIV stigma themes were classified under the existing theoretical constructs of perceived, experienced, vicarious, and felt normative stigma. Two additional constructs emerged: causes of HIV stigma (e.g., low HIV knowledge and denial in the community) and consequences of HIV stigma (e.g., confidentiality concerns in clinical trials). The conceptual model illustrates that the causes of HIV stigma can give rise to perceived, experienced, and vicarious HIV stigma, and these types of stigma could lead to the consequences of HIV stigma that include felt normative stigma. Understanding HIV stigma in rural counties of North Carolina may not be generalizeable to other rural US southeastern states. The conceptual model emphasizes that HIV stigma--in its many forms--is a critical barrier to HIV clinical trial implementation in rural North Carolina.

  10. Site occupancy models with heterogeneous detection probabilities

    USGS Publications Warehouse

    Royle, J. Andrew

    2006-01-01

    Models for estimating the probability of occurrence of a species in the presence of imperfect detection are important in many ecological disciplines. In these ?site occupancy? models, the possibility of heterogeneity in detection probabilities among sites must be considered because variation in abundance (and other factors) among sampled sites induces variation in detection probability (p). In this article, I develop occurrence probability models that allow for heterogeneous detection probabilities by considering several common classes of mixture distributions for p. For any mixing distribution, the likelihood has the general form of a zero-inflated binomial mixture for which inference based upon integrated likelihood is straightforward. A recent paper by Link (2003, Biometrics 59, 1123?1130) demonstrates that in closed population models used for estimating population size, different classes of mixture distributions are indistinguishable from data, yet can produce very different inferences about population size. I demonstrate that this problem can also arise in models for estimating site occupancy in the presence of heterogeneous detection probabilities. The implications of this are discussed in the context of an application to avian survey data and the development of animal monitoring programs.

  11. Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks - Sardón catchment (Spain)

    NASA Astrophysics Data System (ADS)

    Francés, Alain P.; Lubczynski, Maciek W.; Roy, Jean; Santos, Fernando A. M.; Mahmoudzadeh Ardekani, Mohammad R.

    2014-11-01

    Hard rock aquifers are highly heterogeneous and hydrogeologically complex. To contribute to the design of hydrogeological conceptual models of hard rock aquifers, we propose a multi-techniques methodology based on a downward approach that combines remote sensing (RS), non-invasive hydrogeophysics and hydrogeological field data acquisition. The proposed methodology is particularly suitable for data scarce areas. It was applied in the pilot research area of Sardón catchment (80 km2) located west of Salamanca (Spain). The area was selected because of hard-rock hydrogeology, semi-arid climate and scarcity of groundwater resources. The proposed methodology consisted of three main steps. First, we detected the main hydrogeological features at the catchment scale by processing: (i) a high resolution digital terrain model to map lineaments and to outline fault zones; and (ii) high-resolution, multispectral satellite QuickBird and WorldView-2 images to map the outcropping granite. Second, we characterized at the local scale the hydrogeological features identified at step one with: i) ground penetrating radar (GPR) to assess groundwater table depth complementing the available monitoring network data; ii) 2D electric resistivity tomography (ERT) and frequency domain electromagnetic (FDEM) to retrieve the hydrostratigraphy along selected survey transects; iii) magnetic resonance soundings (MRS) to retrieve the hydrostratigraphy and aquifer parameters at the selected survey sites. In the third step, we drilled 5 boreholes (25 to 48 m deep) and performed slug tests to verify the hydrogeophysical interpretation and to calibrate the MRS parameters. Finally, we compiled and integrated all acquired data to define the geometry and parameters of the Sardón aquifer at the catchment scale. In line with a general conceptual model of hard rock aquifers, we identified two main hydrostratigraphic layers: a saprolite layer and a fissured layer. Both layers were intersected and drained by

  12. Assessing conceptual models for subsurface reactive transport of inorganic contaminants

    USGS Publications Warehouse

    Davis, James A.; Yabusaki, Steven B.; Steefel, Carl; Zachara, John M.; Curtis, Gary P.; Redden, George D.; Criscenti, Louise J.; Honeyman, Bruce D.

