Sample records for concrete block structure

  1. Two innovative solutions based on fibre concrete blocks designed for building substructure

    NASA Astrophysics Data System (ADS)

    Pazderka, J.; Hájek, P.

    2017-09-01

    Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.

  2. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Case Histories of Corps Breakwater and Jetty Structures. Report 5. North Atlantic Division

    DTIC Science & Technology

    1988-11-01

    TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Breakwater REMR (Repair, Evaluation, Concrete armor units...Maintenance, and Rehabilitation) Jetty Rubble-mound structures 19. ABSTRACT (Continue on reverse if necessary and identify by block number) :-This...have been repaired since construction. Other construction materials that have been used include steel, dolosse, concrete cap, concrete block , and

  3. Effects of Interlocking and Supporting Conditions on Concrete Block Pavements

    NASA Astrophysics Data System (ADS)

    Mahapatra, Geetimukta; Kalita, Kuldeep

    2018-02-01

    Concrete Block Paving (CBP) is widely used as wearing course in flexible pavements, preferably under light and medium vehicular loadings. Construction of CBP at site is quick and easy in quality control. Usually, flexible pavement design philosophy is followed in CBP construction, though it is structurally different in terms of small block elements with high strength concrete and their interlocking aspects, frequent joints and discontinuity, restrained edge etc. Analytical solution for such group action of concrete blocks under loading in a three dimensional multilayer structure is complex and thus, the need of conducting experimental studies is necessitated for extensive understanding of the load—deformation characteristics and behavior of concrete blocks in pavement. The present paper focuses on the experimental studies for load transfer characteristics of CBP under different interlocking and supporting conditions. It is observed that both interlocking and supporting conditions affect significantly on the load transfer behavior in CBP structures. Coro-lock block exhibits better performance in terms of load carrying capacity and distortion behavior under static loads. Plate load tests are performed over subgrade, granular sub-base (GSB), CBP with and without GSB using different block shapes. For an example case, the comparison of CBP with conventional flexible pavement section is also presented and it is found that CBP provides considerable benefit in terms of construction cost of the road structure.

  4. Credit BG. Southeast and northeast facades of concrete block structure ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA

  5. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao Zhao; Faculty of Architecture, Civil Engineering and Environment Engineering and Mechanics, Sichuan University; Ling, Tung-Chai

    2011-08-15

    Highlights: > Solved the scientific and technological challenges impeding use of waste rubble derived from earthquake, by providing an alternative solution of recycling the waste in moulded concrete block products. > Significant requirements for optimum integration on the utilization of the waste aggregates in the production of concrete blocks are investigated. > A thorough understanding of the mechanical properties of concrete blocks made with waste derived from earthquake is reported. - Abstract: Utilization of construction and demolition (C and D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However,more » the presence of large quantities of crushed clay brick in some the C and D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates.« less

  6. Use of wastes derived from earthquakes for the production of concrete masonry partition wall blocks.

    PubMed

    Xiao, Zhao; Ling, Tung-Chai; Kou, Shi-Cong; Wang, Qingyuan; Poon, Chi-Sun

    2011-08-01

    Utilization of construction and demolition (C&D) wastes as recycled aggregates in the production of concrete and concrete products have attracted much attention in recent years. However, the presence of large quantities of crushed clay brick in some the C&D waste streams (e.g. waste derived collapsed masonry buildings after an earthquake) renders the recycled aggregates unsuitable for high grade use. One possibility is to make use of the low grade recycled aggregates for concrete block production. In this paper, we report the results of a comprehensive study to assess the feasibility of using crushed clay brick as coarse and fine aggregates in concrete masonry block production. The effects of the content of crushed coarse and fine clay brick aggregates (CBA) on the mechanical properties of non-structural concrete block were quantified. From the experimental test results, it was observed that incorporating the crushed clay brick aggregates had a significant influence on the properties of blocks. The hardened density and drying shrinkage of the block specimens decreased with an increase in CBA content. The use of CBA increased the water absorption of block specimens. The results suggested that the amount of crushed clay brick to be used in concrete masonry blocks should be controlled at less than 25% (coarse aggregate) and within 50-75% for fine aggregates. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Development of an In-Situ Decommissioning Sensor Network Test Bed for Structural Condition Monitoring - 12156

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeigler, Kristine E.; Ferguson, Blythe A.

    2012-07-01

    The Savannah River National Laboratory (SRNL) has established an In Situ Decommissioning (ISD) Sensor Network Test Bed, a unique, small scale, configurable environment, for the assessment of prospective sensors on actual ISD system material, at minimal cost. The Department of Energy (DOE) is presently implementing permanent entombment of contaminated, large nuclear structures via ISD. The ISD end state consists of a grout-filled concrete civil structure within the concrete frame of the original building. Validation of ISD system performance models and verification of actual system conditions can be achieved through the development a system of sensors to monitor the materials andmore » condition of the structure. The ISD Sensor Network Test Bed has been designed and deployed to addresses the DOE-Environmental Management Technology Need to develop a remote monitoring system to determine and verify ISD system performance. Commercial off-the-shelf sensors have been installed on concrete blocks taken from walls of the P Reactor Building at the Savannah River Site. Deployment of this low-cost structural monitoring system provides hands-on experience with sensor networks. The initial sensor system consists of groutable thermistors for temperature and moisture monitoring, strain gauges for crack growth monitoring, tilt-meters for settlement monitoring, and a communication system for data collection. Baseline data and lessons learned from system design and installation and initial field testing will be utilized for future ISD sensor network development and deployment. The Sensor Network Test Bed at SRNL uses COTS sensors on concrete blocks from the outer wall of the P Reactor Building to measure conditions expected to occur in ISD structures. Knowledge and lessons learned gained from installation, testing, and monitoring of the equipment will be applied to sensor installation in a meso-scale test bed at FIU and in future ISD structures. The initial data collected from the sensors installed on the P Reactor Building blocks define the baseline materials condition of the P Reactor ISD external concrete structure. Continued monitoring of the blocks will enable evaluation of the effects of aging on the P Reactor ISD structure. The collected data will support validation of the material degradation model and assessment of the condition of the ISD structure over time. The following are recommendations for continued development of the ISD Sensor Network Test Bed: - Establish a long-term monitoring program using the concrete blocks with existing sensor and/or additional sensors for trending the concrete materials and structural condition; - Continue development of a stand-alone test bed sensor system that is self-powered and provides wireless transmission of data to a user-accessible dashboard; - Develop and implement periodic NDE/DE characterization of the concrete blocks to provide verification and validation for the measurements obtained through the sensor system and concrete degradation model(s). (authors)« less

  8. Application of the self-diagnosis composite into concrete structure

    NASA Astrophysics Data System (ADS)

    Matsubara, Hideaki; Shin, Soon-Gi; Okuhara, Yoshiki; Nomura, Hiroshi; Yanagida, Hiroaki

    2001-04-01

    The function and performance of the self-diagnosis composites embedded in mortar/concrete blocks and concrete piles were investigated by bending tests and electrical resistance measurements. Carbon powder (CP) and carbon fiber (CF) were introduced in glass fiber reinforced plastics composites to obtain electrical conductivity. The CP composite has commonly good performances in various bending tests of block and pile specimens, comparing to the CF composite. The electrical resistance of the CP composite increases in a small strain to response remarkably micro-crack formation at about 200 (mu) strain and to detect well to smaller deformations before the crack formation. The CP composite possesses a continuous resistance change up to a large strain level near the final fracture of concrete structures reinforced by steel bars. The cyclic bending tests showed that the micro crack closed at unloading state was able to be evaluated from the measurement of residual resistance. It has been concluded that the self- diagnosis composite is fairly useful for the measurement of damage and fracture in concrete blocks and piles.

  9. Properties of concrete blocks prepared with low grade recycled aggregates.

    PubMed

    Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren

    2009-08-01

    Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.

  10. Durability of Bricks Coated with Red mud Based Geopolymer Paste

    NASA Astrophysics Data System (ADS)

    Singh, Smita; Basavanagowda, S. N.; Aswath, M. U.; Ranganath, R. V.

    2016-09-01

    The present study is undertaken to assess the durability of concrete blocks coated with red mud - fly ash based geopolymer paste. Concrete blocks of size 200 x 200 x 100mm were coated with geopolymer paste synthesized by varying the percentages of red mud and fly ash. Uncoated concrete blocks were also tested for the durability for comparison. In thermal resistance test, the blocks were subjected to 600°C for an hour whereas in acid resistance test, they were kept in 5% sulphuric acid solution for 4 weeks. The specimens were thereafter studied for surface degradation, strength loss and weight loss. Pastes with red mud percentage greater than 50% developed lot of shrinkage cracks. The blocks coated with 30% and 50% red mud paste showed better durability than the other blocks. The use of blocks coated with red mud - fly ash geopolymer paste improves the aesthetics, eliminates the use of plaster and improves the durability of the structure.

  11. The impact of temperature loading on massive concrete block resistance

    NASA Astrophysics Data System (ADS)

    Beran, Pavel; Kočí, Jan

    2017-07-01

    Very large and massive concrete blocks with thickness in interval 3.5 - 6 meters are often designed in cement industry. These massive blocks have high heat inertial and thus the thermal stress due to nonlinear temperature gradient in concrete block may occur. The coupled thermo-mechanical analysis of concrete block in Prague Czech Republic and Sterlitamak Russia was made. By the numerical model of concrete block was analyzed the typical year (called reference year) in particular localities. The results show that in concrete block the thermal stresses which are higher than the tensile strength of concrete originate. Therefore, the concrete block should be reinforced by steel rods. The values of stresses are markedly affected by climate. The significantly higher values of thermal stresses were detected in Sterlitamak than in Prague.

  12. 609th Iraqi National Guard Battalion Garrison, Thi Qar Governorate, Iraq

    DTIC Science & Technology

    2006-07-25

    views of structural members (reinforced concrete footers, columns , beams , floor, and roof slabs). Mechanical drawings included plumbing plans and...well as reinforced concrete columns and beams . The exterior walls were constructed with sand lime block. Although the assessment team did not...foundation support for the perimeter wall included reinforced concrete footers to support the columns and a reinforced concrete tie beam under the wall

  13. Laboratory testing of a building envelope segment based on cellular concrete

    NASA Astrophysics Data System (ADS)

    Fořt, Jan; Pavlík, Zbyšek; Černý, Robert

    2016-07-01

    Hygrothermal performance of a building envelope based on cellular concrete blocks is studied in the paper. Simultaneously, the strain fields induced by the heat and moisture changes are monitored. The studied wall is exposed to the climatic load corresponding to the winter climatic conditions of the moderate year for Prague. The winter climatic exposure is chosen in order to simulate the critical conditions of the building structure from the point of view of material performance and temperature and humidity loading. The evaluation of hygrothermal performance of a researched wall is done on the basis of relative humidity and temperature profiles measured along the cross section of the cellular concrete blocks. Strain gauges are fixed on the wall surface in expected orientation of the blocks expansion. The obtained results show a good hygrothermal function of the analyzed cellular concrete wall and its insignificant strain.

  14. Numerical analysis and comparison of three types of herringbone frame structure for highway subgrade slopes protection

    NASA Astrophysics Data System (ADS)

    Nie, Yihua; Tang, Saiqian; Xu, Yang; Mao, Kunli

    2018-04-01

    In order to obtain mechanical response distribution of herringbone frame structure for highway subgrade slopes protection and select the best structure type, 3D numerical models of three types herringbone frame structure were established and analyzed in finite element software ANSYS. Indoor physical model of soil slope protected by herringbone frame structure was built and mechanical response of the frame structure was measured by loading tests. Numerical results indicate slope foot is the stress most disadvantageous location. Comparative analysis shows that structure composed of mortar rubble base layer and precast concrete blocks paving layer is the best one for resisting deformation and structure with cement mortar base layer and precast concrete blocks paving layer is the best one for being of low stress.

  15. Strength of masonry blocks made with recycled concrete aggregates

    NASA Astrophysics Data System (ADS)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  16. A comment on towers for windmills. [structural and economic criteria

    NASA Technical Reports Server (NTRS)

    Budgen, H. P.

    1973-01-01

    Design considerations for windmill tower structures include the effects of normal wind forces on the rotor and on the tower. Circular tabular or masonry towers present a relatively simple aerodynamic solution. Economic factors establish the tubular tower as superior for small and medium sized windmills. Concrete and standard concrete block designs are cheaper than refabricated steel structures that have to be freighted.

  17. Modeling Framework for Fracture in Multiscale Cement-Based Material Structures

    PubMed Central

    Qian, Zhiwei; Schlangen, Erik; Ye, Guang; van Breugel, Klaas

    2017-01-01

    Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem for the integrated system of cement paste, mortar, and concrete. The block-by-block technique is employed to solve the length scale overlap challenge between the mortar level (0.1–10 mm) and the concrete level (1–40 mm). The microstructures of cement paste are simulated by the HYMOSTRUC3D model, and the material structures of mortar and concrete are simulated by the Anm material model. Afterwards the 3D lattice fracture model is used to evaluate their mechanical performance by simulating a uniaxial tensile test. The simulated output properties at a lower scale are passed to the next higher scale to serve as input local properties. A three-level multiscale lattice fracture analysis is demonstrated, including cement paste at the micrometer scale, mortar at the millimeter scale, and concrete at centimeter scale. PMID:28772948

  18. CONCRETE BLOCKS' ADVERSE EFFECTS ON INDOOR AIR AND RECOMMENDED SOLUTIONS

    EPA Science Inventory

    Air infiltration through highly permeable concrete blocks can allow entry of various serious indoor air pollutants. An easy approach to avoiding these pollutants is to select a less–air-permeable concrete block. Tests show that air permeability of concrete blocks can vary by a fa...

  19. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements

    PubMed Central

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-01-01

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface. PMID:28327510

  20. Monitoring Concrete Deterioration Due to Reinforcement Corrosion by Integrating Acoustic Emission and FBG Strain Measurements.

    PubMed

    Li, Weijie; Xu, Changhang; Ho, Siu Chun Michael; Wang, Bo; Song, Gangbing

    2017-03-22

    Corrosion of concrete reinforcement members has been recognized as a predominant structural deterioration mechanism for steel reinforced concrete structures. Many corrosion detection techniques have been developed for reinforced concrete structures, but a dependable one is more than desired. Acoustic emission technique and fiber optic sensing have emerged as new tools in the field of structural health monitoring. In this paper, we present the results of an experimental investigation on corrosion monitoring of a steel reinforced mortar block through combined acoustic emission and fiber Bragg grating strain measurement. Constant current was applied to the mortar block in order to induce accelerated corrosion. The monitoring process has two aspects: corrosion initiation and crack propagation. Propagation of cracks can be captured through corresponding acoustic emission whereas the mortar expansion due to the generation of corrosion products will be monitored by fiber Bragg grating strain sensors. The results demonstrate that the acoustic emission sources comes from three different types, namely, evolution of hydrogen bubbles, generation of corrosion products and crack propagation. Their corresponding properties are also discussed. The results also show a good correlation between acoustic emission activity and expansive strain measured on the specimen surface.

  1. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... configuration. (a) Concrete blocks. Installation instructions for concrete block piers must be developed in...-bearing (not decorative) concrete blocks must have nominal dimensions of at least 8 inches × 8 inches × 16 inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When...

  2. Concrete Block Pavements

    DTIC Science & Technology

    1983-03-01

    concrete paving block ( Van der Vlist 1980). The concrete paving block was readily accepted as a substitute for the scarce paving brick and today has...seen in Figure 4, its growth.has been steady ( Van der Vlist 1980). 20 15 0< 0. n 10 1𔃺 978 960 1 62 63 64 65 66 67 68 6970 71 72 73 74 7678 7778 79...Figure 4. Concrete paving block production in the Netherlands ( Van der Vlist 1980) 8. The use of concrete paving block in the Netherlands developedI

  3. TOPICAL REVIEW: Smart aggregates: multi-functional sensors for concrete structures—a tutorial and a review

    NASA Astrophysics Data System (ADS)

    Song, Gangbing; Gu, Haichang; Mo, Yi-Lung

    2008-06-01

    This paper summarizes the authors' recent pioneering research work in piezoceramic-based smart aggregates and their innovative applications in concrete civil structures. The basic operating principle of smart aggregates is first introduced. The proposed smart aggregate is formed by embedding a waterproof piezoelectric patch with lead wires into a small concrete block. The proposed smart aggregates are multi-functional and can perform three major tasks: early-age concrete strength monitoring, impact detection and structural health monitoring. The proposed smart aggregates are embedded into the desired location before the casting of the concrete structure. The concrete strength development is monitored by observing the high frequency harmonic wave response of the smart aggregate. Impact on the concrete structure is detected by observing the open-circuit voltage of the piezoceramic patch in the smart aggregate. For structural health monitoring purposes, a smart aggregate-based active sensing system is designed for the concrete structure. Wavelet packet analysis is used as a signal-processing tool to analyze the sensor signal. A damage index based on the wavelet packet analysis is used to determine the structural health status. To better describe the time-history and location information of damage, two types of damage index matrices are proposed: a sensor-history damage index matrix and an actuator-sensor damage index matrix. To demonstrate the multi-functionality of the proposed smart aggregates, different types of concrete structures have been used as test objects, including concrete bridge bent-caps, concrete cylinders and a concrete frame. Experimental results have verified the effectiveness and the multi-functionality of the proposed smart aggregates. The multi-functional smart aggregates have the potential to be applied to the comprehensive monitoring of concrete structures from their earliest stages and throughout their lifetime.

  4. Clogging in permeable concrete: A review.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 5. "TEST STAND 13, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. "TEST STAND 1-3, CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/17, Rev. A. Stamped: AS BUILT; NO CHANGES. Date of Revision A: 11/1/50. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  6. Sinabung Volcanic Ash Utilization As The Additive for Paving Block Quality A and B

    NASA Astrophysics Data System (ADS)

    Sembiring, I. S.; Hastuty, I. P.

    2017-03-01

    Paving block is one of the building materials used as the top layer of the road structure besides asphalt and concrete. Paving block is made of mixed materials such as portland cement or other adhesive materials, water and aggregate. In this research, the material used as the additive of cement and concrete is volcanic ash from Mount Sinabung, it is based on the results of the material testing, Sinabung ash contains 74.3% silica (SiO2). The purpose of this research aims to analyze the behavior of the paving blocks quality A and B with and without a mixture of Sinabung ash, to analyze the workability of fresh concrete using Sinabung ash as an additive in concrete, and to compare the test results of paving blocks with and without using Sinabung ash. The samples that we made consist of four variations of the concrete mix to experiment a mixture of normal sample without additive, samples which are mixed with the addition of Sinabung ash 5%, 10%, 15%, 20% and 25% of the volume of concrete/m3. Each variation consists of 10 samples of the concrete with 28 days curing time period. We will do the compressive strength and water absorption test to the samples to determine whether the samples are in accordance with the type needed. According to the test result, paving blocks with Sinabung ash and curing time reach quality A at 0%, 5% and 10% mixture with the compressive strength of each 50.14 MPa, 46.20 MPa and 1.49Mpa, and reach quality B at 15%, 20 %,25% mixture with curing time and 0%, 5%, 10%, 15%, 20% and 25% mixture without curing time. According to the absorption values we got from the test which are 6.66%, 6.73%, 6.88%, 7.03%, 7.09% and 7.16%, the entire sample have average absorption exceeding SNI standardization which is above 6% and reach quality C. Based on compressive strength and absorption data obtained Sinabung ash can’t fully replace cement as the binder because of the low CaO content.

  7. Friction evaluation of concrete paver blocks for airport pavement applications

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1992-01-01

    The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.

  8. Experimental stress analysis of large plastic deformations in a hollow sphere deformed by impact against a concrete block

    NASA Technical Reports Server (NTRS)

    Morris, R. E.

    1973-01-01

    An experimental plastic strain measurement system is presented for use on the surface of high velocity impact test models. The system was used on a hollow sphere tested in impact against a reinforced concrete block. True strains, deviatoric stresses, and true stresses were calculated from experimental measurements. The maximum strain measured in the model was small compared to the true failure strain obtained from static tensile tests of model material. This fact suggests that a much greater impact velocity would be required to cause failure of the model shell structure.

  9. The application research of microwave nondestructive testing and imaging based on ω-k algorithm

    NASA Astrophysics Data System (ADS)

    Qi, Shengxiang; Ren, Jian; Gu, Lihua; Xu, Hui; Wang, Yuanbo

    2017-07-01

    The Bridges had collapsed accidents in recent years due to bridges quality problems. Therefore, concretes nondestructive testing are particularly important. At present, most applications are Ground Penetrating Radar (GPR) technology in the detection of reinforced concretes structure. GPR are used the pulse method which alongside with definitive advantages, but the testing of the internal structure of the small thickness concretes has very low resolution by this method. In this paper, it's the first time to use the ultra-wideband (UWB) stepped frequency conversion radar above problems. We use vector network analyzer and double ridged horn antenna microwave imaging system to test the reinforced concretes block. The internal structure of the concretes is reconstructed with a method of synthetic aperture of ω-k algorithm. By this method, the depth of the steel bar with the diameter of 1cm is shown exactly in the depth of 450mm×400mm×500mm and the depth error do not exceed 1cm.

  10. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  11. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  12. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  13. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... top to the bottom of the pier must not exceed one-half inch. (5) Mortar is not required, unless... not exceeded. Mortar is not required for concrete block piers, unless otherwise specified in the..., in accordance with acceptable engineering practice. Mortar is not required for concrete block piers...

  14. 4. "TEST STAND NO. 13, CONCRETE STRUCTURAL PLAN AND ELEVATION." ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. "TEST STAND NO. 1-3, CONCRETE STRUCTURAL PLAN AND ELEVATION." Specifications No. OC11-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/12 REV. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04-353 Eng. 177, Rev. E; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-3, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  15. 11. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/15, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  16. 13. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/18, Rev. D. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. D, no change; Date: 18 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  17. 9. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. ENG 04-35350-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/13. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, no change; Date: 17 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  18. 10. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-04; no sheet number within title block. D.O. SERIES 1109/14, Rev. B. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. B; Date: 21 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  19. 12. "TEST STANDS NOS. 11, 13, & 15; CONCRETE STRUCTURAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. "TEST STANDS NOS. 1-1, 1-3, & 1-5; CONCRETE STRUCTURAL SECTIONS AND DETAILS." Specifications No. OC12-50-10; Drawing No. 60-09-06; no sheet number within title block. D.O. SERIES 1109/16, Rev. E. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract DA-04353 Eng. 177, Rev. E; Date: 26 Dec. 1951. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-5, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA

  20. On the use of ground penetrating radar to detect rebar corrosion in concrete structures

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Ellis, Shelby

    2018-04-01

    Two new studies are summarized in this paper. In the first, we compare recent GPR measurements on the same bridge to those obtained in 2012. The newer measurements use both the 1.6 GHz antenna used in the earlier work and an alternative higher frequency antenna (2.6 GHz). We discuss similarities and differences between the old and new results at 1.6 GHz, and also summarize the effect of the frequency change on the newer measurements. Many factors can contribute to the strength of the GPR echo seen from a given rebar, including the rebar's length, its distance from and tilt angle relative to the antenna, and the location and size of the metal-loss region. In the second section of the paper we discuss new laboratory measurements to systematically investigate these geometric effects. In 2016 we studied such effects using a simplified measurement setup where only an air layer separated the antenna from the rebar. Here we discuss similar measurements simulating rebar embedded in concrete. For our concrete "phantom" we use a layer of moist sand in between two parallel concrete blocks. When the moisture content is properly chosen, the EM properties of sand are similar to those of cured concrete. The block/sand/block sandwich then serves as a concrete-like medium in which a rebar can be inserted and readily repositioned. Results of GPR measurements using this new sandwich approach are reported and compared with those of the earlier "air layer only" measurements.

  1. Masonry Specialist I & II, 3-19. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, plan of instruction, study guides, and workbooks for use in training masonry specialists. Covered in the course blocks are an introduction to masonry and rigid concrete structures. The introduction to masonry, course block I, deals with safety, mathematics and…

  2. Are Abstract and Concrete Concepts Organized Differently? Evidence from the Blocked Translation Paradigm

    ERIC Educational Resources Information Center

    Zhang, Xiaohong; Han, Zaizhu; Bi, Yanchao

    2013-01-01

    Using the blocked-translation paradigm with healthy participants, we examined Crutch and Warrington's hypothesis that concrete and abstract concepts are organized by distinct principles: concrete concepts by semantic similarities and abstract ones by associations. In three experiments we constructed two types of experimental blocking (similar…

  3. Detection of active corrosion in reinforced and prestressed concrete: overview of NIST TIP project

    NASA Astrophysics Data System (ADS)

    Gonzalez-Nunez, M. A.; Nanni, A.; Matta, F.; Ziehl, P.

    2011-04-01

    The US transportation infrastructure has been receiving intensive public and private attention in recent years. The Federal Highway Administration estimates that 42 percent of the nearly 600,000 bridges in the Unites States are in need of structural or functional rehabilitation1. Corrosion of reinforcement steel is the main durability issue for reinforced and prestressed concrete structures, especially in coastal areas and in regions where de-icing salts are regularly used. Acoustic Emission (AE) has proved to be a promising method for detecting corrosion in steel reinforced and prestressed concrete members. This type of non-destructive test method primarily measures the magnitude of energy released within a material when physically strained. The expansive ferrous byproducts resulting from corrosion induce pressure at the steel-concrete interface, producing longitudinal and radial microcracks that can be detected by AE sensors. In the experimental study presented herein, concrete block specimens with embedded steel reinforcing bars and strands were tested under accelerated corrosion to relate the AE activity with the onset and propagation stages of corrosion. AE data along with half cell potential measurements and galvanic current were recorded to examine the deterioration process. Finally, the steel strands and bars were removed from the specimens, cleaned and weighed. The results were compared vis-à-vis Faraday's law to correlate AE measurements with degree of corrosion in each block.

  4. Sustainable management and utilisation of concrete slurry waste: A case study in Hong Kong.

    PubMed

    Hossain, Md Uzzal; Xuan, Dongxing; Poon, Chi Sun

    2017-03-01

    With the promotion of environmental protection in the construction industry, the mission to achieve more sustainable use of resources during the production process of concrete is also becoming important. This study was conducted to assess the environmental sustainability of concrete slurry waste (CSW) management by life cycle assessment (LCA) techniques, with the aim of identifying a resource-efficient solution for utilisation of CSW in the production of partition wall blocks. CSW is the dewatered solid residues deposited in the sedimentation tank after washing out over-ordered/rejected fresh concrete and concrete trucks in concrete batching plants. The reuse of CSW as recycled aggregates or a cementitious binder for producing partition wall blocks, and the life cycle environmental impact of the blocks were assessed and compared with the conventional one designed with natural materials. The LCA results showed that the partition wall blocks prepared with fresh CSW and recycled concrete aggregates achieved higher sustainability as it consumed 59% lower energy, emitted 66% lower greenhouse gases, and produced lesser amount of other environmental impacts than that of the conventional one. When the mineral carbonation technology was further adopted for blocks curing using CO 2 , the global warming potential of the corresponding blocks production process was negligible, and hence the carbonated blocks may be considered as carbon neutral eco-product. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Proceedings of the Workshop on Measurement and Analysis of Structural Response in Concrete Armor Units Held in Vicksburg, Mississippi on 23-24 January 1985

    DTIC Science & Technology

    1988-02-01

    57 Summary--"Comments from Dr. Hans Burcharth" ............81 "Strength of Armour Blocks...335 APPENDICES........................................................ 387 A--"Strength of Concrete Armour Units for Breakwaters"’ --Delft...STAT!STICS DESIGN WAVE CLIMATE PRELIMINARY DESIGN CALCULATION OF ARMOUR STABILIY ETC MODEL TESTS OF PRELIMINARY DESIGN FINAL DESIGN Figure 1. Ideal

  6. Properties of concrete containing foamed concrete block waste as fine aggregate replacement

    NASA Astrophysics Data System (ADS)

    Muthusamy, K.; Budiea, A. M. A.; Zaidan, A. L. F.; Rasid, M. H.; Hazimmah, D. S.

    2017-11-01

    Environmental degradation due to excessive sand mining dumping at certain places and disposal of foamed concrete block waste from lightweight concrete producing industry are issues that should be resolved for a better and cleaner environment of the community. Thus, the main intention of this study is to investigate the potential of foamed concrete block waste as partial sand replacement in concrete production. The foamed concrete waste (FCW) used in this research that were supplied by a local lightweight concrete producing industry. The workability and compressive strength of concrete containing various percentage of foamed concrete waste as partial sand replacement has been investigated. Prior to the use, the foamed concrete waste were crushed to produce finer particles. Six concrete mixes containing various content of crushed foamed concrete waste that are 0%, 10%, 20%, 30%, 40% and 50% were used in this experimental work. Then the prepared specimens were placed in water curing until the testing age. Compressive strength test and flexural strength tests were conducted at 7, 14 and 28 days. The result shows that integration of crushed foamed concrete waste as partial sand replacement in concrete reduces the mix workability. It is interesting to note that both compressive strength and flexural strength of concrete improves when 30% crushed foamed concrete waste is added as partial sand replacement.

  7. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  8. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  9. The Streambank Erosion Control Evaluation and Demonstration Act of 1974, Section 32, Public Law 93-251. Appendix G. Demonstration Projects on Other Streams, Nationwide. Volume 1.

    DTIC Science & Technology

    1981-12-01

    Haverhill, a gabion mattress ( revet - ment) underlaid with filter fabric was placed on the bank. (2) Concrete Blocks . Precast concrete blocks with filter... revetment - precast cellular concrete block mattress, used auto tire wall and used auto tire mattress. All three revetment panels included vegetative...DISTRIBUTION STATEMENT A NOV 81982 Approved fog public release; ,.* Diatribuatofl UnlimitedB - A. B .4. R ock roe With Tie-Backs Precast Block Paving

  10. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... block piers. 3285.306 Section 3285.306 Housing and Urban Development Regulations Relating to Housing and....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame... blocks, 8 inches “ 8 inches “ 16 inches, when the design capacity of the block is not exceeded. (2) The...

  11. Analysis of structural diseases in widened structure due to the shrinkage and creep difference of new bridge

    NASA Astrophysics Data System (ADS)

    Wu, Wenqing; Zhang, Hui

    2018-03-01

    In order to investigate the possible structural diseases brought to the top flange of existing prestressed concrete box girder bridge due to the shrinkage and creep difference between new and old bridge, the stress state of the existing box girder before and after widening and the mechanisms of potential structural diseases were analyzed using finite element method in this paper. Results showed that the inner flange of the old box girder were generally in the state of large tensile stress, the main reason for which was the shrinkage and creep effect difference of the new and old bridge. And the tensile stress was larger than tensile strength of C50 concrete, which would most likely cause crack in the deck plate of box girder. Hence, reinforcement measures are needed to be designed carefully. Meanwhile, the transverse deformation of widened structure had exceeded the distance between the anti-seismic block and the web of box girder at the end cross section, which would squeeze anti-seismic block severely. Therefore, it is necessary to limit the length of continuous bridge in need of widening.

  12. Digital Alchemy for Materials Design: Colloids and Beyond

    NASA Astrophysics Data System (ADS)

    van Anders, Greg; Klotsa, Daphne; Karas, Andrew; Dodd, Paul; Glotzer, Sharon

    Starting with the early alchemists, a holy grail of science has been to make desired materials by manipulating basic building blocks. Building blocks that show promise for assembling new complex materials can be synthesized at the nanoscale with attributes that would astonish the ancient alchemists in their versatility. However, this versatility means that connecting building-block attributes to bulk structure is both necessary for rationally engineering materials and difficult because building block attributes can be altered in many ways. We show how to exploit the malleability of colloidal nanoparticle ``elements'' to quantitatively link building-block attributes to bulk structure through a statistical thermodynamic framework we term ``digital alchemy''. We use this framework to optimize building blocks for a given target structure and to determine which building-block attributes are most important to control for self-assembly, through a set of novel thermodynamic response functions. We thereby establish direct links between the attributes of colloidal building blocks and the bulk structures they form. Moreover, our results give concrete solutions to the more general conceptual challenge of optimizing emergent behaviors in nature and can be applied to other types of matter.

  13. Comminution and sizing processes of concrete block waste as recycled aggregates.

    PubMed

    Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C

    2015-11-01

    Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Understanding the scabbling of concrete using microwave energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttress, A.J., E-mail: adam.buttress@nottingham.ac.uk; Jones, D.A.; Dodds, C.

    2015-09-15

    Concrete blocks supplied by the UK Sellafield nuclear site were treated with microwave energy using a 15 kW system operating at 2.45 GHz. The effect of aggregate type (Whinstone, Gravel and Limestone); standoff distance; and effect of surface coating were studied to determine their influence on the systems performance in terms of mass and area removal rates and evaluate the controllability of the process. All blocks were scabbled successfully, with mass and area removal rates averaging 11.3 g s{sup −} {sup 1} and 3 cm s{sup −} {sup 1} respectively on treating large areas to a depth of 25 mm.more » The use of a Kevlar barrier between the block and applicator was found to significantly reduce the generation of dust as only 1.6% of the scabbled mass was in the < 106 μm — that generally considered to be airborne. Importantly Brazilian disc testing of the scabbled block showed that the process did not adversely affect structural properties of the test blocks after treatment.« less

  15. Precast concrete unit assessment through GPR survey and FDTD modelling

    NASA Astrophysics Data System (ADS)

    Campo, Davide

    2017-04-01

    Precast concrete elements are widely used within United Kingdom house building offering ease in assembly and added values as structural integrity, sound and thermal insulation; most common concrete components include walls, beams, floors, panels, lintels, stairs, etc. The lack of respect of the manufacturer instruction during assembling, however, may induce cracking and short/long term loss of bearing capacity. GPR is a well-established not destructive technique employed in the assessment of structural elements because of real-time imaging, quickness of data collecting and ability to discriminate finest structural details. In this work, GPR has been used to investigate two different precast elements: precast reinforced concrete planks constituting the roof slab of a school and precast wood-cement blocks with insulation material pre-fitted used to build a perimeter wall of a private building. Visible cracks affected both constructions. For the assessment surveys, a GSSI 2.0 GHz GPR antenna has been used because of the high resolution required and the small size of the antenna case (155 by 90 by 105mm) enabling scanning up to 45mm from any obstruction. Finite Difference Time Domain (FDTD) numerical modelling was also performed to build a scenario of the expected GPR signal response for a preliminary real-time interpretation and to help solve uncertainties due to complex reflection patterns: simulated radargrams were built using Reflex Software v. 8.2, reproducing the same GPR pulse used for the surveys in terms of wavelet, nominal frequency, sample frequency and time window. Model geometries were derived from the design projects available both for the planks and the blocks; the electromagnetic properties of the materials (concrete, reinforcing bars, air-filled void, insulation and wooden concrete) were inferred from both values reported in literature and a preliminary interpretation of radargrams where internal layer interfaces were clearly recognizable and univocally interpretable. Simulated and real radargrams comparison demonstrated that, in both cases, manufacturer instructions were not fully respected and confirmed GPR as a fast and effective structural assessment technique with the support of FDTD modelling as data interpretation validating method when complex reflection patterns are observed. GPR findings will be then used to address the intrusive coring necessary to evaluate the compressive strength of the concrete and, in synergy with the intrusive survey results, to plan properly corrective actions to ensure the stability of the structures and guarantee the usability.

  16. The Utilisation of Shredded PET as Aggregate Replacement for Interlocking Concrete Block

    NASA Astrophysics Data System (ADS)

    Mokhtar, M.; Kaamin, M.; Sahat, S.; Hamid, N. B.

    2018-03-01

    The consumption of plastic has grown substantially all over the world in recent years and this has created huge quantities of plastic-based waste. Plastic waste is now a serious environmental threat to the modern way of living, although steps were taken to reduce its consumption. This creates substantial garbage every day, which is much unhealthy. Plastic bottles such as Polyethylene terephthalate (PET) was use as the partially component in this making of interlocking blocks concrete. This project investigates the strength and workability of the interlocking block concrete by replacing course aggregate with % PET. The suitability of recycled plastics (PET) as course aggregate in interlocking block concrete and its advantages are discussed here. Moreover, there were more benefits when using interlocking block than using conventional block such as it easy for construction because they are aligning, easy to place, high speed stacking and they offer more resistance to shear and buildings would be even stronger. Based on the test perform, the failure parameter were discussed .From the compressive strength test result, it shows that the strength of concrete block decreased with increased of PET used. From the results, it shows that higher compressive strength was found with 5% natural course aggregate replaced with PET compared to other percentages.

  17. Masonry Specialist III & IV, 3-20. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    These military-developed curriculum materials consist of a course description, plan of instruction, study guides, and workbooks for use in training masonry specialists. Covered in the course blocks are laying concrete blocks, stone, and bricks as well as plaster, stucco, and tile. Course block III, on laying concrete blocks, stone, and bricks,…

  18. Utilization of fly ash and ultrafine GGBS for higher strength foam concrete

    NASA Astrophysics Data System (ADS)

    Gowri, R.; Anand, K. B.

    2018-02-01

    Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bech, H.; Haugsen, P.B.

    The Norwegian Oil Company, Saga Petroleum a.s., is operator on two promising deep water blocks in the Norwegian sector of the North Sea. As a result, the company has introduced a new platform concept designed specifically for hostile and deep water areas. The platform idea is the result of a systematic innovation procedure. The first step was to analyze and describe the functions of the different structural elements on a general basis. Next was to analyze how these elements contributed to the total concept. The final development stage was to create a new solution. The resulting (hybrid platform design conceptmore » appears to offer a number of inherent deck layout and towout deck weight advantages). The concrete substructure is a lower unit consisting of a foundation with concrete skirts that will penetrate the soft soil in the seabed and a high concrete caisson extending up from the foundation, which is made up of seven cells with varying concrete thicknesses, terminating in domes. The upper steel platform section is a lattice-type jacket structure. There is a separate column for internal personnel access between the platform deck and the concrete caisson.« less

  20. 23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK CONSTRUCTION. INEEL PHOTO NUMBER NRTS-59-4305. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID

  1. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Love, Lonnie J.; Lloyd, Peter D.

