Science.gov

Sample records for concise total synthesis

  1. Concise total synthesis of glucosepane.

    PubMed

    Draghici, Cristian; Wang, Tina; Spiegel, David A

    2015-10-16

    Glucosepane is a structurally complex protein posttranslational modification that is believed to exist in all living organisms. Research in humans suggests that glucosepane plays a critical role in the pathophysiology of both diabetes and human aging, yet comprehensive biological investigations of this metabolite have been hindered by a scarcity of chemically homogeneous material available for study. Here we report the total synthesis of glucosepane, enabled by the development of a one-pot method for preparation of the nonaromatic 4H-imidazole tautomer in the core. Our synthesis is concise (eight steps starting from commercial materials), convergent, high-yielding (12% overall), and enantioselective. We expect that these results will prove useful in the art and practice of heterocyclic chemistry and beneficial for the study of glucosepane and its role in human health and disease.

  2. A Concise Asymmetric Total Synthesis of (+)-Brevisamide

    PubMed Central

    Herrmann, Aaron T.; Martinez, Steven R.; Zakarian, Armen

    2012-01-01

    A new protecting-group-free synthesis of the marine monocyclic ether (+)-brevisamide is reported. The enantioselective synthesis utilizes a key asymmetric Henry reaction and an Achmatowicz rearrangement for the formation of the tetrahydropyran ring. A penultimate Stille cross-coupling allows for an efficient installation of the conjugated (E,E)-diene side chain ultimately delivering (+)-brevisamide. PMID:21678904

  3. Concise, Asymmetric, Stereocontrolled Total Synthesis of Stephacidins A, B and Notoamide B

    PubMed Central

    Artman, Gerald D.; Grubbs, Alan W.; Williams, Robert M.

    2007-01-01

    Concise asymmetric total syntheses of the fungal metabolites (−)-stephacidin A, (+)-stephacidin B, and (+)-notoamide B are described. Key features of these total syntheses include (1) a facile synthesis of (R)-allyl proline methyl ester, (2) a revised route toward the pyranoindole ring system, (3) a novel cross-metathesis strategy for the introduction of important functional groups, and (4) an SN2′ cyclization to form the [2.2.2] bridged bicyclic ring system. Furthermore, our synthesis has taken advantage of microwave heating to shorten reaction times as well as increase yields for the preparation of vital intermediates. PMID:17455936

  4. Catalysis of Heterocyclic Azadiene Cycloaddition Reactions by Solvent Hydrogen Bonding: Concise Total Synthesis of Methoxatin.

    PubMed

    Glinkerman, Christopher M; Boger, Dale L

    2016-09-28

    Although it has been examined for decades, no general approach to catalysis of the inverse electron demand Diels-Alder reactions of heterocyclic azadienes has been introduced. Typically, additives such as Lewis acids lead to nonproductive consumption of the electron-rich dienophiles without productive activation of the electron-deficient heterocyclic azadienes. Herein, we report the first general method for catalysis of such cycloaddition reactions by using solvent hydrogen bonding of non-nucleophilic perfluoroalcohols, including hexafluoroisopropanol (HFIP) and trifluoroethanol (TFE), to activate the electron-deficient heterocyclic azadienes. Its use in promoting the cycloaddition of 1,2,3-triazine 4 with enamine 3 as the key step of a concise total synthesis of methoxatin is described.

  5. A concise approach for the synthesis of bitungolides: total syntheses of (-)-bitungolide B & E.

    PubMed

    Reddy, K Mahender; Shashidhar, J; Ghosh, Subhash

    2014-06-21

    The first total synthesis of (-)-bitungolide B and a second-generation total synthesis of (-)-bitungolide E are described. The cornerstone of the approach comprises a convergent and flexible route involving Brown crotylation, highly diastereoselective substrate controlled Paterson anti-aldol reaction, hydroxyl-directed 1,3-syn/anti reduction, Barton-McCombie deoxygenation and RCM reactions. Via this route, a common intermediate 13 is readily accessible for the synthesis of the family of bitungolides A-E and franklinolides A-C.

  6. Concise Chemoenzymatic Three-Step Total Synthesis of Isosolenopsin through Medium Engineering

    PubMed Central

    Simon, Robert C; Fuchs, Christine S; Lechner, Horst; Zepeck, Ferdinand; Kroutil, Wolfgang

    2013-01-01

    A short and efficient total synthesis of the alkaloid isosolenopsin and its enantiomer has been achieved. The key step was a ω-transaminase-catalysed regioselective monoamination of the diketone pentadecane-2,6-dione, which was obtained in a single step through the application of a Grignard reaction. Initial low conversions in the biotransformation could be overcome by optimisation of the reaction conditions employing suitable cosolvents. In the presence of 20 vol.-% N,N-dimethylformamide (DMF) or n-heptane the best results were obtained by employing two enantiocomplementary ω-transaminases originating from Arthrobacter at 30–40 °C; under these conditions, conversions of more than 99 % and perfect stereocontrol (ee > 99 %) were achieved. Diastereoselective chemical reduction (H2/Pd/C) of the biocatalytic product gave the target compound. The linear three-step synthesis provided the natural product isosolenopsin in diastereomerically pure form (ee > 99 %, dr = 99:1) with an overall yield of 64 %. PMID:25191103

  7. Concise Total Synthesis of (+)-Asperazine, (+)-Pestalazine A, and (+)-iso-Pestalazine A. Structure Revision of (+)-Pestalazine A

    PubMed Central

    Loach, Richard P.; Fenton, Owen S.; Movassaghi, Mohammad

    2016-01-01

    The concise, enantioselective total syntheses of (+)-asperazine (1), (+)-iso-pestalazine A (2), and (+)-pestalazine A (3) have been achieved by the development of a late-stage C3–C8′ Friedel-Crafts union of polycyclic diketopiperazines. Our modular strategy enables the union of complex polycyclic diketopiperazines in virtually their final forms, thus providing rapid and highly convergent assembly at the challenging quaternary stereocenter of these dimeric alkaloids. The significance of this carbon–carbon bond formation can be gauged by the manifold constraints that were efficiently overcome, namely the substantial steric crowding at both reactive sites, the nucleophilic addition of C8′ over N1′ to the C3 carbocation, and the multitude of reactivity posed by the use of complex diketopiperazine fragments in the coupling event. The success of the indoline π-nucleophile that evolved through our studies is notable given the paucity of competing reaction pathways observed in the presence of the highly reactive C3 carbocation generated. This first total synthesis of (+)-pestalazine A also allowed us to revise the molecular structure for this natural alkaloid. PMID:26726924

  8. Silver-promoted Friedel-Crafts reaction: concise total synthesis of (-)-ardeemin, (-)-acetylardeemin and (-)-formylardeemin.

    PubMed

    Wang, Y; Kong, C; Du, Y; Song, H; Zhang, D; Qin, Y

    2012-04-14

    Total syntheses of multidrug resistant inhibitors (-)-acetylardeemin 2a, (-)-ardeemin 2b, and (-)-formylardeemin 3 have been achieved within 10 steps starting from bromopyrroloinoline 13. The key step involves direct alkylation of 13 with prenyl tributylstannane 11 to yield 12 via a silver-promoted asymmetric Friedel-Crafts reaction. Highly efficient installation of the isoprenyl group allowed excellent overall yield. Moreover, the substrate scope of the asymmetric Friedel-Crafts reaction of 13 was expanded to include a variety of arenes 14 to afford natural product-like library analogues 15.

  9. Concise Synthesis of Functionalized Benzocyclobutenones

    PubMed Central

    Chen, Peng-hao; Savage, Nikolas A.; Dong, Guangbin

    2014-01-01

    A concise approach to access functionalized benzocyclobutenones from 3-halophenol derivatives is described. This modified synthesis employs a [2+2] cycloaddition between benzynes generated from dehydrohalogenation of aryl halides using LiTMP and acetaldehyde enolate generated from n-BuLi and THF, followed by oxidation of the benzocyclobutenol intermediates to provide benzocyclobutenones. The [2+2] reaction can be run on a 10-gram scale with an increased yield. A number of functional groups including alkenes and alkynes are tolerated. Coupling of benzynes with ketene silyl acetals to give 8-substituted benzocyclobutenones is also demonstrated. PMID:24926108

  10. Concise Total Synthesis of Trichodermamides A, B and C Enabled by an Efficient Construction of the 1,2-Oxazadecaline Core

    PubMed Central

    Mfuh, Adelphe M.; Zhang, Yu; Stephens, David E.; Vo, Anh X. T.; Arman, Hadi D.; Larionov, Oleg V.

    2016-01-01

    We report herein a facile and efficient method of the construction of the cis-1,2-oxazadecaline system, distinctive of (pre)trichodermamides, aspergillazine A, gliovirin and FA-2097. The formation of the 1,2-oxazadecaline core was accomplished by a 1,2-addition of an αC-lithiated O-silyl ethyl pyruvate oxime to benzoquinone, that is followed by an oxa-Michael ring-closure. The method was successfully applied to the concise total synthesis of trichodermamide A (in gram quantities), trichodermamide B, as well as the first synthesis of trichodermamide C. PMID:26084356

  11. Concise Total Synthesis of Lundurines A-C Enabled by Gold Catalysis and a Homodienyl Retro-Ene/Ene Isomerization.

    PubMed

    Kirillova, Mariia S; Muratore, Michael E; Dorel, Ruth; Echavarren, Antonio M

    2016-03-23

    The total synthesis of lundurines A-C has been accomplished in racemic and enantiopure forms in 11-13 and 12-14 steps, respectively, without protection/deprotection of functional groups, by a novel tandem double condensation/Claisen rearrangement, a gold(I)-catalyzed alkyne hydroarylation, a cyclopropanation via formal [3 + 2] cycloaddition/nitrogen extrusion, and a remarkable olefin migration through a vinylcyclopropane retro-ene/ene reaction that streamlines the endgame.

  12. Concise Total Synthesis of Lundurines A–C Enabled by Gold Catalysis and a Homodienyl Retro-Ene/Ene Isomerization

    PubMed Central

    2016-01-01

    The total synthesis of lundurines A–C has been accomplished in racemic and enantiopure forms in 11–13 and 12–14 steps, respectively, without protection/deprotection of functional groups, by a novel tandem double condensation/Claisen rearrangement, a gold(I)-catalyzed alkyne hydroarylation, a cyclopropanation via formal [3 + 2] cycloaddition/nitrogen extrusion, and a remarkable olefin migration through a vinylcyclopropane retro-ene/ene reaction that streamlines the endgame. PMID:26963149

  13. A Concise and Highly Enantioselective Total Synthesis of (+)-anti- and (-)-syn-Mefloquine Hydrochloride: Definitive Absolute Stereochemical Assignment of the Mefloquines.

    PubMed

    Rastelli, Ettore J; Coltart, Don M

    2015-11-16

    A concise asymmetric (>99:1 e.r.) total synthesis of (+)-anti- and (-)-syn-mefloquine hydrochloride from a common intermediate is described. The key asymmetric transformation is a Sharpless dihydroxylation of an olefin that is accessed in three steps from commercially available materials. The Sharpless-derived diol is converted into either a trans or cis epoxide, and these are subsequently converted into (+)-anti- and (-)-syn-mefloquine, respectively. The synthetic (+)-anti- and (-)-syn-mefloquine samples were derivatized with (S)-(+)-mandelic acid tert-butyldimethylsilyl ether, and a crystal structure of each derivative was obtained. These are the first X-ray structures for mefloquine derivatives that were obtained by coupling to a known chiral, nonracemic compound, and provide definitive confirmation of the absolute stereochemistry of (+)-anti- as well as (-)-syn-mefloquine.

  14. Concise asymmetric synthesis of (-)-sparteine.

    PubMed

    Hermet, Jean-Paul R; McGrath, Matthew J; O'Brien, Peter; Porter, David W; Gilday, John

    2004-08-21

    A six-step asymmetric synthesis of natural (-)-sparteine from ethyl 7-iodohept-2-enoate is reported, involving a connective Michael addition of an amino ester-derived enolate to an alpha,beta-unsaturated amino ester.

  15. Concise total syntheses of (±)-noruleine and (±)-uleine.

    PubMed

    Patir, Süleyman; Ertürk, Erkan

    2013-05-07

    The first total synthesis of (±)-noruleine and a concise synthesis of (±)-uleine have been accomplished via the DDQ mediated dehydrogenative cyclization of a tetrahydrocarbazole derivative bearing a non-substituted amide functionality to prepare the key azocino[4,3-b]indole precursor.

  16. A Concise Enantioselective Synthesis of (−)-Ranirestat

    PubMed Central

    Trost, Barry M.; Osipov, Maksim; Dong, Guangbin

    2010-01-01

    A concise, enantioselective synthesis of the potent aldose reductase inhibitor ranirestat (1) is reported. The synthesis was accomplished employing inexpensive, commercially available starting materials. A palladium-catalyzed asymmetric allylic alkylation (Pd-AAA) of malonate 4 was utilized as a key transformation to construct the tetrasubstituted chiral center in the target. PMID:20148531

  17. Total synthesis of atropurpuran

    PubMed Central

    Gong, Jing; Chen, Huan; Liu, Xiao-Yu; Wang, Zhi-Xiu; Nie, Wei; Qin, Yong

    2016-01-01

    Due to their architectural intricacy and biological significance, the synthesis of polycyclic diterpenes and their biogenetically related alkaloids have been the subject of considerable interest over the last few decades, with progress including the impressive synthesis of several elusive targets. Despite tremendous efforts, conquering the unique structural types of this large natural product family remains a long-term challenge. The arcutane diterpenes and related alkaloids, bearing a congested tetracyclo[5.3.3.04,9.04,12]tridecane unit, are included in these unsolved enigmas. Here we report a concise approach to the construction of the core structure of these molecules and the first total synthesis of (±)-atropurpuran. Pivotal features of the synthesis include an oxidative dearomatization/intramolecular Diels-Alder cycloaddition cascade, sequential aldol and ketyl-olefin cyclizations to assemble the highly caged framework, and a chemoselective and stereoselective reduction to install the requisite allylic hydroxyl group in the target molecule. PMID:27387707

  18. Total synthesis of (+/-)-chartelline C.

    PubMed

    Baran, Phil S; Shenvi, Ryan A

    2006-11-01

    The first total synthesis of (+/-)-chartelline C in a concise 10-step sequence is reported. Highlights of the completion of this decades-old puzzle include (1) chemo- and position-selective installation of the heteroaromatic halogens, (2) halogen-sparing monoreduction of an alkyne linker, (3) a simple strategy for placement of the sensitive beta-chloroenamide, (4) an unusually facile thermolysis of a vinyl carboxylic acid, and (5) a powerful ring contraction whose potential utility in heterocyclic chemistry merits further investigation.

  19. Concise synthesis of the A/BCD-ring fragment of gambieric acid A

    PubMed Central

    Fuwa, Haruhiko; Fukazawa, Ryo; Sasaki, Makoto

    2014-01-01

    Gambieric acid A (GAA) and its congeners belong to the family of marine polycyclic ether natural products. Their highly complex molecular architecture and unique biological activities have been of intense interest within the synthetic community. We have previously reported the first total synthesis, stereochemical reassignment, and preliminary structure–activity relationships of GAA. Here we disclose a concise synthesis of the A/BCD-ring fragment of GAA. The synthesis started from our previously reported synthetic intermediate that represents the A/B-ring. The C-ring was synthesized via an oxiranyl anion coupling and a 6-endo cyclization, and the D-ring was forged by means of an oxidative lactonization and subsequent palladium-catalyzed functionalization of the lactone ring. In this manner, the number of linear synthetic steps required for the construction of the C- and D-rings was reduced from 22 to 11. PMID:25629027

  20. A concise synthesis of optically active solanacol, the germination stimulant for seeds of root parasitic weeds.

    PubMed

    Kumagai, Hiroshi; Fujiwara, Mami; Kuse, Masaki; Takikawa, Hirosato

    2015-01-01

    Solanacol, isolated from tobacco (Nicotiana tabacum L.), is a germination stimulant for seeds of root parasitic weeds. A concise synthesis of optically active solanacol has been achieved by employing enzymatic resolution as a key step.

  1. A symmetry-based concise formal synthesis of platencin, a novel lead against "superbugs".

    PubMed

    Ghosh, Arun K; Xi, Kai

    2009-01-01

    Quick access: A concise and efficient formal synthesis of platencin has been accomplished in nine steps from a commercially available starting material. The synthesis utilized only one protecting group. The base-catalyzed Michael cyclization of precursor 1 afforded the key diketone 2, which was converted into the desired core structure 4 via the radical intermediate 3.

  2. A Concise Synthesis of Berkelic Acid Inspired by Combining the Natural Products Spicifernin and Pulvilloric Acid

    PubMed Central

    Bender, Christopher F.; Yoshimoto, Francis K.; Paradise, Christopher L.; De Brabander, Jef K.

    2009-01-01

    We describe a concise synthesis of the structurally novel fungal extremophile metabolite berkelic acid – an effort leading to an unambiguous assignment of C22 stereochemistry. Our synthetic approach was inspired by the recognition that berkelic acid displays structural characteristics reminiscent of two other fungal metabolites, spicifernin and pulvilloric acid. Based on this notion, we executed a synthesis that features a Ag-catalyzed cascade dearomatization-cycloisomerization-cycloaddition sequence to couple two natural product inspired fragments. Notably, a spicifernin-like synthon was prepared with defined C22 stereochemistry in seven steps and three purifications (24–28% overall yield). A potentially useful anti-selective conjugate propargylation reaction was developed to introduce the vicinal stereodiad. An enantioconvergent synthesis of the other coupling partner, the aromatic precursor to pulvilloric acid methyl ester, was achieved in eight steps and 48% overall yield. The total synthesis of berkelic acid and its C22 epimer was thus completed in 10 steps longest linear sequence and 11–27% overall yield. PMID:19722648

  3. Concise Total Syntheses of the Lycopodium Alkaloids (±)-Nankakurines A and B via Luciduline

    PubMed Central

    Cheng, Xiayun; Waters, Stephen P.

    2009-01-01

    Total syntheses of the Lycopodium alkaloids nankakurines A and B have been accomplished in 6 and 7 steps, respectively, via a sequence that passes through a third Lycopodium alkaloid, luciduline, and forgoes the use of protecting groups on nitrogen. Key features include a short preparation of luciduline followed by a concise and stereoselective aminoallylation/ring-closing metathesis protocol to fashion the spiropiperidine ring common to nankakurines A and B. PMID:20014779

  4. Total Synthesis of (-)-Conolutinine.

    PubMed

    Feng, Xiangyang; Jiang, Guangde; Xia, Zilei; Hu, Jiadong; Wan, Xiaolong; Gao, Jin-Ming; Lai, Yisheng; Xie, Weiqing

    2015-09-18

    The first enantioselective synthesis of (-)-conolutinine was achieved in 10 steps. The synthesis featured a catalytic asymmetric bromocyclization of tryptamine to forge the tricycle intermediate. Hydration of an alkene catalyzed by Co(acac)2 was also employed as a key step to diastereoselectively introduce the tertiary alcohol moiety. The absolute configuration of (-)-conolutinine was established to be (2S,5aS,8aS,13aR) based on this asymmetric total synthesis.

  5. Concise large-scale synthesis of psilocin and psilocybin, principal hallucinogenic constituents of "magic mushroom".

    PubMed

    Shirota, Osamu; Hakamata, Wataru; Goda, Yukihiro

    2003-06-01

    The concise large-scale syntheses of psilocin (1) and psilocybin (2), the principal hallucinogenic constituents of "magic mushroom", were achieved without chromatographic purification. The key step in the synthesis of 2 was the isolation of the dibenzyl-protected intermediate (7) as a zwitterionic derivative (8), which was completely identified by means of 2D NMR analyses.

  6. Total Synthesis of Kopsinine

    PubMed Central

    Xie, Jian; Wolfe, Amanda L.; Boger, Dale L.

    2013-01-01

    The use of a powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of an 1,3,4-oxadiazole in the divergent total synthesis of kopsinine (1), featuring an additional unique SmI2-promoted transannular cyclization reaction for formation of the bicyclo[2.2.2]octane central to its hexacyclic ring system, is detailed. PMID:23391149

  7. Total synthesis and biological investigation of (-)-promysalin.

    PubMed

    Steele, Andrew D; Knouse, Kyle W; Keohane, Colleen E; Wuest, William M

    2015-06-17

    Compounds that specifically target pathogenic bacteria are greatly needed, and identifying the method by which they act would provide new avenues of treatment. Herein we report the concise, high-yielding total synthesis (eight steps, 35% yield) of promysalin, a natural product that displays antivirulence phenotypes against pathogenic bacteria. Guided by bioinformatics, four diastereomers were synthesized, and the relative and absolute stereochemistries were confirmed by spectral and biological analysis. Finally, we show for the first time that promysalin displays two antivirulence phenotypes: the dispersion of mature biofilms and the inhibition of pyoverdine production, hinting at a unique pathogenic-specific mechanism of action.

  8. Total synthesis of clostrubin

    PubMed Central

    Yang, Ming; Li, Jian; Li, Ang

    2015-01-01

    Clostrubin is a potent antibiotic against methicillin- and vancomycin-resistant bacteria that was isolated from a strictly anaerobic bacterium Clostridium beijerinckii in 2014. This polyphenol possesses a fully substituted arene moiety on its pentacyclic scaffold, which poses a considerable challenge for chemical synthesis. Here we report the first total synthesis of clostrubin in nine steps (the longest linear sequence). A desymmetrization strategy is exploited based on the inherent structural feature of the natural product. Barton–Kellogg olefination forges the two segments together to form a tetrasubstituted alkene. A photo-induced 6π electrocyclization followed by spontaneous aromatization constructs the hexasubstituted B ring at a late stage. In total, 200 mg of clostrubin are delivered through this approach. PMID:25759087

  9. Total synthesis of teixobactin

    NASA Astrophysics Data System (ADS)

    Jin, Kang; Sam, Iek Hou; Po, Kathy Hiu Laam; Lin, Du'an; Ghazvini Zadeh, Ebrahim H.; Chen, Sheng; Yuan, Yu; Li, Xuechen

    2016-08-01

    To cope with the global bacterial multidrug resistance, scientific communities have devoted significant efforts to develop novel antibiotics, particularly those with new modes of actions. Teixobactin, recently isolated from uncultured bacteria, is considered as a promising first-in-class drug candidate for clinical development. Herein, we report its total synthesis by a highly convergent Ser ligation approach and this strategy allows us to prepare several analogues of the natural product.

  10. Enzymatic synthesis of C-11 formaldehyde: concise communication

    SciTech Connect

    Slegers, G.; Lambrecht, R.H.D.; Vandewalle, T.; Meulewaeter, L.; Vandecasteele, C.

    1984-03-01

    An enzymatic synthesis of C-11 formaldehyde from C-11 methanol is presented, with immobilized alcohol oxidase and catalase: a rapid, simple procedure, with a high and reproducible yield. Carbon-11 methanol is oxidized to C-11 formaldehyde by passage over a column on which the enzymes alcohol oxidase and catalase are immobilized. The catalase increases reaction velocity by recycling the oxygen, and prevents destruction of the alcohol oxidase by eliminating the excess of hydrogen peroxide. The yield of the enzyme-catalyzed oxidation was 80-95%. A specific activity of 400-450 mCi/..mu..mole was obtained at EOB + 20 min. Various immobilization techniques and the optimal reaction conditions of the immobilized enzymes are investigated.

  11. Development of a Concise Synthesis of Ouabagenin and Hydroxylated Corticosteroid Analogues

    PubMed Central

    2016-01-01

    The natural product ouabagenin is a complex cardiotonic steroid with a highly oxygenated skeleton. This full account describes the development of a concise synthesis of ouabagenin, including the evolution of synthetic strategy to access hydroxylation at the C19 position of a steroid skeleton. In addition, approaches to install the requisite butenolide moiety at the C17 position are discussed. Lastly, methodology developed in this synthesis has been applied in the generation of novel analogues of corticosteroid drugs bearing a hydroxyl group at the C19 position. PMID:25594682

  12. Total synthesis of haliclamide.

    PubMed

    Gahalawat, Suraksha; Pandey, Satyendra Kumar

    2016-10-04

    A stereoselective approach for the synthesis of haliclamide 1, a marine natural product, has been developed. The notable features of our synthesis include MacMillan cross aldol, Mitsunobu inversion, Yamaguchi-Hirao alkylation, Steglich esterification and macrolactamization reactions and the Corey-Fuchs protocol as the key steps.

  13. Quaternary Stereogenic Centers through Enantioselective Heck Arylation of Acyclic Olefins with Aryldiazonium Salts: Application in a Concise Synthesis of (R)-Verapamil.

    PubMed

    Oliveira, Caio C; Pfaltz, Andreas; Correia, Carlos Roque Duarte

    2015-11-16

    We describe herein a highly regio- and enantioselective Pd-catalyzed Heck arylation of unactivated trisubstituted acyclic olefins to provide all-carbon quaternary stereogenic centers. Chiral N,N ligands of the pyrimidine- and pyrazino-oxazoline class were developed for that purpose, providing the desired products in good to high yields with enantiomeric ratios up to >99:1. Both linear and branched substituents on the olefins were well-tolerated. The potential of this new method is demonstrated by the straightforward synthesis of several O-methyl lactols and lactones containing quaternary stereocenters, together with a concise enantioselective total synthesis of the calcium channel blocker verapamil.

  14. The total synthesis of psymberin.

    PubMed

    Huang, Xianhai; Shao, Ning; Palani, Anandan; Aslanian, Robert; Buevich, Alexei

    2007-06-21

    The total synthesis of a new member of the pederin family of natural products, psymberin 1, was accomplished. Using a recently reported novel and efficient PhI(OAc)2 mediated oxidative entry to 2-(N-acylaminal)-substituted tetrahydropyrans as the key step, this total synthesis was executed in a convergent and efficient manner. The longest linear sequence of this synthesis was 22 steps starting from known 6.

  15. Total Synthesis of Propolisbenzofuran B†

    PubMed Central

    Jones, Brian T.; Avetta, Christopher T.; Thomson, Regan J.

    2014-01-01

    The first total synthesis of propolisbenzofuran B, a bioactive natural product isolated from honeybee propolis resin, is reported. The convergent synthesis makes use of a silicon-tether controlled oxidative ketone–ketone cross-coupling and a novel benzofuran-generating cascade reaction to deliver the core structure of the natural product from readily prepared precursors. PMID:24976944

  16. Stereocontrolled total synthesis of (+)-vincristine

    PubMed Central

    Kuboyama, Takeshi; Yokoshima, Satoshi; Tokuyama, Hidetoshi; Fukuyama, Tohru

    2004-01-01

    An efficient total synthesis of (+)-vincristine has been accomplished through a stereoselective coupling of demethylvindoline and the eleven-membered carbomethoxyverbanamine presursor. Demethylvindoline was prepared by oxidation of 17-hydroxy-11-methoxytabersonine, followed by regioselective acetylation with mixed anhydride method. Although an initial attempt of coupling by using demethylvindoline formamide was not successful and resulted in recovery of the starting compounds, the reaction using demethylvindoline took place smoothly to furnish the desired bisindole product with the correct stereochemistry at C18′. After formation of the piperidine ring by sequential removal of the protective groups and intramolecular nucleophilic cyclization, the total synthesis of vincristine was completed by formylation of N1. PMID:15141084

  17. Total Synthesis of (+)-Superstolide A

    PubMed Central

    Tortosa, Mariola; Yakelis, Neal A.; Roush, William R.

    2009-01-01

    A convergent and highly stereocontrolled total synthesis of the cytotoxic macrolide (+)-superstolide A is described. Key features of this synthesis include the use of bimetallic linchpin 36b for uniting the C(1)-C(15) (43) and the C(20)-C(27) (38) fragments of the natural product, a late-stage Suzuki macrocyclization of 49, and a highly diastereoselective transannular Diels-Alder reaction of macrocyclic octanene 4. In contrast, the intramolecular Diels-Alder reaction of pentaenal 5 provided the desired cycloadduct with lower stereoselectivity (6:1:1). PMID:18956845

  18. Total synthesis of (−)-dihydroprotolichesterenic acid via diastereoselective conjugate addition to chiral fumarates

    PubMed Central

    Hethcox, J. Caleb; Shanahan, Charles S.; Martin, Stephen F.

    2013-01-01

    A diastereoselective conjugate addition of a variety of monoorganocuprates, Li[RCuI], to chiral fumarates to provide funtionalized succinates has been developed. The utility of this reaction is demonstrated in a concise total synthesis of (−)-dihydroprotolichesterenic acid that required only four steps and proceeded in an overall 31% yield. PMID:23539490

  19. Total synthesis of atrochamins F, H, I, and J through cascade reactions

    PubMed Central

    Nicolaou, K. C.; Lister, Troy; Denton, Ross M.; Gelin, Christine F.

    2008-01-01

    A concise and efficient cascade-based total synthesis of artochamins F, H, I, and J is described. The potential biogenetic connection between artochamin F, or a derivative thereof, and artochamins H, I, and J, through an unusual formal [2+2] cycloaddition process, was shown to be feasible. An alternative mechanism for this transformation is also proposed. PMID:19461992

  20. Karlotoxin synthetic studies: concise synthesis of a C(42–63) B-ring tetrahydropyran fragment

    PubMed Central

    Tomioka, Takashi; Takahashi, Yusuke; Maejima, Toshihide; Yabe, Yuki; Iwata, Hiroki; Hamann, Mark T.

    2013-01-01

    Starting from natural D-mannose, a C(42–63) B-ring tetrahydropyran fragment in karlotoxin 2 has been prepared via a common THP intermediate in a concise manner. E-selective Julia–Kocienski olefination efficiently assembled a C(51–63) chlorodiene subunit and a C(42–50) tetrahydropyran segment. PMID:24376284

  1. Total chemical synthesis of crambin.

    PubMed

    Bang, Duhee; Chopra, Neeraj; Kent, Stephen B H

    2004-02-11

    Crambin is a small (46 amino acids) protein isolated from the seeds of the plant Crambe abyssinica. Crambin has been extensively used as a model protein for the development of advanced crystallography and NMR techniques and for computational folding studies. We set out to establish synthetic access to crambin. Initially, we synthesized the 46 amino acid polypeptide by native chemical ligation of two distinct sets of peptide segments (15 + 31 and 31 + 15 residues). The synthetic polypeptide chain folded in good yield to give native crambin containing three disulfide bonds. The chemically synthesized crambin was characterized by LC-MS and by 2D-NMR. However, the 31-residue peptide segments were difficult to purify, and this caused an overall low yield for the synthesis. To overcome this problem, we synthesized crambin by the native chemical ligation of three segments (15 + 16 + 15 residues). Total synthesis using the ligation of three segments gave more than a 10-fold increase in yield and a protein product of exceptionally high purity. This work demonstrates the efficacy of chemical protein synthesis by the native chemical ligation of three segments and establishes efficient synthetic access to the important model protein crambin for experimental studies of protein folding and stability.

  2. 11-Step Total Synthesis of Araiosamines

    PubMed Central

    2016-01-01

    A concise route to a small family of exotic marine alkaloids known as the araiosamines has been developed, and their absolute configuration has been assigned. The dense array of functionality, high polarity, and rich stereochemistry coupled with equilibrating topologies present an unusual challenge for chemical synthesis and an opportunity for innovation. Key steps involve the use of a new reagent for guanidine installation, a remarkably selective C–H functionalization, and a surprisingly simple final step that intersects a presumed biosynthetic intermediate. Synthetic araiosamines were shown to exhibit potency against Gram-positive and -negative bacteria despite a contrary report of no activity. PMID:27748593

  3. Total Synthesis and Study of Myrmicarin Alkaloids

    PubMed Central

    Ondrus, Alison E.

    2010-01-01

    The myrmicarins are a family of air and temperature sensitive alkaloids that possess unique structural features. Our concise enantioselective synthesis of the tricyclic myrmicarins enabled evaluation of a potentially biomimetic assembly of the complex members via direct dimerization of simpler structures. These studies revealed that myrmicarin 215B undergoes efficient and highly diastereoselective Brønsted acid-induced dimerization to generate a new heptacyclic structure, isomyrmicarin 430A. Mechanistic analysis demonstrated that heterodimerization between myrmicarin 215B and a conformationally restricted azafulvenium ion precursor afforded a functionalized isomyrmicarin 430A structure in a manner that was consistent with a highly efficient, non-concerted ionic process. Recent advancement in heterodimerization between tricyclic derivatives has enabled the preparation of strategically functionalized hexacyclic structures. The design and synthesis of structurally versatile dimeric compounds has greatly facilitated manipulation of these structures en route to more complex myrmicarin derivatives. PMID:19585010

  4. Total Synthesis of Mycolactones A and B

    PubMed Central

    Song, Fengbin; Fidanze, Steve; Benowitz, Andrew B.; Kishi, Yoshito

    2007-01-01

    First and second generation total syntheses of mycolactones A and B are reported. The first generation total synthesis unambiguously confirmed our earlier assignment of the relative and absolute stereochemistry of mycolactones A and B. Knowledge of the chemical properties of the mycolactones accumulated through the first generation total synthesis allowed us to implement several major improvements to the original synthesis, including: (1) optimizing the choice of protecting groups, (2) eliminating the unnecessary adjustment of protecting groups, and (3) improving the overall stereoselectivity and synthetic efficiency. The second generation total synthesis consists of 21 longest linear steps, with 8.8% overall yield. PMID:17940589

  5. Co(III)(salen)-catalyzed HKR of two stereocentered alkoxy- and azido epoxides: a concise enantioselective synthesis of (S,S)-reboxetine and (+)-epi-cytoxazone.

    PubMed

    Reddy, R Santhosh; Chouthaiwale, Pandurang V; Suryavanshi, Gurunath; Chavan, Vilas B; Sudalai, Arumugam

    2010-07-21

    The HKR of racemic syn- or anti- alkoxy- and azido epoxides catalyzed by Co(salen) complex affords a practical access to a series of enantioenriched syn- or anti- alkoxy- and azido epoxides and the corresponding 1,2-diols. This strategy has been successfully employed in the concise, enantioselective synthesis of bioactive molecules such as (S,S)-reboxetine and (+)-epi-cytoxazone.

  6. Total Synthesis of Amphidinolide E

    PubMed Central

    Va, Porino; Roush, William R.

    2008-01-01

    A convergent and highly stereocontrolled synthesis of amphidinolide E (1) has been accomplished. The synthesis features a highly diastereoselective (>20:1) BF3·Et2O promoted [3+2] annulation reaction between aldehyde 3 and allylsilane 4 to afford substituted tetrahydrofuran 2. PMID:17165709

  7. Total synthesis of Ivorenolide A following a base-induced elimination protocol.

    PubMed

    Mohapatra, Debendra K; Umamaheshwar, Gonela; Rao, R Nageshwar; Rao, T Srinivasa; R, Sudheer Kumar; Yadav, Jhillu S

    2015-02-20

    A concise and stereocontrolled first total synthesis of Ivorenolide A (1) is reported in 16 longest linear steps with a 13.4% overall yield starting from (+)-diethyl tartrate (DET). Key features are base-induced elimination protocol for the construction of chiral propargyl alcohols in both fragments, Pd-catalyzed cross-coupling of terminal acetylenes, and Shiina's 2-methyl-6-nitrobezoic anhydride (MNBA) mediated macrolactonization.

  8. Pyridone Annulation via Tandem Curtius Rearrangement/6π-Electrocyclization: Total Synthesis of (−)-Lyconadin C

    PubMed Central

    Cheng, Xiayun

    2013-01-01

    A concise, enantioselective total synthesis of the Lycopodium alkaloid (−)-lyconadin C was achieved in 12 steps and high overall yield. Key features include construction of a luciduline congener through Mannich-type cyclization and a one-pot, tandem Curtius rearrangement/6π-electrocyclization to fashion the 2-pyridone system of lyconadin C. PMID:23909645

  9. Concise and Practical Asymmetric Synthesis of a Challenging Atropisomeric HIV Integrase Inhibitor.

    PubMed

    Fandrick, Keith R; Li, Wenjie; Zhang, Yongda; Tang, Wenjun; Gao, Joe; Rodriguez, Sonia; Patel, Nitinchandra D; Reeves, Diana C; Wu, Jiang-Ping; Sanyal, Sanjit; Gonnella, Nina; Qu, Bo; Haddad, Nizar; Lorenz, Jon C; Sidhu, Kanwar; Wang, June; Ma, Shengli; Grinberg, Nelu; Lee, Heewon; Tsantrizos, Youla; Poupart, Marc-André; Busacca, Carl A; Yee, Nathan K; Lu, Bruce Z; Senanayake, Chris H

    2015-06-08

    A practical and efficient synthesis of a complex chiral atropisomeric HIV integrase inhibitor has been accomplished. The combination of a copper-catalyzed acylation along with the implementation of the BI-DIME ligands for a ligand-controlled Suzuki cross-coupling and an unprecedented bis(trifluoromethane)sulfonamide-catalyzed tert-butylation renders the synthesis of this complex molecule robust, safe, and economical. Furthermore, the overall synthesis was conducted in an asymmetric and diastereoselective fashion with respect to the imbedded atropisomer.

  10. Total synthesis of (-)-depyranoversicolamide B.

    PubMed

    Qin, Wen-Fang; Xiao, T; Zhang, D; Deng, Lin-Feng; Wang, Y; Qin, Y

    2015-11-18

    Starting from easily prepared (R)-C3-isoprenylated pyrroloindoline, the C3-isoprenylated indolyl diketopiperazine is prepared by an efficient reductive opening of the pyrrolo ring, and undergoes biomimetic Diels-Alder reaction to generate an anti-adduct as a sole stereoisomer. Oxidation of the indoline moiety to oxindole completes the synthesis of (-)-depyranoversicolamide B.

  11. Benzothiazines in Synthesis. A Formal Total Synthesis of Pseudopteroxazole

    PubMed Central

    Harmata, Michael; Cai, Zhengxin; Chen, Yugang

    2010-01-01

    A formal total synthesis of the antitubercular natural product was accomplished. This work was undertaken to address certain stereochemical problems in our initial synthesis. By using an ester group as a surrogate for a methyl group, we were able to intercept a key intermediate in our first synthesis with better selectivity and greater convergence than had previously been the case. PMID:19537725

  12. Total Synthesis of (±)- and (−)-Actinophyllic Acid

    PubMed Central

    Martin, Connor L.; Overman, Larry E.; Rohde, Jason M.

    2010-01-01

    Development of efficient sequences for the total syntheses of (±)-actinophyllic acid (rac-1) and (−)-actinophyllic acid (1) are described. The central step in these syntheses is the aza-Cope/Mannich reaction, which constructs the previously unknown hexacyclic ring system of actinophyllic acid in one step from much simpler tetracyclic precursors. The tetracyclic hexahydro-1,5-methano-1H-azocino[4,3-b]indole ketone rac-37 is assembled from o-nitrophenylacetic acid in four steps, with oxidative cyclization of a dienolate derivative of tricyclic precursor rac-35 being the central step. In the first-generation synthesis, this intermediate is transformed in two steps to homoallyl amine rac-43, whose formaldiminium derivative undergoes efficient aza-Cope/Mannich reaction to give pentacyclic ketone rac-44. In four additional steps, this intermediate is advanced to (±)-actinophyllic acid. The synthesis is streamlined by elaborating ketone rac-37 to β-hydroxyester intermediate rac-53, which is directly transformed to (±)-actinophyllic acid upon exposure to HCl and paraformaldehyde. This concise second-generation total synthesis of (±)-actinophyllic acid is realized in 22% overall yield from commercially available di-tert-butylmalonate and o-nitrophenylacetic acid by a sequence that proceeds by way of only six isolated intermediates. The first enantioselective total synthesis of (−)-actinophyllic acid (1) is accomplished by this direct sequence from tricyclic keto malonate (S)-35. Catalytic enantioselective reduction of α,β-unsaturated ketone 66 is the key step in the preparation of intermediate (S)-35 from the commercially available Boc-amino acid 65. Discussed also is the possibility that the aza-Cope/Mannich reaction might be involved in the biosynthesis of (−)-actinophyllic acid. PMID:20218696

  13. Total stereoselective synthesis of (+)-goniothalesdiol.

    PubMed

    Carreño, M Carmen; Hernández-Torres, Gloria; Urbano, Antonio; Colobert, Françoise

    2005-11-24

    [reaction: see text] The stereoselective synthesis of (+)-goniothalesdiol (1) was accomplished in nine steps starting from commercially available (-)-(2S,3S)-dimethyl D-tartrate (3). The key features were a completely diastereoselective reduction of a beta-ketosulfoxide to generate the stereogenic center at C-5 in 7 and formation of the 2,5-cis-substituted tetrahydrofuran ring in 10 from a stereoselective Et(3)SiH/TMSOTf-promoted reductive cyclization/deoxygenation.

  14. Total Synthesis of the Proposed Banyasin A

    NASA Astrophysics Data System (ADS)

    Gao, Xuguang; Ren, Qi; Choi, Sun; Xu, Zhengshuang; Ye, Tao

    2015-03-01

    The first total synthesis of four possible isomers of a molecule possessing the stereochemistry proposed for banyasin A is described. The structure synthesized appears to be different from that of the natural product.

  15. Development of A Concise Synthesis of (−)-Oseltamivir (Tamiflu®)

    PubMed Central

    Trost, Barry M.; Zhang, Ting

    2011-01-01

    We report a full account of our work towards the development of an eight-step synthesis of anti-influenza drug (−)-oseltamivir (Tamiflu®) from commercially available starting material. The final synthetic route proceeds with an overall yield of 30 %. Key transformations include a novel palladium-catalyzed asymmetric allylic alkylation reaction (Pd-AAA) as well as a rhodium-catalyzed chemo-, regio-, and stereoselective aziridination reaction. PMID:21365707

  16. Concise synthesis of two trisaccharides related to the cytotoxic triterpenoid saponin isolated from Pithecellobium lucidum.

    PubMed

    Verma, Priya; Mukhopadhyay, Balaram

    2009-12-14

    Convergent synthesis of two trisaccharides related to the cytotoxic triterpenoid saponin isolated from Pithecellobium lucidum is reported. The trisaccharides are synthesized in the form of their propargyl glycosides to leave the scope for further glycoconjugate formation through various multi-component reactions. A simple protecting group manipulation is followed using commercially available monosaccharides, D-glucose, D-xylose, D-fucose and L-rhamnose. H(2)SO(4) immobilized on silica is used as the Brönsted acid source for the N-iodosuccinimide-mediated thioglycoside activation for stereoselective glycosylations and proved to be a better choice over traditional Lewis acid catalysts such as TMSOTf and TfOH.

  17. A concise synthesis of (+)-batzelladine B from simple pyrrole-based starting materials

    NASA Astrophysics Data System (ADS)

    Parr, Brendan T.; Economou, Christos; Herzon, Seth B.

    2015-09-01

    Alkaloids, secondary metabolites that contain basic nitrogen atoms, are some of the most well-known biologically active natural products in chemistry and medicine. Although efficient laboratory synthesis of alkaloids would enable the study and optimization of their biological properties, their preparation is often complicated by the basicity and nucleophilicity of nitrogen, its susceptibility to oxidation, and its ability to alter reaction outcomes in unexpected ways--for example, through stereochemical instability and neighbouring group participation. Efforts to address these issues have led to the invention of a large number of protecting groups that temper the reactivity of nitrogen; however, the use of protecting groups typically introduces additional steps and obstacles into the synthetic route. Alternatively, the use of aromatic nitrogen heterocycles as synthetic precursors can attenuate the reactivity of nitrogen and streamline synthetic strategies. Here we use such an approach to achieve a synthesis of the complex anti-HIV alkaloid (+)-batzelladine B in nine steps (longest linear sequence) from simple pyrrole-based starting materials. The route uses several key transformations that would be challenging or impossible to implement using saturated nitrogen heterocycles and highlights some of the advantages of beginning with aromatic reagents.

  18. A concise synthesis of (+)-batzelladine B from simple pyrrole-based starting materials.

    PubMed

    Parr, Brendan T; Economou, Christos; Herzon, Seth B

    2015-09-24

    Alkaloids, secondary metabolites that contain basic nitrogen atoms, are some of the most well-known biologically active natural products in chemistry and medicine. Although efficient laboratory synthesis of alkaloids would enable the study and optimization of their biological properties, their preparation is often complicated by the basicity and nucleophilicity of nitrogen, its susceptibility to oxidation, and its ability to alter reaction outcomes in unexpected ways--for example, through stereochemical instability and neighbouring group participation. Efforts to address these issues have led to the invention of a large number of protecting groups that temper the reactivity of nitrogen; however, the use of protecting groups typically introduces additional steps and obstacles into the synthetic route. Alternatively, the use of aromatic nitrogen heterocycles as synthetic precursors can attenuate the reactivity of nitrogen and streamline synthetic strategies. Here we use such an approach to achieve a synthesis of the complex anti-HIV alkaloid (+)-batzelladine B in nine steps (longest linear sequence) from simple pyrrole-based starting materials. The route uses several key transformations that would be challenging or impossible to implement using saturated nitrogen heterocycles and highlights some of the advantages of beginning with aromatic reagents.

  19. Chemoselectivity: the mother of invention in total synthesis.

    PubMed

    Shenvi, Ryan A; O'Malley, Daniel P; Baran, Phil S

    2009-04-21

    IUPAC defines chemoselectivity as "the preferential reaction of a chemical reagent with one of two or more different functional groups", a definition that describes in rather understated terms the single greatest obstacle to complex molecule synthesis. Indeed, efforts to synthesize natural products often become case studies in the art and science of chemoselective control, a skill that nature has practiced deftly for billions of years but man has yet to master. Confrontation of one or perhaps a collection of functional groups that are either promiscuously reactive or stubbornly inert has the potential to unravel an entire strategic design. One could argue that the degree to which chemists can control chemoselectivity pales in comparison to the state of the art in stereocontrol. In this Account, we hope to illustrate how the combination of necessity and tenacity leads to the invention of chemoselective chemistry for the construction of complex molecules. In our laboratory, a premium is placed upon selecting targets that would be difficult or impossible to synthesize using traditional techniques. The successful total synthesis of such molecules demands a high degree of innovation, which in turn enables the discovery of new reactivity and principles for controlling chemoselectivity. In devising an approach to a difficult target, we choose bond disconnections that primarily maximize skeletal simplification, especially when the proposed chemistry is poorly precedented or completely unknown. By choosing such a strategy--rather than adapting an approach to fit known reactions--innovation and invention become the primary goal of the total synthesis. Delivery of the target molecule in a concise and convergent manner is the natural consequence of such endeavors, and invention becomes a prerequisite for success.

  20. Concise, stereodivergent and highly stereoselective synthesis of cis- and trans-2-substituted 3-hydroxypiperidines – development of a phosphite-driven cyclodehydration

    PubMed Central

    Westphal, Julia C

    2014-01-01

    Summary A concise (5 to 6 steps), stereodivergent, highly diastereoselective (dr up to >19:1 for both stereoisomers) and scalable synthesis (up to 14 g) of cis- and trans-2-substituted 3-piperidinols, a core motif in numerous bioactive compounds, is presented. This sequence allowed an efficient synthesis of the NK-1 inhibitor L-733,060 in 8 steps. Additionally, a cyclodehydration-realizing simple triethylphosphite as a substitute for triphenylphosphine is developed. Here the stoichiometric oxidized P(V)-byproduct (triethylphosphate) is easily removed during the work up through saponification overcoming separation difficulties usually associated to triphenylphosphine oxide. PMID:24605158

  1. A concise synthesis of (+)-batzelladine B from simple pyrrole-based starting materials

    PubMed Central

    Parr, Brendan T.; Economou, Christos; Herzon, Seth B.

    2015-01-01

    Alkaloids, secondary metabolites that contain basic nitrogen atoms, are some of the most well-known biologically active natural products in chemistry and medicine1. Although the efficient laboratory syntheses of alkaloids would enable researchers to study and optimize their biological properties,2 the basicity and nucleophilicity of nitrogen, its susceptibility to oxidation, and its ability to alter reaction outcomes in unexpected ways – for example, through stereochemical instability and neighboring group participation – complicates their preparation in the laboratory. Efforts to address these issues have led to the invention of a large number of protecting groups that temper the reactivity of nitrogen3; however, the use of protecting groups typically introduce additional steps and obstacles into the synthetic route. Alternatively, the use of aromatic nitrogen heterocycles as synthetic precursors can attenuate the reactivity of nitrogen and streamline synthetic strategies4. In this manuscript, we use such an approach to achieve a synthesis of the complex anti-HIV alkaloid (+)-batzelladine B in nine steps (longest-linear sequence) from simple pyrrole-based starting materials. The route employs several key transformations that would be challenging or impossible to implement using saturated nitrogen heterocycles and highlights some of the advantages conferred by the use of aromatic starting materials. PMID:26375010

  2. Total synthesis of zincophorin methyl ester.

    PubMed

    Defosseux, Magali; Blanchard, Nicolas; Meyer, Christophe; Cossy, Janine

    2003-10-30

    [reaction: see text]. A convergent total synthesis of the methyl ester of zincophorin, an ionophore antibiotic, has been realized relying on a diastereoselective titanium-mediated aldol coupling between the C1-C12 and C13-C25 subunits. The latter fragment was prepared by using a Carroll-Claisen rearrangement.

  3. Total Synthesis of Natural Products Using Hypervalent Iodine Reagents

    NASA Astrophysics Data System (ADS)

    Maertens, Gaetan; L'homme, Chloe; Canesi, Sylvain

    2014-12-01

    We present a review of natural product syntheses accomplished in our laboratory during the last five years. Each synthetic route features a phenol dearomatization promoted by an environmentally benign hypervalent iodine reagent. The dearomatizations demonstrate the “aromatic ring umpolung” concept, and involve stereoselective remodeling of the inert unsaturations of a phenol into a highly functionalized key intermediate that may contain a quaternary carbon center and a prochiral dienone system. Several new oxidative strategies were employed, including transpositions (1,3-alkyl shift and Prins-pinacol), a polycyclization, an ipso rearrangement, and direct nucleophilic additions at the phenol para position. Several alkaloids, heterocyclic compounds, and a polycyclic core have been achieved, including sceletenone (a serotonin reuptake inhibitor), acetylaspidoalbidine (an antitumor agent), fortucine (antiviral and antitumor), erysotramidine (curare-like effect), platensimycin (an antibiotic), and the main core of a kaurane diterpene (immunosuppressive agent and stimulator of apoptosis). These concise and in some cases enantioselective syntheses effectively demonstrate the importance of hypervalent iodine reagents in the total synthesis of bioactive natural products.

  4. Total synthesis of zyzzyanones A-D

    PubMed Central

    Nadkarni, Dwayaja H.; Murugesan, Srinivasan

    2013-01-01

    Zyzzyanones A-D is a group of biologically active marine alkaloids isolated from Australian marine sponge Zyzzya fuliginosa. They contain a unique bispyrroloquinone ring system as the core structure. The first total synthesis of all four zyzzyanones is described here. The synthesis of these alkaloids started from a previously known 6-benzylamino indole-4,7-quinone derivative and involves 6–7 steps. The key step in the synthesis involves the construction of a pyrrole ring in one step using a Mn(OAc)3 mediated oxidative free radical cyclization reaction of a 6-benzylamino indole-4,7-quinone derivative with 4-benzyloxyphenyl acetaldehyde diethyl acetal in CH3CN. PMID:23956468

  5. Total synthesis of palau'amine

    PubMed Central

    Namba, Kosuke; Takeuchi, Kohei; Kaihara, Yukari; Oda, Masataka; Nakayama, Akira; Nakayama, Atsushi; Yoshida, Masahiro; Tanino, Keiji

    2015-01-01

    Palau'amine has received a great deal of attention in the past two decades as an attractive synthetic target by virtue of its intriguing molecular architecture and significant immunosuppressive activity. Here we report the total synthesis of palau'amine characterized by the construction of an ABDE tetracyclic ring core including a trans-bicylo[3.3.0]octane skeleton at a middle stage of total synthesis. The ABDE tetracyclic ring core is constructed by a cascade reaction of a cleavage of the N–N bond, including simultaneous formation of imine, the addition of amide anion to the resulting imine (D-ring formation) and the condensation of pyrrole with methyl ester (B-ring formation) in a single step. The synthetic palau'amine is confirmed to exhibit excellent immunosuppressive activity. The present synthetic route has the potential to help elucidate a pharmacophore as well as the mechanistic details of immunosuppressive activity. PMID:26530707

  6. Total synthesis of (+)-antroquinonol and (+)-antroquinonol D.

    PubMed

    Sulake, Rohidas S; Chen, Chinpiao

    2015-03-06

    The first total synthesis of (+)-antroquinonol and (+)-antroquinonol D, two structurally unique quinonols with a sesquiterpene side chain, is described. The route features an iridium-catalyzed olefin isomerization-Claisen rearrangement reaction (ICR), lactonization, and Grubbs olefin metathesis. The requisite α,β-unsaturation was achieved via the selenylation/oxidation protocol and elimination of β-methoxy group to provide two natural products from a common intermediate.

  7. Total Synthesis of Hapalindoles J and U

    PubMed Central

    Rafferty, Ryan J.; Williams, Robert M.

    2011-01-01

    The total synthesis of D,L-hapalindoles J and U has been accomplished. Hapalindole J was prepared in 11% overall yield over eleven synthetic steps and hapalindole U was prepared in 25% overall yield over thirteen synthetic steps from commercially available materials. The route employs a novel silyl ether-based strategy for accessing the 6:5:6:6 ring system of the hapalindoles rapidly and in good yields. PMID:22126131

  8. Total Synthesis of (−)- and ent-(+)-Vindoline and Related Alkaloids

    PubMed Central

    Ishikawa, Hayato; Elliott, Gregory I.; Velcicky, Juraj; Choi, Younggi; Boger, Dale L.

    2008-01-01

    A concise 11-step total synthesis of (−)- and ent-(+)-vindoline (3) is detailed based on a unique tandem intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole inspired by the natural product structure, in which three rings and four C–C bonds are formed central to the characteristic pentacyclic ring system setting all six stereocenters and introducing essentially all the functionality found in the natural product in a single step. As key elements of the scope and stereochemical features of the reaction were defined, a series of related natural products of increasing complexity were prepared by total synthesis including both enantiomers of minovine (4), 4-desacetoxy-6,7-dihydrovindorosine (5), 4-desacetoxyvindorosine (6), and vindorosine (7) as well as N-methylaspidospermidine (11). Subsequent extensions of the approach provided both enantiomers of 6,7-dihydrovindoline (8), 4-desacetoxyvindoline (9), and 4-desacetoxy-6,7-dihydrovindoline (10). PMID:16895428

  9. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    NASA Astrophysics Data System (ADS)

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A--which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids.

  10. Biomimetically inspired asymmetric total synthesis of (+)-19-dehydroxyl arisandilactone A

    PubMed Central

    Han, Yi-Xin; Jiang, Yan-Long; Li, Yong; Yu, Hai-Xin; Tong, Bing-Qi; Niu, Zhe; Zhou, Shi-Jie; Liu, Song; Lan, Yu; Chen, Jia-Hua; Yang, Zhen

    2017-01-01

    Complex natural products are a proven and rich source of disease-modulating drugs and of efficient tools for the study of chemical biology and drug discovery. The architectures of complex natural products are generally considered to represent significant barriers to efficient chemical synthesis. Here we describe a concise and efficient asymmetric synthesis of 19-dehydroxyl arisandilactone A—which belongs to a family of architecturally unique, highly oxygenated nortriterpenoids isolated from the medicinal plant Schisandra arisanensis. This synthesis takes place by means of a homo-Michael reaction, a tandem retro-Michael/Michael reaction, and Cu-catalysed intramolecular cyclopropanation as key steps. The proposed mechanisms for the homo-Michael and tandem retro-Michael/Michael reactions are supported by density functional theory (DFT) calculation. The developed chemistry may find application for the synthesis of its other family members of Schisandraceae nortriterpenoids. PMID:28139648

  11. The first total synthesis of natural grenadamide.

    PubMed

    Avery, Thomas D; Culbert, Julie A; Taylor, Dennis K

    2006-01-21

    A concise, high yielding route to the naturally occurring enantiomer of grenadamide utilizing a 3,6-disubstituted 1,2-dioxine starting material is presented. The route allows for ease in synthesizing grenadamide derivatives varying at cyclopropyl carbons 2 and 3, with access to both enantiomers. Evidence for phosphorus-assisted deprotonation of 1,2-dioxines is also discussed.

  12. Enantioselective Total Synthesis of (+)-Lyngbyabellin M

    PubMed Central

    Pirovani, Rodrigo V.; Brito, Gilmar A.; Barcelos, Rosimeire C.; Pilli, Ronaldo A.

    2015-01-01

    Lyngbyabellin M is a non-ribosomal peptide synthetase/polyketide synthase derived metabolite isolated from the cyanobacterium M. bouillonii displaying thiazole rings and a distinct chlorinated octanoic acid chain. Its absolute configuration was proposed based on the comparison of its spectroscopic data with those of other representatives of this family of marine natural products, as well as degradation and derivatization studies. Here the first total synthesis of (+)-lyngbyabellin M is described based on the coupling of three key intermediates: two chiral thiazole moieties and an anti hydroxycarboxylic acid prepared stereoselectively via a boron enolate mediated aldol reaction directed by Masamune’s chiral auxiliary. PMID:26023838

  13. Total Synthesis of (-)-Salvinorin A.

    PubMed

    Line, Nathan J; Burns, Aaron C; Butler, Sean C; Casbohm, Jerry; Forsyth, Craig J

    2016-12-12

    Salvinorin A (1) is natural hallucinogen that binds the human κ-opioid receptor. A total synthesis has been developed that parlays the stereochemistry of l-(+)-tartaric acid into that of (-)-1 via an unprecedented allylic dithiane intramolecular Diels-Alder reaction to obtain the trans-decalin scaffold. Tsuji allylation set the C9 quaternary center and a late-stage stereoselective chiral ligand-assisted addition of a 3-titanium furan upon a C12 aldehyde/C17 methyl ester established the furanyl lactone moiety. The tartrate diol was finally converted into the C1,C2 keto-acetate.