    2004-01-01

    In many subsurface situations where human health and environmental quality are at risk (e.g., contaminant hydrogeology petroleum extraction, carbon sequestration, etc.),scientists and engineers are being asked by federal agency decision-makers to predict the fate of chemical species under conditions where both reactions and transport are processes of first-order importance.In 2002, a working group (WG) was formed by representatives of the U.S. Geological Survey, Environmental Protection Agency, Department of Energy Nuclear Regulatory Commission, Department of Agriculture, and Army Engineer Research and Development Center to assess the role of reactive transport modeling (RTM) in addressing these situations. Specifically the goals of the WG are to (1) evaluate the state of the art in conceptual model development and parameterization for RTM, as applied to soil,vadose zone, and groundwater systems, and (2) prioritize research directions that would enhance the practical utility of RTM.

  13. Adaptive Parameter Optimization of a Grid-based Conceptual Hydrological Model

    NASA Astrophysics Data System (ADS)

    Samaniego, L.; Kumar, R.; Attinger, S.

    2007-12-01

    Any spatially explicit hydrological model at the mesoscale is a conceptual approximation of the hydrological cycle and its dominant process occurring at this scale. Manual-expert calibration of this type of models may become quite tedious---if not impossible---taking into account the enormous amount of data required by these kind of models and the intrinsic uncertainty of both the data (input-output) and the model structure. Additionally, the model should be able to reproduce well several process which are accounted by a number of predefined objectives. As a consequence, some degree of automatic calibration would be required to find "good" solutions, each one constituting a trade-off among all calibration criteria. In other words, it is very likely that a number of parameter sets fulfil the optimization criteria and thus can be considered a model solution. In this study, we dealt with two research questions: 1) How to assess the adequate level of model complexity so that model overparameterization is avoided? And, 2) How to find a good solution with a relatively low computational burden? In the present study, a grid-based conceptual hydrological model denoted as HBV-UFZ based on some of the original HBV concepts was employed. This model was driven by 12~h precipitation, temperature, and PET grids which are acquired either from satellite products or from data of meteorological stations. In the latter case, the data was interpolated with external drift Kriging. The first research question was addressed in this study with the implementation of nonlinear transfer functions that regionalize most model parameters as a function of other spatially distributed observables such as land cover (time dependent) and other time independent basin characteristics such as soil type, slope, aspect, geological formations among others. The second question was addressed with an adaptive constrained optimization algorithm based on a parallel implementation of simulated annealing (SA

  14. Testing Pearl Model In Three European Sites

    NASA Astrophysics Data System (ADS)

    Bouraoui, F.; Bidoglio, G.

    The Plant Protection Product Directive (91/414/EEC) stresses the need of validated models to calculate predicted environmental concentrations. The use of models has become an unavoidable step before pesticide registration. In this context, European Commission, and in particular DGVI, set up a FOrum for the Co-ordination of pes- ticide fate models and their USe (FOCUS). In a complementary effort, DG research supported the APECOP project, with one of its objective being the validation and im- provement of existing pesticide fate models. The main topic of research presented here is the validation of the PEARL model for different sites in Europe. The PEARL model, actually used in the Dutch pesticide registration procedure, was validated in three well- instrumented sites: Vredepeel (the Netherlands), Brimstone (UK), and Lanna (Swe- den). A step-wise procedure was used for the validation of the PEARL model. First the water transport module was calibrated, and then the solute transport module, using tracer measurements keeping unchanged the water transport parameters. The Vrede- peel site is characterised by a sandy soil. Fourteen months of measurements were used for the calibration. Two pesticides were applied on the site: bentazone and etho- prophos. PEARL predictions were very satisfactory for both soil moisture content, and pesticide concentration in the soil profile. The Brimstone site is characterised by a cracking clay soil. The calibration was conducted on a time series measurement of 7 years. The validation consisted in comparing predictions and measurement of soil moisture at different soil depths, and in comparing the predicted and measured con- centration of isoproturon in the drainage water. The results, even if in good agreement with the measuremens, highlighted the limitation of the model when the preferential flow becomes a dominant process. PEARL did not reproduce well soil moisture pro- file during summer months, and also under-predicted the arrival of

  15. Imposing constraints on parameter values of a conceptual hydrological model using baseflow response

    NASA Astrophysics Data System (ADS)

    Dunn, S. M.