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  2. Ultrasonic linear array validation via concrete test blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoegh, Kyle, E-mail: hoeg0021@umn.edu; Khazanovich, Lev, E-mail: hoeg0021@umn.edu; Ferraro, Chris

    2015-03-31

    Oak Ridge National Laboratory (ORNL) comparatively evaluated the ability of a number of NDE techniques to generate an image of the volume of 6.5′ X 5.0′ X 10″ concrete specimens fabricated at the Florida Department of Transportation (FDOT) NDE Validation Facility in Gainesville, Florida. These test blocks were fabricated to test the ability of various NDE methods to characterize various placements and sizes of rebar as well as simulated cracking and non-consolidation flaws. The first version of the ultrasonic linear array device, MIRA [version 1], was one of 7 different NDE equipment used to characterize the specimens. This paper dealsmore » with the ability of this equipment to determine subsurface characterizations such as reinforcing steel relative size, concrete thickness, irregularities, and inclusions using Kirchhoff-based migration techniques. The ability of individual synthetic aperture focusing technique (SAFT) B-scan cross sections resulting from self-contained scans are compared with various processing, analysis, and interpretation methods using the various features fabricated in the specimens for validation. The performance is detailed, especially with respect to the limitations and implications for evaluation of a thicker, more heavily reinforced concrete structures.« less

  3. In Situ Resource-Based Lunar and Martian Habitat Structures Development at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Fiske, Michael R.; McGregory, Walter; Pope, Regina D.

    2005-01-01

    As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory. (MDL).

  4. In-situ Resource-based Lunar and Martian Habitat Structures Development at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Burks, Kevin H.; Fiske, Michael R.; Strong, Janet D.; McGregor, Walter

    2005-01-01

    As the nation prepares to return to the Moon and subsequently to Mars, it is apparent that the viability of long duration visits with appropriate radiation shielding/crew protection, hinges on the development of habitat structures, preferably in advance of a manned landing, and preferably utilizing in-situ resources. A relatively large number of habitat structure configurations can be developed from a relatively small set of in-situ resource-based construction products, including, blocks, raw regolith, reinforced concrete, and glass products. A much larger group of habitat designs can be developed when "imported" material are brought from Earth, including thin films and liners, and foldable, or expandable metal structures. These, and other technologies have been identified, and subjected to a rigorous trade study evaluation with respect to exploration and other performance criteria. In this paper, results of this trade study will be presented, as well as various habitat structure design concepts and concepts for construction automation. Results of initial tests aimed at concrete, block and glass production using Lunar regolith simulants will also be presented. Key issues and concerns will be discussed, as well as design concepts for a Lunar environment testbed to be developed at MSFC's Microgravity Development Laboratory (MDL).

  5. Detection of rebar delamination using modal analysis

    NASA Astrophysics Data System (ADS)

    Blodgett, David W.

    2003-08-01

    A non-destructive method for early detection of reinforcement steel bars (re-bar) delamination in concrete structures has been developed. This method, termed modal analysis, has been shown effective in both laboratory and field experiments. In modal analysis, an audio speaker is used to generate flexural resonant modes in the re-bar in reinforced concrete structures. Vibrations associated with these modes are coupled to the surrounding concrete and propagate to the surface where they are detected using a laser vibrometer and/or accelerometer. Monitoring both the frequency and amplitude of these vibrations provides information on the bonding state of the embedded re-bar. Laboratory measurements were performed on several specially prepared concrete blocks with re-bar of varying degrees of simulated corrosion. Field measurements were performed on an old bridge about to be torn down in Howard County, Maryland and the results compared with those obtained using destructive analysis of the bridge after demolition. Both laboratory and field test results show this technique to be sensitive to re-bar delamination.

  6. Preliminary Specifications for Standard Concrete Ties and Fastenings for Transit Track

    DOT National Transportation Integrated Search

    1979-01-01

    These revised specifications cover requirements for component materials, manufacturing procedures, and handling of mono-block and two-block concrete (prestressed) cross ties, pads, and insulators for rapid transit use. It also includes requirements f...

  7. 17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    17. DETAIL OF STEEL STOPS AT WEST END OF MOBILE SERVICE STRUCTURE RAIL WITH STEEL STOPS AND CONCRETE TIE-DOWN BLOCK; VIEW TO NORTHWEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28416, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  8. Fort Belvoir’s Engineer Replacement Training Center

    DTIC Science & Technology

    2011-12-01

    investing in permanent buildings of brick and tile. Makers of concrete and cinder blocks, cement siding, structural steel, and asbestos sheeting...in 1917. Hundreds of temporary wooden buildings and other structures , lining a central parade/training ground, were quickly built at a new...typical barracks building was considered significant because of the new technologies employed, including the standardization of plans, prefabrication of

  9. Activation experiment for concrete blocks using thermal neutrons

    NASA Astrophysics Data System (ADS)

    Okuno, Koichi; Tanaka, Seiichiro

    2017-09-01

    Activation experiments for ordinary concrete, colemanite-peridotite concrete, B4C-loaded concrete, and limestone concrete are carried out using thermal neutrons. The results reveal that the effective dose for gamma rays from activated nuclides of colemanite-peridotite concrete is lower than that for the other types of concrete. Therefore, colemanite-peridotite concrete is useful for reducing radiation exposure for workers.

  10. Rockfall vulnerability assessment for masonry buildings

    NASA Astrophysics Data System (ADS)

    Mavrouli, Olga

    2015-04-01

    The methodologies for the quantitative risk assessment vary in function of the application scale and the available data. For fragmental rockfalls, risk calculation requires data for the expected damage of the exposed elements due to potential rock block impacts with a range of trajectories, magnitudes and intensities. Although the procedures for the quantification of the rock block characteristics in terms of magnitude-frequency relationships are well established, there are few methodologies for the calculation of the vulnerability, and these are usually empirical or judgmental. The response of buildings to rock block impacts using analytical methods has been mainly realised so far for reinforced concrete buildings, and some fragility curves have been calculated with the results, indicating the potential damage for a range of rock block characteristics. Masonry buildings, as a common structural typology in mountainous areas, are in many cases impacted by rock blocks during rockfalls. Their response presents some peculiarities in comparison with reinforced-concrete structures given the non-homogeneity and variability of the compound materials (blocks and mortar), their orthotropy, low strength in tension, the statically indeterminate load-bearing system and the non-monolithic connections. To this purpose, analytical procedures which are specifically adapted to masonry structures should be used for the evaluation of the expected damage due to rock impacts. In this contribution we discuss the application of the analytical approach for the assessment of the expected damage in rockfall prone areas and the simulation assumptions that can be made concerning the materials, geometry, loading and the relevant simplifications. The amount of uncertainties introduced during their analytical simulation is high due to the dispersion of the data for material mechanical properties and the construction techniques and quality and thus a probabilistic assessment is suggested. The random nature of the rockfall as far as it concerns the magnitude and the intensity of the rock blocks can also be introduced using parametric analyses.

  11. Masonry Specialist.

    ERIC Educational Resources Information Center

    Air Force Training Command, Sheppard AFB, TX.

    This instructional package is intended for use in training Air Force personnel enrolled in a program for apprentice masons. Training includes an introduction to masonry and provides instruction in the use of masons' hand, portable power, and shop tools; construction and maintenance of masonry structures using brick, concrete block, and tile;…

  12. Experimental Study on Impermeability of Recycled Concrete

    NASA Astrophysics Data System (ADS)

    Wang, Shao Zhen; Yang, Jian Gong; Wei, Lu

    2018-06-01

    Recycled concrete is a kind of concrete which is constructed by crushing and removing the building waste and concrete blocks and mixing them according to a certain proportion after grading. In this study, the applicability of recycled concrete is studied only in terms of impermeability.

  13. Mosquito larvicidal effectiveness of EcoBio-Block S: a novel integrated water-purifying concrete block formulation containing insect growth regulator pyriproxyfen.

    PubMed

    Kawada, Hitoshi; Saita, Susumu; Shimabukuro, Kozue; Hirano, Masachika; Koga, Masayuki; Iwashita, Toshiaki; Takagi, Masahiro

    2006-09-01

    EcoBio-Block S, a novel controlled release system (CRS) for the insect growth regulator pyriproxyfen, uses a water-purifying concrete block system (EcoBio-Block) composed of a porous volcanic rock and cement, and it incorporates the aerobic bacterial groups of Bacillus subtilis natto. EcoBio-Block S showed high inhibitory activity against mosquito emergence as well as a water-purifying effect. Chemical analysis and bioassay showed that EcoBio-Block S provides a high-performance CRS that controls the release of pyriproxyfen at low levels according to "zero order kinetics".

  14. Axial Compression Behavior of a New Type of Prefabricated Concrete Sandwich Wall Panel

    NASA Astrophysics Data System (ADS)

    Qun, Xie; Shuai, Wang; Chun, Liu

    2018-03-01

    A novel type of prefabricated concrete sandwich wall panel which could be used as a load-bearing structural element in buildings has been presented in this paper. Compared with the traditional sandwich panels, there are several typical characteristics for this wall system, including core columns confined by spiral stirrup along the cross-section of panel with 600mm spacing, precast foamed concrete block between two structural layers as internal insulation part, and a three-dimensional (3D) steel wire skeleton in each layer which is composed of two vertical steel wire meshes connected by horizontally short steel bar. All steel segments in the panel are automatically prefabricated in factory and then are assembled to form steel system in site. In order to investigate the structural behavior of this wall panel, two full-scale panels have been experimentally studied under axial compressive load. The test results show that the wall panel presents good load-bearing capacity and integral stiffness without out-of-plane flexural failure. Compared to the panel with planar steel wire mesh in concrete layer, the panel with 3D steel wire skeleton presents higher strength and better rigidity even in the condition of same steel ratio in panels which verifies that the 3D steel skeleton could greatly enhance the structural behavior of sandwich panel.

  15. Measurements of the thickness of in-place concrete with microwave reflection.

    DOT National Transportation Integrated Search

    1988-01-01

    Previous microwave reflection measurements made on simple, unreinforced concrete blocks have shown that the transit time of a microwave through concrete is linearly related to its thickness. In this study measurements were conducted on concrete slabs...

  16. Lunar In Situ Materials-Based Surface Structure Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Fiske, M. R.; McGregor, W.; Pope, R.; McLemore, C. A.; Kaul, R.; Smithers, G.; Ethridge, E.; Toutanji, H.

    2007-01-01

    For long-duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them, including habitats, laboratories, berms, radiation shielding for surface reactors, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Surface Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and lessons learned will be presented, along with recommendations for future activities.

  17. Development of design parameters for mass concrete using finite element analysis : final report, February 2010.

    DOT National Transportation Integrated Search

    2010-02-01

    A finite element model for analysis of mass concrete was developed in this study. To validate the developed model, large concrete blocks made with four different mixes of concrete, typical of use in mass concrete applications in Florida, were made an...

  18. Installation of ventilated facades without scaffolding in high-rise buildings

    NASA Astrophysics Data System (ADS)

    Gnedina, Lyubov; Muchkina, Arina; Labutin, Alexander

    2018-03-01

    This article consider the use of polystyrene concrete blocks during assembling enclosing structure of ventilated facades in high-rise monolithic housing construction. Comparing with traditional technology devices hinged ventilated facade the main advantage of the proposed design is an exception of using scaffold, that leads to a cheapening of the enclosing structure. Proposed solutions are confirmed by patents of the Russian Federation.

  19. Investigation of panel-to-panel connections and block-outs for full-depth precast concrete bridge decks.

    DOT National Transportation Integrated Search

    2015-06-01

    Experimental tests were performed at Virginia Tech to investigate transverse panel-to-panel connections and horizontal shear : connector block-outs for full-depth precast concrete bridge deck panels. The connections were designed for a deck replaceme...

  20. 49 CFR 387.301 - Surety bond, certificate of insurance, or other securities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... in bulk. Cement, building blocks. Charcoal. Chemical fertilizer. Cinder blocks. Cinders, coal. Coal. Coke. Commercial fertilizer. Concrete materials and added mixtures. Corn cobs. Cottonseed hulls... nitrate of soda. Anhydrous ammonia—used as a fertilizer only. Ashes, wood or coal. Bituminous concrete...

  1. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...

  2. 30 CFR 75.333 - Ventilation controls.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Radiant Heat Energy Source.” This publication is incorporated by reference and may be inspected at any... partitions, permanent stoppings, and regulators include concrete, concrete block, brick, cinder block, tile..., “Standard Test Method for Surface Flammability of Materials Using A Radiant Heat Energy Source.” This...

  3. Porous concrete block as an environmental enrichment device increases activity of laying hens in cages.

    PubMed

    Holcman, A; Gorjanc, G; Stuhec, I

    2008-09-01

    The purpose of this study was to consider the influence of simple and cheap environmental enrichment such as porous concrete on the behavior of laying hens in conventional cages. Forty brown laying hens were housed in individual wire mesh cages: 20 in experimental cages with porous concrete block provided for pecking and 20 in a control group without concrete block provided. Porous concrete block (5 cm length x 5 cm width x 5 cm height) was mounted on the side wall at the height of the hen's head. Behavior was studied from 42 to 48 wk of age. A group of 8 hens was filmed for 24 h, and the camera was moved each day so that all 40 hens were recorded over 5 d each wk. Videotaping was performed in wk 1, 3, 5, and 7 of the experiment. States (long-term behavior) were observed with 5-min interval recording (feeding, preening, resting, and remaining inactive), whereas events (short-term activities) were observed with instantaneous recording (drinking, pecking concrete, pecking neighbors, pecking cage, and attempting to escape). Data were analyzed with generalized linear mixed model with binomial distribution for states, and Poisson distribution for events. Monte Carlo Markov Chain methods were used to estimate model parameters. Because posterior distributions of quantities of interest were skewed, medians and standard errors are reported. Hens in experimental cages were more active in long-term behavior than controls (64.9 +/- 1.9 and 59.3 +/- 1.9% of the light period, respectively). Correspondingly, hens in the control group showed more long-term inactivity. In addition to pecking the porous concrete block, hens in experimental cages also showed other short-term activities with greater frequency (4.10 +/- 0.31 and 3.51 +/- 0.25 events per h, respectively). Our hypothesis that hens in enriched cages would have a greater level of activity was confirmed. Provision of a piece of porous concrete block as a pecking substrate enriched the environment of the birds at negligible cost.

  4. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  5. The Improvement of Foam Concrete Geoecoprotective Properties in Transport Construction

    NASA Astrophysics Data System (ADS)

    Svatovskaya, Larisa; Kabanov, Alexander; Sychov, Maxim

    2017-10-01

    The article analyses 2 kinds of properties of silica sol foam concrete: technical and geoecoprotective ones. Foam concrete stabilized with silica sol foam has lower heat conductivity resulting in fuel saving. Foam concrete obtained according to sol absorption technology has lower water absorption and is good enough for blocking to prevent the environment pollution. Pollution blocking can be achieved by two methods. The first method is saturation of an article affected by oil products with silica sol. The second method is to create a special preventive protection using silica sol screen. The article shows geoecoprotective properties of protein foam soil systems.

  6. Lunar In Situ Materials-Based Habitat Technology Development Efforts at NASA/MSFC

    NASA Technical Reports Server (NTRS)

    Bodiford, Melanie P.; Burks, K. H.; Perry M. R.; Cooper, R. W.; Fiske, M. R.

    2006-01-01

    For long duration missions on other planetary bodies, the use of in situ materials will become increasingly critical. As man's presence on these bodies expands, so must the structures to accommodate them including habitats, laboratories, berms, garages, solar storm shelters, greenhouses, etc. The use of in situ materials will significantly offset required launch upmass and volume issues. Under the auspices of the In Situ Fabrication & Repair (ISFR) Program at NASA/Marshall Space Flight Center (MSFC), the Habitat Structures project has been developing materials and construction technologies to support development of these in situ structures. This paper will report on the development of several of these technologies at MSFC's Prototype Development Laboratory (PDL). These technologies include, but are not limited to, development of extruded concrete and inflatable concrete dome technologies based on waterless and water-based concretes, development of regolith-based blocks with potential radiation shielding binders including polyurethane and polyethylene, pressure regulation systems for inflatable structures, production of glass fibers and rebar derived from molten lunar regolith simulant, development of regolithbag structures, and others, including automation design issues. Results to date and planned efforts for FY06 will also be presented.

  7. 30 CFR 77.1109 - Quantity and location of firefighting equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... paragraph (b) for each 2,500 square feet of floor space in a wooden or other flammable structure, or for each 5,000 square feet of floor space in a metal, concrete-block, or other type of non-flammable... the following combustible liquid storage installations: (1) Near each above ground or unburied...

  8. 30 CFR 77.1109 - Quantity and location of firefighting equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... paragraph (b) for each 2,500 square feet of floor space in a wooden or other flammable structure, or for each 5,000 square feet of floor space in a metal, concrete-block, or other type of non-flammable... the following combustible liquid storage installations: (1) Near each above ground or unburied...

  9. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes.

    PubMed

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Ortega, José Marcos; Parra, Carlos; Sánchez, Isidro

    2017-11-30

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements.

  10. Properties of Concrete Paving Blocks and Hollow Tiles with Recycled Aggregate from Construction and Demolition Wastes

    PubMed Central

    Rodríguez, Carlos; Miñano, Isabel; Aguilar, Miguel Ángel; Parra, Carlos

    2017-01-01

    In recent years there has been an increasing tendency to recycle the wastes generated by building companies in the construction industry, demolition wastes being the most important in terms of volume. The aim of this work is to study the possibility of using recycled aggregates from construction and demolition wastes in the preparation of precast non-structural concretes. To that purpose, two different percentages (15% and 30%) of natural aggregates were substituted by recycled aggregates in the manufacture of paving blocks and hollow tiles. Dosages used by the company have not been changed by the introduction of recycled aggregate. Precast elements have been tested by means of compressive and flexural strength, water absorption, density, abrasion, and slipping resistance. The results obtained show the possibility of using these wastes at an industrial scale, satisfying the requirements of the Spanish standards for these elements. PMID:29189745

  11. Load drop evaluation for TWRS FSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoistingmore » and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.« less

  12. Seawalls, Bulkheads and Quaywalls. Design Manual 25.4.

    DTIC Science & Technology

    1981-07-01

    slopes, such as concrete block revetment , also can result in a large quantity of water overtopping the wall. Where overtopping is a serious problem...small precast units such as the concrete block revetment shown in Figure 1, type D and the precast stepped walls shown in Figure 1, types E and G, should...16. DISTRIBUTION STATEMENT (of this Report) Unclassified/Unlimited ..... 17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20, if different

  13. Comparison of compressive strength of paving block with a mixture of Sinabung ash and paving block with a mixture of lime

    NASA Astrophysics Data System (ADS)

    Hastuty, I. P.; Sembiringand Nursyamsi, I. S.

    2018-02-01

    Paving block is one of the material used as the top layer of road structure besides asphalt and concrete paving block is usually made of mixed material such as Portland cement or other adhesive material, water, and aggregate. People nowadays prefer paving block compared to other pavement such as concrete or asphalt. Their interest toward the use of paving block increase because paving block is an eco-friendly construction which is very useful in helping soil water conservation, can be done faster, has easier installation and maintenance, has a variety of shades that increase the aesthetic value, also costs cheaper than the other. Preparation of the specimens with a mixture of Sinabung ash and a mixture of Sinabung ash and lime are implemented with a mixture ratio of cement : sand : stone ash is 1: 2 : 3. The mixture is used as a substitute material by reducing the percentage amount of the weight of the cement with the composition ratio variation based on the comparative volume category of the paving block aggregate, i.e. 0%, 5%, 10%, 15%, 20%, and 25%. The result of this research shows that the maximum compressive strength value is 42.27 Mpa, it was obtained from a mixture of 10% lime with curing time 28 days. The maximum compressive strength value which is obtained from the mixture of sinabung ash is 41.60 Mpa, it was obtained from a mixture of 15% sinabung ash. From the use of these two materials, paving blocks produced are classified as paving blocks quality A and B (350 - 400 Mpa) in accordance to specification from SNI 03-0691-1996.

  14. Ergonomic evaluation of masons laying concrete masonry units and autoclaved aerated concrete.

    PubMed

    Hess, Jennifer A; Kincl, Laurel; Amasay, Tal; Wolfe, Peter

    2010-05-01

    Masons working with concrete masonry unit block have high rates of work-related musculoskeletal disorders to the low back and shoulders associated with repetitively lifting and buttering heavy block. A new material, autoclaved aerated concrete, may reduce the risk of shoulder and back injury but, ergonomic evaluation is needed. This study evaluated shoulder exposure parameters, low back stress, and worker perceptions in two groups of journey level masons, one using CMU and the other using AAC block. Results indicate that for the left arm AAC masons spent significantly more time than CMU masons in static (38.2% versus 31.1%, respectively), and less time in slow motions (48.2% versus 52.2%, respectively) and faster motions (13.6% versus 16.7%, respectively) (p<0.05). CMU masons had significantly greater shoulder and low back pain (p=0.009) and they held block significantly longer than AAC masons (p<0.001). Low back compressive forces were high for both materials. Masons handling AAC demonstrated less left upper extremity stress but both materials were estimated to be hazardous to the low back. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  15. Inspection of a large concrete block containing embedded defects using ground penetrating radar

    NASA Astrophysics Data System (ADS)

    Eisenmann, David; Margetan, Frank J.; Koester, Lucas; Clayton, Dwight

    2016-02-01

    Ground penetrating radar (GPR), also known as impulse response radar, was used to examine a thick concrete block containing reinforcing steel bars (rebar) and embedded defects. The block was located at the University of Minnesota, measured approximately 7 feet tall by 7 feet wide by 40 inches deep, and was intended to simulate certain aspects of a concrete containment wall at a nuclear power plant. This paper describes the measurements that were made and various analyses of the data. We begin with a description of the block itself and the GPR equipment and methods used in our inspections. The methods include the application of synthetic aperture focusing techniques (SAFT). We then present and discuss GPR images of the block's interior made using 1600-MHz, 900-MHz, and 400-MHz antennas operating in pulse/echo mode. A number of the embedded defects can be seen, and we discuss how their relative detectability can be quantified by comparison to the response from nearby rebar. We next discuss through-transmission measurements made using pairs of 1600-MHz and 900-MHz antennas, and the analysis of that data to deduce the average electromagnetic (EM) wave speed and attenuation of the concrete. Through the 40-inch thickness, attenuation rises approximately linearly with frequency at a rate near 0.7 dB/inch/GHz. However, there is evidence that EM properties vary with depth in the block. We conclude with a brief summary and a discussion of possible future work.

  16. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  17. Teko: A block preconditioning capability with concrete example applications in Navier--Stokes and MHD

    DOE PAGES

    Cyr, Eric C.; Shadid, John N.; Tuminaro, Raymond S.

    2016-10-27

    This study describes the design of Teko, an object-oriented C++ library for implementing advanced block preconditioners. Mathematical design criteria that elucidate the needs of block preconditioning libraries and techniques are explained and shown to motivate the structure of Teko. For instance, a principal design choice was for Teko to strongly reflect the mathematical statement of the preconditioners to reduce development burden and permit focus on the numerics. Additional mechanisms are explained that provide a pathway to developing an optimized production capable block preconditioning capability with Teko. Finally, Teko is demonstrated on fluid flow and magnetohydrodynamics applications. In addition to highlightingmore » the features of the Teko library, these new results illustrate the effectiveness of recent preconditioning developments applied to advanced discretization approaches.« less

  18. 24 CFR 3285.5 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ..., cables, turnbuckles, chains, and other approved components, including tensioning devices that are used to... wood; manufactured concrete stands; concrete blocks; and portions of foundation walls. Ramada. Any...

  19. 24 CFR 3285.5 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., cables, turnbuckles, chains, and other approved components, including tensioning devices that are used to... wood; manufactured concrete stands; concrete blocks; and portions of foundation walls. Ramada. Any...

  20. 24 CFR 3285.5 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ..., cables, turnbuckles, chains, and other approved components, including tensioning devices that are used to... wood; manufactured concrete stands; concrete blocks; and portions of foundation walls. Ramada. Any...

  1. [Damage of modern building materials by microscopic fungi].

    PubMed

    Chuenko, A I; Karpenko, Iu V

    2011-01-01

    Resistance of three materials, produced on the basis of concrete compounds to the action of microscopic fungi, isolated from damaged living buildings, has been first investigated. It has been shown that samples of froth-block and thermoeffective block had low fungal resistance, in contrast to samples of cellular polystyrene concrete, which were resistant to fungal action, that can be associated with peculiarities of their component composition.

  2. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  3. Evaluation of Potential Damage to Unconventional Structures by Sonic Booms

    DTIC Science & Technology

    1990-05-01

    plaster and gypsum board caused by sonic boom is broken...on wood lath 3.3 5.6 2. Plaster on gyplath 7.5 16 3. Plaster on expanded metal lath 16 16 4. Plaster on concrete block 16 16 5. Gypsum board (new) 16... wallboard (also called plasterboard or drywall), it is assumed that interior walls of unconventional historic wood frame buildings used plaster instead.

  4. Importance of Hydrogen Sulfide, Thiosulfate, and Methylmercaptan for Growth of Thiobacilli during Simulation of Concrete Corrosion

    PubMed Central

    Sand, Wolfgang

    1987-01-01

    Biogenic sulfuric acid corrosion of concrete surfaces caused by thiobacilli was reproduced in simulation experiments. At 9 months after inoculation with thiobacilli, concrete blocks were severely corroded. The sulfur compounds hydrogen sulfide, thiosulfate, and methylmercaptan were tested for their corrosive action. With hydrogen sulfide, severe corrosion was noted. The flora was dominated by Thiobacillus thiooxidans. Thiosulfate led to medium corrosion and a dominance of Thiobacillus neapolitanus and Thiobacillus intermedius. Methylmercaptan resulted in negligible corrosion. A flora of heterotrophs and fungi grew on the blocks. This result implies that methylmercaptan cannot be degraded by thiobacilli. PMID:16347391

  5. Paving block study : final report.

    DOT National Transportation Integrated Search

    1971-10-01

    The Louisiana Department of Highways has conducted field tests with an experimental revetment consisting of cellular concrete revetment blocks used in conjunction with plastic filter cloth and/or vegetation such as grass or vines. The precast blocks ...

  6. Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R. Panneer Selvam; Hale, Micah; Strasser, Matt

    Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWh thermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 °C to 600 °C) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and testedmore » for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWh thermal. Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWht hermal. The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWh thermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWh thermal for a two-tank liquid configuration.« less

  7. Testing of selected metallic reinforcing bars for extending the service life of future concrete bridges : testing in outdoor concrete blocks.

    DOT National Transportation Integrated Search

    2002-01-01

    To meet the challenge of a design life of 100 years for major concrete bridges, economical and corrosion-resistant reinforcing bars will be needed. The preliminary results for stainless steel-clad bars in a recent investigation funded by the Federal ...

  8. DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE SLOPING CONCRETE PAD AT THE SOUTH SIDE OF THE GUN EMPLACEMENT. NOTE ADDED BLOCK OF CAST CONCRETE AT THE LOW (RIGHT) END OF SLOPED PAD. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  9. Non-destructive testing method for determining the solvent diffusion coefficient in the porous materials products

    NASA Astrophysics Data System (ADS)

    Belyaev, V. P.; Mishchenko, S. V.; Belyaev, P. S.

    2018-01-01

    Ensuring non-destructive testing of products in industry is an urgent task. Most of the modern methods for determining the diffusion coefficient in porous materials have been developed for bodies of a given configuration and size. This leads to the need for finished products destruction to make experimental samples from them. The purpose of this study is the development of a dynamic method that allows operatively determine the diffusion coefficient in finished products from porous materials without destroying them. The method is designed to investigate the solvents diffusion coefficient in building constructions from materials having a porous structure: brick, concrete and aerated concrete, gypsum, cement, gypsum or silicate solutions, gas silicate blocks, heat insulators, etc. A mathematical model of the method is constructed. The influence of the design and measuring device operating parameters on the method accuracy is studied. The application results of the developed method for structural porous products are presented.

  10. Investigation of Hydrophobic Concrete Additive for Seawall Replacement at Pililaau Army Recreation Center, Hawaii

    DTIC Science & Technology

    2017-05-01

    ER D C/ CE RL T R- 17 -1 0 DoD Corrosion Prevention and Control Program Investigation of Hydrophobic Concrete Additive for Seawall...Control Program ERDC/CERL TR-17-10 May 2017 Investigation of Hydrophobic Concrete Additive for Seawall Replacement at Pililaau Army Recreation Center...Prevention and Control Program project was to demonstrate the long-term performance of an ultrahydrophobic concrete additive that blocks water intrusion and

  11. Upgrading Basements for Combined Nuclear Weapons Effects: Expedient Options

    DTIC Science & Technology

    1976-05-01

    reinforced concrete stairwell walls can be expected to be substantial in these cases, since they are supporting an axial load from higher floors. F...desirability) include: a. Stacked concrete block or brick b. Stacked timber * The latter situation is likely to occur only in load - bearing wall...concrete flat slab 4 Reinforced concrete flat plate 4 Load - bearing wall 3 The analysis of the floor systems for the 34 NSS buildings required the dynamic

  12. 75 FR 22165 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-27

    ...-fit an existing manufacturing facility to produce autoclaved aerated concrete (AAC) ``green'' building materials. The NAICS industry code for this enterprise is: 327331 Concrete Block and Brick Manufacturing...

  13. DETAIL, WEST SIDE SHOWING CHIMNEY AND WALL WITH TYPICAL CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL, WEST SIDE SHOWING CHIMNEY AND WALL WITH TYPICAL CONCRETE BLOCK BUTTRESS; VIEW TO NORTH - Fort Bragg, Noncommissioned Officers' Service Club, Guest House Building, South of Butner Road, Fayetteville, Cumberland County, NC

  14. EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, A.; Reigel, M.

    2011-02-28

    The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less

  15. Structural Health Monitoring Using Textile Reinforcement Structures with Integrated Optical Fiber Sensors

    PubMed Central

    Bremer, Kort; Weigand, Frank; Zheng, Yulong; Alwis, Lourdes Shanika; Helbig, Reinhard; Roth, Bernhard

    2017-01-01

    Optical fiber-based sensors “embedded” in functionalized carbon structures (FCSs) and textile net structures (TNSs) based on alkaline-resistant glass are introduced for the purpose of structural health monitoring (SHM) of concrete-based structures. The design aims to monitor common SHM parameters such as strain and cracks while at the same time acting as a structural strengthening mechanism. The sensor performances of the two systems are characterized in situ using Mach-Zehnder interferometric (MZI) and optical attenuation measurement techniques, respectively. For this purpose, different FCS samples were subjected to varying elongation using a tensile testing machine by carefully incrementing the applied force, and good correlation between the applied force and measured length change was observed. For crack detection, the functionalized TNSs were embedded into a concrete block which was then exposed to varying load using the three-point flexural test until destruction. Promising results were observed, identifying that the location of the crack can be determined using the conventional optical time domain reflectometry (OTDR) technique. The embedded sensors thus evaluated show the value of the dual achievement of the schemes proposed in obtaining strain/crack measurement while being utilized as strengthening agents as well. PMID:28208636

  16. Thermal Bridge Effect of Aerated Concrete Block Wall in Cold Regions

    NASA Astrophysics Data System (ADS)

    Li, Baochang; Guo, Lirong; Li, Yubao; Zhang, Tiantian; Tan, Yufei

    2018-01-01

    As a self-insulating building material which can meet the 65 percent energy-efficiency requirements in cold region of China, aerated concrete blocks often go moldy, frost heaving, or cause plaster layer hollowing at thermal bridge parts in the extremely cold regions due to the restrictions of environmental climate and construction technique. L-shaped part and T-shaped part of aerated concrete walls are the most easily influenced parts by thermal bridge effect. In this paper, a field test is performed to investigate the scope of the thermal bridge effect. Moreover, a heat transfer calculation model for L-shaped wall and T-shaped wall is developed. According to the simulation results, the temperature fields of the thermal bridge affected regions are simulated and analyzed. The research outputs can provide theoretical basis for the application of aerated concrete wall in extremely cold regions.

  17. Cryogenic vertical test facility for the SRF cavities at BNL

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Than, R.; Liaw, CJ; Porqueddu, R.

    2011-03-28

    A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars.more » The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.« less

  18. Shape-designed single-polymer micelles: a proof-of-concept simulation

    NASA Astrophysics Data System (ADS)

    Moths, Brian; Witten, Thomas A.

    Much effort has been directed towards self-assembling nanostructures. Strong, local interactions between specific building blocks often determine these structures (e.g., globular proteins). We seek to produce designed structures that are instead determined by collective effects of weak interactions (e.g., surfactant self-assembly). Such structures may reversibly change conformation or disassemble in response to changing solvent conditions, and, being soft, have potential to adapt to fluctuating or unknown application-imposed shape requirements. Concretely, we aim to realize such a structure in the form of a single polymer micelle--an amphiphilic polymer exhibiting a condensed, phase-segregated conformation when immersed in solvent. Connecting all amphiphiles into a single chain provides geometric constraints controlling the surface curvature profile, thus dictating a non-trivial shape. We present 2D Monte Carlo simulation results demonstrating the feasibility of such soft, shape-designed micelles. Preliminary results demonstrate a stable concave ``dimple'' in a micelle composed of a single A-B multiblock linear copolymer. We discuss both current limitations on shape robustness and effects of block asymmetry, block molecular weights and overall chain length on micelle shape. This work was supported in part by the National Science Foundation's MRSEC Program under Award Number DMR-1420709.

  19. Research notes : bridge washing to reduce salt.

    DOT National Transportation Integrated Search

    2005-10-01

    The Oregon Department of Transportation investigated periodic bridge washing as a way to possibly remove chloride from the concrete and stop further uptake of chloride ions. Washing trials were conducted over a 4-year period on concrete blocks to det...

  20. Comparison of UPE and GPR systems for the survey of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Derobert, Xavier; Villain, Géraldine; Joubert, Anaelle

    2014-05-01

    The objective of this study is to compare two non-destructive techniques using sonic and radar pulses for the survey of reinforced concre structures. The first studied testing method is a Ultrasonic (US) Pulse-Echo (model M2502, from Acoustic Control Systems manufacturer) composed of an array of 12 S-wave transmitters and 12 receivers in one bloc. Their central frequency is equal to 55 kHz. As the averaged USvelocities in concrete tend to 1800-3000 m/s, the corresponding wavelengths tend to 3-5 cm. The Ground-penetrating radar (GPR) system has been performed with high frequency antennas above 1 GHz (1.5 and 2.6 GHz antennas), which lead to the same range of EM wavelengths than the US ones. Measurements have been performed on some thick reinforced concrete elements of structures, and then are compared in term of resolution, depth penetration and ease to use. One of the studied elements is a concrete beam (dimensions : 16 m long, 0.5 m width and 1 m high) designed in an European Projet (FP7_ISTIMES) and damaged by controled impacts of blocks of several tons dropped from few meters [1]. Therefore, the objective of this studyis to compare the two techniques, and for the last studied element to detect the major cracks and the spallings of the cover concrete which are visible from the opposite side. References: Malhotra V.M., Carino, N.J., CRC Handbook on Nondestructive Testing of Concrete, CRC Press LLC, , 1991, 343p. Taffe A., Wiggenhauser H., Validation for Thickness Measurement in Civil Engineering with Ultrasonic Echo, International Symposium NDT-CE, Saint-Louis, USA, 2006, pp506-512. Géraldine Villain, Anaëlle Luczak, Olivier Durand, Xavier Dérobert, Deepening of the measurement technique by Ultrasonic Pulse Echo UPE, Report, IFSTTAR, January 2011, 22p. Catapano I., Di Napoli R., Soldovieri F., Bavusi M., Loperte A., Dumoulin J. (2012), « Structural monitoring via microwave tomography-enhanced GPR : the Montagnole test site », J. Geophys. Eng., Vol. 9, pp. 100-107.

  1. Non-Arbitrariness in Mapping Word Form to Meaning: Cross-Linguistic Formal Markers of Word Concreteness.

    PubMed

    Reilly, Jamie; Hung, Jinyi; Westbury, Chris

    2017-05-01

    Arbitrary symbolism is a linguistic doctrine that predicts an orthogonal relationship between word forms and their corresponding meanings. Recent corpora analyses have demonstrated violations of arbitrary symbolism with respect to concreteness, a variable characterizing the sensorimotor salience of a word. In addition to qualitative semantic differences, abstract and concrete words are also marked by distinct morphophonological structures such as length and morphological complexity. Native English speakers show sensitivity to these markers in tasks such as auditory word recognition and naming. One unanswered question is whether this violation of arbitrariness reflects an idiosyncratic property of the English lexicon or whether word concreteness is a marked phenomenon across other natural languages. We isolated concrete and abstract English nouns (N = 400), and translated each into Russian, Arabic, Dutch, Mandarin, Hindi, Korean, Hebrew, and American Sign Language. We conducted offline acoustic analyses of abstract and concrete word length discrepancies across languages. In a separate experiment, native English speakers (N = 56) with no prior knowledge of these foreign languages judged concreteness of these nouns (e.g., Can you see, hear, feel, or touch this? Yes/No). Each naïve participant heard pre-recorded words presented in randomized blocks of three foreign languages following a brief listening exposure to a narrative sample from each respective language. Concrete and abstract words differed by length across five of eight languages, and prediction accuracy exceeded chance for four of eight languages. These results suggest that word concreteness is a marked phenomenon across several of the world's most widely spoken languages. We interpret these findings as supportive of an adaptive cognitive heuristic that allows listeners to exploit non-arbitrary mappings of word form to word meaning. Copyright © 2016 Cognitive Science Society, Inc.