  14. Total synthesis of incarviditone and incarvilleatone.

    PubMed

    Brown, Patrick D; Willis, Anthony C; Sherburn, Michael S; Lawrence, Andrew L

    2012-09-07

    The total synthesis of the racemic natural products (±)-incarviditone and (±)-incarvilleatone has been accomplished in three steps via biomimetic dimerization of (±)-rengyolone. Homochiral dimerization of (±)-rengyolone affords (±)-incarviditone through a domino oxa-Michael/Michael sequence. Heterochiral dimerization, involving a domino oxa-Michael/Michael/aldol reaction sequence, affords (±)-incarvilleatone. Single-crystal X-ray analysis of a derivative of (±)-incarviditone has resulted in revision of the originally proposed structure.

  15. Nineteen-Step Total Synthesis of (+)-Phorbol

    PubMed Central

    Kawamura, Shuhei; Chu, Hang; Felding, Jakob; Baran, Phil S.

    2016-01-01

    Phorbol, the flagship member of the tigliane diterpene family, has been known for over 80 years and has attracted attention from scores of chemists and biologists due to its intriguing chemical structure and the medicinal potential of phorbol esters.1 Access to useful quantities of phorbol and related analogs has relied upon isolation from natural sources and semisynthesis. Despite relentless efforts spanning 40 years, chemical synthesis has been unable to compete with these strategies due to its sheer complexity and unusual oxidation pattern. In fact, purely synthetic enantiopure phorbol has remained elusive and efforts on the synthetic biology side have not led to even the simplest members of this terpene family. Recently the chemical syntheses of eudesmanes,2 germacrenes,3 taxanes,4,5 and ingenanes6-8 have all benefited from a strategy inspired by the logic of two-phase terpene biosynthesis where powerful C–C bond constructions and C–H bond oxidations go hand in hand. In this manuscript, we show how a two-phase terpene synthesis strategy can be enlisted to achieve the first enantiospecific total synthesis of (+)-phorbol in only 19 steps from the abundant monoterpene (+)-3-carene. The purpose of this route is not to displace isolation/semisynthesis as a means to generate the natural product per se, but rather to enable access to analogs containing unique oxidation patterns that are otherwise inaccessible. PMID:27007853

  16. Enantioselective Total Synthesis of (−)-Acutumine

    PubMed Central

    Li, Fang; Tartakoff, Samuel S.; Castle, Steven L.

    2009-01-01

    An account of the total synthesis of the tetracyclic alkaloid (−)-acutumine is presented. A first-generation approach to the spirocyclic subunit was unsuccessful due to incorrect regioselectivity in a radical cyclization. However, this work spawned a second-generation strategy in which the spirocycle was fashioned via a radical–polar crossover reaction. This process merged an intramolecular radical conjugate addition with an enolate hydroxylation, and created two stereocenters with excellent diastereoselectivity. The reaction was promoted by irradiation with a sunlamp, and a ditin reagent was required for aryl radical formation. These facts suggest that the substrate may function as a sensitizer, thereby facilitating homolytic cleavage of the ditin reagent. The propellane motif of the target was then installed via annulation of a pyrrolidine ring onto the spirocycle. The sequence of reactions used included a phenolic oxidation, an asymmetric ketone allylation mediated by Nakamura’s chiral allylzinc reagent, an anionic oxy-Cope rearrangement, a one-pot ozonolysis–reductive amination, and a Lewis acid promoted cyclization of an amine onto an α,β-unsaturated dimethyl ketal. Further studies of the asymmetric ketone allylation demonstrated the ability of the Nakamura reagent to function well in a mismatched situation. A TiCl4-catalyzed regioselective methyl enol etherification of a 1,3-diketone completed the synthesis. PMID:19904909

  17. Copper-catalyzed amination of (bromophenyl)ethanolamine for a concise synthesis of aniline-containing analogues of NMDA NR2B antagonist ifenprodil.

    PubMed

    Bouteiller, Cédric; Becerril-Ortega, Javier; Marchand, Patrice; Nicole, Olivier; Barré, Louisa; Buisson, Alain; Perrio, Cécile

    2010-03-07

    An operationally simple and concise synthesis of anilinoethanolamines, as NMDA NR2B receptor antagonist ifenprodil analogues, was developed via a copper-catalyzed amination of the corresponding bromoarene. Coupling was achieved with linear primary alkylamines, alpha,omega-diamines, hexanolamine and benzophenone imine, as well as with aqueous ammonia, in good yields using CuI and N,N-diethylsalicylamide, 2,4-pentadione or 2-acetylcyclohexanone as catalytic systems. Amination with ethylene diamine was efficient even in the absence of an additive ligand, whereas no reaction occurred with ethanolamine whatever the conditions used. The anilinoethanolamines were evaluated as NR2B receptor antagonists in a functional inhibition assay. Aminoethylanilines displayed inhibition effects close to that of ifenprodil.

  18. Total synthesis of the Daphniphyllum alkaloid daphenylline

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoyong; Li, Yong; Deng, Jun; Li, Ang

    2013-08-01

    The Daphniphyllum alkaloids are a large class of natural products isolated from a genus of evergreen plants widely used in Chinese herbal medicine. They display a remarkable range of biological activities, including anticancer, antioxidant, and vasorelaxation properties as well as elevation of nerve growth factor. Daphenylline is a structurally unique member among the predominately aliphatic Daphniphyllum alkaloids, and contains a tetrasubstituted arene moiety mounted on a sterically compact hexacyclic scaffold. Herein, we describe the first total synthesis of daphenylline. A gold-catalysed 6-exo-dig cyclization reaction and a subsequent intramolecular Michael addition reaction, inspired by Dixon's seminal work, were exploited to construct the bridged 6,6,5-tricyclic motif of the natural product at an early stage, and the aromatic moiety was forged through a photoinduced olefin isomerization/6π-electrocyclization cascade followed by an oxidative aromatization process.

  19. Catalysis-based total synthesis of putative mandelalide A.

    PubMed

    Willwacher, Jens; Fürstner, Alois

    2014-04-14

    A concise synthesis of the putative structure assigned to the highly cytotoxic marine macrolide mandelalide A (1) is disclosed. Specifically, an iridium-catalyzed two-directional Krische allylation and a cobalt-catalyzed carbonylative epoxide opening served as convenient entry points for the preparation of the major building blocks. The final stages feature the first implementation of terminal-acetylene metathesis into natural product synthesis, which is remarkable as this class of substrates was beyond reach until very recently; key to success was the use of the highly selective molybdenum alkylidyne complex 42 as the catalyst. Although the constitution and stereochemistry of the synthetic samples are unambiguous, the spectra of 1 as well as of 11-epi-1 deviate from those of the natural product, which implies a subtle but deep-seated error in the original structure assignment.

  20. Total Synthesis and Biological Evaluation of Irciniastatin A (a.k.a. Psymberin) and Irciniastatin B.

    PubMed

    Uesugi, Shun-ichiro; Watanabe, Tsubasa; Imaizumi, Takamichi; Ota, Yu; Yoshida, Keisuke; Ebisu, Haruna; Chinen, Takumi; Nagumo, Yoko; Shibuya, Masatoshi; Kanoh, Naoki; Usui, Takeo; Iwabuchi, Yoshiharu

    2015-12-18

    Irciniastatin A (a.k.a. psymberin) and irciniastatin B are members of the pederin natural product family, which have potent antitumor activity and structural complexity. Herein, we describe a full account of our total synthesis of (+)-irciniastatin A and (-)-irciniastatin B. Our synthesis features the highly regioselective Eu(OTf)3-catalyzed, DTBMP-assisted epoxide ring opening reaction with MeOH, which enabled a concise synthesis of the C1-C6 fragment, extensive use of AZADO (2-azaadamantane N-oxyl) and its related nitroxyl radical/oxoammonium salt-catalyzed alcohol oxidation throughout the synthesis, and a late-stage assembly of C1-C6, C8-C16, and C17-C25 fragments. In addition, for the synthesis of (-)-irciniastatin B, we achieved the C11-selective control of the oxidation stage via regioselective deprotection and AZADO-catalyzed alcohol oxidation. The synthetic irciniastatins showed high levels of cytotoxic activity against mammalian cells. Furthermore, chemical footprinting experiments using synthetic compounds revealed that the binding site of irciniastatins is the E-site of the ribosome.

  1. Total synthesis of alkyl citrate natural products.

    PubMed

    Rizzacasa, Mark A; Sturgess, Dayna

    2014-03-07

    This review highlights the synthesis of members of the alkyl citrate family of natural products. The focus is on the stereoselective construction of the alkyl citrate moiety common to these compounds.

  2. Boron-selective biaryl coupling approach to versatile dibenzoxaborins and application to concise synthesis of defucogilvocarcin M.

    PubMed

    Sumida, Yuto; Harada, Ryu; Kato-Sumida, Tomoe; Johmoto, Kohei; Uekusa, Hidehiro; Hosoya, Takamitsu

    2014-12-05

    An efficient synthetic method for versatile dibenzoxaborins based on boron-selective Suzuki-Miyaura cross-coupling between o-borylphenols and aryl halides or triflates bearing a 1,8-diaminonaphthalene-protected o-boryl group is reported. A short synthesis of defucogilvocarcin M was achieved using the proposed method in combination with several other boron-mediated transformations.

  3. Concise formal synthesis of (-)-salinosporamide A (marizomib) using a regio- and stereoselective epoxidation and reductive oxirane ring-opening strategy.

    PubMed

    Ling, Taotao; Potts, Barbara C; Macherla, Venkat R

    2010-06-04

    Expedient access to a highly functionalized 2-pyrrolidinone (8), the gamma-lactam core of 20S proteasome inhibitor (-)-salinosporamide A (marizomib; NPI-0052; 1), using a regio- and stereoselective epoxide formation/reductive oxirane ring-opening strategy is presented. Notably, the sequential construction of the C-4, C-3, and C-2 stereocenters of 1 in a completely stereocontrolled fashion is a key feature of streamlining the synthesis of intermediate 12. A related strategy is also discussed.

  4. Enantioselective Total Synthesis of Tricyclic Myrmicarin Alkaloids

    PubMed Central

    Movassaghi, Mohammad; Ondrus, Alison E.

    2010-01-01

    An enantioselective gram-scale synthesis of a key dihydroindolizine intermediate for the preparation of myrmicarin alkaloids is described. Key transformations in this convergent approach include a stereospecific palladium–catalyzed N-vinylation of a pyrrole with a vinyl triflate, a copper–catalyzed enantioselective conjugate reduction of a β-pyrrolyl enoate, and a regioselective Friedel-Crafts reaction. The synthesis of optically active and isomerically pure samples of (4aR)-myrmicarins 215A, 215B, and 217 in addition to their respective C4a-epimers is presented. PMID:16178549

  5. Total synthesis of phorboxazole A via de novo oxazole formation: convergent total synthesis.

    PubMed

    Wang, Bo; Hansen, T Matthew; Weyer, Lynn; Wu, Dimao; Wang, Ting; Christmann, Mathias; Lu, Yingtao; Ying, Lu; Engler, Mary M; Cink, Russell D; Lee, Chi-Sing; Ahmed, Feryan; Forsyth, Craig J

    2011-02-09

    The phorboxazoles are mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic products that embody polyketide domains joined via two serine-derived oxazole moieties. Total syntheses of phorboxazole A and analogues have been developed that rely upon the convergent coupling of three fragments via biomimetically inspired de novo oxazole formation. First, the macrolide-containing domain of phorboxazole A was assembled from C3-C17 and C18-C30 building blocks via formation of the C16-C18 oxazole, followed by macrolide ring closure involving an intramolecular Still-Genarri olefination at C2-C3. Alternatively, a ring-closing metathesis process was optimized to deliver the natural product's (2Z)-acrylate with remarkable geometrical selectivity. The C31-C46 side-chain domain was then appended to the macrolide by a second serine amide-derived oxazole assembly. Minimal deprotection then afforded phorboxazole A. This generally effective strategy was then dramatically abbreviated by employing a total synthesis approach wherein both of the natural product's oxazole moieties were installed simultaneously. A key bis-amide precursor to the bis-oxazole was formed in a chemoselective one-pot, bis-amidation sequence without the use of amino or carboxyl protecting groups. Thereafter, both oxazoles were formed from the key C18 and C31 bis-N-(1-hydroxyalkan-2-yl)amide in a simultaneous fashion, involving oxidation-cyclodehydrations. This synthetic strategy provides a total synthesis of phorboxazole A in 18% yield over nine steps from C3-C17 and C18-C30 synthetic fragments. It illustrates the utility of a synthetic design to form a mixed non-ribosomal peptide synthase/polyketide synthase biosynthetic product based upon biomimetic oxazole formation initiated by amide bond formation to join synthetic building blocks.

  6. Studies Toward the Total Synthesis of Eletefine

    NASA Astrophysics Data System (ADS)

    Rugg, Kyle William

    Eletefine is a natural product of the stephaoxocane family of alkaloids. It possesses an isoquinoline moiety functionalized with three methoxy groups forming an electron rich aromatic system. Eletefine also possesses a ten-membered ring with a novel bridged vinyl ether functionality, and a remote chiral alcohol, making it a conspicuous and desirable target for the synthetic organic chemist. The plant from which eletefine was first isolated (Cissampelos glaberrima ) has been used in traditional medicine for the relief of symptoms from urinary tract infections and asthma. The proposed synthesis of eletefine is a convergent route which features a Sonogashira coupling and a novel alkyne hydration. Herein, methods towards the synthesis of the model system des-hydroxyeletefine are described, in particular attempts towards formation of the AB ring system of des-hydroxyeletefine, as well as C8-C9 bond formation methodology via acylation and Sonogashira coupling.

  7. The total synthesis of calcium atorvastatin.

    PubMed

    Dias, Luiz C; Vieira, Adriano S; Barreiro, Eliezer J

    2016-02-21

    A practical and convergent asymmetric route to calcium atorvastatin (1) is reported. The synthesis of calcium atorvastatin (1) was performed using the remote 1,5-anti asymmetric induction in the boron-mediated aldol reaction of β-alkoxy methylketone (4) with pyrrolic aldehyde (3) as a key step. Calcium atorvastatin was obtained from aldehyde (3) after 6 steps, with a 41% overall yield.

  8. cis-Decahydroquinolines via asymmetric organocatalysis: application to the total synthesis of lycoposerramine Z.

    PubMed

    Bradshaw, Ben; Luque-Corredera, Carlos; Bonjoch, Josep

    2013-01-18

    A concise synthesis of the Lycopodium alkaloid lycoposerramine Z is reported. Key to the strategy is a one-pot organocatalyzed Michael reaction followed by a domino Robinson annulation/intramolecular aza-Michael reaction promoted by LiOH, leading to enantiopure cis-decahydroquinolines.

  9. Recruiting the Students to Fight Cancer: Total Synthesis of Goniothalamin

    ERIC Educational Resources Information Center

    Nahra, Fady; Riant, Olivier

    2015-01-01

    A modified total synthesis of (S)-goniothalamin is described for an advanced course in organic chemistry. This experiment gives students an opportunity to handle organometallic reagents and perform an enzymatic kinetic resolution and a metathesis reaction, all in the same synthesis. Furthermore, students learn flame-drying techniques for the…

  10. Total Synthesis and Complete Structural Assignment of Thiocillin I

    PubMed Central

    2011-01-01

    The total synthesis of the thiopeptide antibiotic, thiocillin I, is described. This work unequivocally defines the full structure (constitution and configuration) of the natural product as 1. PMID:21446660

  11. Gold-catalyzed intramolecular allylic amination of 2-tosylaminophenylprop-1-en-3-ols. A concise synthesis of (+/-)-angustureine.

    PubMed

    Kothandaraman, Prasath; Foo, Shi Jia; Chan, Philip Wai Hong

    2009-08-21

    An efficient synthetic route to 1,2-dihydroquinolines that relies on AuCl(3)/AgSbF(6)-catalyzed intramolecular allylic amination of 2-tosylaminophenylprop-1-en-3-ols is described herein. Uniquely, the reactions were found to only proceed rapidly at room temperature in the presence of the gold and silver catalyst combination and produce the 1,2-dihydroquinoline products in yields of 40-91%. The method was shown to be applicable to a broad range of 2-tosylaminophenylprop-1-en-3-ols containing electron-withdrawing, electron-donating, and sterically demanding substrate combinations. The mechanism is suggested to involve activation of the alcohol substrate by the AuCl(3)/AgSbF(6) catalyst. This is followed by ionization of the starting material, which causes intramolecular nucleophilic addition of the sulfonamide unit to the allylic cation moiety and construction of the 1,2-dihydroquinoline. The utility of this N-heterocyclic ring forming strategy as a synthetic tool that makes use of alcohols as pro-electrophiles was exemplified by its application to the synthesis of the bioactive tetrahydroquinoline alkaloid (+/-)-angustureine.

  12. Synthesis of Polycyclic Benzofused Nitrogen Heterocycles via a Tandem Ynamide Benzannulation/Ring Closing Metathesis Strategy. Application in a Formal Total Synthesis of (+)-FR900482

    PubMed Central

    Mak, Xiao Yin; Crombie, Aimee L.; Danheiser, Rick L.

    2011-01-01

    A two-stage “tandem strategy” for the synthesis of benzofused nitrogen heterocycles is described that is particularly useful for the construction of systems with a high level of substitution on the benzenoid ring. The first stage in the strategy involves a benzannulation based on the reaction of cyclobutenones with ynamides. This cascade process proceeds via a sequence of four pericyclic reactions and furnishes a multiply substituted aniline derivative which can bear a variety of functionalized substituents at the position ortho to the nitrogen. In the second stage of the tandem strategy, ring closing metathesis generates the nitrogen heterocyclic ring. This two-step sequence provides efficient access to highly substituted dihydroquinolines, benzazepines, benzazocines, and related benzofused nitrogen heterocyclic systems. The application of this chemistry in a concise formal total synthesis of the anticancer agents (+)- FR900482 and (+)-FR66979 is described. PMID:21322545

  13. Samarium Diiodide-Mediated Reactions in Total Synthesis

    PubMed Central

    Nicolaou, K. C.; Ellery, Shelby P.; Chen, Jason S.

    2009-01-01

    Introduced by Henri Kagan more than three decades ago, samarium diiodide (SmI2) has found increasing applications in chemical synthesis. This single-electron reducing agent has been particularly useful in C–C bond formations, including those found in total synthesis endeavors. This Review highlights selected applications of SmI2 in total synthesis, with special emphasis on novel transformations and mechanistic considerations. The examples discussed are both illustrative of the power of this reagent in complex molecule construction and inspirational for the design of synthetic strategies toward such targets, both natural and designed. PMID:19714695

  14. Recent progress on the total synthesis of acetogenins from Annonaceae

    PubMed Central

    Li, Nianguang; Shi, Zhihao; Tang, Yuping; Chen, Jianwei

    2008-01-01

    Summary An overview of recent progress on the total synthesis of acetogenins from Annonaceae during the past 12 years is provided. These include mono-tetrahydrofurans, adjacent bis-tetrahydrofurans, nonadjacent bis-tetrahydrofurans, tri-tetrahydrofurans, adjacent tetrahydrofuran-tetrahydropyrans, nonadjacent tetrahydrofuran-tetrahydropyrans, mono-tetrahydropyrans, and acetogenins containing only γ-lactone. This review emphasizes only the first total synthesis of molecules of contemporary interest and syntheses that have helped to correct structures. In addition, some significant results on the novel synthesis and structure–activity relationship studies of annonaceous acetogenins are also introduced. PMID:19190742

  15. Total Synthesis of (+)-Condylocarpine, (+)-Isocondylocarpine, and (+)Tubotaiwine

    PubMed Central

    Martin, Connor L.; Nakamura, Seiichi; Otte, Ralf; Overman, Larry E.

    2010-01-01

    The first enantioselective total syntheses of indolealk aloids of the condylocarpine type are reported. (+)-Condylocarpine, (+)-isocondylocarpine, and (+)-tubotaiwine were prepared in high enantiomeric purity (er >99:1) from (1 S,5 R)-hexahydro-1,5-methano-1 H-azocino[4,3 -b]indole-12-one 7b by way of five or six isolated intermediates. PMID:21133399

  16. Total Synthesis Confirms the Molecular Structure Proposed for Oxidized Levuglandin D2.

    PubMed

    Cheng, Yu-Shiuan; Yu, Wenyuan; Xu, Yunfeng; Salomon, Robert G

    2017-02-24

    Levuglandins (LG)D2 and LGE2 are γ-ketoaldehyde levulinaldehyde derivatives with prostanoid side chains produced by spontaneous rearrangement of the endoperoxide intermediate PGH2 in the biosynthesis of prostaglandins. Covalent adduction of LGs with the amyloid peptide Aβ1-42 promotes formation of the type of oligomers that have been associated with neurotoxicity and are a pathologic hallmark of Alzheimer's disease. Within 1 min of their generation during the production of PGH2 by cyclooxygenation of arachidonic acid, LGs are sequestered by covalent adduction to proteins. In view of this high proclivity for covalent adduction, it is understandable that free LGs have never been detected in vivo. Recently a catabolite, believed to be an oxidized derivative of LGD2 (ox-LGD2), a levulinic acid hydroxylactone with prostanoid side chains, was isolated from the red alga Gracilaria edulis and detected in mouse tissues and in the lysate of phorbol-12-myristate-13-acetate-treated THP-1 cells incubated with arachidonic acid. Such oxidative catabolism of LGD2 is remarkable because it must be outstandingly efficient to prevail over adduction with proteins and because it requires a unique dehydrogenation. We now report a concise total synthesis that confirms the molecular structure proposed for ox-LGD2. The synthesis also produces ox-LGE2, which readily undergoes allylic rearrangement to Δ(6)-ox-LGE2.

  17. Asymmetric Total Synthesis of Ieodomycin B

    PubMed Central

    Lin, Shuangjie; Zhang, Jianting; Zhang, Zhibin; Xu, Tianxiang; Huang, Shuangping; Wang, Xiaoji

    2017-01-01

    Ieodomycin B, which shows in vitro antimicrobial activity, was isolated from a marine Bacillus species. A novel asymmetric total synthetic approach to ieodomycin B using commercially available geraniol was achieved. The approach involves the generation of 1,3-trans-dihydroxyl at C-3 and C-5 positions via a Crimmins-modified Evans aldol reaction and a chelation-controlled Mukaiyama aldol reaction of a p-methoxybenzyl-protected aldehyde, as well as the generation of a lactone ring in a deprotection–lactonization one-pot reaction. PMID:28106760

  18. Gas extrusion in natural products total synthesis.

    PubMed

    Jiang, Xuefeng; Shi, Lei; Liu, Hui; Khan, Akbar H; Chen, Jason S

    2012-11-14

    The thermodynamic driving force from the release of a gaseous molecule drives a broad range of synthetic transformations. This review focuses on gas expulsion in key reactions within natural products total syntheses, selected from the past two decades. The highlighted examples survey transformations that generate sulfur dioxide, carbon dioxide, carbonyl sulfide, or nitrogen through polar, radical, pericyclic, photochemical, or organometallic mechanisms. Of particular interest are applications wherein the gas extrusion enables formation of a synthetically challenging motif, such as an unusually hindered or strained bond.

  19. Total Synthesis of (−)-4,8,10-Tridesmethyl Telithromycin

    PubMed Central

    Velvadapu, Venkata; Paul, Tapas; Wagh, Bharat; Glassford, Ian; DeBrosse, Charles; Andrade, Rodrigo B.

    2011-01-01

    Novel sources of antibiotics are required to address the serious problem of antibiotic resistance. Telithromycin (2) is a third-generation macrolide antibiotic prepared from erythromycin (1) and used clinically since 2004. Herein we report the details of our efforts that ultimately led to the total synthesis of (−)-4,8,10-tridesmethyl telithromycin (3) wherein methyl groups have been replaced with hydrogens. The synthesis of desmethyl macrolides has emerged as a novel strategy for preparing bioactive antibiotics. PMID:21815685

  20. Total synthesis of steroids and heterosteroids from BISTRO.

    PubMed

    Ibrahim-Ouali, Malika

    2015-06-01

    Due to their high profile biological activity, the steroids are among the most important secondary metabolites. A review of literature on the total synthesis of steroids starting from BISTRO (1,8-bis(trimethylsilyl)-2,6-octadiene) is presented.

  1. Total Synthesis of the Galbulimima Alkaloid (−)-GB17**

    PubMed Central

    Larson, Reed T.; Clift, Michael D.

    2012-01-01

    A Tale of Two Michaels The first enantioselective total synthesis of (−)-GB17 is reported. Construction of this unique naphthoquinolizinone skeleton was achieved by two stereoselective intramolecular Michael additions. The first of these Michael additions is controlled by the use of a chiral organocatalyst, while the second cyclization is under substrate control and proceeds with concomitant lactam formation. PMID:22287499

  2. Total synthesis of the proposed structure of astakolactin

    PubMed Central

    Mameda, Keisuke; Fujishiro, Moe; Yoshinaga, Yutaka

    2014-01-01

    Summary The first total synthesis of the proposed structure of astakolactin, a sesterterpene metabolite isolated from the marine sponge Cacospongia scalaris, has been achieved, mainly featuring Johnson–Claisen rearrangement, asymmetric Mukaiyama aldol reaction and MNBA-mediated lactonization. PMID:25383112

  3. Total synthesis of zincophorin and its methyl ester.

    PubMed

    Defosseux, Magali; Blanchard, Nicolas; Meyer, Christophe; Cossy, Janine

    2004-07-09

    A total synthesis of the naturally occurring ionophore zincophorin has been realized. The route features an intramolecular oxymercuration of a cyclopropanemethanol and a Carroll-Claisen rearrangement for the respective elaboration of the C1-C12 and C13-C25 subunits, which have been assembled by using a highly diastereoselective titanium-mediated aldol condensation.

  4. Total Synthesis of Gelsenicine via a Catalyzed Cycloisomerization Strategy

    PubMed Central

    Newcomb, Eric T.; Knutson, Phil C.; Pedersen, Blaine A.; Ferreira, Eric M.

    2016-01-01

    The first total synthesis of (±)-gelsenicine is reported. The synthetic route is highly efficient (13 steps), featuring (1) a pivotal metal-catalyzed isomerization/rearrangement process that forges the central core of the molecule and (2) two facile C–N bond-forming steps that establish the flanking heterocycles. PMID:26716762

  5. Total synthesis of (±)-maistemonine and (±)-stemonamide.

    PubMed

    Chen, Zhi-Hua; Zhang, Yong-Qiang; Chen, Zhi-Min; Tu, Yong-Qiang; Zhang, Fu-Min

    2011-02-14

    The first total synthesis of polycyclic Stemona alkaloid maistemonine has been achieved. The efficient approach features a stereoselective intramolecular Schmidt reaction, a ketone-ester condensation, and a Reformatsky reaction. Additionally, another Stemona alkaloid stemonamide was divergently synthesized from a common intermediate.

  6. Total synthesis of putative 11-epi-lyngbouilloside aglycon

    NASA Astrophysics Data System (ADS)

    Kolleth, Amandine; Gebauer, Julian; El Marrouni, Abdellatif; Lebeuf, Raphael; Prevost, Celine; Brohan, Eric; Arseniyadis, Stellios; Cossy, Janine

    2016-08-01

    We report here the total synthesis of 11-epi-lyngbouilloside aglycon. Our strategy features a Boeckman-type esterification followed by a RCM to form the 14-membered ring macrolactone and a late-stage side chain introduction via a Wittig olefination. Overall, the final product was obtained in 20 steps and 2% overall yield starting from commercially available 3-methyl-but-3-enol. Most importantly, the strategy employed is versatile enough to eventually allow us to complete the synthesis of the natural product and irrevocably confirm its structure.

  7. Studies for the Total Synthesis of Amphidinolide P†

    PubMed Central

    Williams, David R.; Myers, Brian J.; Mi, Liang; Binder, Randall J.

    2013-01-01

    A convergent, enantiocontrolled total synthesis of the 15-membered macrolide, amphidinolide P, is described. The synthesis utilizes three nonracemic components for an efficient assembly of the macrolactone in 12 steps via the longest linear pathway. Key developments include studies of the Hosomi–Sakurai reaction for the formation of the C6–C7 bond, a “ligandless” palladium-mediated Stille cross-coupling of the vinylic stannane 4 and the alkenyl bromide 5 to produce a highly functionalized dienol, and a thermally induced, intramolecular lactonization via the late-stage formation of an intermediate α-acylketene. PMID:23590535

  8. Total Synthesis of Putative 11-epi-Lyngbouilloside Aglycon

    PubMed Central

    Kolleth, Amandine; Gebauer, Julian; ElMarrouni, Abdelatif; Lebeuf, Raphael; Prévost, Céline; Brohan, Eric; Arseniyadis, Stellios; Cossy, Janine

    2016-01-01

    We report here the total synthesis of 11-epi-lyngbouilloside aglycon. Our strategy features a Boeckman-type esterification followed by a RCM to form the 14-membered ring macrolactone and a late-stage side chain introduction via a Wittig olefination. Overall, the final product was obtained in 20 steps and 2% overall yield starting from commercially available 3-methyl-but-3-enol. Most importantly, the strategy employed is versatile enough to eventually allow us to complete the synthesis of the natural product and irrevocably confirm its structure. PMID:27556024

  9. Total synthesis of (+)-herboxidiene/GEX 1A.

    PubMed

    Gómez-Palomino, Alejandro; Pellicena, Miquel; Krämer, Katrina; Romea, Pedro; Urpí, Fèlix; Aullón, Gabriel; Padrón, José M

    2017-02-22

    A total synthesis of (+)-herboxidiene/GEX 1A has been accomplished from (R)- and (S)-lactate esters in a highly efficient manner. Key steps of the synthesis involve substrate-controlled titanium-mediated aldol reactions from chiral lactate-derived ethyl ketones, an oxa-Michael cyclization, an Ireland-Claisen rearrangement, and a Suzuki coupling. Furthermore, computational studies of the oxa-Michael reaction have unveiled the dramatic influence of intramolecular hydrogen bonds on the stereochemical outcome of such cyclizations, whereas biological analyses have clearly proved the important cytoxicity of (+)-herboxidiene/GEX 1A.

  10. Perylenequinone natural products: evolution of the total synthesis of cercosporin.

    PubMed

    Morgan, Barbara J; Mulrooney, Carol A; Kozlowski, Marisa C

    2010-01-01

    The evolution of the first total synthesis of perylenequinone cercosporin is described. The key features developed during these efforts include a biscuprate epoxide alkylation, installation of the methylidene acetal, palladium-catalyzed O-arylation, and C3,C3'-decarbonylation. Due to the rapid atropisomerization of the helical axis of cercosporin (at 37 degrees C), the sequencing of these transformations was critical. To this end, the developed protocol enabled the formation of a key advanced intermediate on preparative scale absent any atropisomerization. Furthermore, the O-arylation proved to be general, and the strategy was used in an improved synthesis of a helical chiral perylenequinone structure.

  11. Studies toward total synthesis of divergolides C and D.

    PubMed

    Rasapalli, Sivappa; Jarugumilli, Gopalakrishna; Yarrapothu, Gangadhara Rao; Golen, James A; Rheingold, Arnold L

    2013-04-05

    A facile synthesis of the western segment of divergolides C and D has been developed. Exploratory studies with two disconnections, i.e., C4-C5 vs C5-C6, for elaboration of the ansa bridge to the sterically demanding hexasubstituted naphthalenic aromatic core using a chiral synthon assembled from D-glucose via a stereoselective Johnson orthoester rearrangement is described. The studies set the stage for the completion of the total synthesis of the biologically important novel ansamycins, divergolides C and D, and their structural congeners.

  12. Asymmetric total synthesis of Apocynaceae hydrocarbazole alkaloids (+)-deethylibophyllidine and (+)-limaspermidine.

    PubMed

    Du, Ji-Yuan; Zeng, Chao; Han, Xiao-Jie; Qu, Hu; Zhao, Xian-He; An, Xian-Tao; Fan, Chun-An

    2015-04-01

    An unprecedented asymmetric catalytic tandem aminolysis/aza-Michael addition reaction of spirocyclic para-dienoneimides has been designed and developed through organocatalytic enantioselective desymmetrization. A unified strategy based on this key tandem methodology has been divergently explored for the asymmetric total synthesis of two natural Apocynaceae alkaloids, (+)-deethylibophyllidine and (+)-limaspermidine. The present studies not only enrich the tandem reaction design concerning the asymmetric catalytic assembly of a chiral all-carbon quaternary stereocenter contained in the densely functionalized hydrocarbazole synthons but also manifest the potential for the application of the asymmetric catalysis based on the para-dienone chemistry in asymmetric synthesis of natural products.

  13. [Total synthesis of biologically active alkaloids using bio-inspired indole oxidation].

    PubMed

    Ishikawa, Hayato

    2015-01-01

    Many tryptophan-based dimeric diketopiperazine (DKP) alkaloids including WIN 64821 and ditryptophenaline, which exhibit fascinating biological activities, have been isolated from fungi. These alkaloids possess a unique architecture; therefore several total syntheses of these compounds have been accomplished via bio-inspired reactions. Despite these elegant strategies, we were convinced that a more direct bio-inspired solution for the preparation of tryptophan-based DKP alkaloids was possible because in a true biosynthesis, direct dimerization of tryptophan occurs in aqueous media without incorporation of a protecting group on the substrates. Thus we developed direct bio-inspired dimerization reactions in aqueous, acidic media, along with a novel biomimetic pathway, to provide C2-symmetric and non-symmetric dimeric compounds from commercially available amine-free tryptophan derivatives using Mn(OAc)3, VOF3, and V2O5 as one-electron oxidants. In addition, concise two-pot or three-step syntheses of the naturally occurring dimeric DKP alkaloids (+)-WIN 64821, (-)-ditryptophenaline, and (+)-naseseazine B were accomplished with total yields of 20%, 13%, and 20%, respectively. The present synthesis has several noteworthy features: 1) the tryptophan-based C2-symmetric and non-symmetric dimeric key intermediates can be prepared on a multigram scale in one step; 2) the developed oxidation reaction was carried out in aqueous, acidic solution without deactivation of the metal oxidants; 3) protection of the primary amine can be avoided by salt formation in aqueous acid; 4) for the total two-pot operation, the reaction media are environmentally friendly water and ethanol; 5) satisfactory total yields are obtained compared with previously reported syntheses.

  14. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

    PubMed Central

    Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan

    2017-01-01

    Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains. PMID:28300074

  15. Total synthesis of mycobacterial arabinogalactan containing 92 monosaccharide units

    NASA Astrophysics Data System (ADS)

    Wu, Yong; Xiong, De-Cai; Chen, Si-Cong; Wang, Yong-Shi; Ye, Xin-Shan

    2017-03-01

    Carbohydrates are diverse bio-macromolecules with highly complex structures that are involved in numerous biological processes. Well-defined carbohydrates obtained by chemical synthesis are essential to the understanding of their functions. However, synthesis of carbohydrates is greatly hampered by its insufficient efficiency. So far, assembly of long carbohydrate chains remains one of the most challenging tasks for synthetic chemists. Here we describe a highly efficient assembly of a 92-mer polysaccharide by the preactivation-based one-pot glycosylation protocol. Several linear and branched oligosaccharide/polysaccharide fragments ranging from 5-mer to 31-mer in length have been rapidly constructed in one-pot manner, which enables the first total synthesis of a biologically important mycobacterial arabinogalactan through a highly convergent [31+31+30] coupling reaction. Our results show that the preactivation-based one-pot glycosylation protocol may provide access to the construction of long and complicated carbohydrate chains.

  16. Synthesis of the Enantiomers of Tedanalactam and the First Total Synthesis and Configurational Assignment of (+)-Piplaroxide.

    PubMed

    Romero-Ibañez, Julio; Xochicale-Santana, Leonardo; Quintero, Leticia; Fuentes, Lilia; Sartillo-Piscil, Fernando

    2016-04-22

    Highlighting the recently established methodology for the direct synthesis of glycidic amides from tertiary allyl amines, the synthesis of the enantiomers of tedanalactam were completed in two steps from the corresponding chiral dihydropiperidine. Additionally, the (+)- and (-)-enantiomers of piplaroxide were obtained from their respective tedanalactam precursor, and the absolute configuration of the naturally occurring (+)-piplaroxide was determined. The present approach represents not only the shortest synthesis of (-)-tedanalactam but also the first total synthesis of (+)-piplaroxide, a repellent against the leafcutter ant Atta cephalotes.

  17. Inspirations, Discoveries, and Future Perspectives in Total Synthesis

    PubMed Central

    Nicolaou, K. C.

    2009-01-01

    The last one hundred years have witnessed a dramatic increase in the power and reach of total synthesis. The pantheon of accomplishments in the field includes the total synthesis of molecules of unimaginable beauty and diversity such as the four discussed in this article: endiandric acids (1982), calicheamicin γ1I (1992), Taxol® (1994), and brevetoxin B (1995). Chosen from the collection of the molecules synthesized in the author’s laboratories, these structures are but a small fraction of the myriad constructed in laboratories around the world over the last century. Their stories, and the background on which they were based, should serve to trace the evolution of the art of chemical synthesis to its present sharp condition, an emergence that occurred as a result of new theories and mechanistic insights, new reactions, new reagents and catalysts, and new synthetic technologies and strategies. Indeed, the advent of chemical synthesis as a whole must be considered as one of the most influential developments of the twentieth century in terms of its impact on society. PMID:19152273

  18. The Daphniphyllum Alkaloids: Total Synthesis of (−)-Calyciphylline N

    PubMed Central

    2016-01-01

    Presented here is a full account on the development of a strategy culminating in the first total synthesis of the architecturally complex daphniphyllum alkaloid, (−)-calyciphylline N. Highlights of the approach include a highly diastereoselective, intramolecular Diels–Alder reaction of a silicon-tethered acrylate; an efficient Stille carbonylation of a sterically encumbered vinyl triflate; a one-pot Nazarov cyclization/proto-desilylation sequence; and the chemoselective hydrogenation of a fully substituted diene ester. PMID:25756504

  19. Total synthesis and stereochemical reassignment of mandelalide A.

    PubMed

    Lei, Honghui; Yan, Jialei; Yu, Jie; Liu, Yuqing; Wang, Zhuo; Xu, Zhengshuang; Ye, Tao

    2014-06-16

    The total synthesis of the tunicate metabolite mandelalide A and the correction of its originally assigned stereochemistry are reported. Key features of the convergent, fully stereocontrolled route include the use of a Prins cyclization for the diastereoselective construction of the tetrahydropyran subunit, Rychnovsky-Bartlett cyclization for the preparation of the tetrahydrofuran moiety, Suzuki coupling, Horner-Wadsworth-Emmons macrocyclization, and glycosylation to append the L-rhamnose-derived pyranoside.

  20. Biomimetic Total Synthesis of Malbrancheamide and Malbrancheamide B

    PubMed Central

    Miller, Kenneth A.; Welch, Timothy R.; Greshock, Thomas J.; Ding, Yousong; Sherman, David H.; Williams, Robert M.

    2010-01-01

    The biomimetic total syntheses of both malbrancheamide and malbrancheamide B are reported. The synthesis of the two mono-chloro species enabled the structure of malbrancheamide B to be unambiguously assigned. The syntheses each feature an intramolecular Diels-Alder reaction of a 5-hydroxypyrazin-2(1H)-one to construct the bicyclo[2.2.2]diazaoctane core, which has also been proposed as the biosynthetic route to these compounds. PMID:18345688

  1. A randomised, controlled trial of circumpatellar electrocautery in total knee replacement without patellar resurfacing: a concise follow-up at a mean of 3.7 years.

    PubMed

    van Jonbergen, H P W; Scholtes, V A B; Poolman, R W

    2014-04-01

    In the absence of patellar resurfacing, we have previously shown that the use of electrocautery around the margin of the patella improved the one-year clinical outcome of total knee replacement (TKR). In this prospective randomised study we compared the mean 3.7 year (1.1 to 4.2) clinical outcomes of 300 TKRs performed with and without electrocautery of the patellar rim: this is an update of a previous report. The overall prevalence of anterior knee pain was 32% (95% confidence intervals [CI] 26 to 39), and 26% (95% CI 18 to 35) in the intervention group compared with 38% (95% CI 29 to 48) in the control group (chi-squared test; p = 0.06). The overall prevalence of anterior knee pain remained unchanged between the one-year and 3.7 year follow-up (chi-squared test; p = 0.12). The mean total Western Ontario McMasters Universities Osteoarthritis Indices and the American Knee Society knee and function scores at 3.7 years' follow-up were similar in the intervention and control groups (repeated measures analysis of variance p = 0.43, p = 0.09 and p = 0.59, respectively). There were no complications. A total of ten patients (intervention group three, control group seven) required secondary patellar resurfacing after the first year. Our study suggests that the improved clinical outcome with electrocautery denervation compared with no electrocautery is not maintained at a mean of 3.7 years' follow-up.

  2. Collective total synthesis of englerin A and B, orientalol E and F, and oxyphyllol: application of the organocatalytic [4+3] cycloaddition reaction.

    PubMed

    Wang, Jie; Chen, Shu-Guang; Sun, Bing-Feng; Lin, Guo-Qiang; Shang, Yong-Jia

    2013-02-11

    The concise collective total synthesis of englerin A and B, orientalol E and F, and oxyphyllol has been accomplished in 10-15 steps, with the total synthesis of orientalol E and oxyphyllol being achieved for the first time. The success obtained was enabled by the realization of the [4+3] cycloaddition reaction of 9 and 10. Other features of the synthesis include 1) the intramolecular Heck reaction to access the azulene core, 2) the epoxidation-S(N)2' reduction sequence to access the allylic alcohol, 3) the efficient regioselective and stereoselective formal hydration of the bridging C=C bond in the synthesis of englerins, and 4) the late-stage chemo- and stereoselective C-H oxidation in the synthesis of orientalol E. The total synthesis of these natural products has enabled the structural revision of oxyphyllol and established the absolute stereochemical features of the organocatalytic [4+3] cycloaddition reaction. The identification of 5 as the natural product oxyphyllol, the success in converting 5 to orientalol E, along with the fact that englerins and oxyphyllol were isolated from plants of the same genus Phyllanthus gives support to our proposed biosynthetic pathways. This work may enable detailed biological evaluations of these natural products and their analogues and derivatives, especially of their potential in the fight against renal cell carcinoma (RCC).

  3. Evolution of an Oxidative Dearomatization Enabled Total Synthesis of Vinigrol

    PubMed Central

    Yang, Qingliang; Draghici, Cristian; Li, Fang; Smith, Brandon R.; Das, Pradipta

    2014-01-01

    The evolution of the synthetic strategy resulting in a total synthesis of vinigrol is presented. Oxidative dearomatization/intramolecular Diels-Alder cycloaddition has served as the successful cornerstone for all of the approaches. Extensive radical cyclization efforts to form the tetracyclic core resulted in interesting and surprising reaction outcomes, none of which could be advanced to vinigrol. These cyclization obstacles were successfully overcome by using Heck instead of radical cyclizations. The total synthesis features a trifluoroethyl ether protecting group being used for the first time in organic synthesis. The logic of its selection and the group’s importance beyond protecting the C8a hydroxyl group is presented along with a discussion of strategies for its removal. Because of the compact tetracyclic cage the route is built around many unusual reaction observations and solutions have emerged. For example, a first of its kind Grob fragmentation reaction featuring a trifluoroethyl leaving group has been uncovered, interesting interrupted selenium dioxide allylic oxidations have been observed as well as intriguing catalyst and counterion dependent directed hydrogenations. PMID:24258093

  4. Total Synthesis and Evaluation of Phostriecin and Key Structural Analogues

    PubMed Central

    Burke, Christopher P.; Swingle, Mark R.; Honkanen, Richard E.; Boger, Dale L.

    2010-01-01

    Full details of the total synthesis of phostriecin (2), the assignment of its relative and absolute stereochemistry, and the resultant structural reassignment of the natural product previously represented as sultriecin (1), a phosphate versus sulfate monoester, are detailed. Studies with authentic material confirmed that phostriecin, but not sultriecin, is an effective and selective inhibitor of protein phosphatase 2A (PP2A) defining a mechanism of action responsible for its antitumor activity. The extension of the studies to the synthesis and evaluation of a series of key synthetic analogues is disclosed that highlights the importance of the natural product phosphate monoester (vs sulfate or free alcohol, inactive and >250-fold), the α,β-unsaturated lactone (12-fold), and the hydrophobic Z,Z,E-triene tail (C12–C22, ca. 200-fold) including the unique importance of its unsaturation (50-fold, and no longer PP2A selective). PMID:20669916

  5. Total synthesis and development of bioactive natural products

    PubMed Central

    TATSUTA, Kuniaki

    2008-01-01

    The first total synthesis and development of a variety of bioactive natural products have been accomplished by using carbohydrates as a chiral source. In addition, practically useful intermediates have been created, analogs of natural products have been prepared, their structure-activity relationships studied, and the large-scale preparations of medicinally useful compounds established. The key target molecules have been the “Big Four” antibiotics (macrolides, aminoglycosides, β-lactams and tetracyclines), pyranonaphthoquinone antibiotics, glycosidase inhibitors, and a side-chain of cephem antibiotics. PMID:18941289

  6. Total synthesis of the antimitotic marine macrolide (-)-leiodermatolide.

    PubMed

    Paterson, Ian; Ng, Kenneth K-H; Williams, Simon; Millican, David C; Dalby, Stephen M

    2014-03-03

    Leiodermatolide is an antimitotic macrolide isolated from the marine sponge Leiodermatium sp. whose potentially novel tubulin-targeting mechanism of action makes it an exciting lead for anticancer drug discovery. In pursuit of a sustainable supply, we report a highly stereocontrolled total synthesis (3.2% yield) based on a convergent sequence of palladium-mediated fragment assembly and macrolactonization. Boron-mediated aldol reactions were used to configure the three key fragments 2, 5, and 6 by employing the appropriate enantiomer of the lactate-derived ketone 7.

  7. Total Synthesis of the Antimitotic Marine Macrolide (−)-Leiodermatolide**

    PubMed Central

    Paterson, Ian; Ng, Kenneth K-H; Williams, Simon; Millican, David C; Dalby, Stephen M

    2014-01-01

    Leiodermatolide is an antimitotic macrolide isolated from the marine sponge Leiodermatium sp. whose potentially novel tubulin-targeting mechanism of action makes it an exciting lead for anticancer drug discovery. In pursuit of a sustainable supply, we report a highly stereocontrolled total synthesis (3.2 % yield) based on a convergent sequence of palladium-mediated fragment assembly and macrolactonization. Boron-mediated aldol reactions were used to configure the three key fragments 2, 5, and 6 by employing the appropriate enantiomer of the lactate-derived ketone 7. PMID:24481746

  8. Total synthesis of (-)-CP2-disorazole C1.

    PubMed

    Hopkins, Chad D; Schmitz, John C; Chu, Edward; Wipf, Peter

    2011-08-05

    The total synthesis of a bis-cyclopropane analog of the antimitotic natural product (-)-disorazole C(1) was accomplished in 23 steps and 1.1% overall yield. A vinyl cyclopropane cross-metathesis reaction generated a key (E)-alkene segment of the target molecule. IC(50) determinations of (-)-CP(2)-disorazole C(1) in human colon cancer cell lines indicated low nanomolar cytotoxic properties. Accordingly, this synthetic bioisostere represents the first biologically active disorazole analog not containing a conjugated diene or polyene substructure element.

  9. Total Synthesis, Stereochemical Revision, and Biological Reassessment of Mandelalide A: Chemical Mimicry of Intrafamily Relationships.

    PubMed

    Willwacher, Jens; Heggen, Berit; Wirtz, Conny; Thiel, Walter; Fürstner, Alois

    2015-07-13

    Mandelalide A and three congeners had recently been isolated as the supposedly highly cytotoxic principles of an ascidian collected off the South African coastline. Since these compounds are hardly available from the natural source, a concise synthesis route was developed, targeting structure 1 as the purported representation of mandelalide A. The sequence involves an iridium-catalyzed two-directional Krische allylation and a cobalt-catalyzed carbonylative epoxide opening as entry points for the preparation of the major building blocks. The final stages feature the first implementation of terminal acetylene metathesis into natural product total synthesis, which is remarkable in that this class of substrates had been beyond the reach of alkyne metathesis for decades. Synthetic 1, however, proved not to be identical with the natural product. In an attempt to clarify this issue, NMR spectra were simulated for 20 conceivable diastereomers by using DFT followed by DP4 analysis; however, this did not provide a reliable assignment either. The puzzle was ultimately solved by the preparation of three diastereomers, of which compound 6 proved identical with mandelalide A in all analytical and spectroscopic regards. As the entire "northern sector" about the tetrahydrofuran ring in 6 shows the opposite configuration of what had originally been assigned, it is highly likely that the stereostructures of the sister compounds mandelalides B-D must be corrected analogously; we propose that these natural products are accurately represented by structures 68-70. In an attempt to prove this reassignment, an entry into mandelalides C and D was sought by subjecting an advanced intermediate of the synthesis of 6 to a largely unprecedented intramolecular Morita-Baylis-Hillman reaction, which furnished the γ-lactone derivative 74 as a mixture of diastereomers. Whereas (24R)-74 was amenable to a hydroxyl-directed dihydroxylation by using OsO4 /TMEDA as the reagent, the sister

  10. Total Synthesis and Biological Assessment of Mandelalide A.

    PubMed

    Brütsch, Tobias Michael; Bucher, Pascal; Altmann, Karl-Heinz

    2016-01-22

    A new convergent total synthesis of the marine macrolide mandelalide A (1) has been developed that is based on macrocyclic ring closure by a Shiina-type macrolactonization and the construction of the requisite precursor seco acid by a highly efficient Sonogashira cross-coupling reaction between two fragments of comparable complexity. Key steps in the elaboration of the acid building block were the enantioselective, catalytic addition of a protected acetylene to crotonaldehyde and the construction of the tetrahydropyran unit that is embedded in the macrocycle by means of an acid-catalyzed Prins reaction. The synthesis of the alcohol fragment features the formation of the trisubstituted tetrahydrofuran ring through an acetal cleavage/epoxide opening cascade reaction and a rarely used radical alkynylation of a primary alkyl iodide. Intriguingly, the dihydroxylation of a terminal double bond as part of the synthesis of this building block gave the same major product for both the α- and β-AD-mix reagents, albeit with moderate or low selectivity. Synthetic mandelalide A (1) was a potent proliferation inhibitor of A549, HT460, and H1299 human lung cancer cells in vitro, but not of SK-N-SH neuroblastoma cells. However, in no case did we observe complete cell kill even at the highest compound concentration tested (5 μm).

  11. Cobalt-catalyzed diastereoselective synthesis of C-furanosides. Total synthesis of (-)-isoaltholactone.

    PubMed

    Nicolas, Lionel; Izquierdo, Eva; Angibaud, Patrick; Stansfield, Ian; Meerpoel, Lieven; Reymond, Sébastien; Cossy, Janine

    2013-12-06

    An array of C-aryl and C-vinyl furanosides were prepared in good yields and diastereoselectivities from C-halogeno furanosides either with aryl Grignard or with vinyl Grignard using the convenient Co(acac)3/TMEDA catalytic system. This method is illustrated by the total synthesis of the (-)-isoaltholactone.

  12. Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis.

    PubMed

    Vetica, Fabrizio; Chauhan, Pankaj; Dochain, Simon; Enders, Dieter

    2017-03-21

    Recent advancement in the area of asymmetric organocatalysis led to the development of new methodologies for the construction of valuable enantiopure molecules, including various heterocycles. As one of the latter class of compounds tetrahydropyrans (THPs) constitute a core structure of a wide array of bioactive natural products. A noticeable growth has been observed in the asymmetric synthesis of THPs using small organic molecules as catalysts. This Tutorial Review describes the organocatalytic methods available to furnish THPs as well as the application of these methodologies in the total synthesis of THP-based natural products.

  13. Total synthesis of the congested propellane alkaloid (-)-acutumine.

    PubMed

    Castle, Steven L

    2014-08-01

    The enantioselective total synthesis of (-)-acutumine is described. The synthetic strategy was inspired by the premise that the cyclohexenone ring could be derived from an aromatic precursor. After successful construction of a propellane model system, an initial attempt to prepare the spirocyclic subunit was thwarted by incorrect regioselectivity in a radical cyclization. A second-generation approach involving a radical-polar crossover reaction was successful, and the chemistry developed in the aforementioned model system was then applied to synthesize the natural product. Key reactions included a phenolic oxidation, a diastereoselective ketone allylation utilizing Nakamura's chiral allylzinc reagent, an anionic oxy-Cope rearrangement, an acid-promoted cyclization of a secondary amine onto an α,β-unsaturated ketal, and a regioselective methyl enol etherification of a 1,3-diketone.

  14. Total synthesis of (−)-kopsinine and ent-(+)-kopsinine

    PubMed Central

    Lee, Kiyoun; Boger, Dale L.

    2014-01-01

    The total synthesis of (−)-kopsinine and its unnatural enantiomer is detailed, enlisting a late-stage SmI2-mediated transannular free radical conjugate addition reaction for construction of the core bicyclo[2.2.2]octane ring system with strategic C21–C2 bond formation. Key to the approach is assemblage of the underlying skeleton by an intramolecular [4+2]/[3+2] cycloaddition cascade of a 1,3,4-oxadiazole that provided the precursor C21 functionalized pentacyclic ring system 1 in a single step in which the C3 methyl ester found in the natural product served as a key 1,3,4-oxadiazole substituent, activating it for participation in the initiating Diels–Alder reaction and stabilizing the intermediate 1,3-dipole. PMID:26074629

  15. Total Synthesis and Stereochemical Assignment of Nostosin B

    PubMed Central

    Wang, Xiaoji; Feng, Junmin; Xu, Zhengshuang; Ye, Tao; Meng, Yi; Zhang, Zhiyu

    2017-01-01

    Nostosins A and B were isolated from a hydrophilic extract of Nostoc sp. strain from Iran, which exhibits excellent trypsin inhibitory activity. Nostosin A was the most potent natural tripeptide aldehyde as trypsin inhibitor up to now. Both r- and s-2-hydroxy-4-(4-hydroxy-phenyl)butanoic acid (Hhpba) were prepared and incorporated into the total synthesis of nostosin B, respectively. Careful comparison of the NMR spectra and optical rotation data of synthetic nostosin B (1a and 1b) with the natural product led to the unambiguous identification of the r-configuration of the Hhpba fragment, which was further confirmed by co-injection with the authentic sample on HPLC using both reversed phase column and the chiral AD-RH column. PMID:28264450

  16. Total Synthesis of Five Lipoteichoic acids of Clostridium difficile.

    PubMed

    Hogendorf, Wouter F J; Gisch, Nicolas; Schwudke, Dominik; Heine, Holger; Bols, Mikael; Pedersen, Christian Marcus

    2014-10-13

    The emergence of hypervirulent resistant strains have made Clostridium difficile a notorious nosocomial pathogen and has resulted in a renewed interest in preventive strategies, such as vaccines based on (synthetic) cell wall antigens. Recently, the structure of the lipoteichoic acid (LTA) of this species has been elucidated. Additionally, this LTA was found to induce the formation of protective antibodies against C. difficile in rabbits and mice. The LTA from C. difficile is isolated as a microheterogenous mixture, differing in size and composition, impeding any structure-activity relationship studies. To ensure reliable biological results, pure and well-defined synthetic samples are required. In this work the total synthesis of LTAs from C. difficile with defined chain length is described and the initial biological results are presented.

  17. Total synthesis of the marine cyanobacterial cyclodepsipeptide apratoxin A

    PubMed Central

    Chen, Jiehao; Forsyth, Craig J.

    2004-01-01

    A total synthesis of apratoxin A was developed. Apratoxin A, isolated from Lyngbya spp. cyanobacteria, is representative of a growing class of marine cyanobacterial cyclodepsipeptides wherein discrete polypeptide and polyketide domains are merged by ester and amide or amide-derived linkages. In the apratoxins, the N terminus of the peptide domain [(Pro)-(N-Me-Ile)-(N-Me-ala)-(O-Me-Tyr)-(moCys)] is a modified vinylogous cysteine that is joined to a novel ketide [3,7-dihydroxy-2,5,8,8-tetramethylnonanoic acid (Dtna)] by an acid-sensitive thiazoline. The C-terminal proline is esterified to a hindered hydroxyl vicinal to the ketide's tert-butyl terminus. Major synthetic challenges included assembly and maintenance the thiazoline-containing moiety and macrolide formation involving acylation of the C39 hydroxyl. The Dtna domain was assembled in the biogenetic direction beginning with a Brown allylation of trimethylacetaldehyde to establish the C39 alcohol configuration. Diastereofacial selective addition of a higher-order dimethylcuprate upon a ring-closing metathesis-derived α,β-unsaturated valerolactone installed the C37 methyl-bearing center. A Paterson anti-aldol process was used to incorporate the remaining two ketide stereogenic centers at C34 and C35. Although attempts to incorporate the thiazoline moiety by condensations of thiol esters bearing α-amino carbamate derivatives failed, an intramolecular Staudinger reduction–aza-Wittig process using α-azido thiol esters was uniquely successful. Late-stage macrocycle closure proceeded well by lactam formation between Pro and N-Me-Ile residues, but attempted lactonizations of the Pro carboxylate with the C39 hydroxyl failed. Optimization of C35 hydroxyl group protection-deprotection completed the effort, which culminated in the first total synthesis of apratoxin A and will enable analog generation toward improving differential cytotoxicity. PMID:15231999

  18. Revisiting the Ullmann-ether reaction: a concise and amenable synthesis of novel dibenzoxepino[4,5-d]pyrazoles by intramolecular etheration of 4,5-(o,o'-halohydroxy)arylpyrazoles.