    Calibration of conceptual hydrological models is frequently limited by a lack of data about the area that is being studied. The result is that a broad range of parameter values can be identified that will give an equally good calibration to the available observations, usually of stream flow. The use of total stream flow can bias analyses towards interpretation of rapid runoff, whereas water quality issues are more frequently associated with low flow condition. This paper demonstrates how model distinctions between surface an sub-surface runoff can be used to define a likelihood measure based on the sub-surface (or baseflow) response. This helps to provide more information about the model behaviour, constrain the acceptable parameter sets and reduce uncertainty in streamflow prediction. A conceptual model, DIY, is applied to two contrasting catchments in Scotland, the Ythan and the Carron Valley. Parameter ranges and envelopes of prediction are identified using criteria based on total flow efficiency, baseflow efficiency and combined efficiencies. The individual parameter ranges derived using the combined efficiency measures still cover relatively wide bands, but are better constrained for the Carron than the Ythan. This reflects the fact that hydrological behaviour in the Carron is dominated by a much flashier surface response than in the Ythan. Hence, the total flow efficiency is more strongly controlled by surface runoff in the Carron and there is a greater contrast with the baseflow efficiency. Comparisons of the predictions using different efficiency measures for the Ythan also suggest that there is a danger of confusing parameter uncertainties with data and model error, if inadequate likelihood measures are defined.

  16. A new conceptual model for whole mantle convection and the origin of hotspot plumes

    NASA Astrophysics Data System (ADS)

    Yoshida, Masaki

    2014-08-01

    A new conceptual model of mantle convection is constructed for consideration of the origin of hotspot plumes, using recent evidence from seismology, high-pressure experiments, geodynamic modeling, geoid inversion studies, and post-glacial rebound analyses. This conceptual model delivers several key points. Firstly, some of the small-scale mantle upwellings observed as hotspots on the Earth's surface originate at the base of the mantle transition zone (MTZ), in which the Archean granitic continental material crust (TTG; tonalite-trondhjemite-granodiorite) with abundant radiogenic elements is accumulated. Secondly, the TTG crust and the subducted oceanic crust that have accumulated at the base of MTZ could act as thermal or mechanical insulators, leading to the formation of a hot and less viscous layer just beneath the MTZ; which may enhance the instability of plume generation at the base of the MTZ. Thirdly, the origin of some hotspot plumes is isolated from the large low shear-wave velocity provinces (LLSVPs) under Africa and the South Pacific. I consider that the conceptual model explains why almost all the hotspots around Africa are located above the margins of the African LLSVP. Because a planetary-scale trench system surrounding a “Pangean cell” has been spatially stable throughout the Phanerozoic, a large amount of the oceanic crustal layer is likely to be trapped in the MTZ under the Pangean cell. Therefore, under Africa, almost all of the hotspot plumes originate from the base of the MTZ, where a large amount of TTG and/or oceanic crusts has accumulated. This conceptual model may explain the fact that almost all the hotspots around Africa are located on margins above the African LLSVP. It is also considered that some of the hotspot plumes under the South Pacific thread through the TTG/oceanic crusts accumulated around the bottom of the MTZ, and some have their roots in the South Pacific LLSVP while others originate from the MTZ. The numerical simulations