  2. Strength Calculation of Inclined Sections of Reinforced Concrete Elements under Transverse Bending

    NASA Astrophysics Data System (ADS)

    Filatov, V. B.

    2017-11-01

    The authors propose a design model to determine the strength of inclined sections of bent reinforced concrete elements without shear reinforcement for the action of transverse force taking into account the aggregate interlock forces in the inclined crack. The calculated dependences to find out the components of forces acting in an inclined section are presented. The calculated dependences are obtained from the consideration of equilibrium conditions of the block over the inclined crack. A comparative analysis of the experimental values of the failure loads of the inclined section and the theoretical values obtained for the proposed dependencies and normative calculation methods is performed. It is shown that the proposed design model makes it possible to take into account the effect the longitudinal reinforcement percentage has on the inclined section strength, the element cross section height without the introduction of empirical coefficients which contributes to an increase in the structural safety of design solutions including the safety of high-strength concrete elements.

  3. Blocking Mechanism Study of Self-Compacting Concrete Based on Discrete Element Method

    NASA Astrophysics Data System (ADS)

    Zhang, Xuan; Li, Zhida; Zhang, Zhihua

    2017-11-01

    In order to study the influence factors of blocking mechanism of Self-Compaction Concrete (SCC), Roussel’s granular blocking model was verified and extended by establishing the discrete element model of SCC. The influence of different parameters on the filling capacity and blocking mechanism of SCC were also investigated. The results showed that: it was feasible to simulate the blocking mechanism of SCC by using Discrete Element Method (DEM). The passing ability of pebble aggregate was superior to the gravel aggregate and the passing ability of hexahedron particles was bigger than tetrahedron particles, while the tetrahedron particle simulation results were closer to the actual situation. The flow of SCC as another significant factor affected the passing ability that with the flow increased, the passing ability increased. The correction coefficient λ of the steel arrangement (channel section shape) and flow rate γ in the block model were introduced that the value of λ was 0.90-0.95 and the maximum casting rate was 7.8 L/min.

  4. Mechanical and toxicological evaluation of concrete artifacts containing waste foundry sand.

    PubMed

    Mastella, Miguel Angelo; Gislon, Edivelton Soratto; Pelisser, Fernando; Ricken, Cláudio; da Silva, Luciano; Angioletto, Elídio; Montedo, Oscar Rubem Klegues

    2014-08-01

    The creation of metal parts via casting uses molds that are generally made from sand and phenolic resin. The waste generated after the casting process is called waste foundry sand (WFS). Depending on the mold composition and the casting process, WFS can contain substances that prevent its direct emission to the environment. In Brazil, this waste is classified according to the Standard ABNT NBR 10004:2004 as a waste Class II (Non-Inert). The recycling of this waste is limited because its characteristics change significantly after use. Although the use (or reuse) of this byproduct in civil construction is a technically feasible alternative, its effects must be evaluated, especially from mechanical and environmental points of view. Thus, the objective of this study is to investigate the effect of the use of WFS in the manufacture of cement artifacts, such as masonry blocks for walls, structural masonry blocks, and paving blocks. Blocks containing different concentrations of WFS (up to 75% by weight) were produced and evaluated using compressive strength tests (35 MPa at 28 days) and toxicity tests on Daphnia magna, Allium cepa (onion root), and Eisenia foetida (earthworm). The results showed that there was not a considerable reduction in the compressive strength, with values of 35 ± 2 MPa at 28 days. The toxicity study with the material obtained from leaching did not significantly interfere with the development of D. magna and E. foetida, but the growth of the A. cepa species was reduced. The study showed that the use of this waste in the production of concrete blocks is feasible from both mechanical and environmental points of view. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. A Study of Crystalline Mechanism of Penetration Sealer Materials.

    PubMed

    Teng, Li-Wei; Huang, Ran; Chen, Jie; Cheng, An; Hsu, Hui-Mi

    2014-01-14

    It is quite common to dispense a topping material like crystalline penetration sealer materials (CPSM) onto the surface of a plastic substance such as concrete to extend its service life span by surface protections from outside breakthrough. The CPSM can penetrate into the existing pores or possible cracks in such a way that it may form crystals to block the potential paths which provide breakthrough for any unknown materials. This study investigated the crystalline mechanism formed in the part of concrete penetrated by the CPSM. We analyzed the chemical composites, in order to identify the mechanism of CPSM and to evaluate the penetrated depth. As shown in the results, SEM observes the acicular-structured crystals filling capillary pores for mortar substrate of the internal microstructure beneath the concrete surface; meanwhile, XRD and FT-IR showed the main hydration products of CPSM to be C-S-H gel and CaCO₃. Besides, MIP also shows CPSM with the ability to clog capillary pores of mortar substrate; thus, it reduces porosity, and appears to benefit in sealing pores or cracks. The depth of CPSM penetration capability indicated by TGA shows 0-10 mm of sealer layer beneath the concrete surface.

  6. 13. View of Clark Fork Vehicle Bridge facing south. Concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. View of Clark Fork Vehicle Bridge facing south. Concrete barrier blocks access. Plaque was originally located where strioed traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  7. Electrokinetic nanoparticle treatment for corrosion remediation on simulated reinforced bridge deck

    NASA Astrophysics Data System (ADS)

    Kupwade-Patil, Kunal; Cardenas, Henry E.

    2013-09-01

    ASTM G109 specimens were used in this work as these simulate the configuration of the bridge deck and subjected to elevated chloride levels. Nanoparticles which were 24 nm in size were driven directly through the concrete matrix and to the reinforcement using an electric field. The intent was to use the nanoparticles as pore blocking agents that could prevent chlorides from re-entering and accessing the rebar. Electrochemical, microstructure, and pore structure characterization was conducted on the electrokinetic nanoparticle (EN) treated and control specimens. At the end of post saltwater exposure period EN-treated specimens exhibited lower corrosion current densities, chloride contents below the threshold limit for new construction and 22 % reduction in porosity as compared to the controls. EN treatment was successful in mitigating reinforcement corrosion in concrete.

  8. Credit WCT. Original 4"x5" black and white negative is housed ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit WCT. Original 4"x5" black and white negative is housed in the JPL Archives, Pasadena, California. This view shows Building E-39 under construction. E-39 is an example of the typical reinforced concrete block construction of the E-30s and E-40s structures (JPL negative no. 381-2586, 13 December 1962) - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA

  9. A 1055 ft/sec impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1972-01-01

    A study to determine the feasibility of containing the fission products of a mobile reactor in the event of an impact is presented. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block at 1055 ft/sec. The model was significantly deformed and the concrete block demolished. No leaks were detected nor were any cracks observed in the model after impact.

  10. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huelman, P.; Goldberg, L.; Jacobson, R.

    Basements in climates 6 and 7 can account for a fraction of a home's total heat loss when fully conditioned. Such foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with it. Because below-grade basements are increasingly used for habitable space, cold foundation walls pose challenges for moisture contribution, energy use, and occupant comfort.

  11. Laboratory Testing of Electro-Osmotic Pulse Technology to Reduce and Maintain Low Moisture Content in Concrete

    DTIC Science & Technology

    2009-02-01

    technology minimizes harmful effects to concrete and rebar and prevents over drying, pore blocking and electrode polarization. Principles of EOP...LABORATORY TESTING OF ELECTRO-OSMOTIC PULSE TECHNOLOGY TO REDUCE AND MAINTAIN LOW MOISTURE CONTENT IN CONCRETE Orange S. Marshall, Vincent F...Laboratory 2009 Army Corrosion Summit Clearwater Beach, FL 6 January 2009 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting

  12. Nondestructive Concrete Characterization System

    DTIC Science & Technology

    2013-05-20

    Army, locate steel reinforcing bars, and identify the presence of steel fiber reinforcement . The thickness of all sides of each concrete block was...concrete compressive strength within the accuracy required by the U.S. Army, locate steel reinforcing bars, and identify the presence of steel fiber ...tolerance of ±3 ksi. 3. Detect the presence of fiber reinforcement . 4. Locate and detect the presence and density (e.g. spacing) of metallic objects

  13. Methods for preventing ASR in new construction: results of field exposure sites.

    DOT National Transportation Integrated Search

    2013-12-01

    As part of the FHWA ASR Development and Deployment Program, two sites were built to study ASR in new concrete construction. Concrete blocks were produced with a range of aggregates and cementitious materials and placed on outdoor exposure sites at th...

  14. 13. Bottom floor, tower interior showing concrete floor and cast ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. Bottom floor, tower interior showing concrete floor and cast iron bases for oil butts (oil butts removed when lighthouse lamp was converted to electric power.) - Block Island Southeast Light, Spring Street & Mohegan Trail at Mohegan Bluffs, New Shoreham, Washington County, RI

  15. 75 FR 2132 - Maine Maritime Academy; Notice of Declaration of Intention and Petition for Relief Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-14

    ... be mounted to floats attached to a concrete superstructure, concrete or stone blocks, and other... listed above, and use the power from the test devices to heat water or charge 3 or 4 batteries which...

  16. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes.

    PubMed

    Chen, Rongzhang; Zaghloul, Mohamed A S; Yan, Aidong; Li, Shuo; Lu, Guanyi; Ames, Brandon C; Zolfaghari, Navid; Bunger, Andrew P; Li, Ming-Jun; Chen, Kevin P

    2016-02-22

    We present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this paper provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.

  17. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  18. Effect of aerated concrete blockwork joints on the heat transfer performance uniformity

    NASA Astrophysics Data System (ADS)

    Pukhkal, Viktor; Murgul, Vera

    2018-03-01

    Analysis of data on the effect of joints of the aerated concrete blocks on the heat transfer uniformity of exterior walls was carried out. It was concluded, that the values of the heat transfer performance uniformity factor in the literature sources were obtained for the regular fragment of a wall construction by approximate addition of thermal conductivities. Heat flow patterns for the aerated concrete exterior walls amid different values of the thermal conductivity factors and design ambient air temperature of -26 °C were calculated with the use of "ELCUT" software for modelling of thermal patterns by finite element method. There were defined the values for the heat transfer performance uniformity factor, reduced total thermal resistance and heat-flux density for the exterior walls. The calculated values of the heat transfer performance uniformity factors, as a function of the coefficient of thermal conductivity of aerated concrete blocks, differ from the known data by a more rigorous thermal and physical substantiation.

  19. High resolution monitoring of strain fields in concrete during hydraulic fracturing processes

    DOE PAGES

    Chen, Rongzhang; Zaghloul, Mohamed A. S.; Yan, Aidong; ...

    2016-02-17

    Here, we present a distributed fiber optic sensing scheme to image 3D strain fields inside concrete blocks during laboratory-scale hydraulic fracturing. Strain fields were measured by optical fibers embedded during casting of the concrete blocks. The axial strain profile along the optical fiber was interrogated by the in-fiber Rayleigh backscattering with 1-cm spatial resolution using optical frequency domain reflectometry (OFDR). The 3D strain fields inside the cubes under various driving pressures and pumping schedules were measured and used to characterize the location, shape, and growth rate of the hydraulic fractures. The fiber optic sensor detection method presented in this papermore » provides scientists and engineers an unique laboratory tool to understand the hydraulic fracturing processes via internal, 3D strain measurements with the potential to ascertain mechanisms related to crack growth and its associated damage of the surrounding material as well as poromechanically-coupled mechanisms driven by fluid diffusion from the crack into the permeable matrix of concrete specimens.« less

  20. Galvanic Liquid Applied Coating Development for Protection of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    Curran, Joseph John; Curran, Jerry; MacDowell, Louis

    2004-01-01

    Corrosion of reinforcing steel in concrete is a major problem affecting NASA facilities at Kennedy Space Center (KSC), other government agencies, and the general public. Problems include damage to KSC launch support structures, transportation and marine infrastructures, as well as building structures. A galvanic liquid applied coating was developed at KSC in order to address this problem. The coating is a non-epoxy metal rich ethyl silicate liquid coating. The coating is applied as a liquid from initial stage to final stage. Preliminary data shows that this coating system exceeds the NACE 100 millivolt shift criterion. The remainder of the paper details the development of the coating system through the following phases: Phase I: Development of multiple formulations of the coating to achieve easy application characteristics, predictable galvanic activity, long-term protection, and minimum environmental impact. Phase II: Improvement of the formulations tested in Phase I including optimization of metallic loading as well as incorporation of humectants for continuous activation. Phase III: Application and testing of improved formulations on the test blocks. Phase IV: Incorporation of the final formulation upgrades onto large instrumented structures (slabs).

  1. Health monitoring system for a tall building with Fiber Bragg grating sensors

    NASA Astrophysics Data System (ADS)

    Li, D. S.; Li, H. N.; Ren, L.; Guo, D. S.; Song, G. B.

    2009-03-01

    Fiber Bragg grating (FBG) sensors demonstrate great potentials for structural health monitoring of civil structures to ensure their structural integrity, durability and reliability. The advantages of applying fiber optic sensors to a tall building include their immunity of electromagnetic interference and multiplexing ability to transfer optical signals over a long distance. In the work, FBG sensors, including strain and temperature sensors, are applied to the construction monitoring of an 18-floor tall building starting from its construction date. The main purposes of the project are: 1) monitoring the temperature evolution history within the concrete during the pouring process; 2) measuring the variations of the main column strains on the underground floor while upper 18 floors were subsequently added on; and 3) monitoring the relative displacements between two foundation blocks. The FBG sensors have been installed and interrogated continuously for more than five months. Monitoring results of temperature and strains during the period are presented in the paper. Furthermore, the lag behavior between the concrete temperature and its surrounding air temperature is investigated.

  2. Stoichiometric control of DNA-grafted colloid self-assembly

    DOE PAGES

    Vo, Thi; Venkatasubramanian, Venkat; Kumar, Sanat; ...

    2015-04-06

    In this study, there has been considerable interest in understanding the self-assembly of DNA-grafted nanoparticles into different crystal structures, e.g., CsCl, AlB₂, and Cr₃Si. Although there are important exceptions, a generally accepted view is that the right stoichiometry of the two building block colloids needs to be mixed to form the desired crystal structure. To incisively probe this issue, we combine experiments and theory on a series of DNA-grafted nanoparticles at varying stoichiometries, including noninteger values. We show that stoichiometry can couple with the geometries of the building blocks to tune the resulting equilibrium crystal morphology. As a concrete example,more » a stoichiometric ratio of 3:1 typically results in the Cr₃Si structure. However, AlB₂ can form when appropriate building blocks are used so that the AlB₂ standard-state free energy is low enough to overcome the entropic preference for Cr₃Si. These situations can also lead to an undesirable phase coexistence between crystal polymorphs. Thus, whereas stoichiometry can be a powerful handle for direct control of lattice formation, care must be taken in its design and selection to avoid polymorph coexistence.« less

  3. A review on past and present development on the interlocking loadbearing hollow block (ILHB) system

    NASA Astrophysics Data System (ADS)

    Bosro, M. Z. M.; Samad, A. A. A.; Mohamad, N.; Goh, W. I.; Tambichik, M. A.; Iman, M. A.

    2018-04-01

    Massive migration and increasing population in Malaysia has contributed to the increasing demand of quality and affordable housing. Over the past 50 years, the Malaysian housing industry has seen the growth of using conventional construction system such as reinforced concrete frame structures and bricks. The conventional system, as agreed by many researchers, causes delays and other disadvantages in some of the construction projects. Thus, the utilization of interlocking loadbearing hollow block (ILHB) system is needed to address these issues. This system has been identified as an alternative and sustainable building system for the construction industry in Malaysia which the PUTRA block system is the latest example of the ILHB developed. The system offers various advantages in terms of speed and cost in construction, strength, environmentally friendly and aesthetic qualities. Despite these advantages, this system has not been practically applied and develop in Malaysia. Therefore, this paper aims to review the past and present development of the interlocking loadbearing hollow block (ILHB) system that available locally and globally.

  4. The study of chloride ion migration in reinforced concrete under cathodic protection

    DOT National Transportation Integrated Search

    1999-09-01

    The migration of chloride ions in concrete with steel reinforcement was investigated. Mortar blocks (15 cm x 15 cm x 17 cm) of various : composition (water to cement ratio, chloride ion content) were cast with an iron mesh cathode imbedded along one ...

  5. 24 CFR 3285.304 - Pier configuration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inches; (2) The concrete blocks must be stacked with their hollow cells aligned vertically; and (3) When... across capped-hollow block piers, as shown in Figures A and B to § 3285.306. (2) Caps must be solid...

  6. Probabilistic design of fibre concrete structures

    NASA Astrophysics Data System (ADS)

    Pukl, R.; Novák, D.; Sajdlová, T.; Lehký, D.; Červenka, J.; Červenka, V.

    2017-09-01

    Advanced computer simulation is recently well-established methodology for evaluation of resistance of concrete engineering structures. The nonlinear finite element analysis enables to realistically predict structural damage, peak load, failure, post-peak response, development of cracks in concrete, yielding of reinforcement, concrete crushing or shear failure. The nonlinear material models can cover various types of concrete and reinforced concrete: ordinary concrete, plain or reinforced, without or with prestressing, fibre concrete, (ultra) high performance concrete, lightweight concrete, etc. Advanced material models taking into account fibre concrete properties such as shape of tensile softening branch, high toughness and ductility are described in the paper. Since the variability of the fibre concrete material properties is rather high, the probabilistic analysis seems to be the most appropriate format for structural design and evaluation of structural performance, reliability and safety. The presented combination of the nonlinear analysis with advanced probabilistic methods allows evaluation of structural safety characterized by failure probability or by reliability index respectively. Authors offer a methodology and computer tools for realistic safety assessment of concrete structures; the utilized approach is based on randomization of the nonlinear finite element analysis of the structural model. Uncertainty of the material properties or their randomness obtained from material tests are accounted in the random distribution. Furthermore, degradation of the reinforced concrete materials such as carbonation of concrete, corrosion of reinforcement, etc. can be accounted in order to analyze life-cycle structural performance and to enable prediction of the structural reliability and safety in time development. The results can serve as a rational basis for design of fibre concrete engineering structures based on advanced nonlinear computer analysis. The presented methodology is illustrated on results from two probabilistic studies with different types of concrete structures related to practical applications and made from various materials (with the parameters obtained from real material tests).

  7. Effect of concrete slats, three mat types and out-wintering pads on performance and welfare of finishing beef steers.

    PubMed

    Earley, Bernadette; McNamara, John D; Jerrams, Stephen J; O'Riordan, Edward G

    2017-05-30

    The objective was to investigate the effect of placing mats on concrete slatted floors on performance, behaviour, hoof condition, dirt scores, physiological and immunological variables of beef steers, and to compare responses with animals on out-wintering pads. Continental crossbred beef steers [n = 360; mean (±SD) initial live weight 539 kg (42.2)] were blocked by breed and live weight and randomly assigned to one of five treatments; (1) Concrete slats alone, (2) Mat 1 (Natural Rubber structure) (Durapak Rubber Products), (3) Mat 2 (Natural rubber structure) (EasyFix), (4) Mat 3 (modified ethylene vinyl acetate (EVA) foam structure) and (5) Out-wintering pads (OWP's). Animals on the OWPs had a greater (P < 0.05) live weight gain (P < 0.05) compared with the slat and Mat 2 treatments: results for Mat 1 and Mat 3 were the same (P > 0.05) as the other treatments. Animals on the OWPs had reduced lying percentage time compared with all the other treatments. Dry matter (DM) intake was greater for animals on the OWPs compared with all the other treatments. Carcass weight, kill out proportion, carcass fat score, carcass composition score, FCR and physiological responses were similar (P > 0.05) among treatments. No incidence of laminitis was observed among treatments. The number of hoof lesions was greater on all mat types (P < 0.05) compared with concrete slats and OWP treatments. Dirt scores were greater (P < 0.05) for animals on OWPs when measured on days 42, 84, 105, 126 and 150 compared with animals on slats. Under the conditions adopted for the present study, there was no evidence to suggest that animals housed on bare concrete slats were disadvantaged in respect of animal welfare compared with animals housed on other floor types. It is concluded that the welfare of steers was not adversely affected by slats compared with different mat types or OWPs.

  8. SPERTI Reactor Pit Building (PER605) under construction. Poured concrete foundation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SPERT-I Reactor Pit Building (PER-605) under construction. Poured concrete foundation will enclosure a "Pit" into which the reactor vessel will be placed. Steel framework has been erected. To left of view is instrument cell (PER-606), constructed of concrete block. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1000 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  9. Development of an NCHRP report 350 TL-3 New Jersey shape 50-inch portable concrete barrier : final report, June 2006.

    DOT National Transportation Integrated Search

    2006-06-01

    For roadside work-zones in areas that have opposing traffic flow, safety is enhanced if the temporary barriers incorporate a "glare-shield" that blocks headlight glare from opposing traffic. Currently-available 32-inch portable concrete barriers requ...

  10. 18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH BLOCKS AND PULLEYS OVERHEAD LOOKING NORTHEAST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  11. 2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. VIEW, LOOKING FROM THE NORTHEAST. THESE THREE CONCRETE MORTAR BLOCKS WERE FOR THE MILL'S 3-STAMP BATTERIES ERECTED IN 1903, NORTH OF THE TWO 1901 BATTERIES WHICH WERE MOUNTED ON WOODEN TIMBERS - Wilbur-Womble Mill, Southern Edge Of Salt Spring Valley, Copperopolis, Calaveras County, CA

  12. More and more power plant flyash is being recycled

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golden, D.; Sauber, R.

    A number of viable options have been demonstrated for recycling flyash, one of America's fastest-growing waste products. Application opportunities range from structural fills to pavement bases, concrete, stabilizing backfills, and a metal-castings alloy. But two stumbling blocks still face utilities and marketers of flyash. They are: (1) Convincing potential end users that flyash is a beneficial raw material and not an inferior waste product. (2) Persuading regulatory agencies to draft legislation, that promote, if not mandate, its use.

  13. Sustainability and durability analysis of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Horáková, A.; Broukalová, I.; Kohoutková, A.; Vašková, J.

    2017-09-01

    The article describes an assessment of reinforced concrete structures in terms of durability and sustainable development. There is a short summary of findings from the literature on evaluation methods for environmental impacts and also about corrosive influences acting on the reinforced concrete structure, about factors influencing the durability of these structures and mathematical models describing the corrosion impacts. Variant design of reinforced concrete structure and assessment of these variants in terms of durability and sustainability was performed. The analysed structure was a concrete ceiling structure of a parking house for cars. The variants differ in strength class of concrete and thickness of concrete slab. It was found that in terms of durability and sustainable development it is significantly preferable to use higher class of concrete. There are significant differences in results of concrete structures durability for different mathematical models of corrosive influences.

  14. A 640 foot per second impact test of a two foot diameter model nuclear reactor containment system without fracture

    NASA Technical Reports Server (NTRS)

    Puthoff, R. L.

    1971-01-01

    An impact test was conducted on an 1142 pound 2 foot diameter sphere model. The purpose of this test was to determine the feasibility of containing the fission products of a mobile reactor in an impact. The model simulated the reactor core, energy absorbing gamma shielding, neutron shielding and the containment vessel. It was impacted against an 18,000 pound reinforced concrete block. The model was significantly deformed and the concrete block demolished. No leaks were detected nor cracks observed in the model after impact.

  15. The Behaviour of Palm Oil Fibre Block Masonry Prism under Eccentric Compressive Loading

    NASA Astrophysics Data System (ADS)

    Mokhtar, Mardiha; Kolop, Roslan; Baizura Hamid, Nor; Kaamin, Masiri; Farhan Rosdi, Mohd; Ngadiman, Norhayati; Sahat, Suhaila

    2017-08-01

    Dry-stacked masonry offers great benefits in constructing masonry buildings. Several examples from previous research show that dry masonry is reasonable alternative to the traditional building system. By addition of fibre, the ductility and the propagation of cracking will be improved. This study investigates the dry stack oil palm fibre block prisms which were subjected to eccentricity compression loads. These concrete blocks were cast using a single mould with suitable fibre-cement composition namely 1:4 (cement: sand) and 0.40 water to the cement ratio based on cement weight. Prisms test using 400 (length) × 150 (width) × 510 (height) mm specimen was carried under eccentric load. There were forty eight (48) prisms built with different configurations based on their volume of fibre. In this study, one types of grout were used namely the fine grout of mix 1:3:2 (cement: sand: aggregate (5mm maximum). Based on the test performed, the failure mechanism and influencing parameters were discussed. From compressive strength test result, it shows that the strength of concrete block decreased with the increase of fibre used. Although the control sample has the higher strength compared to concrete with EFB, it can be seen from mode failure of masonry prism that fibre could extend the cracking time. These results show that the oil palm fibre blocks can improve the failure behaviour and suitable to be used as load bearing wall construction in Malaysia.

  16. Sound absorption and morphology characteristic of porous concrete paving blocks

    NASA Astrophysics Data System (ADS)

    Halim, N. H. Abd; Nor, H. Md; Ramadhansyah, P. J.; Mohamed, A.; Hassan, N. Abdul; Ibrahim, M. H. Wan; Ramli, N. I.; Nazri, F. Mohamed

    2017-11-01

    In this study, sound absorption and morphology characteristic of Porous Concrete Paving Blocks (PCPB) at different sizes of coarse aggregate were presented. Three different sizes of coarse aggregate were used; passing 10 mm retained 5 mm (as Control), passing 8 mm retained 5 mm (8 - 5) and passing 10 mm retained 8 mm (10 - 8). The sound absorption test was conducted through the impedance tube at different frequency. It was found that the size of coarse aggregate affects the level of absorption of the specimens. It also shows that PCPB 10 - 8 resulted in high sound absorption compared to the other blocks. On the other hand, microstructure morphology of PCPB shows a clearer version of existing micro-cracks and voids inside the specimens which affecting the results of sound absorption.

  17. Results of using frequency banded SAFT for examining three types of defects

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Barker, Alan; Santos-Villalobos, Hector

    2017-02-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties; its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include the containment building, spent fuel pool, and cooling towers. This use has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. Additionally, new mechanisms of materials degradation are also possible. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular Nondestructive Evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply the frequency banded Synthetic Aperture Focusing Technique (SAFT) technique to a 2.134 m × 2.134 m × 1.016 m concrete test specimen with twenty deliberately embedded defects. These twenty embedded defects simulate voids (honeycombs), delamination, and embedded organic construction debris. Using the time-frequency technique of wavelet packet decomposition and reconstruction, the spectral content of the signal can be divided into two resulting child nodes. The resulting two nodes can then also be divided into two child nodes with each child node containing half of the bandwidth (spectral content) of its parent node. This process can be repeated until the bandwidth of the child nodes is sufficiently small. Once the desired bandwidth has been obtained, the band limited signal can be analyzed using SAFT, enabling the visualization of reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. This paper examines the benefits of using frequency banded SAFT.

  18. Streambank Protection Guidelines for Landowners and Local Governments,

    DTIC Science & Technology

    1983-10-01

    building blocks , slag , and quarry waste. UNCHE SON / / Large flat slabs should be broken up into /smaller pieces. Garbage, vegetation, scrap lumber...concrete blocks , and house brick. but will not provide any long-term protection. Preabrfirated commercial gabion basket. Completed gabion revetment made...prevent pressure buildup that could cause revetment failure. BLOCKS . Precast cellular blocks can be *,-’e : Typi.tal sa.d- e, .t bag r ’etment

  19. 18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR9, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR-9, WITH THE MORE RECENT CONCRETE BLOCK CONTROL ROOM AT THE LEFT AND ASSOCIATED CONCRETE PAVING IN THE FOREGROUND. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  20. A review of recent developments in parametric based acoustic emission techniques applied to concrete structures

    NASA Astrophysics Data System (ADS)

    Vidya Sagar, R.; Raghu Prasad, B. K.

    2012-03-01

    This article presents a review of recent developments in parametric based acoustic emission (AE) techniques applied to concrete structures. It recapitulates the significant milestones achieved by previous researchers including various methods and models developed in AE testing of concrete structures. The aim is to provide an overview of the specific features of parametric based AE techniques of concrete structures carried out over the years. Emphasis is given to traditional parameter-based AE techniques applied to concrete structures. A significant amount of research on AE techniques applied to concrete structures has already been published and considerable attention has been given to those publications. Some recent studies such as AE energy analysis and b-value analysis used to assess damage of concrete bridge beams have also been discussed. The formation of fracture process zone and the AE energy released during the fracture process in concrete beam specimens have been summarised. A large body of experimental data on AE characteristics of concrete has accumulated over the last three decades. This review of parametric based AE techniques applied to concrete structures may be helpful to the concerned researchers and engineers to better understand the failure mechanism of concrete and evolve more useful methods and approaches for diagnostic inspection of structural elements and failure prediction/prevention of concrete structures.

  1. Assessment of concrete damage and strength degradation caused by reinforcement corrosion

    NASA Astrophysics Data System (ADS)

    Nepal, Jaya; Chen, Hua-Peng

    2015-07-01

    Structural performance deterioration of reinforced concrete structures has been extensively investigated, but very limited studies have been carried out to investigate the effect of reinforcement corrosion on time-dependent reliability with consideration of the influence of mechanical characteristics of the bond interface due to corrosion. This paper deals with how corrosion in reinforcement creates different types of defects in concrete structure and how they are responsible for the structural capacity deterioration of corrosion affected reinforced concrete structures during their service life. Cracking in cover concrete due to reinforcement corrosion is investigated by using rebar-concrete model and realistic concrete properties. The flexural strength deterioration is analytically predicted on the basis of bond strength evolution due to reinforcement corrosion, which is examined by the experimental data available. The time-dependent reliability analysis is undertaken to calculate the life time structural reliability of corrosion damaged concrete structures by stochastic deterioration modelling of reinforced concrete. The results from the numerical example show that the proposed approach is capable of evaluating the damage caused by reinforcement corrosion and also predicting the structural reliability of concrete structures during their lifecycle.

  2. The Study on the Durability of Submerged Structure Displacement due to Concrete Failure

    NASA Astrophysics Data System (ADS)

    Mohd, M.; Zainon, O.; Rasib, A. W.; Majid, Z.

    2016-09-01

    Concrete structures that exposed to marine environments are subjected to multiple deterioration mechanisms. An overview of the existing technology for submerged concrete, pressure resistant, concrete structures which related such as cracks, debonds, and delamination are discussed. Basic knowledge related to drowning durability such as submerged concrete structures in the maritime environment are the durability of a concrete and the ability to resist to weathering, chemical attack, abrasion or other deterioration processes. The measuring techniques and instrumentation for geometrical monitoring of submerged structural displacements have traditionally been categorized into two groups according to the two main groups, namely as geodetic surveying and geotechnical structural measurements of local displacements. This paper aims to study the durability of submerged concrete displacement and harmful effects of submerged concrete structures.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The final design, performance analysis, and economic analysis of a solar hot water system for curing concrete blocks at the new Rotoclave block fabricating plant being built by the York Building Products Co. Inc. at Harrisburg, Pa. are presented. The system will use AAI Corporation's 24/1 concentrating collectors. (WHK)

  4. Situated conceptualization and semantic processing: effects of emotional experience and context availability in semantic categorization and naming tasks.

    PubMed

    Moffat, Michael; Siakaluk, Paul D; Sidhu, David M; Pexman, Penny M

    2015-04-01

    It has been proposed that much of conceptual knowledge is acquired through situated conceptualization, such that both external (e.g., agents, objects, events) and internal (e.g., emotions, introspections) environments are considered important (Barsalou, 2003). To evaluate this proposal, we characterized two dimensions by which situated conceptualization may be measured and which should have different relevance for abstract and concrete concepts; namely, emotional experience (i.e., the ease with which words evoke emotional experience; Newcombe, Campbell, Siakaluk, & Pexman, 2012) and context availability (i.e., the ease with which words evoke contexts in which their referents may appear; Schwanenflugel & Shoben, 1983). We examined the effects of these two dimensions on abstract and concrete word processing in verbal semantic categorization (VSCT) and naming tasks. In the VSCT, emotional experience facilitated processing of abstract words but inhibited processing of concrete words, whereas context availability facilitated processing of both types of words. In the naming task in which abstract words and concrete words were not blocked by emotional experience, context availability facilitated responding to only the abstract words. In the naming task in which abstract words and concrete words were blocked by emotional experience, emotional experience facilitated responding to only the abstract words, whereas context availability facilitated responding to only the concrete words. These results were observed even with several lexical (e.g., frequency, age of acquisition) and semantic (e.g., concreteness, arousal, valence) variables included in the analyses. As such, the present research suggests that emotional experience and context availability tap into different aspects of situated conceptualization and make unique contributions to the representation and processing of abstract and concrete concepts.

  5. Characteristics of Recycled Concrete Aggregates from Precast Slab Block Buildings

    NASA Astrophysics Data System (ADS)

    Venkrbec, Václav; Nováková, Iveta; Henková, Svatava

    2017-10-01

    Precast slab block buildings (PSBB) typically and frequently occur in Central and Eastern Europe, as well as elsewhere in the world. Some of these buildings are currently used beyond their service life capacity. The utilization of recycled materials from these buildings with regard to applying the principles of sustainable construction and using recycled materials will probably be significant in the following years. Documentation from the manufacturing processes of prefabricated blocks for precast slab block buildings is not available, and also it is difficult to declare technological discipline during the construction of these buildings. Therefore, properties of recycled concrete aggregates (RCA) produced from construction and demolition waste (C&DW) of precast slab block buildings build between 1950s to 1990s are not sufficiently known. The demolition of these buildings is very rare today, but it can be assumed an increase in demolitions of these buildings in the future. The use of RCA in new concrete requires verification/testing of the geometrical and physical properties of RCA according to the EN 12 620+A1 standard. The aim of the contribution is to present a case study of the demolition of slab block building with emphasis on RCA usage. The paper presents the results of the tests according to European standards for determining selected geometrical and physical properties of the RCA. The paper describes and evaluates tests such as determination of particle size distribution - Sieve Analysis, content of fine particles, determination of density and water absorption. The results of the properties testing of RCA are compared with the properties of natural aggregate. The general boundary conditions of RCA particular tests are presented.

  6. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  7. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-11-26

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment.

  8. Acoustic Behavior of Hollow Blocks and Bricks Made of Concrete Doped with Waste-Tire Rubber

    PubMed Central

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; Defez, Beatriz; Peris-Fajanes, Guillermo

    2016-01-01

    In this paper, we investigate the acoustic behaviour of building elements made of concrete doped with waste-tire rubber. Three different mixtures were created, with 0%, 10%, and 20% rubber in their composition. Bricks, lattice joists, and hollow blocks were manufactured with each mixture, and three different cells were built and tested against aerial and impact noise. The values of the global acoustic isolation and the reduction of the sound pressure level of impacts were measured. Results proved that highly doped elements are an excellent option to isolate low frequency sounds, whereas intermediate and standard elements constitute a most interesting option to block middle and high frequency sounds. In both cases, the considerable amount of waste-tire rubber recycled could justify the employment of the doped materials for the sake of the environment. PMID:28774084

  9. The effect of hardhats on head and neck response to vertical impacts from large construction objects.

    PubMed

    Suderman, Bethany L; Hoover, Ryan W; Ching, Randal P; Scher, Irving S

    2014-12-01

    We evaluated the effectiveness of hardhats in attenuating head acceleration and neck force in vertical impacts from large construction objects. Two weight-matched objects (lead shot bag and concrete block) weighing 9.1 kg were dropped from three heights (0.91 m, 1.83 m and 2.74 m) onto the head of a 50th percentile male Hybrid III anthropomorphic test device (ATD). Two headgear conditions were tested: no head protection and an ANSI Type-I, Class-E hardhat. A third headgear condition (snow sport helmet) was tested at 1.83 m for comparison with the hardhat. Hardhats significantly reduced the resultant linear acceleration for the concrete block impacts by 70-95% when compared to the unprotected head condition. Upper neck compression was also significantly reduced by 26-60% with the use of a hardhat when compared to the unprotected head condition for the 0.91 and 1.83 m drop heights for both lead shot and concrete block drop objects. In this study we found that hardhats can be effective in reducing both head accelerations and compressive neck forces for large construction objects in vertical impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Discrimination of high-Z materials in concrete-filled containers using muon scattering tomography

    NASA Astrophysics Data System (ADS)

    Frazão, L.; Velthuis, J.; Thomay, C.; Steer, C.

    2016-07-01

    An analysis method of identifying materials using muon scattering tomography is presented, which uses previous knowledge of the position of high-Z objects inside a container and distinguishes them from similar materials. In particular, simulations were performed in order to distinguish a block of Uranium from blocks of Lead and Tungsten of the same size, inside a concrete-filled drum. The results show that, knowing the shape and position from previous analysis, it is possible to distinguish 5 × 5 × 5 cm3 blocks of these materials with about 4h of muon exposure, down to 2 × 2 × 2 cm3 blocks with 70h of data using multivariate analysis (MVA). MVA uses several variables, but it does not benefit the discrimination over a simpler method using only the scatter angles. This indicates that the majority of discrimination is provided by the angular information. Momentum information is shown to provide no benefits in material discrimination.

  11. Release of U(VI) from spent biosorbent immobilized in cement concrete blocks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venkobachar, C.; Iyengar, L.; Mishra, U.K.