    PubMed

    Olivera, Roberto; SanMartin, Raul; Churruca, Fátima; Domínguez, Esther

    2002-10-18

    A concise synthesis of a series of novel dibenzoxepino[4,5-d]pyrazoles was accomplished by implementation of an intramolecular Ullmann-ether reaction on o,o'-halohydroxy-4,5-diarylpyrazoles mediated by CuBr.DMS. An alternative useful approach based on the palladium-catalyzed biaryl-ether linkage formation (Buchwald-Hartwig reaction) was also successfully applied, offering limitations with regard to the steric demand of the substituents. The synthesis of the key o,o'-halohydroxy-4,5-diarylpyrazole intermediates proceeds through the construction of the heterocyclic ring by a tandem amine-exchange/heterocyclization sequence of 3-N,N-(dimethylamino)-1,2-diarylpropenones with phenylhydrazine followed by basic hydrolysis for deprotection. The enamino ketone precursors were conveniently prepared from the corresponding O-sulfonyloxy and O-benzoyloxy ortho-substituted 1,2-diarylethanones, starting from inexpensive salicylaldehyde or phenylacetic derivatives. Preliminary binding affinity experiments against peripheral and central nervous system receptors have been done with negative results.

  19. Divergent total synthesis of the tricyclic marine alkaloids lepadiformine, fasicularin, and isomers of polycitorols by reagent-controlled diastereoselective reductive amination.

    PubMed

    In, Jinkyung; Lee, Seokwoo; Kwon, Yongseok; Kim, Sanghee

    2014-12-22

    We describe a flexible and divergent route to the pyrrolo-/pyrido[1,2-j]quinoline frameworks of tricyclic marine alkaloids via a common intermediate formed by the ester-enolate Claisen rearrangement of a cyclic amino acid allylic ester. We have synthesized the proposed structure of polycitorols and demonstrated that the structure of these alkaloids requires revision. In addition to asymmetric formal syntheses, stereoselective and concise total syntheses of (-)-lepadiformine and (-)-fasicularin were also accomplished from simple, commercially available starting materials in a completely substrate-controlled manner. The key step in these total syntheses was the reagent-dependent stereoselective reductive amination of the common intermediate to yield either indolizidines 55 a or 55 b. Aziridinium-mediated carbon homologation of the hindered C-10 group to the homoallylic group facilitated the synthesis.

  20. Concise polymeric materials encyclopedia

    SciTech Connect

    Salamone, J.C.

    1999-01-01

    This comprehensive, accessible resource abridges the ``Polymeric Materials Encyclopedia'', presenting more than 1,100 articles and featuring contributions from more than 1,800 scientists from all over the world. The text discusses a vast array of subjects related to the: (1) synthesis, properties, and applications of polymeric materials; (2) development of modern catalysts in preparing new or modified polymers; (3) modification of existing polymers by chemical and physical processes; and (4) biologically oriented polymers.

  1. Concise synthesis of the hasubanan alkaloid (±)-cepharatine A using a Suzuki coupling reaction to effect o,p-phenolic coupling.

    PubMed

    Magnus, Philip; Seipp, Charles

    2013-09-20

    Suzuki coupling of 10 and 11 resulted in 9, which was O-alkylated to provide 12. Treatment of 12 with CsF in DMF resulted in the formation of the completed core structure 13 in a single step. Reductive amination of 13 completed the synthesis of (±)-cepharatine A, 4.

  2. Total synthesis of the thiopeptide antibiotic amythiamicin D.

    PubMed

    Hughes, Rachael A; Thompson, Stewart P; Alcaraz, Lilian; Moody, Christopher J

    2005-11-09

    The thiopeptide (or thiostrepton) antibiotics are a class of sulfur containing highly modified cyclic peptides with interesting biological properties, including reported activity against MRSA and malaria. Described herein is the total synthesis of the thiopeptide natural product amythiamicin D, which utilizes a biosynthesis-inspired hetero-Diels-Alder route to the pyridine core of the antibiotic as a key step. Preliminary studies using a range of serine-derived 1-ethoxy-2-azadienes established that hetero-Diels-Alder reaction with N-acetylenamines proceeded efficiently under microwave irradiation to give 2,3,6-trisubstituted pyridines. The thiazole building blocks of the antibiotic were obtained by either classical Hantzsch reactions or by dirhodium(II)-catalyzed chemoselective carbene N-H insertion followed by thionation, and were combined to give the bis-thiazole that forms the left-hand fragment of the antibiotic. The key Diels-Alder reaction of a tris-thiazolyl azadiene with benzyl 2-(1-acetylaminoethenyl)thiazole-4-carboxylate gave the core tetrathiazolyl pyridine, which was elaborated into the natural product by successive incorporation of glycine and bis-thiazole fragments followed by macrocyclization.

  3. Total synthesis of discodermolide: optimization of the effective synthetic route.

    PubMed

    de Lemos, Elsa; Porée, François-Hugues; Bourin, Arnaud; Barbion, Julien; Agouridas, Evangelos; Lannou, Marie-Isabelle; Commerçon, Alain; Betzer, Jean-François; Pancrazi, Ange; Ardisson, Janick

    2008-01-01

    An efficient and modulable total synthesis of discodermolide (DDM), a unique marine anticancer polyketide is described including related alternative synthetic approaches. Particularly notable is the repeated application of a crotyltitanation reaction to yield homoallylic (Z)-O-ene-carbamate alcohols with excellent selectivity. Advantage was taken of this reaction not only for the stereocontrolled building of the syn-anti methyl-hydroxy-methyl triads of DDM, but also for the direct construction of the terminal (Z)-diene. Of particular interest is also the installation of the C13=C14 (Z)-double bond through a highly selective dyotropic rearrangement. The preparation of the middle C8-C14 fragment in two sequential stages and its coupling to the C1-C7 moiety was a real challenge and required careful optimization. Several synthetic routes were explored to allow high and reliable yields. Due to the flexibility and robust character of this approach, it might enable a systematic structural variation of DDM and, therefore, the elaboration and exploration of novel discodermolide structural analogues.

  4. Intramolecular direct dehydrohalide coupling promoted by KO(t)Bu: total synthesis of Amaryllidaceae alkaloids anhydrolycorinone and oxoassoanine.

    PubMed

    De, Subhadip; Ghosh, Santanu; Bhunia, Subhajit; Sheikh, Javeed Ahmad; Bisai, Alakesh

    2012-09-07

    A transition-metal-free intramolecular dehydrohalide coupling via intramolecular homolytic aromatic substitution (HAS) with aryl radicals has been developed in the presence of potassium tert-butoxide and an organic molecule as the catalyst. The methodology has been applied to a concise synthesis of Amaryllidaceae alkaloids viz. oxoassoanine (1b), anhydrolycorinone (1d), and other related structures. Interestingly, the method also works only in the presence of potassium tert-butoxide.

  5. Enantioselective Total Synthesis of (−)-Nardoaristolone B via a Gold(I)-Catalyzed Oxidative Cyclization

    PubMed Central

    2015-01-01

    The first enantioselective total synthesis of (−)-nardoaristolone B is accomplished by the implementation of an enantio- and diastereoselective copper(I)-catalyzed conjugate addition/enolate trapping sequence and a gold(I)-catalyzed oxidative cyclization (intermolecular oxidant), employed for the first time in total synthesis. PMID:25563976

  6. Solid-phase total synthesis of daptomycin and analogs.

    PubMed

    Lohani, Chuda Raj; Taylor, Robert; Palmer, Michael; Taylor, Scott D

    2015-02-06

    An entirely solid-phase synthesis of daptomycin, a cyclic lipodepsipeptide antibiotic currently in clinical use, was achieved using a combination of α-azido and Fmoc amino acids. This methodology was applied to the synthesis of several daptomycin analogs, one of which did not contain kynurenine or the synthetically challenging amino acid (2S,3R)-methylglutamate yet exhibited an MIC approaching that of daptomycin.

  7. Total syntheses of the phytotoxic lactones herbarumin I and II and a synthesis-based solution of the pinolidoxin puzzle.

    PubMed

    Fürstner, Alois; Radkowski, Karin; Wirtz, Conny; Goddard, Richard; Lehmann, Christian W; Mynott, Richard

    2002-06-19

    A concise approach to a family of potent herbicidal 10-membered lactones is described on the basis of ring-closing metathesis (RCM) as the key step for the formation of the medium-sized ring. This includes the first total syntheses of herbarumin I (1) and II (2) as well as the synthesis of several possible macrolides of the pinolidoxin series. A comparison of their spectral and analytical data with those of the natural product allowed us to establish the stereostructure of pinolidoxin, a potent inhibitor of induced phenylalanine ammonia lyase (PAL) activity, as shown in 46. This finding, however, makes clear that a previous study dealing with the relative and absolute stereochemistry of this phytotoxic agent cannot be correct. An important aspect from the preparative point of view is the fact that the stereochemical outcome of the RCM reaction can be controlled by the choice of the catalyst. Thus, use of the ruthenium indenylidene complex 16 always leads to the corresponding (E)-alkenes, whereas the second generation catalyst 17 bearing an N-heterocyclic carbene ligand affords the isomeric (Z)-olefin with good selectivity. This course is deemed to reflect kinetic versus thermodynamic control of the cyclization reaction and therefore has potentially broader ramifications for the synthesis of medium-sized rings in general. A further noteworthy design feature is the fact that D-ribose is used as a convenient starting material for the preparation of both enantiomers of the key building block 14 by means of a "head-to-tail" interconversion strategy.

  8. Synthesis of Rumphellaone A and Hushinone by a Gold-Catalyzed [2 + 2] Cycloaddition

    PubMed Central

    2016-01-01

    The enantioselective total synthesis of rumphellaone A has been accomplished in 12 steps via a diastereoselective gold(I)-catalyzed [2 + 2] macrocyclization of a 1,10-enyne as the key step to build the cyclobutene moiety. This concise approach has also led to the total synthesis of husinone. PMID:26974011

  9. Concise synthesis and anti-HIV activity of pyrimido[1,2-c][1,3]benzothiazin-6-imines and related tricyclic heterocycles.

    PubMed

    Mizuhara, Tsukasa; Oishi, Shinya; Ohno, Hiroaki; Shimura, Kazuya; Matsuoka, Masao; Fujii, Nobutaka

    2012-09-07

    3,4-Dihydro-2H,6H-pyrimido[1,2-c][1,3]benzothiazin-6-imine (PD 404182) is a virucidal heterocyclic compound active against various viruses, including HCV, HIV, and simian immunodeficiency virus. Using facile synthetic approaches that we developed for the synthesis of pyrimido[1,2-c][1,3]benzothiazin-6-imines and related tricyclic derivatives, the parallel structural optimizations of the central 1,3-thiazin-2-imine core, the benzene part, and the cyclic amidine part of PD 404182 were investigated. Replacement of the 6-6-6 pyrimido[1,2-c][1,3]benzothiazin-6-imine framework with 5-6-6 or 6-6-5 derivatives led to a significant loss of anti-HIV activity, and introduction of a hydrophobic group at the 9- or 10-positions improved the potency. In addition, we demonstrated that the PD 404182 derivative exerts anti-HIV effects at an early stage of viral infection.

  10. A Global and Local Desymmetrization Approach to the Synthesis of Steroidal Alkaloids: Stereocontrolled Total Synthesis of Paspaline

    PubMed Central

    Sharpe, Robert J.; Johnson, Jeffrey S.

    2015-01-01

    A stereocontrolled total synthesis of the indole diterpenoid natural product paspaline is described. Key steps include a highly diastereoselective enzymatic desymmetrization, substrate-directed epoxidation, Ireland-Claisen rearrangement, and diastereotopic group selective C–H acetoxylation to assemble the target with excellent stereofidelity. The route and results described herein outline complementary conceptual disconnections in the arena of steroid natural product synthesis. PMID:25856767

  11. Asymmetric Total Synthesis of the Indole Diterpene Alkaloid Paspaline

    PubMed Central

    Sharpe, Robert J.; Johnson, Jeffrey S.

    2015-01-01

    An enantioselective synthesis of the indole diterpenoid natural product paspaline is disclosed. Critical to this approach was the implementation of stereoselective desymmetrization reactions to assemble key stereocenters of the molecule. The design and execution of these tactics are described in detail, and a thorough analysis of observed outcomes is presented, ultimately providing the title compound in high stereopurity. This synthesis provides a novel template for preparing key stereocenters in this family of molecules, and the reactions developed en route to paspaline present a series of new synthetic disconnections in preparing steroidal natural products. PMID:26398568

  12. The CP molecule labyrinth: a paradigm of how endeavors in total synthesis lead to discoveries and inventions in organic synthesis.

    PubMed

    Nicolaou, K C; Baran, Phil S

    2002-08-02

    Imagine an artist carving a sculpture from a marble slab and finding gold nuggets in the process. This thought is not a far-fetched description of the work of a synthetic chemist pursuing the total synthesis of a natural product. At the end of the day, he or she will be judged by the artistry of the final work and the weight of the gold discovered in the process. However, as colorful as this description of total synthesis may be, it does not entirely capture the essence of the endeavor, for there is much more to be told, especially with regard to the contrast of frustrating failures and exhilarating moments of discovery. To fully appreciate the often Herculean nature of the task and the rewards that accompany it, one must sense the details of the enterprise behind the scenes. A more vivid description of total synthesis as a struggle against a tough opponent is perhaps appropriate to dramatize these elements of the experience. In this article we describe one such endeavor of total synthesis which, in addition to reaching the target molecule, resulted in a wealth of new synthetic strategies and technologies for chemical synthesis. The total synthesis of the CP molecules is compared to Theseus' most celebrated athlos (Greek for exploit, accomplishment): the conquest of the dreaded Minotaur, which he accomplished through brilliance, skill, and bravery having traversed the famous labyrinth with the help of Ariadne. This story from Greek mythology comes alive in modern synthetic expeditions toward natural products as exemplified by the total synthesis of the CP molecules which serve as a paradigm for modern total synthesis endeavors, where the objectives are discovery and invention in the broader sense of organic synthesis.

  13. A concise synthesis of 1,4-dihydro-[1,4]diazepine-5,7-dione, a novel 7-TM receptor ligand core structure with melanocortin receptor agonist activity.

    PubMed

    Szewczyk, Jerzy R; Laudeman, Chris P; Sammond, Doug M; Villeneuve, Manon; Minick, Douglas J; Grizzle, Mary K; Daniels, Alejandro J; Andrews, John L; Ignar, Diane M

    2010-03-01

    Finding small non-peptide molecules for G protein-coupled receptors (GPCR) whose endogenous ligands are peptides, is a very important task for medicinal chemists. Over the years, compounds mimicking peptide structures have been discovered, and scaffolds emulating peptide backbones have been designed. In our work on GPCR ligands, including cholecystokinin receptor-1 (CCKR-1) agonists, we have employed benzodiazepines as a core structure. Looking for ways to reduce molecular weight and possibly improve physical properties of GPCR ligands, we embarked on the search for molecules providing similar scaffolds to the benzodiazepine with lower molecular weight. One of our target core structures was 1,4-dihydro-[1,4]diazepine-5,7-dione. There was not, however, a known synthetic route to such molecules. Here we report the discovery of a simple and concise method for synthesis of 2-[6-(1H-indazol-3-ylmethyl)-5,7-dioxo-4-phenyl-4,5,6,7-tetrahydro-[1,4]diazepin-1-yl]-N-isopropyl-N-phenyl-acetamide as an example of a compound containing the tetrahydrodiazepine-5,7-dione core. Compounds from this series were tested in numerous GPCR assays and demonstrated activity at melanocortin 1 and 4 receptors (MC1R and MC4R). Selected compounds from this series were tested in vivo in Peptide YY (PYY)-induced food intake. Compounds dosed by intracerebroventricular and oral routes reduced PYY-induced food intake and this effect was reversed by the cyclic peptide MC4R antagonist SHU9119.

  14. Total synthesis of haouamine A: the indeno-tetrahydropyridine core

    PubMed Central

    Burns, Noah Z.; Jessing, Mikkel; Baran, Phil S.

    2009-01-01

    A full account of synthetic efforts towards the indeno-tetrahydropyridine core of haouamine A is presented. Initial failed strategies led to the unexpected discovery of a mild abnormal Chichibabin pyridine synthesis and provided knowledge and inspiration for the development of a cascade annulation that has enabled rapid and scalable access to the core in either racemic or enantiopure form. PMID:20161191

  15. Stereocontrolled total synthesis of fucoxanthin and its polyene chain-modified derivative.

    PubMed

    Kajikawa, Takayuki; Okumura, Satoshi; Iwashita, Takashi; Kosumi, Daisuke; Hashimoto, Hideki; Katsumura, Shigeo

    2012-02-03

    Fucoxanthin exhibits high energy transfer efficiencies to Chlorophyll a (Chl a) in photosynthesis in the sea. In order to reveal how each characteristic functional group, such as the length of the polyene chain, allene, and conjugated carbonyl groups, of this marine natural product are responsible for its remarkably efficient ability, the total synthesis of fucoxanthin by controlling the stereochemistry was achieved. The method established for fucoxanthin synthesis was successfully applied to the synthesis of the C42 longer chain analogue.

  16. Total Synthesis of Kealiinines A-C, Kealiiquinone, 2-Deoxy-2-aminokealiiquinone and Study Towards Total Synthesis of Spirocalcaridines A-B

    NASA Astrophysics Data System (ADS)

    Das, Jayanta Kumar

    Our group is mainly interested in the total synthesis of imidazole-containing alkaloids along with other kinds of alkaloids. A new family of imidazole alkaloids, the Leucetta alkaloids, is a group of 60 or so 2-aminoimidazole natural products found in marine sponges, which have received substantial attention recently because of their challenging structures and strong biological activities. Over the past few years, our laboratory has developed several synthetic methods for the total synthesis of 2-aminoimidazole alkaloids using site selective functionalization of polyhaloimidazoles. By using the above synthetic strategy, the development of high yielding and protecting group-free total syntheses of the reported structures of the Leucetta alkaloids kealiinine A-C has been accomplished. In addition to the challenging syntheses of these, our data unequivocally prove that the reported structures of those natural products did not match synthetic material due to discrepancies in the interpretation of spectroscopic data during initial isolation and characterization. Finally, the correct structure assignment was achieved with the help of extensive experimentation using 2D NMR spectroscopy (HMBC, HSQC and ROESY) and X-ray crystallography of these synthetic natural products. A second set of targets was accessed using a biosynthetic guided strategy according to which, kealiinine C would serve as a precursor to kealiiquinone and 2-deoxy-2-aminokealiiquinone. The synthesis of both alkaloids was completed from a late stage intermediate from the kealiinine C synthesis by oxidation. Although the first total synthesis of kealiiquinone was accomplished by Ohta et al. in 1995, the current method was protecting group-free and required only 6 steps in comparison to 12 steps by the Japanese group. The first total synthesis of the 2-amino congener was also accomplished. After successful syntheses of those natural products, in collaboration with Dr. Mandal's group, the cytotoxicity of these

  17. The Evolution of the Total Synthesis of Rocaglamide.

    PubMed

    Zhou, Zhe; Dixon, Darryl D; Jolit, Anais; Tius, Marcus A

    2016-10-24

    The complex flavagline, (-)-rocaglamide, possesses a synthetically intriguing tricyclic scaffold with five contiguous stereocenters and also exhibits potent anticancer, anti-inflammatory and insecticidal activity. This full account details distinct approaches to (±)- and (-)-rocaglamide utilizing Brønsted acid catalyzed and asymmetric Pd(0) -catalyzed Nazarov chemistry developed in our laboratory, respectively. The successful asymmetric synthesis revealed unforeseen mechanistic complexity that required adjusting our strategy to overcome an unanticipated racemization process, an unusual reversible ring-cleavage step and a very facile trialkylsilyl group migration.

  18. 11-Step Total Synthesis of Pallambins C and D

    PubMed Central

    2016-01-01

    The structurally intriguing terpenes pallambins C and D have been assembled in only 11 steps from a cheap commodity chemical: furfuryl alcohol. This synthesis, which features a redox-economic approach free of protecting-group manipulations, assembles all four-ring systems via a sequential cyclization strategy. Of these four-ring constructing operations, two are classical (Robinson annulation and Mukaiyama aldol) and two are newly devised. During the course of this work a method for the difunctionalization of enol ethers was developed, and the scope of this transformation was explored. PMID:27284962

  19. Total synthesis of the putative structure of the proposed Banyasin A

    PubMed Central

    Gao, Xuguang; Ren, Qi; Choi, Sun; Xu, Zhengshuang; Ye, Tao

    2015-01-01

    The first total synthesis of four possible isomers of a molecule possessing the configuration proposed for Banyasin A is described. The structure synthesized appears to be different from that of the natural product. PMID:25853121

  20. Tandem Allylboration–Prins Reaction for the Rapid Construction of Substituted Tetrahydropyrans: Application to the Total Synthesis of (−)‐Clavosolide A

    PubMed Central

    Millán, Alba; Smith, James R.; Chen, Jack L.‐Y.

    2016-01-01

    Abstract Tetrahydropyrans are common motifs in natural products and have now been constructed with high stereocontrol through a three‐component allylboration‐Prins reaction sequence. This methodology has been applied to a concise (13 steps) and efficient (14 % overall yield) synthesis of the macrolide (−)‐clavosolide A. The synthesis also features an early stage glycosidation reaction to introduce the xylose moiety and a lithiation‐borylation reaction to attach the cyclopropyl‐containing side chain. PMID:26766494

  1. Total Synthesis of Amphidinolide E and Amphidinolide E Stereoisomers

    PubMed Central

    Va, Porino; Roush, William R.

    2007-01-01

    Four amphidinolide E stereoisomers, amphidinolide E (1), 2-epi-amphidinolide E (2), 19-epi-amphidinolide E (3), and 2-epi-19-epi-amphidinolide E (4), have been synthesized via the judicious union of aldehyde 5, allylsilanes 7 or 8, acids 9 or 10, and vinylstannane 6. The C19 stereocenters of the C19 epimeric allylsilanes 7 and 8 were introduced via crotylboration reactions early in the synthesis. [3+2]-Annulation reactions of aldehyde 5 with allylsilanes 7 and 8 were employed to set the core tetrahydrofuran units of 1–4. Finally, the C2 stereocenter was installed by esterification using acid 9, without incident, or with acid 10, in which case an unexpected and completely stereoselective inversion of C2 occurs. PMID:18575572

  2. Biogenetically-inspired total synthesis of epidithiodiketopiperazines and related alkaloids.

    PubMed

    Kim, Justin; Movassaghi, Mohammad

    2015-04-21

    Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A ( Hauser , D. et al. Helv. Chim. Acta 1970 , 53 , 1061 ) and verticillin A ( Katagiri , K. et al. J. Antibiot. 1970 , 23 , 420 ), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In the past

  3. Biogenetically-Inspired Total Synthesis of Epidithiodiketopiperazines and Related Alkaloids

    PubMed Central

    2015-01-01

    Conspectus Natural products chemistry has historically been the prime arena for the discovery of new chemical transformations and the fountain of insights into key biological processes. It remains a fervent incubator of progress in the fields of chemistry and biology and an exchange mediating the flow of ideas between these allied fields of science. It is with this ethos that our group has taken an interest in and pursued the synthesis of a complex family of natural products termed the dimeric epipolythiodiketopiperazine (ETP) alkaloids. We present here an Account of the highly complex target molecules to which we pegged our ambitions, our systematic and relentless efforts toward those goals, the chemistry we developed in their pursuit, and the insight we have gained for their translational potential as potent anticancer molecules. The dimeric ETP alkaloids are fungal metabolites that feature a highly complex molecular architecture comprising a densely functionalized core structure with many stereogenic centers, six of which are fully substituted, and a pair of vicinal quaternary carbon stereocenters, decorated on polycyclic architectures in addition to the unique ETP motif that has been recognized as acid-, base-, and redox-sensitive. A cyclo-dipeptide consisting of an essential tryptophan residue and a highly variable ancillary amino acid lies at the core of these structures; investigation of the transformations that take this simplistic core to the complex alkaloids lies at the heart of our research program. The dimeric epidithiodiketopiperazine alkaloids have largely resisted synthesis on account of their complexity since the 1970s when the founding members of this class, chaetocin A (HauserD. et al. Helv. Chim. Acta1970, 53, 10615448218) and verticillin A (KatagiriK. et al. J. Antibiot.1970, 23, 4205465723), were first isolated. This was despite their potent cytotoxic and bacteriostatic activities, which were well appreciated at the time of their discovery. In

  4. Total synthesis of epothilones using functionalised allylstannanes for remote stereocontrol.

    PubMed

    Martin, Nathaniel; Thomas, Eric J

    2012-10-21

    Two syntheses of the C(7)–C(16)-fragment 41 of epothilone D 2 were developed that were based on tin(IV) bromide mediated reactions of 5,6-difunctionalised hex-2-enylstannanes with aldehydes. In the first synthesis, (5S)-6-tert-butyldimethylsilyloxy-5-hydroxy-2-methylhex-2-enyl(tributyl)stannane 20 was reacted with (E)-but-2-enal to give (2S,7R,4Z,8E)-1-tert-butyldimethylsilyloxy-5-methyldeca-4,8-diene-2,7-diol 26 containing ca. 20% of its (7S)-epimer. Following desilylation, the crystalline (2S,7R)-triol 32 was protected as its acetonide 33 and esterified to give the (4-methoxybenzyloxy)acetate 34. An Ireland–Claisen rearrangement of this ester gave methyl (2R,3S,10S,4E,7Z)-3,7-dimethyl-10,11-(dimethylmethylene)dioxy-2-(4-methoxybenzyloxy)undeca-4,7-dienoate 35 that was converted into (2S,9S,6Z)-2,6-dimethyl-9,10-(dimethylmethylene)dioxydec-6-en-1-ol 41 by regioselective alkene manipulation, ester reduction and cleavage of the resulting terminal diol 40 with a reductive work-up. The second synthesis involved the tin(IV) bromide mediated reaction between the stannane 20 and (3S)-4-(4-methoxybenzyloxy)-3-methylbutanal 44 that gave (2S,7S,9S,4Z)-1-tert-butyldimethylsilyloxy-5,9-dimethyl-10-(4-methoxybenzyloxy)dec-4-ene-2,7-diol 45 containing ca. 20% of its (7R)-epimer. After desilylation and protection of the vicinal diol as its acetonide 46, a Barton–McCombie reductive removal of the remaining hydroxyl group gave the (2S,9S,6Z)-2,6-dimethyl-9,10-(dimethylmethylene)dioxydec-6-en-1-ol 41 after oxidative removal of the PMB-ether. The first of these syntheses uses just one chiral starting material, but the second is shorter and more convergent. It was therefore modified by the use of (5S)-6-tert-butyldimethylsilyloxy-5-(2-trimethylsilylethoxy)methoxy-2-methylhex-2-enyl(tributyl)stannane 49 that reacted with (3S)-4-(4-methoxybenzyloxy)-3-methylbutanal 44 to give a 50:50 mixture of the C(4)-epimers of (2S,9S,6Z)-10-tert-butyldimethylsilyloxy-1-(4-methoxybenzyloxy)-2

  5. Total synthesis of antibiotics: recent achievements, limitations, and perspectives.

    PubMed

    Prusov, Evgeny V

    2013-04-01

    Several recently accomplished total syntheses of antibiotic natural products were summarized in this review in order to present current trends in this area of research. Compounds from different substance classes, including polyketide, depsipeptide, polyketide-polypeptide hybrid, and saccharide, were chosen to demonstrate the advancement in both chemical methodology and corresponding synthetic strategy.

  6. Short Enantioselective Total Synthesis of Tatanan A and 3‐epi‐Tatanan A Using Assembly‐Line Synthesis

    PubMed Central

    Noble, Adam; Roesner, Stefan

    2016-01-01

    Abstract Short and highly stereoselective total syntheses of the sesquilignan natural product tatanan A and its C3 epimer are described. An assembly‐line synthesis approach, using iterative lithiation–borylation reactions, was applied to install the three contiguous stereocenters with high enantio‐ and diastereoselectivity. One of the stereocenters was installed using a configurationally labile lithiated primary benzyl benzoate, resulting in high levels of substrate‐controlled (undesired) diastereoselectivity. However, reversal of selectivity was achieved by using a novel diastereoselective Matteson homologation. Stereospecific alkynylation of a hindered secondary benzylic boronic ester enabled completion of the synthesis in a total of eight steps. PMID:27865037

  7. Toward all RNA structures, concisely

    PubMed Central

    Weeks, Kevin M.

    2014-01-01

    Profound insights regarding nucleic acid structure and function can be gleaned from very simple, direct, and chemistry-based strategies. Our approach strives to incorporate the elegant physical insights that Don Crothers instilled in those who trained in his laboratory. Don emphasized the advantages of focusing on direct and concise experiments, even when the final objective was to understand something complex – potentially including the large-scale architectures of the genomes of RNA viruses and the transcriptomes of cells. Here, I review the intellectual path, plus a few detours, that led to development of the SHAPE-MaP and RING-MaP technologies for interrogating RNA structure and function at large scales. I also argue that greater attention to creating direct, less inferential experiments will convert 'omics investigations into lasting and definitive contributions to our understanding of biological function. PMID:25546503

  8. Total synthesis of two new dihydrostilbenes from Bulbophyllum odoratissimum.

    PubMed

    Zhang, W-G; Lin, J-G; Niu, Z-Y; Zhao, R; Liu, D-L; Wang, N-L; Yao, X-S

    2007-01-01

    A total synthetic route of two new dihydrostilbenes 5-(2-benzo[1,3]dioxole-5-ylethyl)-6-methoxy benzo[1,3]dioxole-4-ol (1) and 5-(2-benzo[1,3]dioxole-5-ylethyl)benzo[1,3]dioxole-4,7-diol (2), which were isolated from Bulbophyllum odoratissimum Lindl. with significant cytotoxicity toward human cancer cell lines, was developed via Horner reaction etc. The natural products 1 and 2 were obtained in 10.5% and 3.3% overall yield, respectively.

  9. Total Synthesis and Structural Revision of Vannusals A and B. Synthesis of the True Structures of Vannusals A and B

    PubMed Central

    Ortiz, Adrian; Zhang, Hongjun; Guella, Graziano

    2010-01-01

    Having determined, through total synthesis, that the originally assigned structure of vannusals A and B were incorrect, we set out to uncover the identity of the true structures of these novel marine natural products. Our search was based on intelligence gathered by NMR spectroscopy and chemical synthesis and took us through the total synthesis of eight diastereomeric vannusal B structures [2, d-2, 3, d-3, 4, d-4, 5, and d-5, Figure 1]. The true structures of vannusals A and B were finally determined to be d-5 and d-1, respectively. Their total synthesis was based on a highly convergent and efficient strategy that involved fragments vinyl iodide (−)-6 and aldehyde (±)-94, and featured a stereoselective lithium-mediated coupling reaction and a samarium-induced cyclization process that forged the final ring of the carbon framework. The synthetic strategies and technologies developed in these investigations expand the scope of chemical synthesis and render these compounds readily available for biological evaluation, while the NMR spectroscopic insights gained should prove useful in future structural determination endeavors. PMID:20443558

  10. The Total Synthesis Problem of linear multivariable control. II - Unity feedback and the design morphism

    NASA Technical Reports Server (NTRS)

    Sain, M. K.; Antsaklis, P. J.; Gejji, R. R.; Wyman, B. F.; Peczkowski, J. L.

    1981-01-01

    Zames (1981) has observed that there is, in general, no 'separation principle' to guarantee optimality of a division between control law design and filtering of plant uncertainty. Peczkowski and Sain (1978) have solved a model matching problem using transfer functions. Taking into consideration this investigation, Peczkowski et al. (1979) proposed the Total Synthesis Problem (TSP), wherein both the command/output-response and command/control-response are to be synthesized, subject to the plant constraint. The TSP concept can be subdivided into a Nominal Design Problem (NDP), which is not dependent upon specific controller structures, and a Feedback Synthesis Problem (FSP), which is. Gejji (1980) found that NDP was characterized in terms of the plant structural matrices and a single, 'good' transfer function matrix. Sain et al. (1981) have extended this NDP work. The present investigation is concerned with a study of FSP for the unity feedback case. NDP, together with feedback synthesis, is understood as a Total Synthesis Problem.

  11. Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance

    PubMed Central

    Nicolaou, K. C.; Hale, Christopher R. H.; Nilewski, Christian; Ioannidou, Heraklidia A.

    2012-01-01

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules—natural and designed—of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products—the organic molecules of nature—is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature’s molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years. PMID:22743704

  12. Constructing molecular complexity and diversity: total synthesis of natural products of biological and medicinal importance.

    PubMed

    Nicolaou, K C; Hale, Christopher R H; Nilewski, Christian; Ioannidou, Heraklidia A

    2012-08-07

    The advent of organic synthesis and the understanding of the molecule as they occurred in the nineteenth century and were refined in the twentieth century constitute two of the most profound scientific developments of all time. These discoveries set in motion a revolution that shaped the landscape of the molecular sciences and changed the world. Organic synthesis played a major role in this revolution through its ability to construct the molecules of the living world and others like them whose primary element is carbon. Although the early beginnings of organic synthesis came about serendipitously, organic chemists quickly recognized its potential and moved decisively to advance and exploit it in myriad ways for the benefit of mankind. Indeed, from the early days of the synthesis of urea and the construction of the first carbon-carbon bond, the art of organic synthesis improved to impressively high levels of sophistication. Through its practice, today chemists can synthesize organic molecules--natural and designed--of all types of structural motifs and for all intents and purposes. The endeavor of constructing natural products--the organic molecules of nature--is justly called both a creative art and an exact science. Often called simply total synthesis, the replication of nature's molecules in the laboratory reflects and symbolizes the state of the art of synthesis in general. In the last few decades a surge in total synthesis endeavors around the world led to a remarkable collection of achievements that covers a wide ranging landscape of molecular complexity and diversity. In this article, we present highlights of some of our contributions in the field of total synthesis of natural products of biological and medicinal importance. For perspective, we also provide a listing of selected examples of additional natural products synthesized in other laboratories around the world over the last few years.

  13. Total synthesis of a new cytotoxic acetogenin, jimenezin, and the revised structure.

    PubMed

    Takahashi, S; Maeda, K; Hirota, S; Nakata, T

    1999-12-16

    The first total synthesis of jimenezin was achieved by using carbohydrates as chiral building blocks, thus revising the proposed structure 1 to 2. The key steps in this synthesis include an efficient construction of the THP-THF fragments 3 and 16 through a stereoselective condensation between the pyranyl aldehyde 5 and the acetylene derivative 6, and a palladium-catalyzed coupling reaction of 3 or 16 with a terminal butenolide 4.

  14. Asymmetric total synthesis of (-)-lundurine B and determination of its absolute stereochemistry.

    PubMed

    Nakajima, Masaya; Arai, Shigeru; Nishida, Atsushi

    2015-04-01

    A total synthesis of the Kopsia tenuis alkaloid (-)-lundurine B has been achieved. A quaternary chiral carbon has been created by an asymmetric deprotonation using a symmetric spiro cyclohexanone intermediate with a chiral lithium amide. The hexacyclic skeleton was sequentially constructed through metal-mediated reactions. The absolute stereochemistry of intermediate 5 has been unambiguously established by X-ray crystallographic analysis. This is the first description of the absolute stereochemistry of Kopsia tenuis alkaloids based on chemical synthesis.

  15. Total synthesis of virgatolide B via exploitation of intramolecular hydrogen bonding.

    PubMed

    Hume, Paul A; Furkert, Daniel P; Brimble, Margaret A

    2014-06-06

    A full account of the enantioselective total synthesis of virgatolide B is reported. Key features of the synthesis include an sp(3)-sp(2) Suzuki-Miyaura cross-coupling of a β-trifluoroboratoamide with an aryl bromide, regioselective intramolecular carboalkoxylation, and a 1,3-anti-selective Mukaiyama aldol reaction. Intramolecular hydrogen bonding governed the regioselectivity of the key spiroketalization step, affording the natural product as a single regioisomer.

  16. Biomimetic Total Synthesis of (-)-Penibruguieramine A Using Memory of Chirality and Dynamic Kinetic Resolution.

    PubMed

    Kim, Jae Hyun; Lee, Seokwoo; Kim, Sanghee

    2015-09-07

    The fully stereocontrolled total synthesis of (-)-penibruguieramine A, a naturally occurring marine pyrrolizidine alkaloid, is described in this study for the first time. The key synthetic sequence is the biomimetic aldol reaction of the proline pentaketide amide. The principles of "memory of chirality" (MOC) and "dynamic kinetic resolution" (DKR) are applied to this reaction for the asymmetric synthesis using proline as the only chiral source. A mechanistic rationale is discussed for the excellent stereochemical outcome in a protic solvent environment.

  17. Total Synthesis of the Post-translationally Modified Polyazole Peptide Antibiotic Goadsporin.

    PubMed

    Dexter, Hannah L; Williams, Huw E L; Lewis, William; Moody, Christopher J

    2017-02-01

    The structurally unique polyazole antibiotic goadsporin contains six heteroaromatic oxazole and thiazole rings integrated into a linear array of amino acids that also contains two dehydroalanine residues. An efficient total synthesis of goadsporin is reported in which the key steps are the use of rhodium(II)-catalyzed reactions of diazocarbonyl compounds to generate the four oxazole rings, which demonstrates the power of rhodium carbene chemistry in organic chemical synthesis.

  18. Total Synthesis of Ionic Liquid Systems for Dissolution of Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Sharpe, Robert J.; Karr, Laurel J.; Paley, Mark S.

    2010-01-01

    For purposes of Space Resource Utilization, work in the total synthesis of a new ionic liquid system for the extraction of oxygen and metals from lunar soil is studied and described. Reactions were carried out according to procedures found in the chemical literature, analyzed via Thin-Layer Chromatography and 1H Nuclear Magnetic Resonance Spectroscopy and purified via vacuum distillation and rotary evaporation. Upon final analysis via 1H NMR, it was found that while the intermediates of the synthesis had been achieved, unexpected side products were also present. The mechanisms and constraints of the synthesis are described as well as the final results of the project and recommendations for continued study

  19. A Cascade Strategy Enables a Total Synthesis of (±)‐Morphine

    PubMed Central

    Chu, Shuyu; Münster, Niels; Balan, Tudor

    2016-01-01

    Abstract Morphine has been a target for synthetic chemists since Robinson proposed its correct structure in 1925, resulting in a large number of total syntheses of morphine alkaloids. Here we report a total synthesis of (±)‐morphine that employs two key strategic cyclizations: 1) a diastereoselective light‐mediated cyclization of an O‐arylated butyrolactone to form a tricyclic cis‐fused benzofuran and 2) a cascade ene–yne–ene ring closing metathesis to forge the tetracyclic morphine core. This approach enables a short and stereoselective synthesis of morphine in an overall yield of 6.6 %. PMID:27735107

  20. Chemistry of Renieramycins. Part 14: Total Synthesis of Renieramycin I and Practical Synthesis of Cribrostatin 4 (Renieramycin H)

    PubMed Central

    Yokoya, Masashi; Kobayashi, Keiichiro; Sato, Mitsuhiro; Saito, Naoki

    2015-01-01

    The first total synthesis of (±)-renieramycin I, which was isolated from the Indian bright blue sponge Haliclona cribricutis, is described. The key step is the selenium oxide oxidation of pentacyclic bis-p-quinone derivative (3) stereo- and regioselectively. We also report a large-scale synthesis of cribrostatin 4 (renieramycin H) via the C3-C4 double bond formation in an early stage based on the Avendaño’s protocol, from readily available 1-acetyl-3-(3-methyl-2,4,5-trimethylphenyl)methyl-piperazine-2,5-dione (8) in 18 steps (8.3% overall yield). The synthesis provides unambiguous evidence supporting the original structure of renieramycin I. PMID:26287215

  1. Enantioselective synthesis of α-quaternary Mannich adducts by palladium-catalyzed allylic alkylation: total synthesis of (+)-sibirinine.

    PubMed

    Numajiri, Yoshitaka; Pritchett, Beau P; Chiyoda, Koji; Stoltz, Brian M

    2015-01-28

    A catalytic enantioselective method for the synthesis of α-quaternary Mannich-type products is reported. The two-step sequence of (1) Mannich reaction followed by (2) decarboxylative enantioselective allylic alkylation serves as a novel strategy to in effect access asymmetric Mannich-type products of "thermodynamic" enolates of substrates possessing additional enolizable positions and acidic protons. Palladium-catalyzed decarboxylative allylic alkylation enables the enantioselective synthesis of five-, six-, and seven-membered ketone, lactam, and other heterocyclic systems. The mild reaction conditions are notable given the acidic free N-H groups and high functional group tolerance in each of the substrates. The utility of this method is highlighted in the first total synthesis of (+)-sibirinine.

  2. [Total Synthesis of Biologically Active Natural Products toward Elucidation of the Mode of Action].

    PubMed

    Yoshida, Masahito

    2015-01-01

    Total synthesis of biologically active cyclodepsipeptide destruxin E using solid- and solution-phase synthesis is described. The solid-phase synthesis of destruxin E was initially investigated for the efficient synthesis of destruxin analogues. Peptide elongation from polymer-supported β-alanine was efficiently performed using DIC/HOBt or PyBroP/DIEA, and subsequent cleavage from the polymer-support under weakly acidic conditions furnished a cyclization precursor in moderate yield. Macrolactonization of the cyclization precursor was smoothly performed using 2-methyl-6-nitrobenzoic anhydride (MNBA)/4-(dimethylamino)pyridine N-oxide (DMAPO) to afford macrolactone in moderate yield. Finally, formation of the epoxide in the side chain via three steps provided destruxin E, and the stereochemistry of the epoxide was determined to be S. Its diastereomer, epi-destruxin E, was also synthesized in the same manner used to synthesize the natural product. The stereochemistry of the epoxide was critical for the V-ATPase inhibition; natural product destruxin E exhibited 10-fold more potent V-ATPase inhibition than epi-destruxin E. Next, the scalable synthesis of destruxin E for in vivo study was also performed via solution-phase synthesis. The scalable synthesis of a key component, (S)-HA-Pro-OH, was achieved using osmium-catalyzed diastereoselective dihydroxylation with (DHQD)2PHAL as a chiral ligand; peptide synthesis using Cbz-protected amino acid derivatives furnished the cyclization precursor on a gram-scale. Macrolactonization smoothly provided the macrolactone without forming a dimerized product, even at 6 mM, and the synthesis of destruxin E was achieved via three steps on a gram scale in high purity (>98%).

  3. Total synthesis of (±)-epithuriferic acid methyl ester via Diels-Alder reaction.

    PubMed

    Koprowski, Marek; Bałczewski, Piotr; Owsianik, Krzysztof; Różycka-Sokołowska, Ewa; Marciniak, Bernard

    2016-02-07

    In this paper, we have described the first total synthesis of (±)-epithuriferic acid methyl ester from non-natural sources, in four steps (20% overall yield). The key step involves the Diels-Alder reaction of isobenzofuran with methyl 3-(dimethoxyphosphoryl)acrylate which is controlled by "ortho" regio- and endo stereoselectivities due to the COOMe group.

  4. Total synthesis of ceratopicanol through tandem cycloaddition reaction of a linear substrate.

    PubMed

    Lee, Sang-Shin; Kim, Won-Yeob; Lee, Hee-Yoon

    2012-10-01

    Total synthesis of ceratopicanol (1) was achieved with a tandem cycloaddition reaction of allenyl diazo compound 6 via a trimethylenemethane (TMM) diyl intermediate. The TMM diyl mediated [2+3] cycloaddition reaction furnished the consecutive quaternary carbon centers and showed an unusual diastereoselectivity.

  5. Total Synthesis and Absolute Stereochemistry of the Proteasome Inhibitors Cystargolides A and B

    PubMed Central

    Tello-Aburto, Rodolfo; Hallada, Liam P.; Niroula, Doleshwar; Rogelj, Snezna

    2015-01-01

    The absolute stereochemistry of the cystargolides was determined by total synthesis. Evaluation of synthetic cystargolides and derivatives showed that the natural (2S,3R) stereochemistry is essential for activity. Moreover, benzyl esters (−)-10 and (−)-15 were found to be about 100 times more potent, and to selectively kill MCF-7 cancerous cells. PMID:26400369

  6. Total synthesis and absolute stereochemistry of the proteasome inhibitors cystargolides A and B.

    PubMed

    Tello-Aburto, Rodolfo; Hallada, Liam P; Niroula, Doleshwar; Rogelj, Snezna

    2015-10-28

    The absolute stereochemistry of the cystargolides was determined by total synthesis. Evaluation of synthetic cystargolides and derivatives showed that the natural (2S,3R) stereochemistry is essential for activity. Moreover, benzyl esters (-)-10 and (-)-15 were found to be about 100 times more potent, and to selectively kill MCF-7 cancerous cells.

  7. Total synthesis of exiguamines A and B inspired by catecholamine chemistry.

    PubMed

    Sofiyev, Vladimir; Lumb, Jean-Philip; Volgraf, Matthew; Trauner, Dirk

    2012-04-16

    The evolution of a total synthesis of the exiguamines, two structurally unusual natural products that are highly active inhibitors of indolamine-2,3-dioxygenase (IDO), is described. The ultimately successful strategy involves advanced cross-coupling methodology and features a potentially biosynthetic tautomerization/electrocyclization cascade reaction that forms two heterocycles and installs a quaternary ammonium ion in a single synthetic operation.

  8. Selective bromochlorination of a homoallylic alcohol for the total synthesis of (−)-anverene

    PubMed Central

    Seidl, Frederick J

    2016-01-01

    Summary The scope of a recently reported method for the catalytic enantioselective bromochlorination of allylic alcohols is expanded to include a specific homoallylic alcohol. Critical factors for optimization of this reaction are highlighted. The utility of the product bromochloride is demonstrated by the first total synthesis of an antibacterial polyhalogenated monoterpene, (−)-anverene. PMID:27559385

  9. First total synthesis of a natural product containing a chiral, beta-diketone: synthesis and stereochemical reassignment of siphonarienedione and siphonarienolone.

    PubMed

    Calter, Michael A; Liao, Wensheng

    2002-11-06

    The first total syntheses of siphonarienolone and siphonarienedione are described. The development of a stereoselective synthesis of beta-diketones facilitated the synthesis of the latter compound. The synthesis of the structures proposed for the natural products afforded compounds whose spectral data did not match those of the natural products. However, the synthesis of compounds isomeric to the proposed structures at C(4) and C(5) afforded compounds identical to the natural products, thereby reassigning the stereochemistry of the natural products.

  10. Total synthesis of racemic and (R) and (S)-4-methoxyalkanoic acids and their antifungal activity.

    PubMed

    Das, Biswanath; Shinde, Digambar Balaji; Kanth, Boddu Shashi; Kamle, Avijeet; Kumar, C Ganesh

    2011-07-01

    The total synthesis of 4-methoxydecanoic acid and 4-methoxyundecanoic acid in racemic and stereoselective [(R) and (S)] forms has been accomplished. For stereoselective synthesis of the compounds (S) and (R)-BINOL complexes have been used to generate the required chiral centres. The antifungal activity of these compounds has been studied against different organisms and the results were found to be impressive. The activity of the compounds in racemic and in stereoselective forms was compared. (R)-4-Methoxydecanoic acid was found to be most potent (MIC: 0.019 mg/mL against Candida albicans MTCC 227, C. albicans MTCC 4748, Aspergillus brasiliensis (niger) MTCC 281 and Issatchenkia orientalis MTCC 3020).

  11. Development of an Enantioselective Route towards the Lycopodium Alkaloids: Total Synthesis of Lycopodine

    PubMed Central

    Yang, Hua; Carter, Rich G.

    2010-01-01

    Synthesis of a C15-desmethyl tricycle core of lycopodine has been accomplished. Key steps in the synthetic sequence include organocatalytic, intramolecular Michael addition of a keto sulfone and a tandem 1,3-sulfonyl shift / Mannich cyclization to construct the tricyclic core ring system. Synthetic work towards this natural product family led to the development of N-(p-dodecylphenylsulfonyl)-2-pyrrolidinecarboxamide – an organocatalyst which facilitiates enantioselective, intramolecular Michael additions. A detailed mechanistic discussion is provided for both the intramolecular Michael addition and the sulfone rearrangement. Finally, the application of these discoveries to the enantioselective total synthesis of alkaloid lycopodine is described. PMID:20586477

  12. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product.

    PubMed

    Fuwa, Haruhiko

    2016-03-25

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring.

  13. Contemporary Strategies for the Synthesis of Tetrahydropyran Derivatives: Application to Total Synthesis of Neopeltolide, a Marine Macrolide Natural Product

    PubMed Central

    Fuwa, Haruhiko

    2016-01-01

    Tetrahydropyrans are structural motifs that are abundantly present in a range of biologically important marine natural products. As such, significant efforts have been paid to the development of efficient and versatile methods for the synthesis of tetrahydropyran derivatives. Neopeltolide, a potent antiproliferative marine natural product, has been an attractive target compound for synthetic chemists because of its complex structure comprised of a 14-membered macrolactone embedded with a tetrahydropyran ring, and twenty total and formal syntheses of this natural product have been reported so far. This review summarizes the total and formal syntheses of neopeltolide and its analogues, highlighting the synthetic strategies exploited for constructing the tetrahydropyran ring. PMID:27023567

  14. Synthesis of enantiomerically pure, highly functionalized, medium-sized carbocycles from carbohydrates: formal total synthesis of (+)-calystegine b(2).

    PubMed

    Marco-Contelles, José; de Opazo, Elsa

    2002-05-31

    The free radical cyclization (FR) and the ring-closing metathesis (RCM) reaction have been analyzed in order to develop new and original synthetic protocols for the synthesis of enantiomerically pure, highly functionalized, medium-sized carbocycles from carbohydrates. As a result, we report here for the first time examples of the 7-exo FR cyclization of acyclic radical precursors derived from sugars. This process appears to be extremely sensitive to the conformational mobility of the radical species in the transition state. The use of two isopropylidene groups blocking four of the total present hydroxyl groups and a good radical acceptor (as an alpha,beta-unsaturated ester) are mandatory conditions for a successful ring closure protocol. The RCM reaction by using Grubbs' catalyst on selected carbohydrate-derived precursors has afforded variable yields of the expected unsaturated cycloheptane or cycloctane derivatives. The synthesis of the cycloheptitols has been carried out in good yields, regardless of the absolute configuration at the different stereocenters and the nature of the O-functional groups bound in allylic positions to one of the double bonds implicated in the metathesis reaction. Conversely, in the cyclooctane synthesis, we have observed that the success of the reaction depends not only on the absolute configuration at the different stereocenters close to the double bonds but also on the nature of the O-protecting groups on these stereocenters. Finally, the RCM strategy has been used in an attempt to prepare natural (+)-calystegine B(2) from D-glucose. The synthesis of compound 92 from D-glucose constitutes a formal total synthesis of (+)-calystegine B(2), showing the importance of the steric hindrance in allylic positions for a successful RCM reaction.

  15. Total Synthesis of (-)-Tetrodotoxin and 11-norTTX-6(R)-ol.

    PubMed

    Maehara, Tomoaki; Motoyama, Keisuke; Toma, Tatsuya; Yokoshima, Satoshi; Fukuyama, Tohru

    2017-02-01

    The enantioselective total synthesis of (-)-tetrodotoxin [(-)-TTX] and 4,9-anhydrotetrodotoxin, which are selective blockers of voltage-gated sodium channels, was accomplished from the commercially available p-benzoquinone. This synthesis was based on efficient stereocontrol of the six contiguous stereogenic centers on the core cyclohexane ring through Ogasawara's method, [3,3]-sigmatropic rearrangement of an allylic cyanate, and intramolecular 1,3-dipolar cycloaddition of a nitrile oxide. Our synthetic route was applied to the synthesis of the tetrodotoxin congeners 11-norTTX-6(R)-ol and 4,9-anhydro-11-norTTX-6(R)-ol through late-stage modification of the common intermediate. Neutral deprotection at the final step enabled easy purification of tetrodotoxin and 11-norTTX-6(R)-ol without competing dehydration to their 4,9-anhydro forms.

  16. Enantioselective Synthesis of (−)-Acetylapoaranotin

    PubMed Central

    2017-01-01

    The first enantioselective total synthesis of the epipolythiodiketopiperazine (ETP) natural product (−)-acetylapoaranotin (3) is reported. The concise synthesis was enabled by an eight-step synthesis of a key cyclohexadienol-containing amino ester building block. The absolute stereochemistry of both amino ester building blocks used in the synthesis is set through catalytic asymmetric (1,3)-dipolar cycloaddition reactions. The formal syntheses of (−)-emethallicin E and (−)-haemotocin are also achieved through the preparation of a symmetric cyclohexadienol-containing diketopiperazine. PMID:28349698

  17. Stereocontrolled total synthesis of neuroprotectin D1 / protectin D1 and its aspirin-triggered stereoisomer

    PubMed Central

    Petasis, Nicos A.; Yang, Rong; Winkler, Jeremy W.; Zhu, Min; Uddin, Jasim; Bazan, Nicolas G.; Serhan, Charles N.

    2012-01-01

    Neuroprotectin D1 / protectin D1, a potent anti-inflammatory, proresolving, and neuroprotective lipid mediator derived biosynthetically from docosahexaenoic acid, was prepared in enantiomerically pure form via total organic synthesis. The synthetic strategy is highly stereocontrolled and convergent, featuring epoxide opening of glycidol starting materials for the introduction of the 10(R) and 17(S) hydroxyl groups. The desired alkene Z geometry was secured via the cis-reduction of alkyne precursors, while the conjugated E,E,Z triene was introduced at the end, in order to minimize Z/E isomerization. The same strategy, was also employed for the total synthesis of aspirin-triggered neuroprotectin D1 / protectin D1 having the 17(R)-stereochemistry. Synthetic compounds obtained with the reported method were matched with endogenously derived materials, and helped establish their complete stereochemistry. PMID:22690022

  18. Studies of a Diazo Cyclopropanation Strategy for the Total Synthesis of (-)-Lundurine A.

    PubMed

    Huang, Hong-Xiu; Jin, Shuai-Jiang; Gong, Jin; Zhang, Dan; Song, Hao; Qin, Yong

    2015-09-14

    The bioactive Kopsia alkaloids lundurines A-D are the only natural products known to contain indolylcyclopropane. Achieving their syntheses can provide important insights into their biogenesis, as well as novel synthetic routes for complex natural products. Asymmetric total synthesis of (-)-lundurine A has previously been achieved through a Simmons-Smith cyclopropanation strategy. Here, the total synthesis of (-)-lundurine A was carried out using a metal-catalyzed diazo cyclopropanation strategy. In order to avoid a carbene CH insertion side reaction during cyclopropanation of α-diazo- carboxylates or cyanides, a one-pot, copper-catalyzed Bamford-Stevens diazotization/diazo decomposition/cyclopropanation cascade was developed, involving hydrazone. This approach simultaneously generates the C/D/E ring system and the two chiral quaternary centers at C2 and C7.

  19. Total Synthesis of (+)-Sieboldine A: Evolution of A Pinacol-Terminated Cyclization Strategy

    PubMed Central

    Canham, Stephen M.; France, David J.; Overman, Larry E.

    2013-01-01

    This article describes synthetic studies that culminated in the first total synthesis of the Lycopodium alkaloid sieboldine A. During this study a number of pinacol-terminated cationic cyclizations were examined to form the cis-hydrindanone core of sieboldine A. Of these, a mild Au(I)-promoted 1,6-enyne cyclization that was terminated by a semipinacol rearrangement proved to be most efficient. Fashioning the unprecedented N-hydroxyazacyclononane ring embedded within the bicyclo[5.2.1]decane-N,O-acetal moiety of sieboldine A was a formidable challenge. Ultimately, the enantioselective total synthesis of (+)-sieboldine A was completed by forming this ring in good yield by cyclization of a protected-hydroxylamine thioglycoside precursor. PMID:22734821

  20. Total synthesis of (+)-gelsemine via an organocatalytic Diels–Alder approach

    PubMed Central

    Chen, Xiaoming; Duan, Shengguo; Tao, Cheng; Zhai, Hongbin; Qiu, Fayang G.

    2015-01-01

    The structurally complex alkaloid gelsemine was previously thought to have no significant biological activities, but a recent study has shown that it has potent and specific antinociception in chronic pain. While this molecule has attracted significant interests from the synthetic community, an efficient synthetic strategy is still the goal of many synthetic chemists. Here we report the asymmetric total synthesis of (+)-gelsemine, including a highly diastereoselective and enantioselective organocatalytic Diels–Alder reaction, an efficient intramolecular trans-annular aldol condensation furnishing the prolidine ring and establishing the configuration of the C20 quaternary carbon stereochemical centre. The entire gelsemine skeleton was constructed through a late-stage intramolecular SN2 substitution. The enantiomeric excess of this total synthesis is over 99%, and the overall yield is around 5%. PMID:25995149

  1. Investigating Mithramycin deoxysugar biosynthesis: enzymatic total synthesis of TDP-D-olivose.

    PubMed

    Wang, Guojun; Kharel, Madan K; Pahari, Pallab; Rohr, Jürgen

    2011-11-25

    Mix'n'match: Enzymatic total synthesis of TDP-D-olivose was achieved, starting from TDP-4-keto-6-deoxy-D-glucose, by combining three pathway enzymes with one cofactor-regenerating enzyme. The results also revealed that MtmC is a bifunctional enzyme that can perform a 4-ketoreduction necessary for D-olivose biosynthesis besides the previously found C-methyltransfer for D-mycarose biosynthesis.