  17. Factors associated with adoption of health information technology: a conceptual model based on a systematic review.

    PubMed

    Kruse, Clemens Scott; DeShazo, Jonathan; Kim, Forest; Fulton, Lawrence

    2014-05-23

    The Health Information Technology for Economic and Clinical Health Act (HITECH) allocated $19.2 billion to incentivize adoption of the electronic health record (EHR). Since 2009, Meaningful Use Criteria have dominated information technology (IT) strategy. Health care organizations have struggled to meet expectations and avoid penalties to reimbursements from the Center for Medicare and Medicaid Services (CMS). Organizational theories attempt to explain factors that influence organizational change, and many theories address changes in organizational strategy. However, due to the complexities of the health care industry, existing organizational theories fall short of demonstrating association with significant health care IT implementations. There is no organizational theory for health care that identifies, groups, and analyzes both internal and external factors of influence for large health care IT implementations like adoption of the EHR. The purpose of this systematic review is to identify a full-spectrum of both internal organizational and external environmental factors associated with the adoption of health information technology (HIT), specifically the EHR. The result is a conceptual model that is commensurate with the complexity of with the health care sector. We performed a systematic literature search in PubMed (restricted to English), EBSCO Host, and Google Scholar for both empirical studies and theory-based writing from 1993-2013 that demonstrated association between influential factors and three modes of HIT: EHR, electronic medical record (EMR), and computerized provider order entry (CPOE). We also looked at published books on organizational theories. We made notes and noted trends on adoption factors. These factors were grouped as adoption factors associated with various versions of EHR adoption. The resulting conceptual model summarizes the diversity of independent variables (IVs) and dependent variables (DVs) used in articles, editorials, books, as

  18. Hanford Site Groundwater Monitoring for Fiscal Year 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2001-03-01

    This report presents the results of groundwater and vadose zone monitoring and remediation for fiscal year 2000 on the U.S. Department of Energy's Hanford Site, Washington. The most extensive contaminant plumes are tritium, iodine-129, and nitrate, which all had multiple sources and are very mobile in groundwater. Carbon tetrachloride and associated organic constituents form a relatively large plume beneath the central part of the Site. Hexavalent chromium is present in smaller plumes beneath the reactor areas along the river and beneath the central part of the site. Strontium-90 exceeds standards beneath each of the reactor areas, and technetium-99 and uraniummore » are present in the 200 Areas. RCRA groundwater monitoring continued during fiscal year 2000. Vadose zone monitoring, characterization, remediation, and several technical demonstrations were conducted in fiscal year 2000. Soil gas monitoring at the 618-11 burial ground provided a preliminary indication of the location of tritium in the vadose zone and in groundwater. Groundwater modeling efforts focused on 1) identifying and characterizing major uncertainties in the current conceptual model and 2) performing a transient inverse calibration of the existing site-wide model. Specific model applications were conducted in support of the Hanford Site carbon tetrachloride Innovative Treatment Remediation Technology; to support the performance assessment of the Immobilized Low-Activity Waste Disposal Facility; and in development of the System Assessment Capability, which is intended to predict cumulative site-wide effects from all significant Hanford Site contaminants.« less

  19. Studying the teaching of kindness: A conceptual model for evaluating kindness education programs in schools.

    PubMed

    Kaplan, Deanna M; deBlois, Madeleine; Dominguez, Violeta; Walsh, Michele E

    2016-10-01

    Recent research suggests that school-based kindness education programs may benefit the learning and social-emotional development of youth and may improve school climate and school safety outcomes. However, how and to what extent kindness education programming influences positive outcomes in schools is poorly understood, and such programs are difficult to evaluate in the absence of a conceptual model for studying their effectiveness. In partnership with Kind Campus, a widely adopted school-based kindness education program that uses a bottom-up program framework, a methodology called concept mapping was used to develop a conceptual model for evaluating school-based kindness education programs from the input of 123 middle school students and approximately 150 educators, school professionals, and academic scholars. From the basis of this model, recommendations for processes and outcomes that would be useful to assess in evaluations of kindness education programs are made, and areas where additional instrument development may be necessary are highlighted. The utility of the concept mapping method as an initial step in evaluating other grassroots or non-traditional educational programming is also discussed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The Development of a Conceptual Model of Student Satisfaction with Their Experience in Higher Education

    ERIC Educational Resources Information Center

    Douglas, Jacqueline; McClelland, Robert; Davies, John

    2008-01-01

    Purpose: The purpose of this paper is to introduce a conceptual model of student satisfaction with their higher education (HE) experience, based on the identification of the variable determinants of student perceived quality and the impact of those variables on student satisfaction and/or dissatisfaction with the overall student experience. The…

  1. [Pharmaceutical care: conceptual and critical basis to a Brazilian model].