    1995-12-01

    This paper deals with cementation as the method for the disposal of spent biosorbent, Ganoderma lucidum (a wood rotting macrofungi) after it is used for the removal of Uranium. Results on the uranium release during the curing of cement-concrete (CC) blocks indicated that placing the spent sorbent at the center of the blocks during their casting yields better immobilization of uranium as compared to the homogeneous mixing of the spent sorbent with the cement. Short term leach tests indicated that the uranium release was negligible in simulated seawater, 1.8% in 0.2 N sodium carbonate and 6.0% in 0.2 N HCl.more » The latter two leachates were used to represent the extreme environmental conditions. It was observed that the presence of the spent biosorbent up to 5% by weight did not affect the compressive strength of CC blocks. Thus cementation technique is suitable for the immobilization of uranium loaded biosorbent for its ultimate disposal.« less

  12. Teaching Mathematics to Young Children through the Use of Concrete and Virtual Manipulatives

    ERIC Educational Resources Information Center

    D'Angelo, Frank; Iliev, Nevin

    2012-01-01

    The use of manipulatives is an essential key to teaching mathematics to young children. Throughout history, different types of manipulatives have been used to aid in comprehension of mathematical concepts including quipu, abaci and pattern blocks. Today, concrete and virtual manipulatives are the tools that early childhood teachers are using in…

  13. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  14. Field Study on Moisture Problems in Exterior Walls of Family Housing Units at Naval Air Station Pensacola, Florida.

    DTIC Science & Technology

    1984-02-01

    exterior exposed concrete block walls with 2 inch (nominal) furring, 1 inch cellular board ( expanded polystyrene ) insulation, and gypsum board finish, as...furring strips, and new expanded polystyrene board thermal insu- lation and new gypsum board were installed. The purpose of the coating on the concrete

  15. General Shop Competencies in Vocational Agriculture for 9th and 10th Grade Classes.

    ERIC Educational Resources Information Center

    Novotny, Ronald; And Others

    The document presents unit plans which offer list of experiences and competencies to be learned for general shop occupations in vocational agriculture. The units include: (1) arc welding, (2) oxy-acetylene welding, (3) flat concrete, (4) concrete block, (5) lumber patterns and wood building materials, (6) metal fasteners, (7) wood adhesives, (8)…

  16. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    NASA Astrophysics Data System (ADS)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  17. Arithmetic Procedures are Induced from Examples.

    DTIC Science & Technology

    1985-08-13

    concrete numerals (eg. coins. Dienes blocks, poker chips. Montessori rods etc Analogy is included as a third hypothesis even though it is not particularly...collections of coins. Diennes blocks. Montessori rods and so forth. This is a mapping between two kinds of numerals. and not two procedures Later. this

  18. Disbond detection with piezoelectric wafer active sensors in RC structures strengthened with FRP composite overlays

    NASA Astrophysics Data System (ADS)

    Giurgiutiu, Victor; Harries, Kent; Petrou, Michael; Bost, Joel; Quattlebaum, Josh B.

    2003-12-01

    The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in-situ nondestructive evaluation (NDE) for structural health monitoring (SHM) of reinforced concrete (RC) structures strengthened with fiber reinforced polymer (FRP) composite overlays is explored. First, the disbond detection method were developed on coupon specimens consisting of concrete blocks covered with an FRP composite layer. It was found that the presence of a disbond crack drastically changes the electromechanical (E/M) impedance spectrum measured at the PWAS terminals. The spectral changes depend on the distance between the PWAS and the crack tip. Second, large scale experiments were conducted on a RC beam strengthened with carbon fiber reinforced polymer (CFRP) composite overlay. The beam was subject to an accelerated fatigue load regime in a three-point bending configuration up to a total of 807,415 cycles. During these fatigue tests, the CFRP overlay experienced disbonding beginning at about 500,000 cycles. The PWAS were able to detect the disbonding before it could be reliably seen by visual inspection. Good correlation between the PWAS readings and the position and extent of disbond damage was observed. These preliminary results demonstrate the potential of PWAS technology for SHM of RC structures strengthened with FRP composite overlays.

  19. Ways to improve the technology of constructing concrete hydraulic structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osipov, A.D.

    1985-05-01

    The authors state that there is a need for a critical analysis of the established technology of constructing massive concrete structures and for the search for new, cheap, faster, and less labor-intensive designs when constructing concrete dams. Improvement of the technology of constructing concrete hydraulic structures is possible, they say, by introducing the following suggestions: construction of massive structures mainly from a very stiff, low-cement concrete mix compacted by the vibrating roller method; use of poured self-compacting concrete mixes when constructing reinforced-concrete structural elements of hydrostations, water intakes, tunnel linings, etc.; and by development of the technology of delivering stiffmore » concrete mixes by conveyors and their placement by rotary throwers when revetting slopes. This paper examines these elements in detail.« less

  20. Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Benjamin W.; Huang, Hai

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanismsmore » of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.« less

  1. Technology Solutions Case Study: Innovative Retrofit Foundation Insulation Strategies, Minneapolis, Minnesota

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Basements in climates 6 & 7 can account for a fraction of a home's total heat loss when fully conditioned. These foundations are a source of moisture, with convection in open block cavities redistributing water from the wall base, usually when heating. Even when block cavities are capped, the cold foundation concrete can act as a moisture source for wood rim joist components that are in contact with the wall. As below-grade basements are increasingly retrofitted for habitable space, cold foundation walls pose increased challenges for moisture durability, energy use, and occupant comfort. To address this challenge, the NorthernSTAR Buildingmore » America Partnership evaluated a retrofit insulation strategy for foundations that is designed for use with open-core concrete block foundation walls. The three main goals were to improve moisture control, improve occupant comfort, and reduce heat loss.« less

  2. Concrete with onyx waste aggregate as aesthetically valued structural concrete

    NASA Astrophysics Data System (ADS)

    Setyowati E., W.; Soehardjono, A.; Wisnumurti

    2017-09-01

    The utillization of Tulungagung onyx stone waste as an aggregate of concrete mixture will improve the economic value of the concrete due to the brighter color and high aesthetic level of the products. We conducted the research of 75 samples as a test objects to measure the compression stress, splits tensile stress, flexural tensile stress, elasticity modulus, porosity modulus and also studied 15 test objects to identify the concrete micro structures using XRD test, EDAX test and SEM test. The test objects were made from mix designed concrete, having ratio cement : fine aggregate : coarse aggregate ratio = 1 : 1.5 : 2.1, and W/C ratio = 0.4. The 28 days examination results showed that the micro structure of Tulungagung onyx waste concrete is similar with normal concrete. Moreover, the mechanical test results proved that Tulungagung onyx waste concretes also have a qualified level of strength to be used as a structural concrete with higher aesthetic level.

  3. Alternatives to lifting concrete masonry blocks onto rebar: biomechanical and perceptual evaluations.

    PubMed

    Hess, J A; Mizner, R L; Kincl, L; Anton, D

    2012-01-01

    This study examined the use of and barriers to H-block and high lift grouting, two alternatives to lifting concrete masonry blocks onto vertical rebar. Peak and cumulative shoulder motions were evaluated, as well as adoption barriers: H-block cost and stakeholder perceptions. Results indicated that using the alternatives significantly decreased peak shoulder flexion (p < 0.001). A case study indicated that building cost was higher with H-block, but the difference was less than 2% of the total cost. Contractors and specifiers reported important differences in perceptions, work norms, and material use and practices. For example, 48% of specifiers reported that use of high lift grouting was the contractor's choice, while 28% of contractors thought it must be specified. Use of H-block or high-lift grouting should be considered as methods to reduce awkward upper extremity postures. Cost and stakeholders' other perceptions present barriers that are important considerations when developing diffusion strategies for these alternatives. This study provides information from several perspectives about ergonomic controls for a high risk bricklaying task, which will benefit occupational safety experts, health professionals and ergonomists. It adds to the understanding of shoulder stresses, material cost and stakeholder perceptions that will contribute to developing effective diffusion strategies.

  4. Replacement of Fine Aggregate by using Recyclable Materials in Paving Blocks

    NASA Astrophysics Data System (ADS)

    Koganti, Shyam Prakash; Hemanthraja, Kommineni; Sajja, Satish

    2017-08-01

    Cement concrete paving blocks are precast hard products complete out of cement concrete. The product is made in various sizes and shapes like square, round and rectangular blocks of different dimensions with designs for interlocking of adjacent tiles blocks. Several Research Works have been carried out in the past to study the possibility of utilizing waste materials and industrial byproducts in the manufacturing of paver blocks. Various industrial waste materials like quarry dust, glass powder, ceramic dust and coal dust are used as partial replacement of fine aggregate and assessed the strength parameters and compared the profit percentages after replacement with waste materials. Quarry dust can be replaced by 20% and beyond that the difference in strength is not much higher but considering cost we can replace upto 40% so that we can get a profit of almost 10%. Similarly we can replace glass powder and ceramic dust by 20% only beyond that there is decrement in strength and even with 20% replacement we can get 1.34 % and 2.42% of profit. Coal dust is not suitable for alternative material as fine aggregate as it reduces the strength.

  5. Application of Composite Mechanics to Composites Enhanced Concrete Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.

    2006-01-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on composite mechanics which is available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructure as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by composite mechanics. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arches and domes).

  6. Passive Vibration Control of Existing Structures by Gravity-Loaded Cables

    NASA Astrophysics Data System (ADS)

    Alvis, E.; Tsang, H. H.; Hashemi, M. J.

    2017-06-01

    Structures with high concentration of mass at or close to the top such as highway bridge piers are vulnerable in earthquakes or accidents. In this paper, a simple and convenient retrofit strategy is proposed for minimizing vibrations and damages, extending service life and preventing collapse of existing structures. The proposed system comprises of tension-only cables secured to the sides of the structure through gravity anchor blocks that are free to move in vertical shafts. The system is installed in such a way that the cables do not induce unnecessary stress on the main structure when there is no lateral motion or vibration. The effectiveness of controlling global structural responses is investigated for tension-only bilinear-elastic behaviour of cables. Results of a realistic case study for a reinforced concrete bridge pier show that response reduction is remarkably well under seismic excitation.

  7. Bond-slip detection of concrete-encased composite structure using electro-mechanical impedance technique

    NASA Astrophysics Data System (ADS)

    Liang, Yabin; Li, Dongsheng; Parvasi, Seyed Mohammad; Kong, Qingzhao; Lim, Ing; Song, Gangbing

    2016-09-01

    Concrete-encased composite structure is a type of structure that takes the advantages of both steel and concrete materials, showing improved strength, ductility, and fire resistance compared to traditional reinforced concrete structures. The interface between concrete and steel profiles governs the interaction between these two materials under loading, however, debonding damage between these two materials may lead to severe degradation of the load transferring capacity which will affect the structural performance significantly. In this paper, the electro-mechanical impedance (EMI) technique using piezoceramic transducers was experimentally investigated to detect the bond-slip occurrence of the concrete-encased composite structure. The root-mean-square deviation is used to quantify the variations of the impedance signatures due to the presence of the bond-slip damage. In order to verify the validity of the proposed method, finite element model analysis was performed to simulate the behavior of concrete-steel debonding based on a 3D finite element concrete-steel bond model. The computed impedance signatures from the numerical results are compared with the results obtained from the experimental study, and both the numerical and experimental studies verify the proposed EMI method to detect bond slip of a concrete-encased composite structure.

  8. Research progress of microbial corrosion of reinforced concrete structure

    NASA Astrophysics Data System (ADS)

    Li, Shengli; Li, Dawang; Jiang, Nan; Wang, Dongwei

    2011-04-01

    Microbial corrosion of reinforce concrete structure is a new branch of learning. This branch deals with civil engineering , environment engineering, biology, chemistry, materials science and so on and is a interdisciplinary area. Research progress of the causes, research methods and contents of microbial corrosion of reinforced concrete structure is described. The research in the field is just beginning and concerted effort is needed to go further into the mechanism of reinforce concrete structure and assess the security and natural life of reinforce concrete structure under the special condition and put forward the protective methods.

  9. Convergence to Diagonal Form of Block Jacobi-type Processes

    NASA Astrophysics Data System (ADS)

    Hari, Vjeran

    2008-09-01

    The main result of recent research on convergence to diagonal form of block Jacobi-type processes is presented. For this purpose, all notions needed to describe the result are introduced. In particular, elementary block transformation matrices, simple and non-simple algorithms, block pivot strategies together with the appropriate equivalence relations are defined. The general block Jacobi-type process considered here can be specialized to take the form of almost any known Jacobi-type method for solving the ordinary or the generalized matrix eigenvalue and singular value problems. The assumptions used in the result are satisfied by many concrete methods.

  10. Evaluating the strength of concrete structure on terrace houses

    NASA Astrophysics Data System (ADS)

    Hasbullah, Mohd. Amran; Yusof, Rohana; Rahman, Mohd Nazaruddin Yusoff @ Abdul

    2016-08-01

    The concrete structure is the main component to support the structure of the building, but when concrete has been used for an extended period hence, it needs to be evaluated to determine the current strength, durability and how long it can last. The poor quality of concrete structures will cause discomfort to the user and, the safety will be affected due to lack of concrete strength. If these issues are not monitored or not precisely known performance, and no further action done then, the concrete structure will fail and eventually it will collapse. Five units of terrace houses that are built less than 10 years old with extension or renovations and have cracks at Taman Samar Indah, Samarahan, Sarawak have been selected for this study. The instrument used in this research is Ultrasonic Pulse Velocity (UPV), with the objective to determine the current strength and investigate the velocity of a pulse at the concrete cracks. The data showed that the average velocity of the pulse is less than 3.0 km/s and has shown that the quality of the concrete in the houses too weak scale / doubt in the strength of concrete. It also indicates that these houses need to have an immediate repair in order to remain secure other concrete structures.

  11. Radiation attenuation on labyrinth design bunker using Iridium-192 source

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Sani, Suhairy bin; Masenwat, Noor Azreen bin; Mohd, Shukri; Sayuti, Shaharudin; Ahmad, Mohamad Ridzuan Bin; Mahmud, Mohamad Haniza bin; Isa, Nasharuddin bin

    2017-01-01

    Gamma rays are better absorbed by materials with high atomic numbers and high density. Steel, lead, depleted uranium, concrete, water or sand can be used as gamma shielding. Lead and steel are normally used for making doors of the bunker and to reduce radiation scatter. Depleted uranium is used for gamma container. Water is used in nuclear reactor as neutron and gamma absorber. Sand is used for mobile hot cell. However concrete is the most common and cheap material for gamma radiation bunker. In this research, concrete made from hematite aggregates was used to make chevron blocks for a temporary construction of labyrinth bunker. This paper explains and discusses the gamma attenuation around labyrinth bunker with concrete containing hematite aggregates.

  12. Deterioration of concrete structures in coastal environment due to carbonation.

    PubMed

    Balaji, K V G D; Gopalaraju, S S S V; Trilochan, Jena

    2010-07-01

    Failure of existing concrete structures takes place due to lack of durability, and not due to less structural strength. One of the important aspects of durability is carbonation depth. The rate of carbonation in concrete is influenced by both its physical properties and exposure conditions. Rebar corrodes when carbonation reaches to a depth of concrete cover provided. In the present work, various concrete structures with different life periods and exposed to different weather conditions have been considered to study the carbonation effect. It is observed that the effect of carbonation is more in the structures located near to the sea coast and on windward face of the structure.

  13. On the Performance of a Very Large All-GFRP Strut and Tie Structure

    NASA Astrophysics Data System (ADS)

    Boscato, G.; Mottram, J. T.; Russo, S.

    2014-09-01

    An analysis of the dynamic response of a fiber-reinforced-polymer (FRP) structure serving as a temporary (weather) shelter for the church of S. Maria Paganica in L'Aquila is presented. The church suffered roof collapse during a magnitude 6.3 earthquake in April, 2009. The structure is a rectilinear space frame constructed from built-up members of pultruded profiles and steel bolted FRP gusset plates. It has a maximum height of 32 m, covers an area of 1050 m2, and weighs (only) 120 kN. Foundations are free-standing blocks of reinforced concrete connected, just above the floor of the church, by steel bars 16 mm in diameter. A finite-element analysis (FEA) is used to determine the seismic response of the main section to the FRP structure. The nonlinear FE responses of the structure subjected to design response spectra (in the ultimate limit state) are presented and evaluated.

  14. Strength characteristics of light weight concrete blocks using mineral admixtures

    NASA Astrophysics Data System (ADS)

    Bhuvaneshwari, P.; Priyadharshini, U.; Gurucharan, S.; Mithunram, B.

    2017-07-01

    This paper presents an experimental study to investigate the characteristics of light weight concrete blocks. Cement was partially replaced with mineral admixtures like Fly ash (FA), limestone powder waste (LPW), Rice husk ash (RHA), sugarcane fiber waste (SCW) and Chrysopogonzizanioides (CZ). The maximum replacement level achieved was 25% by weight of cement and sand. Total of 56 cubes (150 mm x 150 mm x150 mm) and 18 cylinders (100mmφ and 50mm depth) were cast. The specimens being (FA, RHA, SCW, LPW, CZ, (FA-RHA), (FA-LPW), (FA-CZ), (LPW-CZ), (FA-SCW), (RHA-SCW)).Among the different combination, FA,FA-SCW,CZ,FA-CZ showed enhanced strength and durability, apart from achieving less density.

  15. On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.

    2017-11-01

    At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.

  16. Investigation of Mechanism of Action of Modifying Admixtures Based on Products of Petrochemical Synthesis on Concrete Structure

    NASA Astrophysics Data System (ADS)

    Tukhareli, V. D.; Tukhareli, A. V.; Cherednichenko, T. F.

    2017-11-01

    The creation of composite materials for generating structural elements with the desired properties has always been and still remains relevant. The basis of a modern concrete technology is the creation of a high-quality artificial stone characterized by low defectiveness and structure stability. Improving the quality of concrete compositions can be achieved by using chemical admixtures from local raw materials which is a very promising task of modern materials’ science for creation of a new generation of concretes. The new generation concretes are high-tech, high-quality, multicomponent concrete mixes and compositions with admixtures that preserve the required properties in service under all operating conditions. The growing complexity of concrete caused by systemic effects that allow you to control the structure formation at all stages of the technology ensures the obtaining of composites with "directional" quality, compositions, structure and properties. The possibility to use the organic fraction of oil refining as a multifunctional hydrophobic-plasticizing admixture in the effective cement concrete is examined.

  17. Cementitious building material incorporating end-capped polyethylene glycol as a phase change material

    DOEpatents

    Salyer, Ival O.; Griffen, Charles W.

    1986-01-01

    A cementitious composition comprising a cementitious material and polyethylene glycol or end-capped polyethylene glycol as a phase change material, said polyethylene glycol and said end-capped polyethylene glycol having a molecular weight greater than about 400 and a heat of fusion greater than about 30 cal/g; the compositions are useful in making pre-formed building materials such as concrete blocks, brick, dry wall and the like or in making poured structures such as walls or floor pads; the glycols can be encapsulated to reduce their tendency to retard set.

  18. A reusable PZT transducer for monitoring initial hydration and structural health of concrete.

    PubMed

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use.

  19. A Reusable PZT Transducer for Monitoring Initial Hydration and Structural Health of Concrete

    PubMed Central

    Yang, Yaowen; Divsholi, Bahador Sabet; Soh, Chee Kiong

    2010-01-01

    During the construction of a concrete structure, strength monitoring is important to ensure the safety of both personnel and the structure. Furthermore, to increase the efficiency of in situ casting or precast of concrete, determining the optimal time of demolding is important for concrete suppliers. Surface bonded lead zirconate titanate (PZT) transducers have been used for damage detection and parameter identification for various engineering structures over the last two decades. In this work, a reusable PZT transducer setup for monitoring initial hydration of concrete and structural health is developed, where a piece of PZT is bonded to an enclosure with two bolts tightened inside the holes drilled in the enclosure. An impedance analyzer is used to acquire the admittance signatures of the PZT. Root mean square deviation (RMSD) is employed to associate the change in concrete strength with changes in the PZT admittance signatures. The results show that the reusable setup is able to effectively monitor the initial hydration of concrete and the structural health. It can also be detached from the concrete for future re-use. PMID:22399929

  20. Data on optimum recycle aggregate content in production of new structural concrete.

    PubMed

    Paul, Suvash Chandra

    2017-12-01

    This data presented herein are the research summary of "mechanical behavior and durability performance of concrete containing recycled concrete aggregate" (Paul, 2011) [1]. The results reported in this article relate to an important parameter of optimum content of recycle concrete aggregate (RCA) in production of new concrete for both structural and non-structural applications. For the purpose of the research various types of physical, mechanical and durability tests are performed for concrete made with different percentages of RCA. Therefore, this data set can be a great help of the readers to understand the mechanism of RCA in relates to the concrete properties.

  1. Environmental Assessment: PL 84-99 Levee Rehabilitation Program Lower Platte South Natural Resource District, Antelope Creek, Lincoln, Lancaster County, Nebraska

    DTIC Science & Technology

    2015-03-01

    block erosion protection, vegetated banks, rock riprap protection, a labyrinth weir, underground conduit, concrete retaining walls near bridges...erosion protection, vegetated banks, rock riprap protection, a labyrinth weir, underground conduit, concrete retaining walls near bridges, and outlet...called “criteria pollutants”. These include: ozone, carbon monoxide, nitrogen dioxide, particulate matter, sulfur dioxide, and lead. Lancaster County

  2. RADON FUNDAMENTALS AND THE EFFECTIVENESS OF COATINGS IN REDUCING SOIL GAS FLOW THROUGH BLOCK BASEMENT WALLS

    EPA Science Inventory

    The paper gives results of an evaluation of six different coatings in specially designed chambers built around 1.5 sq m concrete block wall sections. Data were collected over a pressure range of 1-12 Pa with flows from < 0.01 to 50 standard liters/minute (SLPM). The six coatings ...

  3. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    PubMed Central

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-01-01

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517

  4. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements.

    PubMed

    Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei

    2016-05-20

    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  5. The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength

    NASA Astrophysics Data System (ADS)

    Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA

    2017-10-01

    This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.

  6. The effects of pressure dependent constitutive model to simulate concrete structures failure under impact loads

    NASA Astrophysics Data System (ADS)

    Mokhatar, S. N.; Sonoda, Y.; Kamarudin, A. F.; Noh, M. S. Md; Tokumaru, S.

    2018-04-01

    The main objective of this paper is to explore the effect of confining pressure in the compression and tension zone by simulating the behaviour of reinforced concrete/mortar structures subjected to the impact load. The analysis comprises the numerical simulation of the influences of high mass low speed impact weight dropping on concrete structures, where the analyses are incorporated with meshless method namely as Smoothed Particle Hydrodynamics (SPH) method. The derivation of the plastic stiffness matrix of Drucker-Prager (DP) that extended from Von-Mises (VM) yield criteria to simulate the concrete behaviour were presented in this paper. In which, the displacements for concrete/mortar structures are assumed to be infinitesimal. Furthermore, the influence of the different material model of DP and VM that used numerically for concrete and mortar structures are also discussed. Validation upon existing experimental test results is carried out to investigate the effect of confining pressure, it is found that VM criterion causes unreal impact failure (flexural cracking) of concrete structures.

  7. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  8. Corrosion detection and evolution monitoring in reinforced concrete structures by the use of fiber Bragg grating sensor

    NASA Astrophysics Data System (ADS)

    Ali-Alvarez, S.; Ferdinand, P.; Magne, S.; Nogueira, R. P.

    2013-04-01

    Corrosion of reinforced bar (rebar) in concrete structures represents a major issue in civil engineering works, being its detection and evolution a challenge for the applied research. In this work, we present a new methodology to corrosion detection in reinforced concrete structures, by combining Fiber Bragg Grating (FBG) sensors with the electrochemical and physical properties of rebar in a simplified assembly. Tests in electrolytic solutions and concrete were performed for pitting and general corrosion. The proposed Structural Health Monitoring (SHM) methodology constitutes a direct corrosion measurement potentially useful to implement or improve Condition-Based Maintenance (CBM) program for civil engineering concrete structures.

  9. Review of concrete biodeterioration in relation to nuclear waste.

    PubMed

    Turick, Charles E; Berry, Christopher J

    2016-01-01

    Storage of radioactive waste in concrete structures is a means of containing wastes and related radionuclides generated from nuclear operations in many countries. Previous efforts related to microbial impacts on concrete structures that are used to contain radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete structures used to store or dispose of radioactive waste. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources such as components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The microbial contribution to degradation of the concrete structures containing radioactive waste is a constant possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Parameters to focus on for modeling activities and possible options for mitigation that would minimize concrete biodegradation are discussed and include key conditions that drive microbial activity on concrete surfaces. Copyright © 2015. Published by Elsevier Ltd.

  10. Decrease of non-point zinc runoff using porous concrete.

    PubMed

    Harada, Shigeki; Komuro, Yoshinori

    2010-01-01

    The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.

  11. Underwater Concrete Inspection Equipment

    DTIC Science & Technology

    1991-04-01

    nondestructive testing of con- crete waterfront structures. One instrument is a magnetic rebar locator that locates rebar in concrete structures and measures the...amount of con- crete cover over the rebar . Another instrument is a rebound hammer that measures the surface hardness of the concrete . The third...development of three specialized instruments for the underwater nondestructive testing or concrete waterfront structures. One instrument is a magnetic rebar

  12. The effect of crack width on the service life of reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Van Hung, Nguyen; Viet Hung, Vu; Viet, Tran Bao

    2018-04-01

    Reinforced concrete has become a widely used construction material around the world. Nowadays, the assessment of deterioration and life expectancy of reinforced concrete structure is very important and necessary as concrete is a complex material with brittle failure. Under the effect of load and over time, cracks occur in the structure, significantly reducing its performance and durability. Therefore, a number of models for predicting the penetration of chloride ions into the concrete were proposed to assess the durability of the structure. In the study performed by T B Viet (2016) [1], the author proposed a new theoretical model, especially considering the effects of macro and micro cracking on the diffusion coefficient of chloride ion in the cracked concrete. The following experimental results, in term of electrical indication of concrete’s ability to resist chloride ion penetration, are used to calculate the lifespan of a reinforced concrete structure according to Dura Crete approach [8] with different crack widths to evaluate the accuracy and reliability of the above model in the range of concrete compressive strength of 30-70MPa.

  13. Comparison of the performance of concrete-filled steel tubular and hollow steel diagrid buildings

    NASA Astrophysics Data System (ADS)

    Peter, Minu Ann; S, Sajith A.; Nagarajan, Praveen

    2018-03-01

    In the recent construction scenario, diagrid structures are becoming a popular high-rise building structural system. Diagrid structures consist of diagonals in the perimeter and an interior core. The corner and interior vertical columns are not required due to the structural efficiency of diagrid structural systems. Steel and concrete are commonly used material for diagrid. An alternate material for diagrid is concrete-filled steel tube (CFST). CFST incorporates the advantages of both steel and concrete. In CFST, the inward buckling of the steel tube is effectively prevented by the filled concrete. The compressive strength of concrete increases due to the tri-axial state of stress in concrete induced by the steel tube. The longitudinal as well as lateral reinforcement to the concrete core is also provided by the steel tube. This paper compares the performance of CFST and steel diagrid buildings using linear static analysis. For this purpose, a 12 storey and 36 storey building are analysed using finite element method and CFST diagrid building is found to perform better.

  14. MTR WING, TRA604. PRECAST CONCRETE PANELS AND DIMENSIONS. TYPES A, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR WING, TRA-604. PRECAST CONCRETE PANELS AND DIMENSIONS. TYPES A, B, C, D, E, AND F; AND HOW THEY ARE CONNECTED. TYPES C AND D ARE ON WEST SIDE WHERE GLASS BLOCKS SURROUND ENTRY DOOR. BLAW-KNOX 3150-804-20, SHEET #1, 11/1950. INL INDEX NO. 531-0604-62-098-100644, REV. 0. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  15. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  16. Thermomechanical responses of concrete members strengthened with cfrp sheets

    NASA Astrophysics Data System (ADS)

    Alqurashi, Abdulaziz

    Strengthening structural members means to be able to carry additional loads. Since, 1990s, a lot of materials and techniques have been established to not only increasing the capacity of member but also facing deterioration. Deterioration has become one of the worst highly maintenance cost. According to The ASCE, 27.1% of all bridges in the United States are not effectual. This is because the high traffic reflects negatively to structural members and cause deterioration of these members. This problem has been cost a lot of money. In addition, FRP has approved that it can increase the capacity of member and overcome some disadvantages such as deterioration. Therefore, CFRP sheet has become widely used. However, high temperatures affect the performance of externally bonded CFRP sheet negatively. Investigation should be carried out on relaxation and flexural performance of members under different temperatures. Therefore, this thesis focus on analyzing and investigating the performance of strengthened members exposed to elevated temperatures (25 to 175 °C). The experimental program was divided to two main parts. First, 144 strengthen concrete blocks 100mm X 150mm X 75mm has been exposed to elevated temperatures. These blocks have two main categories, which are different CFRP sheet width, and different CFRP sheet length. Different CFRP width has three types, which are type 0.25B (25mm x 100mm), type 0.5B (50mm x 100mm) and type 0.75B (75mm x 100mm). Also, Different CFRP length has three types, which are type L e (bonded area of 50 mm by 90mm), 1.25 Le (area of 50mm by 125mm) and type 1.5Le (50mm by 137 mm). Second, studying the performance of RC beams exposed to elevated temperatures.

  17. Variations of electric resistance and H2 and Rn emissions of concrete blocks under increasing uniaxial compression

    USGS Publications Warehouse

    King, C.-Y.; Luo, G.

    1990-01-01

    Electric resistance and emissions of hydrogen and radon isotopes of concrete (which is somewhat similar to fault-zone materials) under increasing uniaxial compression were continuously monitored to check whether they show any pre- and post-failure changes that may correspond to similar changes reported for earthquakes. The results show that all these parameters generally begin to increase when the applied stresses reach 20% to 90% of the corresponding failure stresses, probably due to the occurrence and growth of dilatant microcracks in the specimens. The prefailure changes have different patterns for different specimens, probably because of differences in spatial and temporal distributions of the microcracks. The resistance shows large co-failure increases, and the gas emissions show large post-failure increases. The post-failure increase of radon persists longer and stays at a higher level than that of hydrogen, suggesting a difference in the emission mechanisms for these two kinds of gases. The H2 increase may be mainly due to chemical reaction at the crack surfaces while they are fresh, whereas the Rn increases may be mainly the result of the increased emanation area of such surfaces. The results suggest that monitoring of resistivity and gas emissions may be useful for predicting earthquakes and failures of concrete structures. ?? 1990 Birkha??user Verlag.

  18. Bond slip detection of concrete-encased composite structure using shear wave based active sensing approach

    NASA Astrophysics Data System (ADS)

    Zeng, Lei; Parvasi, Seyed Mohammad; Kong, Qingzhao; Huo, Linsheng; Lim, Ing; Li, Mo; Song, Gangbing

    2015-12-01

    Concrete-encased composite structure exhibits improved strength, ductility and fire resistance compared to traditional reinforced concrete, by incorporating the advantages of both steel and concrete materials. A major drawback of this type of structure is the bond slip introduced between steel and concrete, which directly reduces the load capacity of the structure. In this paper, an active sensing approach using shear waves to provide monitoring and early warning of the development of bond slip in the concrete-encased composite structure is proposed. A specimen of concrete-encased composite structure was investigated. In this active sensing approach, shear mode smart aggregates (SAs) embedded in the concrete act as actuators and generate desired shear stress waves. Distributed piezoceramic transducers installed in the cavities of steel plates act as sensors and detect the wave response from shear mode SAs. Bond slip acts as a form of stress relief and attenuates the wave propagation energy. Experimental results from the time domain analysis clearly indicate that the amplitudes of received signal by lead zirconate titanate sensors decreased when bond slip occurred. In addition, a wavelet packet-based analysis was developed to compute the received signal energy values, which can be used to determine the initiation and development of bond slip in concrete-encased composite structure. In order to establish the validity of the proposed method, a 3D finite element analysis of the concrete-steel bond model is further performed with the aid of the commercial finite element package, Abaqus, and the numerical results are compared with the results obtained in experimental study.

  19. Still hot at 50

    Treesearch

    Kevin C. Ryan; Susan Gallagher; Colin Hardy; Diane Smith

    2010-01-01

    From the parking lot, the Missoula Fire Sciences Laboratory in Missoula, Montana, could pass for a school, except that one end has a 73-foot-high block of reinforced concrete topped by what looks like a giant golf ball. The block is a combustion chamber for experimental burning, and the ball is part of a satellite station that receives data used to map North American...

  20. An alternative potentiometric method for determining chloride content in concrete samples from reinforced-concrete bridges.

    DOT National Transportation Integrated Search

    2002-01-01

    Analysis of chloride contents in ground concrete samples collected from reinforced concrete bridges and other structures exposed to deicing salts or seawater has become an important part of the inspection for such structures. Such an analysis provide...

  1. Detecting alkali-silica reaction in thick concrete structures using linear array ultrasound

    NASA Astrophysics Data System (ADS)

    Bull Ezell, N. Dianne; Albright, Austin; Clayton, Dwight; Santos-Villalobos, Hector

    2018-03-01

    Commercial nuclear power plants (NPPs) depend heavily on concrete structures, making the long-term performance of these structures crucial for safe operation, especially with license period extensions to 60 years and possibly beyond. Alkali-silica reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, noncrystalline silica (aggregates). In the presence of water, an expansive gel is formed within the aggregates, which results in microcracks in aggregates and adjacent cement paste. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, flexural stiffness, shear strength, and tensile strength. Currently, no nondestructive evaluation methods have proven effective in identifying ASR before surface cracks form. ASR is identified visibly or by petrographic analysis. Although ASR definitely impacts concrete material properties, the performance of concrete structures exhibiting ASR depends on whether or not the concrete is unconfined or confined with reinforcing bars. Confinement by reinforcing bars restrainsthe expansion of ASR-affected concrete, similar to prestressing, thus improving the performance of a structure. Additionally, there is no direct correlation between the mechanical properties of concrete sample cores and the in-situ properties of the concrete. The University of Tennessee-Knoxville, Oak Ridge National Laboratory, and a consortium of universities have developed an accelerated ASR experiment. Three large concrete specimens, representative of NPP infrastructure, were constructed containing both embedded and surface instruments. This paper presents preliminary analysis of these specimens using a frequency-banded synthetic aperture focusing technique.

  2. Influence of processing factors over concrete strength.

    NASA Astrophysics Data System (ADS)

    Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.

    2018-03-01

    Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.

  3. Progress Implementing a Model-Based Iterative Reconstruction Algorithm for Ultrasound Imaging of Thick Concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almansouri, Hani; Johnson, Christi R; Clayton, Dwight A

    All commercial nuclear power plants (NPPs) in the United States contain concrete structures. These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and the degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Concrete structures in NPPs are often inaccessible and contain large volumes of massively thick concrete. While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin specimens of concrete such as concrete transportation structures, enhancements are needed for heavily reinforced, thick concrete. We argue that image reconstruction quality for acoustic imaging in thickmore » concrete could be improved with Model-Based Iterative Reconstruction (MBIR) techniques. MBIR works by designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior model). Both models are used to formulate an objective function (cost function). The final step in MBIR is to optimize the cost function. Previously, we have demonstrated a first implementation of MBIR for an ultrasonic transducer array system. The original forward model has been upgraded to account for direct arrival signal. Updates to the forward model will be documented and the new algorithm will be assessed with synthetic and empirical samples.« less

  4. Creep and cracking of concrete hinges: insight from centric and eccentric compression experiments.

    PubMed

    Schlappal, Thomas; Schweigler, Michael; Gmainer, Susanne; Peyerl, Martin; Pichler, Bernhard

    2017-01-01

    Existing design guidelines for concrete hinges consider bending-induced tensile cracking, but the structural behavior is oversimplified to be time-independent. This is the motivation to study creep and bending-induced tensile cracking of initially monolithic concrete hinges systematically. Material tests on plain concrete specimens and structural tests on marginally reinforced concrete hinges are performed. The experiments characterize material and structural creep under centric compression as well as bending-induced tensile cracking and the interaction between creep and cracking of concrete hinges. As for the latter two aims, three nominally identical concrete hinges are subjected to short-term and to longer-term eccentric compression tests. Obtained material and structural creep functions referring to centric compression are found to be very similar. The structural creep activity under eccentric compression is significantly larger because of the interaction between creep and cracking, i.e. bending-induced cracks progressively open and propagate under sustained eccentric loading. As for concrete hinges in frame-like integral bridge construction, it is concluded (i) that realistic simulation of variable loads requires consideration of the here-studied time-dependent behavior and (ii) that permanent compressive normal forces shall be limited by 45% of the ultimate load carrying capacity, in order to avoid damage of concrete hinges under sustained loading.

  5. Progress implementing a model-based iterative reconstruction algorithm for ultrasound imaging of thick concrete

    NASA Astrophysics Data System (ADS)

    Almansouri, Hani; Johnson, Christi; Clayton, Dwight; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2017-02-01

    All commercial nuclear power plants (NPPs) in the United States contain concrete structures. These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and the degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Concrete structures in NPPs are often inaccessible and contain large volumes of massively thick concrete. While acoustic imaging using the synthetic aperture focusing technique (SAFT) works adequately well for thin specimens of concrete such as concrete transportation structures, enhancements are needed for heavily reinforced, thick concrete. We argue that image reconstruction quality for acoustic imaging in thick concrete could be improved with Model-Based Iterative Reconstruction (MBIR) techniques. MBIR works by designing a probabilistic model for the measurements (forward model) and a probabilistic model for the object (prior model). Both models are used to formulate an objective function (cost function). The final step in MBIR is to optimize the cost function. Previously, we have demonstrated a first implementation of MBIR for an ultrasonic transducer array system. The original forward model has been upgraded to account for direct arrival signal. Updates to the forward model will be documented and the new algorithm will be assessed with synthetic and empirical samples.