  2. Enantioselective total synthesis of callipeltoside A: two approaches to the macrolactone fragment

    PubMed Central

    Evans, David A.; Burch, Jason D.; Hu, Essa; Jaeschke, Georg

    2012-01-01

    The enantioselective total synthesis of callipeltoside A is described. Two syntheses of the macrolactone subunit are included: the first relies upon an Ireland–Claisen rearrangement to generate the trisubstituted olefin geometry and the second utilizes an enantioselective vinylogous aldol reaction for this purpose. Enantioselective syntheses of the sugar and chlorocyclopropane side chain fragments are also disclosed. The relative and absolute stereochemistry of this natural product was determined by fragment coupling with the two enantiomers of the side chain fragment. PMID:22859865

  3. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling ‡

    PubMed Central

    Kozlowski, Marisa C.; Morgan, Barbara J.; Linton, Elizabeth C.

    2010-01-01

    This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses are discussed including nigerone, hypocrellin, calphostin D, phleichrome, and cercosporin. PMID:19847351

  4. Total synthesis of chiral biaryl natural products by asymmetric biaryl coupling.

    PubMed

    Kozlowski, Marisa C; Morgan, Barbara J; Linton, Elizabeth C

    2009-11-01

    This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses are discussed including nigerone, hypocrellin, calphostin D, phleichrome, and cercosporin.

  5. Total Synthesis of Ustiloxin D Utilizing an Ammonia-Ugi Reaction.

    PubMed

    Brown, Aaron L; Churches, Quentin I; Hutton, Craig A

    2015-10-16

    Total synthesis of the highly functionalized cyclic peptide natural product, ustiloxin D, has been achieved in a convergent manner. Our strategy incorporates an asymmetric allylic alkylation to construct the tert-alkyl aryl ether linkage between the dopa and isoleucine residues. The elaborated β-hydroxydopa derivative is rapidly converted to a linear tripeptide through an ammonia-Ugi reaction. Subsequent cyclization and global deprotection affords ustiloxin D in six steps from a known β-hydroxydopa derivative.

  6. Studies toward the Total Synthesis of Itralamide B and Biological Evaluation of Its Structural Analogs

    PubMed Central

    Wang, Xiaoji; Lv, Chanshan; Feng, Junmin; Tang, Linjun; Wang, Zhuo; Liu, Yuqing; Meng, Yi; Ye, Tao; Xu, Zhengshuang

    2015-01-01

    Itralamides A and B were isolated from the lipophilic extract of Lyngbya majuscula collected from the eastern Caribbean. Itralamide B (1) showed cytotoxic activity towards human embryonic kidney cells (HEK293, IC50 = 6 μM). Preliminary studies disapproved the proposed stereochemistry of itralamide. In this paper, we will provide a full account of the total synthesis of four stereoisomers of itralamide B and the results derived from biological tests of these structural congeners. PMID:25871289

  7. Organisational culture, organisational learning and total quality management: a literature review and synthesis.

    PubMed

    Bloor, G

    1999-01-01

    As health services face increasing pressure to meet the expectations of different stakeholders, they must continuously improve and learn from their experience. Many fail in attempts at continuous improvement programs because managers have not understood the complexity of making changes in organisations with multiple subcultures and interests. This article examines the related concepts of organisational culture, organisational learning and total quality management and shows how a synthesis of this knowledge can assist in developing continuous organisational learning and improvement.

  8. Comparison of Whole-Blood Metal Ion Levels Among Four Types of Large-Head, Metal-on-Metal Total Hip Arthroplasty Implants: A Concise Follow-up, at Five Years, of a Previous Report.

    PubMed

    Hutt, Jonathan; Lavigne, Martin; Lungu, Eugen; Belzile, Etienne; Morin, François; Vendittoli, Pascal-André

    2016-02-17

    Few studies of total hip arthroplasty (THA) implants with a large-diameter femoral head and metal-on-metal design have directly compared the progression of metal ion levels over time and the relationship to complications. As we previously reported, 144 patients received one of four types of large-diameter-head, metal-on-metal THA designs (Durom, Birmingham, ASR XL, or Magnum implants). Cobalt, chromium, and titanium ion levels were measured over five years. We compared ion levels and clinical results over time. The Durom group showed the highest levels of cobalt (p ≤ 0.002) and titanium ions (p ≤ 0.03). Both the Durom and Birmingham groups demonstrated significant ongoing cobalt increases up to five years. Eight patients (seven with a Durom implant and one with a Birmingham implant) developed adverse local tissue reaction. Six Durom implants and one Birmingham implant required revision, with one pseudotumor under surveillance at the time of the most recent follow-up. We found that ion generation and related complications varied among designs. More concerning was that, for some designs, ion levels continued to increase. Coupling a cobalt-chromium adapter sleeve to an unmodified titanium femoral trunnion along with a large metal-on-metal bearing may explain the poor performances of two of the designs in the current study.

  9. Total Synthesis of Chlorofusin, its Seven Chromophore Diastereomers, and Key Partial Structures

    PubMed Central

    Clark, Ryan C.; Lee, Sang Yeul; Boger, Dale L.

    2008-01-01

    Chlorofusin is a recently isolated, naturally occurring inhibitor of p53−MDM2 complex formation whose structure is composed of a densely functionalized azaphilone-derived chromophore linked through the terminal amine of ornithine to a nine residue cyclic peptide. Herein we report the full details of the total synthesis of chlorofusin, resulting in the assignment of the absolute stereochemistry and reassignment of the relative stereochemistry of the complex chromophore. Condensation of each enantiomer of an azaphilone chromophore precursor with the Nδ-amine of a protected ornithinethreonine dipeptide, followed by a one-step oxidation/spirocyclization of the most reactive olefin provided all eight diastereomers of the fully elaborated chromophore−dipeptide conjugate. Comparison of the spectroscopic properties for these eight compounds and those of simpler models with that reported for the natural product allowed the full assignment of the (4R,8S,9R)-stereochemistry of the chlorofusin chromophore. The natural, but stereochemically reassigned, diastereomer of the dipeptide conjugate was incorporated in a convergent total synthesis of chlorofusin confirming the stereochemical reassignment and establishing its absolute stereochemistry. Similarly and enlisting the late stage convergent point in the total synthesis, the remaining seven diastereomers of the chromophore−dipeptide conjugates were individually incorporated into the 9-residue cyclic peptide of chlorofusin (4 steps each) providing all seven remaining possible chromophore diastereomers of the natural product. PMID:18712872

  10. Zeolite-Based Organic Synthesis (ZeoBOS) of Acortatarin A: First Total Synthesis Based on Native and Metal-Doped Zeolite-Catalyzed Steps.

    PubMed

    Wimmer, Eric; Borghèse, Sophie; Blanc, Aurélien; Bénéteau, Valérie; Pale, Patrick

    2017-01-31

    Similarly to polymer-supported assisted synthesis (PSAS), organic synthesis could be envisaged being performed by using zeolites, native or metal-doped, as heterogeneous catalysts. To illustrate this unprecedented Zeolite-Based Organic Synthesis (ZeoBOS), the total synthesis of acortatarin A was achieved through a novel strategy and using five out of eleven synthetic steps catalyzed by H- or metal-doped zeolites as catalysts. Notably, the formation of an yne-pyrrole intermediate with a copper-doped zeolite and the spiroketalization of an alkyne diol with a silver-doped zeolite have been developed as key steps of the synthesis.

  11. Total synthesis approaches to natural product derivatives based on the combination of chemical synthesis and metabolic engineering.

    PubMed

    Kirschning, Andreas; Taft, Florian; Knobloch, Tobias

    2007-10-21

    Secondary metabolites are an extremely diverse and important group of natural products with industrial and biomedical implications. Advances in metabolic engineering of both native and heterologous secondary metabolite producing organisms have allowed the directed synthesis of desired novel products by exploiting their biosynthetic potentials. Metabolic engineering utilises knowledge of cellular metabolism to alter biosynthetic pathways. An important technique that combines chemical synthesis with metabolic engineering is mutasynthesis (mutational biosynthesis; MBS), which advanced from precursor-directed biosynthesis (PDB). Both techniques are based on the cellular uptake of modified biosynthetic intermediates and their incorporation into complex secondary metabolites. Mutasynthesis utilises genetically engineered organisms in conjunction with feeding of chemically modified intermediates. From a synthetic chemist's point of view the concept of mutasynthesis is highly attractive, as the method combines chemical expertise with Nature's synthetic machinery and thus can be exploited to rapidly create small libraries of secondary metabolites. However, in each case, the method has to be critically compared with semi- and total synthesis in terms of practicability and efficiency. Recent developments in metabolic engineering promise to further broaden the scope of outsourcing chemically demanding steps to biological systems.

  12. Enantiomeric deoxycholic acid: total synthesis, characterization, and preliminary toxicity toward colon cancer cell lines.

    PubMed

    Katona, Bryson W; Rath, Nigam P; Anant, Shrikant; Stenson, William F; Covey, Douglas F

    2007-11-23

    Deoxycholic acid (DCA) is an endogenous secondary bile acid implicated in numerous pathological conditions including colon cancer formation and progression and cholestatic liver disease. DCA involvement in these disease processes results partly from its ability to modulate signaling cascades within the cell, presumably through both direct receptor activation and general detergent mediated membrane changes. To further explore DCA induced changes in cell signaling, we completed a total synthesis of enantiomeric deoxycholic acid (ent-DCA) from achiral 2-methyl-1,3-cyclopentanedione. Using a modified method of the synthesis of ent-testosterone that proceeds through the (R)-(-)-Hajos-Parrish ketone, we have completed the successful synthesis of ent-DCA in 25 steps with a yield of 0.3% with all stereochemical assignments of the product confirmed by X-ray crystallography. Our studies toward this synthesis also uncovered the methodology for the development of a novel A,B-cis steroidal skeleton system containing a C3-C9 single bond as well as conditions to selectively ketalize the typically less reactive 12-carbonyl in poly-keto A,B-cis androgens. The critical micelle concentration (cmc) of ent-DCA, determined by a dye solubilization method, was identical to the cmc of natural DCA. Toxicity studies toward HT-29 and HCT-116 human colon cancer cell lines demonstrated that ent-DCA had similar effects on proliferation, yet showed a markedly decreased ability to induce apoptosis as compared to natural DCA.

  13. Natural Product Total Synthesis in the Organic Laboratory: Total Synthesis of Caffeic Acid Phenethyl Ester (CAPE), a Potent 5-Lipoxygenase Inhibitor from Honeybee Hives

    ERIC Educational Resources Information Center

    Touaibia, Mohamed; Guay, Michel

    2011-01-01

    Natural products play a critical role in modern organic synthesis and learning synthetic techniques is an important component of the organic laboratory experience. In addition to traditional one-step organic synthesis laboratories, a multistep natural product synthesis is an interesting experiment to challenge students. The proposed three-step…

  14. Total Synthesis of Viridicatumtoxin B and Analogues Thereof: Strategy Evolution, Structural Revision, and Biological Evaluation

    PubMed Central

    2015-01-01

    The details of the total synthesis of viridicatumtoxin B (1) are described. Initial synthetic strategies toward this intriguing tetracycline antibiotic resulted in the development of key alkylation and Lewis acid-mediated spirocyclization reactions to form the hindered EF spirojunction, as well as Michael–Dieckmann reactions to set the A and C rings. The use of an aromatic A-ring substrate, however, was found to be unsuitable for the introduction of the requisite hydroxyl groups at carbons 4a and 12a. Applying these previous tactics, we developed stepwise approaches to oxidize carbons 12a and 4a based on enol- and enolate-based oxidations, respectively, the latter of which was accomplished after systematic investigations that revealed critical reactivity patterns. The herein described synthetic strategy resulted in the total synthesis of viridicatumtoxin B (1), which, in turn, formed the basis for the revision of its originally assigned structure. The developed chemistry facilitated the synthesis of a series of viridicatumtoxin analogues, which were evaluated against Gram-positive and Gram-negative bacterial strains, including drug-resistant pathogens, revealing the first structure–activity relationships within this structural type. PMID:25317739

  15. Total RNA-seq to identify pharmacological effects on specific stages of mRNA synthesis.

    PubMed

    Boswell, Sarah A; Snavely, Andrew; Landry, Heather M; Churchman, L Stirling; Gray, Jesse M; Springer, Michael

    2017-03-06

    Pharmacological perturbation is a powerful tool for understanding mRNA synthesis, but identification of the specific steps of this multi-step process that are targeted by small molecules remains challenging. Here we applied strand-specific total RNA sequencing (RNA-seq) to identify and distinguish specific pharmacological effects on transcription and pre-mRNA processing in human cells. We found unexpectedly that the natural product isoginkgetin, previously described as a splicing inhibitor, inhibits transcription elongation. Compared to well-characterized elongation inhibitors that target CDK9, isoginkgetin caused RNA polymerase accumulation within a broader promoter-proximal band, indicating that elongation inhibition by isoginkgetin occurs after release from promoter-proximal pause. RNA-seq distinguished isoginkgetin and CDK9 inhibitors from topoisomerase I inhibition, which alters elongation across gene bodies. We were able to detect these and other specific defects in mRNA synthesis at low sequencing depth using simple metagene-based metrics. These metrics now enable total-RNA-seq-based screening for high-throughput identification of pharmacological effects on individual stages of mRNA synthesis.

  16. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide.

    PubMed

    Seeberger, Peter H; Pereira, Claney L; Govindan, Subramanian

    2017-01-01

    The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS). A better immunological understanding of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glycoconjugate vaccines is the assembly of the trisaccharide β-D-GalpNAc-(1→4)-[α-D-Glcp-(1→3)]-β-D-ManpNAcA, in which the branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of monosaccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The synthetic hexasaccharide is the starting point for further immunological investigations.

  17. Studies Toward the Syntheses of Pluramycin Natural Products. The First Total Synthesis of Isokidamycin.

    PubMed Central

    O'Keefe, B. Michael; Mans, Douglas M.; Kaelin, David E.; Martin, Stephen F.

    2011-01-01

    We report the first total synthesis of the complex C-aryl glycoside isokidamycin, the epimer of the naturally-occurring pluramycin antibiotic kidamycin. The synthesis features a highly efficientDiels-Alder reaction between a substituted naphthyne and a glycosylatedfuran to form the anthracene core bearing a pendant angolosamine C-glycoside. The regiochemical outcome of the Diels-Alder reaction was controlled by employing a disposable silicon-tether to link the reactive napthyne and the glycosyl furan, rendering the cycloaddition intramolecular. The benzopyranone moietyof the aromatic nucleus was appended by cyclization of a functionalized vinylogous amide onto an advanced anthrol intermediate. The vancosamine amino glycoside was introduced by an O→C-glycoside rearrangement that produced the β-anomer. Subsequent refunctionalizations then led to isokidamycin. PMID:21804649

  18. Total synthesis of a Streptococcus pneumoniae serotype 12F CPS repeating unit hexasaccharide

    PubMed Central

    Pereira, Claney L; Govindan, Subramanian

    2017-01-01

    The Gram-positive bacterium Streptococcus pneumoniae causes severe disease globally. Vaccines that prevent S. pneumoniae infections induce antibodies against epitopes within the bacterial capsular polysaccharide (CPS). A better immunological understanding of the epitopes that protect from bacterial infection requires defined oligosaccharides obtained by total synthesis. The key to the synthesis of the S. pneumoniae serotype 12F CPS hexasaccharide repeating unit that is not contained in currently used glycoconjugate vaccines is the assembly of the trisaccharide β-D-GalpNAc-(1→4)-[α-D-Glcp-(1→3)]-β-D-ManpNAcA, in which the branching points are equipped with orthogonal protecting groups. A linear approach relying on the sequential assembly of monosaccharide building blocks proved superior to a convergent [3 + 3] strategy that was not successful due to steric constraints. The synthetic hexasaccharide is the starting point for further immunological investigations. PMID:28228857

  19. Development of the Concise Data Processing Assessment

    ERIC Educational Resources Information Center

    Day, James; Bonn, Doug

    2011-01-01

    The Concise Data Processing Assessment (CDPA) was developed to probe student abilities related to the nature of measurement and uncertainty and to handling data. The diagnostic is a ten question, multiple-choice test that can be used as both a pre-test and post-test. A key component of the development process was interviews with students, which…

  20. Total synthesis of biologically active 20S-hydroxyvitamin D3

    PubMed Central

    Wang, Qinghui; Lin, Zongtao; Kim, Tae-Kang; Slominski, Andrzej T.; Miller, Duane D.; Li, Wei

    2015-01-01

    A total synthetic strategy of 20S-hydroxyvitamin D3 [20S-(OH)D3] involving modified synthesis of key intermediates 7 and 12, Grignard reaction to stereoseletively generate 20S-OH and Wittig-Horner coupling to establish D3 framework, was completed in 16 steps with an overall yield of 0.4 %. The synthetic 20S-(OH)D3 activated vitamin D receptor (VDR) and initiated the expression of downstream genes. In addition, 20S-(OH)D3 showed similar inhibitory potency as calcitriol [1,25(OH)2D3] on proliferation of melanoma cells. PMID:26433048

  1. Total Synthesis of Fellutamide B and Deoxy-Fellutamides B, C, and D

    PubMed Central

    Giltrap, Andrew M.; Cergol, Katie M.; Pang, Angel; Britton, Warwick J.; Payne, Richard J.

    2013-01-01

    The total syntheses of the marine-derived lipopeptide natural product fellutamide B and deoxy-fellutamides B, C, and D are reported. These compounds were accessed through a novel solid-phase synthetic strategy using Weinreb amide-derived resin. As part of the synthesis, a new enantioselective route to (3R)-hydroxy lauric acid was developed utilizing a Brown allylation reaction followed by an oxidative cleavage-oxidation sequence as the key steps. The activity of these natural products, and natural product analogues was also assessed against Mycobacterium tuberculosis in vitro. PMID:23880930

  2. Studies Culminating in the Total Synthesis and Determination of the Absolute Configuration of (-)-Saudin

    PubMed Central

    Boeckman, Robert K.; del Rosario Ferreira, Maria Rico; Mitchell, Lorna H.; Shao, Pengcheng; Neeb, Michael J.; Fang, Yue

    2011-01-01

    A full account of studies that culminated in the total synthesis of both antipodes and the assignment of its absolute configuration of Saudin, a hypoglycemic natural product. Two approaches are described, the first proceeding though bicyclic lactone intermediates and related second monocyclic esters. The former was obtained via asymmetric Diels-Alder cycloaddition and the latter by an asymmetric annulation protocol. Both approaches employ a Lewis acid promoted Claisen rearrangement, with the successful approach taking advantage of bidentate chelation to control the facial selectivity of the key Claisen rearrangement PMID:22523435

  3. Total synthesis of fostriecin: via a regio- and stereoselective polyene hydration, oxidation, and hydroboration sequence.

    PubMed

    Gao, Dong; O'Doherty, George A

    2010-09-03

    A total synthesis of the fostriecin has been achieved in 24 steps from enyne 11. The lactone moiety was installed by a Leighton allylation and Grubbs ring-closing metathesis reaction. The highly reactive Z,Z,E-triene moiety was installed via a late-stage Suzuki-Miyaura cross-coupling of a remarkably stable Z-vinyl boronate. The relative and absolute stereocenters of the C-8,9,11 triol were generated with a regio- and stereoselective asymmetric hydration/oxidation sequence.

  4. The asymmetric total synthesis of cinbotolide: a revision of the original structure.

    PubMed

    Botubol, José Manuel; Durán-Peña, María Jesús; Macías-Sánchez, Antonio J; Hanson, James R; Collado, Isidro G; Hernández-Galán, Rosario

    2014-12-05

    The structure 3,4-dihydroxy-2,4,6,8-tetramethyldec-8-enolide (1) was assigned to a metabolite of Botrytis cinerea, but the spectra of several synthetic analogues had significant differences from that of 1. Examination of the constituents of a B. cinerea mutant that overproduces polyketides gave sufficient quantities of 1, now named cinbotolide, for chemical transformations. These led to a revised γ-butyrolactone structure for the metabolite. This structure has been confirmed by an asymmetric total synthesis, which also established its absolute configuration.

  5. Dehydromicrosclerodermin B and Microsclerodermin J: Total Synthesis and Structural Revision

    PubMed Central

    Melikhova, Ekaterina Y.; Pullin, Robert D. C.; Winter, Christian

    2016-01-01

    Abstract The total synthesis of dehydromicrosclerodermin B and microsclerodermin J is described. Efficient approaches to the unusual amino acids in the target molecules were developed on the basis of a Negishi coupling (for Trp‐2‐CO2H) and Blaise reaction (for Pyrr). An incorrect assignment of the pyrrolidinone stereochemistry of both compounds was confirmed by synthesizing epimers of the proposed structures. The spectroscopic data of these epimers were in complete agreement with those for the naturally derived material. PMID:27418203

  6. Total Synthesis of Piericidin A1. Application of a Modified Negishi Carboalumination-Nickel-Catalyzed Cross-Coupling

    PubMed Central

    Lipshutz, Bruce H.; Amorelli, Benjamin

    2012-01-01

    A total synthesis of the mitochondrial complex I inhibitor piericidin A1 is described. It features a unique strategy for the key disconnection, highlighting a modified Negishi carboalumination/Ni-catalyzed cross-coupling on a polyenyne precursor. PMID:19138148

  7. Toward the total synthesis of onchidin, a cytotoxic cyclic depsipeptide from a mollusc.

    PubMed

    Kobayashi, Shū; Kobayashi, Jun; Yazaki, Ryo; Ueno, Masaharu

    2007-01-08

    The total synthesis of onchidin (1), a cytotoxic, C2-symmetric cyclic decadepsipeptide from a marine mollusc, according to the published structure, is described. A novel beta-amino acid, (2S,3S)-3-amino-2-methyl-7-octynoic acid (AMO), was efficiently prepared in high yield with high diastereo- and enantioselectivity based on a catalytic asymmetric three-component Mannich-type reaction with a chiral zirconium catalyst. The formation of sterically unfavorable N-methyl amide and hindered ester bonds were successfully demonstrated, and final macrocyclization was achieved at a secondary-amide site. Completion of the synthesis of 1 suggested that a revision of the structure of the natural product is required. Two diastereomers were also synthesized as candidates for the actual structure of onchidin. Furthermore, efficient solid-phase methods were employed for the combinatorial synthesis of other derivatives to clarify the real structure of onchidin. The solid-phase assembly of a pentadepsipeptide containing all the building blocks was established followed by dimeric cyclization in solution.

  8. Evolution of a total synthesis of (-)-kendomycin exploiting a Petasis-Ferrier rearrangement/ring-closing olefin metathesis strategy.

    PubMed

    Smith, Amos B; Mesaros, Eugen F; Meyer, Emmanuel A

    2006-04-19

    A convergent stereocontrolled total synthesis of (-)-kendomycin (1) has been achieved. The synthesis proceeds with a longest linear sequence of 21 steps, beginning with commercially available 2,4-dimethoxy-3-methylbenzaldehyde (12). Highlights of the synthesis include an effective Petasis-Ferrier union/rearrangement tactic to construct the sterically encumbered tetrahydropyran ring, a ring-closing metathesis to generate the C(4a-13-20a) macrocycle, an effective epoxidation/deoxygenation sequence to isomerize the C(13,14) olefin, and a biomimetic quinone-methide-lactol assembly to complete the synthesis.

  9. Total Synthesis of 7-Hydroxymurrayazolinine, Murrayamine D, and Mahanine via m-Nitro Group Activated Pyran Annulation.

    PubMed

    Hou, Shujie; Liu, Yong; Kong, Yali; Brown, Milton L

    2015-05-15

    The facile total synthesis of the natural product (±)-mahanine was obtained in eight steps with an overall 52% yield from readily accessible known nitrophenol derivative 6. After a one-step, acid-catalyzed annulation, two additional natural products were formed including 7-hydroxymurrayazolinine, representing its first reported total synthesis. In the whole process, the introduction of the m-nitro group significantly enhanced the key pyran annulation reaction through inductive effects.

  10. Facile total synthesis of (-)-(5R,6S)-6-acetoxy-5-hexadecanolide from carbohydrate, a mosquito oviposition attractant pheromone.

    PubMed

    Das, Saibal; Mishra, Anand Kumar; Kumar, Ashish; Al Ghamdi, Ahamad Al Khazim; Yadav, Jhillu Singh

    2012-09-01

    Total synthesis of (-)-(5R,6S)-6-acetoxy-5-hexadecanolide, a major component of mosquito oviposition attractant pheromones is reported. The key synthetic steps involve epoxide opening by lithiated salt of ethylpropionate and acid catalysed lactonization. The total synthesis was achieved in 11 linear steps staring from a readily available carbohydrate δ-gluconolactone in 18% overall yield making it simple, practical and elegant.

  11. Total Synthesis, Assignment of the Relative and Absolute Stereochemistry, and Structural Reassignment of Phostriecin (aka Sultriecin)

    PubMed Central

    Burke, Christopher P.; Haq, Nadia; Boger, Dale L.

    2010-01-01

    A total synthesis of phostriecin (2) previously known as sultriecin (1), its structural reassignment as a phosphate versus sulfate monoester, and the assignment of its relative and absolute stereochemistry are disclosed herein. Key elements of the work, which provided first the originally assigned sulfate monoester 1 and then the reassigned and renamed phosphate monoester 2, relied on diagnostic 1H NMR spectroscopic properties of the natural product for the assignment of relative and absolute stereochemistry as well as the subsequent structural reassignment, and a convergent asymmetric total synthesis to provide the unequivocal authentic materials. Key steps of the synthetic approach include a Brown allylation for diastereoselective introduction of the C9 stereochemistry, an asymmetric CBS reduction to establish the lactone C5-stereochemistry, diastereoselective oxidative ring expansion of an α-hydroxyfuran to access the pyran lactone precursor, and single-step installation of the sensitive Z,Z,E-triene unit through a chelation-controlled cuprate addition with installation of the C11 stereochemistry. The approach allows ready access to analogues that can now be used to probe important structural features required for PP2A inhibition, the mechanism of action defined herein. PMID:20108904

  12. Total synthesis, assignment of the relative and absolute stereochemistry, and structural reassignment of phostriecin (aka Sultriecin).

    PubMed

    Burke, Christopher P; Haq, Nadia; Boger, Dale L

    2010-02-24

    A total synthesis of phostriecin (2), previously known as sultriecin (1), its structural reassignment as a phosphate versus sulfate monoester, and the assignment of its relative and absolute stereochemistry are disclosed herein. Key elements of the work, which provided first the originally assigned sulfate monoester 1 and then the reassigned and renamed phosphate monoester 2, relied on diagnostic (1)H NMR spectroscopic properties of the natural product for the assignment of relative and absolute stereochemistry as well as the subsequent structural reassignment, and a convergent asymmetric total synthesis to provide the unequivocal authentic materials. Key steps of the synthetic approach include a Brown allylation for diastereoselective introduction of the C9 stereochemistry, an asymmetric CBS reduction to establish the lactone C5-stereochemistry, diastereoselective oxidative ring expansion of an alpha-hydroxyfuran to access the pyran lactone precursor, and single-step installation of the sensitive Z,Z,E-triene unit through a chelation-controlled cuprate addition with installation of the C11 stereochemistry. The approach allows ready access to analogues that can now be used to probe important structural features required for protein phosphatase 2A inhibition, the mechanism of action defined herein.

  13. Total synthesis of woodrosin I--part 2: final stages involving RCM and an orthoester rearrangement.

    PubMed

    Fürstner, Alois; Jeanjean, Fabien; Razon, Patrick; Wirtz, Conny; Mynott, Richard

    2003-01-03

    The completion of the first total synthesis of the complex resin glycoside woodrosin I (1) is outlined using the building blocks described in the preceding paper. Key steps involve the TMSOTf-catalyzed coupling of diol 2 with trichloroacetimidate 3 which leads to the selective formation of orthoester 5 rather than to the expected tetrasaccharide. Diene 5, on treatment with catalytic amounts of the Grubbs carbene complex 6 or the phenylindenylidene ruthenium complex 7, undergoes a high yielding ring closing olefin metathesis reaction (RCM) to afford macrolide 8. Exposure of the latter to the rhamnosyl donor 4 in the presence of TMSOTf under "inverse glycosylation" conditions delivers compound 9 by a process involving glycosylation of the sterically hindered 2'-OH group and concomitant rearrangement of the adjacent orthoester into the desired beta-glycoside. This transformation constitutes one of the most advanced applications of the Kochetkov glycosidation method reported to date. Cleavage of the chloroacetate followed by exhaustive hydrogenation completes the total synthesis of the targeted glycolipid 1.

  14. Ru Catalyzed Alkene-Alkyne Coupling. Total Synthesis of Amphidinolide P

    PubMed Central

    Trost, Barry M.; Papillon, Julien P. N.; Nussbaumer, Thomas

    2008-01-01

    A coordinatively unsaturated ruthenium complex catalyzed the formation of a carbon-carbon bond between two judiciously chosen alkene and alkyne partners in good yield, and in a chemo- and regioselective fashion, in spite of the significant degree of unsaturation of the substrates. The resulting 1,4-diene forms the backbone of the cytotoxic marine natural product amphidinolide P. The alkene partner was rapidly assembled from (R)-glycidyl tosylate, which served as a linchpin in a one-flask, sequential three-components coupling process using vinyllithium and a vinyl cyanocuprate. The synthesis of the alkyne partner made use of an unusual anti-selective addition under chelation control conditions of an allyltin reagent derived from tiglic acid. In addition, a remarkably E-selective E2 process using the azodicarboxylate-triphenylphosphine system is featured. Also featured is the first example of the use of a β-lactone as a thermodynamic spring to effect macrolactonization. The oxetanone ring was thus used as a productive protecting group that increased the overall efficiency of this total synthesis. This work was also an opportunity to further probe the scope of the ruthenium-catalyzed alkene-alkyne coupling, in particular using enynes, and studies using various functionalized substrates are described. PMID:16351124

  15. Total synthesis and structure-activity relationship studies of a series of selective G protein inhibitors

    NASA Astrophysics Data System (ADS)

    Xiong, Xiao-Feng; Zhang, Hang; Underwood, Christina R.; Harpsøe, Kasper; Gardella, Thomas J.; Wöldike, Mie F.; Mannstadt, Michael; Gloriam, David E.; Bräuner-Osborne, Hans; Strømgaard, Kristian

    2016-11-01

    G proteins are key mediators of G protein-coupled receptor signalling, which facilitates a plethora of important physiological processes. The cyclic depsipeptides YM-254890 and FR900359 are the only known specific inhibitors of the Gq subfamily of G proteins; however, no synthetic route has been reported previously for these complex natural products and they are not easily isolated from natural sources. Here we report the first total synthesis of YM-254890 and FR900359, as well as of two known analogues, YM-385780 and YM-385781. The versatility of the synthetic approach also enabled the design and synthesis of ten analogues, which provided the first structure-activity relationship study for this class of compounds. Pharmacological characterization of all the compounds at Gq-, Gi- and Gs-mediated signalling provided succinct information on the structural requirements for inhibition, and demonstrated that both YM-254890 and FR900359 are highly potent inhibitors of Gq signalling, with FR900359 being the most potent. These natural products and their analogues represent unique tools for explorative studies of G protein inhibition.

  16. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    PubMed Central

    Gulder, Tobias A. M.; Hong, Hanna; Correa, Jhonny; Egereva, Ekaterina; Wiese, Jutta; Imhoff, Johannes F.; Gross, Harald

    2012-01-01

    The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems. PMID:23342379

  17. Total synthesis of (±)-maistemonine, (±)-stemonamide, and (±)-isomaistemonine.

    PubMed

    Chen, Zhi-Hua; Chen, Zhi-Min; Zhang, Yong-Qiang; Tu, Yong-Qiang; Zhang, Fu-Min

    2011-12-16

    A full account of the total synthesis of (±)-maistemonine, (±)-stemonamide, and (±)-isomaistemonine is presented. Two approaches have been developed to construct the basic pyrrolo[1,2-a]azepine core of the Stemona alkaloids, featuring a tandem semipinacol/Schmidt rearrangement of a secondary azide and a highly stereoselectively desymmetrizing intramolecular Schmidt reaction, respectively. To build the common spiro-γ-butyrolactone, a new protocol was carried out by utilizing an intramolecular ketone-ester condensation as the key transformation. The vicinal butyrolactone moiety of (±)-maistemonine was stereoselectively introduced via a one-pot procedure involving the epimerization at C-3 and carbonyl allylation/lactonization. Moreover, (±)-stemonamide was divergently synthesized from a common intermediate, and (±)-isomaistemonine was obtained via the epimerization of (±)-maistemonine at C-12.

  18. Total synthesis of a marine alkaloid from the tunicate Dendrodoa grossularia.

    PubMed

    Hupp, Christopher D; Tepe, Jetze J

    2008-09-04

    A short synthesis of an indole marine alkaloid (1) from the tunicate Dendrodoa grossularia is described. The key step in the synthesis involves a novel twist on an underutilized oxazole rearrangement, which produces the quaternary stereocenter in the molecule.

  19. A 7-Step Formal Asymmetric Total Synthesis of Strictamine via an Asymmetric Propargylation and Metal-Mediated Cyclization.

    PubMed

    Smith, Myles W; Zhou, Zhiyao; Gao, Alison X; Shimbayashi, Takuya; Snyder, Scott A

    2017-03-03

    Herein is shown how a novel catalytic asymmetric propargylation of 3,4-dihydro-β-carboline, followed by a designed Au(I)/Ag(I)-mediated 6-endo-dig cyclization, can directly deliver the indolenine-fused methanoquinolizidine core of the akuammiline alkaloid strictamine in its native oxidation state, ultimately achieving a 7-step formal asymmetric total synthesis. Also demonstrated are how the cyclization products can rearrange into vincorine-type skeletons and a further use for the developed propargylation with the first catalytic asymmetric total synthesis of decarbomethoxydihydrogambirtannine.

  20. Scope and Limitations of Fmoc Chemistry SPPS-Based Approaches to the Total Synthesis of Insulin Lispro via Ester Insulin.

    PubMed

    Dhayalan, Balamurugan; Mandal, Kalyaneswar; Rege, Nischay; Weiss, Michael A; Eitel, Simon H; Meier, Thomas; Schoenleber, Ralph O; Kent, Stephen B H

    2017-01-31

    We have systematically explored three approaches based on 9-fluorenylmethoxycarbonyl (Fmoc) chemistry solid phase peptide synthesis (SPPS) for the total chemical synthesis of the key depsipeptide intermediate for the efficient total chemical synthesis of insulin. The approaches used were: stepwise Fmoc chemistry SPPS; the "hybrid method", in which maximally protected peptide segments made by Fmoc chemistry SPPS are condensed in solution; and, native chemical ligation using peptide-thioester segments generated by Fmoc chemistry SPPS. A key building block in all three approaches was a Glu[O-β-(Thr)] ester-linked dipeptide equipped with a set of orthogonal protecting groups compatible with Fmoc chemistry SPPS. The most effective method for the preparation of the 51 residue ester-linked polypeptide chain of ester insulin was the use of unprotected peptide-thioester segments, prepared from peptide-hydrazides synthesized by Fmoc chemistry SPPS, and condensed by native chemical ligation. High-resolution X-ray crystallography confirmed the disulfide pairings and three-dimensional structure of synthetic insulin lispro prepared from ester insulin lispro by this route. Further optimization of these pilot studies could yield an efficient total chemical synthesis of insulin lispro (Humalog) based on peptide synthesis by Fmoc chemistry SPPS.

  1. Terpenoid-Alkaloids: Their Biosynthetic Twist of Fate and Total Synthesis

    PubMed Central

    Cherney, Emily C.; Baran, Phil S.

    2015-01-01

    Terpenes and alkaloids are ever-growing classes of natural products that provide new molecular structures which inspire chemists and possess a broad range of biological activity. Terpenoid-alkaloids originate from the same prenyl units that construct terpene skeletons. However, during biosynthesis, a nitrogen atom (or atoms) is introduced in the form of β-aminoethanol, ethylamine, or methylamine. Nitrogen incorporation can occur either before, during, or after the cyclase phase. The outcome of this unique biosynthesis is the formation of natural products containing unprecedented structures. These complex structural motifs expose current limitations in organic chemistry, thus providing opportunities for invention. This review focuses on total syntheses of terpenoid-alkaloids and unique issues presented by this class of natural products. More specifically, it examines how these syntheses relate to the way terpenoid-alkaloids are made in Nature. Developments in chemistry that have facilitated these syntheses are emphasized, as well as chemical technology needed to conquer those that evade synthesis. PMID:26207071

  2. Total chemical synthesis of a 77-nucleotide-long RNA sequence having methionine-acceptance activity.

    PubMed Central

    Ogilvie, K K; Usman, N; Nicoghosian, K; Cedergren, R J

    1988-01-01

    Chemical synthesis is described of a 77-nucleotide-long RNA molecule that has the sequence of an Escherichia coli Ado-47-containing tRNA(fMet) species in which the modified nucleosides have been substituted by their unmodified parent nucleosides. The sequence was assembled on a solid-phase, controlled-pore glass support in a stepwise manner with an automated DNA synthesizer. The ribonucleotide building blocks used were fully protected 5'-monomethoxytrityl-2'-silyl-3'-N,N-diisopropylaminophosphoram idites. p-Nitro-phenylethyl groups were used to protect the O6 of guanine residues. The fully deprotected tRNA analogue was characterized by polyacrylamide gel electrophoresis (sizing), terminal nucleotide analysis, sequencing, and total enzyme degradation, all of which indicated that the sequence was correct and contained only 3-5 linkages. The 77-mer was then assayed for amino acid acceptor activity by using E. coli methionyl-tRNA synthetase. The results indicated that the synthetic product, lacking modified bases, is a substrate for the enzyme and has an amino acid acceptance 11% of that of the major native species, tRNA(fMet) containing 7-methylguanosine at position 47. Images PMID:3413059

  3. Total synthesis of periploside A, a unique pregnane hexasaccharide with potent immunosuppressive effects

    PubMed Central

    Zhang, Xiaheng; Zhou, Yu; Zuo, Jianping; Yu, Biao

    2015-01-01

    Periploside A is a pregnane hexasaccharide identified from the Chinese medicinal plant Periploca sepium, which features a unique seven-membered formyl acetal bridged orthoester (FABO) motif and potent immunosuppressive activities. Here, we show the synthesis of this molecule in a total of 76 steps with the longest linear sequence of 29 steps and 9.2% overall yield. The FABO motif is constructed via a combination of Sinaÿ’s and Crich’s protocol for the formation of orthoester and acetal glycosides, respectively. The 2-deoxy-β-glycosidic linkages are assembled stereoselectively with judicious choice of the glycosylation methods. The epimer at the spiro-quaternary carbon in the FABO motif has also been elaborated in a stereo-controlled manner. This epimer, as well as the synthetic analogues bearing the FABO motif, retain largely the inhibitory activities of periploside A against the proliferation of T-lymphocyte, indicating the importance of the chemical connection of the FABO motif to their immunosuppressive activity. PMID:25600477

  4. Ubiquitin-Based Probes Prepared by Total Synthesis To Profile the Activity of Deubiquitinating Enzymes

    PubMed Central

    de Jong, Annemieke; Merkx, Remco; Berlin, Ilana; Rodenko, Boris; Wijdeven, Ruud H M; El Atmioui, Dris; Yalçin, Zeliha; Robson, Craig N; Neefjes, Jacques J; Ovaa, Huib

    2012-01-01

    Epitope-tagged active-site-directed probes are widely used to visualize the activity of deubiquitinases (DUBs) in cell extracts, to investigate the specificity and potency of small-molecule DUB inhibitors, and to isolate and identify DUBs by mass spectrometry. With DUBs arising as novel potential drug targets, probes are required that can be produced in sufficient amounts and to meet the specific needs of a given experiment. The established method for the generation of DUB probes makes use of labor-intensive intein-based methods that have inherent limitations concerning the incorporation of unnatural amino acids and the amount of material that can be obtained. Here, we describe the total chemical synthesis of active-site-directed probes and their application to activity-based profiling and identification of functional DUBs. This synthetic methodology allowed the easy incorporation of desired tags for specific applications, for example, fluorescent reporters, handles for immunoprecipitation or affinity pull-down, and cleavable linkers. Additionally, the synthetic method can be scaled up to provide significant amounts of probe. Fluorescent ubiquitin probes allowed faster, in-gel detection of active DUBs, as compared to (immuno)blotting procedures. A biotinylated probe holding a photocleavable linker enabled the affinity pull-down and subsequent mild, photorelease of DUBs. Also, DUB activity levels were monitored in response to overexpression or knockdown, and to inhibition by small molecules. Furthermore, fluorescent probes revealed differential DUB activity profiles in a panel of lung and prostate cancer cells. PMID:23011887

  5. A total-synthesis framework for the construction of high-order colloidal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Buck, Matthew R.; Bondi, James F.; Schaak, Raymond E.

    2012-01-01

    Colloidal hybrid nanoparticles contain multiple nanoscale domains fused together by solid-state interfaces. They represent an emerging class of multifunctional lab-on-a-particle architectures that underpin future advances in solar energy conversion, fuel-cell catalysis, medical imaging and therapy, and electronics. The complexity of these ‘artificial molecules’ is limited ultimately by the lack of a mechanism-driven design framework. Here, we show that known chemical reactions can be applied in a predictable and stepwise manner to build complex hybrid nanoparticle architectures that include M-Pt-Fe3O4 (M = Au, Ag, Ni, Pd) heterotrimers, MxS-Au-Pt-Fe3O4 (M = Pb, Cu) heterotetramers and higher-order oligomers based on the heterotrimeric Au-Pt-Fe3O4 building block. This synthetic framework conceptually mimics the total-synthesis approach used by chemists to construct complex organic molecules. The reaction toolkit applies solid-state nanoparticle analogues of chemoselective reactions, regiospecificity, coupling reactions and molecular substituent effects to the construction of exceptionally complex hybrid nanoparticle oligomers.

  6. Catalysis-based enantioselective total synthesis of myxothiazole Z, (14S)-melithiazole G and (14S)-cystothiazole F.

    PubMed

    Colon, Aude; Hoffman, Thomas J; Gebauer, Julian; Dash, Jyotirmayee; Rigby, James H; Arseniyadis, Stellios; Cossy, Janine

    2012-11-04

    A common strategy for the stereoselective and protecting group-free total synthesis of the myxobacterial antibiotics myxothiazole Z, (14S)-melithiazole G and (14S)-cystothiazole F is described featuring an asymmetric organocatalytic transfer hydrogenation, a palladium-catalyzed Stille coupling and a cross-metathesis as the key steps.

  7. A formal total synthesis of (+)-zincophorin. Observation of an unusual urea-directed Stork-Crabtree hydrogenation.

    PubMed

    Song, Zhenlei; Hsung, Richard P

    2007-05-24

    A formal total synthesis of (+)-zincophorin via interception of Miyashita's advanced intermediates is described here. This effort features the first synthetic application of an inverse demand hetero [4 + 2] cycloaddition of a chiral allenamide, and the observation of an unusual urea directed Stork-Crabtree hydrogenation.

  8. A 11-Steps Total Synthesis of Magellanine through a Gold(I)-Catalyzed Dehydro Diels-Alder Reaction.

    PubMed

    McGee, Philippe; Bétournay, Geneviève; Barabé, Francis; Barriault, Louis

    2017-01-12

    We have developed an innovative strategy for the formation of angular carbocycles via a gold(I)-catalyzed dehydro Diels-Alder reaction. This transformation provides rapid access to a variety of complex angular cores in excellent diastereoselectivities and high yields. The usefulness of this Au(I) -catalyzed cycloaddition was further demonstrated by accomplishing a 11-steps total synthesis of (±)-magellanine.

  9. First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents.

    PubMed

    Lee, Chia-Lin; Huang, Chi-Huan; Wang, Hui-Chun; Chuang, Da-Wei; Wu, Ming-Jung; Wang, Sheng-Yang; Hwang, Tsong-Long; Wu, Chin-Chung; Chen, Yeh-Long; Chang, Fang-Rong; Wu, Yang-Chang

    2011-01-07

    Naturally occurring antrocamphin A (1) is a potent anti-inflammatory compound from the edible fungus Antrodia camphorata (Taiwanofungus camphoratus), whose wild fruiting body is used as a valuable folk medicine in Taiwan. This study is the first total synthesis of antrocamphin A (1) and its analogs. Their inhibition ability on NO release, superoxide anion generation, elastase release and platelet aggregation are reported herein.

  10. Biosynthesis and Total Synthesis Studies on The Jadomycin Family of Natural Products

    PubMed Central

    Sharif, Ehesan U.

    2013-01-01

    Jadomycins are unique angucycline polyketides, which are produced by soil bacteria Streptomyces venezuelae under specific nutrient and environmental conditions. Their unique structural complexity and biological activities have engendered extensive study of the jadomycin class of natural compounds in terms of biological activity, biosynthesis, and synthesis. This review outlines the recent developments in the study of the synthesis and biosynthesis of jadomycins. PMID:24371430

  11. [Concise translation of TCM terminologies and its application].

    PubMed

    Xiao, Ping; Gong, Qian; You, Zhao-ling

    2007-10-01

    TCM terminologies are the professional medical terms, marked by in Chinese features of simplification and cogency, as well as rich connotations, and thus conciseness should be one of the main principles when it comes to their translation. The concise translation and its application were discussed in this paper through semantic and logic analysis on TCM terms and starting with the English word-building.

  12. Enantioselective Total Synthesis of Mandelalide A and Isomandelalide A: Discovery of a Cytotoxic Ring-Expanded Isomer.

    PubMed

    Veerasamy, Nagarathanam; Ghosh, Ankan; Li, Jinming; Watanabe, Kazuhiro; Serrill, Jeffrey D; Ishmael, Jane E; McPhail, Kerry L; Carter, Rich G

    2016-01-27

    The total synthesis of mandelalide A and its ring-expanded macrolide isomer isomandelalide A has been achieved. Unexpected high levels of cytotoxicity were observed with the ring-expanded isomandelalide A with a rank order of potency: mandelalide A > isomandelalide A > mandelalide B. Key aspects of the synthesis include Ag-catalyzed cyclizations (AgCC's) to construct both the THF and THP rings present in the macrocycle, diastereoselective Sharpless dihydroylation of a cis-enyne, and lithium acetylide coupling with a chiral epoxide.

  13. Chemical Access to d-Sarmentose Units Enables the Total Synthesis of Cardenolide Monoglycoside N-1 from Nerium oleander.

    PubMed

    Mestre, Jordi; Matheu, M Isabel; Díaz, Yolanda; Castillón, Sergio; Boutureira, Omar

    2017-03-17

    Herein we present a chemical approach for the ready preparation of d-sarmentosyl donors enabling the first total synthesis and structure validation of cardenolide N-1, a challenging 2,6-dideoxy-3-O-methyl-β-d-xylo-hexopyranoside extracted from Nerium oleander twigs that displays anti-inflammatory properties and cell growth inhibitory activity against tumor cells. The strategy highlights the synthetic value of the sequential methodology developed in our group for the synthesis of 2-deoxyglycosides. Key steps include Wittig-Horner olefination of a d-xylofuranose precursor, [I(+)]-induced 6-endo cyclization, and 1,2-trans stereoselective glycosylation.

  14. Cyclic 1,2-diketones as core building blocks: a strategy for the total synthesis of (-)-terpestacin.

    PubMed

    Trost, Barry M; Dong, Guangbin; Vance, Jennifer A

    2010-06-01

    We report a full account of our work towards the total synthesis of (-)-terpestacin (1), a sesterterpene originally isolated from fungal strain Arthrinium sp. FA1744. Its promising anti-HIV and anti-cancer activity, as well as its novel structure, make terpestacin an attractive synthetic target. A strategy based on the unique reactivity of cyclic 1,2-diketones (diosphenols) was developed and total synthesis of 1 was achieved in 20 steps, in the longest linear sequence, from commercially available 2-hydroxy-3-methyl-2-cyclopenten-1-one. The key feature of our synthesis is the double usage of a "Pd AAA-Claisen" protocol (AAA=asymmetric allylic alkylation), first in the early stages to generate the C1 quaternary center and then in the late stages to install the side chain. In addition, a rather unusual ene-1,2-dione moiety was synthesized and utilized as an excellent Michael acceptor to attach the C15 substituent. Several possible routes towards the total synthesis have been examined and carefully evaluated. During our exploration many interesting chemoselectivity issues have been addressed, such as a highly selective ring-closing metathesis and a challenging oxidation of a disubstituted olefin in the presence of three trisubstituted ones.

  15. Cyclic 1,2-Diketones as Core Building Blocks: A Strategy for the Total Synthesis of (−)-Terpestacin

    PubMed Central

    Dong, Guangbin; Vance, Jennifer A.

    2010-01-01

    We report a full account of our work towards the total synthesis of (−)-terpestacin (1), a sesterterpene originally isolated from fungal strain Arthrinium sp. FA1744. Its promising anti-HIV/anti-cancer activity as well as its novel structure make terpestacin an attractive synthetic target. A strategy based on the unique reactivity of cyclic 1,2-diketones (diosphenol) was developed, and total synthesis of 1 was achieved in 20 steps in the longest linear sequence from commercially available 3-methyl-1,2-cyclopentanedione (19). The key feature of our synthesis is represented by double usage of a “Pd AAA-Claisen” protocol, first in the early stage to generate the C1 quaternary center and second in the late stage to install the side chain. In addition, a rather unusual ene-1,2-dione moiety was synthesized and utilized as an excellent Michael acceptor to attach the C15 substituent. Several possible routes towards the total synthesis have been examined and carefully evaluated. During our exploration, many interesting chemoselectivity issues have also been addressed, such as a highly selective ring-closing metathesis (RCM) and a challenging oxidation of a disubstituted olefin in the presence of three trisubstiuted ones. PMID:20411537

  16. Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs.

    PubMed

    Wan, Shuangyi; Wu, Fanghui; Rech, Jason C; Green, Michael E; Balachandran, Raghavan; Horne, W Seth; Day, Billy W; Floreancig, Paul E

    2011-10-19

    The potent cytotoxins pederin and psymberin have been prepared through concise synthetic routes (10 and 14 steps in the longest linear sequences, respectively) that proceed via a late-stage multicomponent approach to construct the N-acyl aminal linkages. This route allowed for the facile preparation of a number of analogs that were designed to explore the importance of the alkoxy group in the N-acyl aminal and functional groups in the two major subunits on biological activity. These analogs, including a pederin/psymberin chimera, were analyzed for their growth inhibitory effects, revealing several new potent cytotoxins and leading to postulates regarding the molecular conformational and hydrogen bonding patterns that are required for biological activity. Second generation analogs have been prepared based on the results of the initial assays and a structure-based model for the binding of these compounds to the ribosome. The growth inhibitory properties of these compounds are reported. These studies show the profound role that organic chemistry in general and specifically late-stage multicomponent reactions can play in the development of unique and potent effectors for biological responses.

  17. Evolution of a Unified Strategy for Complex Sesterterpenoids: Progress toward Astellatol and Total Synthesis of (−)-Nitidasin

    PubMed Central

    Hog, Daniel T.; Huber, Florian M. E.; Mayer, Peter; Houk, K. N.

    2015-01-01

    Astellatol and nitidasin belong to a subset of sesterterpenoids that share a sterically encumbered trans-hydrindane motif with an isopropyl substituent. In addition, these natural products feature intriguing polycyclic ring systems posing significant challenges for chemical synthesis. Herein, we detail the evolution of our stereoselective strategy for isopropyl trans-hydrindane sesterterpenoids. Our endeavors included the synthesis of several building blocks, enabling studies toward all molecules of this terpenoid subclass, and of advanced intermediates of our initial route toward a biomimetic synthesis of astellatol. These findings provided the basis for a second-generation and a third-generation approach toward astellatol that eventually culminated in the enantioselective total synthesis of (−)-nitidasin. In particular, we orchestrated a series of substrate-controlled transformations to install the ten stereogenic centers of the target molecule and forged the carbocyclic backbone in a convergent fashion. Furthermore, we disclose our progress toward the synthesis of astellatol and provide insights into some observed yet unexpected diastereoselectivities by detailed quantum-mechanical calculations. PMID:26300211

  18. Evolution of a Unified Strategy for Complex Sesterterpenoids: Progress toward Astellatol and the Total Synthesis of (-)-Nitidasin.

    PubMed

    Hog, Daniel T; Huber, Florian M E; Jiménez-Osés, Gonzalo; Mayer, Peter; Houk, Kendall N; Trauner, Dirk

    2015-09-21

    Astellatol and nitidasin belong to a subset of sesterterpenoids that share a sterically encumbered trans-hydrindane motif with an isopropyl substituent. In addition, these natural products feature intriguing polycyclic ring systems, posing significant challenges for chemical synthesis. Herein, the evolution of our stereoselective strategy for isopropyl trans-hydrindane sesterterpenoids is detailed. These endeavors included the synthesis of several building blocks, enabling studies toward all molecules of this terpenoid subclass, and of advanced intermediates of our initial route toward a biomimetic synthesis of astellatol. These findings provided the basis for a second-generation and a third-generation approach toward astellatol that eventually culminated in the enantioselective total synthesis of (-)-nitidasin. In particular, a series of substrate-controlled transformations to install the ten stereogenic centers of the target molecule was orchestrated and the carbocyclic backbone was forged in a convergent fashion. Furthermore, the progress toward the synthesis of astellatol is disclosed and insights into some observed yet unexpected diastereoselectivities by detailed quantum-mechanical calculations are provided.

  19. Concise Care Bundles In Acute Medicine

    PubMed Central

    Kivlin, Jude; Altemimi, Harith

    2015-01-01

    The Queen Elizabeth Hospital in King's Lynn, Norfolk is a 488 bed hospital providing services to approximately 331,000 people across 750 square miles. In 2012 a need was recognised for documentation (pathways) in a practical format to increase usage of national guidelines and facilitate adherence to best practice (gold standards of care) that could be easily version controlled, auditable and provide support in clinical decision-making by junior doctors. BMJ Action Sets[1] fulfilled the brief with expert knowledge, version control and support, though they were deemed too lengthy and unworkable in fast paced settings like the medical assessment unit; they formed the base creation of concise care bundles (CCB). CCB were introduced for 21 clinical presentations and one procedure. Outcomes were fully audited and showed significant improvement in a range of measures, including an increase in completions of CHADVASC score in atrial fibrillation, antibiotics prescribed per protocol in chronic obstructive pulmonary disease (COPD), and Blatchford score recorded for patients presenting with upper gastrointestinal bleed. PMID:26734437

  20. Total Synthesis of Vinblastine, Vincristine, Related Natural Products, and Key Structural Analogues

    PubMed Central

    Ishikawa, Hayato; Colby, David A.; Seto, Shigeki; Va, Porino; Tam, Annie; Kakei, Hiroyuki; Rayl, Thomas J.; Hwang, Inkyu; Boger, Dale L.

    2009-01-01

    Full details of the development of a direct coupling of catharanthine with vindoline to provide vinblastine are described along with key mechanistic and labeling studies. Following an Fe(III)-promoted coupling reaction initiated by generation of a presumed catharanthine radical cation that undergoes a subsequent oxidative fragmentation and diastereoselective coupling with vindoline, addition of the resulting reaction mixture to an Fe(III)–NaBH4/air solution leads to oxidation of the C15′–C20′ double bond and reduction of the intermediate iminium ion directly providing vinblastine (40–43%) and leurosidine (20–23%), its naturally occurring C20′ alcohol isomer. The yield of coupled products, which exclusively possess the natural C16′ stereochemistry, approaches or exceeds 80% and the combined yield of the isomeric C20′ alcohols is >60%. Preliminary studies of Fe(III)–NaBH4/air oxidation reaction illustrate a generalizable trisubstituted olefin scope, identified alternatives to O2 trap at the oxidized carbon, provides a unique entry into C20′ functionalized vinblastines, and affords initial insights into the observed C20′ diastereoselectivity. The first disclosure of the use of exo-catharanthine proceeding through Δ19′,20′-anhydrovinblastine in such coupling reactions is also detailed with identical stereochemical consequences. Incorporating either a catharanthine N-methyl group or a vindoline N-formyl group precludes Fe(III)-promoted coupling, whereas the removal of the potentially key C16 methoxy group of vindoline does not adversely impact the coupling efficiency. Extension of these studies provided a total synthesis of vincristine (2) via N-desmethylvinblastine (36, also a natural product), 16-desmethoxyvinblastine (44) and 4-desacetoxy-16-desmethoxyvinblastine (47) both of which we can now suggest are likely natural products produced by C. roseus, desacetylvinblastine (62) and 4-desacetoxyvinblastine (59), as well as a series of key

  1. Enantioselective Cyclopropanation with α-Alkyl-α-diazoesters Catalyzed by Chiral Oxazaborolidinium Ion: Total Synthesis of (+)-Hamavellone B.

    PubMed

    Shim, Su Yong; Kim, Jae Yeon; Nam, Miso; Hwang, Geum-Sook; Ryu, Do Hyun

    2016-01-15

    Chiral oxazaborolidinium ion-catalyzed asymmetric cyclopropanation of α- or α,β-substituted acroleins with α-alkyl-α-diazoesters has been developed. With this methodology, chiral functionalized cyclopropanes containing a quaternary stereogenic center were obtained with high to excellent enantioselectivities (up to >99% ee). The synthetic utility of optically enriched functionalized cyclopropane was demonstrated in the first total synthesis of (+)-hamavellone B, which establishes the absolute configuration of natural (+)-hamavellone B.

  2. An efficient total synthesis of a potent anti-inflammatory agent, benzocamphorin F, and its anti-inflammatory activity.

    PubMed

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo.