    PubMed

    Angonesi, Daniela; Sevalho, Gil

    2010-11-01

    The Pharmaceutical Care concepts were analyzed from their origins in the United States and the later contributions which came from Spain and from the effort of sistematization by the World Health Organization to understand the processs that has been happening in Brasil. After the abandon of the communitarian pharmacy, the Brazilian pharmacists hope that this new model of practicing is the way to get back his/her social role. The philosophy which directs the Pharmaceutical Care, having the focus on patient, in our understanding, must support philosophical and conceptually the rebuilding of pharmaceutical practicing in Brazil in order to get back the lost relation between the pharmacist and patient at communitarian pharmacy.

  2. Conceptual strategies and inter-theory relations: The case of nanoscale cracks

    NASA Astrophysics Data System (ADS)

    Bursten, Julia R.

    2018-05-01

    This paper introduces a new account of inter-theory relations in physics, which I call the conceptual strategies account. Using the example of a multiscale computer simulation model of nanoscale crack propagation in silicon, I illustrate this account and contrast it with existing reductive, emergent, and handshaking approaches. The conceptual strategies account develops the notion that relations among physical theories, and among their models, are constrained but not dictated by limitations from physics, mathematics, and computation, and that conceptual reasoning within those limits is required both to generate and to understand the relations between theories. Conceptual strategies result in a variety of types of relations between theories and models. These relations are themselves epistemic objects, like theories and models, and as such are an under-recognized part of the epistemic landscape of science.

  3. Conceptual model to assess water use associated with the life cycle of unconventional oil and gas development

    USGS Publications Warehouse

    Valder, Joshua F.; McShane, Ryan R.; Barnhart, Theodore B.; Sando, Roy; Carter, Janet M.; Lundgren, Robert F.

    2018-03-15

    As the demand for energy increases in the United States, so does the demand for water used to produce many forms of that energy. Technological advances, limited access to conventional oil and gas accumulations, and the rise of oil and gas prices resulted in increased development of unconventional oil and gas (UOG) accumulations. Unconventional oil and gas is developed using a method that combines directional drilling and hydraulic fracturing techniques, allowing for greater oil and gas production from previously unrecoverable reservoirs. Quantification of the water resources required for UOG development and production is difficult because of disparate data sources, variable reporting requirements across boundaries (local, State, and national), and incomplete or proprietary datasets.A topical study was started in 2015 under the U.S. Geological Survey’s Water Availability and Use Science Program, as part of the directive in the Secure Water Act for the U.S. Geological Survey to conduct a National Water Census, to better understand the relation between production of UOG resources for energy and the amount of water needed to produce and sustain this type of energy development in the United States. The Water Availability and Use Science Program goal for this topical study is to develop and apply a statistical model to better estimate the water use associated with UOG development, regardless of the location and target geologic formation. As a first step, a conceptual model has been developed to characterize the life cycle of water use in areas of UOG development.Categories of water use and the way water-use data are collected might change over time; therefore, a generic approach was used in developing the conceptual model to allow for greater flexibility in adapting to future changes or newly available data. UOG development can be summarized into four stages: predrilling construction, drilling, hydraulic fracturing, and ongoing production. The water used in UOG

  4. A conceptual model of nurses' goal orientation, service behavior, and service performance.

    PubMed

    Chien, Chun-Cheng; Chou, Hsin-Kai; Hung, Shuo-Tsung

    2008-01-01

    Based on the conceptual framework known as the "service triangle," the authors constructed a model of nurses' goal orientation, service behavior, and service performance to investigate the antecedents and consequences of the medical service behavior provided by nurses. This cross-sectional study collected data from 127 nurses in six hospitals using a mail-in questionnaire. Analysis of the model revealed that the customer-oriented behavior of nurses had a positive influence on organizational citizenship behavior; and both of these behaviors had a significant positive influence on service performance. The results also indicate that a higher learning goal orientation among nurses was associated with the performance of both observable customer-oriented behavior and organizational-citizenship behavior.

  5. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  6. GIS modeling of archaeological site locations: A low-tech approach

    NASA Technical Reports Server (NTRS)

    Futato, Eugene M.