  6. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  7. Rational and Safe Design of Concrete Transportation Structures for Size Effect and Multi-Decade Sustainability

    DOT National Transportation Integrated Search

    2012-10-01

    The overall goal of this project was to improve the safety and sustainability in the design of large : prestressed concrete bridges and other transportation structures. The safety of large concrete : structures, including bridges, has been insufficie...

  8. Guided wave propagation and spectral element method for debonding damage assessment in RC structures

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Zhu, Xinqun; Hao, Hong; Ou, Jinping

    2009-07-01

    A concrete-steel interface spectral element is developed to study the guided wave propagation along the steel rebar in the concrete. Scalar damage parameters characterizing changes in the interface (debonding damage) are incorporated into the formulation of the spectral finite element that is used for damage detection of reinforced concrete structures. Experimental tests are carried out on a reinforced concrete beam with embedded piezoelectric elements to verify the performance of the proposed model and algorithm. Parametric studies are performed to evaluate the effect of different damage scenarios on wave propagation in the reinforced concrete structures. Numerical simulations and experimental results show that the method is effective to model wave propagation along the steel rebar in concrete and promising to detect damage in the concrete-steel interface.

  9. Review of Repair Materials for Fire-Damaged Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Zahid, MZA Mohd; Abu Bakar, BH; Nazri, FM; Ahmad, MM; Muhamad, K.

    2018-03-01

    Reinforced concrete (RC) structures perform well during fire and may be repaired after the fire incident because their low heat conductivity prevents the loss or degradation of mechanical strength of the concrete core and internal reinforcing steel. When an RC structure is heated to more than 500 °C, mechanical properties such as compressive strength, stiffness, and tensile strength start to degrade and deformations occur. Although the fire-exposed RC structure shows no visible damage, its residual strength decreases compared with that in the pre-fire state. Upon thorough assessment, the fire-damaged RC structure can be repaired or strengthened, instead of subjecting to partial or total demolition followed by reconstruction. The structure can be repaired using several materials, such as carbon fiber-reinforced polymer, glass fiber-reinforced polymer, normal strength concrete, fiber-reinforced concrete, ferrocement, epoxy resin mortar, and high-performance concrete. Selecting an appropriate repair material that must be compatible with the substrate or base material is a vital step to ensure successful repair. This paper reviews existing repair materials and factors affecting their performance. Of the materials considered, ultra-high-performance fiber-reinforced concrete (UHPFRC) exhibits huge potential for repairing fire-damaged RC structures but lack of information available. Hence, further studies must be performed to assess the potential of UHPFRC in rehabilitating fire-damaged RC structures.

  10. Factor Structure of the Piagetian Stage of Concrete Operations.

    ERIC Educational Resources Information Center

    Klausmeier, Herbert J.; Sipple, Thomas S.

    1982-01-01

    The Piagetian developmental stage of concrete operational thought and the theoretical groupement structures underlying children's performance of 12 concrete operations tasks are discussed. Tasks were shown to develop in five related sets. Three factor structures were found in this longitudinal study. (Author/CM)

  11. Acoustic emission monitoring of concrete columns and beams strengthened with fiber reinforced polymer sheets

    NASA Astrophysics Data System (ADS)

    Ma, Gao; Li, Hui; Zhou, Wensong; Xian, Guijun

    2012-04-01

    Acoustic emission (AE) technique is an effective method in the nondestructive testing (NDT) field of civil engineering. During the last two decades, Fiber reinforced polymer (FRP) has been widely used in repairing and strengthening concrete structures. The damage state of FRP strengthened concrete structures has become an important issue during the service period of the structure and it is a meaningful work to use AE technique as a nondestructive method to assess its damage state. The present study reports AE monitoring results of axial compression tests carried on basalt fiber reinforced polymer (BFRP) confined concrete columns and three-point-bending tests carried on BFRP reinforced concrete beams. AE parameters analysis was firstly utilized to give preliminary results of the concrete fracture process of these specimens. It was found that cumulative AE events can reflect the fracture development trend of both BFRP confined concrete columns and BFRP strengthened concrete beams and AE events had an abrupt increase at the point of BFRP breakage. Then the fracture process of BFRP confined concrete columns and BFRP strengthened concrete beams was studied through RA value-average frequency analysis. The RA value-average frequency tendencies of BFRP confined concrete were found different from that of BFRP strengthened concrete beams. The variation tendency of concrete crack patterns during the loading process was revealed.

  12. Nuclear reactor containment structure with continuous ring tunnel at grade

    DOEpatents

    Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.

    1977-01-01

    A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.

  13. Technological parameters influence on the non-autoclaved foam concrete characteristics

    NASA Astrophysics Data System (ADS)

    Bartenjeva, Ekaterina; Mashkin, Nikolay

    2017-01-01

    Foam concretes are used as effective heat-insulating materials. The porous structure of foam concrete provides good insulating and strength properties that make them possible to be used as heat-insulating structural materials. Optimal structure of non-autoclaved foam concrete depends on both technological factors and properties of technical foam. In this connection, the possibility to manufacture heat-insulation structural foam concrete on a high-speed cavity plant with the usage of protein and synthetic foamers was estimated. This experiment was carried out using mathematical planning method, and in this case mathematical models were developed that demonstrated the dependence of operating performance of foam concrete on foaming and rotation speed of laboratory plant. The following material properties were selected for the investigation: average density, compressive strength, bending strength and thermal conductivity. The influence of laboratory equipment technological parameters on technical foam strength and foam stability coefficient in the cement paste was investigated, physical and mechanical properties of non-autoclaved foam concrete were defined based on investigated foam. As a result of investigation, foam concrete samples were developed with performance parameters ensuring their use in production. The mathematical data gathered demonstrated the dependence of foam concrete performance on the technological regime.

  14. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    PubMed

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  15. Recycling the construction and demolition waste to produce polymer concrete

    NASA Astrophysics Data System (ADS)

    Hamza, Mohammad T.; Hameed, Awham M., Dr.

    2018-05-01

    The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.

  16. Validation of the "Pain Block" concrete ordinal scale for children aged 4 to 7 years.

    PubMed

    Jung, Jin Hee; Lee, Jin Hee; Kim, Do Kyun; Jung, Jae Yun; Chang, Ikwan; Kwon, Hyuksool; Shin, Jonghwan; Paek, So Hyun; Oh, Sohee; Kwak, Young Ho

    2018-04-01

    Pain scales using faces are commonly used tools for assessing pain in children capable of communicating. However, some children require other types of pain scales because they have difficulties in understanding faces pain scales. The goal of this study was to develop and validate the "Pain Block" concrete ordinal scale for 4- to 7-year-old children. This was a multicenter prospective observational study in the emergency department. Psychometric properties (convergent validity, discriminative validity, responsivity, and reliability) were compared between the "Pain Block" pain scale and the Faces Pain Scale-Revised (FPS-R) to assess the validity of the "Pain Block" scale. A total of 163 children (mean age, 5.5 years) were included in this study. The correlation coefficient between the FPS-R and the Pain Block scale was 0.82 for all participants which increased with age. Agreement between the 2 pain scales was acceptable, with 95.0% of the values within the predetermined limit. The differences in mean scores between the painful group and nonpainful group were 3.3 (95% confidence interval, 2.6-4.1) and 3.8 (95% confidence interval, 3.1-4.6) for FPR-S and Pain Block, respectively. The pain scores for both pain scales were significantly decreased when analgesics or pain-relieving procedures were administered (difference in Pain Block, 2.4 [1.4-3.3]; and difference in FPS-R, 2.3 [1.3-3.3]). The Pain Block pain scale could be used to assess pain in 4- to 7-year-old children capable of understanding and counting up to the number 5, even if they do not understand the FPS-R pain scale.

  17. Fibre Concrete 2017

    NASA Astrophysics Data System (ADS)

    2017-09-01

    9th international conference on fibre reinforced concretes (FRC), textile reinforced concretes (TRC) and ultra-high performance concretes (UHPC) Preface The Fibre Concrete Conference series is held biennially to provide a platform to share knowledge on fibre reinforced concretes, textile concretes and ultra-high performance concretes regarding material properties and behaviour, technology procedures, topics of long-term behaviour, creep, durability; sustainable aspects of concrete including utilisation of waste materials in concrete production and recycling of concrete. The tradition of Fibre Concrete Conferences started in eighties of the last century. Nowadays the conference is organized by the Department of Concrete and Masonry Structures of the Czech Technical University in Prague, Faculty of Civil Engineering. The 9th International Conference Fibre Concrete 2017 had 109 participants from 27 countries all over the world. 55 papers were presented including keynote lectures of Professor Bažant, Professor Bartoš and Dr. Broukalová. The conference program covered wide range of topics from scientific research to practical applications. The presented contributions related to performance and behaviour of cement based composites, their long-term behaviour and durability, sustainable aspects, advanced analyses of structures from these composites and successful applications. This conference was organized also to honour Professor Zděnek P. Bažant on the occasion of his jubilee and to appreciate his merits and discoveries in the field of fibre reinforced composites, structural mechanics and engineering.

  18. Study on Detailing Design of Precast Concrete Frame Structure

    NASA Astrophysics Data System (ADS)

    Lida, Tian; Liming, Li; Kang, Liu; Jiao, Geng; Ming, Li

    2018-03-01

    Taking a certain precast concrete frame structure as an example, this paper introduces the general procedures and key points in detailing design of emulative cast-in-place prefabricated structure from the aspects of structural scheme, precast element layout, shop drawing design and BIM 3D modelling. This paper gives a practical solution for the detailing design of precast concrete frame structure under structural design codes in China.

  19. Small hazardous waste generators in developing countries: use of stabilization/solidification process as an economic tool for metal wastewater treatment and appropriate sludge disposal.

    PubMed

    Silva, Marcos A R; Mater, Luciana; Souza-Sierra, Maria M; Corrêa, Albertina X R; Sperb, Rafael; Radetski, Claudemir M

    2007-08-25

    The aim of this study was to propose a profitable destination for an industrial sludge that can cover the wastewater treatment costs of small waste generators. Optimized stabilization/solidification technology was used to treat hazardous waste from an electroplating industry that is currently released untreated to the environment. The stabilized/solidified (S/S) waste product was used as a raw material to build concrete blocks, to be sold as pavement blocks or used in roadbeds and/or parking lots. The quality of the blocks containing a mixture of cement, lime, clay and waste was evaluated by means of leaching and solubility tests according to the current Brazilian waste regulations. Results showed very low metal leachability and solubility of the block constituents, indicating a low environmental impact. Concerning economic benefits from the S/S process and reuse of the resultant product, the cost of untreated heavy metal-containing sludge disposal to landfill is usually on the order of US$ 150-200 per tonne of waste, while 1tonne of concrete roadbed blocks (with 25% of S/S waste constitution) has a value of around US$ 100. The results of this work showed that the cement, clay and lime-based process of stabilization/solidification of hazardous waste sludge is sufficiently effective and economically viable to stimulate the treatment of wastewater from small industrial waste generators.

  20. Structure formation control of foam concrete

    NASA Astrophysics Data System (ADS)

    Steshenko, Aleksei; Kudyakov, Aleksander; Konusheva, Viktoriya; Syrkin, Oleg

    2017-01-01

    The process of predetermined foam concrete structure formation is considered to be a crucial issue from the point of process control and it is currently understudied thus defining the need for additional research. One of the effective ways of structure formation control in naturally hardening foam concrete is reinforcement with dispersed fibers or introduction of plasticizers. The paper aims at studying the patterns of influence of microreinforcing and plasticizing additives on the structure and performance properties of foam concrete. Preparation of foam concrete mix has been conducted using one-step technology. The structure of modified foam concrete has been studied by means of electron microscopy. The cellular structure of foam concrete samples with the additives is homogeneous; the pores are uniformly distributed over the total volume. It has been revealed that introduction of the Neolas 5.2 plasticizer and microreinforcing fibers in the foam concrete mixture in the amount of 0.4 - 0.1 % by weight of cement leads to reduction of the average pore diameter in the range of 45.3 to 30.2 microns and the standard deviation of the pore average diameter from 23.6 to 9.2 in comparison with the sample without additive. Introduction of modifying additives has stimulated formation of a large number of closed pores. Thus porosity of conditionally closed pores has increased from 16.06 % to 34.48 %, which has lead to increase of frost resistance brand of foam concrete from F15 to F50 and to reduction of its water absorption by weight by 20 %.

  1. Performance of Hydrophobisation Techniques in Case of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Błaszczyński, Tomasz; Osesek, Mateusz; Gwozdowski, Błażej; Ilski, Mirosław

    2017-10-01

    Concrete is, unchangeably, one of the most frequently applied building materials, also in the case of bridges, overpasses or viaducts. Along with the aging of such structures, the degradation of concrete, which may accelerate the corrosion of reinforcing steel and drastically decrease the load-bearing capacity of the structure, becomes an important issue. The paper analyzes the possibilities of using deep hydrophobisation in repairing reinforced concrete engineering structures. The benefits of properly securing reinforced concrete structures from the damaging effects of UV radiation, the influence of harmful gases, or progression of chlorine induced corrosion have been presented, especially in regards to bridge structures. The need to calculate the costs of carrying out investments along with the expected costs of maintaining such structures, as well as the high share of costs connected with logistics, has also been indicated in the total costs of repair works.

  2. CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge

    NASA Astrophysics Data System (ADS)

    Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang

    2018-06-01

    Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.

  3. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    NASA Astrophysics Data System (ADS)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber addition is to be preferred? The target point where the concrete comes to rest into a structure has to be electronically noted and sent to the FEM system. The FEM analysis should then immediately send back the information for the correct amount of fibers at that point. This requires the elaboration of an appropriate signal system, which should not be impossible. An integrated system for the design and production of concrete structures could be developed excluding the heavy and time-consuming work with steel reinforcing bars. The result could be: no evaluation of moments and shear forces from a FEM analysis for determining the bar reinforcement; no bar anchorage requirements and reinforcement detailing; no reinforcement drawings; no reinforcing bars; no heavy work with the reinforcement. Finally, investigations have to be performed concerning the demolition of fiber-reinforced concrete structures and the reuse of the material. The fragments of fiber-reinforced concrete might be sticky and cause problems for nature. The recirculation of material has also to be solved.

  4. CRITICAL MECHANICAL PROPERTIES OF STRUCTURAL LIGHT-WEIGHT CONCRETE AND THE EFFECTS OF THESE PROPERTIES ON THE DESIGN OF THE PAVEMENT STRUCTURE.

    DOT National Transportation Integrated Search

    1965-01-01

    In this study, critical mechanical properties of structural lightweight concrete were determined and utilized in the evaluation of a design of concrete pavements. Also presented are the critical mechanical properties resulting from unrestrained and r...

  5. 77 FR 35956 - Appalachian Power Company; Notice of Application Accepted for Filing, Soliciting Motions To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-15

    ...) screened intake structures; (3) a concrete powerhouse containing three turbine-generator units with a total... structures; (3) a concrete powerhouse containing three turbine-generator units with a total installed... by a log boom; (2) screened intake structures; (3) a concrete powerhouse containing three turbine...

  6. 15. CLOSEUP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. CLOSE-UP VIEW OF SOUTHEAST CABLE BOLT, SUSPENSION CABLE, AND CONCRETE ANCHORING BLOCK, LOOKING SOUTHEAST - San Rafael Bridge, Spanning San Rafael River near Buckhorn Wash, Castle Dale, Emery County, UT

  7. 24 CFR 3285.307 - Perimeter support piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... support piers. (a) Piers required at mate-line supports, perimeter piers, and piers at exterior wall openings are permitted to be constructed of single open-cell or closed-cell concrete blocks, with nominal...

  8. Fundamental Study on the Development of Structural Lightweight Concrete by Using Normal Coarse Aggregate and Foaming Agent

    PubMed Central

    Lee, Han-Seung; Ismail, Mohamed A.; Woo, Young-Je; Min, Tae-Beom; Choi, Hyun-Kook

    2014-01-01

    Structural lightweight concrete (SLWC) has superior properties that allow the optimization of super tall structure systems for the process of design. Because of the limited supply of lightweight aggregates in Korea, the development of structural lightweight concrete without lightweight aggregates is needed. The physical and mechanical properties of specimens that were cast using normal coarse aggregates and different mixing ratios of foaming agent to evaluate the possibility of creating structural lightweight concrete were investigated. The results show that the density of SLWC decreases as the dosage of foaming agent increases up to a dosage of 0.6%, as observed by SEM. It was also observed that the foaming agent induced well separated pores, and that the size of the pores ranged from 50 to 100 μm. Based on the porosity of concrete specimens with foaming agent, compressive strength values of structural lightweight foam concrete (SLWFC) were obtained. It was also found that the estimated values from proposed equations for compressive strength and modulus of elasticity of SLWFC, and values obtained by actual measurements were in good agreement. Thus, this study confirms that new structural lightweight concrete using normal coarse aggregates and foaming agent can be developed successfully. PMID:28788691

  9. Development and investigation of the stressed-deformed state of the demountable foundation for support

    NASA Astrophysics Data System (ADS)

    Sabitov, L. S.; Kashapov, N. F.; Gilmanshin, I. R.; Strelkov, Yu M.; Khusainov, D. M.

    2017-09-01

    The development is demountable foundation for support, including separate reinforced concrete blocks in the form of prisms mounted on the surface of the base and pulled together by horizontal strands, and anchor devices for fixing the supports. The reinforced concrete blocks are made in the form of hollow prisms consisting of walls and square bottoms, and the strands are made in the form of bolts that tighten the walls along the top and bottom, while the anchoring devices for fixing the supports are made in the form of anchors on the bottom of the central prism and horizontal spacers between the support and the walls of the prism in its upper part. Numerical studies of the foundation have been carried out and its optimal sizes have been found in the PK Lira SAPR.

  10. A corrosion monitoring system for existing reinforced concrete structures.

    DOT National Transportation Integrated Search

    2015-05-01

    This study evaluated a multi-parameter corrosion monitoring system for existing reinforced concrete structures in chloride-laden service environments. The system was fabricated based on a prototype concrete corrosion measurement system that : had bee...

  11. Monitoring of Beachsaver Reef with Filter Blanket and Double-T Sill at Cape May Point, New Jersey, Section 227 Demonstration Site; First Year Monitoring - 2002-2003

    DTIC Science & Technology

    2005-07-01

    evaluate the functional, structural, and economic performance of the patented Beachsaver Reef prefabricated concrete submerged breakwater and the less...expensive prefabricated concrete structure called a Double-T sill. This demonstration project was developed through a cooperative effort of the U.S...patented Beachsaver Reef prefabricated concrete submerged breakwater and a less expensive, prefabricated concrete structure called a Double-T sill. Data

  12. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical AE diagnosis was demonstrated for assessing the conditions of damage and distress in concrete structures.

  13. Comparison of embedded, surface bonded and reusable piezoelectric transducers for monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Sabet Divsholi, Bahador; Yang, Yaowen

    2011-04-01

    Piezoelectric lead zirconate titanate (PZT) transducers have been used for health monitoring of various structures over the last two decades. There are three methods to install the PZT transducers to structures, namely, surface bonded, reusable setup and embedded PZTs. The embedded PZTs and reusable PZT setups can be used for concrete structures during construction. On the other hand, the surface bonded PZTs can be installed on the existing structures. In this study, the applicability and limitations of each installation method are experimentally studied. A real size concrete structure is cast, where the surface bonded, reusable setup and embedded PZTs are installed. Monitoring of concrete hydration and structural damage is conducted by the electromechanical impedance (EMI), wave propagation and wave transmission techniques. It is observed that embedded PZTs are suitable for monitoring the hydration of concrete by using both the EMI and the wave transmission techniques. For damage detection in concrete structures, the embedded PZTs can be employed using the wave transmission technique, but they are not suitable for the EMI technique. It is also found that the surface bonded PZTs are sensitive to damage when using both the EMI and wave propagation techniques. The reusable PZT setups are able to monitor the hydration of concrete. However they are less sensitive in damage detection in comparison to the surface bonded PZTs.

  14. Structures and construction of nuclear power plants on lunar surface

    NASA Astrophysics Data System (ADS)

    Shimizu, Katsunori; Kobatake, Masuhiko; Ogawa, Sachio; Kanamori, Hiroshi; Okada, Yasuhiko; Mano, Hideyuki; Takagi, Kenji

    1991-07-01

    The best structure and construction techniques of nuclear power plants in the severe environments on the lunar surface are studied. Facility construction types (functional conditions such as stable structure, shield thickness, maintainability, safety distances, and service life), construction conditions (such as construction methods, construction equipment, number of personnel, time required for construction, external power supply, and required transportation) and construction feasibility (construction method, reactor transportation between the moon and the earth, ground excavation for installation, loading and unloading, transportation, and installation, filling up the ground, electric power supply of plant S (300 kW class) and plant L (3000 kW class)) are outlined. Items to pay attention to in construction are (1) automation and robotization of construction; (2) cost reduction by multi functional robots; and (3) methods of supplying power to robots. A precast concrete block manufacturing plant is also outlined.

  15. Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures

    NASA Astrophysics Data System (ADS)

    Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.

    2017-10-01

    The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.

  16. Surface Chloride Levels in Colorado Structural Concrete

    DOT National Transportation Integrated Search

    2018-01-01

    This project focused on the chloride-induced corrosion of reinforcing steel in structural concrete. The primary goal of this project is to analyze the surface chloride concentration level of the concrete bridge decks throughout Colorado. The study in...

  17. Fatigue testing of wood-concrete composite beams.

    DOT National Transportation Integrated Search

    2013-05-01

    Currently, wood-concrete composite structural members are usually applied in building structures. There are a relatively small number (in the low 100s) of known bridge applications involving wood-concrete composites. A problem with using these novel ...

  18. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production.

    PubMed

    Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M

    2017-07-18

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.

  19. Usage of Crushed Concrete Fines in Decorative Concrete

    NASA Astrophysics Data System (ADS)

    Pilipenko, Anton; Bazhenova, Sofia

    2017-10-01

    The article is devoted to the questions of usage of crushed concrete fines from concrete scrap for the production of high-quality decorative composite materials based on mixed binder. The main problem in the application of crushed concrete in the manufacture of decorative concrete products is extremely low decorative properties of crushed concrete fines itself, as well as concrete products based on them. However, crushed concrete fines could have a positive impact on the structure of the concrete matrix and could improve the environmental and economic characteristics of the concrete products. Dust fraction of crushed concrete fines contains non-hydrated cement grains, which can be opened in screening process due to the low strength of the contact zone between the hydrated and non-hydrated cement. In addition, the screening process could increase activity of the crushed concrete fines, so it can be used as a fine aggregate and filler for concrete mixes. Previous studies have shown that the effect of the usage of the crushed concrete fines is small and does not allow to obtain concrete products with high strength. However, it is possible to improve the efficiency of the crushed concrete fines as a filler due to the complex of measures prior to mixing. Such measures may include a preliminary mechanochemical activation of the binder (cement binder, iron oxide pigment, silica fume and crushed concrete fines), as well as the usage of polycarboxylate superplasticizers. The development of specific surface area of activated crushed concrete fines ensures strong adhesion between grains of binder and filler during the formation of cement stone matrix. The particle size distribution of the crushed concrete fines could achieve the densest structure of cement stone matrix and improve its resistance to environmental effects. The authors examined the mechanisms of structure of concrete products with crushed concrete fines as a filler. The results of studies of the properties of the crushed concrete fines were provided. It is shown that the admixture of the crushed concrete fines has little effect on the colour characteristics of the decorative concrete products. The preferred options to improve the surfaces of decorative concrete are also proposed.

  20. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    PubMed Central

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures. PMID:23766706

  1. Application of Natural Mineral Additives in Construction

    NASA Astrophysics Data System (ADS)

    Linek, Malgorzata; Nita, Piotr; Wolka, Paweł; Zebrowski, Wojciech

    2017-12-01

    The article concerns the idea of using selected mineral additives in the pavement quality concrete composition. The basis of the research paper was the modification of cement concrete intended for airfield pavements. The application of the additives: metakaolonite and natural zeolite was suggested. Analyses included the assessment of basic physical properties of modifiers. Screening analysis, assessment of micro structure and chemical microanalysis were conducted in case of these materials. The influence of the applied additives on the change of concrete mix parameters was also presented. The impact of zeolite and metakaolinite on the mix density, oxygen content and consistency class was analysed. The influence of modifiers on physical and mechanical changes of the hardened cement concrete was discussed (concrete density, compressive strength and bending strength during fracturing) in diversified research periods. The impact of the applied additives on the changes of internal structure of cement concrete was discussed. Observation of concrete micro structure was conducted using the scanning electron microscope. According to the obtained lab test results, parameters of the applied modifiers and their influence on changes of internal structure of cement concrete are reflected in the increase of mechanical properties of pavement quality concrete. The increase of compressive and bending strength in case of all analysed research periods was proved.

  2. Parametric Study of Fire Performance of Concrete Filled Hollow Steel Section Columns with Circular and Square Cross-Section

    NASA Astrophysics Data System (ADS)

    Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin

    2018-03-01

    Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.

  3. 206. Big Witch Road grade separation structure. This concrete box ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    206. Big Witch Road grade separation structure. This concrete box culvert, built in 1950, is unusual in that the culvert's concrete bottom extends beyond the structure to the ends of its perpendicular wing walls. Facing northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  4. Report on: Connecticut River Streambank Erosion Study, Massachusetts, New Hampshire and Vermont

    DTIC Science & Technology

    1979-11-01

    Plastic filter cloths are used with considerable success beneath tiprap and other revetment materials such as articulated concrete blocks . The...rihutior unlimited II. SUPPLEMENTARY NOTES It. KEY WORDS (Continue on fever&e elde ifneceeeery and identify by block number). alluvial channel...erosion boat waves shear stress rock riprap lower bank erosion revetments flow control vegetation 20. ABSTRACT (Continue on reverse aide if neceesary and

  5. 52. Photocopied August 1978. LAYING THE CORNER STONE (FIRST PREMOULDED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. Photocopied August 1978. LAYING THE CORNER STONE (FIRST PRE-MOULDED CONCRETE BLOCK) OF THE POWER HOUSE, SEPTEMBER 10, 1900. THE BLOCK IS BEING PLACED ON ONE OF THE MONOLITHIC TAIL RACE (TAIL PIT) BASES. VON SCHON MAY BE THE THIRD PERSON FROM THE RIGHT IN THE CENTER OF THE PICTURE (IN THE GRAY SUIT). - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  6. Solid waste from aluminum recycling process: characterization and reuse of its economically valuable constituents.

    PubMed

    Shinzato, M C; Hypolito, R

    2005-01-01

    Due to economic advantages, many companies in Brazil recover Al from the process of crushing and water-leaching of secondary aluminum dross. Wastes from this process (non-metallic products and salts) are usually landfilled or disposed without treatment, causing many environmental damages. The purpose of this work is to investigate, in a recycling company sited in Sao Paulo metropolitan area (Brazil), the potential use of the non-metallic product (NMP) in the production of concrete blocks and to evaluate the presence of important chemical compounds that may be useful for other applications. Chemical and mineralogical analyses revealed that NMP is composed of refractory and abrasive oxides (alpha-Al2O3, MgAl2O4, SiO2) and an important source of transition alumina: alpha-Al(OH)3. Concrete blocks were made by adding two parts of NMP to one part of cement and four parts of sand. The blocks were tested according to the Brazilian standard (NBR7173/1982) and they passed dimension, humidity and absorption tests but not compressive strength tests. However, particular NMP constituents have accelerated the strength rate development of the blocks, thus decreasing working time. The commercial use of NMP can reduce the amount of discarded wastes contributing to environmental preservation.

  7. Experimental Study and Reactive Transport Modeling of Boric Acid Leaching of Concrete

    NASA Astrophysics Data System (ADS)

    Pabalan, R. T.; Chiang, K.-T. K.

    2013-07-01

    Borated water leakage through spent fuel pools (SFPs) at pressurized water reactors is a concern because it could cause corrosion of reinforcement steel in the concrete structure, compromise the integrity of the structure, or cause unmonitored releases of contaminated water to the environment. Experimental data indicate that pH is a critical parameter that determines the corrosion susceptibility of rebar in borated water and the degree of concrete degradation by boric acid leaching. In this study, reactive transport modeling of concrete leaching by borated water was performed to provide information on the solution pH in the concrete crack or matrix and the degree of concrete degradation at different locations of an SFP concrete structure exposed to borated water. Simulations up to 100 years were performed using different boric acid concentrations, crack apertures, and solution flow rates. Concrete cylinders were immersed in boric acid solutions for several months and the mineralogical changes and boric acid penetration in the concrete cylinder were evaluated as a function of time. The depths of concrete leaching by boric acid solution derived from the reactive transport simulations were compared with the measured boric acid penetration depth.

  8. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    NASA Astrophysics Data System (ADS)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  9. 29 CFR 1915.135 - Powder actuated fastening tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...

  10. 29 CFR 1915.135 - Powder actuated fastening tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...

  11. 29 CFR 1915.135 - Powder actuated fastening tools.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...

  12. 29 CFR 1915.135 - Powder actuated fastening tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... tile, surface hardened steel, glass block, live rock, face brick or hollow title. (5) Fasteners shall... into materials such as brick or concrete within 3 inches of the unsupported edge or corner, or into...

  13. 19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS CONCRETE BLOCK CONSTRUCTION OF ADDITION. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA

  14. Around Marshall

    NASA Image and Video Library

    1962-07-03

    At its founding, the Marshall Space Flight Center (MSFC) inherited the Army’s Jupiter and Redstone test stands, but much larger facilities were needed for the giant stages of the Saturn V. From 1960 to 1964, the existing stands were remodeled and a sizable new test area was developed. The new comprehensive test complex for propulsion and structural dynamics was unique within the nation and the free world, and they remain so today because they were constructed with foresight to meet the future as well as on going needs. Construction of the S-IC Static test stand complex began in 1961 in the west test area of MSFC, and was completed in 1964. The S-IC static test stand was designed to develop and test the 138-ft long and 33-ft diameter Saturn V S-IC first stage, or booster stage, weighing in at 280,000 pounds. Required to hold down the brute force of a 7,500,000-pound thrust produced by 5 F-1 engines, the S-IC static test stand was designed and constructed with the strength of hundreds of tons of steel and 12,000,000 pounds of cement, planted down to bedrock 40 feet below ground level. The foundation walls, constructed with concrete and steel, are 4 feet thick. The base structure consists of four towers with 40-foot-thick walls extending upward 144 feet above ground level. The structure was topped by a crane with a 135-foot boom. With the boom in the upright position, the stand was given an overall height of 405 feet, placing it among the highest structures in Alabama at the time. In addition to the stand itself, related facilities were constructed during this time. Built directly east of the test stand was the Block House, which served as the control center for the test stand. The two were connected by a narrow access tunnel which housed the cables for the controls. This construction photo taken July 3, 1962 depicts the Block House with a portion of its concrete walls poured and exposed while many are still in the forms stage.

  15. The use of synthetic blended fibers to reduce cracking risk in high performance concrete.

    DOT National Transportation Integrated Search

    2014-09-01

    Transportation departments have observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced concrete structures, in particular bridge decks, is of paramount concern to Pacific Northwest Departments of Tr...

  16. Peculiarities of Thermal Treatment of Monolithic Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Kuchin, V. N.; Shilonosova, N. V.

    2017-11-01

    A mathematical program has been developed that allows one to determine the parameters of heat treatment of monolithic structures. One of the quality indicators of monolithic reinforced concrete structures is the level of temperature stresses arising in the process of heat treatment and further operation of structures. In winter at heat treatment the distribution of temperatures along the cross-section of the structure is uneven. A favorable thermo-stressed state in a concrete massif occurs when using the preheating method, providing the concrete temperature in the center of the structure is greater than at the periphery. In this case, after the strength is set and the temperature is later equalized along the cross-section, the central part of the structure tends to decrease its dimensions more but the extreme zones prevent it. Therefore, the center is in a state of tension, and the extreme zones on the periphery are compressed. In compressed concrete there is a lesser chance of cracks or defects. The temperature gradient over the section of the structure, the stress in the concrete and its strength are determined. When calculating the temperature and strength fields, the stress level was determined - a value equal to the ratio of the tensile stresses in the section under consideration to the tensile strength of the concrete in this section at the same time. The nature of the change in stress level is determined by the massive structure and power of the formwork heaters. It is shown that under unfavorable conditions the stress level is close to the critical value. The greatest temperature gradient occurs in the outer layers adjacent to the heating formwork. A technology for concrete conditioning is proposed which makes it possible to reduce the temperature stresses along the cross-section of the structure. The time for concrete conditioning in the formwork is reduced. In its turn, it further reduces labor costs and the cost of concrete work along with the cost of heat treatment. The authors conduct the technical and economic comparison of heat treatment options for the structures. The duration of monolithic structures erection with the use of combined heat treatment decreases in comparison with the method of peripheral heating. The economic effect consists of the reduction of the cost to organize and perform temperature control, insulation, electricity.

  17. Evaluation of Shear Strength of RC Beams with Multiple Interfaces Formed before Initial Setting Using 3D Printing Technology

    PubMed Central

    Kim, Kyeongjin; Park, Sangmin; Jeong, Yoseok; Lee, Jaeha

    2017-01-01

    With the recent development of 3D printing technology, concrete materials are sometimes used in 3D printing. Concrete structures based on 3D printing have been characterized to have the form of multiple layer build-up. Unlike general concrete structures, therefore, the 3D-printed concrete can be regarded as an orthotropic material. The material property of the 3D-printed concrete’s interface between layers is expected to be far different from that of general concrete bodies since there are no aggregate interlocks and weak chemical bonding. Such a difference finally affects the structural performance of concrete structures even though the interfaces are formed before initial setting of the concrete. The current study mainly reviewed the changes in fracture energy (toughness) with respect to various environmental conditions of such interface. Changes in fracture energies of interfaces between concrete layers were measured using low-speed Crack Mouth Opening Displacement (CMOD) closed loop concrete fracture test. The experimental results indicated reduction in fracture energy as well as tensile strengths. To improve the tensile strength of interfaces, the use of bridging materials is suggested. Since it was assumed that reduction in fracture energy could be a cause of shear strength, to evaluate the reduced structural performance of concrete structure constructed with multiple interfaces by 3D printing technology, the shear strength of RC beam by 3D printing technology was predicted and compared with that of plain RC beam. Based on the fracture energy measured in this study, Modified Compression Field Theory (MCFT) theory-applied Vector 2 program was employed to predict the degree of reduction in shear strength without considering stirrups. Reduction factors were presented based on the obtained results to predict the reduction in shear strength due to interfaces before initial setting of the concrete.

  18. Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material

    NASA Astrophysics Data System (ADS)

    Halúzová, Dušana

    2015-06-01

    For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.

  19. Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam.

    PubMed

    Zhang, Yuxiang; Planès, Thomas; Larose, Eric; Obermann, Anne; Rospars, Claude; Moreau, Gautier

    2016-04-01

    This paper describes the use of an ultrasonic imaging technique (Locadiff) for the Non-Destructive Testing & Evaluation of a concrete structure. By combining coda wave interferometry and a sensitivity kernel for diffuse waves, Locadiff can monitor the elastic and structural properties of a heterogeneous material with a high sensitivity, and can map changes of these properties over time when a perturbation occurs in the bulk of the material. The applicability of the technique to life-size concrete structures is demonstrated through the monitoring of a 15-ton reinforced concrete beam subject to a four-point bending test causing cracking. The experimental results show that Locadiff achieved to (1) detect and locate the cracking zones in the core of the concrete beam at an early stage by mapping the changes in the concrete's micro-structure; (2) monitor the internal stress level in both temporal and spatial domains by mapping the variation in velocity caused by the acousto-elastic effect. The mechanical behavior of the concrete structure is also studied using conventional techniques such as acoustic emission, vibrating wire extensometers, and digital image correlation. The performances of the Locadiff technique in the detection of early stage cracking are assessed and discussed.

  20. Overview of ORNL/NRC programs addressing durability of concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  1. Permeation Properties and Pore Structure of Surface Layer of Fly Ash Concrete

    PubMed Central

    Liu, Jun; Qiu, Qiwen; Xing, Feng; Pan, Dong

    2014-01-01

    This paper presents an experimental study on the nature of permeation properties and pore structure of concrete surface layers containing fly ash. Concretes containing different dosages of fly ash as a replacement for cement (15% and 30% by weight of total cement materials, respectively) were investigated. Concrete without any fly ash added was also employed as the reference specimen. Laboratory tests were conducted to determine the surface layer properties of concrete including chloride transport, apparent water permeability and pore structure. The results demonstrate that incorporation of fly ash, for the early test period, promotes the chloride ingress at the surface layer of concrete but substituting proportions of fly ash may have little impact on it. With the process of chloride immersion, the chloride concentration at the surface layer of concrete with or without fly ash was found to be nearly the same. In addition, it is suggested that the water permeability at the concrete surface area is closely related to the fly ash contents as well as the chloride exposure time. Pore structure was characterized by means of mercury intrusion porosimetry (MIP) test and the scanning electron microscopy (SEM) images. The modification of pore structure of concrete submersed in distilled water is determined by the pozzolanic reaction of fly ash and the calcium leaching effect. The pozzolanic reaction was more dominant at the immersion time of 180 days while the calcium leaching effect became more evident after 270 days. PMID:28788677

  2. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presentedmore » in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.« less

  3. Investigation of low compressive strengths of concrete in paving, precast and structural concrete

    DOT National Transportation Integrated Search

    2000-08-01

    This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...

  4. Evaluation of deterioration of structural concrete due to chloride intrusion and other damaging mechanisms.

    DOT National Transportation Integrated Search

    2015-09-01

    Kentucky's bridges continue to age and experience distress. The intrusion of chlorides into : concrete remains the primary mechanism for deterioration. It leads to reinforcing steel corrosion : that damages the adjoining concrete structure. This stud...