  3. An Efficient Total Synthesis of a Potent Anti-Inflammatory Agent, Benzocamphorin F, and Its Anti-Inflammatory Activity

    PubMed Central

    Liao, Yu-Ren; Kuo, Ping-Chung; Liang, Jun-Weil; Shen, Yuh-Chiang; Wu, Tian-Shung

    2012-01-01

    A naturally occurring enynyl-benzenoid, benzocamphorin F (1), from the edible fungus Taiwanofungus camphoratus (Antrodia camphorata) was characterized by comprehensive spectral analysis. It displays anti-inflammatory bioactivity and is valuable for further biological studies. The present study is the first total synthesis of benzocamphorin F and the developed strategy described is a more efficient procedure that allowe the large-scale production of benzocamphorin F for further research of the biological activity both in vitro and in vivo. PMID:22949872

  4. Cytotoxic 1,3-Thiazole and 1,2,4-Thiadiazole Alkaloids from Penicillium oxalicum: Structural Elucidation and Total Synthesis.

    PubMed

    Yang, Zheng; Huang, Nianyu; Xu, Bang; Huang, Wenfeng; Xie, Tianpeng; Cheng, Fan; Zou, Kun

    2016-02-26

    Two new thiazole and thiadiazole alkaloids, penicilliumthiamine A and B (2 and 3), were isolated from the culture broth of Penicillium oxalicum, a fungus found in Acrida cinerea. Their structures were elucidated mainly by spectroscopic analysis, total synthesis and X-ray crystallographic analysis. Biological evaluations indicated that compound 1, 3a and 3 exhibit potent cytotoxicity against different cancer cell lines through inhibiting the phosphorylation of AKT/PKB (Ser 473), one of important cancer drugs target.

  5. Total synthesis of a biotinylated rocaglate: Selective targeting of the translation factors eIF4AI/II.

    PubMed

    Chambers, Jennifer M; Lindqvist, Lisa M; Savage, G Paul; Rizzacasa, Mark A

    2016-01-15

    The total synthesis of a biotinylated derivative of methyl rocaglate is described. This compound was accessed from synthetic methyl rocaglate (2) via formation of the propargyl amide and subsequent click reaction with a biotin azide. Affinity purification revealed that biotinylated rocaglate (8) and methyl rocaglate (2) bind with high specificity to translation factors eIF4AI/II. This remarkable selectivity is in line with that found for the more complex rocaglate silvestrol (3).

  6. [3,3]-Sigmatropic rearrangements: recent applications in the total synthesis of natural products†

    PubMed Central

    Ilardi, Elizabeth A.; Stivala, Craig E.

    2014-01-01

    Among the fundamental chemical transformations in organic synthesis, the [3,3]-sigmatropic rearrangement occupies a unique position as a powerful, reliable, and well-defined method for the stereoselective construction of carbon–carbon or carbon–heteroatom bonds. While many other reactions can unite two subunits and create a new bond, the strengths of sigmatropic rearrangements derive from their ability to enable structural reorganization with unmatched build-up of complexity. Recent applications that illustrate [3,3]-sigmatropic processes as a key concept in the synthesis of complex natural products are described in this tutorial review, covering literature from about 2001 through early 2009. PMID:19847347

  7. Formal Total Synthesis of (±)-Strictamine by [2,3]-Sigmatropic Stevens Rearrangements.

    PubMed

    Eckermann, Ruben; Breunig, Michael; Gaich, Tanja

    2017-01-10

    To date, more than 100 congeners of the akuammiline alkaloid family have been isolated. Their signature structural element is a methanoquinolizidine moiety, a cage-like scaffold structurally related to adamantane. The structural variations of the family members originate from oxidative processes that mostly trigger rearrangements of the methanoquinolizidine motif. The family of the akuammiline alkaloids is best represented by strictamine. It bears the least functionalized carbon skeleton of all family members without lacking the signature structural motifs. Herein, we report the formal synthesis of strictamine through a Stevens [2,3]-sigmatropic rearrangement as a key step and the synthetic pitfalls related with its synthesis.

  8. Scalable Synthesis of (−)-Thapsigargin

    PubMed Central

    2016-01-01

    Total syntheses of the complex, highly oxygenated sesquiterpenes thapsigargin (1) and nortrilobolide (2) are presented. Access to analogues of these promising bioactive natural products has been limited to tedious isolation and semisynthetic efforts. Elegant prior total syntheses demonstrated the feasibility of creating these entitites in 36–42 step processes. The currently reported route proceeds in a scalable and more concise fashion by utilizing two-phase terpene synthesis logic. Salient features of the work include application of the classic photosantonin rearrangement and precisely choreographed installation of the multiple oxygenations present on the guaianolide skeleton. PMID:28149952

  9. Catalyst-controlled formal [4 + 3] cycloaddition applied to the total synthesis of (+)-barekoxide and (-)-barekol.

    PubMed

    Lian, Yajing; Miller, Laura C; Born, Stephen; Sarpong, Richmond; Davies, Huw M L

    2010-09-08

    The tandem cyclopropanation/Cope rearrangement between bicyclic dienes and siloxyvinyldiazoacetate, catalyzed by the dirhodium catalyst Rh(2)(R-PTAD)(4), effectively accomplishes enantiodivergent [4 + 3] cycloadditions. The reaction proceeds by a cyclopropanation followed by a Cope rearrangement of the resulting divinylcyclopropane. This methodology was applied to the synthesis of (+)-barekoxide (1) and (-)-barekol (2).

  10. Total Synthesis and Structure-Activity Relationship of Glycoglycerolipids from Marine Organisms

    PubMed Central

    Zhang, Jun; Li, Chunxia; Yu, Guangli; Guan, Huashi

    2014-01-01

    Glycoglycerolipids occur widely in natural products, especially in the marine species. Glycoglycerolipids have been shown to possess a variety of bioactivities. This paper will review the different methodologies and strategies for the synthesis of biological glycoglycerolipids and their analogs for bioactivity assay. In addition, the bioactivities and structure-activity relationship of the glycoglycerolipids are also briefly outlined. PMID:24945415

  11. Application of an omonasteine ligation strategy for the total chemical synthesis of the BRD7 bromodomain.

    PubMed

    Van de Vijver, Pieter; Scheer, Liesbeth; van Beijnum, Judy; Griffioen, Arjan; Hackeng, Tilman M

    2012-09-28

    The use of omonasteine (Omo) in sequential peptide ligation strategies extends the scope of homocysteine (Hcy) ligation to longer, methionine-rich proteins. Hcy-to-Omo conversion can be performed on-resin, while the Omo-to-Hcy deprotection can be performed in situ after peptide ligation. This strategy was successfully applied in the synthesis of the BRD7 bromodomain.

  12. First total synthesis of justicidone, a p-quinone-lignan derivative from Justicia hyssopifolia.

    PubMed

    Boluda, Carlos J; López, Hermelo; Pérez, José A; Trujillo, Juan M

    2005-08-01

    The first synthesis of justicidone (4-(1',3'-Benzodioxol-5'-yl)-6-methoxynaphtho[2,3-c]furan-1,5,8(3H)-trione) was carried out from piperonal, as a starting compound, through a lineal process using well known reactions.

  13. Total Synthesis of (±)-Strychnine via a [4+2]-Cycloaddition/Rearrangement Cascade

    PubMed Central

    Zhang, Hongjun; Boonsombat, Jutatip

    2008-01-01

    A new strategy for the synthesis of the Strychnos alkaloid (±)-strychnine has been developed and is based on an intramolecular [4+2]-cycloaddition/rearrangement cascade of an indolyl substituted amidofuran. The critical D-ring was assembled by an intramolecular palladium catalyzed enolate-driven cross-coupling of an N-tethered vinyl iodide. PMID:17217284

  14. Microwave assisted total synthesis of a benzothiophene-based new chemical entity (NCE)

    EPA Science Inventory

    Pharmaceutical scientists are required to generate diverse arrays of complex targets in short span of time, which can now be achieved by microwave-assisted organic synthesis. New chemical entities (NCE) can be built in a fraction of the time using this technique. However, there a...

  15. Total Syntheses of (−)-Kopsifoline D and (−)-Deoxoapodine: Divergent Total Synthesis via Late-Stage Key Strategic Bond Formation

    PubMed Central

    2015-01-01

    Divergent total syntheses of (−)-kopsifoline D and (−)-deoxoapodine are detailed from a common pentacyclic intermediate 15, enlisting the late-stage formation of two different key strategic bonds (C21–C3 and C21–O–C6) unique to their hexacyclic ring systems that are complementary to its prior use in the total syntheses of kopsinine (C21–C2 bond formation) and (+)-fendleridine (C21–O–C19 bond formation). The combined efforts represent the total syntheses of members of four classes of natural products from a common intermediate functionalized for late-stage formation of four different key strategic bonds uniquely embedded in each natural product core structure. Key to the first reported total synthesis of a kopsifoline that is detailed herein was the development of a transannular enamide alkylation for late-stage formation of the C21–C3 bond with direct introduction of the reactive indolenine C2 oxidation state from a penultimate C21 functionalized Aspidosperma-like pentacyclic intermediate. Central to the assemblage of the underlying Apidosperma skeleton is a powerful intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of a 1,3,4-oxadiazole that provided the functionalized pentacyclic ring system 15 in a single step in which the C3 methyl ester found in the natural products served as a key 1,3,4-oxadiazole substituent, activating it for participation in the initiating Diels–Alder reaction and stabilizing the intermediate 1,3-dipole. PMID:24499015

  16. Generating a Generation of Proteasome Inhibitors: From Microbial Fermentation to Total Synthesis of Salinosporamide A (Marizomib) and Other Salinosporamides

    PubMed Central

    Potts, Barbara C.; Lam, Kin S.

    2010-01-01

    The salinosporamides are potent proteasome inhibitors among which the parent marine-derived natural product salinosporamide A (marizomib; NPI-0052; 1) is currently in clinical trials for the treatment of various cancers. Methods to generate this class of compounds include fermentation and natural products chemistry, precursor-directed biosynthesis, mutasynthesis, semi-synthesis, and total synthesis. The end products range from biochemical tools for probing mechanism of action to clinical trials materials; in turn, the considerable efforts to produce the target molecules have expanded the technologies used to generate them. Here, the full complement of methods is reviewed, reflecting remarkable contributions from scientists of various disciplines over a period of 7 years since the first publication of the structure of 1. PMID:20479958

  17. Trends in applying C-H oxidation to the total synthesis of natural products.

    PubMed

    Qiu, Yuanyou; Gao, Shuanhu

    2016-04-01

    Covering: 2006 to 2015C-H functionalization remains one of the frontier challenges in organic chemistry and drives quite an active area of research. It has recently been applied in various novel strategies for the synthesis of natural products. It can dramatically increase synthetic efficiency when incorporated into retrosynthetic analyses of complex natural products, making it an essential part of current trends in organic synthesis. In this Review, we focus on selected case studies of recent applications of C-H oxidation methodologies in which the C-H bond has been exploited effectively to construct C-O and C-N bonds in natural product syntheses. Examples of syntheses representing different types of C-H oxidation are discussed to illustrate the potential of this approach and inspire future applications.

  18. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    PubMed

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C.

  19. STUDIES ON THE BIOSYNTHESIS OF THE STEPHACIDINS AND NOTOAMIDES. TOTAL SYNTHESIS OF NOTOAMIDE S

    PubMed Central

    McAfoos, Timothy J.; Li, Shengying; Tsukamoto, Sachiko; Sherman, David H.

    2011-01-01

    Notoamide S has been suggested to be the final common precursor between two different Aspergillus sp. fungal strains before diverging to form enantiomerically opposite natural products (+)- and (−)-stephacidin A and (+)- and (−)-notoamide B. The synthesis of notoamide S comes from the coupling of N-Fmoc proline with a 6-hydroxy-7-prenyl-2-reverse prenyl tryptophan derivative that was synthesized via a late stage Claisen rearrangement from a 6-propargyl-2-reverse prenylated indole. PMID:21796227

  20. Synthesis of Polycyclic Natural Products

    SciTech Connect

    Nguyen, Tuan Hoang

    2003-01-01

    With the continuous advancements in molecular biology and modern medicine, organic synthesis has become vital to the support and extension of those discoveries. The isolations of new natural products allow for the understanding of their biological activities and therapeutic value. Organic synthesis is employed to aid in the determination of the relationship between structure and function of these natural products. The development of synthetic methodologies in the course of total syntheses is imperative for the expansion of this highly interdisciplinary field of science. In addition to the practical applications of total syntheses, the structural complexity of natural products represents a worthwhile challenge in itself. The pursuit of concise and efficient syntheses of complex molecules is both gratifying and enjoyable.

  1. Total synthesis by modern chemical ligation methods and high resolution (1.1 Å) X-ray structure of ribonuclease A

    SciTech Connect

    Boerema, David J.; Tereshko, Valentina A.; Kent, Stephen B.H.

    2010-02-08

    The total chemical synthesis of RNase A using modern chemical ligation methods is described, illustrating the significant advances that have been made in chemical protein synthesis since Gutte and Merrifield's pioneering preparation of RNase A in 1969. The identity of the synthetic product was confirmed through rigorous characterization, including the determination of the X-ray crystal structure to 1.1 Angstrom resolution.

  2. Total Synthesis of K777: Successful Application of Transition-Metal-Catalyzed Alkyne Hydrothiolation toward the Modular Synthesis of a Potent Cysteine Protease Inhibitor.

    PubMed

    Kiemele, Erica R; Wathier, Matthew; Bichler, Paul; Love, Jennifer A

    2016-02-05

    We report the total synthesis of K777 and a series of analogues via alkyne hydrothiolation catalyzed by Wilkinson's complex (ClRh(PPh3)3). The alkyne hydrothiolation reactions proceeded with excellent regio- and diastereoselectivity to generate the desired E-linear vinyl sulfides in high yield. The use of Ellman's auxiliary generates the requisite propargyl amines in excellent enantiomeric excess (ee) and obviates the use of L-homophenylalanine, an expensive unnatural amino acid. The vinyl sulfone derivatives exhibit a large difference in rate toward Michael addition. Kinetic data are consistent with rate-limiting nucleophilic attack to generate the carbanion intermediate.

  3. Synthesis of Macrocyclic Ketones through Catalyst-Free Electrophilic Halogen-Mediated Semipinacol Rearrangement: Application to the Total Synthesis of (±)-Muscone.

    PubMed

    Liu, Yi; Yeung, Ying-Yeung

    2017-03-17

    A series of macrocycles were successfully prepared using electrophilic halogen-mediated semipinacol rearrangement under mild conditions. Although the expansion from small ring to medium ring is an energetically unfavorable process, the electrophilic halogenation was found to be powerful enough to override such an energy barrier. The rearranged products could further undergo Dowd-Beckwith rearrangement to give the corresponding one-carbon ring-expanded ketones. This approach has been applied to the total synthesis of the natural product (±)-muscone, which is widely used in modern perfumery and medicines, in a two-step sequence.

  4. Palladium-Catalyzed Decarbonylative Dehydration for the Synthesis of α-Vinyl Carbonyl Compounds and Total Synthesis of (−)-Aspewentin A, B, and C

    PubMed Central

    Liu, Yiyang; Virgil, Scott C.; Grubbs, Robert H.; Stoltz, Brian M.

    2015-01-01

    The direct α-vinylation of carbonyl compounds that forms a quaternary stereocenter is a challenging transformation. We discovered that δ-oxocarboxylic acids can serve as masked vinyl compounds and be unveiled by palladium-catalyzed decarbonylative dehydration. The carboxylic acids are readily available through enantioselective acrylate addition or asymmetric allylic alkylation. A variety of α-vinyl quaternary carbonyl compounds are obtained in good yields, and an application in the first enantioselective total synthesis of (−)-aspewentin A, B, and C is demonstrated. PMID:26230413

  5. Development of a strategy for the total chemical synthesis of an allergenic protein: the peach LTP Pru p 3.

    PubMed

    Buhler, Sofie; Akkerdaas, Jaap H; A Pertinhez, Thelma; Van Ree, Ronald; Dossena, Arnaldo; Sforza, Stefano; Tedeschi, Tullia

    2017-02-10

    The possibility to obtain allergenic proteins by means of total chemical synthesis would be a big step forward in the development of cures to food allergy and in the study of the mechanism of allergic reactions, because this would allow to achieve control at the molecular level over the structure of the product and to study its relationship with the allergenic activity in fine details. This is instead not possible by using allergens produced by extraction from natural sources or by recombinant DNA techniques. In this work, we aimed to test for the first time the feasibility of the total chemical synthesis of an allergenic protein. Pru p 3, the most studied member of the family of lipid transfer proteins, relevant plant food pan-allergens, was used as model target. Strategies for the convergent assembly of the target protein, starting from five peptide fragments to be bound by means of either native chemical ligation or peptide hydrazide ligation, followed by desulfurization, to achieve ligations at alanine, were developed and tested. All the reaction conditions were set up and optimized. Two large peptides covering the two halves of the protein sequence were synthesized and structurally characterized by means of circular dichroism, and their immunogenicity was proved by means of immunoblot, using antibodies against Pru p 3, and immunoCAP inhibition tests. Finally, the five peptides were bound together to produce the whole protein stretch. The obtained results demonstrate the feasibility of total chemical synthesis as a new way to obtain pure allergens. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.

  6. General Approach to the Total Synthesis of 9-Methoxy Substituted Indole Alkaloids: Synthesis of Mitragynine, as well as 9-Methoxygeissoschizol and 9-Methoxy-Nb-methylgeissoschizol

    PubMed Central

    Ma, Jun; Yin, Wenyuan; Zhou, Hao; Liao, Xuebin; Cook, James M.

    2009-01-01

    Herein the full details of the synthesis of the 9-methoxy-substituted Corynanthe indole alkaloids mitragynine (1), 9-methoxygeissoschizol (3) and 9-methoxy-Nb-methylgeissoschizol (4) are described. Initially an efficient synthetic route to the optically active 4-methoxytryptophan ethyl ester 20 on a multigram scale was developed via a Mori-Ban-Hegedus indole synthesis. The ethyl ester of (D)-4-methoxytryptophan 20 was obtained with a radical-mediated regioselective bromination of indoline 12 serving as a key step. Alternatively, the key 4-methoxytryptophan intermediate 22 could be synthesized by the Larock heteroannulation of aryl iodide 10b with the internal alkyne 21a. The use of the Boc protected aniline 10b was crucial to the success of this heteroannulation. The α,β-unsaturated ester 6 was synthesized via the Pictet-Spengler reaction as the pivotal step. This was followed by a Ni(COD)2 mediated cyclization to set up the stereocenter at C-15. The benzyloxy group in 31 was removed to provide the intermediate ester 5. This chiral tetracyclic ester 5 was employed to accomplish the first total synthesis of 9-methoxygeissoschizol (3) and 9-methoxy-Nb-methylgeisso-schizol (4) as well as the opioid agonistic indole alkaloid mitragynine (1). PMID:19046119

  7. Total synthesis of (±)-sacidumlignans D and A through Ueno-Stork radical cyclization reaction.

    PubMed

    Zhang, Jian-Jian; Yan, Chang-Song; Peng, Yu; Luo, Zhen-Biao; Xu, Xiao-Bo; Wang, Ya-Wen

    2013-04-21

    Efficient synthesis of (±)-sacidumlignan D (4) has been successfully achieved employing Ueno-Stork radical cyclization of α-bromo acetal 21 as a key step. Two synthetic approaches for the symmetrical diaryl ketone 19 have been discussed in detail. Notably, sacidumlignan A (1) can be also efficiently synthesized in only 7 steps with 25% overall yield, where acid triggered tandem reaction starting from analogous Ueno-Stork cyclization product 27 played an important role. Moreover, potentially biomimetic conversion from (±)-sacidumlignan D (4) to sacidumlignan A (1) could be realized.

  8. A practical total synthesis of the microbial alkaline proteinase inhibitor (MAPI).

    PubMed

    Haebich, Dieter; Hillisch, Alexander; El Sheikh, Sherif

    2009-12-01

    Diverse serine and cysteine proteases as well as alkaline proteinases and elastases play a crucial role in numerous biological processes. Natural peptide aldehydes such as the "microbial alkaline proteinase inhibitor" (MAPI, 1) are valuable tools to characterize novel enzymes and to study their function in nature. Within a drug discovery program we wanted to design and explore non-natural MAPI congeners with novel biological profiles. To that end we devised a simple, practical, and scalable synthesis of MAPI 1 from readily available amino acid building blocks. The modular nature of our approach allows convenient structural modification of the MAPI backbone.

  9. A novel cis-selective cyclohexanone annulation as the key step of a total synthesis of the sesquiterpene isoacanthodoral.

    PubMed

    Hampel, Thomas; Brückner, Reinhard

    2009-11-05

    Isoacanthodoral (1) is a structurally unique sesquiterpene in that it is a bicyclo[4.4.0]dec-1-ene with a cis- rather than the common trans-junction between the constituting rings. An efficient construction of this motif has been accomplished by a novel cis-selective cyclohexanone annulation, combining the lithium enolate of ester 8, the alpha,beta-unsaturated ester 6, and vinylmagnesium bromide in a single synthetic operation. For completing the total synthesis of 1, a Shapiro-olefination/hydrogenation sequence and a reductive cyanation were employed.

  10. Tanjungides A and B: new antitumoral bromoindole derived compounds from Diazona cf formosa. isolation and total synthesis.

    PubMed

    Murcia, Carmen; Coello, Laura; Fernández, Rogelio; Martín, María Jesús; Reyes, Fernando; Francesch, Andrés; Munt, Simon; Cuevas, Carmen

    2014-02-21

    Tanjungides A (1) (Z isomer) and B (2) (E isomer), two novel dibrominated indole enamides, have been isolated from the tunicate Diazona cf formosa. Their structures were determined by spectroscopic methods including HRMS, and extensive 1D and 2D NMR. The stereochemistry of the cyclised cystine present in both compounds was determined by Marfey's analysis after chemical degradation and hydrolysis. We also report the first total synthesis of these compounds using methyl 1H-indole-3-carboxylate as starting material and a linear sequence of 11 chemical steps. Tanjungides A and B exhibit significant cytotoxicity against human tumor cell lines.

  11. Tanjungides A and B: New Antitumoral Bromoindole Derived Compounds from Diazona cf formosa. Isolation and Total Synthesis

    PubMed Central

    Murcia, Carmen; Coello, Laura; Fernández, Rogelio; Martín, María Jesús; Reyes, Fernando; Francesch, Andrés; Munt, Simon; Cuevas, Carmen

    2014-01-01

    Tanjungides A (1) (Z isomer) and B (2) (E isomer), two novel dibrominated indole enamides, have been isolated from the tunicate Diazona cf formosa. Their structures were determined by spectroscopic methods including HRMS, and extensive 1D and 2D NMR. The stereochemistry of the cyclised cystine present in both compounds was determined by Marfey’s analysis after chemical degradation and hydrolysis. We also report the first total synthesis of these compounds using methyl 1H-indole-3-carboxylate as starting material and a linear sequence of 11 chemical steps. Tanjungides A and B exhibit significant cytotoxicity against human tumor cell lines. PMID:24566261

  12. The discovery of potent antitumor agent C11-deoxypsymberin/irciniastatin A: total synthesis and biology of advanced psymberin analogs.

    PubMed

    Huang, Xianhai; Shao, Ning; Huryk, Robert; Palani, Anandan; Aslanian, Robert; Seidel-Dugan, Cynthia

    2009-02-19

    Structure-activity relationship (SAR) studies by modification of the unsaturated side chain of potent anticancer marine natural product psymberin/irciniastatin A (1) suggest that substitution at C4 and C5 is important for the cytotoxicity of psymberin, but the terminal double bond is not essential for activity. An aryl group is a good replacement for the olefin. The total synthesis of structurally simplified C11-deoxypsymberin (29) was completed, and its activity is consistently more potent than the natural product which provides a unique opportunity for further SAR studies in the psymberin and pederin family. Preliminary mechanism studies suggest the mode of action of psymberin is through cell apoptosis.

  13. Total synthesis of feglymycin based on a linear/convergent hybrid approach using micro-flow amide bond formation

    NASA Astrophysics Data System (ADS)

    Fuse, Shinichiro; Mifune, Yuto; Nakamura, Hiroyuki; Tanaka, Hiroshi

    2016-11-01

    Feglymycin is a naturally occurring, anti-HIV and antimicrobial 13-mer peptide that includes highly racemizable 3,5-dihydroxyphenylglycines (Dpgs). Here we describe the total synthesis of feglymycin based on a linear/convergent hybrid approach. Our originally developed micro-flow amide bond formation enabled highly racemizable peptide chain elongation based on a linear approach that was previously considered impossible. Our developed approach will enable the practical preparation of biologically active oligopeptides that contain highly racemizable amino acids, which are attractive drug candidates.

  14. Total synthesis and structural revision of TMG-chitotriomycin, a specific inhibitor of insect and fungal beta-N-acetylglucosaminidases.

    PubMed

    Yang, You; Li, Yao; Yu, Biao

    2009-09-02

    TMG-chitotriomycin, a potent and selective inhibitor of the beta-N-acetylglucosaminidases that possesses an unique N,N,N-trimethyl-d-glucosamine (TMG) residue, is revised to be the TMG-beta-(1-->4)-chitotriose instead of the originally proposed alpha-anomer via its total synthesis, for which a highly convergent approach was developed in which the sterically demanding (1-->4)-glycosidic linkages are efficiently constructed by the Au(I)-catalyzed glycosylation protocol with glycosyl o-hexynylbenzoates as donors.

  15. Modular and Stereodivergent Approach to Unbranched 1,5,9,n-Polyenes: Total Synthesis of Chatenaytrienin-4.

    PubMed

    Adrian, Juliane; Stark, Christian B W

    2016-09-16

    An iterative strategy for the stereodivergent synthesis of unbranched 1,5,9,n-polyenes (and -polyynes) was investigated. Starting from a terminal alkyne the iteration cycle consists of a C3 extension (allylation), a chemoselective hydroboration, an alkyne reduction, and an oxidation of the associated alcohol with subsequent C1 homologation. Double bond geometry is controlled using stereoselective alkyne reductions, employing either the Lindlar hydrogenation protocol or an aluminum hydride reduction. In a model sequence it was demonstrated that the strategy is applicable to the synthesis of 1,5,9,n-polyenes with any possible double bond configuration accessible in equally high efficiency and selectivity. It is worth noting that our approach does not require any protecting group chemistry. Furthermore, using the same strategy, the first total synthesis of chatenaytrienin-4, the proposed unsaturated biosynthetic precursor of the bis-THF acetogenin membranacin, was examined. Thus, the all-cis 1,5,9-triene natural product was prepared in 15 steps from commercially available starting materials in 6% overall yield.

  16. Total Synthesis and Biological Evaluation of Ipomoeassin F and Its Unnatural 11R-Epimer

    PubMed Central

    Zong, Guanghui; Barber, Eric; Aljewari, Hazim; Zhou, Jianhong; Hu, Zhijian; Du, Yuchun; Shi, Wei Q.

    2015-01-01

    Ipomoeassin F, a macrolide glycoresin containing an embedded disaccharide, possesses potent in vitro antitumor activity with an unknown mechanism of function. It inhibits tumor cell growth with single-digit nanomolar IC50 values, superior to many clinical chemotherapeutic drugs. To facilitate translation of its bioactivity into protein function for drug development, we report here a new synthesis for the gram-scale production of ipomoeassin F (3.8% over 17 linear steps) from commercially-available starting materials. The conformation-controlled subtle reactivity differences of the hydroxyl groups in carbohydrates were utilized to quickly construct the disaccharide core, which, along with judicial selection of protecting groups, made the current synthesis very efficient. The same strategy was also applied to the smooth preparation of the 11R-epimer of ipomoeassin F for the first time. Cytotoxicity assays demonstrated the crucial role of the natural 11S configuration. In addition, cell cycle analyses and apoptosis assays on ipomoeassin F and/or its epimer were conducted. This work has laid a solid ground for understanding the medicinal potential of the ipomoeassin family of glycolipids in the future. PMID:26317990

  17. Effect of total mixed ration composition on fermentation and efficiency of ruminal microbial crude protein synthesis in vitro.

    PubMed

    Boguhn, J; Kluth, H; Rodehutscord, M

    2006-05-01

    The goal of this study was to identify dietary factors that affect fermentation and efficiency of microbial crude protein (CP(M)) synthesis in the rumen in vitro. We used 16 total mixed, dairy cow rations with known digestibilities that varied in ingredient composition and nutrient content. Each ration was incubated in a Rusitec (n = 3) for 15 d, and fermentation of different fractions was assessed. Observed extents of fermentation in 24 h were 35 to 47% for organic matter, 25 to 60% for crude protein, 3 to 28% for neutral detergent fiber, and 31 to 45% for gross energy. Organic matter fermentation depended on the content of crude protein and neutral detergent fiber in the ration. We studied net synthesis of CP(M) using an 15N dilution technique and found that 7 d of continuous 15N application are needed to achieve an 15N enrichment plateau in the N of isolated microbes in this type of study. The efficiency of CP(M) synthesis was 141 to 286 g/kg of fermented organic matter or 4.9 to 11.1 g/MJ of metabolizable energy, and these ranges agree with those found in the literature. Multiple regressions to predict the efficiency of CP(M) synthesis by diet data showed that crude protein was the only dietary chemical fraction that had a significant effect. Fat content and the inclusion rate of corn silage in the ration also tended to improve efficiency. We suggest that microbial need for preformed amino acids may explain the crude protein effect. A large part of the variation in efficiency of microbial activity still remains unexplained.

  18. Total synthesis and stereochemical confirmation of manassantin A, B, and B1.

    PubMed

    Hanessian, Stephen; Reddy, Gone Jayapal; Chahal, Navjot

    2006-11-23

    Stereocontrolled total syntheses of manassantins A, B, and B1 and saucerneol are described for the first time based on a novel cycloetherification of end-differentiated benzylic alcohols as a common intermediate. [structure: see text].

  19. Enantioselective Approach to Quinolizidines: Total Synthesis of Cermizine D and Formal Syntheses of Senepodine G & Cermizine C

    PubMed Central

    Veerasamy, Nagarathanam; Carlson, Erik C.; Collett, Nathan D.; Saha, Mrinmoy

    2013-01-01

    The formal total syntheses of C5-epi-senepodine G and C5-epi-cermizine C have been accomplished through a novel diastereoselecetive, intramolecular amide Michael addition process. The total synthesis of cermizine D has been achieved through use of an organocatalyzed, heteroatom Michael addition to access a common intermediate. Additional key steps of this sequence include a matched, diastereoselective alkylation with an iodomethylphenyl sulfide and sulfone-aldehyde coupling/reductive desulfurization sequence to combine the major subunits. The utility of a Hartwig-style C-N coupling has been explored on functionally dense coupling partners. Diastereoselective conjugate additions to α,β-unsaturated sulfones has been investigated which provided the key sulfone intermediate in just six steps from commercially available starting materials. The formal syntheses of senepodine G and cermizine C have been accomplished through an intramolecular cyclization process of a N-Boc protected piperidine sulfone. PMID:23627426

  20. Thionium ion initiated medium-sized ring formation: the total synthesis of asteriscunolide D.

    PubMed

    Trost, Barry M; Burns, Aaron C; Bartlett, Mark J; Tautz, Thomas; Weiss, Andrew H

    2012-01-25

    The first synthesis of the biologically active humulene natural product asteriscunolide D has been accomplished in nine steps without the use of protecting groups. The challenging 11-membered ring was forged via a diastereoselective thionium ion initiated cyclization, which constitutes a formal aldol disconnection to form a strained macrocycle. A stereospecific thioether activation-elimination protocol was developed for selective E-olefin formation, thus providing access to the most biologically active asteriscunolide. The absolute stereochemical configuration was established by the Zn-ProPhenol catalyzed enantioselective addition of methyl propiolate to an aliphatic aldehyde to afford a γ-hydroxy propiolate as a handle for butenolide formation via Ru-catalyzed alkene-alkyne coupling.

  1. Total synthesis of marinomycin A using salicylate as a molecular switch to mediate dimerization

    NASA Astrophysics Data System (ADS)

    Evans, P. Andrew; Huang, Mu-Hua; Lawler, Michael J.; Maroto, Sergio

    2012-08-01

    Antibiotics play a significant role in human health because of their ability to treat life-threatening bacterial infections. The growing problems with antibiotic resistance have made the development of new antibiotics a World Health Organization priority. Marinomycin A is a member of a new class of bis-salicylate-containing polyene macrodiolides, which have potent antibiotic activity against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium. Herein, we describe a triply convergent synthesis of this agent using the salicylate as a novel molecular switch for the chemoselective construction of the macrodiolide. This strategy raises new questions regarding the biosynthetic role of the salicylate and its potential impact on the mechanism of action of these types of agents. For instance, in contrast to penicillin, which enhances the electrophilicity of the cyclic amide through ring strain, salicylates reduce the electrophilicity of the aryl ester through an intramolecular resonance-assisted hydrogen bond to provide an amide surrogate.

  2. Total Synthesis of Cryptocaryol A by Enantioselective Iridium-Catalyzed Alcohol C-H Allylation.

    PubMed

    Perez, Felix; Waldeck, Andrew R; Krische, Michael J

    2016-04-11

    The polyketide natural product cryptocaryol A is prepared in 8 steps via iridium catalyzed enantioselective diol double C-H allylation, which directly generates an acetate-based triketide stereodiad. In 4 previously reported total syntheses, 17-28 steps were required.

  3. Progress in demonstrating total homochiral selection in montmorillonite-catalyzed RNA synthesis.

    PubMed

    Joshi, Prakash C; Aldersley, Michael F; Ferris, James P

    2011-10-07

    The Na(+)-montmorillonite-catalyzed reactions of 5'-phosphorimidazolides of nucleosides generates RNA oligomers. The question arises as to how chiral selectivity was introduced into this biopolymer from a simple chemical system. We have demonstrated homochiral selection in quaternary reactions of a racemic mixture of D,L-ImpA and D,L-ImpU on Na(+)-montmorillonite. The dimer, trimer, tetramer and pentamer fractions were investigated for homochiral selection. The products were collected via ion exchange HPLC and their terminal 5'-phosphate was cleaved by alkaline phosphatase. These fractions were analyzed by reverse phase HPLC for the identification of homochiral and heterochiral isomers. Encouraged by favorable homochiral excesses of dimer (63.5 ± 0.8%) and trimer (74.3 ± 1.7%), the study was extended to the analysis of higher oligomers. The tetramer and pentamer of the quaternary reaction were separated into 26 and 22 isomers, respectively, on a reverse phase column. Their co-elution with those formed in the binary reactions of d-ImpA and D-ImpU on Na(+)-montmorillonite revealed 92.7 ± 2.0% and 97.2 ± 0.5% homochirality of the tetramer and pentamer, respectively. These results suggest that Na(+)-montmorillonite not only catalyzes the prebiotic synthesis of RNA but it also facilitates homochiral selection.

  4. A bias-adjusted evidence synthesis of RCT and observational data: the case of total hip replacement.

    PubMed

    Schnell-Inderst, Petra; Iglesias, Cynthia P; Arvandi, Marjan; Ciani, Oriana; Matteucci Gothe, Raffaella; Peters, Jaime; Blom, Ashley W; Taylor, Rod S; Siebert, Uwe

    2017-02-01

    Evaluation of clinical effectiveness of medical devices differs in some aspects from the evaluation of pharmaceuticals. One of the main challenges identified is lack of robust evidence and a will to make use of experimental and observational studies (OSs) in quantitative evidence synthesis accounting for internal and external biases. Using a case study of total hip replacement to compare the risk of revision of cemented and uncemented implant fixation modalities, we pooled treatment effect estimates from OS and RCTs, and simplified existing methods for bias-adjusted evidence synthesis to enhance practical application. We performed an elicitation exercise using methodological and clinical experts to determine the strength of beliefs about the magnitude of internal and external bias affecting estimates of treatment effect. We incorporated the bias-adjusted treatment effects into a generalized evidence synthesis, calculating both frequentist and Bayesian statistical models. We estimated relative risks as summary effect estimates with 95% confidence/credibility intervals to capture uncertainty. When we compared alternative approaches to synthesizing evidence, we found that the pooled effect size strongly depended on the inclusion of observational data as well as on the use bias-adjusted estimates. We demonstrated the feasibility of using observational studies in meta-analyses to complement RCTs and incorporate evidence from a wider spectrum of clinically relevant studies and healthcare settings. To ensure internal validity, OS data require sufficient correction for confounding and selection bias, either through study design and primary analysis, or by applying post-hoc bias adjustments to the results. © 2017 The Authors. Health Economics published by John Wiley & Sons, Ltd.

  5. Is there no end to the total syntheses of strychnine? Lessons to be learned for strategy and tactics in total synthesis**

    PubMed Central

    Cannon, Jeffrey S.; Overman, Larry E.

    2013-01-01

    From the 19th century to the present, the complex indole alkaloid strychnine has engaged the chemical community. In this review, we examine why strychnine has been and remains today an important target for directed synthesis efforts. A selection of the diverse syntheses of strychnine is discussed with the aim of identifying their influence on the evolution of the strategy and tactics of organic synthesis. PMID:22431197

  6. Synthesis of hydrochloric acid solution for total mercury determination in natural waters.

    PubMed

    Patel-Sorrentino, Nathalie; Benaim, Jean-Yves; Cossa, Daniel; Lucas, Yves

    2011-01-01

    Total mercury (Hg(T)) determination requires the addition of concentrated hydrochloric acid solution (≥10 mol L(-1) HCl) in relatively high amounts to preserve the samples and to prepare reagent solutions. A method for the preparation of concentrated HCl with Hg(T) concentration of lower than 5 ng L(-1) is described in this article. It is based on the well-known chemical reaction: 2 NH(4)Cl + H(2)SO(4) → (NH(4))(2)SO(4) + 2 HCl. This method is validated thanks to the US Environmental Protection Agency method 1631 and standard reference materials BCR-579 (mercury in coastal seawater).

  7. Isolation and Total Synthesis of Stolonines A-C, Unique Taurine Amides from the Australian Marine Tunicate Cnemidocarpa stolonifera.

    PubMed

    Tran, Trong D; Pham, Ngoc B; Ekins, Merrick; Hooper, John N A; Quinn, Ronald J

    2015-07-22

    Cnemidocarpa stolonifera is an underexplored marine tunicate that only occurs on the tropical to subtropical East Coast of Australia, with only two pyridoacridine compounds reported previously. Qualitative analysis of the lead-like enhanced fractions of C. stolonifera by LC-MS dual electrospray ionization coupled with PDA and ELSD detectors led to the identification of three new natural products, stolonines A-C (1-3), belonging to the taurine amide structure class. Structures of the new compounds were determined by NMR and MS analyses and later verified by total synthesis. This is the first time that the conjugates of taurine with 3-indoleglyoxylic acid, quinoline-2-carboxylic acid and β-carboline-3-carboxylic acid present in stolonines A-C (1-3), respectively, have been reported. An immunofluorescence assay on PC3 cells indicated that compounds 1 and 3 increased cell size, induced mitochondrial texture elongation, and caused apoptosis in PC3 cells.

  8. Total synthesis of the proposed structure of 8-deshydroxyajudazol A: a modified approach to 2,4-disubstituted oxazoles.

    PubMed

    Birkett, Stephen; Ganame, Danny; Hawkins, Bill C; Meiries, Sébastien; Quach, Tim; Rizzacasa, Mark A

    2013-01-04

    The total synthesis of the proposed structure for the minor myxobacterial metabolite 8-deshydroxyajudazol A (3) is described. The isochromanone moiety present in the eastern fragment was constructed by an intramolecular-Diels-Alder (IMDA). Difficulties were encountered with the formation of the 2,4-disubstituted oxazole, so this was synthesized via a modified approach. This involved selective acylation of the diol 7 with acid 8, azide displacement of the secondary alcohol, and subsequent azide reduction in the presence of base which induced an O,N shift to give the hydroxyamide 23. Cyclodehydration then gave the desired oxazole 24 and deprotection followed by mesylation and elimination produced the C15 alkene 5. Sonogashira coupling with the eastern fragment vinyl iodide 6 and partial reduction yielded 8-deshydroxyajudazol A (3).

  9. Total synthesis and antileukemic evaluations of the phenazine 5,10-dioxide natural products iodinin, myxin and their derivatives.

    PubMed

    Viktorsson, Elvar Örn; Melling Grøthe, Bendik; Aesoy, Reidun; Sabir, Misbah; Snellingen, Simen; Prandina, Anthony; Høgmoen Åstrand, Ove Alexander; Bonge-Hansen, Tore; Døskeland, Stein Ove; Herfindal, Lars; Rongved, Pål

    2017-04-01

    A new efficient total synthesis of the phenazine 5,10-dioxide natural products iodinin and myxin and new compounds derived from them was achieved in few steps, a key-step being 1,6-dihydroxyphenazine di-N-oxidation. Analogues prepared from iodinin, including myxin and 2-ethoxy-2-oxoethoxy derivatives, had fully retained cytotoxic effect against human cancer cells (MOLM-13 leukemia) at atmospheric and low oxygen level. Moreover, iodinin was for the first time shown to be hypoxia selective. The structure-activity relationship for leukemia cell death induction revealed that the level of N-oxide functionality was essential for cytotoxicity. It also revealed that only one of the two phenolic functions is required for activity, allowing the other one to be modified without loss of potency.

  10. The Concise Guide to PHARMACOLOGY 2015/16: Overview.

    PubMed

    Alexander, Stephen Ph; Kelly, Eamonn; Marrion, Neil; Peters, John A; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Southan, Christopher; Buneman, O Peter; Catterall, William A; Cidlowski, John A; Davenport, Anthony P; Fabbro, Doriano; Fan, Grace; McGrath, John C; Spedding, Michael; Davies, Jamie A

    2015-12-01

    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13347/full. This compilation of the major pharmacological targets is divided into eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

  11. The Dirty Dozen: A Concise Measure of the Dark Triad

    ERIC Educational Resources Information Center

    Jonason, Peter K.; Webster, Gregory D.

    2010-01-01

    There has been an exponential increase of interest in the dark side of human nature during the last decade. To better understand this dark side, the authors developed and validated a concise, 12-item measure of the Dark Triad: narcissism, psychopathy, Machiavellianism. In 4 studies involving 1,085 participants, they examined its structural…

  12. TOPICAL REVIEW: A concise introduction to perturbation theory in cosmology

    NASA Astrophysics Data System (ADS)

    Malik, Karim A.; Matravers, David R.

    2008-10-01

    We give a concise, self-contained introduction to perturbation theory in cosmology at linear and second orders, striking a balance between mathematical rigour and usability. In particular, we discuss gauge issues and the active and passive approaches to calculating gauge transformations. We also construct gauge-invariant variables, including the second-order tensor perturbation on uniform curvature hypersurfaces.

  13. Total synthesis and antiviral activity of indolosesquiterpenoids from the xiamycin and oridamycin families

    PubMed Central

    Meng, Zhanchao; Yu, Haixin; Li, Li; Tao, Wanyin; Chen, Hao; Wan, Ming; Yang, Peng; Edmonds, David J.; Zhong, Jin; Li, Ang

    2015-01-01

    Indolosesquiterpenoids are a growing class of natural products that exhibit a wide range of biological activities. Here, we report the total syntheses of xiamycin A and oridamycins A and B, indolosesquiterpenoids isolated from Streptomyces. Two parallel strategies were exploited to forge the carbazole core: 6π-electrocyclization/aromatization and indole C2–H bond activation/Heck annulation. The construction of their trans-decalin motifs relied on two diastereochemically complementary radical cyclization reactions mediated by Ti(III) and Mn(III), respectively. The C23 hydroxyl of oridamycin B was introduced by an sp3 C–H bond oxidation at a late stage. On the basis of the chemistry developed, the dimeric congener dixiamycin C has been synthesized for the first time. Evaluation of the antiviral activity of these compounds revealed that xiamycin A is a potent agent against herpes simplex virus–1 (HSV-1) in vitro. PMID:25648883

  14. A Strategy for Complex Dimer Formation When Biomimicry Fails: Total Synthesis of Ten Coccinellid Alkaloids

    PubMed Central

    2015-01-01

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature’s presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class. PMID:24959981

  15. A strategy for complex dimer formation when biomimicry fails: total synthesis of ten coccinellid alkaloids.

    PubMed

    Sherwood, Trevor C; Trotta, Adam H; Snyder, Scott A

    2014-07-09

    Although dimeric natural products can often be synthesized in the laboratory by directly merging advanced monomers, these approaches sometimes fail, leading instead to non-natural architectures via incorrect unions. Such a situation arose during our studies of the coccinellid alkaloids, when attempts to directly dimerize Nature's presumed monomeric precursors in a putative biomimetic sequence afforded only a non-natural analogue through improper regiocontrol. Herein, we outline a unique strategy for dimer formation that obviates these difficulties, one which rapidly constructs the coccinellid dimers psylloborine A and isopsylloborine A through a terminating sequence of two reaction cascades that generate five bonds, five rings, and four stereocenters. In addition, a common synthetic intermediate is identified which allows for the rapid, asymmetric formal or complete total syntheses of eight monomeric members of the class.

  16. Total Observed Organic Carbon (TOOC): A Synthesis of North American Observations

    NASA Technical Reports Server (NTRS)

    Heald, C. L.; Goldstein, A. H.; Allan, J. D.; Aiken, A. C.; Apel, E.; Atlas, E. L.; Baker, A. K.; Bates, T. S.; Beyersdorf, A. J.; Blake, D. R.; Campos, T.; Coe, H.; Crounse, J. D.; DeCarlo, P. F.; de Gouw, J. A.; Dunlea, E. J.; Flocke, F. M.; Fried, A.; Goldan, P.; Griffin, R. J.; Herndon, S. C.; Holloway, J. S.; Holzinger, R.; Jimenez, J. L.; Junkermann, W.

    2007-01-01

    Measurements of organic carbon compounds in both the gas and particle phases made upwind, over and downwind of North America are synthesized to examine the total observed organic carbon (TOOC) in the atmosphere over this region. These include measurements made aboard the NOAA WP-3 and BAe-146 aircraft, the NOAA research vessel Ronald H. Brown, and at the Thompson Farm and Chebogue Point surface sites during the summer 2004 ICARTT campaign. Both winter and summer 2002 measurements during the Pittsburgh Air Quality Study are also included. Lastly, the spring 2002 observations at Trinidad Head, CA, surface measurements made in March 2006 in Mexico City and coincidentally aboard the C-130 aircraft during the MILAGRO campaign and later during the IMPEX campaign off the northwestern United States are incorporated. Concentrations of TOOC in these datasets span more than two orders of magnitude. The daytime mean TOOC ranges from 4.0 to 456 microg C/cubic m from the cleanest site (Trinidad Head) to the most polluted (Mexico City). Organic aerosol makes up 3-17% of this mean TOOC, with highest fractions reported over the northeastern United States, where organic aerosol can comprise up to 50% of TOOC. Carbon monoxide concentrations explain 46 to 86% of the variability in TOOC, with highest TOOC/CO slopes in regions with fresh anthropogenic influence, where we also expect the highest degree of mass closure for TOOC. Correlation with isoprene, formaldehyde, methyl vinyl ketone and methacrolein also indicates that biogenic activity contributes substantially to the variability of TOOC, yet these tracers of biogenic oxidation sources do not explain the variability in organic aerosol observed over North America. We highlight the critical need to develop measurement techniques to routinely detect total gas phase VOCs, and to deploy comprehensive suites of TOOC instruments in diverse environments to quantify the ambient evolution of organic carbon from source to sink.

  17. Total Synthesis of (±)-Englerin A Using An Intermolecular [3+2] Cycloaddition Reaction of Platinum-Containing Carbonyl Ylide.

    PubMed

    Kusama, Hiroyuki; Tazawa, Aoi; Ishida, Kento; Iwasawa, Nobuharu

    2016-01-01

    Total synthesis of (±)-Englerin A has been achieved starting from γ,δ-ynone 5 in 14 steps. The key feature of this synthesis is the highly efficient and stereoselective preparation of 8-oxabicyclo[3.2.1]octane derivative 6, a core skeleton of Englerin A, based on an inverse electron-demand [3+2] cycloaddition reaction of the platinum-containing carbonyl ylide, which was developed in our laboratory.

  18. Concise syntheses of the cruciferous phytoalexins brassilexin, sinalexin, wasalexins, and analogues: expanding the scope of the vilsmeier formylation.

    PubMed

    Pedras, M Soledade C; Jha, Mukund

    2005-03-04

    Efficient syntheses of the phytoalexins brassilexin, sinalexin, and analogues are demonstrated through the application of the Vilsmeier formylation to indoline-2-thiones followed by a new aqueous ammonia workup procedure. Similarly, a very concise two-pot synthesis of the phytoalexins wasalexins using sequential formylation-amination of indolin-2-ones is described. Remarkably, this novel aqueous ammonia workup allows the sequential one-pot formylation-amination, expanding substantially the scope of the Vilsmeier formylation of both indoline-2-thiones and indolin-2-ones. The examination of the formylation-amination reaction and optimization of conditions, as well as the syntheses and antifungal activities of several brassilexin analogues, are reported.

  19. Total synthesis of (-)-ulapualide A, a novel tris-oxazole macrolide from marine nudibranchs, based on some biosynthesis speculation.

    PubMed

    Pattenden, Gerald; Ashweek, Neil J; Baker-Glenn, Charles A G; Kempson, James; Walker, Gary M; Yee, James G K

    2008-04-21

    A new, second generation, total synthesis of ulapualide A (1), whose stereochemistry was recently determined from X-ray analysis of its complex with the protein actin, is described. The synthesis is designed and based on some speculation of the biosynthetic origin of the contiguous tris-oxazole unit in ulapualide A, alongside that of the related co-metabolites that contain only two oxazole rings, e.g. 6 and 7. The mono-oxazole carboxylic acid 67b and the mono-oxazole secondary 55b alcohol which, together, contain all of the 10 asymmetric centres in the natural metabolite, were first elaborated using a combination of contemporary asymmetric synthesis protocols. Esterification of 67b with 55b under Yamaguchi conditions gave the ester 77 which was then converted into the omega-amino acid 18a following simultaneous deprotection of the t-butyl ester and the N-Boc protecting groups. Macrolactamisation of 18a, using HATU, now gave the key intermediate macrolactam 17, containing two of the three oxazole rings in ulapualide A (1). A number of procedures were used to introduce the third oxazole ring in ulapualide A from 17, including: a) cyclodehydration to the oxazoline 78a followed by oxidation using nickel peroxide leading to 76; b) dehydration to the enamide 79, followed by conversion into the methoxyoxazoline 78b, via 80, and elimination of methanol from 78b using camphorsulfonic acid. The tris-oxazole macrolide 76 was next converted into the aldehyde 82b in four straightforward steps, which was then reacted with N-methylformamide, leading to the E-alkenylformamide 83. Removal of the TBDPS protection at C3 in 83 finally gave (-)-ulapualide A, whose 1H and 13C NMR spectroscopic data were indistinguishable from those obtained for naturally derived material. It is likely that the tris-oxazole unit in ulapualide A (1) is derived in nature from a cascade of cyclodehydrations from an acylated tris-serine precursor, e.g.9, followed by oxidation of the resulting tris

  20. Total synthesis of woodrosin I--part 1: preparation of the building blocks and evaluation of the glycosylation strategy.

    PubMed

    Fürstner, Alois; Jeanjean, Fabien; Razon, Patrick; Wirtz, Conny; Mynott, Richard

    2003-01-03

    The preparation of three building blocks required for the total synthesis of woodrosin I (1) is outlined, a complex resin glycoside bearing a macrolide ring which spans four of the five sugars of its oligosaccharide backbone. Key steps involve the enantioselective, titanium-catalyzed addition of dipentylzinc to 5-hexenal, the glycosylation of the resulting alcohol 18 with the glucose-derived trichloroacetimidate 7, and further elaboration of the resulting product 19 into disaccharide 22 on treatment with the orthogonally protected glycosyl donor 15. The trichloroacetimidate method is also used for the formation of the second synthon represented by disaccharide 38. A model study shows that the assembly of the pentasaccharidic perimeter of 1 depends critically on the phasing of the glycosylation events between fragments 22, 38 and the rhamnosyl donor 27 due to the severe steric hindrance in the product. A particularly noteworthy finding is the fact that diol 22 can be regioselectively glycosylated at the 3'-OH group in high yield without protection of the neighboring 2'-OH function.

  1. Isolation, structure elucidation, and biomimetic total synthesis of versicolamide B and the isolation of antipodal (-)-stephacidin A and (+)-notoamide B from Aspergillus versicolor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new prenylated indole alkaloid, versicolamide B, was isolated from cultures of Aspergillus versicolor NRRL 35600. The structure was assigned by 2D NMR data, and confirmed by a biomimetic total synthesis. Versicolamide B is the first member of the paraherquamide-stephacidin family of alkaloids fo...

  2. Effect of supplementing orchardgrass herbage with a total mixed ration or flaxseed fermentation profile and bacterial protein synthesis in continuous culture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of herbage, a total mixed ration (TMR) and flaxseed on nutrient digestibility and microbial N synthesis. Treatments were randomly assigned to fermentors in a 4 x 4 Latin square design. Each fermentor was fed a to...

  3. Stereocontrolled Total Synthesis of the Potent Anti-inflammatory and Pro-resolving Lipid Mediator Resolvin D3 and its Aspirin-Triggered 17R-Epimer

    PubMed Central

    Winkler, Jeremy W.; Uddin, Jasim; Serhan, Charles N.

    2013-01-01

    The first total synthesis of stereochemically pure resolvin D3 and aspirin-triggered resolvin D3 is reported. These enzymatic metabolites of docosahexaenoic acid (DHA) have potent anti-inflammatory and pro-resolving actions. The convergent synthetic strategy is based on enantiomerically pure starting materials and it is highly stereocontrolled. PMID:23510485

  4. Total synthesis of (R,R,R)- and (S,S,S)-schweinfurthin F: differences of bioactivity in the enantiomeric series.

    PubMed

    Mente, Nolan R; Wiemer, Andrew J; Neighbors, Jeffrey D; Beutler, John A; Hohl, Raymond J; Wiemer, David F

    2007-02-15

    Total synthesis of the (R,R,R)- and (S,S,S)-enantiomers of the natural product schweinfurthin F has been completed. Comparisons of spectral data and optical rotations with those reported for the natural product, as well as a variety of bioassay data, allow assignment of the natural material as the (R,R,R)-isomer.

  5. Total synthesis of bryostatin 16 using a Pd-catalyzed diyne coupling as macrocyclization method and synthesis of C20-epi-bryostatin 7 as a potent anticancer agent.

    PubMed

    Trost, Barry M; Dong, Guangbin

    2010-11-24

    Asymmetric total synthesis of bryostatin 16 was achieved in 26 steps in the longest linear sequence and in 39 total steps from aldehyde 10. A Pd-catalyzed alkyne-alkyne coupling was employed for the first time as a macrocyclization method in a natural product synthesis. A route to convert bryostatin 16 to a new family of bryostatin analogues was developed. Toward this end, 20-epi-bryostatin 7 was synthesized from a bryostatin 16-like intermediate; the key step involves a Re-catalyzed epoxidation/ring-opening reaction. Preliminary biological studies indicated that this new analogue exhibits nanomolar anti-cancer activity against several cancer cell lines.

  6. Indole diterpene synthetic studies. Total synthesis of (+)-nodulisporic acid F and construction of the heptacyclic cores of (+)-nodulisporic acids A and B and (-)-nodulisporic acid D.

    PubMed

    Smith, Amos B; Davulcu, Akin H; Cho, Young Shin; Ohmoto, Kazuyuki; Kürti, László; Ishiyama, Haruaki

    2007-06-22

    A first-generation strategy for construction of (+)-nodulisporic acids A (1) and B (2) is described. The strategy entails union of the eastern and western hemisphere subtargets via the indole synthesis protocol developed in our laboratory. Subsequent elaboration of rings E and F, however, revealed the considerable acid instability of the C(24) hydroxyl, thereby preventing further advancement. Nonetheless, preparation of the heptacyclic core of (+)-nodulisporic acids A and B, the total synthesis of (+)-nodulisporic acid F, the simplest member of the nodulisporic acid family, and elaboration of the heptacyclic core of (-)-nodulisporic acid D were achieved.

  7. Asymmetric [4 + 3] cycloadditions between vinylcarbenoids and dienes: application to the total synthesis of the natural product (-)-5-epi-vibsanin E.

    PubMed

    Schwartz, Brett D; Denton, Justin R; Lian, Yajing; Davies, Huw M L; Williams, Craig M

    2009-06-17

    The total synthesis of (-)-5-epi-vibsanin E (2) has been achieved in 18 steps. The synthesis combines the rhodium-catalyzed [4 + 3] cycloaddition between a vinylcarbenoid and a diene to rapidly generate the tricyclic core with an effective end game strategy to introduce the remaining side-chains. The [4 + 3] cycloaddition occurs by a cyclopropanation to form a divinylcyclopropane followed by a Cope rearrangement to form a cycloheptadiene. The quaternary stereogenic center generated in the process can be obtained with high asymmetric induction when the reaction is catalyzed by the chiral dirhodium complex, Rh(2)(S-PTAD)(4).

  8. The Construction of All-Carbon Quaternary Stereocenters by Use of Pd-Catalyzed Asymmetric Allylic Alkylation Reactions in Total Synthesis

    PubMed Central

    Hong, Allen Y.