    1991-01-01

    A Geographic Information System (GIS)-type analysis of archaeological site locations using a dBase III plus program and a desk top computer is presented. A previously developed model of site locations in the Sequatchie Valley of northeastern Alabama is tested against known site locations in another large survey area there. The model fails to account for site locations in the test area. A model is developed for the test area and indicates the site locations are indeed different. Whether this is due to differences in site locations on a sub-regional level, or to sample error in the original model is unknown.

  7. “The Birthing From Within Holistic Sphere”: A Conceptual Model for Childbirth Education

    PubMed Central

    England, Pam; Horowitz, Rob

    2000-01-01

    An expanded conceptual model of childbirth education is offered, proposing the benefits of balancing informative teaching processes with creative, experiential, introspective learning processes for parents. The application of these two teaching dimensions to exploring four different perspectives of birth (the mother's, the father's, the baby's, and the culture's) is discussed, along with examples from “Birthing From Within” classes. Implications for current practice and the evolving role of childbirth educator are noted. PMID:17273200

  8. Event-based soil loss models for construction sites

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-05-01

    The elevated rates of soil erosion stemming from land clearing and grading activities during urban development, can result in excessive amounts of eroded sediments entering waterways and causing harm to the biota living therein. However, construction site event-based soil loss simulations - required for reliable design of erosion and sediment controls - are one of the most uncertain types of hydrologic models. This study presents models with improved degree of accuracy to advance the design of erosion and sediment controls for construction sites. The new models are developed using multiple linear regression (MLR) on event-based permutations of the Universal Soil Loss Equation (USLE) and artificial neural networks (ANN). These models were developed using surface runoff monitoring datasets obtained from three sites - Greensborough, Cookstown, and Alcona - in Ontario and datasets mined from the literature for three additional sites - Treynor, Iowa, Coshocton, Ohio and Cordoba, Spain. The predictive MLR and ANN models can serve as both diagnostic and design tools for the effective sizing of erosion and sediment controls on active construction sites, and can be used for dynamic scenario forecasting when considering rapidly changing land use conditions during various phases of construction.

  9. Conceptual Resources for Constructing the Concepts of Electricity: The Role of Models, Analogies and Imagination

    ERIC Educational Resources Information Center

    Taber, Keith S.; de Trafford, Tom; Quail, Teresa

    2006-01-01

    The topic of electricity offers considerable challenge for the teacher hoping to provide students with an insight into scientific ways of thinking about circuits. The concepts used to make sense of electric circuits are abstract and students are expected to develop conceptual models of the relationship between non-observable qualities (current,…

  10. Development Mechanism of an Integrated Model for Training of a Specialist and Conceptual-Theoretical Activity of a Teacher

    ERIC Educational Resources Information Center

    Marasulov, Akhmat; Saipov, Amangeldi; ?rymbayeva, Kulimkhan; Zhiyentayeva, Begaim; Demeuov, Akhan; Konakbaeva, Ulzhamal; Bekbolatova, Akbota

    2016-01-01

    The aim of the study is to examine the methodological-theoretical construction bases for development mechanism of an integrated model for a specialist's training and teacher's conceptual-theoretical activity. Using the methods of generalization of teaching experience, pedagogical modeling and forecasting, the authors determine the urgent problems…

  11. The Interactions between Problem Solving and Conceptual Change: System Dynamic Modelling as a Platform for Learning

    ERIC Educational Resources Information Center

    Lee, Chwee Beng

    2010-01-01

    This study examines the interactions between problem solving and conceptual change in an elementary science class where students build system dynamic models as a form of problem representations. Through mostly qualitative findings, we illustrate the interplay of three emerging intervening conditions (epistemological belief, structural knowledge…

  12. A Conceptual Model Exploring the Relationship Between HIV Stigma and Implementing HIV Clinical Trials in Rural Communities of North Carolina

    PubMed Central

    Sengupta, Sohini; Strauss, Ronald P.; Miles, Margaret S.; Roman-Isler, Malika; Banks, Bahby; Corbie-Smith, Giselle