  5. Development of shrinkage limits and testing protocols for ODOT high performance concrete.

    DOT National Transportation Integrated Search

    2013-12-01

    ODOT has observed varying degrees of cracking in their concrete structures. Cracking of high performance reinforced : concrete structures, in particular bridge decks, is of paramount concern to ODOT. Cracking at early ages (especially within : the fi...

  6. Frequency selection for coda wave interferometry in concrete structures.

    PubMed

    Fröjd, Patrik; Ulriksen, Peter

    2017-09-01

    This study contributes to the establishment of frequency recommendations for use in coda wave interferometry structural health monitoring (SHM) systems for concrete structures. To this end, codas with widely different central frequencies were used to detect boreholes with different diameters in a large concrete floor slab, and to track increasing damage in a small concrete beam subjected to bending loads. SHM results were obtained for damage that can be simulated by drilled holes on the scale of a few mm or microcracks due to bending. These results suggest that signals in the range of 50-150kHz are suitable in large concrete structures where it is necessary to account for the high attenuation of high-frequency signals. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Molecular Survey of Concrete Sewer Biofilm Microbial Communities

    EPA Science Inventory

    Although bacteria are implicated in deteriorating concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different concrete biofilms by performing sequence analysis of 16S rDNA concrete clone libraries. ...

  8. Digital Image Correlation of Concrete Slab at University of Tennessee, Knoxville

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Sankaran; Agarwal, Vivek; Pham, Binh T.

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Some degradation mechanisms of concrete manifest themselves via swelling or by other shape deformation of the concrete. Specifically, degradation of concrete structure damaged by ASR is viewed as one of the dominant factors impacting the structural integrity of aging nuclear power plants. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenancemore » decisions. Number of nondestructive examination techniques (i.e., thermography, digital image correlation, mechanical deformation measurements, nonlinear impact resonance (DIC) acoustic spectroscopy, and vibro-acoustic modulation) is used to detect the damage caused by ASR. DIC techniques have been increasing in popularity, especially in micro- and nano-scale mechanical testing applications due to its relative ease of implementation and use. Advances in computer technology and digital cameras help this method moving forward. To ensure the best outcome of the DIC system, important factors in the experiment are identified. They include standoff distance, speckle size, speckle pattern, and durable paint. These optimal experimental options are selected basing on a thorough investigation. The resulting DIC deformation map indicates that this technique can be used to generate data related to degradation assessment of concrete structure damaged by the impact of ASR.« less

  9. Fiber-Reinforced Concrete For Hardened Shelter Construction

    DTIC Science & Technology

    1993-02-01

    reduced cost and weight versus the symmetrically rebar reinforced beam design using normal-weight, standard-strength concrete currently used by the...while possibly reducing their cost and weight. Emphasis is placed on modular construction using prefabricated fiber- and rebar -reinforced concrete ...fiber- and rebar -reinforced concrete structural members into U.S. Air Force hardened structure designs. vii (The reverse of this page is blank) PREFACE

  10. Oyster shell conveyor used to lift shells from the dock ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Oyster shell conveyor used to lift shells from the dock into the receiving room housed in the 1965 concrete block addition. - J.C. Lore Oyster House, 14430 Solomons Island Road, Solomons, Calvert County, MD

  11. Crushable barrier blocks installed : research notes.

    DOT National Transportation Integrated Search

    1997-09-01

    The Oregon Department of Transportation : is testing another low cost life : saving device. On September 9, 1997, : an ADIEM II concrete barrier end : terminal was installed on I-5 south of : Salem, at the Delaney Road : overcrossing construction pro...

  12. Factors that influence the efficiency of electrochemical chloride extraction during corrosion mitigation in reinforced concrete structures.

    DOT National Transportation Integrated Search

    2006-01-01

    Electrochemical chloride extraction (ECE) is an electrochemical bridge restoration method for mitigating corrosion in reinforced concrete structures. ECE does this by moving chlorides away from the reinforcement and out of the concrete while simultan...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, P.L.

    As the Oct. 31 deadline for an initial design review approaches, the four participants in the Energy Research and Development Administration's (ERDA) industrial process hot water program are putting the final touches to plans for solar systems that will supplement conventional energy sources in the textile, food processing, concrete block and cleaning industries. Participating in the project are AAI Corp., Baltimore, which designed a solar hot water system for the concrete block curing operation of York Building Products Co., Harrisburg, Pa.; Acurex Corp., Mountain View, Calif., which designed a solar hot water system for a can washing line at themore » Campbell Soup Co. plant in Sacramento, Calif.; General Electric Co., Philadelphia, which designed a solar hot water system for Riegel Textile Corp., La France, S.C.; and Jacobs Engineering Co., Pasadena, Calif., which designed a solar hot water and steam system for commercial laundry use at American Linen Supply in El Centro., Calif. (MCW)« less

  14. Modeling of porous concrete elements under load

    NASA Astrophysics Data System (ADS)

    Demchyna, B. H.; Famuliak, Yu. Ye.; Demchyna, Kh. B.

    2017-12-01

    It is known that cell concretes are almost immediately destroyed under load, having reached certain critical stresses. Such kind of destruction is called a "catastrophic failure". Process of crack formation is one of the main factors, influencing process of concrete destruction. Modern theory of crack formation is mainly based on the Griffith theory of destruction. However, the mentioned theory does not completely correspond to the structure of cell concrete with its cell structure, because the theory is intended for a solid body. The article presents one of the possible variants of modelling of the structure of cell concrete and gives some assumptions concerning the process of crack formation in such hollow, not solid environment.

  15. Salt attack in parking garage in block of flats

    NASA Astrophysics Data System (ADS)

    Beran, Pavel; Frankeová, Dita; Pavlík, Zbyšek

    2017-07-01

    In recent years many new block of flats with parking garages placed inside the buildings were constructed. This tendency brings beyond question benefits for residents and also for city planning, but it requires new design and structural approaches and advanced material and construction solutions. The analysis of plaster damage on partition wall in parking garage in one of these buildings is presented in the paper. The damage of studied plaster is caused by the salts which are transported together with snow on cars undercarriage into garage area during winter. The snow melts and water with dissolved salts is transported by the capillary suction from concrete floor into the rendered partition wall. Based on the interior temperature, adsorbed water with dissolved chlorides evaporates and from the over saturated pore solution are formed salt crystals that damages the surface plaster layers. This damage would not occur if the partition wall was correctly isolated from the floor finish layer in the parking garage.

  16. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment.

    PubMed

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-06-13

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy.

  17. Use of Natural-Fiber Bio-Composites in Construction versus Traditional Solutions: Operational and Embodied Energy Assessment

    PubMed Central

    Galan-Marin, Carmen; Rivera-Gomez, Carlos; Garcia-Martinez, Antonio

    2016-01-01

    During the last decades natural polymers have become more and more frequent to replace traditional inorganic stabilizers in building materials. The purpose of this research is to establish a comparison between the most conventional building material solutions for load-bearing walls and a type of biomaterial. This comparison will focus on load-bearing walls as used in a widespread type of twentieth century dwelling construction in Europe and still used in developing countries nowadays. To carry out this analysis, the structural and thermal insulation characteristics of different construction solutions are balanced. The tool used for this evaluation is the life cycle assessment throughout the whole lifespan of these buildings. This research aims to examine the environmental performance of each material assessed: fired clay brick masonry walls (BW), concrete block masonry walls (CW), and stabilized soil block masonry walls (SW) stabilized with natural fibers and alginates. These conventional and new materials are evaluated from the point of view of both operational and embodied energy. PMID:28773586

  18. Effect of mineral additives on structure and properties of concrete for pavements

    NASA Astrophysics Data System (ADS)

    Sobol, Khrystyna; Markiv, Taras; Hunyak, Oleksii

    2017-12-01

    Concrete pavements is an attractive alternative to asphalt pavements because of its lower cost and higher durability. Major contribution to sustainable development can be made by partial replacement of cement in concrete pavement with supplementary cementitious materials of different nature and origin. In this paper, the effect of natural zeolite and perlite additives in complex with chemical admixtures on the structure and properties of concrete for pavement was studied. Compressive and flexural strength test was used to study the mechanical behavior of designed concrete under load. Generally, the compressive strength of both control concrete and concrete containing mineral additives levels at the later ages of hardening. The microstructure analysis of concrete with mineral additives of different nature activity showed the formation of additional amount of hydration products such as tobermorite type calcium hydrosilicate which provide self-reinforcement of hardening concrete system.

  19. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  20. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  1. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoringmore » of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these discussions are summarized in this report« less

  2. Primer on Durability of Nuclear Power Plant Reinforced Concrete Structures - A Review of Pertinent Factors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, Dan J

    The objective of this study was to provide a primer on the environmental effects that can affect the durability of nuclear power plant concrete structures. As concrete ages, changes in its properties will occur as a result of continuing microstructural changes (i.e., slow hydration, crystallization of amorphous constituents, and reactions between cement paste and aggregates), as well as environmental influences. These changes do not have to be detrimental to the point that concrete will not be able to meet its performance requirements. Concrete, however, can suffer undesirable changes with time because of improper specifications, a violation of specifications, or adversemore » performance of its cement paste matrix or aggregate constituents under either physical or chemical attack. Contained in this report is a discussion on concrete durability and the relationship between durability and performance, a review of the historical perspective related to concrete and longevity, a description of the basic materials that comprise reinforced concrete, and information on the environmental factors that can affect the performance of nuclear power plant concrete structures. Commentary is provided on the importance of an aging management program.« less

  3. Radiation effects in concrete for nuclear power plants Part I: Quantification of radiation exposure and radiation effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, Kevin G; Pape, Yann Le; Remec, Igor

    A large fraction of light water reactor (LWR) construction utilizes concrete, including safety-related structures such as the biological shielding and containment building. Concrete is an inherently complex material, with the properties of concrete structures changing over their lifetime due to the intrinsic nature of concrete and influences from local environment. As concrete structures within LWRs age, the total neutron fluence exposure of the components, in particular the biological shield, can increase to levels where deleterious effects are introduced as a result of neutron irradiation. This work summarizes the current state of the art on irradiated concrete, including a review ofmore » the current literature and estimates the total neutron fluence expected in biological shields in typical LWR configurations. It was found a first-order mechanism for loss of mechanical properties of irradiated concrete is due to radiation-induced swelling of aggregates, which leads to volumetric expansion of the concrete. This phenomena is estimated to occur near the end of life of biological shield components in LWRs based on calculations of estimated peak neutron fluence in the shield after 80 years of operation.« less

  4. Systems and methods for dismantling a nuclear reactor

    DOEpatents

    Heim, Robert R; Adams, Scott Ryan; Cole, Matthew Denver; Kirby, William E; Linnebur, Paul Damon

    2014-10-28

    Systems and methods for dismantling a nuclear reactor are described. In one aspect the system includes a remotely controlled heavy manipulator ("manipulator") operatively coupled to a support structure, and a control station in a non-contaminated portion of a workspace. The support structure provides the manipulator with top down access into a bioshield of a nuclear reactor. At least one computing device in the control station provides remote control to perform operations including: (a) dismantling, using the manipulator, a graphite moderator, concrete walls, and a ceiling of the bioshield, the manipulator being provided with automated access to all internal portions of the bioshield; (b) loading, using the manipulator, contaminated graphite blocks from the graphite core and other components from the bioshield into one or more waste containers; and (c) dispersing, using the manipulator, dust suppression and contamination fixing spray to contaminated matter.

  5. Investigation of best practices for maintenance of concrete bridge railings : [tech summary].

    DOT National Transportation Integrated Search

    2015-01-01

    The development of bio lms on concrete structures has a negative impact on aesthetics as well as on the performance and integrity : of concrete structures. Bio lms develop and grow easily when the right conditions are present, such as high rela...

  6. Influence of casting conditions on durability and structural performance of HPC-AR : optimization of self-consolidating concrete to guarantee homogeneity during casting of long structural elements : final report.

    DOT National Transportation Integrated Search

    2017-05-01

    This report is a summary of the research done on dynamic segregation of self-consolidating concrete (SCC) including the casting of pre-stressed beams at Coreslab Structures. SCC is a highly flowable concrete that spreads into place with little to no ...

  7. Development of structural health monitoring and early warning system for reinforced concrete system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iranata, Data, E-mail: iranata-data@yahoo.com, E-mail: data@ce.its.ac.id; Wahyuni, Endah; Murtiadi, Suryawan

    Many buildings have been damaged due to earthquakes that occurred recently in Indonesia. The main cause of the damage is the large deformation of the building structural component cannot accommodate properly. Therefore, it is necessary to develop the Structural Health Monitoring System (SHMS) to measure precisely the deformation of the building structural component in the real time conditions. This paper presents the development of SHMS for reinforced concrete structural system. This monitoring system is based on deformation component such as strain of reinforcement bar, concrete strain, and displacement of reinforced concrete component. Since the deformation component has exceeded the limitmore » value, the warning message can be sent to the building occupies. This warning message has also can be performed as early warning system of the reinforced concrete structural system. The warning message can also be sent via Short Message Service (SMS) through the Global System for Mobile Communications (GSM) network. Hence, the SHMS should be integrated with internet modem to connect with GSM network. Additionally, the SHMS program is verified with experimental study of simply supported reinforced concrete beam. Verification results show that the SHMS has good agreement with experimental results.« less

  8. An evaluation of concrete recycling and reuse practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakhjiri, K.S.; MacKinney, J.

    1997-02-01

    Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material shouldmore » be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.« less

  9. NDE application of ultrasonic tomography to a full-scale concrete structure.

    PubMed

    Choi, Hajin; Popovics, John S

    2015-06-01

    Newly developed ultrasonic imaging technology for large concrete elements, based on tomographic reconstruction, is presented. The developed 3-D internal images (velocity tomograms) are used to detect internal defects (polystyrene foam and pre-cracked concrete prisms) that represent structural damage within a large steel reinforced concrete element. A hybrid air-coupled/contact transducer system is deployed. Electrostatic air-coupled transducers are used to generate ultrasonic energy and contact accelerometers are attached on the opposing side of the concrete element to detect the ultrasonic pulses. The developed hybrid testing setup enables collection of a large amount of high-quality, through-thickness ultrasonic data without surface preparation to the concrete. The algebraic reconstruction technique is used to reconstruct p-wave velocity tomograms from the obtained time signal data. A comparison with a one-sided ultrasonic imaging method is presented for the same specimen. Through-thickness tomography shows some benefit over one-sided imaging for highly reinforced concrete elements. The results demonstrate that the proposed through-thickness ultrasonic technique shows great potential for evaluation of full-scale concrete structures in the field.

  10. Scaling and saturation laws for the expansion of concrete exposed to sulfate attack.

    PubMed

    Monteiro, Paulo J M

    2006-08-01

    Reinforced concrete structures exposed to aggressive environments often require repair or retrofit even though they were designed to last >50 years. This statement is especially true for structures subjected to sulfate attack. It is critical that fundamental models of life prediction be developed for durability of concrete. Based on experimental results obtained over a 40-year period, scaling and saturation laws were formulated for concrete exposed to sulfate solution. These features have not been considered in current models used to predict life cycle of concrete exposed to aggressive environment. The mathematical analysis shows that porous concrete made with high and moderate water-to-cement ratios develops a definite scaling law after an initiation time. The scaling coefficient depends on the cement composition but does not depend on the original water-to-cement ratio. Dense concrete made with low water-to-cement ratios develops a cyclic saturation curve. An index for "potential of damage" is created to allow engineers to design concrete structures with better precision and cement chemists to develop portland cements with optimized composition.

  11. Investigation on dynamic performance of concrete column crumb rubber steel and fiber concrete

    NASA Astrophysics Data System (ADS)

    Siti Nurul Nureda, M. Z.; Mariyana, A. K.; Khiyon, M. Iqbal; Rahman, M. S. Abdul; Nurizaty, Z.

    2017-11-01

    In general the Normal Concrete (NC) are by quasi-brittle failure, where, the nearly complete loss of loading capacity, once failure is initiated especially under dynamic loadings. The significance of this study is to improve the damping properties of concrete structure by utilization of the recycled materials from waste tires to be used in concrete as structural materials that improve seismic performance. In this study, the concrete containing 10% of fine crumb rubber and 1 % volume fraction of steel fiber from waste tires is use to investigate the dynamic performance (natural frequency and damping ratio).A small scale column were fabricated from Treated Crumb Rubber and Steel Fiber Concrete (TCRSFC) and NC were cast and cured for 28 days to investigate the dynamic performance. Based on analysis, dynamic modulus, damping ratio and natural frequency of TCRSFC has improved considerably by 5.18%, 109% and 10.94% when compared with NC. The TCRSFC producing concrete with the desired properties as well as to introduce the huge potential as dynamic resistance structure from severe damage especially prevention on catastrophic failure.

  12. Bi-directional evolutionary structural optimization for strut-and-tie modelling of three-dimensional structural concrete

    NASA Astrophysics Data System (ADS)

    Shobeiri, Vahid; Ahmadi-Nedushan, Behrouz

    2017-12-01

    This article presents a method for the automatic generation of optimal strut-and-tie models in reinforced concrete structures using a bi-directional evolutionary structural optimization method. The methodology presented is developed for compliance minimization relying on the Abaqus finite element software package. The proposed approach deals with the generation of truss-like designs in a three-dimensional environment, addressing the design of corbels and joints as well as bridge piers and pile caps. Several three-dimensional examples are provided to show the capabilities of the proposed framework in finding optimal strut-and-tie models in reinforced concrete structures and verifying its efficiency to cope with torsional actions. Several issues relating to the use of the topology optimization for strut-and-tie modelling of structural concrete, such as chequerboard patterns, mesh-dependency and multiple load cases, are studied. In the last example, a design procedure for detailing and dimensioning of the strut-and-tie models is given according to the American Concrete Institute (ACI) 318-08 provisions.

  13. Development of New Cementitious Caterials by Alkaline Activating Industrial by-Products

    NASA Astrophysics Data System (ADS)

    Fernández-Jimenez, A.; García-Lodeiro, I.; Palomo, A.

    2015-11-01

    The alkaline activation of aluminosiliceous industrial by-products such as blast furnace slag and fly ash is widely known to yield binders whose properties make them comparable to or even stronger and more durable than ordinary Portland cement. The present paper discusses activation fundamentals (such as the type and concentration of alkaline activator and curing conditions) as well as the structure of the cementitious gels formed (C-A-S-H, N-A-S-H). The durability and strength of these systems make these materials apt for use in many industrial applications, such as precast concrete elements (masonery blocks, railroad sleepers), protective coatings for materials with low fire ratings and lightweight elements.

  14. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    DTIC Science & Technology

    2010-07-01

    1 BLAST DESIGN OF REINFORCED CONCRETE AND MASONRY COMPONENTS RETROFITTED WITH FRP Marlon L. Bazan, Ph.D. and Charles J. Oswald, P.E., Ph.D...as an alternative to traditional methods for strengthening and retrofitting concrete and masonry structures to resist blast loads. The development...and experimental validation of a methodology for modeling the response of blast loaded concrete and masonry structural components retrofitted with FRP

  15. Sensitivity study on durability variables of marine concrete structures

    NASA Astrophysics Data System (ADS)

    Zhou, Xin'gang; Li, Kefei

    2013-06-01

    In order to study the influence of parameters on durability of marine concrete structures, the parameter's sensitivity analysis was studied in this paper. With the Fick's 2nd law of diffusion and the deterministic sensitivity analysis method (DSA), the sensitivity factors of apparent surface chloride content, apparent chloride diffusion coefficient and its time dependent attenuation factor were analyzed. The results of the analysis show that the impact of design variables on concrete durability was different. The values of sensitivity factor of chloride diffusion coefficient and its time dependent attenuation factor were higher than others. Relative less error in chloride diffusion coefficient and its time dependent attenuation coefficient induces a bigger error in concrete durability design and life prediction. According to probability sensitivity analysis (PSA), the influence of mean value and variance of concrete durability design variables on the durability failure probability was studied. The results of the study provide quantitative measures of the importance of concrete durability design and life prediction variables. It was concluded that the chloride diffusion coefficient and its time dependent attenuation factor have more influence on the reliability of marine concrete structural durability. In durability design and life prediction of marine concrete structures, it was very important to reduce the measure and statistic error of durability design variables.

  16. Microstructural and Microanalytical Study on Concrete Exposed to the Sulfate Environment

    NASA Astrophysics Data System (ADS)

    Qing, Fang; Beixing, Li; Jiangang, Yin; Xiaolu, Yuan

    2017-11-01

    Microstructural properties have been examined to investigate the effect of mineral admixtures on the sulfate resistance of concrete. Concrete and cement paste specimens made with ordinary Portland cement (OPC) or ordinary Portland cement incorporating 20% fly ash (FA) or 30% ground blast furnace slag (GBFS), were made and exposed to 250 cycles of the cyclic sulfate environment. Microstructural and Microanalytical study was conducted by means of x-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS) and mercury intrusion porosimetry (MIP). Results indicate that the pore structure of concrete after sulfate exposure possesses the fractal feature. The OPC concrete presents more complex pore internal surface, higher porosity and less micro-pores than the concrete incorporating fly ash and GBFS. Portlandite in OPC concrete and OPC-FA concrete is mainly converted to gypsum; while for OPC-GBFS concrete, both gypsum and ettringite are formed. In the cyclic sulfate environment, repeated hydration and dehydration of sulfates produce the expansive stress in pores, aggravating the demolishment of concrete structure.

  17. Structural and mechanical study of concrete made from cementitious materials of low environmental impact

    NASA Astrophysics Data System (ADS)

    González, A. K.; Montaño, A. M.; González, C. P.; Santos, A.

    2017-12-01

    This work shows the results obtained by replacing Type I Portland®, by cementitious geopolymers materials, derived from minerals, in concrete mixtures. Synthesis of both geopolymers through alkaline activation of two alluminosilicates: Bentonite and Pumice with sodium silicate (Na2SiO3). XRD, SEM and XRDE are used to structural study of new geopolymers. Concrete mixtures with replacement of Portland have 10% and 30% of geopolymer. Finally, concrete mortars formed were mechanically analysed according to ICONTEC 220 at 7, 14, 28, 41, 90 and 120 days of cure. Results shows that compressive strength of concrete from Bentonite and Pumice are almost the same for the standard concrete at 28 days of cure. At 90 days of cure, compression resistance of concrete from Pumice at 10% is even higher than those that standard concrete shows.

  18. Application of smart BFRP bars with distributed fiber optic sensors into concrete structures

    NASA Astrophysics Data System (ADS)

    Tang, Yongsheng; Wu, Zhishen; Yang, Caiqian; Wu, Gang; Zhao, Lihua; Song, Shiwei

    2010-04-01

    In this paper, the self-sensing and mechanical properties of concrete structures strengthened with a novel type of smart basalt fiber reinforced polymer (BFRP) bars were experimentally studied, wherein the sensing element is Brillouin scattering-based distributed optical fiber sensing technique. First, one of the smart bars was applied to strengthen a 2m concrete beam under a 4-points static loading manner in the laboratory. During the experiment, the bar can measure the inner strain changes and monitor the randomly distributed cracks well. With the distributed strain information along the bar, the distributed deformation of the beam can be calculated, and the structural health can be monitored and evaluated as well. Then, two smart bars with a length of about 70m were embedded into a concrete airfield pavement reinforced by long BFRP bars. In the field test, all the optical fiber sensors in the smart bars survived the whole concrete casting process and worked well. From the measured data, the concrete cracks along the pavement length can be easily monitored. The experimental results also confirmed that the bars can strengthen the structures especially after the yielding of steel bars. All the results confirm that this new type of smart BFRP bars show not only good sensing performance but also mechanical performance in the concrete structures.

  19. Experimental Investigation on Pore Structure Characterization of Concrete Exposed to Water and Chlorides

    PubMed Central

    Liu, Jun; Tang, Kaifeng; Qiu, Qiwen; Pan, Dong; Lei, Zongru; Xing, Feng

    2014-01-01

    In this paper, the pore structure characterization of concrete exposed to deionised water and 5% NaCl solution was evaluated using mercury intrusion porosity (MIP), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of calcium leaching, fly ash incorporation, and chloride ions on the evolution of pore structure characteristics were investigated. The results demonstrate that: (i) in ordinary concrete without any fly ash, the leaching effect of the cement products is more evident than the cement hydration effect. From the experimental data, Ca(OH)2 is leached considerably with the increase in immersion time. The pore structure of concrete can also be affected by the formation of an oriented structure of water in concrete materials; (ii) incorporation of fly ash makes a difference for the performance of concrete submersed in solutions as the total porosity and the pore connectivity can be lower. Especially when the dosage of fly ash is up to 30%, the pores with the diameter of larger than 100 nm show significant decrease. It demonstrates that the pore properties are improved by fly ash, which enhances the resistance against the calcium leaching; (iii) chlorides have a significant impact on microstructure of concrete materials because of the chemical interactions between the chlorides and cement hydrates. PMID:28788204

  20. Fundamental and assessment of concrete structure monitoring by using acoustic emission technique testing: A review

    NASA Astrophysics Data System (ADS)

    Desa, M. S. M.; Ibrahim, M. H. W.; Shahidan, S.; Ghadzali, N. S.; Misri, Z.

    2018-04-01

    Acoustic emission (AE) technique is one of the non-destructive (NDT) testing, where it can be used to determine the damage of concrete structures such as crack, corrosion, stability, sensitivity, as structure monitoring and energy formed within cracking opening growth in the concrete structure. This article gives a comprehensive review of the acoustic emission (AE) technique testing due to its application in concrete structure for structural health monitoring (SHM). Assessment of AE technique used for structural are reviewed to give the perception of its structural engineering such as dam, bridge and building, where the previous research has been reviewed based on AE application. The assessment of AE technique focusing on basic fundamental of parametric and signal waveform analysis during analysis process and its capability in structural monitoring. Moreover, the assessment and application of AE due to its function have been summarized and highlighted for future references

  1. Modeling of fracture of protective concrete structures under impact loads

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-10-01

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.

  2. Microbial healing of cracks in concrete: a review.

    PubMed

    Joshi, Sumit; Goyal, Shweta; Mukherjee, Abhijit; Reddy, M Sudhakara

    2017-11-01

    Concrete is the most widely used construction material of the world and maintaining concrete structures from premature deterioration is proving to be a great challenge. Early age formation of micro-cracking in concrete structure severely affects the serviceability leading to high cost of maintenance. Apart from conventional methods of repairing cracks with sealants or treating the concrete with adhesive chemicals to prevent the cracks from widening, a microbial crack-healing approach has shown promising results. The unique feature of the microbial system is that it enables self-healing of concrete. The effectiveness of microbially induced calcium carbonate precipitation (MICCP) in improving durability of cementitious building materials, restoration of stone monuments and soil bioclogging is discussed. Main emphasis has been laid on the potential of bacteria-based crack repair in concrete structure and the applications of different bacterial treatments to self-healing cracks. Furthermore, recommendations to employ the MICCP technology at commercial scale and reduction in the cost of application are provided in this review.

  3. Fiber reinforcement of concrete structures

    DOT National Transportation Integrated Search

    2002-09-01

    Deterioration of concrete structures due to steel corrosion is a matter of considerable concern since the repairing of these structures proved to be a costly process. Repair and rehabilitation of the civil structures needs an enduring repair material...

  4. Construction vibration attenuation with distance and its effect on the quality of early-age concrete.

    DOT National Transportation Integrated Search

    2011-06-01

    Damage to structures due to vibrations from pile driving operations is of great concern to engineers. This : research has stemmed from the need to address potential damage to concrete-filled pipe piles and recently : placed concrete structures that c...

  5. Performance of high performance concrete (HPC) in low pH and sulfate environment.

    DOT National Transportation Integrated Search

    2013-05-01

    The goal of this research is to determine the impact of low pH and sulfate environment on high-performance concrete (HPC) and if the current structural and materials specifications provide adequate protections for concrete structures to meet the 75-y...

  6. Study of the Technical Feasibility of Increasing the Amount of Recycled Concrete Waste Used in Ready-Mix Concrete Production

    PubMed Central

    Ferreiro-Cabello, Javier; López-González, Luis M.

    2017-01-01

    The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183

  7. New Whole-House Case Study: William Ryan Homes, Tampa, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    The builder worked with Consortium for Advanced Residential Buildings to design HERS-65 homes with energy-efficient heat pumps and programmable thermostats with humidity controls, foam-filled concrete block walls, draining house wrap, and airsealed kneewalls.

  8. Dominance of debonding defect of CFST on PZT sensor response considering the meso-scale structure of concrete with multi-scale simulation

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Chen, Hongbing; Mo, Y.-L.; Zhou, Tianmin

    2018-07-01

    Piezoelectric-lead-zirconate-titanate(PZT)-based interface debonding defects detection for concrete filled steel tubulars (CFSTs) has been proposed and validated through experiments, and numerical study on its mechanism has been carried out recently by assuming that concrete material is homogenous. However, concrete is composed of coarse and fine aggregates, mortar and interface transition zones (ITZs) and even initial defects and is a typical nonhomogeneous material and its mesoscale structure might affect the wave propagation in the concrete core of CFST members. Therefore, it is significantly important to further investigate the influence of mesoscale structure of concrete on the stress wave propagation and the response of embedded PZT sensor for the interface debonding detection. In this study, multi-physical numerical simulation on the wave propagation and embedded PZT sensor response of rectangular CFST members with numerical concrete core considering the randomness in circular aggregate distribution, and coupled with surface-mounted PZT actuator and embedded PZT sensor is carried out. The effect of randomness in the circular aggregates distribution and the existence of ITZs are discussed. Both a local stress wave propagation behavior including transmission, reflection, and diffraction at the interface between concrete core and steel tube under a pulse signal excitation and a global wave field in the cross-section of the rectangular CFST models without and with interface debonding defects under sweep frequency excitation are simulated. The sensitivity of an evaluation index based on wavelet packet analysis on the embedded PZT sensor response on the variation of mesoscale parameters of concrete core without and with different interface debonding defects under sweep frequency voltage signal is investigated in details. The results show that the effect of the interface debondings on the embedded PZT measurement is dominant when compared to the meso-scale structures of concrete core. This study verified the feasibility of the PZT based debonding detection for rectangular CFST members even the meso-scale structure of concrete core is considered.

  9. National Program for Inspection of Non-Federal Dams. Mill Pond Dam MA 00436, Merrimack River Basin, Ashland, Massachusetts. Phase I Inspection Report.

    DTIC Science & Technology

    1979-04-01

    blocked " PL ..wa___________ ,, ,., ~ . , .o ’- ft". o" ,* ." . B-3 w W W W * W * W *0...22. undr M~yrtle Stst oStreet o pC-- C...77 M H PRODIU(J 1) A I (3OVERNJILNT FXP ,.1[ 13. Concrete wall separating two spillways ~wz 14. Eroded earth...berm on downstream side of concrete wall c-8 P I PROOIICH) l GOV [ RNMEFNT FXPFN:;F-, 15. Weir and trapped debris at left (northerly) spillway 16

  10. 29 CFR 1926.704 - Requirements for precast concrete.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...

  11. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures.

    PubMed

    Zhan, Yijian; Meschke, Günther

    2017-07-08

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense.

  12. Adaptive Crack Modeling with Interface Solid Elements for Plain and Fiber Reinforced Concrete Structures

    PubMed Central

    Zhan, Yijian

    2017-01-01

    The effective analysis of the nonlinear behavior of cement-based engineering structures not only demands physically-reliable models, but also computationally-efficient algorithms. Based on a continuum interface element formulation that is suitable to capture complex cracking phenomena in concrete materials and structures, an adaptive mesh processing technique is proposed for computational simulations of plain and fiber-reinforced concrete structures to progressively disintegrate the initial finite element mesh and to add degenerated solid elements into the interfacial gaps. In comparison with the implementation where the entire mesh is processed prior to the computation, the proposed adaptive cracking model allows simulating the failure behavior of plain and fiber-reinforced concrete structures with remarkably reduced computational expense. PMID:28773130

  13. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review

    PubMed Central

    2018-01-01

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application. PMID:29695076

  14. Smart Crack Control in Concrete through Use of Phase Change Materials (PCMs): A Review.

    PubMed

    Šavija, Branko

    2018-04-24

    Cracks in concrete structures present a threat to their durability. Therefore, numerous research studies have been devoted to reducing concrete cracking. In recent years, a new approach has been proposed for controlling temperature related cracking—utilization of phase change materials (PCMs) in concrete. Through their ability to capture heat, PCMs can offset temperature changes and reduce gradients in concrete structures. Nevertheless, they can also influence concrete properties. This paper presents a comprehensive overview of the literature devoted to using PCMs to control temperature related cracking in concrete. First, types of PCMs and ways of incorporation in concrete are discussed. Then, possible uses of PCMs in concrete technology are discussed. Further, the influences of PCMs on concrete properties (fresh, hardened, durability) are discussed in detail. This is followed by a discussion of modelling techniques for PCM-concrete composites and their performance. Finally, a summary and the possible research directions for future work are given. This overview aims to assure the researchers and asset owners of the potential of this maturing technology and bring it one step closer to practical application.

  15. High-performance concrete : applying life-cycle cost analysis and developing specifications.

    DOT National Transportation Integrated Search

    2016-12-01

    Numerous studies and transportation agency experience across the nation have established that highperformance concrete (HPC) technology improves concrete quality and extends the service life of concrete structures at risk of chlorideinduced cor...

  16. Quality control of fireproof coatings for reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander

    2017-10-01

    The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.

  17. Retrofitting of Reinforced Concrete Beams using Reactive Powder Concrete (RPC)

    NASA Astrophysics Data System (ADS)

    Karthik, S.; Sundaravadivelu, Karthik

    2017-07-01

    Strengthening of existing damaged structures is one of the leading studies in civil engineering. The purpose of retrofitting is to structurally treat the member with an aim to restore the structure to its original strength. The focus of this project is to study the behaviour of damaged Reinforced Concrete beam retrofitted with Reactive Powder Concrete (RPC) Overlay. Reinforced concrete beams of length 1200 mm, width 100 mm and depth 200 mm were casted with M30 grade of concrete in the laboratory and cured for 28 days. One beam is taken as control and are tested under two point loading to find out ultimate load. Remaining beams are subjected to 90 % ultimate load of control beams. The partially damaged beams are retrofitted with Reactive Powder Concrete Overlay at the full tension face of the beam and side overlay depends upon the respectable retrofitting techniques with 10 mm and 20 mm thick layer to find optimum. Materials like steel fibres are added to enhance the ductility by eliminating coarse particle for homogeneity of the structure. Finally, the modes of failure for retrofitted beams are analysed experimentally under two point loading & compared the results with Control beam.

  18. Energy use in repairs by cover concrete replacement or silane treatment for extending service life of chloride-exposed concrete structures

    NASA Astrophysics Data System (ADS)

    Petcherdchoo, A.

    2018-05-01

    In this study, the service life of repaired concrete structures under chloride environment is predicted. This prediction is performed by considering the mechanism of chloride ion diffusion using the partial differential equation (PDE) of the Fick’s second law. The one-dimensional PDE cannot simply be solved, when concrete structures are cyclically repaired with cover concrete replacement or silane treatment. The difficulty is encountered in solving position-dependent chloride profile and diffusion coefficient after repairs. In order to remedy the difficulty, the finite difference method is used. By virtue of numerical computation, the position-dependent chloride profile can be treated position by position. And, based on the Crank-Nicolson scheme, a proper formulation embedded with position-dependent diffusion coefficient can be derived. By using the aforementioned idea, position- and time-dependent chloride ion concentration profiles for concrete structures with repairs can be calculated and shown, and their service life can be predicted. Moreover, the use of energy in different repair actions is also considered for comparison. From the study, it is found that repairs can control rebar corrosion and/or concrete cracking depending on repair actions.

  19. A comment on the use of polymer-impregnated concrete in bridge decks to achieve a reduction in material volume and first cost.

    DOT National Transportation Integrated Search

    1975-01-01

    Three 180', simple span, composite plate girder structures were designed to approximate the material requirements and first cost associated with a polymer-impregnated concrete as compared to those for a conventional concrete bridge deck. The structur...

  20. Damage evaluation of reinforced concrete frame based on a combined fiber beam model

    NASA Astrophysics Data System (ADS)

    Shang, Bing; Liu, ZhanLi; Zhuang, Zhuo

    2014-04-01

    In order to analyze and simulate the impact collapse or seismic response of the reinforced concrete (RC) structures, a combined fiber beam model is proposed by dividing the cross section of RC beam into concrete fiber and steel fiber. The stress-strain relationship of concrete fiber is based on a model proposed by concrete codes for concrete structures. The stress-strain behavior of steel fiber is based on a model suggested by others. These constitutive models are implemented into a general finite element program ABAQUS through the user defined subroutines to provide effective computational tools for the inelastic analysis of RC frame structures. The fiber model proposed in this paper is validated by comparing with experiment data of the RC column under cyclical lateral loading. The damage evolution of a three-dimension frame subjected to impact loading is also investigated.

  1. Numerical simulation of deformation and fracture of space protective shell structures from concrete and fiber concrete under pulse loading

    NASA Astrophysics Data System (ADS)

    Radchenko, P. A.; Batuev, S. P.; Radchenko, A. V.; Plevkov, V. S.

    2015-11-01

    This paper presents results of numerical simulation of interaction between aircraft Boeing 747-400 and protective shell of nuclear power plant. The shell is presented as complex multilayered cellular structure comprising layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was held three-dimensionally using the author's algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. The dynamics of stress-strain state and fracture of structure were studied. Destruction is described using two-stage model that allows taking into account anisotropy of elastic and strength properties of concrete and fiber concrete. It is shown that wave processes initiate destruction of shell cellular structure—cells start to destruct in unloading wave, originating after output of compression wave to the free surfaces of cells.