    2014-01-01

    All-carbon quaternary stereocenters have posed significant challenges in the synthesis of complex natural products. These important structural motifs have inspired the development of broadly applicable palladium-catalyzed asymmetric allylic alkylation reactions of unstabilized non-biased enolates for the synthesis of enantioenriched α-quaternary products. This microreview outlines key considerations in the application of palladium-catalyzed asymmetric allylic alkylation reactions and presents recent total syntheses of complex natural products that have employed these powerful transformations for the direct, catalytic, enantioselective construction of all-carbon quaternary stereocenters. PMID:24944521

  9. Total Synthesis of (−)-Mandelalide A Exploiting Anion Relay Chemistry (ARC): Identification of a Type II ARC/CuCN Cross-Coupling Protocol

    PubMed Central

    2016-01-01

    Anion relay chemistry (ARC), an effective, multicomponent union tactic, was successfully employed for the total synthesis of the highly cytotoxic marine macrolide (−)-mandelalide A (1). The northern hemisphere was constructed via a new type II ARC/CuCN cross-coupling tactic, while the southern hemisphere was secured via a highly efficient four-component type I ARC union. Importantly, the synthesis of 1 showcases ARC as a rapid, scalable coupling strategy for the union of simple readily available building blocks to access diverse complex molecular fragments with excellent stereochemical control. PMID:26954306

  10. Total Synthesis of (-)-Mandelalide A Exploiting Anion Relay Chemistry (ARC): Identification of a Type II ARC/CuCN Cross-Coupling Protocol.

    PubMed

    Nguyen, Minh H; Imanishi, Masashi; Kurogi, Taichi; Smith, Amos B

    2016-03-23

    Anion relay chemistry (ARC), an effective, multicomponent union tactic, was successfully employed for the total synthesis of the highly cytotoxic marine macrolide (-)-mandelalide A (1). The northern hemisphere was constructed via a new type II ARC/CuCN cross-coupling tactic, while the southern hemisphere was secured via a highly efficient four-component type I ARC union. Importantly, the synthesis of 1 showcases ARC as a rapid, scalable coupling strategy for the union of simple readily available building blocks to access diverse complex molecular fragments with excellent stereochemical control.

  11. Asymmetric Synthesis of (+)-anti- and (-)-syn-Mefloquine Hydrochloride.

    PubMed

    Rastelli, Ettore J; Coltart, Don M

    2016-10-21

    The asymmetric (er > 99:1) total synthesis of (+)-anti- and (-)-syn-mefloquine hydrochloride from a common intermediate is described. The Sharpless asymmetric dihydroxylation is the key asymmetric transformation used in the synthesis of this intermediate. It is carried out on an olefin that is accessed in three steps from commercially available materials, making the overall synthetic sequence very concise. The common diol intermediate derived from the Sharpless asymmetric dihydroxylation is converted into either a trans- or cis-epoxide, and these are subsequently converted to (+)-anti- and (-)-syn-mefloquine, respectively. X-ray crystallographic analysis of derivatives of (+)-anti- and (-)-syn-mefloquine is used to lay to rest a 40 year argument regarding the absolute stereochemistry of the mefloquines. A formal asymmetric (er > 99:1) synthesis of (+)-anti-mefloquine hydrochloride is also presented that uses a Sharpless asymmetric epoxidation as a key step.

  12. Ultrafiltration, a useful method for isolation of intermediates in native chemical ligation exemplified with the total synthesis of Sortase AΔN59.

    PubMed

    Deng, Fang-kun

    2015-04-01

    In this paper, ultrafiltration was employed to facilitate the isolation of intermediates in native chemical ligation. Depending on the molecular weight cutoff of the membrane used, molecules with different sizes could be purified, separated, or concentrated by the ultrafiltration process. Total chemical synthesis of the polypeptide chain of the enzyme Sortase AΔN59 was used as an example of the application of ultrafiltration in chemical protein synthesis. Sortase A is a ligase that catalyzes transpeptidation reactions between proteins that have C-terminal LPXTG recognition sequence and Gly5- on the peptidoglycan of bacterial cell walls. Ultrafiltration technique facilitated synthesis of Sortase AΔN59 and was a promising tool in isolation of intermediates in native chemical ligation.

  13. Reconciling icetexane biosynthetic connections with their chemical synthesis: total synthesis of (+/-)-5,6-dihydro-6alpha-hydroxysalviasperanol, (+/-)-brussonol, and (+/-)-abrotanone.

    PubMed

    Simmons, Eric M; Yen, Jennifer R; Sarpong, Richmond

    2007-07-05

    A unified strategy for the chemical synthesis of the icetexane diterpenoids brussonol and 5,6-dihydro-6alpha-hydroxysalviasperanol has led to a structural revision of the recently isolated natural products abrotandiol and abrotanone.

  14. A concise discussion of headache types, Part 1.

    PubMed

    Williams, LaVonn A

    2012-01-01

    Except for head colds, headaches are probably the most common human ailment, and historical evidence supports the fact that earlier man suffered from ailments of the head. With over 150 diagnostic headache categories having been established, the diagnosis and treatment of headache is not a simple process. The severity, symptoms, and causes of headache vary. This article, which is Part 1 of a three-part article, provides a concise discussion about the types of headache, as well as brief discussions on some of the causes and treatments of headache.

  15. Asymmetric Formal Total Synthesis of the Stemofoline Alkaloids: The Evolution, Development and Application of a Catalytic Dipolar Cycloaddition Cascade

    PubMed Central

    Shanahan, Charles S.; Fang, Chao; Paull, Daniel H.; Martin, Stephen F.

    2013-01-01

    A formal synthesis of didehydrostemofoline and isodidehydrostemofoline has been accomplished by preparing an intermediate in the Overman synthesis of these alkaloids from commercially available 2-deoxy-D-ribose. The work presented in this account chronicles the evolution of our explorations to identify the optimal steric and electronic control elements necessary to generate the tricyclic core structure of these alkaloids in a single operation from an acyclic precursor. The key step in the synthesis is a novel dipolar cycloaddition cascade sequence that is initiated by cyclization of a rhodium-derived carbene onto the nitrogen atom of a proximal imine group to generate an azomethine ylide that then undergoes spontaneous cyclization via dipolar cycloaddition. The synthesis features several other interesting reactions, including a Boord elimination to prepare a chiral allylic alcohol, a highly diastereoselective Hirama-Itô cyclization, and a useful modification of the Barton decarboxylation protocol. PMID:24072939

  16. The Concise Guide to Pharmacology 2013/14: Enzymes

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Enzymes are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, nuclear hormone receptors, catalytic receptors and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528243

  17. The Concise Guide to Pharmacology 2013/14: Ion Channels

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528239

  18. The Concise Guide to Pharmacology 2013/14: Overview

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; McGrath, John C; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates. PMID:24528237

  19. The Concise Guide to PHARMACOLOGY 2013/14: overview.

    PubMed

    Alexander, Stephen P H; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; McGrath, John C; Catterall, William A; Spedding, Michael; Peters, John A; Harmar, Anthony J; Abul-Hasn, N; Anderson, C M; Anderson, C M H; Araiksinen, M S; Arita, M; Arthofer, E; Barker, E L; Barratt, C; Barnes, N M; Bathgate, R; Beart, P M; Belelli, D; Bennett, A J; Birdsall, N J M; Boison, D; Bonner, T I; Brailsford, L; Bröer, S; Brown, P; Calo, G; Carter, W G; Catterall, W A; Chan, S L F; Chao, M V; Chiang, N; Christopoulos, A; Chun, J J; Cidlowski, J; Clapham, D E; Cockcroft, S; Connor, M A; Cox, H M; Cuthbert, A; Dautzenberg, F M; Davenport, A P; Dawson, P A; Dent, G; Dijksterhuis, J P; Dollery, C T; Dolphin, A C; Donowitz, M; Dubocovich, M L; Eiden, L; Eidne, K; Evans, B A; Fabbro, D; Fahlke, C; Farndale, R; Fitzgerald, G A; Fong, T M; Fowler, C J; Fry, J R; Funk, C D; Futerman, A H; Ganapathy, V; Gaisnier, B; Gershengorn, M A; Goldin, A; Goldman, I D; Gundlach, A L; Hagenbuch, B; Hales, T G; Hammond, J R; Hamon, M; Hancox, J C; Hauger, R L; Hay, D L; Hobbs, A J; Hollenberg, M D; Holliday, N D; Hoyer, D; Hynes, N A; Inui, K-I; Ishii, S; Jacobson, K A; Jarvis, G E; Jarvis, M F; Jensen, R; Jones, C E; Jones, R L; Kaibuchi, K; Kanai, Y; Kennedy, C; Kerr, I D; Khan, A A; Klienz, M J; Kukkonen, J P; Lapoint, J Y; Leurs, R; Lingueglia, E; Lippiat, J; Lolait, S J; Lummis, S C R; Lynch, J W; MacEwan, D; Maguire, J J; Marshall, I L; May, J M; McArdle, C A; McGrath, J C; Michel, M C; Millar, N S; Miller, L J; Mitolo, V; Monk, P N; Moore, P K; Moorhouse, A J; Mouillac, B; Murphy, P M; Neubig, R R; Neumaier, J; Niesler, B; Obaidat, A; Offermanns, S; Ohlstein, E; Panaro, M A; Parsons, S; Pwrtwee, R G; Petersen, J; Pin, J-P; Poyner, D R; Prigent, S; Prossnitz, E R; Pyne, N J; Pyne, S; Quigley, J G; Ramachandran, R; Richelson, E L; Roberts, R E; Roskoski, R; Ross, R A; Roth, M; Rudnick, G; Ryan, R M; Said, S I; Schild, L; Sanger, G J; Scholich, K; Schousboe, A; Schulte, G; Schulz, S; Serhan, C N; Sexton, P M; Sibley, D R; Siegel, J M; Singh, G; Sitsapesan, R; Smart, T G; Smith, D M; Soga, T; Stahl, A; Stewart, G; Stoddart, L A; Summers, R J; Thorens, B; Thwaites, D T; Toll, L; Traynor, J R; Usdin, T B; Vandenberg, R J; Villalon, C; Vore, M; Waldman, S A; Ward, D T; Willars, G B; Wonnacott, S J; Wright, E; Ye, R D; Yonezawa, A; Zimmermann, M

    2013-12-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties from the IUPHAR database. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. This compilation of the major pharmacological targets is divided into seven areas of focus: G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors & Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

  20. The Concise Guide to Pharmacology 2013/14: Transporters

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Transporters are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528242

  1. Bis(oxazoline) Lewis acid catalyzed aldol reactions of pyridine N-oxide aldehydes--synthesis of optically active 2-(1-hydroxyalkyl)pyridine derivatives: development, scope, and total synthesis of an indolizine alkaloid.

    PubMed

    Landa, Aitor; Minkkilä, Anna; Blay, Gonzalo; Jørgensen, Karl Anker

    2006-04-24

    A new, short, and simplified procedure for the synthesis of optically active pyridine derivatives from pro-chiral pyridine-N-oxides is presented. The catalytic and asymmetric Mukaiyama aldol reaction between ketene silyl acetals and 1-oxypyridine-2-carbaldehyde derivatives catalyzed by chiral copper(II)-bis(oxazoline) complexes gave optically active 2-(hydroxyalkyl)- and 2-(anti-1,2-dihydroxyalkyl)pyridine derivatives in good yields and diastereoselectivities, and in excellent enantioselectivities-up to 99 % enantiomeric excess. As a synthetic application of the developed method, a full account for the asymmetric total synthesis of a nonnatural indolizine alkaloid is provided.

  2. Asymmetric total synthesis of (+)-bermudenynol, a C15 Laurencia metabolite with a vinyl chloride containing oxocene skeleton, through intramolecular amide enolate alkylation.

    PubMed

    Kim, Gyudong; Sohn, Te-Ik; Kim, Deukjoon; Paton, Robert S

    2014-01-03

    A substrate-controlled asymmetric total synthesis of (+)-bermudenynol, a compact and synthetically challenging C15 Laurencia metabolite that contains several halogen atoms, is reported. The oxocene core, which contains a vinyl chloride, was constructed by an efficient and highly stereoselective intramolecular amide enolate alkylation (IAEA). This result showcases the broad utility of the IAEA methodology as a useful alternative for cases in which the ring-closing metathesis is inefficient.

  3. DualPhos: a versatile, chemoselective reagent for two-carbon aldehyde to latent (E)-alkenal homologation and application in the total synthesis of phomolide G

    PubMed Central

    McLeod, David

    2016-01-01

    Advances on the use of the 2-pinacolacetal-tripropylphosphonium salt DualPhos as a general reagent for the two-carbon aldehyde to alkenal homologation and a chemoselective iron (III) chloride mediated deprotection are described. The strategy allows isolation of the latent alkenal intermediates or direct hydrolysis to (E)-alkenals. The robust chemical stability of the latent alkenals is demonstrated in a total synthesis of the macrolactone phomolide G. PMID:28018615

  4. Regiocontrol by remote substituents. An enantioselective total synthesis of frenolicin B via a highly regioselective Diels-Alder reaction

    SciTech Connect

    Kraus, G.A.; Li, J. ); Gordon, M.S.; Jensen, J.H. )

    1993-06-30

    The quinone subunit is contained in a broad range of biologically important natural products such as frenolicin B, which is a member of the pyranonaphthoquinone family. The diverse biological activity of quinones has led to the development of several new synthetic methods for quinones. Among the pathways featuring a cycloaddition reaction, one of the most general methods for the regiospecific synthesis of substituted quinones was pioneered by H.J. Rapoport and others. This method involves the Diels-Alder reaction of a substituted quinone. As part of a program to evaluate the directing effects of functional groups not directly attached to the atoms undergoing Diels-Alder cycloaddition, we now report that remote substituents on a dienophile can confer excellent regioselectivity in Diels-Alder reactions. This work has led to an extremely direct synthesis of the pyranonaphthoquinone framework and to the first synthesis of frenolicin B (1). 19 refs., 1 fig.

  5. Extraintestinal manifestations of Helicobacter pylori: A concise review

    PubMed Central

    Wong, Frank; Rayner-Hartley, Erin; Byrne, Michael F

    2014-01-01

    Helicobacter pylori (H. pylori) infection has been clearly linked to peptic ulcer disease and some gastrointestinal malignancies. Increasing evidence demonstrates possible associations to disease states in other organ systems, known as the extraintestinal manifestations of H. pylori. Different conditions associated with H. pylori infection include those from hematologic, cardiopulmonary, metabolic, neurologic, and dermatologic systems. The aim of this article is to provide a concise review of the evidence that supports or refutes the associations of H. pylori and its proposed extraintestinal manifestations. Based on data from the literature, PUD, mucosal associated lymphoid tumors lymphoma, and gastric adenocarcinoma has well-established links. Current evidence most supports extraintestinal manifestations with H. pylori in immune thrombocytopenic purpura, iron deficiency anemia, urticaria, Parkinson’s, migraines and rosacea; however, there is still plausible link with other diseases that requires further research. PMID:25232230

  6. Primary esophageal motility disorders (concise review for clinicians).

    PubMed

    Simić, A; Raznatović, Z; Skrobić, O; Pesko, P

    2006-01-01

    Primary esophageal motility disorders comprise various abnormal manometric patterns which usually present with dysphagia or chest pain. Some, such as achalasia, are diseases with a well defined pathology, characteristic manometric features, and good response to treatments directed towards the palliation of symptoms. Other disorders, such as diffuse esophageal spasm and nutcracker esophagus, have no well defined pathology and could represent a range of motility abnormalities associated with subtle neuropathic changes, gastresophageal reflux and anxiety states. On the other hand, hypocontracting esophagus is generally caused by weak musculature commonly associated with gastresophageal reflux disease. Although manometric patterns have been defined for these disorders, the relation with symptoms is poorly defined and in some cases the response to medical or surgical therapy unpredictable. The aim of this paper is to present a wide spectrum of the primary esophageal motility disorders, as well as to give a concise review for the clinicians encountering these specific diseases.

  7. The second demographic transition: A concise overview of its development

    PubMed Central

    Lesthaeghe, Ron

    2014-01-01

    This article gives a concise overview of the theoretical development of the concept of the “second demographic transition” since it was coined in 1986, its components, and its applicability, first to European populations and subsequently also to non-European societies as well. Both the demographic and the societal contrasts between the first demographic transition (FDT) and the second demographic transition (SDT) are highlighted. Then, the major criticisms of the SDT theory are outlined, and these issues are discussed in the light of the most recent developments in Europe, the United States, the Far East, and Latin America. It turns out that three major SDT patterns have developed and that these evolutions are contingent on much older systems of kinship and family organization. PMID:25453112

  8. 22 CFR 216.9 - Bilateral and multilateral studies and concise reviews of environmental issues.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Bilateral and multilateral studies and concise reviews of environmental issues. 216.9 Section 216.9 Foreign Relations AGENCY FOR INTERNATIONAL DEVELOPMENT ENVIRONMENTAL PROCEDURES § 216.9 Bilateral and multilateral studies and concise reviews...

  9. Palladium-Catalyzed, tert-Butyllithium-Mediated Dimerization of Aryl Halides and Its Application in the Atropselective Total Synthesis of Mastigophorene A.

    PubMed

    Buter, Jeffrey; Heijnen, Dorus; Vila, Carlos; Hornillos, Valentín; Otten, Edwin; Giannerini, Massimo; Minnaard, Adriaan J; Feringa, Ben L

    2016-03-07

    A palladium-catalyzed direct synthesis of symmetric biaryl compounds from aryl halides in the presence of tBuLi is described. In situ lithium-halogen exchange generates the corresponding aryl lithium reagent, which undergoes a homocoupling reaction with a second molecule of the aryl halide in the presence of the palladium catalyst (1 mol %). The reaction takes place at room temperature, is fast (1 h), and affords the corresponding biaryl compounds in good to excellent yields. The application of the method is demonstrated in an efficient asymmetric total synthesis of mastigophorene A. The chiral biaryl axis is constructed with an atropselectivity of 9:1 owing to catalyst-induced remote point-to-axial chirality transfer.

  10. Total Synthesis of the Antitumor Antibiotic (±)-Streptonigrin: First- and Second-Generation Routes for de Novo Pyridine Formation Using Ring-Closing Metathesis

    PubMed Central

    2013-01-01

    The total synthesis of (±)-streptonigrin, a potent tetracyclic aminoquinoline-5,8-dione antitumor antibiotic that reached phase II clinical trials in the 1970s, is described. Two routes to construct a key pentasubstituted pyridine fragment are depicted, both relying on ring-closing metathesis but differing in the substitution and complexity of the precursor to cyclization. Both routes are short and high yielding, with the second-generation approach ultimately furnishing (±)-streptonigrin in 14 linear steps and 11% overall yield from inexpensive ethyl glyoxalate. This synthesis will allow for the design and creation of druglike late-stage natural product analogues to address pharmacological limitations. Furthermore, assessment of a number of chiral ligands in a challenging asymmetric Suzuki–Miyaura cross-coupling reaction has enabled enantioenriched (up to 42% ee) synthetic streptonigrin intermediates to be prepared for the first time. PMID:24328139

  11. Bringing the science of proteins into the realm of organic chemistry: total chemical synthesis of SEP (synthetic erythropoiesis protein).

    PubMed

    Kent, Stephen B H

    2013-11-11

    Erythropoietin, commonly known as EPO, is a glycoprotein hormone that stimulates the production of red blood cells. Recombinant EPO has been described as "arguably the most successful drug spawned by the revolution in recombinant DNA technology". Recently, the EPO glycoprotein molecule has re-emerged as a major target of synthetic organic chemistry. In this article I will give an account of an important body of earlier work on the chemical synthesis of a designed EPO analogue that had full biological activity and improved pharmacokinetic properties. The design and synthesis of this "synthetic erythropoiesis protein" was ahead of its time, but has gained new relevance in recent months. Here I will document the story of one of the major accomplishments of synthetic chemistry in a more complete way than is possible in the primary literature, and put the work in its contemporaneous context.

  12. Total synthesis of (R,R,R)-α-tocopherol through asymmetric Cu-catalyzed 1,4-addition.

    PubMed

    Termath, Andreas Ole; Sebode, Hanna; Schlundt, Waldemar; Stemmler, René T; Netscher, Thomas; Bonrath, Werner; Schmalz, Hans-Günther

    2014-09-15

    By introducing a disposable activating substituent at C-3, the asymmetric 1,4-addition to a notoriously unreactive 2-substituted chromenone was achieved with high levels of (2R)-stereoselectivity in the presence of a chiral Cu(I)-phosphoramidite complex as a catalyst. This paved the way for an efficient and conceptually novel synthesis of (R,R,R)-α-tocopherol from readily available starting materials.

  13. Total synthesis of buckminsterfullerene (C60) and endohedral metal complexes. Final report, 1 March 1994-28 February 1997

    SciTech Connect

    Rubin, Y.F.

    1997-08-11

    A summary of our work aimed at the synthesis of a variety of endohedral metal complexes of fullerenes is presented. The completion of the synthesis of suitable highly unsaturated macrocyclic precursors containing 60 carbon atoms is described. These compounds were required to study their rearrangement to a fullerene framework in a process analogous to the gas-phase rearrangement of mono- and polycyclic polyynes (acetylenic rings) in the formation of C60 and higher fullerenes. Three types of synthetic acetylenic precursors were targeted, namely triply-linked bis-benzene-cyclophanes with octayne linking units, sextuply-linked bis-benzene-cyclophanes with tetrayne linkers, and deca-alkynylated metallocenes which include a metal in their structure early in the synthesis. The rearrangement to C60 of the first examples of these compounds has been studied in the gas phase by LDMS and in solution by various chemical reactions. Another aspect of our work was initiated by the successful opening of the largest orifice on the framework of C60 known to date in the form of a cobalt(III) complex of ethenobisfulleroid C64H4. This strategy is being applied in a double fashion on adjacent sites of the surface of C60 to form an even larger opening, aimed at eventual metal insertion inside the cage.

  14. Flexible synthesis of polyfunctionalised 3-fluoropyrroles.

    PubMed

    Cogswell, Thomas J; Donald, Craig S; Marquez, Rodolfo

    2016-01-07

    An efficient and selective approach for the synthesis of polyfunctionalised 3-fluoropyrroles has been developed starting from commercial aldehydes. The methodology is concise, efficient and allows for the modular and systematic assembly of polysubstituted 3-fluoropyrroles. This synthesis provides an alternative and highly convergent strategy for the generation of these chemically and biologically important units.

  15. Diverted Total Synthesis of Promysalin Analogs Demonstrates That an Iron-Binding Motif Is Responsible for Its Narrow-Spectrum Antibacterial Activity.

    PubMed

    Steele, Andrew D; Keohane, Colleen E; Knouse, Kyle W; Rossiter, Sean E; Williams, Sierra J; Wuest, William M

    2016-05-11

    Promysalin is a species-specific Pseudomonad metabolite with unique bioactivity. To better understand the mode of action of this natural product, we synthesized 16 analogs utilizing diverted total synthesis (DTS). Our analog studies revealed that the bioactivity of promysalin is sensitive to changes within its hydrogen bond network whereby alteration has drastic biological consequences. The DTS library not only yielded three analogs that retained potency but also provided insights that resulted in the identification of a previously unknown ability of promysalin to bind iron. These findings coupled with previous observations hint at a complex multifaceted role of the natural product within the rhizosphere.

  16. The Power of Biocatalysis: A One‐Pot Total Synthesis of Rhamnolipids from Butane as the Sole Carbon and Energy Source

    PubMed Central

    Gehring, Christian; Wessel, Mirja; Schaffer, Steffen

    2016-01-01

    Abstract Microbially derived surfactants, so‐called biosurfactants, have drawn much attention in recent years and are expected to replace current petrochemical surfactants, owing to their environmental and toxicological benefits. One strategy to support that goal is to reduce production costs by replacing relatively expensive sugars with cheaper raw materials, such as short‐chain alkanes. Herein, we report the successful one‐pot total synthesis of rhamnolipids, a class of biosurfactants with 12 stereocenters, from butane as sole carbon and energy source through the design of a tailored whole‐cell biocatalyst. PMID:28032017

  17. Isolation, structure elucidation, total synthesis, and evaluation of new natural and synthetic ceramides on human SK-MEL-1 melanoma cells.

    PubMed

    León, Francisco; Brouard, Ignacio; Rivera, Augusto; Torres, Fernando; Rubio, Sara; Quintana, José; Estévez, Francisco; Bermejo, Jaime

    2006-09-21

    Two new long-chain ceramides, trametenamides A (1) and B (2), were isolated from the methanolic extract of the fruiting body of the fungus Trametes menziesii. The structures were elucidated by spectroscopic analyses and chemical transformations, and the absolute stereochemistry of trametenamide B (2) was determined by stereoselective total synthesis of four possible diastereomers. The acetyl derivative of the natural ceramide (1a) and synthetic ceramides (24-27) showed cytotoxicity on the human melanoma cell line SK-MEL-1, which was caused by induction of apoptosis as determined by DNA fragmentation, poly(ADP-ribose) polymerase cleavage, and procaspase-9 and -8 processing.

  18. Improved Total Synthesis and Biological Evaluation of Potent Apratoxin S4 Based Anticancer Agents with Differential Stability and Further Enhanced Activity

    PubMed Central

    2015-01-01

    Apratoxins are cytotoxic natural products originally isolated from marine cyanobacteria that act by preventing cotranslational translocation early in the secretory pathway to downregulate receptor levels and inhibit growth factor secretion, leading to potent antiproliferative activity. Through rational design and total synthesis of an apratoxin A/E hybrid, apratoxin S4 (1a), we have previously improved the antitumor activity and tolerability in vivo. Compound 1a and newly designed analogues apratoxins S7–S9 (1b–d), with various degrees of methylation at C34 (1b,c) or epimeric configuration at C30 (1d), were efficiently synthesized utilizing improved procedures. Optimizations have been applied to the synthesis of key intermediate aldehyde 7 and further include the application of Leighton’s silanes and modifications of Kelly’s methods to induce thiazoline ring formation in other crucial steps of the apratoxin synthesis. Apratoxin S9 (1d) exhibited increased activity with subnanomolar potency. Apratoxin S8 (1c) lacks the propensity to be deactivated by dehydration and showed efficacy in a human HCT116 xenograft mouse model. PMID:24660812

  19. Facile solid-phase synthesis of sulfated tyrosine-containing peptides: total synthesis of human big gastrin-II and cholecystokinin (CCK)-39.

    PubMed

    Kitagawa, K; Aida, C; Fujiwara, H; Yagami, T; Futaki, S; Kogire, M; Ida, J; Inoue, K

    2001-01-12

    Chemical synthesis of tyrosine O-sulfated peptides is still a laborious task for peptide chemists because of the intrinsic acid-lability of the sulfate moiety. An efficient cleavage/deprotection procedure without loss of the sulfate is the critical difficulty remaining to be solved for fluoren-9-ylmethoxycarbonyl (Fmoc)-based solid-phase synthesis of sulfated peptides. To overcome the difficulty, TFA-mediated solvolysis rates of a tyrosine O-sulfate [Tyr(SO3H)] residue and two protecting groups, tBu for the hydroxyl group of Ser and 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl (Pbf) for the guanidino group of Arg, were examined in detail. The desulfation obeyed first-order kinetics with a large entropy (59.6 J.K-1.mol-1) and enthalpy (110.5 kJ.mol-1) of activation. These values substantiated that the desulfation rate of the rigidly solvated Tyr(SO3H) residue was strongly temperature-dependent. By contrast, the SN1-type deprotections were less temperature-dependent and proceeded smoothly in TFA of a high ionizing power. Based on the large rate difference between the desulfation and the SN1-type deprotections in cold TFA, an efficient deprotection protocol for the sulfated peptides was developed. Our synthetic strategy for Tyr(SO3H)-containing peptides with this effective deprotection protocol is as follows: (i) a sulfated peptide chain is directly constructed on 2-chlorotrityl resin with Fmoc-based solid-phase chemistry using Fmoc-Tyr(SO3Na)-OH as a building block; (ii) the protected peptide-resin is treated with 90% aqueous TFA at 0 degree C for an appropriate period of time for the cleavage and deprotection. Human cholecystokinin (CCK)-12, mini gastrin-II (14 residues), and little gastrin-II (17 residues) were synthesized with this method in 26-38% yields without any difficulties. This method was further applied to the stepwise synthesis of human big gastrin-II (34 residues), CCK-33 and -39. Despite the prolonged acid treatment (15-18 h at 0 degree C), the

  20. Terminating Catalytic Asymmetric Heck Cyclizations by Stereoselective Intramolecular Capture of η3-Allylpalladium Intermediates: Total Synthesis of (−)-Spirotryprostatin B and Three Stereoisomers

    PubMed Central

    Overman, Larry E.; Rosen, Mark D.

    2010-01-01

    A catalytic intramolecular Heck reaction, followed by capture of the resulting η3-allylpalladium intermediate by a tethered diketopiperazine, is the central step in a concise synthetic route to (−)-spirotryprostatin B and three stereoisomers. This study demonstrates that an acyclic, chiral η3-allylpalladium fragment generated in a catalytic asymmetric Heck cyclization can be trapped by even a weakly nucleophilic diketopiperazine more rapidly than it undergoes diastereomeric equilibration. PMID:20725641

  1. Highly Stereoselective Total Synthesis of Fully Hydroxy-Protected Mycolactones A and B and Their Stereoisomerization upon Deprotection

    PubMed Central

    Wang, Guangwei; Yin, Ning

    2013-01-01

    Unprecedentedly efficient and highly (≥98%) stereoselective syntheses of mycolactones A and B sidechains relied heavily on Pd-catalyzed alkenylation (Negishi version) and were completed in 11 longest linear steps from ethyl (S)-3-hydroxybutyrate in 12% and 11% overall yields, respectively, roughly corresponding to an average of 82% yield per step. The synthesis of mycolactone core was realized by using Pd-catalyzed alkenyl–allyl coupling and an epoxide-opening reaction with a trialkylalkenylaluminate as key steps. Fully hydroxy-protected mycolactones A and B of ≥98% isomerical purity were synthesized successfully for the first time. However, unexpected 4/3-5/4 inseparable mixtures of mycolactones A and B were obtained upon deprotection. PMID:21412860

  2. Total Synthesis, Stereochemical Assignment, and Field-Testing of the Sex Pheromone of the Strepsipteran Xenos peckii.

    PubMed

    Zhai, Huimin; Hrabar, Michael; Gries, Regine; Gries, Gerhard; Britton, Robert

    2016-04-25

    The sex pheromone of the endoparasitoid insect Xenos peckii (Strepsiptera: Xenidae) was recently identified as (7E,11E)-3,5,9,11-tetramethyl-7,11-tridecadienal. Herein we report the asymmetric synthesis of three candidate stereostructures for this pheromone using a synthetic strategy that relies on an sp(3) -sp(2) Suzuki-Miyaura coupling to construct the correctly configured C7-alkene function. Comparison of (1) H NMR spectra derived from the candidate stereostructures to that of the natural sex pheromone indicated a relative configuration of (3R*,5S*,9R*). Chiral gas chromatographic (GC) analyses of these compounds supported an assignment of (3R,5S,9R) for the natural product. Furthermore, in a 16-replicate field experiment, traps baited with the synthetic (3R,5S,9R)-enantiomer alone or in combination with the (3S,5R,9S)-enantiomer captured 23 and 18 X. peckii males, respectively (mean±SE: 1.4±0.33 and 1.1±0.39), whereas traps baited with the synthetic (3S,5R,9S)-enantiomer or a solvent control yielded no captures of males. These strong field trapping data, in combination with spectroscopic and chiral GC data, unambiguously demonstrate that (3R,5S,9R,7E,11E)-3,5,9,11-tetramethyl-7,11-tridecadienal is the X. peckii sex pheromone.

  3. Total synthesis of 8-(6″-umbelliferyl)-apigenin and its analogs as anti-diabetic reagents.

    PubMed

    Pan, Guojun; Zhao, Lianbo; Xiao, Na; Yang, Ke; Ma, Yantao; Zhao, Xia; Fan, Zhenchuan; Zhang, Yongmin; Yao, Qingwei; Lu, Kui; Yu, Peng

    2016-10-21

    The naturally occurring flavone 8-(6″-umbelliferyl)apigenin, a hybrid structure of apigenin and coumarin, as well as seven of its analogues were synthesized for the first time by using iodination and Suzuki coupling reactions as key steps. The synthesis of 8-(6″-umbelliferyl)-apigenin was achieved in seven linear steps from the commercially available 1-(2,4,6-trihydroxyphenyl)ethan-1-one and 7-hydroxyl coumarine with 31% overall yield. Effects of these compounds on glucose disposal were investigated in adipocytes. All of the flavonoid and coumarin hydrids were found to have better bioactivities than their corresponding flavonoid cores. The most potent compound 15 (10 μΜ) could promote glucose consumption by 57% which exhibited similar effect as the positive control metformin at 1 mM. Moreover, fluorescence microscopy showed that four 8-(6″-umbelliferyl)apigenin analogues 2, 15, 30 and 31 could promote the 2-NBDG uptake into 3T3-L1 cells, which consist with those observed in the regulation of glucose.

  4. Total synthesis of trifluorobutyryl-modified, globally protected sialyl Lewis x by a convergent [2+2] approach

    PubMed Central

    Akçay, Gizem; Ramphal, John Y.; d’Alarcao, Marc; Kumar, Krishna

    2014-01-01

    Structural and quantitative changes in the expression of sialic acid residues on the surface of eukaryotic cells profoundly influence a broad range of biological processes including inflammation, antigen recognition, microbial attachment, and tumor metastasis. Uptake and incorporation of sialic acid analogues in mammalian cells enable structure-function studies and perturbation of specific recognition events. Our group has recently shown that a trifluorobutyryl-modified sialic acid metabolite diminishes the adhesion of mammalian cells to E and P-selectin, presumably by leading to the expression of fluorinated sLex epitopes on cell surfaces, and interfering with the sLex-selectin interactions that are well known in mediating tumor cell migration.1 For studies directed towards understanding the molecular basis of this reduced adhesion, chemical synthesis of trifluorobutyrylated sialyl Lewis x (C4F3--sLex) was crucial. We have developed a highly efficient [2+2] approach for the assembly of C4F3-sLex on a preparative scale that contains versatile protective groups allowing the glycan to be surface immobilized or solubilized as needed for biophysical studies to investigate selectin interactions. This strategy can, in principle, be used for preparation of other N-modified sLex analogues. PMID:25530638

  5. A Unified Strategy for Enantioselective Total Synthesis of Cladiellin and Briarellin Diterpenes: Total Synthesis of Briarellins E and F, and the Putative Structure of Alcyonin and Revision of Its Structure Assignment

    PubMed Central

    Corminboeuf, Olivier; Overman, Larry E.; Pennington, Lewis D.

    2009-01-01

    Enantioselective total syntheses of briarellin E (12) and briarellin F (13), as well as the structure originally proposed for the cladiellin diterpene alcyonin (10), have been realized. Comparison of the spectral data for synthetic 10, natural alcyonin, cladiellisin (33), and cladiellaperoxide (34), as well as chemical transformations of 10 and natural alcyonin, suggest that the structure of this coral metabolite is allylic peroxide 11. The unified approach detailed herein can be used to access both C4-deoxygenated and C4-oxygenated cladiellins and briarellins. The central step in these syntheses is acid-promoted condensation of (Z)-α,β-unsaturated aldehydes 17 with cyclohexadienyl diols 18, to form intermediates 16 incorporating the hexahydroisobenzofuran core and five stereocenters of these marine diterpenes (Scheme 1). PMID:19534538

  6. First total synthesis and antileishmanial activity of (Z)-16-methyl-11-heptadecenoic acid, a new marine fatty acid from the sponge Dragmaxia undata

    PubMed Central

    Carballeira, Néstor M.; Montano, Nashbly; Cintrón, Gabriel A.; Márquez, Carmary; Rubio, Celia Fernández; Prada, Christopher Fernández; Balaña-Fouce, Rafael

    2010-01-01

    The first total synthesis for the (Z)-16-methyl-11-heptadecenoic acid, a novel fatty acid from the sponge Dragmaxia undata, was accomplished in seven steps and in a 44% overall yield. The use of (trimethylsilyl)acetylene was key in the synthesis. Based on a previous developed strategy in our laboratory the best synthetic route towards the title compound was first acetylide coupling of (trimethylsilyl)acetylene to the long-chain protected 10-bromo-1-decanol followed by a second acetylide coupling to the short-chain 1-bromo-4-methylpentane, which resulted in higher yields. Complete spectral data is also presented for the first time for this recently discovered fatty acid and the cis double bond stereochemistry of the natural acid was established. The title compound displayed antiprotozoal activity against Leishmania donovani (IC50 = 165.5 ± 23.4 µM) and inhibited the leishmania DNA topoisomerase IB enzyme (LdTopIB) with an IC50 = 62.3 ± 0.7 µM. PMID:21129369

  7. Design, synthesis, and investigation of protein kinase C inhibitors: total syntheses of (+)-calphostin D, (+)-phleichrome, cercosporin, and new photoactive perylenequinones.

    PubMed

    Morgan, Barbara J; Dey, Sangeeta; Johnson, Steven W; Kozlowski, Marisa C

    2009-07-08

    The total syntheses of the PKC inhibitors (+)-calphostin D, (+)-phleichrome, cercosporin, and 10 novel perylenequinones are detailed. The highly convergent and flexible strategy developed employed an enantioselective oxidative biaryl coupling and a double cuprate epoxide opening, allowing the selective syntheses of all the possible stereoisomers in pure form. In addition, this strategy permitted rapid access to a broad range of analogues, including those not accessible from the natural products. These compounds provided a powerful means for evaluation of the perylenequinone structural features necessary to PKC activity. Simpler analogues were discovered with superior PKC inhibitory properties and superior photopotentiation in cancer cell lines relative to the more complex natural products.

  8. Stereospecific approach to the synthesis of ring-A oxygenated sarpagine indole alkaloids. Total synthesis of the dimeric indole alkaloid P-(+)-dispegatrine and six other monomeric indole alkaloids.

    PubMed

    Edwankar, Chitra R; Edwankar, Rahul V; Namjoshi, Ojas A; Liao, Xuebin; Cook, James M

    2013-07-05

    The first regio- and stereocontrolled total synthesis of the bisphenolic, bisquaternary alkaloid (+)-dispegatrine (1) has been accomplished in an overall yield of 8.3% (12 reaction vessels) from 5-methoxy-d-tryptophan ethyl ester (17). A crucial late-stage thallium(III) mediated intermolecular oxidative dehydrodimerization was employed in the formation of the C9-C9' biaryl axis in 1. The complete stereocontrol observed in this key biaryl coupling step is due to the asymmetric induction by the natural sarpagine configuration of the monomer lochnerine (6) and was confirmed by both the Suzuki and the oxidative dehydrodimerization model studies on the tetrahydro β-carboline (35). The axial chirality of the lochnerine dimer (40) and in turn dispegatrine (1) was established by X-ray crystallography and was determined to be P(S). Additionally, the first total synthesis of the monomeric indole alkaloids (+)-spegatrine (2), (+)-10-methoxyvellosimine (5), (+)-lochnerine (6), lochvinerine (7), (+)-sarpagine (8), and (+)-lochneram (11) were also achieved via the common pentacyclic intermediate 16.

  9. Total replacement of corn by mesquite pod meal considering nutritional value, performance, feeding behavior, nitrogen balance, and microbial protein synthesis of Holstein-Zebu crossbred dairy steers.

    PubMed

    de Oliveira Moraes, Gláucia Sabrine; de Souza, Evaristo Jorge Oliveira; Véras, Antonia Sherlânea Chaves; de Paula Almeida, Marina; da Cunha, Márcio Vieira; Torres, Thaysa Rodrigues; da Silva, Camila Sousa; Pereira, Gerfesson Felipe Cavalcanti

    2016-10-01

    The objective of the present study to assess the effects of mesquite pod addition replacing corn (0, 250, 500, 750, and 1000 g/kg in the dry matter basis) on nutrient intake, animal performance, feeding behavior, nutrient digestibility, nitrogen balance, and microbial protein synthesis. Twenty-five Holstein-Zebu crossbred dairy steers at 219 ± 22 kg initial body weight and 18 months of age were used. The experiment lasted 84 days, divided into three periods of 28 days. A completely randomized design was used, and data were submitted to analysis using PROC GLM for analysis of variance and PROC REG for regression analysis using the software Statistical Analysis Systems version 9.1. Experimental diets were composed of Tifton 85 hay, soybean meal, ground corn, mesquite pod meal, and mineral salt. Samples of food offered were collected during the last 3 days of each period, and the leftovers were collected daily, with samples bulked per week. At the end of each 28-day period, the remaining animals were weighed to determine total weight gain and average daily gain. The assessment of behavioral patterns was performed through instantaneous scans in 5-min intervals for three consecutive 12-h days. A single urine sample from each animal was collected on the last day of each collection period at about 4 h after the first feeding. The replacement of corn by mesquite pod meal did not significantly influence treatments regarding nutrients intake, animal performance, and feeding behavior. Retained and consumed nitrogen ratio did not statistically differ between replacement levels. Likewise, there were no statistical differences regarding microbial protein synthesis and efficiency between replacement levels. Mesquite pod meal can be used in Holstein-Zebu crossbred dairy steers' diet with total corn replacement.

  10. Total Synthesis of the Galbulimima Alkaloids Himandravine and GB17 Using Biomimetic Diels–Alder Reactions of Double Diene Precursors

    PubMed Central

    Larson, Reed T.; Pemberton, Ryan P.; Franke, Jenna M.; Tantillo, Dean J.; Thomson, Regan J.

    2015-01-01

    The enantioselective total syntheses of himandravine and GB17 were completed through a common biomimetic strategy involving Diels–Alder reactions of unusual double diene containing linear precursors. The double diene precursors, containing or lacking a C12 substituent as required to produce GB17 or himandravine, respectively, were found to undergo Diels–Alder reactions to afford mixtures of regioisomeric cycloadducts that map onto the alternative carbocyclic frameworks of both himandravine and GB17. Computational investigations revealed that these Diels–Alder reactions proceed via transition state structures of similar energy that have a high degree of bispericyclic character and that the low levels of regioselectivity observed in the reactions are a consequence of competing orbital interaction and distortion energies. The combined experimental and computational results provide valuable insights into the biosynthesis of the Galbulimima alkaloids. PMID:26305231

  11. Total synthesis of gracilioether F. Development and application of Lewis acid promoted ketene–alkene [2+2] cycloadditions and late-stage C—H oxidation

    SciTech Connect

    Rasik, Christopher M.; Brown, M. Kevin

    2014-12-22

    The first synthesis of gracilioether F, a polyketide natural product with an unusual tricyclic core and five contiguous stereocenters, is described. Key steps of the synthesis include a Lewis acid promoted ketene–alkene [2+2] cycloaddition and a late-stage carboxylic acid directed C(sp³)—H oxidation. The synthesis requires only eight steps from norbornadiene.

  12. Total Synthesis of (−)-Vindoline and (+)-4-epi-Vindoline Based on a 1,3,4-Oxadiazole Tandem Intramolecular [4 + 2]/[3 + 2] Cycloaddition Cascade Initiated by an Allene Dienophile

    PubMed Central

    Sears, Justin E.; Barker, Timothy J.; Boger, Dale L.

    2015-01-01

    It is reported that an allene dienophile can initiate a tandem intramolecular [4 + 2]/[3 + 2] cycloaddition cascade of 1,3,4-oxadiazoles, that the intermediate cross-conjugated 1,3-dipole (a carbonyl ylide) can participate in an ensuing [3 + 2] dipolar cycloaddition in a remarkably effective manner, and that the reaction can be implemented to provide the core pentacyclic ring system of vindoline. Its discovery improves a previous total synthesis of (−)-vindoline and was used in a total synthesis of (+)-4-epi-vindoline and (+)-4-epi-vinblastine that additionally enlists an alternative series of late-stage transformations. PMID:26457536

  13. Total Synthesis of Vinblastine, Related Natural Products, and Key Analogues and Development of Inspired Methodology Suitable for the Systematic Study of Their Structure–Function Properties

    PubMed Central

    2015-01-01

    Conspectus Biologically active natural products composed of fascinatingly complex structures are often regarded as not amenable to traditional systematic structure–function studies enlisted in medicinal chemistry for the optimization of their properties beyond what might be accomplished by semisynthetic modification. Herein, we summarize our recent studies on the Vinca alkaloids vinblastine and vincristine, often considered as prototypical members of such natural products, that not only inspired the development of powerful new synthetic methodology designed to expedite their total synthesis but have subsequently led to the discovery of several distinct classes of new, more potent, and previously inaccessible analogues. With use of the newly developed methodology and in addition to ongoing efforts to systematically define the importance of each embedded structural feature of vinblastine, two classes of analogues already have been discovered that enhance the potency of the natural products >10-fold. In one instance, remarkable progress has also been made on the refractory problem of reducing Pgp transport responsible for clinical resistance with a series of derivatives made accessible only using the newly developed synthetic methodology. Unlike the removal of vinblastine structural features or substituents, which typically has a detrimental impact, the additions of new structural features have been found that can enhance target tubulin binding affinity and functional activity while simultaneously disrupting Pgp binding, transport, and functional resistance. Already analogues are in hand that are deserving of full preclinical development, and it is a tribute to the advances in organic synthesis that they are readily accessible even on a natural product of a complexity once thought refractory to such an approach. PMID:25586069

  14. Hydrogen Sulfide, Oxidative Stress and Periodontal Diseases: A Concise Review

    PubMed Central

    Greabu, Maria; Totan, Alexandra; Miricescu, Daniela; Radulescu, Radu; Virlan, Justina; Calenic, Bogdan

    2016-01-01

    In the past years, biomedical research has recognized hydrogen sulfide (H2S) not only as an environmental pollutant but also, along with nitric oxide and carbon monoxide, as an important biological gastransmitter with paramount roles in health and disease. Current research focuses on several aspects of H2S biology such as the biochemical pathways that generate the compound and its functions in human pathology or drug synthesis that block or stimulate its biosynthesis. The present work addresses the knowledge we have to date on H2S production and its biological roles in the general human environment with a special focus on the oral cavity and its involvement in the initiation and development of periodontal diseases. PMID:26805896

  15. Bioelectrochemical systems using microalgae - A concise research update.

    PubMed

    Saratale, Rijuta Ganesh; Kuppam, Chandrasekar; Mudhoo, Ackmez; Saratale, Ganesh Dattatraya; Periyasamy, Sivagurunathan; Zhen, Guangyin; Koók, László; Bakonyi, Péter; Nemestóthy, Nándor; Kumar, Gopalakrishnan

    2017-02-27

    Excess consumption of energy by humans is compounded by environmental pollution, the greenhouse effect and climate change impacts. Current developments in the use of algae for bioenergy production offer several advantages. Algal biomass is hence considered a new bio-material which holds the promise to fulfil the rising demand for energy. Microalgae are used in effluents treatment, bioenergy production, high value added products synthesis and CO2 capture. This review summarizes the potential applications of algae in bioelectrochemically mediated oxidation reactions in fully biotic microbial fuel cells for power generation and removal of unwanted nutrients. In addition, this review highlights the recent developments directed towards developing different types of microalgae MFCs. The different process factors affecting the performance of microalgae MFC system and some technological bottlenecks are also addressed.

  16. Total synthesis of the aspercyclides.

    PubMed

    Pospísil, Jirí; Müller, Christoph; Fürstner, Alois

    2009-06-08

    Two different approaches to the eleven-membered biaryl ether lactones of the aspercyclide family are disclosed. The core regions of these highly strained targets, which are able to interfere with the binding of immunoglobulin E to its high affinity receptor, can either be forged by ring-closing olefin metathesis (RCM) or by a highly diastereoselective chromium-mediated Nozaki-Hiyama-Kishi (NHK) reaction. Whereas the RCM approach turned out to be responsive to minor changes in the substitution pattern of the substrate, the NHK route is more generally applicable. The preparation of the required cyclization precursor 43 hinged on a palladium-catalyzed ortho-iodination reaction of 2-methylbenzoic acid, an efficient copper-catalyzed Ullmann coupling, and a Takai-Utimoto olefination as the key steps. Moreover, the esterification of the 2,6-disubstituted benzoic acid 34 with the sterically hindered secondary alcohol 37 was far from trivial. However, this and related transformations were accomplished by recourse to the corresponding acid fluorides, which provided excellent yields in cases in which the more commonly used acid chlorides or mixed anhydrides failed to afford any of the desired products.

  17. [Total synthesis of nordihydroguaiaretic acid].

    PubMed

    Wu, A X; Zhao, Y R; Chen, N; Pan, X F

    1997-04-01

    beta-Keto ester(5) was obtained from vanilin through etherification, oxidation and condensation with acetoacetic ester, (5) on oxidative coupling reaction by NaOEt/I2 produced dimer (6) in high yield. Acid catalyzed cyclodehydration of (6) gave the furan derivative(7), and by a series of selective hydrogenation nordihydroguaiaretic acid, furoguaiacin dimethyl ether and dihydroguaiaretic acid dimethyl ether were synthesized.

  18. Effect of supplementing orchardgrass herbage with a total mixed ration or flaxseed on fermentation profile and bacterial protein synthesis in continuous culture.

    PubMed

    Soder, K J; Brito, A F; Rubano, M D

    2013-05-01

    A 4-unit dual-flow continuous culture fermentor system was used to evaluate the effects of supplementing fresh herbage with a total mixed ration (TMR) or flaxseed on nutrient digestibility, fermentation profile, and bacterial N synthesis. Diets were randomly assigned to fermentors in a 4 × 4 Latin square design. Each fermentor was fed a total of 70 g of dry matter/d of 1 of 4 diets: (1) 100% freeze-dried orchardgrass herbage (Dactylis glomerata L.; HERB), (2) 100% freeze-dried TMR (100TMR), (3) 50% orchardgrass herbage supplemented with 50% TMR (50TMR), or (4) 90% orchardgrass herbage supplemented with 10% ground flaxseed (Linum usitatissimum L.; FLAX). Preplanned, single degree of freedom orthogonal contrasts were constructed to assess the effects of feeding system (HERB vs. 100TMR), herbage supplementation (HERB vs. 50TMR + FLAX), and herbage supplemental source (50TMR vs. FLAX). Compared with the HERB diet, the 100TMR diet significantly reduced apparent digestibility of neutral detergent fiber. Herbage supplementation with 50TMR or FLAX significantly reduced or tended to reduce apparent digestibilities of dry matter, organic matter, and neutral detergent fiber, suggesting that replacing high-quality, highly digestible fresh herbage with forage TMR likely caused depressions in nutrient digestibilities. Concentration of total volatile fatty acids, molar proportions of acetate, propionate, and isovalerate, as well as the acetate:propionate ratios were all significantly higher in fermentors fed 100TMR compared with HERB, likely in response to enhanced supply of fermentable energy. In general, feeding system, herbage supplementation, and type of supplementation did not affect N metabolism in the present study. The few significant changes in N metabolism (e.g., flows of total N and non-NH3-N) were primarily linked to increased fermentor N supply with feeding herbage-based diets (HERB and FLAX). Although TMR-based diets decreased nutrient digestibility slightly, TMR

  19. Total Synthesis and Evaluation of Vinblastine Analogues Containing Systematic Deep-Seated Modifications in the Vindoline Subunit Ring System: Core Redesign

    PubMed Central

    Schleicher, Kristin D.; Sasaki, Yoshikazu; Tam, Annie; Kato, Daisuke; Duncan, Katharine K.; Boger, Dale L.

    2013-01-01

    The total synthesis of a systematic series of vinblastine analogues that contain deep-seated structural modifications to the core ring system of the lower vindoline subunit is described. Complementary to the vindoline 6,5 DE ring system, compounds with 5,5, 6,6 and the reversed 5,6 membered DE ring systems were prepared. Both the natural cis and unnatural trans 6,6-membered ring systems proved accessible, with the latter representing a surprisingly effective class for analogue design. Following Fe(III)-promoted coupling with catharanthine and in situ oxidation to provide the corresponding vinblastine analogues, their evaluation provided unanticipated insights into how the structure of the vindoline subunit contributes to activity. Two potent analogues (81 and 44) possessing two different unprecedented modifications to the vindoline subunit core architecture were discovered that matched the potency of the comparison natural products and both lack the 6,7-double bond whose removal in vinblastine leads to a 100-fold drop in activity. PMID:23252481

  20. Truly Absorbed Microbial Protein Synthesis, Rumen Bypass Protein, Endogenous Protein, and Total Metabolizable Protein from Starchy and Protein-Rich Raw Materials: Model Comparison and Predictions.

    PubMed

    Parand, Ehsan; Vakili, Alireza; Mesgaran, Mohsen Danesh; van Duinkerken, Gert; Yu, Peiqiang

    2015-07-29

    This study was carried out to measure truly absorbed microbial protein synthesis, rumen bypass protein, and endogenous protein loss, as well as total metabolizable protein, from starchy and protein-rich raw feed materials with model comparisons. Predictions by the DVE2010 system as a more mechanistic model were compared with those of two other models, DVE1994 and NRC-2001, that are frequently used in common international feeding practice. DVE1994 predictions for intestinally digestible rumen undegradable protein (ARUP) for starchy concentrates were higher (27 vs 18 g/kg DM, p < 0.05, SEM = 1.2) than predictions by the NRC-2001, whereas there was no difference in predictions for ARUP from protein concentrates among the three models. DVE2010 and NRC-2001 had highest estimations of intestinally digestible microbial protein for starchy (92 g/kg DM in DVE2010 vs 46 g/kg DM in NRC-2001 and 67 g/kg DM in DVE1994, p < 0.05 SEM = 4) and protein concentrates (69 g/kg DM in NRC-2001 vs 31 g/kg DM in DVE1994 and 49 g/kg DM in DVE2010, p < 0.05 SEM = 4), respectively. Potential protein supplies predicted by tested models from starchy and protein concentrates are widely different, and comparable direct measurements are needed to evaluate the actual ability of different models to predict the potential protein supply to dairy cows from different feedstuffs.

  1. Total synthesis of the lipid mediator PD1n-3 DPA: configurational assignments and anti-inflammatory and pro-resolving actions.

    PubMed

    Aursnes, Marius; Tungen, Jørn E; Vik, Anders; Colas, Romain; Cheng, Chien-Yee C; Dalli, Jesmond; Serhan, Charles N; Hansen, Trond V

    2014-04-25

    The polyunsaturated lipid mediator PD1n-3 DPA (5) was recently isolated from self-resolving inflammatory exudates of 5 and human macrophages. Herein, the first total synthesis of PD1n-3 DPA (5) is reported in 10 steps and 9% overall yield. These efforts, together with NMR data of its methyl ester 6, confirmed the structure of 5 to be (7Z,10R,11E,13E,15Z,17S,19Z)-10,17-dihydroxydocosa-7,11,13,15,19-pentaenoic acid. The proposed biosynthetic pathway, with the involvement of an epoxide intermediate, was supported by results from trapping experiments. In addition, LC-MS/MS data of the free acid 5, obtained from hydrolysis of the synthetic methyl ester 6, matched data for the endogenously produced biological material. The natural product PD1n-3 DPA (5) demonstrated potent anti-inflammatory properties together with pro-resolving actions stimulating human macrophage phagocytosis and efferocytosis. These results contribute new knowledge on the n-3 DPA structure-function of the growing numbers of specialized pro-resolving lipid mediators and pathways.

  2. An Improved High Yield Total Synthesis and Cytotoxicity Study of the Marine Alkaloid Neoamphimedine: An ATP-Competitive Inhibitor of Topoisomerase IIα and Potent Anticancer Agent

    PubMed Central

    Li, Linfeng; Abraham, Adedoyin D.; Zhou, Qiong; Ali, Hadi; O’Brien, Jeremy V.; Hamill, Brayden D.; Arcaroli, John J.; Messersmith, Wells A.; LaBarbera, Daniel V.

    2014-01-01

    Recently, we characterized neoamphimedine (neo) as an ATP-competitive inhibitor of the ATPase domain of human Topoisomerase IIα. Thus far, neo is the only pyridoacridine with this mechanism of action. One limiting factor in the development of neo as a therapeutic agent has been access to sufficient amounts of material for biological testing. Although there are two reported syntheses of neo, both require 12 steps with low overall yields (≤6%). In this article, we report an improved total synthesis of neo achieved in 10 steps with a 25% overall yield. In addition, we report an expanded cytotoxicity study using a panel of human cancer cell lines, including: breast, colorectal, lung, and leukemia. Neo displays potent cytotoxicity (nM IC50 values) in all, with significant potency against colorectal cancer (lowest IC50 = 6 nM). We show that neo is cytotoxic not cytostatic, and that neo exerts cytotoxicity by inducing G2-M cell cycle arrest and apoptosis. PMID:25244109

  3. First total synthesis of (5Z,9Z)-(±)-2-methoxy-5,9-octadecadienoic acid, a marine derived methoxylated analog of taxoleic acid

    PubMed Central

    Carballeira, Néstor M.; O’Neill, Rosann; Silva, Diana

    2008-01-01

    The first total synthesis for the sponge derived (5Z,9Z)-(±)-2-methoxy-5,9-octadecadienoic acid, an analog of taxoleic acid, was accomplished in seven steps and in a 10% overall yield. It was again corroborated that the best strategy to prepare these cis,cis dimethylene interrupted double bonds is the double-alkyne bromide coupling reaction of 1,5-hexadiyne, which provides the advantage of achieving a 100% cis stereochemical purity for both double bonds after hydrogenation under Lindlar conditions. The α-methoxy functionality was best prepared via the Mukaiyama reaction of (4Z,8Z)-heptadecadienal with trimethylsilyl cyanide and triethylamine followed by acid hydrolysis. Selective methylation of the hydroxyl group of (5Z,9Z)-(±)-2-hydroxy-5,9-octadecadienoic acid was achieved with sodium hydride/methyl iodide when tetrahydrofuran was used as solvent. Complete spectral data is presented, for the first time, for this unusual marine α-methoxylated fatty acid. PMID:18761005

  4. An enantioselective strategy for the total synthesis of (S)-tylophorine via catalytic asymmetric allylation and a one-pot DMAP-promoted isocyanate formation/Lewis acid catalyzed cyclization sequence.