    2011-01-01

    Background HIV/AIDS disproportionately affects minority groups in the United States, especially in the rural southeastern states. Poverty and lack of access to HIV care, including clinical trials, are prevalent in these areas and contribute to HIV stigma. This is the first study to develop a conceptual model exploring the relationship between HIV stigma and the implementation of HIV clinical trials in rural contexts to help improve participation in those trials. Methods We conducted focus groups with HIV service providers and community leaders, and individual interviews with people living with HIV/AIDS in six counties in rural North Carolina. Themes related to stigma were elicited. We classified the themes into theoretical constructs and developed a conceptual model. Results HIV stigma themes were classified under the existing theoretical constructs of perceived, experienced, vicarious, and felt normative stigma. Two additional constructs emerged: causes of HIV stigma (e.g., low HIV knowledge and denial in the community) and consequences of HIV stigma (e.g., confidentiality concerns in clinical trials). The conceptual model illustrates that the causes of HIV stigma can give rise to perceived, experienced, and vicarious HIV stigma, and these types of stigma could lead to the consequences of HIV stigma that include felt normative stigma. Limitations Understanding HIV stigma in rural counties of North Carolina may not be generalizeable to other rural US southeastern states. Conclusion The conceptual model emphasizes that HIV stigma—in its many forms—is a critical barrier to HIV clinical trial implementation in rural North Carolina. PMID:20552760

  13. a Conceptual Model for the Representation of Landforms Using Ontology Design Patterns

    NASA Astrophysics Data System (ADS)

    Guilbert, Eric; Moulin, Bernard; Cortés Murcia, Andrés

    2016-06-01

    A landform is an area of a terrain with its own recognisable shape. Its definition is often qualitative and inherently vague. Hence landforms are difficult to formalise in view of their extraction from a DTM. This paper presents a two-level framework for the representation of landforms. The objective is to provide a structure where landforms can be conceptually designed according to a common model which can be implemented. It follows the principle that landforms are not defined by geometrical characteristics but by salient features perceived by people. Hence, these salient features define a skeleton around which the landform is built. The first level of our model defines general concepts forming a landform prototype while the second level provides a model for the translation of these concepts and landform extraction on a DTM. The model is still under construction and preliminary results together with current developments are also presented.

  14. Health Capability: Conceptualization and Operationalization

    PubMed Central

    2010-01-01

    Current theoretical approaches to bioethics and public health ethics propose varied justifications as the basis for health care and public health, yet none captures a fundamental reality: people seek good health and the ability to pursue it. Existing models do not effectively address these twin goals. The approach I espouse captures both of these orientations through a concept here called health capability. Conceptually, health capability illuminates the conditions that affect health and one's ability to make health choices. By respecting the health consequences individuals face and their health agency, health capability offers promise for finding a balance between paternalism and autonomy. I offer a conceptual model of health capability and present a health capability profile to identify and address health capability gaps. PMID:19965570

  15. Vehicle Sketch Pad: a Parametric Geometry Modeler for Conceptual Aircraft Design

    NASA Technical Reports Server (NTRS)

    Hahn, Andrew S.

    2010-01-01

    The conceptual aircraft designer is faced with a dilemma, how to strike the best balance between productivity and fidelity? Historically, handbook methods have required only the coarsest of geometric parameterizations in order to perform analysis. Increasingly, there has been a drive to upgrade analysis methods, but these require considerably more precise and detailed geometry. Attempts have been made to use computer-aided design packages to fill this void, but their cost and steep learning curve have made them unwieldy at best. Vehicle Sketch Pad (VSP) has been developed over several years to better fill this void. While no substitute for the full feature set of computer-aided design packages, VSP allows even novices to quickly become proficient in defining three-dimensional, watertight aircraft geometries that are adequate for producing multi-disciplinary meta-models for higher order analysis methods, wind tunnel and display models, as well as a starting point for animation models. This paper will give an overview of the development and future course of VSP.

  16. Using site-selection model to identify suitable sites for seagrass transplantation in the west coast of South Sulawesi

    NASA Astrophysics Data System (ADS)

    Lanuru, Mahatma; Mashoreng, S.; Amri, K.