  2. Structural-functional integrated concrete with macro-encapsulated inorganic PCM

    NASA Astrophysics Data System (ADS)

    Mohseni, Ehsan; Tang, Waiching; Wang, Zhiyu

    2017-09-01

    Over the last few years the application of thermal energy storage system incorporating phase change materials (PCMs) to foster productivity and efficiency of buildings energy has grown rapidly. In this study, a structural-functional integrated concrete was developed using macro-encapsulated PCM-lightweight aggregate (LWA) as partial replacement (25 and 50% by volume) of coarse aggregate in control concrete. The PCM-LWA was prepared by incorporation of an inorganic PCM into porous LWAs through vacuum impregnation. The mechanical and thermal performance of PCM-LWA concrete were studied. The test results revealed that though the compressive strength of concrete with PCM-LWA was lower than the control concrete, but ranged from 22.02 MPa to 42.88 MPa which above the minimum strength requirement for structural application. The thermal performance test indicated that macro-encapsulated PCM-LWA has underwent the phase change transition reducing the indoor temperature.

  3. Management of the aging of critical safety-related concrete structures in light-water reactor plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.; Arndt, E.G.

    1990-01-01

    The Structural Aging Program has the overall objective of providing the USNRC with an improved basis for evaluating nuclear power plant safety-related structures for continued service. The program consists of a management task and three technical tasks: materials property data base, structural component assessment/repair technology, and quantitative methodology for continued-service determinations. Objectives, accomplishments, and planned activities under each of these tasks are presented. Major program accomplishments include development of a materials property data base for structural materials as well as an aging assessment methodology for concrete structures in nuclear power plants. Furthermore, a review and assessment of inservice inspection techniquesmore » for concrete materials and structures has been complete, and work on development of a methodology which can be used for performing current as well as reliability-based future condition assessment of concrete structures is well under way. 43 refs., 3 tabs.« less

  4. Lattice Modeling of Early-Age Behavior of Structural Concrete.

    PubMed

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M; Bolander, John E

    2017-02-25

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential.

  5. Modeling of fracture of protective concrete structures under impact loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radchenko, P. A., E-mail: radchenko@live.ru; Batuev, S. P.; Radchenko, A. V.

    This paper presents results of numerical simulation of interaction between a Boeing 747-400 aircraft and the protective shell of a nuclear power plant. The shell is presented as a complex multilayered cellular structure consisting of layers of concrete and fiber concrete bonded with steel trusses. Numerical simulation was performed three-dimensionally using the original algorithm and software taking into account algorithms for building grids of complex geometric objects and parallel computations. Dynamics of the stress-strain state and fracture of the structure were studied. Destruction is described using a two-stage model that allows taking into account anisotropy of elastic and strength propertiesmore » of concrete and fiber concrete. It is shown that wave processes initiate destruction of the cellular shell structure; cells start to destruct in an unloading wave originating after the compression wave arrival at free cell surfaces.« less

  6. Lattice Modeling of Early-Age Behavior of Structural Concrete

    PubMed Central

    Pan, Yaming; Prado, Armando; Porras, Rocío; Hafez, Omar M.; Bolander, John E.

    2017-01-01

    The susceptibility of structural concrete to early-age cracking depends on material composition, methods of processing, structural boundary conditions, and a variety of environmental factors. Computational modeling offers a means for identifying primary factors and strategies for reducing cracking potential. Herein, lattice models are shown to be adept at simulating the thermal-hygral-mechanical phenomena that influence early-age cracking. In particular, this paper presents a lattice-based approach that utilizes a model of cementitious materials hydration to control the development of concrete properties, including stiffness, strength, and creep resistance. The approach is validated and used to simulate early-age cracking in concrete bridge decks. Structural configuration plays a key role in determining the magnitude and distribution of stresses caused by volume instabilities of the concrete material. Under restrained conditions, both thermal and hygral effects are found to be primary contributors to cracking potential. PMID:28772590

  7. Biocalcification by halophilic bacteria for remediation of concrete structures in marine environment.

    PubMed

    Bansal, Roohi; Dhami, Navdeep Kaur; Mukherjee, Abhijit; Reddy, M Sudhakara

    2016-11-01

    Microbial carbonate precipitation has emerged as a promising technology for remediation and restoration of concrete structures. Deterioration of reinforced concrete structures in marine environments is a major concern due to chloride-induced corrosion. In the current study, halophilic bacteria Exiguobacterium mexicanum was isolated from sea water and tested for biomineralization potential under different salt stress conditions. The growth, urease and carbonic anhydrase production significantly increased under salt stress conditions. Maximum calcium carbonate precipitation was recorded at 5 % NaCl concentration. Application of E. mexicanum on concrete specimens significantly increased the compressive strength (23.5 %) and reduced water absorption about five times under 5 % salt stress conditions compared to control specimens. SEM and XRD analysis of bacterial-treated concrete specimens confirmed the precipitation of calcite. The present study results support the potential of this technology for improving the strength and durability properties of building structures in marine environments.

  8. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete

    PubMed Central

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-01-01

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892

  9. Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.

    PubMed

    López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge

    2016-02-02

    This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    none,

    PNNL, Florida HERO, and Energy Smart Home Plans helped Ravenwood Homes achieve a HERS 15 with PV or HERS 65 without PV on a home in Florida with SEER 16 AC, concrete block and rigid foam walls, high-performance windows, solar water heating, and 5.98 kW PV.

  11. Magnitude assessment of free and hydrated limes present in RPCC aggregates.

    DOT National Transportation Integrated Search

    2002-02-01

    The tendency of tufa to block pavement drains in northeastern Ohio can be associated with the total calcium content of the : aggregate material. In the present project, recycled Portland Cement Concrete (RPCC) aggregates are examined when : leached w...

  12. 1. VIEW OF THE WILBURWOMBLE MILL SITE, LOOKING NORTHEAST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW OF THE WILBUR-WOMBLE MILL SITE, LOOKING NORTHEAST FROM LITTLE JOHNS CREEK. THE THREE CONCRETE MORTAR BLOCKS MARK THE LOCATION OF THE STAMP BATTERIES - Wilbur-Womble Mill, Southern Edge Of Salt Spring Valley, Copperopolis, Calaveras County, CA

  13. Fighting Corrosion

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.

  14. Impact load-induced micro-structural damage and micro-structure associated mechanical response of concrete made with different surface roughness and porosity aggregates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Erdem, Savas, E-mail: evxse1@nottingham.ac.uk; Dawson, Andrew Robert; Thom, Nicholas Howard

    2012-02-15

    The relationship between the nature of micro damage under impact loading and changes in mechanical behavior associated with different microstructures is studied for concretes made with two different coarse aggregates having significant differences mainly in roughness and porosity - sintered fly ash and uncrushed gravel. A range of techniques including X-ray diffraction, digital image analysis, mercury porosimetry, X-ray computed tomography, laser surface profilometry and scanning electron microscopy were used to characterize the aggregates and micro-structures. The concrete prepared with lightweight aggregates was stronger in compression than the gravel aggregate concrete due to enhanced hydration as a result of internal curing.more » In the lightweight concrete, it was deduced that an inhomogeneous micro-structure led to strain incompatibilities and consequent localized stress concentrations in the mix, leading to accelerated failure. The pore structure, compressibility, and surface texture of the aggregates are of paramount importance for the micro-cracking growth.« less

  15. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Validation of mechanical models for reinforced concrete structures: Presentation of the French project ``Benchmark des Poutres de la Rance''

    NASA Astrophysics Data System (ADS)

    L'Hostis, V.; Brunet, C.; Poupard, O.; Petre-Lazar, I.

    2006-11-01

    Several ageing models are available for the prediction of the mechanical consequences of rebar corrosion. They are used for service life prediction of reinforced concrete structures. Concerning corrosion diagnosis of reinforced concrete, some Non Destructive Testing (NDT) tools have been developed, and have been in use for some years. However, these developments require validation on existing concrete structures. The French project “Benchmark des Poutres de la Rance” contributes to this aspect. It has two main objectives: (i) validation of mechanical models to estimate the influence of rebar corrosion on the load bearing capacity of a structure, (ii) qualification of the use of the NDT results to collect information on steel corrosion within reinforced-concrete structures. Ten French and European institutions from both academic research laboratories and industrial companies contributed during the years 2004 and 2005. This paper presents the project that was divided into several work packages: (i) the reinforced concrete beams were characterized from non-destructive testing tools, (ii) the mechanical behaviour of the beams was experimentally tested, (iii) complementary laboratory analysis were performed and (iv) finally numerical simulations results were compared to the experimental results obtained with the mechanical tests.

  17. To What Degree Does Handling Concrete Molecular Models Promote the Ability to Translate and Coordinate between 2D and 3D Molecular Structure Representations? A Case Study with Algerian Students

    ERIC Educational Resources Information Center

    Mohamed-Salah, Boukhechem; Alain, Dumon

    2016-01-01

    This study aims to assess whether the handling of concrete ball-and-stick molecular models promotes translation between diagrammatic representations and a concrete model (or vice versa) and the coordination of the different types of structural representations of a given molecular structure. Forty-one Algerian undergraduate students were requested…

  18. Long-Term, Deep Ocean Test of Concrete Spherical Structures - Results after 13 Years.

    DTIC Science & Technology

    1985-07-01

    corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete has a very low rate of permeation... concrete matrix nor corrosion of reinforcing steel are problems, even though the concrete becomes saturated with seawater. Uncoated concrete I has a...which concrete protects the steel against corrosion in the deep ocean environ- ment. The ocean depth range for the spheres corresponds to predicled

  19. Use of improved structural materials systems in marine piling : interim report.

    DOT National Transportation Integrated Search

    1982-09-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  20. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders.

    DOT National Transportation Integrated Search

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  1. Improving Fatigue Strength of polymer concrete using nanomaterials.

    DOT National Transportation Integrated Search

    2016-11-30

    Polymer concrete (PC) is that type of concrete where the cement binder is replaced with polymer. PC is often used to improve friction and protect structural substrates in reinforced concrete and orthotropic steel bridges. However, its low fatigue per...

  2. Characterization of Navajo Sandstone concretions: Mars comparison and criteria for distinguishing diagenetic origins

    NASA Astrophysics Data System (ADS)

    Potter, Sally L.; Chan, Marjorie A.; Petersen, Erich U.; Dyar, M. Darby; Sklute, Elizabeth

    2011-01-01

    The eolian Jurassic Navajo Sandstone spheroidal hydrous ferric oxide (HFO) concretions are divided into two size classes: macro-concretions of > 5 mm diameter and micro-concretions of < 5 mm diameter. Three internal structural end-members of macro-concretions are described as rind, layered, and solid. Two end-members of micro-concretions are rind and solid. Chemical and mineralogical gradients (μm- to mm-scale) are identified with QEMSCAN (Quantitative Elemental Mineralogy using a SCANning electron microscope) and visible to near infrared (VNIR) reflectance spectroscopy. Three HFO phases are identified using VNIR reflectance spectroscopy. An amorphous HFO phase is typically located in the rinds. Goethite is present along interior edges of rinds and throughout the interiors of layered and solid concretions. Hematite is present in the centers of rind concretions. A synthesis of petrographic, mineralogical and chemical analyses suggests that concretions grow pervasively (as opposed to radially expanding). Our model proposes that concretions precipitate initially as an amorphous HFO that sets the radius and retains some original porosity. Subsequent precipitation fills remaining pore space with younger mineral phases. Inward digitate cement crystal growth corroborates concretion growth from a set radius toward the centers. Internal structure is modified during late stage precipitation that diffuses reactants through semi-permeable rinds and overprints the interiors with younger cements. Physical characterization of textures and minerals provides diagnostic criteria for understanding how similar concretions ("blueberries") form in Meridiani Planum, Mars. The analogous Navajo Sandstone concretions show similar characteristics of in situ self-organized spacing, spheroidal geometries, internal structures, conjoined forms, and precursor HFO phases that dehydrate to goethite or hematite. These characteristics indicate a common origin via groundwater diagenesis.

  3. Effects of climate and corrosion on concrete behaviour

    NASA Astrophysics Data System (ADS)

    Ismail, Mohammad; Egba, Ernest Ituma

    2017-11-01

    Corrosion of steel is a damaging agent that reduces the functional and structural responsibilities of reinforced concrete structures. Accordingly, reinforced concrete members in the environments that are prone to concrete carbonation or chloride attack coupled with high temperature and relative humidity suffer from accelerated corrosion of reinforcing material. Also, literature proves that climate influences corrosion of concrete, and suggests investigation of impact of corrosion on concrete based on climate zone. Therefore, this paper presents the effects of climate and corrosion on concrete behavior, using bond strength of concrete as a case study. Concrete specimens were prepared form concrete mix that was infested with 3.5 kgm-3 of sodium chloride to accelerate corrosion. The specimens were cured sodium chloride solution 3.5% by weight of water for 28 days before placing them in the exposure conditions. Pull-out tests were conducted at time intervals for one year to measure the impact of exposure condition and corrosion on bond strength of concrete. The results show reduction of bond strength of concrete by 32%, 28% and 8% after one year of subjection of the specimens to the unsheltered natural climate, sheltered natural climate, and laboratory ambient environment respectively. The findings indicate that the climate influences corrosion, which reduces the interlocking bond between the reinforcing bar and the adjacent concrete.

  4. Palm Oil Fuel Ash (POFA) and Eggshell Powder (ESP) as Partial Replacement for Cement in Concrete

    NASA Astrophysics Data System (ADS)

    Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Nur Nadhira A., R.

    2018-03-01

    This study is an attempt to partially replace Ordinary Portland cement (OPC) in concrete with palm oil fuel ash (POFA) and eggshell powder (ESP). The mix proportions of POFA and ESP were varied at 10% of cement replacement and compared with OPC concrete as control specimen. The fineness of POFA is characterized by passing through 300 μm sieve and ESP by passing through 75 μm sieve. Compressive strength testing was conducted on concrete specimens to determine the optimum mix proportion of POFA and ESP. Generally the compressive strength of OPC concrete is higher compared to POFA-ESP concrete. Based on the results of POFA-ESP concrete overall, it shows that the optimum mix proportion of concrete is 6%POFA:4% ESP achieved compressive strength of 38.60 N/mm2 at 28 days. The compressive strength of OPC concrete for the same period was 42.37 N/mm2. Higher water demand in concrete is needed due to low fineness of POFA that contributing to low compressive strength of POFA-ESP concrete. However, the compressive strength and workability of the POFA-ESP concrete were within the ranges typically encountered in regular concrete mixtures indicating the viability of this replacement procedure for structural and non-structural applications.

  5. Experimental Study on Welded Headed Studs Used In Steel Plate-Concrete Composite Structures Compared with Contactless Method of Measuring Displacement

    NASA Astrophysics Data System (ADS)

    Kisała, Dawid; Tekieli, Marcin

    2017-10-01

    Steel plate-concrete composite structures are a new innovative design concept in which a thin steel plate is attached to the reinforced concrete beam by means of welded headed studs. The comparison between experimental studies and theoretical analysis of this type of structures shows that their behaviour is dependent on the load-slip relationship of the shear connectors used to ensure sufficient bond between the concrete and steel parts of the structure. The aim of this paper is to describe an experimental study on headed studs used in steel plate-concrete composite structures. Push-out tests were carried out to investigate the behaviour of shear connectors. The test specimens were prepared according to standard push-out tests, however, instead of I-beam, a steel plate 16 mm thick was used to better reflect the conditions in the real structure. The test specimens were produced in two batches using concrete with significantly different compressive strength. The experimental study was carried out on twelve specimens. Besides the traditional measurements based on LVDT sensors, optical measurements based on the digital image correlation method (DIC) and pattern tracking methods were used. DIC is a full-field contactless optical method for measuring displacements in experimental testing, based on the correlation of the digital images taken during test execution. With respect to conventional methods, optical measurements offer a wider scope of results and can give more information about the material or construction behaviour during the test. The ultimate load capacity and load-slip curves obtained from the experiments were compared with the values calculated based on Eurocodes, American and Chinese design specifications. It was observed that the use of the relationships developed for the traditional steel-concrete composite structures is justified in the case of ultimate load capacity of shear connectors in steel plate-concrete composite structures.

  6. New Surface-Treatment Technique of Concrete Structures Using Crack Repair Stick with Healing Ingredients

    PubMed Central

    Ahn, Tae-Ho; Kim, Hong-gi; Ryou, Jae-Suk

    2016-01-01

    This study focused on the development of a crack repair stick as a new repair method along with self-healing materials that can be used to easily repair the cracks in a concrete structure at the construction site. In developing this new repair technique, the self-healing efficiency of various cementitious materials was considered. Likewise, a crack repair stick was developed to apply to concrete structures with 0.3 mm or lower crack widths. The crack repair stick was made with different materials, such as cement, an expansive material (C12A7), a swelling material, and calcium carbonate, to endow it with a self-healing property. To verify the performance of the crack repair stick for concrete structures, two types of procedures (field experiment and field absorption test) were carried out. As a result of such procedures, it was concluded that the developed crack repair stick could be used on concrete structures to reduce repair expenses and for the improved workability, usability, and serviceability of such structures. On the other hand, to evaluate the self-healing performance of the crack repair stick, various tests were conducted, such as the relative dynamic modulus of elasticity test, the water tightness test, the water permeability test, observation via a microscope, and scanning electron microscope (SEM) analysis. From the results, it is found that water leakage can be prevented and that the durability of a concrete structure can be improved through self-healing. Also, it was verified that the cracks were perfectly closed after 28 days due to application of the crack repair stick. These results indicate the usability of the crack repair stick for concrete structures, and its self-healing efficiency. PMID:28773776

  7. Study on the strength characteristics of High strength concrete with Micro steel fibers

    NASA Astrophysics Data System (ADS)

    Gowdham, K.; Sumathi, A.; Saravana Raja Mohan, K.

    2017-07-01

    The study of High Strength Concrete (HSC) has become interesting as concrete structures grow taller and larger. The usage of HSC in structures has been increased worldwide and has begun to make an impact in India. Ordinary cementitious materials are weak under tensile loads and fiber reinforced cementitious composites (FRCCs) have been developed to improve this weak point. High Strength concrete containing Alccofine as mineral admixture and reinforced with micro steel fibers were cast and tested to study the mechanical properties. The concrete were designed to have compressive strength of 60 MPa. Mixtures containing 0% and 10% replacement of cement by Alccofine and with 1%, 2% and 3% of micro steel fibers by weight of concrete were prepared. Mixtures incorporating Alccofine with fibers developed marginal increase in strength properties at all curing days when compared to control concrete.

  8. Moisture and Thermal Conductivity of Lightweight Block Walls

    NASA Astrophysics Data System (ADS)

    Joosep, R.

    2015-11-01

    This article examines thermal properties of lightweight block walls and their changes over the course of time. Three different types of lightweight blocks and two types of heat insulation are used in construction. Aeroc aerated concrete blocks are in use, as well as compacted LECA (Lightweight Expanded Clay Aggregate) Fibo blocks made from burned clay and Silbet blocks produced from oil shale ash. Expanded Thermisol EPS60F polystyrene plates and glass wool Isover OL-P plates are used for thermal insulation. The actual and computational values of thermal conductivity and the water draining properties of walls over time are compared in this article. Water draining from glass wool walls is relatively fast. Water-draining can take over a year in polystyrene insulated walls. All four wall constructions can be used as external walls, but care must be taken regarding the moisture content of the blocks during construction (the construction should be handled with care to minimise the moisture in the blocks), especially in polystyrene board-insulated walls.

  9. Enamel coated steel reinforcement for improved durability and life-cycle performance of concrete structures: microstructure, corrosion, and deterioration

    NASA Astrophysics Data System (ADS)

    Tang, Fujian

    This study is aimed (a) to statistically characterize the corrosion-induced deterioration process of reinforced concrete structures (concrete cracking, steel mass loss, and rebar-concrete bond degradation), and (b) to develop and apply three types of enamel-coated steel bars for improved corrosion resistance of the structures. Commercially available pure enamel, mixed enamel with 50% calcium silicate, and double enamel with an inner layer of pure enamel and an outer layer of mixed enamel were considered as various steel coatings. Electrochemical tests were respectively conducted on steel plates, smooth bars embedded in concrete, and deformed bars with/without concrete cover in 3.5 wt.% NaCl or saturated Ca(OH)2 solution. The effects of enamel microstructure, coating thickness variation, potential damage, mortar protection, and corrosion environment on corrosion resistance of the steel members were investigated. Extensive test results indicated that corrosion-induced concrete cracking can be divided into four stages that gradually become less correlated with corrosion process over time. The coefficient of variation of crack width increases with the increasing level of corrosion. Corrosion changed the cross section area instead of mechanical properties of steel bars. The bond-slip behavior between the corroded bars and concrete depends on the corrosion level and distribution of corrosion pits. Although it can improve the chemical bond with concrete and steel, the mixed enamel coating is the least corrosion resistant. The double enamel coating provides the most consistent corrosion performance and is thus recommended to coat reinforcing steel bars for concrete structures applied in corrosive environments. Corrosion pits in enamel-coated bars are limited around damage locations.

  10. Development of a Tomography Technique for Assessment of the Material Condition of Concrete Using Optimized Elastic Wave Parameters.

    PubMed

    Chai, Hwa Kian; Liu, Kit Fook; Behnia, Arash; Yoshikazu, Kobayashi; Shiotani, Tomoki

    2016-04-16

    Concrete is the most ubiquitous construction material. Apart from the fresh and early age properties of concrete material, its condition during the structure life span affects the overall structural performance. Therefore, development of techniques such as non-destructive testing which enable the investigation of the material condition, are in great demand. Tomography technique has become an increasingly popular non-destructive evaluation technique for civil engineers to assess the condition of concrete structures. In the present study, this technique is investigated by developing reconstruction procedures utilizing different parameters of elastic waves, namely the travel time, wave amplitude, wave frequency, and Q-value. In the development of algorithms, a ray tracing feature was adopted to take into account the actual non-linear propagation of elastic waves in concrete containing defects. Numerical simulation accompanied by experimental verifications of wave motion were conducted to obtain wave propagation profiles in concrete containing honeycomb as a defect and in assessing the tendon duct filling of pre-stressed concrete (PC) elements. The detection of defects by the developed tomography reconstruction procedures was evaluated and discussed.

  11. An experiment on the use of disposable plastics as a reinforcement in concrete beams

    NASA Technical Reports Server (NTRS)

    Chowdhury, Mostafiz R.

    1992-01-01

    Illustrated here is the concept of reinforced concrete structures by the use of computer simulation and an inexpensive hands-on design experiment. The students in our construction management program use disposable plastic as a reinforcement to demonstrate their understanding of reinforced concrete and prestressed concrete beams. The plastics used for such an experiment vary from plastic bottles to steel reinforced auto tires. This experiment will show the extent to which plastic reinforcement increases the strength of a concrete beam. The procedure of using such throw-away plastics in an experiment to explain the interaction between the reinforcement material and concrete, and a comparison of the test results for using different types of waste plastics are discussed. A computer analysis to simulate the structural response is used to compare the test results and to understand the analytical background of reinforced concrete design. This interaction of using computers to analyze structures and to relate the output results with real experimentation is found to be a very useful method for teaching a math-based analytical subject to our non-engineering students.

  12. Shear design expressions for concrete filled steel tube and reinforced concrete filled tube components.

    DOT National Transportation Integrated Search

    2016-06-01

    Concrete-filled steel tubes (CFSTs) and reinforced concrete-filled steel tubes (RCFSTs) are increasingly : used in transportation structures as piers, piles, caissons or other foundation components. While the axial : and flexural properties of CFTs h...

  13. Development of a real-time vibrator tracking system for intelligent concrete consolidation.

    DOT National Transportation Integrated Search

    2014-01-01

    Proper consolidation of concrete is critical to the long-term strength of concrete bridge structures. Vibration : is a commonly used method to make concrete owable and to remove the excessive entrapped air, therefore : contributing to proper concr...

  14. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  15. Acoustic emission techniques applied to conventionally reinforced concrete bridge girders : final report.

    DOT National Transportation Integrated Search

    2008-09-01

    Reinforced concrete (RC) bridges generally operate at service-level loads except during discrete overload events that can reduce the integrity of the structure by initiating concrete cracks, widening or extending of existing concrete cracks, as well ...

  16. Interior view of coffee processing structure No. 1, showing concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of coffee processing structure No. 1, showing concrete reservoirs on floor, view towards the west - Finca Silem, Coffee Processing Structure No. 1, Highway 139, Kilometer 9.3, Maraguez, Ponce Municipio, PR

  17. Structural Effects of Reinforced Concrete Beam Due to Corrosion

    NASA Astrophysics Data System (ADS)

    Noh, Hamidun Mohd; Idris, Nur'ain; Noor, Nurazuwa Md; Sarpin, Norliana; Zainal, Rozlin; Kasim, Narimah

    2018-03-01

    Corrosion of steel in reinforced concrete is one of the main issues among construction stakeholders. The main consequences of steel corrosion include loss of cross section of steel area, generation of expansive pressure which caused cracking of concrete, spalling and delaminating of the concrete cover. Thus, it reduces the bond strength between the steel reinforcing bar and concrete, and deteriorating the strength of the structure. The objective of this study is to investigate the structural effects of corrosion damage on the performance of reinforced concrete beam. A series of corroded reinforced concrete beam with a corrosion rate of 0%, 20% and 40% of rebar corrosion is used in parametric study to assess the influence of different level of corrosion rate to the structural performance. As a result, the used of interface element in the finite element modelling predicted the worst case of corrosion analysis since cracks is induced and generate at this surface. On the other hand, a positive linear relationship was sketched between the increase of expansive pressure and the corrosion rate. Meanwhile, the gradient of the graph is decreased with the increase of steel bar diameter. Furthermore, the analysis shows that there is a significant effect on the load bearing capacity of the structure where the higher corrosion rate generates a higher stress concentration at the mid span of the beam. This study could predict the residual strength of reinforced concrete beam under the corrosion using the finite element analysis. The experimental validation is needed on the next stage to investigate the quantitative relation between the corrosion rate and its influence on the mechanical properties.

  18. Living with earthquakes - development and usage of earthquake-resistant construction methods in European and Asian Antiquity

    NASA Astrophysics Data System (ADS)

    Kázmér, Miklós; Major, Balázs; Hariyadi, Agus; Pramumijoyo, Subagyo; Ditto Haryana, Yohanes

    2010-05-01

    Earthquakes are among the most horrible events of nature due to unexpected occurrence, for which no spiritual means are available for protection. The only way of preserving life and property is applying earthquake-resistant construction methods. Ancient Greek architects of public buildings applied steel clamps embedded in lead casing to hold together columns and masonry walls during frequent earthquakes in the Aegean region. Elastic steel provided strength, while plastic lead casing absorbed minor shifts of blocks without fracturing rigid stone. Romans invented concrete and built all sizes of buildings as a single, unflexible unit. Masonry surrounding and decorating concrete core of the wall did not bear load. Concrete resisted minor shaking, yielding only to forces higher than fracture limits. Roman building traditions survived the Dark Ages and 12th century Crusader castles erected in earthquake-prone Syria survive until today in reasonably good condition. Concrete and steel clamping persisted side-by-side in the Roman Empire. Concrete was used for cheap construction as compared to building of masonry. Applying lead-encased steel increased costs, and was avoided whenever possible. Columns of the various forums in Italian Pompeii mostly lack steel fittings despite situated in well-known earthquake-prone area. Whether frequent recurrence of earthquakes in the Naples region was known to inhabitants of Pompeii might be a matter of debate. Seemingly the shock of the AD 62 earthquake was not enough to apply well-known protective engineering methods throughout the reconstruction of the city before the AD 79 volcanic catastrophe. An independent engineering tradition developed on the island of Java (Indonesia). The mortar-less construction technique of 8-9th century Hindu masonry shrines around Yogyakarta would allow scattering of blocks during earthquakes. To prevent dilapidation an intricate mortise-and-tenon system was carved into adjacent faces of blocks. Only the outermost layer was treated this way, the core of the shrines was made of simple rectangular blocks. The system resisted both in-plane and out-of-plane shaking quite well, as proven by survival of many shrines for more than a millennium, and by fracturing of blocks instead of displacement during the 2006 Yogyakarta earthquake. Systematic use or disuse of known earthquake-resistant techniques in any one society depends on the perception of earthquake risk and on available financial resources. Earthquake-resistant construction practice is significantly more expensive than regular construction. Perception is influenced mostly by short individual and longer social memory. If earthquake recurrence time is longer than the preservation of social memory, if damaging quakes fade into the past, societies commit the same construction mistakes again and again. Length of the memory is possibly about a generation's lifetime. Events occurring less frequently than 25-30 years can be readily forgotten, and the risk of recurrence considered as negligible, not worth the costs of safe construction practices. (Example of recurring flash floods in Hungary.) Frequent earthquakes maintain safe construction practices, like the Java masonry technique throughout at least two centuries, and like the Fachwerk tradition on Modern Aegean Samos throughout 500 years of political and technological development. (OTKA K67583)

  19. Performance-Based Specifications of Workability Characteristics of Prestressed, Precast Self-Consolidating Concrete-A North American Prospective.

    PubMed

    Long, Wu-Jian; Khayat, Kamal Henri; Lemieux, Guillaume; Hwang, Soo-Duck; Han, Ning-Xu

    2014-03-27

    Adequate selection of material constituents and test methods are necessary for workability specifications and performance of hardened concrete. An experimental program was performed to evaluate the suitability of various test methods for workability assessment and to propose performance specifications of prestressed concrete. In total, 33 self-consolidating concrete (SCC) mixtures made with various mixture proportioning parameters, including maximum size and type of aggregate, type and content of binder, and w/cm were evaluated. Correlations among various test results used in evaluating the workability responses are established. It is recommended that SCC should have slump flow values of 635-760 mm. To ensure proper filling capacity greater than 80%, such concrete should have a passing ability that corresponds to L-box blocking ratio (h₂/h₁) ≥ 0.5, J-Ring flow of 570-685 mm, slump flow minus J-Ring flow diameter ≤75 mm. Moreover, Stable SCC should develop a column segregation index lower than 5%, and rate of settlement at 30 min of 0.27%/h for SCC proportioned with 12.5 or 9.5 mm MSA. It is recommended that SCC should have a plastic viscosity of 100-225 Pa·s and 100-400 Pa·s for concrete made with crushed aggregate and gravel, respectively, to ensure proper workability.

  20. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  1. Building Trades. Block II. Foundations.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Twelve informational lessons and eleven manipulative lessons are provided on foundations as applied to the building trades. Informational lessons cover land measurements; blueprint reading; level instruments; building and site planning; building site preparation; laying out building lines; soil preparation and special evacuation; concrete forms;…

  2. ETR COMPRESSOR BUILDING, TRA643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. COMPRESSORS AND OTHER EQUIPMENT INSTALLED. METAL ROOF AND CONCRETE BLOCK WALLS. INL NEGATIVE NO. 61-4536. Unknown Photographer, ca. 1961. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  3. Magnitude assessment of free and hydrated limes present in RPCC aggregates : executive summary.

    DOT National Transportation Integrated Search

    2002-02-01

    The tendency of tufa to block pavement drains in northeastern Ohio can be associated with the total calcium content of the aggregate material. In the present project, recycled Portland Cement Concrete (RPCC) aggregates are examined when leached with ...

  4. Design of SC walls and slabs for impulsive loading

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varma, Amit H.

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental andmore » analytical investigations of the performance of SC walls subjected to far-field blast loads.« less

  5. Monitoring of Concrete Structures Using Ofdr Technique

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-06-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  6. Influence of reinforcement mesh configuration for improvement of concrete durability

    NASA Astrophysics Data System (ADS)

    Pan, Chong-gen; Jin, Wei-liang; Mao, Jiang-hong; Zhang, Hua; Sun, Li-hao; Wei, Dong

    2017-10-01

    Steel bar in concrete structures under harsh environmental conditions, such as chlorine corrosion, seriously affects its service life. Bidirectional electromigration rehabilitation (BIEM) is a new method of repair technology for reinforced concrete structures in such chloride corrosion environments. By applying the BIEM, chloride ions can be removed from the concrete and the migrating corrosion inhibit can be moved to the steel surface. In conventional engineering, the concrete structure is often configured with a multi-layer steel mesh. However, the effect of the BIEM in such structures has not yet been investigated. In this paper, the relevant simulation test is carried out to study the migration law of chloride ions and the migrating corrosion inhibitor in a concrete specimen with complex steel mesh under different energizing modes. The results show that the efficiency of the BIEM increases 50% in both the monolayer steel mesh and the double-layer steel mesh. By using the single-sided BIEM, 87% of the chloride ions are removed from the steel surface. The different step modes can affect the chloride ion removal. The chloride ions within the range of the reinforcement protective cover are easier to be removed than those in the concrete between the two layers of steel mesh. However, the amount of migrating corrosion inhibitor is larger in the latter circumstances.

  7. Evaluation of concrete bridge mix designs for control of cracking, phase I.

    DOT National Transportation Integrated Search

    2014-11-01

    Cracking of concrete is a common problem with concrete structures such as bridge decks, pavements and bridge : rail. The Agency of Transportation (VTrans) has recently invested in higher performing concrete mixes that are : more impervious and has hi...

  8. Segmental folding of chromosomes: a basis for structural and regulatory chromosomal neighborhoods?

    PubMed

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-09-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. © 2013 The Authors. Bioessays published by WILEY Periodicals, Inc.

  9. Segmental folding of chromosomes: A basis for structural and regulatory chromosomal neighborhoods?

    PubMed Central

    Nora, Elphège P; Dekker, Job; Heard, Edith

    2013-01-01

    We discuss here a series of testable hypotheses concerning the role of chromosome folding into topologically associating domains (TADs). Several lines of evidence suggest that segmental packaging of chromosomal neighborhoods may underlie features of chromatin that span large domains, such as heterochromatin blocks, association with the nuclear lamina and replication timing. By defining which DNA elements preferentially contact each other, the segmentation of chromosomes into TADs may also underlie many properties of long-range transcriptional regulation. Several observations suggest that TADs can indeed provide a structural basis to regulatory landscapes, by controlling enhancer sharing and allocation. We also discuss how TADs may shape the evolution of chromosomes, by causing maintenance of synteny over large chromosomal segments. Finally we suggest a series of experiments to challenge these ideas and provide concrete examples illustrating how they could be practically applied. PMID:23832846

  10. Previous concrete as one of the technology to overcome the puddle

    NASA Astrophysics Data System (ADS)

    Agung Putra Handana, M.; Karolina, Rahmi; Syahputra, Eko; Zulfikar

    2018-03-01

    Some construction waste has been utilized as a material in certain concrete compositions for engineering building materials. One is a concrete that has been removed after testing at a laboratory called recycle concrete. Disposed concrete, crushed and filtered with filter number 50; 37.5; 19; 9.5; and 4.75 mm are subsequently converted into rough aggregate materials in the manufacture of pervious concrete to be tested for compressive strength and infiltration velocity to water. Pervious concrete test specimens in the form of cylinders with dimensions (15 x 30) cm and plate-shaped with dimension (100 x 100 x 10) cm with the quality plan Fc ' = 15 MPa at age 28 days. The research methodology consisted of testing of wear, test object preparation, periodic maintenance, visual inspection, compressive strength testing, and infiltration rate of specimens against water (based on ASTM C1701). Treatment of specimens by spraying periodically before the test time. From the results of the Los Angeles wear test, it appears that recycled aggregate has an average wear rate of 20.88% (based on SNI 03-2417-1991) on the Los Angeles test) and the visual test on the specimen is appropriate (based on SNI 03 -0691-1996 on paving block) as the basis for testing the specimens. The largest compressive strength was found in pervious concrete with 9.5 mm graded aggregates of 5.89 MPa, while the smallest compressive strength of 50 mm gradation was 2.15 MPa and had a compressive strength of 28% of pervious concrete compressive strength on generally (based on SNI 03-6805-2002). The fastest infiltration speed occurs in 50 mm pervious gradient concrete at 4.52 inc / hr and is late in 9.5 mm grading of 2.068 inc / hr or an inflation rate inflation rate of 54.25% for gradation of 9.5 mm to 50 mm gradation, So that in accordance with the purpose of pervious concrete use, concrete that can drain water to the bottom layer

  11. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental results, a number of recommendations were made on how to optimize the use of recycled aggregates for structural concrete production. The results demonstrate that one of the practical ways to utilize a higher percentage of recycled aggregates in concrete is "precasting" with the use of fly ash and an initial steam curing stage immediately after casting.

  12. Methods for Detecting Defects in Composite Rehabilitated Concrete Structures : Final Report

    DOT National Transportation Integrated Search

    2005-04-01

    Fiber reinforced polymer (FRP) composites are increasingly being used to rehabilitate under-strength or deteriorating concrete structural elements and to prolong useful service-life of bridge structures. The rehabilitation is conducted through the ex...

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rashid, A.; Nygaard, C.