    PubMed

    Su, Bo; Zhang, Hui; Deng, Meng; Wang, Qingmin

    2014-06-14

    A new asymmetric total synthesis of a phenanthroindolizidine alkaloid (S)-tylophorine is reported, which features a catalytic asymmetric allylation of aldehydes and an unexpected one-pot DMAP promoted isocyanate formation and Lewis acid catalyzed intramolecular cyclization reaction. In addition, White's direct C-H oxidation catalyst system converting monosubstituted olefins to linear allylic acetates was also employed for late-stage transformation.

  5. Total Radiosynthesis: Thinking outside “the box”

    PubMed Central

    Liang, Steven H.; Vasdev, Neil

    2016-01-01

    . As with the vast majority of drugs, most radiotracers also fail, therefore expeditious evaluation of tracers in preclinical models prior to optimization or derivatization of the lead molecules/drugs is necessary. Furthermore the exact position of the 11C and 18F radionuclide in tracers is often critical for metabolic considerations, and flexible methodologies to introduce the radiolabel are needed. Using the principles of total synthesis our laboratory and others have shown that multi-step radiochemical reactions are indeed suitable for preclinical and even clinical use. As the goal of total synthesis is to be concise, we have also simplified the syntheses of radiopharmaceuticals. We are presently developing new strategies via [11C]CO2 fixation which has enabled library radiosynthesis as well as labeling non-activated arenes using [18F]fluoride via iodonium ylides. Both of which have proven to be suitable for human PET imaging. We concurrently utilize state-of-the-art automation technologies including microfluidic flow chemistry and rapid purification strategies for radiopharmaceutical production. In this account we highlight how total radiosynthesis has impacted our radiochemistry program, with prominent examples from others, focusing on its impact towards preclinical and clinical research studies. PMID:27512156

  6. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts.

    PubMed

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-05-07

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  7. Generation of anti-trypanosomal agents through concise synthesis and structural diversification of sesquiterpene analogues.

    PubMed

    Oguri, Hiroki; Hiruma, Takahisa; Yamagishi, Yutaka; Oikawa, Hideaki; Ishiyama, Aki; Otoguro, Kazuhiko; Yamada, Haruki; Ōmura, Satoshi

    2011-05-11

    To access high-quality small-molecule libraries to screen lead candidates for neglected diseases exemplified by human African trypanosomiasis, we sought to develop a synthetic process that would produce collections of cyclic scaffolds relevant to an assortment of natural products exhibiting desirable biological activities. By extracting the common structural features among several sesquiterpenes, including artemisinin, anthecularin, and transtaganolides, we designed six types of scaffolds with systematic structural variations consisting of three types of stereochemical relationships on the sp(3) ring-junctions and two distinct arrays of tricyclic frameworks. A modular and stereodivergent assembly of dienynes exploiting a versatile manifold produced a series of cyclization precursors. Divergent cyclizations of the dienynes employing tandem ring-closing metathesis reactions overrode variant reactivities of the cyclization precursors, leading to the six canonical sets of the tricyclic scaffolds incorporating a diene group. Screenings of trypanosomal activities of the canonical sets, as well as regio- and stereoisomers of the tricyclic dienes, allowed generation of several anti-trypanosomal agents defining the three-dimensional shape of the pharmacophore. The candidate tricyclic dienes were selected by primary screenings and further subjected to installation of a peroxide bridge, which generated artemisinin analogues that exhibited potent in vitro anti-trypanosomal activities comparable or even superior to those of artemisinin and the approved drugs, suramin and eflornithine.

  8. Concise synthesis of a probe molecule enabling analysis and imaging of vizantin.

    PubMed

    Yamamoto, Hirofumi; Oda, Masataka; Nakano, Mayo; Yabiku, Kenta; Shibutani, Masahiro; Nakanishi, Toshiyuki; Suenaga, Midori; Inoue, Masahisa; Imagawa, Hiroshi; Nagahama, Masahiro; Matsunaga, Yoichi; Himeno, Seiichiro; Setsu, Kojun; Sakurai, Jun; Nishizawa, Mugio

    2013-01-01

    Trehalose 6,6'-dicorynomycolate (TDCM) was first characterized in 1963 as a cell surface glycolipid of Corynebacterium spp. by Ioneda and co-workers. TDCM shows potent anti-tumor activity due to its immunoadjuvant properties. Furthermore, the toxicity of TDCM in mice is much weaker than the related trehalose diester of mycolic acid; trehalose 6,6'-dimycolate (TDM, formerly known as cord factor). We have investigated the chemical modification of this class of compound to generate novel agents that display increased immunoadjuvant activity with minimal associated toxicity. During the course of this work we recently developed 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose (designated as vizantin). Our results show that vizantin exhibited a potent prophylactic effect on experimental lung metastasis of B16-F0 melanoma cells without a loss of body weight and death in mice. Furthermore, vizantin effectively stimulated human macrophages in an in vitro model, making it a promising candidate for a safe adjuvant in clinical applications. In order to elucidate the pharmacokinetics of vizantin, a probe molecule with similar activity was developed on the basis of a structure-activity relationship (SAR) study with vizantin. The distribution of the probe molecule after intravenous administration into a mouse was assessed by macro confocal microscopy, where it was found to accumulate in the lungs and liver.

  9. A concise synthesis and evaluation of new malonamide derivatives as potential α-glucosidase inhibitors.

    PubMed

    Islam, Mohammad Shahidul; Barakat, Assem; Al-Majid, Abdullah M; Ghabbour, Hazem A; Rahman, A F M Motiur; Javaid, Kulsoom; Imad, Rehan; Yousuf, Sammer; Choudhary, M Iqbal

    2016-04-15

    A series of new malonamide derivatives were synthesized by Michael addition reaction of N(1),N(3)-di(pyridin-2-yl)malonamide into α,β-unsaturated ketones mediated by DBU in DCM at ambient temperature. The inhibitory potential of these compounds in vitro, against α-glucosidase enzyme was evaluated. Result showed that most of malonamide derivatives were identified as a potent inhibitors of α-glucosidase enzyme. Among all the compounds, 4K (IC50=11.7 ± 0.5 μM) was found out as the most active one compared to standard drug acarbose (IC50=840 ± 1.73 μM). Further cytotoxicity of 4a-4m were also evaluated against a number of cancer and normal cell lines and interesting results were obtained.

  10. The Affective Reactivity Index: A Concise Irritability Scale for Clinical and Research Settings

    ERIC Educational Resources Information Center

    Stringaris, Argyris; Goodman, Robert; Ferdinando, Sumudu; Razdan, Varun; Muhrer, Eli; Leibenluft, Ellen; Brotman, Melissa A.

    2012-01-01

    Background: Irritable mood has recently become a matter of intense scientific interest. Here, we present data from two samples, one from the United States and the other from the United Kingdom, demonstrating the clinical and research utility of the parent- and self-report forms of the Affective Reactivity Index (ARI), a concise dimensional measure…

  11. A Concise Access to C2-Symmetric Chiral 4-Pyrrolidinopyridine Catalysts with Dual Functional Side Chains.

    PubMed

    Mishiro, Kenji; Takeuchi, Hironori; Furuta, Takumi; Kawabata, Takeo

    2016-07-01

    A practical method was developed for the preparation of a diastereomeric library of C2-symmetric chiral 4-pyrrolidinopyridine catalysts with dual amide side chains. Use of a racemic precursor is the key to the concise production of catalysts with diverse stereochemisty.

  12. 22 CFR 216.9 - Bilateral and multilateral studies and concise reviews of environmental issues.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEVELOPMENT ENVIRONMENTAL PROCEDURES § 216.9 Bilateral and multilateral studies and concise reviews of... not a substitute for an Environmental Impact Statement) required under these procedures: (a) Bilateral... United States and one or more foreign countries or by an international body or organization in which...

  13. Dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modelling language (VRML).

    PubMed

    Yu, Zheng-yang; Zheng, Shu-sen; Chen, Lei-ting; He, Xiao-qian; Wang, Jian-jun

    2005-07-01

    This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.

  14. Synthesis-atomic structure-properties relationships in metallic nanoparticles by total scattering experiments and 3D computer simulations: case of Pt-Ru nanoalloy catalysts

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Ren, Yang; Shan, Shiyao; Zhao, Yinguang; Cronk, Hannah; Luo, Jin; Zhong, Chuan-Jian; Petkov, Valeri

    2015-04-01

    An approach to determining the 3D atomic structure of metallic nanoparticles (NPs) in fine detail and using the unique knowledge obtained for rationalizing their synthesis and properties targeted for optimization is described and exemplified on Pt-Ru alloy NPs of importance to the development of devices for clean energy conversion such as fuel cells. In particular, PtxRu100-x alloy NPs, where x = 31, 49 and 75, are synthesized by wet chemistry and activated catalytically by a post-synthesis treatment involving heating under controlled N2-H2 atmosphere. So-activated NPs are evaluated as catalysts for gas-phase CO oxidation and ethanol electro-oxidation reactions taking place in fuel cells. Both as-synthesized and activated NPs are characterized structurally by total scattering experiments involving high-energy synchrotron X-ray diffraction coupled to atomic pair distribution functions (PDFs) analysis. 3D structure models both for as-synthesized and activated NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modelling Sutton-Chen method. Models are refined against the experimental PDF data by reverse Monte Carlo simulations and analysed in terms of prime structural characteristics such as metal-to-metal bond lengths, bond angles and first coordination numbers for Pt and Ru atoms. Analysis indicates that, though of a similar type, the atomic structure of as-synthesized and respective activated NPs differ in several details of importance to NP catalytic properties. Structural characteristics of activated NPs and data for their catalytic activity are compared side by side and strong evidence found that electronic effects, indicated by significant changes in Pt-Pt and Ru-Ru metal bond lengths at NP surface, and practically unrecognized so far atomic ensemble effects, indicated by distinct stacking of atomic layers near NP surface and prevalence of particular configurations of Pt and Ru atoms in these layers, contribute to the

  15. A Unified Strategy toward the Synthesis of Acerogenin-Type Macrocycles: Total Syntheses of Acerogenins A, B, C, and L and Aceroside IV.

    PubMed

    Gonzalez, Gabriela Islas; Zhu, Jieping

    1999-02-05

    A general strategy for the synthesis of acerogenin-type diarylheptanoids containing an endocyclic biaryl ether bond has been developed, and convergent total syntheses of acerogenin A, B, C, and L and aceroside IV have been accomplished. Cycloetherification of the linear diarylheptanoid 1-(4-fluoro-3-nitrophenyl)-7-(3-hydroxy-4-methoxyphenyl)heptan-3-one (18) under mild conditions (CsF, DMF, 0.01 M, rt, 5 h) gave the macrocycle 4-methoxy-17-nitro-2-oxatricyclo[13.2.2(3,7)]eicosa-1(18),3,5,7(20),15(19),16-hexaen-12-one (19) in 95% yield. Removal of the nitro group followed by O-demethylation gave acerogenin C (2), whose reduction afforded acerogenin A (1). Glucosidation of 2 with 2,3,4,6-alpha-D-tetrabenzoylglucopyranosyl bromide followed by saponification gave aceroside IV (3) in excellent overall yield. Acerogenins B (4) and L (5) were synthesized in a similar fashion featuring a key intramolecular S(N)Ar reaction of linear compound 29. The entropy driving force resulting from the preorganization of cyclization precursors in favor of the bent conformation was proposed to contribute significantly to the efficiency of this cyclization. Both computational studies and spectroscopic data (NOE) supported this hypothesis. Experimentally, it was observed that even at high concentration (1 M of 18 in DMF) the analytically pure macrocycle 19 could still be obtained in 45-50% isolated yield. Furthermore, when the cyclization of 18 was carried out in the presence of an external nucleophile (4-methoxyphenol, 33) or an electrophile (4-fluoro-3-nitrotoluene, 34), only the 15-membered cyclophane 19 was isolable. This provides experimental evidence that compound 18 is indeed preorganized in such a way that intramolecular reaction was highly competitive with the alternative intermolecular process.

  16. Carotenoids and related polyenes, part 12. First total synthesis and absolute configuration of 3'-deoxycapsanthin and 3,4-didehydroxy-3'-deoxycapsanthin.

    PubMed

    Yamano, Yumiko; Chary, Mahankhali Venu; Wada, Akimori

    2010-10-01

    The synthesis of 3'-deoxycapsanthin (1) and 3,4-didehydroxy-3'-deoxycapsanthin (2), carotenoids of paprika, has been achieved by employing Lewis acid-promoted regio- and stereoselective rearrangement of the C(15)-epoxy dienal 5a. The absolute stereochemistry of the newly formed C-5 chiral center of rearrangement product 6a was determined to be (R) from its alternative synthesis derived from (+)-(R)-camphonanic acid (11).

  17. Salivary thyroxine as an estimate of free thyroxine: concise communication

    SciTech Connect

    Elson, M.K.; Morley, J.E.; Shafer, R.B.

    1983-08-01

    To test the hypothesis that the levels of salivary thyroxine (T/sub 4/) reflect those of circulating free T/sub 4/, we developed a radioimmunoassay (RIA) sensitive to low levels of T/sub 4/. Concurrent saliva and serum samples were obtained from 32 euthyroid volunteers, ages 19 to 64. Salivary and serum T/sub 4/ and cortisol levels were measured by RIA. Salivary albumin was measured by nephelometry. Salivary T/sub 4/ levels were higher than predicted. No correlation was found between salivary T/sub 4/ and serum levels of free T/sub 4/ and total T/sub 4/ but there was a significant correlation between salivary T/sub 4/ and albumin (r = 0.82). Salivary cortisol levels agreed with reported results and showed no correlation with salivary albumin. We conclude that salivary levels of drugs and hormones may be strongly affected by protein binding, and caution must be exercised in using salivary levels as an estimate of circulating free levels.

  18. Surgical Management of Stuttering Ischemic Priapism: A Case Report and Concise Clinical Review

    PubMed Central

    Raslan, M.; Hiew, K.; Hoyle, A.; Ross, D.G.; Betts, C.D.; Maddineni, S.B.

    2016-01-01

    Stuttering priapism is an extremely rare and poorly understood entity. We present a rare case of a 47-year-old Afro-Caribbean gentleman who required proximal shunt procedure to treat his ischemic stuttering priapism after he had failed medical management. We provided a concise review of the literature on the surgical management of ischemic priapism. This case highlighted the importance of prompt surgical intervention in prolonged stuttering priapism to avoid serious psychological and functional complications. PMID:26977408

  19. A Formal Approach to Xylosmin and Flacourtosides E and F: Chemoenzymatic Total Synthesis of the Hydroxylated Cyclohexenone Carboxylic Acid Moiety of Xylosmin.

    PubMed

    Ghavre, Mukund; Froese, Jordan; Murphy, Brennan; Simionescu, Razvan; Hudlicky, Tomas

    2017-02-10

    The hydroxylated cyclohexenone carboxylic acid moiety of xylosmin was synthesized in eight steps from benzoic acid. The key steps in the synthesis involved the enzymatic dihydroxylation of benzoic acid by the whole cell fermentation with Ralstonia eutrophus B9, and Henbest epoxidation. Early attempts led to the synthesis of a C6 epimer of the methyl ester of the hydroxylated cyclohexenone carboxylic acid moiety. The absolute stereochemistry of an advanced intermediate was confirmed by X-ray crystallography. Complete characterization of the previously reported but not fully characterized hydroxylated cyclohexenone carboxylic acid is provided.

  20. Formal total synthesis of (±)-strictamine - the [2,3]-Stevens rearrangement for construction of octahydro-2H-2,8-methanoquinolizines.

    PubMed

    Eckermann, Ruben; Breunig, Michael; Gaich, Tanja

    2016-09-15

    For decades, akuammiline alkaloids have attracted synthetic chemists due to their intriguing molecular architecture. Among the different structural elements embedded in their carboskeleton, the methanoquinolizidine system constitutes the signature structural element of this alkaloid family. Herein, we describe a novel synthetic access to this system which relies on a [2,3]-Stevens rearrangement and results in the formal synthesis of strictamine.

  1. Invasion, Intervention, "Intervasion": A Concise History of the U.S. Army in Operation Uphold Democracy

    DTIC Science & Technology

    1998-01-01

    to 00-00-1998 4. TITLE AND SUBTITLE Invasion, Intervention, ’Intervasion’: A Concise History of the U.S. Army in Operation Uphold Democracy 5a...Library of Congress Cataloging-in-Publication Data Kretchik, Walter E. (Walter Edward), 1954- Intervasion, intervention, “intervasion”: a concise history ...variety of military history topics. The views expressed in this CGSC Press publication are those of the authors and not necessarily those of the

  2. From Malicious Eyes: A Method for Concise Representation of Ad-Hoc Networks and Efficient Attack Survivability Analysis

    DTIC Science & Technology

    2012-07-01

    a modification of OSPF that is optimized for mobile ad-hoc networks . OSPFv3MDR uses IPv6 addressing. Topology. In attempts to achieve a suitable...From Malicious Eyes: A Method for Concise Representation of Ad-Hoc Networks and Efficient Attack Survivability Analysis by Jaime C. Acosta...White Sands Missile Range, NM 88002-5501 ARL-TR-6035 July 2012 From Malicious Eyes: A Method for Concise Representation of Ad-Hoc Networks

  3. [The dynamic concision for three-dimensional reconstruction of human organ built with virtual reality modeling language (VRML)].

    PubMed

    Yu, Zhengyang; Zheng, Shusen; Chen, Huaiqing; Wang, Jianjun; Xiong, Qingwen; Jing, Wanjun; Zeng, Yu

    2006-10-01

    This research studies the process of dynamic concision and 3D reconstruction from medical body data using VRML and JavaScript language, focuses on how to realize the dynamic concision of 3D medical model built with VRML. The 2D medical digital images firstly are modified and manipulated by 2D image software. Then, based on these images, 3D mould is built with VRML and JavaScript language. After programming in JavaScript to control 3D model, the function of dynamic concision realized by Script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be formed in high quality near to those got in traditional methods. By this way, with the function of dynamic concision, VRML browser can offer better windows of man-computer interaction in real time environment than before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and has a promising prospect in the fields of medical image.

  4. The truth about false unicorn (Chamaelirium luteum): total synthesis of 23R,24S-chiograsterol B defines the structure and stereochemistry of the major saponins from this medicinal herb.

    PubMed

    Matovic, Nicholas J; Stuthe, Julia M U; Challinor, Victoria L; Bernhardt, Paul V; Lehmann, Reginald P; Kitching, William; De Voss, James J

    2011-06-27

    Chamaelirium luteum is used in traditional medicine systems and commercial botanical dietary supplements for the treatment of female reproductive health problems. Despite the wide use of this herb, only very limited phytochemical characterisation is available. Our investigation of C. luteum roots led to the isolation of two new steroidal saponins 1 and 2 that contain an unusual aglycone 3. The absolute configurations of these molecules were unable to be determined spectroscopically and thus the total synthesis of 3 was undertaken and achieved in 16 steps and 1.6 % overall yield from pregnenolone. The key step in the synthesis was the stereoselective installation of the side chain at C-17 and C-20, which employed anion-accelerated oxy-Cope methodology. The relative configuration of aglycone 3 was determined by X-ray crystallography of an advanced synthetic intermediate. The absolute configuration was based upon that of the pregnenolone-derived steroidal skeleton and determined to be 23R,24S.

  5. Total Synthesis of the Potent HIF-1 Inhibitory Antitumor Natural Product, (8R)-Mycothiazole, via Baldwin-Lee CsF/CuI sp(3)-sp(2)-Stille Cross-Coupling. Confirmation of the Crews Reassignment.

    PubMed

    Wang, Liping; Hale, Karl J

    2015-09-04

    A convenient asymmetric total synthesis of the potent HIF-1 inhibitory antitumor natural product, (-)- or (+)-(8R)-mycothiazole (1), is described. Not only does our synthesis confirm the 2006 structural reassignment made by Crews ( Crews , P. , et al. J. Nat. Prod. 2006 , 69 , 145 ), it revises the [α]D data previously reported for this molecule in MeOH from -13.7° to +42.3°. The newly developed route to (8R)-1 sets the C(8)-OH stereocenter via Sharpless AE/2,3-epoxy alcohol reductive ring opening and utilizes two Baldwin-Lee CsF/cat. CuI Stille cross-coupling reactions with vinylstannanes 8 and 3 to efficiently elaborate the C(1)-C(4) and C(14)-C(18) sectors.

  6. Approach toward the total synthesis of griseoviridin: formation of thioethynyl and thiovinyl ether-containing nine-membered lactones through a thioalkynylation-macrolactonization-hydrostannylation sequence.

    PubMed

    Kuligowski, Carine; Bezzenine-Lafollée, Sophie; Chaume, Grégory; Mahuteau, Jacqueline; Barrière, Jean-Claude; Bacqué, Eric; Pancrazi, Ange; Ardisson, Janick

    2002-06-28

    Synthesis of the lactone core 17 of 8-epi-griseoviridin is reported. Thioethynyl derivative 11 was easily prepared via an anionic coupling reaction between acetylenic compound 9 and sulfone 10. After desilylation of 11, saponification of the resulting hydroxy ester 12 followed by a Mitsunobu macrolactonization furnished the unusual triple-bond-containing nine-membered lactone 13 in 50% yield for the last two steps (39% after recrystallization). Stannylation under Magriotis conditions led to the pure regio- and stereocontrolled vinyltin 14 (80% yield). After a Sn/I exchange, palladium-catalyzed carbonylation delivered either the ester lactone 16 in 67% yield or the propargyl amide 17 in 65% yield. Synthesis of propargyl amide 17 of the lactone core of 8-epi-griseoviridin was achieved in 11.9% overall yield from commercial L-cystin dimethyl ester (nine steps).

  7. Total synthesis of (-)-(α)-kainic acid via a diastereoselective intramolecular [3 + 2] cycloaddition reaction of an aryl cyclopropyl ketone with an alkyne.

    PubMed

    Luo, Zhi; Zhou, Bing; Li, Yuanchao

    2012-05-18

    An enantioselective synthesis of (-)-(α)-kainic acid in 15 steps with an overall yield of 24% is reported. The pyrrolidine kainoid precursor with the required C2/C3 trans stereochemistry was prepared with complete diastereoselectivity via an unprecedented SmI2-catalyzed intramolecular [3 + 2] cycloaddition reaction of an aryl cyclopropyl ketone and an alkyne. Double bond isomerization was then employed to set the remaining stereochemistry at the C4 position en route to (-)-(α)-kainic acid.

  8. Total synthesis of a reported fluorometabolite from Streptomyces sp. TC1 indicates an incorrect assignment. The isolated compound did not contain fluorine.

    PubMed

    Ayoup, Mohammed Salah; Cordes, David B; Slawin, Alexandra M Z; O'Hagan, David

    2014-06-27

    3,5-Di-tert-butyl-4-fluorophenylpropionic acid (1) was recently reported as a natural product from Streptomyces sp. TC1. This was a notable disclosure because fluorinated natural products are exceedingly rare, and in this case it suggested that the bacterium had the capacity to mediate an enzymatic aryl fluorination reaction. However, a synthesis of the putative metabolite 1 demonstrates that the spectroscopic data are inconsistent with the proposed structure. There is no evidence that the isolated compound contained a fluorine atom.

  9. Transannular Diels-Alder/1,3-Dipolar Cycloaddition Cascade of 1,3,4-Oxadiazoles: Total Synthesis of a Unique Set of Vinblastine Analogues

    PubMed Central

    Campbell, Erica L.; Skepper, Colin K.; Sankar, Kuppusamy; Duncan, Katharine K.; Boger, Dale L.

    2013-01-01

    A powerful tandem [4+2]/[3+2] cycloaddition cascade of 1,3,4-oxadiazoles initiated by a transannular [4+2] cycloaddition is detailed. An impressive four rings, four carbon-carbon bonds, and six stereocenters are set on each site of the newly formed central six-membered ring in a cascade thermal reaction that proceeds at temperatures as low as 80 °C. The resulting cycloadducts provide the basis for the synthesis of unique analogues of vinblastine containing metabolically benign deep-seated cyclic modifications at the C3/C4 centers of the vindoline-derived subunit of the natural product. PMID:24087969

  10. Biology and chemistry of neuroprostanes. First total synthesis of 17-A4-NeuroP: validation of a convergent strategy to a number of cyclopentenone neuroprostanes.

    PubMed

    Porta, Alessio; Pasi, Maurizio; Brunoldi, Enrico; Zanoni, Giuseppe; Vidari, Giovanni

    2013-09-01

    In a process associated with ageing and neurodegeneration, radical peroxidation of docosahexaenoic acid (DHA) in neurons affords a multitude of prostaglandin-like neuroprostanes in a non-regioselective and non-stereoselective manner. In this paper, the synthesis of racemic 17-A4-NeuroP and 14-A4-NeuroP validated a general approach to several regioisomeric cyclopentenone A4- and J4-NeuroPs needed for biological tests. In preliminary experiments 17-A4-NeuroP, in analogy with 14-A4-NeuroP, readily adducted GSH free thiol, suggesting a similar mechanism of action for biological activity.

  11. 9(10 leads to 19)abeo steriods. Total synthesis of abeo-estradiol, abeo-estradiol 3-methyl ether, and 17 alpha-ethynyl abeo-estradiol 3-methyl ether.

    PubMed

    Abushanab, E; Lee, D Y; Meresak, W A; Duax, W L

    1976-04-30

    Total synthesis of abeo-estradiol, abeo-estradiol 3-methyl ether, and 17alpha-ethynyl abeo-estradiol 3-methyl ether is described. Stereochemical assignments in 9(10 through 19) abeo-estradiol and its 3-methyl ether were made by X-ray analysis of the 17-keytone. Single crystals were grown by evaporation of a petroleum ether-ethanol solution and the intensities of 2619 diffraction spectra were measured, of which 1036 had intensity greater than twice the background. The structure was refined by full-matrix least-squares techniques and all hydrogen atoms were located in the Fourier difference syntheses.

  12. Total synthesis of the anti-inflammatory and pro-resolving lipid mediator MaR1n-3 DPA utilizing an sp(3) -sp(3) Negishi cross-coupling reaction.

    PubMed

    Tungen, Jørn Eivind; Aursnes, Marius; Dalli, Jesmond; Arnardottir, Hildur; Serhan, Charles Nicholas; Hansen, Trond Vidar

    2014-11-03

    The first total synthesis of the lipid mediator MaR1n-3 DPA (5) has been achieved in 12 % overall yield over 11 steps. The stereoselective preparation of 5 was based on a Pd-catalyzed sp(3) -sp(3) Negishi cross-coupling reaction and a stereocontrolled Evans-Nagao acetate aldol reaction. LC-MS/MS results with synthetic material matched the biologically produced 5. This novel lipid mediator displayed potent pro-resolving properties stimulating macrophage efferocytosis of apoptotic neutrophils.

  13. Total Synthesis of the GRP78-Downregulatory Macrolide (+)-Prunustatin A, the Immunosuppressant (+)-SW-163A, and a JBIR-04 Diastereoisomer That Confirms JBIR-04 Has Nonidentical Stereochemistry to (+)-Prunustatin A.

    PubMed

    Manaviazar, Soraya; Nockemann, Peter; Hale, Karl J

    2016-06-17

    A unified total synthesis of the GRP78-downregulator (+)-prunustatin A and the immunosuppressant (+)-SW-163A based upon [1 + 1 + 1 + 1]-fragment condensation and macrolactonization between O(4) and C(5) is herein described. Sharpless asymmetric dihydroxylation was used to set the C(2) stereocenter present in both targets. In like fashion, coupling of the (+)-prunustatin A macrolide amine with benzoic acid furnished a JBIR-04 diastereoisomer whose NMR spectra did not match those of JBIR-04, thus confirming that it has different stereochemistry than (+)-prunustatin A.

  14. Organometallic enantiomeric scaffolding. Sequential semipinacol/1,5-"Michael-like" reactions as a strategic approach to bridgehead-quaternary center aza[3.3.1]bicyclics: application to the total synthesis of (-)-adaline.

    PubMed

    Coombs, Thomas C; Zhang, Yongqiang; Garnier-Amblard, Ethel C; Liebeskind, Lanny S

    2009-01-28

    A nontraditional approach to the enantiocontrolled construction of quaternary center-bearing heteroatom-bridged bicyclo[3.3.1]nonanes (homotropanes) is reported that is based on organometallic enantiomeric scaffolding. This strategy takes advantage of the unique reactivity profiles of TpMo(CO)(2)(5-oxo-eta(3)-pyranyl) and TpMo(CO)(2)(5-oxo-eta(3)-pyridinyl) scaffolds, and features a molybdenum-mediated semipinacol/1,5-"Michael-like" reaction sequence to establish the quaternary center and synthesize the bridged bicyclic structure. An asymmetric total synthesis of (-)-adaline highlights this methodology.

  15. An eight-step gram-scale synthesis of (-)-jiadifenolide

    NASA Astrophysics Data System (ADS)

    Lu, Hai-Hua; Martinez, Michael D.; Shenvi, Ryan A.

    2015-07-01

    Development of a biologically active secondary metabolite into a useful medicine requires continuous access to meaningful quantities of material. Although any chemical synthesis is broadly useful for its versatility, identification of a synthesis route that can be economically scaled represents a greater challenge. Here we report a concise synthesis of the neurotrophic trace metabolite (-)-jiadifenolide and its production on a gram-scale. The brevity of the route and the structural similarity of a key intermediate to many potent Illicium terpenes make chemical synthesis the unquestionable method for accessing and modifying these potential therapeutics.

  16. The Concise Guide to Pharmacology 2013/14: G Protein-Coupled Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. G protein-coupled receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24517644

  17. The Concise Guide to Pharmacology 2013/14: Nuclear Hormone Receptors

    PubMed Central

    Alexander, Stephen PH; Benson, Helen E; Faccenda, Elena; Pawson, Adam J; Sharman, Joanna L; Spedding, Michael; Peters, John A; Harmar, Anthony J

    2013-01-01

    The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Nuclear hormone receptors are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ligand-gated ion channels, ion channels, catalytic receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates. PMID:24528240

  18. On concise 3-D simple point characterizations: a marching cubes paradigm.

    PubMed

    Huang, Adam; Liu, Hon-Man; Lee, Chung-Wei; Yang, Chung-Yi; Tsang, Yuk-Ming

    2009-01-01

    The centerlines of tubular structures are useful for medical image visualization and computer-aided diagnosis applications. They can be effectively extracted by using a thinning algorithm that erodes an object layer by layer until only a skeleton is left. An object point is "simple" and can be safely deleted only if the resultant image is topologically equivalent to the original. Numerous characterizations of 3-D simple points based on digital topology already exist. However, little work has been done in the context of marching cubes (MC). This paper reviews several concise 3-D simple point characterizations in a MC paradigm. By using the Euler characteristic and a few newly observed properties in the context of connectivity-consistent MC, we present concise and more self-explanatory proofs. We also present an efficient method for computing the Euler characteristic locally for MC surfaces. Performance evaluations on different implementations are conducted on synthetic data and multidetector computed tomography examination of virtual colonoscopy and angiography.

  19. A large fragment approach to DNA synthesis: total synthesis of a gene for the protease inhibitor eglin c from the leech Hirudo medicinalis and its expression in E. coli.

    PubMed Central

    Rink, H; Liersch, M; Sieber, P; Meyer, F

    1984-01-01

    A DNA containing the coding sequence for the proteinase inhibitor protein, eglin c, from the leech Hirudo medicinalis has been obtained by enzymatic assembly of chemically synthesized DNA fragments. The synthetic gene consists of a 232 base-pair fragment containing initiation and termination codon signals with restriction enzyme recognition sites conveniently placed for cloning into a plasmid vector. Only six oligonucleotides from 34 to 61 bases in length, sharing pairwise stretches of complementary regions at their 3'-termini, were prepared by phosphotriester solid-phase synthesis. The oligomers were annealed pairwise and converted into double stranded DNA fragments by DNA polymerase I mediated repair synthesis. The fragments were assembled by ligation, and the synthetic gene was expressed in high yield in E. coli under the transcriptional control of the E. coli tryptophan promoter. The expression product was purified to homogeneity and was shown to have similar physicochemical and identical biological properties as the authentic protein isolated from the leech. Images PMID:6382168

  20. One-step catalytic asymmetric synthesis of all-syn deoxypropionate motif from propylene: Total synthesis of (2R,4R,6R,8R)-2,4,6,8-tetramethyldecanoic acid

    PubMed Central

    Ota, Yusuke; Murayama, Toshiki; Nozaki, Kyoko

    2016-01-01

    In nature, many complex structures are assembled from simple molecules by a series of tailored enzyme-catalyzed reactions. One representative example is the deoxypropionate motif, an alternately methylated alkyl chain containing multiple stereogenic centers, which is biosynthesized by a series of enzymatic reactions from simple building blocks. In organic synthesis, however, the majority of the reported routes require the syntheses of complex building blocks. Furthermore, multistep reactions with individual purifications are required at each elongation. Here we show the construction of the deoxypropionate structure from propylene in a single step to achieve a three-step synthesis of (2R,4R,6R,8R)-2,4,6,8-tetramethyldecanoic acid, a major acid component of a preen-gland wax of the graylag goose. To realize this strategy, we focused on the coordinative chain transfer polymerization and optimized the reaction condition to afford a stereo-controlled oligomer, which is contrastive to the other synthetic strategies developed to date that require 3–6 steps per unit, with unavoidable byproduct generation. Furthermore, multiple oligomers with different number of deoxypropionate units were isolated from one batch, showing application to the construction of library. Our strategy opens the door for facile synthetic routes toward other natural products that share the deoxypropionate motif. PMID:26908873

  1. Granulocyte colony-stimulating factor in the treatment of acute radiation syndrome: a concise review.

    PubMed

    Hofer, Michal; Pospíšil, Milan; Komůrková, Denisa; Hoferová, Zuzana

    2014-04-16

    This article concisely summarizes data on the action of one of the principal and best known growth factors, the granulocyte colony-stimulating factor (G-CSF), in a mammalian organism exposed to radiation doses inducing acute radiation syndrome. Highlighted are the topics of its real or anticipated use in radiation accident victims, the timing of its administration, the possibilities of combining G-CSF with other drugs, the ability of other agents to stimulate endogenous G-CSF production, as well as of the capability of this growth factor to ameliorate not only the bone marrow radiation syndrome but also the gastrointestinal radiation syndrome. G-CSF is one of the pivotal drugs in the treatment of radiation accident victims and its employment in this indication can be expected to remain or even grow in the future.

  2. Resonant-scanning dual-color STED microscopy with ultrafast photon counting: a concise guide

    PubMed Central

    Wu, Yong; Wu, Xundong; Toro, Ligia; Stefani, Enrico

    2015-01-01

    STED (stimulated emission depletion) is a popular super-resolution fluorescence microscopy technique. In this paper, we present a concise guide to building a resonant-scanning STED microscope with ultrafast photon-counting acquisition. The STED microscope has two channels, using a pulsed laser and a continuous-wave (CW) laser as the depletion laser source, respectively. The CW STED channel preforms time-gated detection to enhance optical resolution in this channel. We use a resonant mirror to attain high scanning speed and ultrafast photon counting acquisition to scan a large field of view, which help reduce photobleaching. We discuss some practical issues in building a STED microscope, including creating a hollow depletion beam profile, manipulating polarization, and monitoring optical aberration. We also demonstrate a STED image enhancement method using stationary wavelet expansion and image analysis methods to register objects and to quantify colocalization in STED microscopy. PMID:26123183

  3. Feasibility study of an Integrated Program for Aerospace vehicle Design (IPAD). Volume 1B: Concise review

    NASA Technical Reports Server (NTRS)

    Miller, R. E., Jr.; Southall, J. W.; Kawaguchi, A. S.; Redhed, D. D.

    1973-01-01

    Reports on the design process, support of the design process, IPAD System design catalog of IPAD technical program elements, IPAD System development and operation, and IPAD benefits and impact are concisely reviewed. The approach used to define the design is described. Major activities performed during the product development cycle are identified. The computer system requirements necessary to support the design process are given as computational requirements of the host system, technical program elements and system features. The IPAD computer system design is presented as concepts, a functional description and an organizational diagram of its major components. The cost and schedules and a three phase plan for IPAD implementation are presented. The benefits and impact of IPAD technology are discussed.

  4. Total Synthesis of TMC-95A and -B via a New Reaction Leading to Z-Enamides. Some Preliminary Findings as to SAR

    PubMed Central

    Lin, Songnian; Yang, Zhi-Qiang; Kwok, Benjamin H. B.; Koldobskiy, Michael; Crews, Craig M.; Danishefsky, Samuel J.

    2008-01-01

    A full account of the total syntheses of proteasome inhibitors TMC-95A and -B is provided. A key feature of the syntheses involved installation of a cis-propenylamide moiety by a thermal rearrangement of an α-silylallyl amide. The scope and mechanism of the enamide-forming reaction are discussed. Also provided are some preliminary results from SAR studies. It was found that simplified analogues can retain the full potency of proteasome inhibition. PMID:15149232

  5. Part I. Halichondrin B: Studies on the total synthesis. Part II. Levuglandins: Generation from PGH sub 2 and binding with proteins

    SciTech Connect

    Jirousek, M.R.

    1989-01-01

    Halichondrins are a new family of extremely bioactive marine natural products present in minute quantities in a sponge, Halichondria Okadai Kadota. Halichondrin B is the most biologically active member of this family and shows remarkably effective in vivo antitumor activity. A practical synthesis would allow clinical testing of this rare molecule. The C6-C12 fragment corresponds to a heptulose which might cyclize to the required polyheterocycle in analogy with the presumed biosynthesis of halichondrin B. The key heptulose intermediate was prepared from D-ribose. A novel mixed ethyl dimethoxybenzyl acetal of formylmethylenetriphenylphosphorane stereoselectively gave a cis alkene upon reaction with the aldehyde obtained from oxidation of methyl isopropylidene D-riboside. Osmium tetraoxide-catalyzed vicinal hydroxylation of the resulting cis alkene, protection of the diol as an acetonide, and hydrolysis of the acetal under neutral conditions using DDQ delivered two diastereomers of the desired aldehyde in excellent yield. Absolute stereochemical characterization of these diastereomers was achieved by correlation with derivatives of D-allose and L-talose. An effective new method was developed for purification of the prostaglandin endoperoxide PGH{sub 2} based on centrifugal partition chromatography and a novel aprotic two phase ternary solvent system. Recent studies showed that solvent-induced decomposition of PGH{sub 2} produces levuglandins, {gamma}-ketoaldehydes with 10,11-seco prostanoic acid (levuglandin E{sub 2} LGE{sub 2}) or 9,10-seco prostanoic acid (levuglandin D{sub 2},LGD{sub 2}) structures. The abundant supply of pure PGH{sub 2} now available and a simple HPLC assay procedure developed for detection of levuglandins allowed a reexamination of the silica gel-catalyzed decomposition of PGH{sub 2}.

  6. Total Synthesis and Stereochemical Assignment of Delavatine A: Rh-Catalyzed Asymmetric Hydrogenation of Indene-Type Tetrasubstituted Olefins and Kinetic Resolution through Pd-Catalyzed Triflamide-Directed C-H Olefination.

    PubMed

    Zhang, Zhongyin; Wang, Jinxin; Li, Jian; Yang, Fan; Liu, Guodu; Tang, Wenjun; He, Weiwei; Fu, Jian-Jun; Shen, Yun-Heng; Li, Ang; Zhang, Wei-Dong

    2017-03-08

    Delavatine A (1) is a structurally unusual isoquinoline alkaloid isolated from Incarvillea delavayi. The first and gram-scale total synthesis of 1 was accomplished in 13 steps (the longest linear sequence) from commercially available starting materials. We exploited an isoquinoline construction strategy and developed two reactions, namely Rh-catalyzed asymmetric hydrogenation of indene-type tetrasubstituted olefins and kinetic resolution of β-alkyl phenylethylamine derivatives through Pd-catalyzed triflamide-directed C-H olefination. The substrate scope of the first reaction covered unfunctionalized olefins and those containing polar functionalities such as sulfonamides. The kinetic resolution provided a collection of enantioenriched indane and tetralin-based triflamides, including those bearing quaternary chiral centers. The selectivity factor (s) exceeded 100 for a number of substrates. These reactions enabled two different yet related approaches to a key intermediate 28 in excellent enantiopurity. In the synthesis, the triflamide served as not only an effective directing group for C-H bond activation but also a versatile functional group for further elaborations. The relative and absolute configurations of delavatine A were unambiguously assigned by the syntheses of the natural product and its three stereoisomers. Their cytotoxicity against a series of cancer cell lines were evaluated.

  7. Synthesis of 2,6-trans- and 3,3,6-trisubstituted tetrahydropyran-4-ones from Maitland-Japp derived 2H-dihydropyran-4-ones: a total synthesis of diospongin B.

    PubMed

    Clarke, Paul A; Nasir, Nadiah Mad; Sellars, Philip B; Peter, Alejandra M; Lawson, Connor A; Burroughs, James L

    2016-07-12

    6-Substituted-2H-dihydropyran-4-one products of the Maitland-Japp reaction have been converted into tetrahydropyrans containing uncommon substitution patterns. Treatment of 6-substituted-2H-dihydropyran-4-ones with carbon nucleophiles led to the formation of tetrahydropyran rings with the 2,6-trans-stereochemical arrangement. Reaction of the same 6-substituted-2H-dihydropyran-4-ones with l-Selectride led to the formation of 3,6-disubstituted tetrahydropyran rings, while trapping of the intermediate enolate with carbon electrophiles in turn led to the formation 3,3,6-trisubstituted tetrahydropyran rings. The relative stereochemical configuration of the new substituents was controlled by the stereoelectronic preference for pseudo-axial addition of the nucleophile and trapping of the enolate from the opposite face. Application of these methods led to a synthesis of the potent anti-osteoporotic diarylheptanoid natural product diospongin B.

  8. Total Synthesis of [Ψ[C(=NH)NH]Tpg4]Vancomycin and its (4-Chlorobiphenyl)methyl Derivative: Impact of Peripheral Modifications on Vancomycin Analogues Redesigned for Dual d-Ala-d-Ala and d-Ala-d-Lac Binding

    PubMed Central

    2015-01-01

    The total synthesis of two key analogues of vancomycin containing single-atom exchanges in the binding pocket (residue 4 amidine and thioamide) are disclosed as well as their peripherally modified (4-chlorobiphenyl)methyl (CBP) derivatives. Their assessment indicates that combined pocket amidine and CBP peripherally modified analogues exhibit a remarkable spectrum of antimicrobial activity (VSSA, MRSA, VanA and VanB VRE) and impressive potencies (MIC = 0.06–0.005 μg/mL) against both vancomycin-sensitive and -resistant bacteria and likely benefit from two independent and synergistic mechanisms of action. Like vancomycin, such analogues are likely to display especially durable antibiotic activity not prone to rapidly acquired clinical resistance. PMID:25211770

  9. Total synthesis of dihydrolysergic acid and dihydrolysergol: development of a divergent synthetic strategy applicable to rapid assembly of D-ring analogs

    PubMed Central

    Lee, Kiyoun; Poudel, Yam B.; Glinkerman, Christopher M.; Boger, Dale L.

    2015-01-01

    The total syntheses of dihydrolysergic acid and dihydrolysergol are detailed based on a Pd(0)-catalyzed intramolecular Larock indole cyclization for the preparation of the embedded tricyclic indole (ABC ring system) and a subsequent powerful inverse electron demand Diels–Alder reaction of 5-carbomethoxy-1,2,3-triazine with a ketone-derived enamine for the introduction of a functionalized pyridine, serving as the precursor for a remarkably diastereoselective reduction to the N-methylpiperidine D-ring. By design, the use of the same ketone-derived enamine and a set of related complementary heterocyclic azadiene [4 + 2] cycloaddition reactions permitted the late stage divergent preparation of a series of alternative heterocyclic derivatives not readily accessible by more conventional approaches. PMID:26273113

  10. Effect of different light intensities on total phenolics and flavonoids synthesis and anti-oxidant activities in young ginger varieties (Zingiber officinale Roscoe).

    PubMed

    Ghasemzadeh, Ali; Jaafar, Hawa Z E; Rahmat, Asmah; Wahab, Puteri Edaroyati Megat; Halim, Mohd Ridzwan Abd

    2010-10-12

    Nowadays, phytochemicals and antioxidants in plants are raising interest in consumers for their roles in the maintenance of human health. Phenolics and flavonoids are known for their health-promoting properties due to protective effects against cardiovascular disease, cancers and other disease. Ginger (Zingiber officinale) is one of the traditional folk medicinal plants and it is widely used in cooking in Malaysia. In this study, four levels of glasshouse light intensities (310, 460, 630 and 790 μmol m(-2)s(-1)) were used in order to consider the effect of light intensity on the production, accumulation and partitioning of total phenolics (TP), total flavonoids (TF) and antioxidant activities in two varieties of Malaysian young ginger (Zingiber officinale). TF biosynthesis was highest in the Halia Bara variety under 310 μmol m(-2)s(-1) and TP was high in this variety under a light intensity of 790 μmol m(-2)s(-1). The highest amount of these components accumulated in the leaves and after that in the rhizomes. Also, antioxidant activities determined by the 1,1-Diphenyl-2-picryl-hydrazyl (DPPH) assay in both of varieties, increased significantly (p ≤ 0.01) with increasing TF concentration, and high antioxidant activity was observed in the leaves of Halia Bara grown under 310 μmol m(-2)s(-1). The ferric reducing (FRAP) activity of the rhizomes was higher than that of the leaves in 310 μmol m(-2)s(-1) of sun light. This study indicates the ability of different light intensities to enhance the medicinal components and antioxidant activities of the leaves and young rhizomes of Zingiber officinale varieties. Additionally, this study also validated their medicinal potential based on TF and TP contents.

  11. Asymmetric synthesis of Crispine A: constructing tetrahydroisoquinoline scaffolds using pummerer cyclizations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For the first time, a concise, linear and protecting group-free stereoselective synthesis of both enantiomers of crispine A have been achieved in six steps with an overall yield of less than or equal to 20%,starting from commercially available veratraldehyde. Asymmetric Keck allylation and trifluoro...

  12. Practical synthesis of a p38 MAP kinase inhibitor.

    PubMed

    Achmatowicz, Michał; Thiel, Oliver R; Wheeler, Philip; Bernard, Charles; Huang, Jinkun; Larsen, Robert D; Faul, Margaret M

    2009-01-16

    p38 MAP kinase inhibitors have attracted considerable interest as potential agents for the treatment of inflammatory diseases. Herein, we describe a concise and efficient synthesis of inhibitor 1 that is based on a phthalazine scaffold. Highlights of our approach include a practical synthesis of a 1,6-disubstituted phthalazine building block 24 as well as the one-pot formation of boronic acid 27. Significant synthetic work to understand the reactivity principles of the intermediates helped in selection of the final synthetic route. Subsequent optimization of the individual steps of the final sequence led to a practical synthesis of 1.

  13. Synthesis of a highly fluorescent beta-diketone-europium chelate and its utility in time-resolved fluoroimmunoassay of serum total thyroxine.

    PubMed

    Wu, Feng-Bo; Han, Shi-Quan; Zhang, Chao; He, You-Feng

    2002-11-15

    A new highly fluorescent beta-diketone-europium chelate was synthesized and employed as a tracer to develop a time-resolved fluoroimmunoassay (TRFIA) for detection of serum total thyroxine (T4). The tetradentate beta-diketone chelator, 1,10-bis(thiophene-2'-yl)-4,4,5,5,6,6,7,7-octafluorodecane-1,3,8,10-tetraone (BTOT), was structurally composed of two units of thenoyltrifluoroacetone (TTA) derivatives but expressed fluorescence that was greatly enhanced, as compared to the original TTA molecules, in the presence of excess amount of Eu3+. The luminescence properties of the europium chelate of BTOT werestudied in aqueous solution. Chlorosulfonylation of BTOT afforded 1, 10-bis(5'-chlorosulfo-thiophene-2'-yl)-4,4,5,5,6,6,7,7-octafluorodecane-1,3,8,10-tetraone (BCTOT), which could be coupled to proteins (i.e., streptavidin or the BSA-T4 conjugate) and used as a tracer for TRFIA. Although the BCTOT-Eu complex could be detected at a very low level (approximately 1.07 x 10(-12) mol/L) in buffered aqueous solution (50 mmoVLTris-HCl; pH, 8.0), the application of the chelate label in direct serum T4 TRFIA experienced a problem of matrix interference, which was probably caused by some unknown chelating components in the samples as a result of the fact that the fluorescence of the BCTOT-Eu chelate was prone to quenching or enhancement by some chelating reagents. To remove this problem, an indirect serum T4 TRFIA was proposed with the use of BCTOT-Eu-labeled streptavidin (SA) as signal generation reagent. The concentrations of T4 in 27 human serums were determined by indirect T4 TRFIA, and the assay results correlated well with those obtained by commercial Coming-CLIA (r = 0.955) and Wallac-DELFIA (r 0.965).

  14. Regio‐ and Stereoselective Homologation of 1,2‐Bis(Boronic Esters): Stereocontrolled Synthesis of 1,3‐Diols and Sch 725674

    PubMed Central

    Fawcett, Alexander; Nitsch, Dominik; Ali, Muhammad; Bateman, Joseph M.; Myers, Eddie L.

    2016-01-01

    Abstract 1,2‐Bis(boronic esters), derived from the enantioselective diboration of terminal alkenes, can be selectively homologated at the primary boronic ester by using enantioenriched primary/secondary lithiated carbamates or benzoates to give 1,3‐bis(boronic esters), which can be subsequently oxidized to the corresponding secondary‐secondary and secondary‐tertiary 1,3‐diols with full stereocontrol. The transformation was applied to a concise total synthesis of the 14‐membered macrolactone, Sch 725674. The nine‐step synthetic route also features a novel desymmetrizing enantioselective diboration of a divinyl carbinol derivative and high‐yielding late‐stage cross‐metathesis and Yamaguchi macrolactonization reactions. PMID:27781356

  15. Concise review: Adipose-derived stem cells as a novel tool for future regenerative medicine.

    PubMed

    Mizuno, Hiroshi; Tobita, Morikuni; Uysal, A Cagri

    2012-05-01

    The potential use of stem cell-based therapies for the repair and regeneration of various tissues and organs offers a paradigm shift that may provide alternative therapeutic solutions for a number of diseases. The use of either embryonic stem cells (ESCs) or induced pluripotent stem cells in clinical situations is limited due to cell regulations and to technical and ethical considerations involved in the genetic manipulation of human ESCs, even though these cells are, theoretically, highly beneficial. Mesenchymal stem cells seem to be an ideal population of stem cells for practical regenerative medicine, because they are not subjected to the same restrictions. In particular, large number of adipose-derived stem cells (ASCs) can be easily harvested from adipose tissue. Furthermore, recent basic research and preclinical studies have revealed that the use of ASCs in regenerative medicine is not limited to mesodermal tissue but extends to both ectodermal and endodermal tissues and organs, although ASCs originate from mesodermal lineages. Based on this background knowledge, the primary purpose of this concise review is to summarize and describe the underlying biology of ASCs and their proliferation and differentiation capacities, together with current preclinical and clinical data from a variety of medical fields regarding the use of ASCs in regenerative medicine. In addition, future directions for ASCs in terms of cell-based therapies and regenerative medicine are discussed.

  16. DPClass: An Effective but Concise Discriminative Patterns-Based Classification Framework

    PubMed Central

    Shang, Jingbo; Tong, Wenzhu; Peng, Jian; Han, Jiawei

    2017-01-01

    Pattern-based classification was originally proposed to improve the accuracy using selected frequent patterns, where many efforts were paid to prune a huge number of non-discriminative frequent patterns. On the other hand, tree-based models have shown strong abilities on many classification tasks since they can easily build high-order interactions between different features and also handle both numerical and categorical features as well as high dimensional features. By taking the advantage of both modeling methodologies, we propose a natural and effective way to resolve pattern-based classification by adopting discriminative patterns which are the prefix paths from root to nodes in tree-based models (e.g., random forest). Moreover, we further compress the number of discriminative patterns by selecting the most effective pattern combinations that fit into a generalized linear model. As a result, our discriminative pattern-based classification framework (DPClass) could perform as good as previous state-of-the-art algorithms, provide great interpretability by utilizing only very limited number of discriminative patterns, and predict new data extremely fast. More specifically, in our experiments, DPClass could gain even better accuracy by only using top-20 discriminative patterns. The framework so generated is very concise and highly explanatory to human experts. PMID:28163983

  17. Serious Games: A Concise Overview on What They Are and Their Potential Applications to Healthcare.

    PubMed

    Giunti, Guido; Baum, Analía; Giunta, Diego; Plazzotta, Fernando; Benitez, Sonia; Gómez, Adrián; Luna, Daniel; Bernaldo de Quiros, Fernan González

    2015-01-01

    Younger generations are extensive users of digital devices; these technologies have always existed and have always been a part of their lives. Video games are a big part of their digital experience. User-centered design is an approach to designing systems informed by scientific knowledge of how people think, act, and coordinate to accomplish their goals. There is an emerging field of intervention research looking into using these techniques to produce video games that can be applied to healthcare. Games with the purpose of improving an individual's knowledge, skills, or attitudes in the "real" world are called "Serious Games". Before doctors and patients can consider using Serious Games as a useful solution for a health care-related problem, it is important that they first are aware of them, have a basic understanding of what they are, and what, if any, claims on their effectiveness exist. In order to bridge that gap, we have produced this concise overview to introduce physicians to the subject at hand.

  18. Recent advances in cellulose and chitosan based membranes for water purification: A concise review.

    PubMed

    Thakur, Vijay Kumar; Voicu, Stefan Ioan

    2016-08-01

    Recently membrane technology has emerged as a new promising and pervasive technology due to its innate advantages over traditional technologies such as adsorption, distillation and extraction. In this article, some of the recent advances in developing polymeric composite membrane materials for water purification from natural polysaccharide based polymers namely cellulose derivatives and chitosan are concisely reviewed. The impact of human social, demographic and industrial evolution along with expansion through environment has significantly affected the quality of water by pollution with large quantities of pesticides, minerals, drugs or other residues. At the forefront of decontamination and purification techniques, we found the membrane materials from polymers as a potential alternative. In an attempt to reduce the number of technical polymers widely used in the preparation of membranes, many researchers have reported new solutions for desalination or retention of organic yeasts, based on bio renewable polymers like cellulose derivatives and chitosan. These realizations are presented and discussed in terms of the most important parameters of membrane separation especially water flux and retention in this article.

  19. Concise review: tissue-engineered skin and nerve regeneration in burn treatment.

    PubMed

    Blais, Mathieu; Parenteau-Bareil, Rémi; Cadau, Sébastien; Berthod, François

    2013-07-01

    Burns not only destroy the barrier function of the skin but also alter the perceptions of pain, temperature, and touch. Different strategies have been developed over the years to cover deep and extensive burns with the ultimate goal of regenerating the barrier function of the epidermis while recovering an acceptable aesthetic aspect. However, patients often complain about a loss of skin sensation and even cutaneous chronic pain. Cutaneous nerve regeneration can occur from the nerve endings of the wound bed, but it is often compromised by scar formation or anarchic wound healing. Restoration of pain, temperature, and touch perceptions should now be a major challenge to solve in order to improve patients' quality of life. In addition, the cutaneous nerve network has been recently highlighted to play an important role in epidermal homeostasis and may be essential at least in the early phase of wound healing through the induction of neurogenic inflammation. Although the nerve regeneration process was studied largely in the context of nerve transections, very few studies have been aimed at developing strategies to improve it in the context of cutaneous wound healing. In this concise review, we provide a description of the characteristics of and current treatments for extensive burns, including tissue-engineered skin approaches to improve cutaneous nerve regeneration, and describe prospective uses for autologous skin-derived adult stem cells to enhance recovery of the skin's sense of touch.

  20. Modular, Concise, and Efficient Synthesis of Highly Functionalized 5-Fluoropyridazines by a [2 + 1]/[3 + 2]-Cycloaddition Sequence.

    PubMed

    Tran, Gaël; Gomez Pardo, Domingo; Tsuchiya, Tomoki; Hillebrand, Stefan; Vors, Jean-Pierre; Cossy, Janine

    2015-07-17

    An easy access to 5-fluoropyridazines by a [2 + 1]/[3 + 2]-cycloaddition sequence between terminal alkynes, a difluorocarbene, and a diazo compound is reported. This approach does not necessitate the isolation of any intermediates, and a wide range of novel 5-fluoropyridazines was synthesized from readily available starting materials. Additionally, these compounds were used as a platform to access novel and highly diversified pyridazines.

  1. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions.

    PubMed

    Cichowicz, Nathan R; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-11-18

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive β,β'-enones and substituted β,β'-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ(5)-unsaturation are key controlling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones.

  2. Concise Enantioselective Synthesis of Oxygenated Steroids via Sequential Copper(II)-Catalyzed Michael Addition/Intramolecular Aldol Cyclization Reactions

    PubMed Central

    Cichowicz, Nathan R.; Kaplan, Will; Khomutnyk, Yaroslav; Bhattarai, Bijay; Sun, Zhankui; Nagorny, Pavel

    2015-01-01

    A new scalable enantioselective approach to functionalized oxygenated steroids is described. This strategy is based on chiral bis(oxazoline) copper(II) complex-catalyzed enantioselective and diastereoselective Michael reactions of cyclic ketoesters and enones to install vicinal quaternary and tertiary stereocenters. In addition, the utility of copper(II) salts as highly active catalysts for the Michael reactions of traditionally unreactive ββ′-enones and substituted ββ′-ketoesters that results in unprecedented Michael adducts containing vicinal all-carbon quaternary centers is also demonstrated. The Michael adducts subsequently undergo base-promoted diastereoselective aldol cascade reactions resulting in the natural or unnatural steroid skeletons. The experimental and computational studies suggest that the torsional strain effects arising from the presence of the Δ5-unsaturation are key controling elements for the formation of the natural cardenolide scaffold. The described method enables expedient generation of polycyclic molecules including modified steroidal scaffolds as well as challenging-to-synthesize Hajos-Parrish and Wieland-Miescher ketones. PMID:26491886

  3. A concise colorimetric and fluorimetric probe for sarin related threats designed via the "covalent-assembly" approach.