    2018-03-01

    The success of seagrass transplantation is very much depending on the site selection and suitable transplantation methods. The main objective of this study is to develop and use a site-selection model to identify the suitability of sites for seagrass (Enhalus acoroides) transplantation. Model development was based on the physical and biological characteristics of the transplantation site. The site-selection process is divided into 3 phases: Phase I identifies potential seagrass habitat using available knowledge, removes unnecessary sites before the transplantation test is performed. Phase II involves field assessment and transplantation test of the best scoring areas identified in Phase I. Phase III is the final calculation of the TSI (Transplant Suitability Index), based on results from Phases I and II. The model was used to identify the suitability of sites for seagrass transplantation in the West coast of South Sulawesi (3 sites at Labakkang Coast, 3 sites at Awerange Bay, and 3 sites at Lale-Lae Island). Of the 9 sites, two sites were predicted by the site-selection model to be the most suitable sites for seagrass transplantation: Site II at Labakkang Coast and Site III at Lale-Lae Island.

  17. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool; (2) a low fidelity simulator development tool; (3) a dynamic, interactive interface between the HCI and the simulator; and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  18. Rule based design of conceptual models for formative evaluation

    NASA Technical Reports Server (NTRS)

    Moore, Loretta A.; Chang, Kai; Hale, Joseph P.; Bester, Terri; Rix, Thomas; Wang, Yaowen

    1994-01-01

    A Human-Computer Interface (HCI) Prototyping Environment with embedded evaluation capability has been investigated. This environment will be valuable in developing and refining HCI standards and evaluating program/project interface development, especially Space Station Freedom on-board displays for payload operations. This environment, which allows for rapid prototyping and evaluation of graphical interfaces, includes the following four components: (1) a HCI development tool, (2) a low fidelity simulator development tool, (3) a dynamic, interactive interface between the HCI and the simulator, and (4) an embedded evaluator that evaluates the adequacy of a HCI based on a user's performance. The embedded evaluation tool collects data while the user is interacting with the system and evaluates the adequacy of an interface based on a user's performance. This paper describes the design of conceptual models for the embedded evaluation system using a rule-based approach.

  19. Integration of the Total Lightning Jump Algorithm into Current Operational Warning Environment Conceptual Models

    NASA Technical Reports Server (NTRS)

    Schultz, Chris; Carey, Larry; Schultz, Elise V.; Stano, Geoffrey; Gatlin, Patrick N.; Kozlowski, Danielle M.; Blakeslee, Rich J.; Goodman, Steve

    2013-01-01

    Key points this analysis will address: 1) What physically is going on in the cloud when there is a jump in lightning? -- Updraft variations, Ice fluxes 2) How do these processes fit in with severe storm conceptual models? 3) What would this information provide an end user? --Relate LJA to radar observations, like changes in reflectivity, MESH, VIL, etc. based multi -Doppler derived physical relationships

  20. Conceptual model for dietary behaviour change at household level: a ‘best-fit’ qualitative study using primary data

    PubMed Central

    2014-01-01

    Background Interventions having a strong theoretical basis are more efficacious, providing a strong argument for incorporating theory into intervention planning. The objective of this study was to develop a conceptual model to facilitate the planning of dietary intervention strategies at the household level in rural Kerala. Methods Three focus group discussions and 17 individual interviews were conducted among men and women, aged between 23 and 75 years. An interview guide facilitated the process to understand: 1) feasibility and acceptability of a proposed dietary behaviour change intervention; 2) beliefs about foods, particularly fruits and vegetables; 3) decision-making in households with reference to food choices and access; and 4) to gain insights into the kind of intervention strategies that may be practical at community and household level. The data were analysed using a modified form of qualitative framework analysis, which combined both deductive and inductive reasoning. A priori themes were identified from relevant behaviour change theories using construct definitions, and used to index the meaning units identified from the primary qualitative data. In addition, new themes emerging from the data were included. The associations between the themes were mapped into four main factors and its components, which contributed to construction of the conceptual model. Results Thirteen of the a priori themes from three behaviour change theories (Trans-theoretical model, Health Belief model and Theory of Planned Behaviour) were confirmed or slightly modified, while four new themes emerged from the data. The conceptual model had four main factors and its components: impact factors (decisional balance, risk perception, attitude); change processes (action-oriented, cognitive); background factors (personal modifiers, societal norms); and overarching factors (accessibility, perceived needs and preferences), built around a three-stage change spiral (pre