    PubMed

    Lei, Zuhai; Yang, Youjun

    2014-05-07

    A turn-on signal from zero background allows sensitive detection of a weak signal and is highly desired. The "covalent-assembly" probe design principle is powerful in this regard. Herein, we report an embodiment of this principle (NA570) for detection of Sarin related threats, based on a phenylogous Vilsmeier-Haack reaction. NA570 bears a concise molecular construct, exhibits a colorimetric and a fluorimetric signal, and has potential for real applications.

  4. [Proposal of a concise index for the evaluation of the exposure to repetitive movements of the upper extremity (OCRA index)].

    PubMed

    Occhipinti, E; Colombini, D

    1996-01-01

    In the light of data and speculation contained in the literature, and based on procedures illustrated in a previous research project in which the authors describe and evaluate occupational risk factors associated with work-related musculoskeletal disorders of the upper limbs (WMSDs), this article proposes a method for calculating a concise index of exposure to repetitive movements of the upper limbs. The proposal, which still has to be substantiated and validated by further studies and applications, is conceptually based on the procedure recommended by the NIOSH for calculating the Lifting Index in manual load handling activities. The concise exposure index (OCRA index) in this case is based on the relationship between the daily number of actions actually performed by the upper limbs in repetitive tasks, and the corresponding number of recommended actions. The latter are calculated on the basis of a constant (30 actions per minute) which represents the action frequency factor, and is valid-hypothetically-under so-called optimal conditions; the constant is diminished case by case (using appropriate factors) as a function of the presence and characteristics of the other risk factors (force, posture, complementary elements, recovery periods). Although still experimental, the exposure index can be used to obtain an integrated and concise assessment of the various risk factors analysed, and to classify occupational scenarios featuring significant and diversified exposure to such risk factors.

  5. Total synthesis of neopeltolide and analogs

    PubMed Central

    Cui, Yubo; Tu, Wangyang; Floreancig, Paul E.

    2010-01-01

    Neopeltolide, a potent cytotoxin from a Carribean sponge, was synthesized through a brief sequence that highlights the use of ethers as oxocarbenium ion precursors. Other key steps include an acid-mediated etherification and sequence that features a Sonogashira reaction, an intramolecular alkyne hydrosilylation reaction, and a Tamao oxidation. The alkene that is required for the oxidative cyclization can be hydrogenated to provide access to the natural product or an epimer, or can be epoxidized or dihydroxylated to form polar analogs. PMID:20697460

  6. M2Di: Concise and efficient MATLAB 2-D Stokes solvers using the Finite Difference Method

    NASA Astrophysics Data System (ADS)

    Räss, Ludovic; Duretz, Thibault; Podladchikov, Yury Y.; Schmalholz, Stefan M.

    2017-02-01

    Recent development of many multiphysics modeling tools reflects the currently growing interest for studying coupled processes in Earth Sciences. The core of such tools should rely on fast and robust mechanical solvers. Here we provide M2Di, a set of routines for 2-D linear and power law incompressible viscous flow based on Finite Difference discretizations. The 2-D codes are written in a concise vectorized MATLAB fashion and can achieve a time to solution of 22 s for linear viscous flow on 10002 grid points using a standard personal computer. We provide application examples spanning from finely resolved crystal-melt dynamics, deformation of heterogeneous power law viscous fluids to instantaneous models of mantle flow in cylindrical coordinates. The routines are validated against analytical solution for linear viscous flow with highly variable viscosity and compared against analytical and numerical solutions of power law viscous folding and necking. In the power law case, both Picard and Newton iterations schemes are implemented. For linear Stokes flow and Picard linearization, the discretization results in symmetric positive-definite matrix operators on Cartesian grids with either regular or variable grid spacing allowing for an optimized solving procedure. For Newton linearization, the matrix operator is no longer symmetric and an adequate solving procedure is provided. The reported performance of linear and power law Stokes flow is finally analyzed in terms of wall time. All MATLAB codes are provided and can readily be used for educational as well as research purposes. The M2Di routines are available from Bitbucket and the University of Lausanne Scientific Computing Group website, and are also supplementary material to this article.

  7. A straightforward three-component synthesis of alpha-amino esters containing a phenylalanine or a phenylglycine scaffold.

    PubMed

    Haurena, Caroline; Le Gall, Erwan; Sengmany, Stéphane; Martens, Thierry; Troupel, Michel

    2010-04-16

    A range of alpha-amino esters has been synthesized in good to high yields using a straightforward three-component reaction among preformed or in situ generated aromatic or benzylic organozinc reagents, primary or secondary amines, and ethyl glyoxylate. The procedure, which is characterized by its simplicity, allows the concise synthesis of esters bearing a phenylglycine or a phenylalanine scaffold.

  8. Analogues of amphibian alkaloids: total synthesis of (5R,8S,8aS)-(-)-8-methyl-5-pentyloctahydroindolizine (8-epi-indolizidine 209B) and [(1S,4R,9aS)-(-)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol

    PubMed Central

    Michael, Joseph P; Accone, Claudia; de Koning, Charles B; van der Westhuyzen, Christiaan W

    2008-01-01

    Background Prior work from these laboratories has centred on the development of enaminones as versatile intermediates for the synthesis of alkaloids and other nitrogen-containing heterocycles. In this paper we describe the enantioselective synthesis of indolizidine and quinolizidine analogues of bicyclic amphibian alkaloids via pyrrolidinylidene- and piperidinylidene-containing enaminones. Results Our previously reported synthesis of racemic 8-epi-indolizidine 209B has been extended to the laevorotatory enantiomer, (-)-9. Attempts to adapt the synthetic route in order to obtain quinolizidine analogues revealed that a key piperidinylidene-containing enaminone intermediate (+)-28 was less tractable than its pyrrolidinylidene counterpart, thereby necessitating modifications that included timing changes and additional protection-deprotection steps. A successful synthesis of [(1S,4R,9aS)-4-pentyloctahydro-2H-quinolizin-1-yl]methanol (-)-41 from the chiral amine tert-butyl (3R)-3-{benzyl [(1R)-1-phenylethyl]amino}octanoate (+)-14 was achieved in 14 steps and an overall yield of 20.4%. Conclusion The methodology reported in this article was successfully applied to the enantioselective synthesis of the title compounds. It paves the way for the total synthesis of a range of cis-5,8-disubstituted indolizidines and cis-1,4-disubstituted quinolizidines, as well as the naturally occurring trans-disubstituted alkaloids. PMID:18205934

  9. Catalytic asymmetric assembly of octahydroindolones: divergent synthesis of lycorine-type amaryllidaceae alkaloids (+)-α-lycorane and (+)-lycorine.

    PubMed

    Sun, Zhongwen; Zhou, Mingtao; Li, Xiang; Meng, Xueling; Peng, Fangzhi; Zhang, Hongbin; Shao, Zhihui

    2014-05-12

    We report the first catalytic asymmetric approach to octahydroindolones and a divergent enantioselective synthesis of perhydroindole alkaloids, as exemplified by lycorine-type Amaryllidaceae alkaloids (+)-α-lycorane and (+)-lycorine, from a common intermediate by using a highly concise route. The assembly of octahydroindolones employs a catalytic enantioselective 1,4-conjugate addition of nitro dienynes, followed by a TsOH-catalyzed cascade synthesis of highly functionalized enones, and a diastereoselective intramolecular Michael addition.

  10. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    PubMed

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-07

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.

  11. Monte Carlo analysis of uncertainty propagation in a stratospheric model. 1: Development of a concise stratospheric model

    NASA Technical Reports Server (NTRS)

    Rundel, R. D.; Butler, D. M.; Stolarski, R. S.

    1977-01-01

    A concise model has been developed to analyze uncertainties in stratospheric perturbations, yet uses a minimum of computer time and is complete enough to represent the results of more complex models. The steady state model applies iteration to achieve coupling between interacting species. The species are determined from diffusion equations with appropriate sources and sinks. Diurnal effects due to chlorine nitrate formation are accounted for by analytic approximation. The model has been used to evaluate steady state perturbations due to injections of chlorine and NO(X).

  12. Synthesis of Psychrophilin E.

    PubMed

    Ngen, Sarah T Y; Kaur, Harveen; Hume, Paul A; Furkert, Daniel P; Brimble, Margaret A

    2016-09-02

    The first total synthesis of psychrophilin E, a potent antiproliferative cyclic tripeptide isolated from Aspergillus versicolor ZLN-60, is reported herein. Key features of the synthesis include the installation of an amide bond between the indole-nitrogen of tryptophan and an anthranilic acid residue, and a high yielding macrolactamization of the linear tripeptide to the desired macrocycle.

  13. Aminomethylation of enals through carbene and acid cooperative catalysis: concise access to β(2)-amino acids.

    PubMed

    Xu, Jianfeng; Chen, Xingkuan; Wang, Ming; Zheng, Pengcheng; Song, Bao-An; Chi, Yonggui Robin

    2015-04-20

    A convergent, organocatalytic asymmetric aminomethylation of α,β-unsaturated aldehydes by N-heterocyclic carbene (NHC) and (in situ generated) Brønsted acid cooperative catalysis is disclosed. The catalytically generated conjugated acid from the base plays dual roles in promoting the formation of azolium enolate intermediate, formaldehyde-derived iminium ion (as an electrophilic reactant), and methanol (as a nucleophilic reactant). This redox-neutral strategy is suitable for the scalable synthesis of enantiomerically enriched β(2) -amino acids bearing various substituents.

  14. Smart polymers for the controlled delivery of drugs – a concise overview

    PubMed Central

    Priya James, Honey; John, Rijo; Alex, Anju; Anoop, K.R.

    2014-01-01

    Smart polymers have enormous potential in various applications. In particular, smart polymeric drug delivery systems have been explored as “intelligent” delivery systems able to release, at the appropriate time and site of action, entrapped drugs in response to specific physiological triggers. These polymers exhibit a non-linear response to a small stimulus leading to a macroscopic alteration in their structure/properties. The responses vary widely from swelling/contraction to disintegration. Synthesis of new polymers and crosslinkers with greater biocompatibility and better biodegradability would increase and enhance current applications. The most fascinating features of the smart polymers arise from their versatility and tunable sensitivity. The most significant weakness of all these external stimuli-sensitive polymers is slow response time. The versatility of polymer sources and their combinatorial synthesis make it possible to tune polymer sensitivity to a given stimulus within a narrow range. Development of smart polymer systems may lead to more accurate and programmable drug delivery. In this review, we discuss various mechanisms by which polymer systems are assembled in situ to form implanted devices for sustained release of therapeutic macromolecules, and we highlight various applications in the field of advanced drug delivery. PMID:26579373

  15. [The application of the concise exposure index to repetitive movement tasks of the upper limbs in various production settings: preliminary experience and validation].

    PubMed

    Colombini, D; Occhipinti, E

    1996-01-01

    A summary of eight investigations is presented, which were carried out using standardised methods, for the purpose of quantifying exposure to tasks involving repetitive movements of the upper limbs, as well as quantifying the prevalence of Work Related Musculo Skeletal Disorders of the upper limbs in groups of exposed workers. A total of 462 exposed workers were examined, and the study also took into account the data pertaining to a matched control group comprising 749 workers not exposed to any specific occupational risk. Regarding the quantification of exposure to increased risk, use was made of a Concise Index (OCRA), proposed by the Authors in a previous publication. The data resulting from the eight investigations were used for the study of measurements and models of association among the exposure variables (mainly represented by the OCRA index), as well as the effect variables represented by the prevalence of the various WMSDs of the upper limbs taken both individually and jointly. Significant associations were reported between the OCRA index and an effect indicator represented by the prevalence of all the WSMDs of the upper limbs, calculated on the number of upper limbs at risk. When a logarithmic conversion of the relative exposure (OCRA) and injury indices was carried out, a simple linear regression model resulted which seems to provide a satisfactory predictive performance of the risk of WMSDs of the upper limbs, based on the exposure index. The study confirmed the efficacy of various other models designed to predict effects based on multiple linear regression functions, in which the independent variables are represented by both the OCRA exposure index and by parameters relative to the breakdown by sex and age of the groups of exposed workers.

  16. Concise Review: Dental Pulp Stem Cells: A Novel Cell Therapy for Retinal and Central Nervous System Repair.

    PubMed

    Mead, Ben; Logan, Ann; Berry, Martin; Leadbeater, Wendy; Scheven, Ben A

    2017-01-01

    Dental pulp stem cells (DPSC) are neural crest-derived ecto-mesenchymal stem cells that can relatively easily and non-invasively be isolated from the dental pulp of extracted postnatal and adult teeth. Accumulating evidence suggests that DPSC have great promise as a cellular therapy for central nervous system (CNS) and retinal injury and disease. The mode of action by which DPSC confer therapeutic benefit may comprise multiple pathways, in particular, paracrine-mediated processes which involve a wide array of secreted trophic factors and is increasingly regarded as the principal predominant mechanism. In this concise review, we present the current evidence for the use of DPSC to repair CNS damage, including recent findings on retinal ganglion cell neuroprotection and regeneration in optic nerve injury and glaucoma. Stem Cells 2017;35:61-67.

  17. Development of cascade reactions for the concise construction of diverse heterocyclic architectures.

    PubMed

    Lu, Liang-Qiu; Chen, Jia-Rong; Xiao, Wen-Jing

    2012-08-21

    Heterocyclic structural architectures occur in many bioactive natural products and synthetic drugs, and these structural units serve as important intermediates in organic synthesis. This Account documents our recent progress in the development of cascade reactions to construct complex carbocycles and heterocycles. We describe the rational design of cascade reactions and in-depth investigations of their mechanism as well as their applications in the synthesis of drugs, natural products, and related molecular analogs. Relying on knowledge about the dipole-type reactivity of sulfur ylides, we have developed three different types of cascade reactions: a [4 + 1] annulation/rearrangement cascade, a [4 + 1]/[3 + 2] cycloaddition cascade, and a Michael addition/N-alkylation cascade. Using these processes, we can generate oxazolidinones, fused heterocycles, and pyrrolines starting with simple and readily available substances such as nitroolefins and unsaturated imines. We have also developed corresponding enantioselective reactions, which are guided by axial chirality and asymmetric H-bonding control. In addition, by relying on the reactivity characteristics of newly designed acrylate-linked nitroolefins, we have disclosed an asymmetric Michael/Michael/retro-Michael addition cascade using the combination of a protected hydroxylamine and a bifunctional organocatalyst. Using this methodology, we prepared chiral chromenes in good yields and with high enantioselectivities. Moreover, a series of double Michael addition cascade reactions with anilines, thiophenols, and benzotriazoles generated highly functionalized chromanes. Via mechanistically distinct cascade processes that start with vinyl-linked indoles, we have synthesized polycyclic indoles. Intermolecular cross-metathesis/intramolecular Friedel-Crafts alkylation cascades, promoted by either a single ruthenium alkylidene catalyst or a sequence involving Grubbs' ruthenium catalyst and MacMillan's imidazolidinone catalyst

  18. Transition-Metal-Free Synthesis of 2-Substituted Methyl Benzo[b]furan-3-carboxylates.

    PubMed

    Kang, Byungsoo; Lee, Min Hyung; Kim, Mijung; Hwang, Jungwoon; Kim, Hyeong Baik; Chi, Dae Yoon

    2015-08-21

    A concise and highly efficient synthetic pathway was developed for 2-substituted methyl benzo[b]furan-3-carboxylates. This method provides convenient and cost-effective access for 2-substituted methyl benzo[b]furan-3-carboxylates without the use of a transition metal catalyst for synthesis. Furthermore, in most cases, this method gives excellent yields and conventional flash column chromatography is not needed for purification.

  19. Concise review: Fragile X proteins in stem cell maintenance and differentiation.

    PubMed

    Li, Yue; Zhao, Xinyu

    2014-07-01

    Fragile X syndrome (FXS), the most common genetic form of autism spectrum disorder, is caused by deficiency of the fragile X mental retardation protein (FMRP). Despite extensive research and scientific progress, understanding how FMRP regulates brain development and function remains a major challenge. FMRP is a neuronal RNA-binding protein that binds about a third of messenger RNAs in the brain and controls their translation, stability, and cellular localization. The absence of FMRP results in increased protein synthesis, leading to enhanced signaling in a number of intracellular pathways, including the mTOR, mGLuR5, ERK, Gsk3β, PI3K, and insulin pathways. Until recently, FXS was largely considered a deficit of mature neurons; however, a number of new studies have shown that FMRP may also play important roles in stem cells, among them neural stem cells, germline stem cells, and pluripotent stem cells. In this review, we will cover these newly discovered functions of FMRP, as well as the other two fragile X-related proteins, in stem cells. We will also discuss the literature on the use of stem cells, particularly neural stem cells and induced pluripotent stem cells, as model systems for studying the functions of FMRP in neuronal development.

  20. Skeletal scintigraphic changes in osteoporosis treated with sodium fluoride: concise communication

    SciTech Connect

    Schulz, E.E.; Libanati, C.R.; Farley, S.M.; Kirk, G.A.; Baylink, D.J.

    1984-06-01

    An appendicular skeletal response to sodium fluoride (NaF) was detected by total skeletal scintigrams. Twelve postmenopausal osteoporotic women were treated with NaF (88 mg/day) and calcium (1500 mg/day). Total skeletal scintigrams were obtained before and during treatment. Within 4 to 21 mo (mean: 8.3), all 12 patients showed new areas of increased uptake corresponding to metaphyseal regions and short bones of the appendicular skeleton. Nine patients showed an increase in serum alkaline phosphatase activity, which was attributed to an increase in the skeletal isoenzyme. Seven of 12 patients developed bone pain in one or more of the regions of increased uptake. This study establishes that the skeletal scintigram is a sensitive index of the peripheral skeletal response to NaF.

  1. Synthesis of (+/-)-clusianone: high-yielding bridgehead and diketone substitutions by regioselective lithiation of enol ether derivatives of bicyclo[3.3.1]nonane-2,4,9-triones.

    PubMed

    Rodeschini, Vincent; Ahmad, Nadia M; Simpkins, Nigel S

    2006-11-09

    [Structure: see text] A concise synthesis of the polyprenylated acylphloroglucinol natural product, clusianone, in racemic form, is described. An Effenburger cyclization generated a core bicyclo[3.3.1]nonane-trione structure, which was then elaborated by means of regioselective lithiation reactions.

  2. Scintigraphic and x-ray arthrographic diagnosis of femoral prosthesis loosening: concise communication

    SciTech Connect

    Uri, G.; Wellman, H.; Capello, W.; Robb, J.; Greenman, G.

    1984-06-01

    In order to determine loosening of femoral components of conventional total hip arthroplasties, a comparison of radionuclide (RA) and radiographic arthrograms (XA) was performed. The hips of 29 patients were studied with radiographic contrast and intraarticular Tc-99m sulfur colloid. The XAs were positive for loosening in 10/29 studies, whereas the RAs were positive in 19/29 studies. In five of ten in which both studies were positive, the RA showed femoral prosthesis loosening more clearly than the XA. By surgical follow-up, there were four false-negative XAs. The data suggest that the RA is valuable in determining femoral component loosening.

  3. Gallbladder dynamics induced by a fatty meal in normal subjects and patients with gallstones: concise communication.

    PubMed

    Bobba, V R; Krishnamurthy, G T; Kingston, E; Turner, F E; Brown, P H; Langrell, K

    1984-01-01

    A study was undertaken to establish the pattern of gallbladder emptying in normal subjects and in patients with gallstones, using a fatty meal as stimulus to release endogenous cholecystokinin. The time from meal ingestion to beginning of gallbladder emptying (latent period), the total duration of emptying (ejection period), degree of emptying (ejection fraction), and the rate of emptying (ejection fraction/ejection period) were measured noninvasively by a nongeometric scintigraphic technique. The mean latent period and ejection rate were similar in normal subjects and patients with gallstones, but the mean ejection period and ejection fraction were significantly reduced in the patients. This study suggests that for an identical stimulus, the gallbladder in cholelithiasis begins to empty at the normal time but empties for a shorter duration; the result is a reduction of ejection fraction but not of ejection rate.

  4. Diagnosis of alcoholic cirrhosis with the right-to-left hepatic lobe ratio: concise communication

    SciTech Connect

    Shreiner, D.P.; Barlai-Kovach, M.

    1981-02-01

    Since scans of cirrhotic livers commonly show a reduction in size and colloid uptake of the right lobe, a quantitative measure of uptake was made using a minicomputer to determine total counts in regions of interest defined over each lobe. Right-to-left ratios were then compared in 103 patients. For normal paitents the mean ratio +- 1 s.d. was 2.85 +- 0.65, and the mean for patients with known cirrhosis was 1.08 +- 0.33. Patients with other liver diseases had ratios similar to the normal group. The normal range of the right-to-left lobe ratio was 1.55 to 4.15. The sensitivity of the ratio for alcoholic cirrhosis was 85.7% and the specificity was 100% in this patient population. The right-to-left lobe ratio was more sensitive and specific for alcoholic cirrhosis than any other criterion tested. An hypothesis is described to explain these results.

  5. Effective, high-yielding, and stereospecific total synthesis of D-erythro-(2R,3S)-sphingosine from D-ribo-(2S,3S,4R)-phytosphingosine.

    PubMed

    van den Berg, Richard J B H N; Korevaar, Cornelius G N; Overkleeft, Herman S; van der Marel, Gijsbert A; van Boom, Jacques H

    2004-08-20

    The synthesis of naturally occurring D-erythro-(2R,3S,4E)-sphingosine from commercially available D-ribo-(2S,3S,4R)-phytosphingosine is described. The key step in the reaction sequence comprises TMSI/DBN promoted regio- and stereoselective oxirane opening of intermediate 2-phenyl-4-(S)-[(1S,2S)-1,2-epoxyhexadecyl]-1,3-oxazoline followed by the in situ trans-elimination of 2-phenyl-4-(S)-[(1S,2R)-1,2-dideoxy-2-iodo-1-trimethylsilyloxyhexadecyl]-1,3-oxazoline.

  6. Enantioselective Synthesis of Chiral Piperidines via the Stepwise Dearomatization/Borylation of Pyridines.

    PubMed

    Kubota, Koji; Watanabe, Yuta; Hayama, Keiichi; Ito, Hajime

    2016-04-06

    We have developed a novel approach for the synthesis of enantioenriched 3-boryl-tetrahydropyridines via the Cu(I)-catalyzed regio-, diastereo-, and enantioselective protoborylation of 1,2-dihydropyridines, which were obtained by the partial reduction of the pyridine derivatives. This dearomatization/enantioselective borylation stepwise strategy provides facile access to chiral piperidines together with the stereospecific transformation of a stereogenic C-B bond from readily available starting materials. Furthermore, the utility of this method is demonstrated for the concise synthesis of the antidepressant drug (-)-paroxetine. A theoretical study of the reaction mechanism is also described.

  7. Concise review: Interferon-free treatment of hepatitis C virus-associated cirrhosis and liver graft infection

    PubMed Central

    Weiler, Nina; Zeuzem, Stefan; Welker, Martin-Walter

    2016-01-01

    Chronic hepatitis C is a major reason for development of cirrhosis and hepatocellular carcinoma and a leading cause for liver transplantation. The development of direct-acting antiviral agents lead to (pegylated) interferon-alfa free antiviral therapy regimens with a remarkable increase in sustained virologic response (SVR) rates and opened therapeutic options for patients with advanced cirrhosis and liver graft recipients. This concise review gives an overview about most current prospective trials and cohort analyses for treatment of patients with liver cirrhosis and liver graft recipients. In patients with compensated cirrhosis Child-Pugh-Turcotte (CTP) class A, all approved agents are safe and SVR rates do not significantly differ from patients without cirrhosis in general. In patients with decompensated cirrhosis CTP class B or C, daclastasvir, ledipasvir, velpatasvir, and sofosbuvir are approved, and SVR rates higher than 90% can be achieved. Especially for patients with a model of end stage liver disease score higher than 15 and therefore eligible for liver transplantation, data is scarce. Reported SVR rates in patients with cirrhosis CTP class C are lower compared to patients with a less severe liver disease. In liver transplant recipients with a maximum of CTP class A, SVR rates are comparable to patients without LT. Patients with decompensated graft cirrhosis should be treated on an individual basis. PMID:27895394

  8. Concise Review: Making Stem Cells Retinal: Methods for Deriving Retinal Pigment Epithelium and Implications for Patients With Ocular Disease.

    PubMed

    Leach, Lyndsay L; Clegg, Dennis O

    2015-08-01

    Stem cells provide a potentially unlimited source of cells for treating a plethora of human diseases. Regenerative therapies for retinal degenerative diseases are at the forefront of translation to the clinic, with stem cell-derived retinal pigment epithelium (RPE)-based treatments for age-related macular degeneration (AMD) already showing promise in human patients. Despite our expanding knowledge of stem cell biology, methods for deriving cells, including RPE have remained inefficient. Thus, there has been a push in recent years to develop more directed approaches to deriving cells for therapy. In this concise review, we summarize recent efforts that have been successful in improving RPE derivation efficiency by directing differentiation from human pluripotent stem cells using developmental cues important for normal RPE specification and maturation in vivo. In addition, potential obstacles for clinical translation are discussed. Finally, we review how derivation of RPE from human induced pluripotent stem cells (hiPSCs) provides in vitro models for studying mechanisms of retinal disease and discovering new avenues for treatment.

  9. Concise and Efficient Fluorescent Probe via an Intromolecular Charge Transfer for the Chemical Warfare Agent Mimic Diethylchlorophosphate Vapor Detection.

    PubMed

    Yao, Junjun; Fu, Yanyan; Xu, Wei; Fan, Tianchi; Gao, Yixun; He, Qingguo; Zhu, Defeng; Cao, Huimin; Cheng, Jiangong

    2016-02-16

    Sarin, used as chemical warfare agents (CWAs) for terrorist attacks, can induce a number of virulent effects. Therefore, countermeasures which could realize robust and convenient detection of sarin are in exigent need. A concise charge-transfer colorimetric and fluorescent probe (4-(6-(tert-butyl)pyridine-2-yl)-N,N-diphenylaniline, TBPY-TPA) that could be capable of real-time and on-site monitoring of DCP vapor was reported in this contribution. Upon contact with DCP, the emission band red-shifted from 410 to 522 nm upon exposure to DCP vapor. And the quenching rate of TBPY-TPA reached up to 98% within 25 s. Chemical substances such as acetic acid (HAc), dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PAMP), and triethyl phosphate (TEP) do not interfere with the detection. A detection limit for DCP down to 2.6 ppb level is remarkably achieved which is below the Immediately Dangerous to Life or Health concentration. NMR data suggested that a transformation of the pyridine group into pyridinium salt via a cascade reaction is responsible for the sensing process which induced the dramatic fluorescent red shift. All of these data suggest TBPY-TPA is a promising fluorescent sensor for a rapid, simple, and low-cost method for DCP detection, which could be easy to prepare as a portable chemosensor kit for its practical application in real-time and on-site monitoring.

  10. Concise Review: Mesenchymal Stem Cells for Functional Cartilage Tissue Engineering: Taking Cues from Chondrocyte-Based Constructs.

    PubMed

    Tan, Andrea R; Hung, Clark T

    2017-04-01

    Osteoarthritis, the most prevalent form of joint disease, afflicts 9% of the U.S. population over the age of 30 and costs the economy nearly $100 billion annually in healthcare and socioeconomic costs. It is characterized by joint pain and dysfunction, though the pathophysiology remains largely unknown. Due to its avascular nature and limited cellularity, articular cartilage exhibits a poor intrinsic healing response following injury. As such, significant research efforts are aimed at producing engineered cartilage as a cell-based approach for articular cartilage repair. However, the knee joint is mechanically demanding, and during injury, also a milieu of harsh inflammatory agents. The unforgiving mechano-chemical environment requires tissue replacements that are capable of bearing such burdens. The use of mesenchymal stem cells (MSCs) for cartilage tissue engineering has emerged as a promising cell source due to their ease of isolation, capacity to readily expand in culture, and ability to undergo lineage-specific differentiation into chondrocytes. However, to date, very few studies utilizing MSCs have successfully recapitulated the structural and functional properties of native cartilage, exposing the difficult process of uniformly differentiating stem cells into desired cell fates and maintaining the phenotype during in vitro culture and after in vivo implantation. To address these shortcomings, here, we present a concise review on modulating stem cell behavior, tissue development and function using well-developed techniques from chondrocyte-based cartilage tissue engineering. Stem Cells Translational Medicine 2017;6:1295-1303.

  11. Concise Review: Prospects of Bone Marrow Mononuclear Cells and Mesenchymal Stem Cells for Treating Status Epilepticus and Chronic Epilepsy.

    PubMed

    Agadi, Satish; Shetty, Ashok K

    2015-07-01

    Mononuclear cells (MNCs) and mesenchymal stem cells (MSCs) derived from the bone marrow and other sources have received significant attention as donor cells for treating various neurological disorders due to their robust neuroprotective and anti-inflammatory effects. Moreover, it is relatively easy to procure these cells from both autogenic and allogenic sources. Currently, there is considerable interest in examining the usefulness of these cells for conditions such as status epilepticus (SE) and chronic epilepsy. A prolonged seizure activity in SE triggers neurodegeneration in the limbic brain areas, which elicits epileptogenesis and evolves into a chronic epileptic state. Because of their potential for providing neuroprotection, diminishing inflammation and curbing epileptogenesis, early intervention with MNCs or MSCs appears attractive for treating SE as such effects may restrain the development of chronic epilepsy typified by spontaneous seizures and learning and memory impairments. Delayed administration of these cells after SE may also be useful for easing spontaneous seizures and cognitive dysfunction in chronic epilepsy. This concise review evaluates the current knowledge and outlook pertaining to MNC and MSC therapies for SE and chronic epilepsy. In the first section, the behavior of these cells in animal models of SE and their efficacy to restrain neurodegeneration, inflammation, and epileptogenesis are discussed. The competence of these cells for suppressing seizures and improving cognitive function in chronic epilepsy are conferred in the next section. The final segment ponders issues that need to be addressed to pave the way for clinical application of these cells for SE and chronic epilepsy.

  12. Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation

    PubMed Central

    Parekh, Mohit; Ferrari, Stefano; Sheridan, Carl; Kaye, Stephen

    2016-01-01

    The cornea forms the front window of the eye, enabling the transmission of light to the retina through a crystalline lens. Many disorders of the cornea lead to partial or total blindness, and therefore corneal transplantation becomes mandatory. Recently, selective corneal layer (as opposed to full thickness) transplantation has become popular because this leads to earlier rehabilitation and visual outcomes. Corneal endothelial disorders are a common cause of corneal disease and transplantation. Corneal endothelial transplantation is successful but limited worldwide because of lower donor corneal supply. Alternatives to corneal tissue for endothelial transplantation therefore require immediate attention. The field of human corneal endothelial culture for transplantation is rapidly emerging as a possible viable option. This manuscript provides an update regarding these developments. Significance The cornea is the front clear window of the eye. It needs to be kept transparent for normal vision. It is formed of various layers of which the posterior layer (the endothelium) is responsible for the transparency of the cornea because it allows the transport of ions and solutes to and from the other layers of the cornea. Corneal blindness that results from the corneal endothelial dysfunction can be treated using healthy donor tissues. There is a huge demand for human donor corneas but limited supply, and therefore there is a need to identify alternatives that would reduce this demand. Research is underway to understand the isolation techniques for corneal endothelial cells, culturing these cells in the laboratory, and finding possible options to transplant these cells in the patients. This review article is an update on the recent developments in this field. PMID:26702128

  13. Concise Review: An Update on the Culture of Human Corneal Endothelial Cells for Transplantation.

    PubMed

    Parekh, Mohit; Ferrari, Stefano; Sheridan, Carl; Kaye, Stephen; Ahmad, Sajjad

    2016-02-01

    The cornea forms the front window of the eye, enabling the transmission of light to the retina through a crystalline lens. Many disorders of the cornea lead to partial or total blindness, and therefore corneal transplantation becomes mandatory. Recently, selective corneal layer (as opposed to full thickness) transplantation has become popular because this leads to earlier rehabilitation and visual outcomes. Corneal endothelial disorders are a common cause of corneal disease and transplantation. Corneal endothelial transplantation is successful but limited worldwide because of lower donor corneal supply. Alternatives to corneal tissue for endothelial transplantation therefore require immediate attention. The field of human corneal endothelial culture for transplantation is rapidly emerging as a possible viable option. This manuscript provides an update regarding these developments. Significance: The cornea is the front clear window of the eye. It needs to be kept transparent for normal vision. It is formed of various layers of which the posterior layer (the endothelium) is responsible for the transparency of the cornea because it allows the transport of ions and solutes to and from the other layers of the cornea. Corneal blindness that results from the corneal endothelial dysfunction can be treated using healthy donor tissues. There is a huge demand for human donor corneas but limited supply, and therefore there is a need to identify alternatives that would reduce this demand. Research is underway to understand the isolation techniques for corneal endothelial cells, culturing these cells in the laboratory, and finding possible options to transplant these cells in the patients. This review article is an update on the recent developments in this field.

  14. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments

    NASA Astrophysics Data System (ADS)

    Prasai, Binay; Wilson, A. R.; Wiley, B. J.; Ren, Y.; Petkov, Valeri

    2015-10-01

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au100-xPdx (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when ``tuned up'' against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.The extent to which current theoretical modeling alone can

  15. Synthesis of cis-octahydroindoles via intramolecular 1,3-dipolar cycloaddition of 2-acyl-5-aminooxazolium salts.

    PubMed

    Basch, Corey H; Brinck, Jameson A; Ramos, Joaquin E; Habay, Stephen A; Yap, Glenn P A

    2012-11-16

    A concise method for the diastereoselective synthesis of octahydroindoles is presented. The products contain 2-amido and 7-hydroxyl substituents. A series of 2-acyl-5-aminooxazoles were prepared in one step. Upon methylation of the oxazole nitrogen atom, the substrates underwent rapid intramolecular 1,3-dipolar cycloaddition with a tethered alkene and, after reduction with excess hydride, produced octahydroindoles with excellent diastereoselectivity. The method allows for the installation of α-quaternary stereogenic carbon atoms.

  16. Stereoselective Construction of all-anti Polypropionate Modules: Synthesis of the C5-C10 Fragment of Streptovaricin U

    PubMed Central

    Torres, Wildeliz; Rodríguez, Raúl R.; Prieto, José A.

    2009-01-01

    A concise non-aldol approach for the stereoselective construction of all-anti polypropionate fragments was developed. The iterative epoxide-based methodology consists of the syn-selective epoxidation of cis homoallylic alcohols using the VO(acac)2 catalyzed conditions followed by epoxide cleavage with a propynyl aluminum reagent as key steps. The methodology was applied to the synthesis of the all-anti C6-C10 fragment of streptovaricin U. PMID:19236033

  17. Relative stereochemical determination and synthesis of the C1-C17 fragment of a new natural polyketide.

    PubMed

    Fleury, Etienne; Lannou, Marie-Isabelle; Bistri, Olivia; Sautel, François; Massiot, Georges; Pancrazi, Ange; Ardisson, Janick

    2009-09-18

    The challenging determination of the relative stereochemistry of a complex natural polyketide portion was achieved. After careful NMR analysis, a concise synthesis of a set of possible relative diastereomers (only 6 diastereomers out of the 32 initially envisioned) has been carried out using a common strategy based on enantioselective aldol reactions. With a high predictability, final NMR comparison established the relative stereochemistry of the C1-C17 fragment of this natural product.

  18. Asymmetric aminolytic kinetic resolution of racemic epoxides using recyclable chiral polymeric Co(III)-salen complexes: a protocol for total utilization of racemic epoxide in the synthesis of (R)-Naftopidil and (S)-Propranolol.

    PubMed

    Kumar, Manish; Kureshy, Rukhsana I; Shah, Arpan K; Das, Anjan; Khan, Noor-ul H; Abdi, Sayed H R; Bajaj, Hari C

    2013-09-20

    Chiral polymeric Co(III) salen complexes with chiral ((R)/(S)-BINOL, diethyl tartrate) and achiral (piperazine and trigol) linkers with varying stereogenic centers were synthesized for the first time and used as catalysts for aminolytic kinetic resolution (AKR) of a variety of terminal epoxides and glycidyl ethers to get enantio-pure epoxides (ee, 99%) and N-protected β-amino alcohols (ee, 99%) with quantitative yield in 16 h at RT under optimized reaction conditions. This protocol was also used for the synthesis of two enantiomerically pure drug molecules (R)-Naftopidil (α1-blocker) and (S)-Propranolol (β-blocker) as a key step via AKR of single racemic naphthylglycidyl ether with Boc-protected isoproylamine with 100% epoxide utilization at 1 g level. The catalyst 1 was successfully recycled for a number of times.

  19. On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments.

    PubMed

    Prasai, Binay; Wilson, A R; Wiley, B J; Ren, Y; Petkov, Valeri

    2015-11-14

    The extent to which current theoretical modeling alone can reveal real-world metallic nanoparticles (NPs) at the atomic level was scrutinized and demonstrated to be insufficient and how it can be improved by using a pragmatic approach involving straightforward experiments is shown. In particular, 4 to 6 nm in size silica supported Au(100-x)Pd(x) (x = 30, 46 and 58) explored for catalytic applications is characterized structurally by total scattering experiments including high-energy synchrotron X-ray diffraction (XRD) coupled to atomic pair distribution function (PDF) analysis. Atomic-level models for the NPs are built by molecular dynamics simulations based on the archetypal for current theoretical modeling Sutton-Chen (SC) method. Models are matched against independent experimental data and are demonstrated to be inaccurate unless their theoretical foundation, i.e. the SC method, is supplemented with basic yet crucial information on the length and strength of metal-to-metal bonds and, when necessary, structural disorder in the actual NPs studied. An atomic PDF-based approach for accessing such information and implementing it in theoretical modeling is put forward. For completeness, the approach is concisely demonstrated on 15 nm in size water-dispersed Au particles explored for bio-medical applications and 16 nm in size hexane-dispersed Fe48Pd52 particles explored for magnetic applications as well. It is argued that when "tuned up" against experiments relevant to metals and alloys confined to nanoscale dimensions, such as total scattering coupled to atomic PDF analysis, rather than by mere intuition and/or against data for the respective solids, atomic-level theoretical modeling can provide a sound understanding of the synthesis-structure-property relationships in real-world metallic NPs. Ultimately this can help advance nanoscience and technology a step closer to producing metallic NPs by rational design.

  20. Enantioselective [4 + 2] cycloaddition of cyclic N-sulfimines and acyclic enones or ynones: a concise route to sulfamidate-fused 2,6-disubstituted piperidin-4-ones.

    PubMed

    Liu, Yong; Kang, Tai-Ran; Liu, Quan-Zhong; Chen, Lian-Mei; Wang, Ya-Chuan; Liu, Jie; Xie, Yong-Mei; Yang, Jin-Liang; He, Long

    2013-12-06

    A concise route to valuable sulfamate-fused 2,6-disubstituted piperidin-4-ones or 2,3-dihydropyridin-4(1H)-ones in good yield with high diastereo- and enantioselectivity is presented. The combination of chiral primary amine and o-fluorobenzoic acid efficiently promoted an asymmetric [4 + 2] cycloaddition reaction of N-sulfonylimines and enones or ynones. The cycloaddition reaction between cyclic N-sulfonylimines and ynones is first reported.

  1. Safety and outcome of treatment of metastatic melanoma using 3-bromopyruvate: a concise literature review and case study.

    PubMed

    El Sayed, Salah Mohamed; Mohamed, Walaa Gamal; Seddik, Minnat-Allah Hassan; Ahmed, Al-Shimaa Ahmed; Mahmoud, Asmaa Gamal; Amer, Wael Hassan; Helmy Nabo, Manal Mohamed; Hamed, Ahmed Roshdi; Ahmed, Nagwa Sayed; Abd-Allah, Ali Abdel-Rahman

    2014-07-01

    3-Bromopyruvate (3BP) is a new, promising anticancer alkylating agent with several notable functions. In addition to inhibiting key glycolysis enzymes including hexokinase II and lactate dehydrogenase (LDH), 3BP also selectively inhibits mitochondrial oxidative phosphorylation, angiogenesis, and energy production in cancer cells. Moreover, 3BP induces hydrogen peroxide generation in cancer cells (oxidative stress effect) and competes with the LDH substrates pyruvate and lactate. There is only one published human clinical study showing that 3BP was effective in treating fibrolamellar hepatocellular carcinoma. LDH is a good measure for tumor evaluation and predicts the outcome of treatment better than the presence of a residual tumor mass. According to the Warburg effect, LDH is responsible for lactate synthesis, which facilitates cancer cell survival, progression, aggressiveness, metastasis, and angiogenesis. Lactate produced through LDH activity fuels aerobic cell populations inside tumors via metabolic symbiosis. In melanoma, the most deadly skin cancer, 3BP induced necrotic cell death in sensitive cells, whereas high glutathione (GSH) content made other melanoma cells resistant to 3BP. Concurrent use of a GSH depletor with 3BP killed resistant melanoma cells. Survival of melanoma patients was inversely associated with high serum LDH levels, which was reported to be highly predictive of melanoma treatment in randomized clinical trials. Here, we report a 28-year-old man presented with stage IV metastatic melanoma affecting the back, left pleura, and lung. The disease caused total destruction of the left lung and a high serum LDH level (4,283 U/L). After ethics committee approval and written patient consent, the patient received 3BP intravenous infusions (1-2.2 mg/kg), but the anticancer effect was minimal as indicated by a high serum LDH level. This may have been due to high tumor GSH content. On combining oral paracetamol, which depletes tumor GSH, with 3BP

  2. Total parenteral nutrition - infants

    MedlinePlus

    ... medlineplus.gov/ency/article/007239.htm Total parenteral nutrition - infants To use the sharing features on this page, please enable JavaScript. Total parenteral nutrition (TPN) is a method of feeding that bypasses ...

  3. Total variation projection with first order schemes.

    PubMed

    Fadili, Jalal M; Peyre, Gabriel

    2011-03-01

    This article proposes a new algorithm to compute the projection on the set of images whose total variation is bounded by a constant. The projection is computed through a dual formulation that is solved by first order non-smooth optimization methods. This yields an iterative algorithm that applies iterative soft thresholding to the dual vector field, and for which we establish convergence rate on the primal iterates. This projection algorithm can then be used as a building block in a variety of applications such as solving inverse problems under a total variation constraint, or for texture synthesis. Numerical results are reported to illustrate the usefulness and potential applicability of our TV projection algorithm on various examples including denoising, texture synthesis, inpainting, deconvolution and tomography problems. We also show that our projection algorithm competes favorably with state-of-the-art TV projection methods in terms of convergence speed.

  4. Concise Encyclopedia of Sociolinguistics.

    ERIC Educational Resources Information Center

    Mesthrie, Rajend, Ed.

    This book provides comprehensive information on all aspects of sociolinguistics. It includes 285 articles, of which 80 are short biographical entries. Fifty of the biographies and 42 other articles are entirely new, while the remaining entries are revised and updated from the "Encyclopedia of Language and Linguistics." The book provides…

  5. Pd-Catalyzed C-H activation/oxidative cyclization of acetanilide with norbornene: concise access to functionalized indolines.

    PubMed

    Gao, Yang; Huang, Yubing; Wu, Wanqing; Huang, Kefan; Jiang, Huanfeng

    2014-08-07

    An efficient Pd-catalyzed oxidative cyclization reaction for the synthesis of functionalized indolines by direct C-H activation of acetanilide has been developed. The norbornylpalladium species formed via direct ortho C-H activation of acetanilides is supposed to be a key intermediate in this transformation.

  6. Ammonia synthesis

    SciTech Connect

    Mandelik, B.G.; Cassata, J.R.; Katy, P.J.S.; Van Dijk, C.P.

    1986-02-04

    In a process for producing ammonia in a synthesis loop in which fresh synthesis gas containing hydrogen, nitrogen and, lesser amounts of argon and methane is combined with a hydrogen enriched recycle gas to provide combined synthesis gas, the combined synthesis is introduced to and reacted over ammonia synthesis catalyst under synthesis conditions to provide converted gas containing ammonia, hydrogen, and nitrogen. The ammonia is recovered from the converted gas to provide recycle gas, and a purge stream is removed from the synthesis loop. A hydrogen-rich gas is recovered from the purge stream, and the hydrogen-rich gas is combined with the recycle gas to provide the hydrogen enriched gas. The improvement described in this patent consists of (a) providing the fresh synthesis gas at a hydrogen to nitrogen molar ratio between 1.7 and 2.5 and providing the hydrogen enriched recycle gas at a hydrogen to nitrogen molar ratio between 0.5 and 1.7 to provide the combined synthesis gas at a hydrogen to nitrogen molar ratio between 0.8 and 1.8. The volumetric flow rate ratio of the hydrogen enriched recycle gas to the fresh synthesis gas is between 2.2 and 3.7; and (b) introducing the combined synthesis gas from step (a) to an ammonia synthesis catalyst at a temperature between 315/sup 0/C. and 400/sup 0/C. and a pressure between 50 kg/cm/sup 2/ and 150 kg/cm/sup 2/.

  7. Friedel-Crafts Fluoroacetylation of Indoles with Fluorinated Acetic Acids for the Synthesis of Fluoromethyl Indol-3-yl Ketones under Catalyst- and Additive-Free Conditions.

    PubMed

    Yao, Shun-Jiang; Ren, Zhi-Hui; Wang, Yao-Yu; Guan, Zheng-Hui

    2016-05-20

    A simple and efficient protocol for the fluoroacetylation of indoles is reported. The reaction uses fluorinated acetic acids as the fluoroacetylation reagents to synthesize diverse fluoromethyl indol-3-yl ketones in good yields under catalyst- and additive-free conditions. In addition, the only byproduct is water in this transformation. The synthetic utility of this reaction was also demonstrated by the concise synthesis of α-(trifluoromethyl)(indol-3-yl)methanol and indole-3-carboxylic acid.

  8. Modular synthesis of polyene side chain analogues of the potent macrolide antibiotic etnangien by a flexible coupling strategy based on hetero-bis-metallated alkenes.

    PubMed

    Altendorfer, Mario; Raja, Aruna; Sasse, Florenz; Irschik, Herbert; Menche, Dirk

    2013-04-07

    An efficient procedure for the concise synthesis of hetero-bis-metallated alkenes as useful building blocks for the modular access to highly elaborate polyenes and stabilized analogues is reported. By applying these bifunctional olefins in convergent Stille/Suzuki-Miyaura couplings, novel, carefully selected side chain analogues of the potent RNA polymerase inhibitor etnangien were synthesized by a modular late stage coupling strategy and evaluated for antibacterial and antiproliferative activities.

  9. Total Quality Leadership

    NASA Technical Reports Server (NTRS)

    1991-01-01

    More than 750 NASA, government, contractor, and academic representatives attended the Seventh Annual NASA/Contractors Conference on Quality and Productivity. The panel presentations and Keynote speeches revolving around the theme of total quality leadership provided a solid base of understanding of the importance, benefits, and principles of total quality management (TQM). The presentations from the conference are summarized.

  10. Concise synthesis of N,N-dimethyltryptamine and 5-methoxy-N,N-dimethyltryptamine starting with bufotenine from Brazilian Anadenanthera ssp..

    PubMed

    Moreira, Leandro A; Murta, Maria M; Gatto, Claudia C; Fagg, Christopher W; dos Santos, Maria L

    2015-04-01

    Bufotenine (1, 5-hydroxy-N,N-dimethyltryptamine) was isolated from seeds of Anadenanthera spp., a tree widespread in the Brazilian cerrado, using an efficient acid-base shakeout protocol. The conversion of bufotenine into N,N-dimethyltryptamine (4) and 5-methoxy-N,N-dimethyltryptamine (5) was accomplished through an innovative and short approach featuring the use of novel bufotenine-aminoborane complex (7). Furthermore, an easy methodology for conversion of bufotenine into 5-hydroxy-N,N,N-trimethyltryptamine (6) was well-established. This is the first study that highlights bufotenine as a resource for the production of N,N-dimethyltryptamines for either pharmacological and toxicological investigations or for synthetic purposes.

  11. The chemical synthesis of aryltetralin glycosides.

    PubMed

    Sun, Jian-Song; Liu, Hui; Guo, Xiao-Hong; Liao, Jin-Xi

    2016-01-28

    Led by etoposide and teniposide, the synthesis of aryltetralin glycosides has been experiencing flourishing development in the past five decades. Herein, a review focusing on the total synthesis of aryltetralin glycosides is provided. The main body of this review is composed of two parts, one is the enantioselective synthesis of aryltetralin derivatives and the other one is the construction of key glycosidic linkages. In each part the contents are organised based on the different strategies or protocols applied in the original documents. The total synthesis of aryltetralin glycosides represents the developing direction of this field, and sooner or later will replace the currently applied semi-total synthesis method, using the aglycon residue acquired directly from natural sources. This account provides a comprehensive and deep insight into the field of aryltetralin glycoside synthesis for chemists who have the intention of committing themselves to the development of aryltetralin glycoside medicine.

  12. MAP3S/RAINE modeling abstracts, 1980. [Concise descriptions of models and availability for calculation of airborne concentration of sulfur dioxide and sulfate

    SciTech Connect

    Michael, P.

    1980-07-01

    The MultiState Atmospheric Power Production Pollution Study (MAP3S) has produced as a primary research output a number of numerical models for the calculation of airborne concentrations of sulfur dioxide and sulfate resulting from anthropogenic sources. Concise descriptions of these models, and of related modeling developments, are collected in this report. For each model, or model component, there is included a listing of the authors, a summary of what it is the model calculates and the method used, a list of references, and a statement of availability.

  13. Synthesis of taurospongin A.

    PubMed

    Wu, Boshen; Mallinger, Aurélie; Robertson, Jeremy

    2010-06-18

    Two new routes to the C(1-10) carboxylic acid core of taurospongin A are presented. In the first route, overall asymmetric hydration of a C(2)-C(3) alkene is achieved by Sharpless AD and selective deoxygenation at C(2); in the second route, the C(3) stereogenic center is set by Tietze asymmetric allylation. A short synthesis of the C(1'-25') fatty acid combines with the product from the first route to complete the total synthesis of taurospongin A.

  14. Laparoscopic total pancreatectomy

    PubMed Central

    Wang, Xin; Li, Yongbin; Cai, Yunqiang; Liu, Xubao; Peng, Bing

    2017-01-01

    Abstract Rationale: Laparoscopic total pancreatectomy is a complicated surgical procedure and rarely been reported. This study was conducted to investigate the safety and feasibility of laparoscopic total pancreatectomy. Patients and Methods: Three patients underwent laparoscopic total pancreatectomy between May 2014 and August 2015. We reviewed their general demographic data, perioperative details, and short-term outcomes. General morbidity was assessed using Clavien–Dindo classification and delayed gastric emptying (DGE) was evaluated by International Study Group of Pancreatic Surgery (ISGPS) definition. Diagnosis and Outcomes: The indications for laparoscopic total pancreatectomy were intraductal papillary mucinous neoplasm (IPMN) (n = 2) and pancreatic neuroendocrine tumor (PNET) (n = 1). All patients underwent laparoscopic pylorus and spleen-preserving total pancreatectomy, the mean operative time was 490 minutes (range 450–540 minutes), the mean estimated blood loss was 266 mL (range 100–400 minutes); 2 patients suffered from postoperative complication. All the patients recovered uneventfully with conservative treatment and discharged with a mean hospital stay 18 days (range 8–24 days). The short-term (from 108 to 600 days) follow up demonstrated 3 patients had normal and consistent glycated hemoglobin (HbA1c) level with acceptable quality of life. Lessons: Laparoscopic total pancreatectomy is feasible and safe in selected patients and pylorus and spleen preserving technique should be considered. Further prospective randomized studies are needed to obtain a comprehensive understanding the role of laparoscopic technique in total pancreatectomy. PMID:28099344

  15. Total hip arthroplasty.

    PubMed Central

    Siopack, J S; Jergesen, H E

    1995-01-01

    Total hip arthroplasty, or surgical replacement of the hip joint with an artificial prosthesis, is a reconstructive procedure that has improved the management of those diseases of the hip joint that have responded poorly to conventional medical therapy. In this review we briefly summarize the evolution of total hip arthroplasty, the design and development of prosthetic hip components, and the current clinical indications for this procedure. The possible complications of total hip arthroplasty, its clinical performance over time, and future directions in hip replacement surgery are also discussed. Images PMID:7725707

  16. Lead-oriented synthesis: Investigation of organolithium-mediated routes to 3-D scaffolds and 3-D shape analysis of a virtual lead-like library.

    PubMed

    Lüthy, Monique; Wheldon, Mary C; Haji-Cheteh, Chehasnah; Atobe, Masakazu; Bond, Paul S; O'Brien, Peter; Hubbard, Roderick E; Fairlamb, Ian J S

    2015-06-01

    Synthetic routes to six 3-D scaffolds containing piperazine, pyrrolidine and piperidine cores have been developed. The synthetic methodology focused on the use of N-Boc α-lithiation-trapping chemistry. Notably, suitably protected and/or functionalised medicinal chemistry building blocks were synthesised via concise, connective methodology. This represents a rare example of lead-oriented synthesis. A virtual library of 190 compounds was then enumerated from the six scaffolds. Of these, 92 compounds (48%) fit the lead-like criteria of: (i) -1⩽AlogP⩽3; (ii) 14⩽number of heavy atoms⩽26; (iii) total polar surface area⩾50Å(2). The 3-D shapes of the 190 compounds were analysed using a triangular plot of normalised principal moments of inertia (PMI). From this, 46 compounds were identified which had lead-like properties and possessed 3-D shapes in under-represented areas of pharmaceutical space. Thus, the PMI analysis of the 190 member virtual library showed that whilst scaffolds which may appear on paper to be 3-D in shape, only 24% of the compounds actually had 3-D structures in the more interesting areas of 3-D drug space.

  17. Revised Total Coliform Rule

    EPA Pesticide Factsheets

    The Revised Total Coliform Rule (RTCR) aims to increase public health protection through the reduction of potential pathways for fecal contamination in the distribution system of a public water system (PWS).

  18. Total lymphoid irradiation

    SciTech Connect

    Sutherland, D.E.; Ferguson, R.M.; Simmons, R.L.; Kim, T.H.; Slavin, S.; Najarian, J.S.

    1983-05-01

    Total lymphoid irradiation by itself can produce sufficient immunosuppression to prolong the survival of a variety of organ allografts in experimental animals. The degree of prolongation is dose-dependent and is limited by the toxicity that occurs with higher doses. Total lymphoid irradiation is more effective before transplantation than after, but when used after transplantation can be combined with pharmacologic immunosuppression to achieve a positive effect. In some animal models, total lymphoid irradiation induces an environment in which fully allogeneic bone marrow will engraft and induce permanent chimerism in the recipients who are then tolerant to organ allografts from the donor strain. If total lymphoid irradiation is ever to have clinical applicability on a large scale, it would seem that it would have to be under circumstances in which tolerance can be induced. However, in some animal models graft-versus-host disease occurs following bone marrow transplantation, and methods to obviate its occurrence probably will be needed if this approach is to be applied clinically. In recent years, patient and graft survival rates in renal allograft recipients treated with conventional immunosuppression have improved considerably, and thus the impetus to utilize total lymphoid irradiation for its immunosuppressive effect alone is less compelling. The future of total lymphoid irradiation probably lies in devising protocols in which maintenance immunosuppression can be eliminated, or nearly eliminated, altogether. Such protocols are effective in rodents. Whether they can be applied to clinical transplantation remains to be seen.

  19. Perioperative Pain Management in Total Hip Arthroplasty: Korean Hip Society Guidelines.

    PubMed

    Min, Byung-Woo; Kim, Yeesuk; Cho, Hong-Man; Park, Kyung-Soon; Yoon, Pil Whan; Nho, Jae-Hwi; Kim, Sang-Min; Lee, Kyung-Jae; Moon, Kyong-Ho

    2016-03-01

    Effective perioperative pain management techniques and accelerated rehabilitation programs can improve health-related quality of life and functional status of patients after total hip arthroplasty. Traditionally, postoperative analgesia following arthroplasty was provided by intravenous patient-controlled analgesia or epidural analgesia. Recently, peripheral nerve blockade has emerged alternative analgesic approach. Multimodal analgesia strategy combines analgesics with different mechanisms of action to improve pain management. Intraoperative periarticular injection of multimodal drugs is one of the most important procedures in perioperative pain control for total hip arthroplasty. The goal of this review article is to provide a concise overview of the principles of multimodal pain management regimens as a practical guide for the perioperative pain management for total hip arthroplasty.

  20. Total Energy Monitor

    SciTech Connect

    Friedrich, S

    2008-08-11

    The total energy monitor (TE) is a thermal sensor that determines the total energy of each FEL pulse based on the temperature rise induced in a silicon wafer upon absorption of the FEL. The TE provides a destructive measurement of the FEL pulse energy in real-time on a pulse-by-pulse basis. As a thermal detector, the TE is expected to suffer least from ultra-fast non-linear effects and to be easy to calibrate. It will therefore primarily be used to cross-calibrate other detectors such as the Gas Detector or the Direct Imager during LCLS commissioning. This document describes the design of the TE and summarizes the considerations and calculations that have led to it. This document summarizes the physics behind the operation of the Total Energy Monitor at LCLS and derives associated engineering specifications.