    The use of concrete in marine environment has gained tremendous popularity in the past decade and is continued to be a very popular material for marine industry in the world today. It has a very diversified use from large offshore platforms and floating structures in the North Sea, Canada and South America to offshore loading terminals and junction platforms in shallow waters in the marshes of southern Louisiana in the Gulf of Mexico. Also, precast concrete sections are extensively used all over the world in the construction of marine structures. Because of their large variety of shapes and sizes, theymore » can be tailored to fit multiple applications in marine environment. The added quality control in the fabrication yard and the ease of installation by lifting makes them a very attractive option. The use of precast concrete sections is gaining a lot of popularity in South America. A lot of fabrication yards are manufacturing these sections locally. There are hundreds of offshore concrete platforms utilizing these sections in Lake Maracaibo, Venezuela. The paper discusses the use of concrete for offshore structures including floaters. It describes some general concepts and advantages to be gained by the use of concrete (precast and cast-in-place) in marine environment. It also discusses some general design considerations required for the use of different types of precast concrete sections that can be utilized for oil and gas platforms and loading terminals. Lastly the paper describes some typical examples of concrete platforms built out of concrete piles, precast concrete girders and beam sections and concrete decking.« less

  14. Triaxial constitutive model for plain and reinforced concrete behavior

    NASA Astrophysics Data System (ADS)

    Kang, Hong Duk

    Inelastic failure analysis of concrete structures has been one of the central issues in concrete mechanics. Especially, the effect of confinement has been of great importance to capture the transition from brittle to ductile fracture of concrete under triaxial loading scenarios. Moreover, it has been a difficult task to implement numerically material descriptions which are susceptible to loss of stability and localization. Consequently, it has been a challenge to develop comprehensive material formulations of concrete, which consider the full spectrum of loading histories which the material in a real structure is subjected to. A new triaxial constitutive model of concrete is presented that not only describes the hardening/softening behavior of concrete in tension and low confined compression, but also captures the transition from brittle to ductile failure under high confinement. The concrete model is based on a loading surface that is Csp1-continuous, and that closes smoothly in equitriaxial compression, while the deviatoric trace expands from a triangular to a circular shape with increasing confinement. The plastic potential has a different curvature from the plastic loading function for non-associativity in order to reduce excessive inelastic dilatancy. In the thesis, the results of deformation and localization analyses for various loading histories are presented in the constitutive study. In addition, studies of associativity and non-associativity, and two-invariant versus three-invariant formulations are performed. At the structural level the triaxial concrete model is used to predict the nonlinear response behavior of a reinforced concrete column subject to axial and lateral loadings.

  15. Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Shima, Hiroshi

    2009-12-01

    Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.

  16. Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Shima, Hiroshi

    2010-03-01

    Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.

  17. Influence of Axial Load on Electromechanical Impedance (EMI) of Embedded Piezoceramic Transducers in Steel Fiber Concrete.

    PubMed

    Wang, Zhijie; Chen, Dongdong; Zheng, Liqiong; Huo, Linsheng; Song, Gangbing

    2018-06-01

    With the advantages of high tensile, bending, and shear strength, steel fiber concrete structures have been widely used in civil engineering. The health monitoring of concrete structures, including steel fiber concrete structures, receives increasing attention, and the Electromechanical Impedance (EMI)-based method is commonly used. Structures are often subject to changing axial load and ignoring the effect of axial forces may introduce error to Structural Health Monitoring (SHM), including the EMI-based method. However, many of the concrete structure monitoring algorithms do not consider the effects of axial loading. To investigate the influence of axial load on the EMI of a steel fiber concrete structure, concrete specimens with different steel fiber content (0, 30, 60, 90, 120) (kg/m³) were casted and the Lead Zirconate Titanate (PZT)-based Smart Aggregate (SA) was used as the EMI sensor. During tests, the step-by-step loading procedure was applied on different steel fiber content specimens, and the electromechanical impedance values were measured. The Normalized root-mean-square deviation Index (NI) was developed to analyze the EMI information and evaluate the test results. The results show that the normalized root-mean-square deviation index increases with the increase of the axial load, which clearly demonstrates the influence of axial load on the EMI values for steel fiber concrete and this influence should be considered during a monitoring or damage detection procedure if the axial load changes. In addition, testing results clearly reveal that the steel fiber content, often at low mass and volume percentage, has no obvious influence on the PZT's EMI values. Furthermore, experiments to test the repeatability of the proposed method were conducted. The repeating test results show that the EMI-based indices are repeatable and there is a great linearity between the NI and the applied loading.

  18. Study on evaluation of corrosion condition of reinforcing bar embedded concrete using infrared thermal imaging camera

    NASA Astrophysics Data System (ADS)

    Ruiko, Watanabe; Toshiaki, Mizobuchi

    2017-04-01

    Rapid aging of many concrete structures, which have been developed during rapid economic growth period in Japan, has become a serious problem for us these days. And thus, there is an urgent need to prolong their service life expectancies. For this purpose, the deterioration of reinforcing bars in the concrete structures should be detected quickly and correctly at the early stages. Nevertheless, conventional testing methods such as destructive and nondestructive testing have disadvantages: partial damages on concrete structures; difficulty with quantitative evaluation, etc. Many preceding studies have examined to estimate the deterioration of reinforcing bars based on the temperature of the concrete specimen surfaces. According to those papers, the differences in corrosion degree of reinforcing bars have a certain effect on the temperature of concrete specimen surfaces. In this study, firstly, the quantitative evaluation of the corrosion degree was conducted with 3D scanner which could measure the volume, coverage area and cross-sectional area. Secondly, the surface of the concrete specimen was cooled down with liquid nitrogen, and thirdly, thermographic change was observed up until the air temperature. Finally, the surface of the concrete specimen was detected clearly by the thermal images. As a result, this study shows that the corrosion thickness tends to get bigger, following the uprising temperature of the concrete specimen surfaces. The same kind of tendency can be observed by the thermal images, too.

  19. (Durability of building materials and components)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.

    1990-11-27

    The traveler participated in the fourth meeting of RILEM 100-TSL, Techniques for Service Life Prediction,'' and The Fifth International Conference on Durability of Building Materials and Components.'' In addition, the traveler met with staff members at Taywood Engineering Ltd., Electricite de France, and AEA Technology. The meeting pertained to performance of concrete materials in nuclear power plant structures, time variation of concrete material properties, methods for evaluating concrete structures, and modeling to predict the effects of degradation factors on concrete materials. As many of the concrete structures in general civil engineering applications as well as nuclear power plant applications inmore » Europe are aging, there is increasing emphasis on assessing the durability of these structures. Information was provided of direct application to the Structural Aging Program which would not have been available without these visits. Of equal, or possibly more importance, was the individual contacts established at the organizations visited. Each organization was extremely interested in both the approach and scope of the Structural Aging Program and requested that they be informed of progress. The initial steps were taken to cooperate with several of these researchers and this should help the Structural Aging Program keep abreast of related European activities. In summary, information obtained during this trip will benefit the ongoing Structural Aging Program by informing Oak Ridge National Laboratory (ORNL) of the extensive European research programs addressing the durability of concrete structures, and also by forming and strengthening acquaintances with counterparts in other countries, thus enhancing the basis for possible international cooperation.« less

  20. Investigation of properties of high-performance fiber-reinforced concrete : very early strength, toughness, permeability, and fiber distribution : final report.

    DOT National Transportation Integrated Search

    2017-01-01

    Concrete cracking, high permeability, and leaking joints allow for intrusion of harmful solutions, resulting in concrete deterioration and corrosion of reinforcement in structures. The development of durable, high-performance concretes with limited c...

  1. Assessment of the Uretek process on continuously reinforced concrete pavement, jointed concrete pavement, and bridge approach slabs : technical assistance report.

    DOT National Transportation Integrated Search

    2004-12-01

    This study evaluates the rehabilitation method utilizing the injection of Uretek (polyurethane) into the pavement structures on continuously reinforced concrete pavement (CRCP), jointed concrete pavement (JCP), and bridge approach slabs. The polyuret...

  2. A simplified method for prediction of long-term prestress loss in post-tensioned concrete bridges.

    DOT National Transportation Integrated Search

    2006-07-01

    Creep and shrinkage of concrete and relaxation of prestressing steel cause time-dependent changes in : the stresses and strains of concrete structures. These changes result in continuous reduction in the : concrete compression stresses and in the ten...

  3. Implementation of ASTM C157: testing of length change of hardened concrete : technical summary.

    DOT National Transportation Integrated Search

    2016-09-01

    The Kansas Department of Transportation (KDOT) has a history of using : tests such as concrete strength, permeability, and air void structure as design : and acceptance criteria on concrete paving and bridge deck projects. In 2012, : the KDOT Concret...

  4. National Dam Safety Program. Goshen Reservoir Number 1 Dam (Inventory Number N.Y. 488), Lower Hudson River Basin, Orange County, New York. Phase I Inspection Report,

    DTIC Science & Technology

    1981-08-01

    ApprOV~U LUC puoiC release; Distribution unlimited. * ~ . IST~aUTaO STATEMENT (of tho obafact solored In Block 20. It dNagweni hom Ropaot) 146...6 4.1 PROCEDURES 6 4.2 MAINTENANCE OF DAM 6 4.3 WARNING SYSTEM 6 4.4 EVALUATION 6 5 HYDROLOGIC/HYDRAULIC 7 PAGE NO. 5.1 DRAINAGE AREA CHARACTERISTICS...embankment. It houses two 20" intake valves to the Goshen water supply system . The spillway is a concrete channel with a concrete cutoff extending into the

  5. Credit PSR. This image depicts the southwest and southeast facades ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA

  6. The MW 7.0 Haiti Earthquake of January 12, 2010: USGS/EERI Advance Reconnaissance Team Report

    USGS Publications Warehouse

    Eberhard, Marc O.; Baldridge, Steven; Marshall, Justin; Mooney, Walter; Rix, Glenn J.

    2010-01-01

    Executive Summary A field reconnaissance in Haiti by a five-member team with expertise in seismology and earthquake engineering has revealed a number of factors that led to catastrophic losses of life and property during the January 12, 2010, Mw 7.0 earthquake. The field study was conducted from January 26 to February 3, 2010, and included investigations in Port-au-Prince and the heavily damaged communities to the west, including Leogane, Grand Goave, Petite Goave, and Oliver. Seismology Despite recent seismic quiescence, Haiti has suffered similar devastating earthquakes in the historical past (1701, 1751, 1770 and 1860). Despite this knowledge of historical seismicity, Haiti had no seismograph stations during the main earthquake, so it is impossible to estimate accurately the intensity of ground motions. Nonetheless, the wide range of buildings damaged by the January 12, 2010, earthquake suggests that the ground motions contained seismic energy over a wide range of frequencies. Another earthquake of similar magnitude could strike at any time on the eastern end of the Enriquillo Fault, directly to the south of Port-au-Prince. Reconstruction must take this hazard into account. The four portable seismographs installed by the team recorded a series of small aftershocks. As expected, the ground motions recorded at a hard-rock site contained a greater proportion of high frequencies than the motions recorded at a soil site. Two of the stations continue to monitor seismic activity. A thorough field investigation of the mapped Enriquillo Fault south of the city of Leogane failed to find any evidence of surface faulting. This led the team to conclude that the earthquake was unlikely to have produced any surface rupture in the study area. Geotechnical Aspects Soil liquefaction, landslides and rockslides in cut slopes, and road embankment failures contributed to extensive damage in Port-au-Prince and elsewhere. A lack of detailed knowledge of the physical conditions of the soils (for example, lithology, stiffness, density, and thickness) made it difficult for us to quantitatively assess the role of ground-motion amplification in the widespread damage. Buildings The Haitian Ministry of Statistics and Informatics reported that one-story buildings represent 73 percent of the building inventory. Most ordinary, one-story houses have roofs made of sheet metal (82 percent), whereas most multistory houses and apartments have roofs made of concrete (71 percent). Walls made of concrete/block/stone predominate both in ordinary houses and apartments. It appears that the widespread damage to residences and commercial and government buildings was attributable to a great extent to the lack of earthquake-resistant design. In many cases, the structural types, member dimensions, and detailing practices were inadequate to resist strong ground motions. These vulnerabilities may have been exacerbated by poor construction practices. Reinforced concrete frames with concrete block masonry infill appeared to perform particularly poorly. Structures with light (timber or sheet metal) roofs performed better compared to structures with concrete roofs and slabs. The seismic performance of some buildings was adequate, and some of the damaged buildings appeared to have had low deformation demands. These observations suggest that structures designed and constructed with adequate stiffness and reinforcing details would have resisted the earthquake without being damaged severely. A damage survey of 107 buildings in downtown Port-au-Prince indicated that 28 percent had collapsed and another 33 percent were damaged enough to require repairs. A similar survey of 52 buildings in Leogane found that 62 percent had collapsed and another 31 percent required repairs. Bridges There was no evidence of bridge collapses attributable to the earthquake. Most bridges in Port-au-Prince are simple box culverts consisting of box girders 2.0 to 2.

  7. Concrete Infrastructure Corrosion

    NASA Astrophysics Data System (ADS)

    Waanders, F. B.; Vorster, S. W.

    2003-06-01

    It is well known that many reinforced concrete structures are at risk of deterioration due to chloride ion contamination of the concrete or atmospheric carbon dioxide dissolving in water to form carbonic acid, which reacts with the concrete and the reinforcing steel. The environment within the concrete will determine the corrosion product layers, which might, inter alia, contain the oxides and/or hydroxides of iron. Tensile forces resulting from volume changes during their formation lead to the cracking and delamination of the concrete. In the present investigation the handrail of an outside staircase suffered rebar corrosion during 30 year's service, leading to severe delamination damage to the concrete structure. The railings had been sealed into the concrete staircase using a polysulphide sealant, Thiokol®. The corrosion products were identified by means of Mössbauer and SEM analyses, which indicated that the corrosion product composition varied from the original steel surface to the outer layers, the former being mainly iron oxides and the latter iron oxyhydroxide.

  8. Forward problem studies of electrical resistance tomography system on concrete materials

    NASA Astrophysics Data System (ADS)

    Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.

    2017-03-01

    Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.

  9. I-SonReb: an improved NDT method to evaluate the in situ strength of carbonated concrete

    NASA Astrophysics Data System (ADS)

    Breccolotti, Marco; Bonfigli, Massimo F.

    2015-10-01

    Concrete strength evaluated in situ by means of the conventional SonReb method can be highly overestimated in presence of carbonation. This latter, in fact, is responsible for the physical and chemical alteration of the outer layer of concrete. As most of the existing concrete structures are subjected to carbonation, it is of high importance to overcome this problem. In this paper, an Improved SonReb method (I-SonReb) for carbonated concretes is proposed. It relies on the definition of a correction coefficient of the measured Rebound index as a function of the carbonated concrete cover thickness, an additional parameter to be measured during in situ testing campaigns. The usefulness of the method has been validated showing the improvement in the accuracy of concrete strength estimation from two sets of NDT experimental data collected from investigations on real structures.

  10. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the variousmore » nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and initial results are also presented along with a discussion of the preliminary findings. Comparative NDE of various defects in reinforced concrete specimens is a key component in identifying the most promising techniques and directing the research and development efforts needed to characterize concrete degradation in commercial NPPs. This requires access to the specimens for data collection using state-of-the-art technology. The construction of the specimen detailed in this report allows for an evaluation of how different NDE techniques may interact with the size and complexities of NPP concrete structures. These factors were taken into account when determining specimen size and features to ensure a realistic design. The lateral dimensions of the specimen were also chosen to mitigate unrealistic boundary effects that would not affect the results of field NPP concrete testing. Preliminary results show that, while the current methods are able to identify some of the deeper defects, improvements in data processing or hardware are necessary to be able to achieve the precision and reliability achieved in evaluating thinner and less heavily reinforced concrete structures.« less

  11. Evaluation of Modern Navies’ Damage Control and Firefighting Training using Simulator Platforms

    DTIC Science & Technology

    2011-09-01

    Figure 18 below is a two-story concrete structure including holes in bulkheads, ruptured pipelines, and almost all situations that can cause flooding...the four simulators address Class A, B, and C fires. The first one—the “Basic Firefighting Trainer”—is a single-story concrete structure with four...Figure 19—is a three-story concrete structure that houses berthing facilities, engine rooms, storage compartments and electrical and engine room mock

  12. Relationship between critical mechanical properties and age for structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-02-25

    The necessity to use structural lightweight concrete has created : a need for investigations into its critical mechanical properties that : affect the design and performance of structures. The primary critical : properties were found to be direct ten...

  13. Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregerova, Miroslava, E-mail: mirka@sci.muni.cz; Vsiansky, Dalibor, E-mail: daliborv@centrum.cz

    2009-07-15

    The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solvingmore » the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.« less

  14. Ceramic ware waste as coarse aggregate for structural concrete production.

    PubMed

    García-González, Julia; Rodríguez-Robles, Desirée; Juan-Valdés, Andrés; Morán-Del Pozo, Julia M; Guerra-Romero, M Ignacio

    2015-01-01

    The manufacture of any kind of product inevitably entails the production of waste. The quantity of waste generated by the ceramic industry, a very important sector in Spain, is between 5% and 8% of the final output and it is therefore necessary to find an effective waste recovery method. The aim of the study reported in the present article was to seek a sustainable means of managing waste from the ceramic industry through the incorporation of this type of waste in the total replacement of conventional aggregate (gravel) used in structural concrete. Having verified that the recycled ceramic aggregates met all the technical requirements imposed by current Spanish legislation, established in the Code on Structural Concrete (EHE-08), then it is prepared a control concrete mix and the recycled concrete mix using 100% recycled ceramic aggregate instead of coarse natural aggregate. The concretes obtained were subjected to the appropriate tests in order to conduct a comparison of their mechanical properties. The results show that the concretes made using ceramic sanitary ware aggregate possessed the same mechanical properties as those made with conventional aggregate. It is therefore possible to conclude that the reuse of recycled ceramic aggregate to produce recycled concrete is a feasible alternative for the sustainable management of this waste.

  15. Effect of a viscoelastic admixture on transient vibration in a concrete and steel floor

    NASA Astrophysics Data System (ADS)

    Moiseev, Neil

    1992-02-01

    The typical concrete and steel building structure has very little inherent damping, resulting in a very large Q, a measure of the sharpness of the amplitude response at resonance. Some damping effects are provided through the inertia and friction provided by a building''s full height partitions, hung ceilings, furniture, and suspended ducts and piping. These items have an effect on the very low amplitude vibration that affects sensitive laboratory equipment and the processes used in the microelectronic industry. This paper presents studies of transient vibration of floors in two existing buildings. The floors have been treated by adding a two inch thick concrete topping to the structural floor. This additional layer of concrete was treated by using a viscoelastic damping admixture in place of some of the water used to form the concrete. The admixture can dramatically reduce the Q of concrete from the normal 200 to between 20 and 50, depending on the amount of admixture used per yard of concrete. The measured velocity and frequency of the transient vibration excited by footfalls is compared to the predicted velocity and frequency of the same floor structure without the damping admixture. A formula to predict the peak transient vibration velocity due to footfalls for a concrete floor with a viscoelastic admixture is proposed.

  16. A-jacks and Aquawrap installations in Utah : scour revetment performance evaluation, final report, December 2009.

    DOT National Transportation Integrated Search

    2009-12-01

    This is a performance evaluation report for A-Jacks, an articulated concrete block designed to protect bridge elements exposed to the river scouring forces, and for Aquawrap, a glass fiber reinforced polymer designed to protect and strengthen bridge ...

  17. 4. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. NORTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED NOVEMBER 11, 1944. - Rock Island Arsenal, Building No. 67, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  18. 5. Photograph of a photograph in possession of Rock Island ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Photograph of a photograph in possession of Rock Island Arsenal Historical Office. SOUTH ELEVATION BEFORE REPLACEMENT OF STEEL SASH WITH CONCRETE BLOCK. DATED APRIL 27, 1956. - Rock Island Arsenal, Building No. 109, Rodman Avenue & Fourth Street, Rock Island, Rock Island County, IL

  19. Interior, detail view of last original windows and filed in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior, detail view of last original windows and filed in wall arches, also concrete block wall of beryllum/uranium labs to left, looking southwest near center of west elevation, main building. - Watertown Arsenal, Building No. 312, Wooley Avenue, Watertown, Middlesex County, MA

  20. 30 CFR 56.2 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... anticipated, will ignite, burn, support combustion, or release flammable vapors when subjected to fire or heat... covering is one means for making the conductor insulated. Insulation means a dielectric substance offering... flammable vapors when subjected to fire or heat. Concrete, masonry block, brick, and steel are examples of...

  1. Concrete Geometry: Playing with Blocks

    ERIC Educational Resources Information Center

    Luescher, Andreas

    2010-01-01

    This article describes a design/build exercise conducted in an Architectural Materials and Methods class to achieve three interrelated objectives: (1) to apply physically the semester's theoretical focus on the constituent process and languages of architecture investigations, (2) to capitalise on the physical and aesthetic properties of concrete…

  2. Numerical simulation of the effect of regular and sub-caliber projectiles on military bunkers

    NASA Astrophysics Data System (ADS)

    Jiricek, Pavel; Foglar, Marek

    2015-09-01

    One of the most demanding topics in blast and impact engineering is the modelling of projectile impact. To introduce this topic, a set of numerical simulations was undertaken. The simulations study the impact of regular and sub-calibre projectile on Czech pre-WW2 military bunkers. The penetrations of the military objects are well documented and can be used for comparison. The numerical model composes of a part from a wall of a military object. The concrete block is subjected to an impact of a regular and sub-calibre projectile. The model is divided into layers to simplify the evaluation of the results. The simulations are processed within ANSYS AUTODYN software. A nonlinear material model of with damage and incorporated strain-rate effect was used. The results of the numerical simulations are evaluated in means of the damage of the concrete block. Progress of the damage is described versus time. The numerical simulation provides good agreement with the documented penetrations.

  3. Aging management program of the reactor building concrete at Point Lepreau Generating Station

    NASA Astrophysics Data System (ADS)

    Aldea, C.-M.; Shenton, B.; Demerchant, M. M.; Gendron, T.

    2011-04-01

    In order for New Brunswick Power Nuclear (NBPN) to control the risks of degradation of the concrete reactor building at the Point Lepreau Generating Station (PLGS) the development of an aging management plan (AMP) was initiated. The intention of this plan was to determine the requirements for specific structural components of concrete of the reactor building that require regular inspection and maintenance to ensure the safe and reliable operation of the plant. The document is currently in draft form and presents an integrated methodology for the application of an AMP for the concrete of the reactor building. The current AMP addresses the reactor building structure and various components, such as joint sealant and liners that are integral to the structure. It does not include internal components housed within the structure. This paper provides background information regarding the document developed and the strategy developed to manage potential degradation of the concrete of the reactor building, as well as specific programs and preventive and corrective maintenance activities initiated.

  4. Thermo-mechanical simulations of early-age concrete cracking with durability predictions

    NASA Astrophysics Data System (ADS)

    Havlásek, Petr; Šmilauer, Vít; Hájková, Karolina; Baquerizo, Luis

    2017-09-01

    Concrete performance is strongly affected by mix design, thermal boundary conditions, its evolving mechanical properties, and internal/external restraints with consequences to possible cracking with impaired durability. Thermo-mechanical simulations are able to capture those relevant phenomena and boundary conditions for predicting temperature, strains, stresses or cracking in reinforced concrete structures. In this paper, we propose a weakly coupled thermo-mechanical model for early age concrete with an affinity-based hydration model for thermal part, taking into account concrete mix design, cement type and thermal boundary conditions. The mechanical part uses B3/B4 model for concrete creep and shrinkage with isotropic damage model for cracking, able to predict a crack width. All models have been implemented in an open-source OOFEM software package. Validations of thermo-mechanical simulations will be presented on several massive concrete structures, showing excellent temperature predictions. Likewise, strain validation demonstrates good predictions on a restrained reinforced concrete wall and concrete beam. Durability predictions stem from induction time of reinforcement corrosion, caused by carbonation and/or chloride ingress influenced by crack width. Reinforcement corrosion in concrete struts of a bridge will serve for validation.

  5. Propagation measurements for satellite radio reception inside buildings

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1993-01-01

    Swept CW signals (from 700 to 1800 MHz) were received inside six buildings of brick, corrugated sheet-metal, wood-frame, mobile-home, and reinforced concrete-wall construction. A transmitter antenna was mounted outdoors on top of an 18 m tower to simulate a satellite, and a linearly scanned directional receiver antenna was used to probe the spatial, spectral, and temporal variability of the signal indoors. Levels were found to have much structure in the spatial and frequency domain, but were relatively stable in time. Typically, people moving nearby produced variations of less than 0.5 dB, whereas a person blocking the transmission path produced fades of 6 to 10 dB. Severe losses (17.5 dB) were observed in the concrete-wall building, which also exhibited the longest multipath delays (over 100 ns). Losses inside a mobile home were even larger (over 20 dB) and were independent of antenna orientation. The power-frequency distortion increased with the logarithm of the bandwidth, but could be reduced by moving to a position of higher power. Only the losses showed a clear frequency dependence, but they could be mitigated by moving the antenna.

  6. Satellite sound broadcast propagation measurements

    NASA Technical Reports Server (NTRS)

    Vogel, Wolfhard J.; Torrence, Geoffrey W.

    1991-01-01

    Power transmitted from atop a 17.9 m tower in simulation of a satellite signal, emitted by a tone generator sweeping from 700 to 1800 MHz, was received using a 90 deg beamwidth linearly scanning antenna at many locations inside six buildings of solid brick, corrugated sheet-metal, wood-frame, mobile home, and concrete wall construction. The signal levels are found to have much structure in the spatial and frequency domain but were relatively stable in time. Typically, people moving nearby produced less than 0.5 dB variations, whereas a person blocking the transmission path produces 6 to 10 dB fades. Losses, which at an average position in a room increased from 6 to 12 dB over 750 to 1750 MHz, could be mitigated to 2 to 6 dB by moving the antenna typically less than 30 cm. Severe losses (17.5 dB, mitigated to 12.5 dB) were observed in a concrete wall building, which also exhibited the longest multipath delays (greater than 100 ns). Losses inside a mobile home were even larger (greater than 20 dB) and independent of antenna orientation. The losses showed a clear frequency dependence.

  7. Image enhancement for on-site X-ray nondestructive inspection of reinforced concrete structures.

    PubMed

    Pei, Cuixiang; Wu, Wenjing; Ueaska, Mitsuru

    2016-11-22

    The use of portable and high-energy X-ray system can provide a very promising approach for on-site nondestructive inspection of inner steel reinforcement of concrete structures. However, the noise properties and contrast of the radiographic images for thick concrete structures do often not meet the demands. To enhance the images, we present a simple and effective method for noise reduction based on a combined curvelet-wavelet transform and local contrast enhancement based on neighborhood operation. To investigate the performance of this method for our X-ray system, we have performed several experiments with using simulated and experimental data. With comparing to other traditional methods, it shows that the proposed image enhancement method has a better performance and can significantly improve the inspection performance for reinforced concrete structures.

  8. VIEW OF GUN EMPLACEMENT AND THE TABLELIKE CAST CONCRETE STRUCTURE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF GUN EMPLACEMENT AND THE TABLE-LIKE CAST CONCRETE STRUCTURE SHOWING THE SPALLED AREA ON ITS EAST SIDE (LEFT) WHERE THE SECOND PROJECTING ARM WAS BROKEN OFF. NOTE THE SLOPED CONCRETE PAD IN THE BACKGROUND. VIEW FACING SOUTHWEST - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, East Gun Emplacement, Ford Island, Pearl City, Honolulu County, HI

  9. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  10. Measures to reduce construction time of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Kolchedantsev, Leonid; Adamtsevich, Aleksey; Stupakova, Olga; Drozdov, Alexander

    2018-03-01

    The organizational and technological solutions for high-rise buildings construction efficiency increase are considered, primarily - decrease of typical floor construction time and improvement of bearing structures concrete quality. The essence of offered technology is: a concrete mixing station and a polygon mainly for load-bearing wall panels with starter bars casting are located on the building site; for reinforced concrete components manufacturing and butt joints grouting the warmed-up concrete mixtures are used. The results of researches and elaborations carried out by the SPSUACE in area of a preliminary warming-up of concrete mixtures are presented. The possibility and feasibility of their usage in high-rise buildings and of excess height buildings construction including cast-in-place and precast execution are shown. The essence of heat-vibro treating of concrete mixture is revealed as a kind of prior electroresistive curing, and the achieved results are: accelerated concrete strength gain, power inputs decrease, concrete quality improvement. It is shown that the location of a concrete mixing station on the building site enables to broaden possibilities of the "thermos" method use and to avoid concrete mixtures warming up in medium-mass structures erection (columns, girders) during the high-rise buildings construction. It is experimentally proved that the splice between precast elements encased with warmed-up concrete mixture is equal with conjugated elements in strength.

  11. Experimental Study on Voided Reinforced Concrete Beams with Polythene Balls

    NASA Astrophysics Data System (ADS)

    Sivaneshan, P.; Harishankar, S.

    2017-07-01

    The primary component in any structure is concrete, that exist in buildings and bridges. In present situation, a serious problems faced by construction industry is exhaustive use of raw materials. Recent times, various methods are being adopted to limit the use of concrete. In structural elements like beams, polythene balls can be induced to reduce the usage of concrete. A simply supported reinforced concrete beam has two zones, one above neutral axis and other below neutral axis. The region below neutral axis is in tension and above neutral axis is in compression. As concrete is weak in tension, steel reinforcements are provided in tension zone. The concrete below the neutral axis acts as a stress transfer medium between the compression zone and tension zone. The concrete above the neutral axis takes minimum stress so that we could partially replace the concrete above neutral axis by creating air voids using recycled polythene balls. Polythene balls of varying diameters of 75 mm, 65 mm and 35 mm were partially replaced in compression zone. Hence the usage of concrete in beams and self-weight of the beams got reduced considerably. The Load carrying capacity, Deflection of beams and crack patterns were studied and compared with conventional reinforced concrete beams.

  12. 27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, A SHORT DISTANCE WEST OF D STREET ABOUT ONE-QUARTER MILE SOUTH OF 9TH AVENUE (SECTION 26). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  13. Infrastructure Retrofit Design via Composite Mechanics

    NASA Technical Reports Server (NTRS)

    Chamis, Christos, C.; Gotsis,Pascal K.

    1998-01-01

    Select applications are described to illustrate the concept for retrofitting reinforced concrete infrastructure with fiber reinforced plastic laminates. The concept is first illustrated by using an axially loaded reinforced concrete column. A reinforced concrete arch and a dome are then used to illustrate the versatility of the concept. Advanced methods such as finite element structural analysis and progressive structural fracture are then used to evaluate the retrofitting laminate adequacy. Results obtains show that retrofits can be designed to double and even triple the as-designed load of the select reinforced concrete infrastructures.

  14. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods of exposure to chloride solutions, pointing at the benefits of nanoplatelets towards enhancement of concrete resistance to chloride ion diffusion. It was also found that the intensity of Thaumasite, a key species marking sulfate attack on cement hydrates, was lowered with the addition of graphite nanoplatelets in concrete exposed to sulfate solutions. Experimental evaluations were conducted on scaled-up production of concrete nanocomposite in precast concrete plants. Full-scale reinforced concrete pipes and beams were produced using concrete nanocomposites. Durability and structural tests indicated that the use of graphite nanoplatelets, alone or in combination with synthetic (PVA) fibers, produced significant gains in the durability characteristics, and also benefited the structural performance of precast reinforced concrete products. The material and scaled-up structural investigations conducted in the project concluded that lower-cost graphite nanomaterials (e.g., graphite nanoplatelets) offer significant potentials as multi-functional additives capable of enhancing the barrier, durability and mechanical performance of concrete materials. The benefits of graphite nanomaterials tend to be more pronounced in higher-performance concrete materials.

  15. Doubling the Life of Concrete Structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pesic, Batric; Raja, Krishnan; Xi, Yumping

    Overall objective of the project was to study the fundamental properties of concrete (with and without steel reinforcement) with respect to chemical and physical parameters that can influence its structural integrity.

  16. Dynamics of layered reinforced concrete beam on visco-elastic foundation with different resistances of concrete and reinforcement to tension and compression

    NASA Astrophysics Data System (ADS)

    Nemirovsky, Y. V.; Tikhonov, S. V.

    2018-03-01

    Originally, fundamentals of the theory of limit equilibrium and dynamic deformation of building metal and reinforced concrete structures were created by A. A. Gvozdev [1] and developed by his followers [4, 5, 6, 7, 11, 12]. Forming the basis for the calculation, the model of an ideal rigid-plastic material has enabled to determine in many cases the ultimate load bearing capacity and upper (kinematically possible) or lower (statically valid) values for a wide class of different structures with quite simple methods. At the same time, applied to concrete structures the most important property of concrete to significantly differently resist tension and compression was not taken into account [10]. This circumstance was considered in [3] for reinforced concrete beams under conditions of quasistatic loading. The deformation is often accompanied by resistance of the environment in construction practice [8, 9]. In [2], the dynamics of multi-layered concrete beams on visco-elastic foundation under the loadings of explosive type is considered. In this work we consider the case which is often encountered in practical applications when the loadings weakly change in time.

  17. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures.

    PubMed

    Glinicki, Michał A; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-02

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement-ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash.

  18. Influence of Blended Cements with Calcareous Fly Ash on Chloride Ion Migration and Carbonation Resistance of Concrete for Durable Structures

    PubMed Central

    Glinicki, Michał A.; Jóźwiak-Niedźwiedzka, Daria; Gibas, Karolina; Dąbrowski, Mariusz

    2016-01-01

    The objective of this paper is to examine the possible use of new blended cements containing calcareous fly ash in structural concrete, potentially adequate for structural elements of nuclear power plants. The investigation included five new cements made with different contents of non-clinker constituents: calcareous fly ash, siliceous fly ash, ground granulated blastfurnace slag, and a reference cement—ordinary Portland cement. The influence of innovative cements on the resistance of concrete to chloride and carbonation exposure was studied. Additionally, an evaluation of the microstructure was performed using optical microscopy on concrete thin sections. Test results revealed a substantial improvement of the resistance to chloride ion penetration into concrete containing blended cements. The resistance was higher for increased clinker replacement levels and increased with curing time. However, concrete made with blended cements exhibited higher depth of carbonation than the Portland cement concrete, except the Portland-fly ash cement with 14.3% of calcareous fly ash. The thin sections analysis confirmed the values of the carbonation depth obtained from the phenolphthalein test. Test results indicate the possible range of application for new cements containing calcareous fly ash. PMID:28787821

  19. Research Status on Bonding Behavior of Prefabricated Concrete Shear Wall

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Li, Shanshan

    2018-03-01

    Prefabricated shear wall structure adapts to the development and requirements of China’s residential industrialization. The key to the prefabricated concrete shear wall structure is the connection between the prefabricated members, where the reliability of the connection of the concrete joint is related to the overall performance and seismic effect of the structure. In this paper, the microstructures of the joint surface and shear properties are analysed, and the formula for calculating the shear strength of the joint is obtained.

  20. Kaiser and Felicity effects and their application for evaluation of concrete by acoustic emission method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nesvijski, E.; Nesvijski, T.

    1996-12-31

    Concrete as one of the main construction materials, which is used for building of industrial and civil structures, highways, bridges, etc. requires periodical evaluation of its properties by different nondestructive methods. Application of acoustic emission (AE) for these purposes occupies a modest place among other nondestructive methods. But the AE methods proved to be very effective for testing of concrete and reinforced concrete elements and structures under load. This work is devoted to an important, from methodological point of view, problem connected with two opposite effects: of Kaiser and of Felicity, and their application for evaluation of concrete by themore » AE method.« less

  1. Determination of the neutralization depth of concrete under the aggressive environment influence

    NASA Astrophysics Data System (ADS)

    Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena

    2018-03-01

    Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.

  2. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    DOT National Transportation Integrated Search

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  3. The cost of concreteness: the effect of nonessential information on analogical transfer.

    PubMed

    Kaminski, Jennifer A; Sloutsky, Vladimir M; Heckler, Andrew F

    2013-03-01

    Most theories of analogical transfer focus on similarities between the learning and transfer domains, where transfer is more likely between domains that share common surface features, similar elements, or common interpretations of structure. We suggest that characteristics of the learning instantiation alone can give rise to different levels of transfer. We propose that concreteness of the learning instantiation can hinder analogical transfer of well-defined structured concepts, such as mathematical concepts. We operationalize the term concreteness as the amount of information communicated through a specific instantiation of a concept. The 5 reported experiments with undergraduate students tested the hypothesis by presenting participants with the concept of a commutative mathematical group of order 3. The experiments varied the level of concreteness of the training instantiation and measured transfer of learning to a new instantiation. The results support the hypothesis, demonstrating better transfer from more generic instantiations (i.e., ones that communicate minimal extraneous information) than from more concrete instantiations. Specifically, concreteness was found to create an obstacle to successful structural alignment across domains, whereas generic instantiations led to spontaneous structural alignment. These findings have important implications for the theory of learning and transfer and practical implications for the design of educational material. Although some concreteness may activate prior knowledge and perhaps offer a leg up in the learning process, this benefit may come at the cost of transfer.

  4. Embedded micro-sensor for monitoring pH in concrete structures

    NASA Astrophysics Data System (ADS)

    Srinivasan, Rengaswamy; Phillips, Terry E.; Bargeron, C. Brent; Carlson, Micah A.; Schemm, Elizabeth R.; Saffarian, Hassan M.

    2000-04-01

    Three major causes of corrosion of steel in concrete are chloride ions (Cl-), temperature (T) and acidity (pH). Under normal operating temperatures and with pH above 13, steel does not undergo pitting corrosion. In presence of Cl-, if the pH decreases below 12, the probability of pitting increases. Acid rain and atmospheric carbon dioxide cause the pH to drop in concrete, often leading to corrosion of the structure with the concomitant cost of repair or replacement. Currently, the pH level in concrete is estimated through destructive testing of the structures. Glass ISFET, and other pH sensors that need maintenance and calibration cannot be embedded in concrete. In this paper, we describe an inexpensive solid state pH sensor that can be embedded in concrete, to detect pH changes at the early stages. It employs a chemical reagent, trinitrobenzenesulfonic acid (TNBS) that exhibits changes in optical properties in the 12 - 14 pH range, and is held in a film of a sol-gel/TNBS composite on an optically transparent surface. A simple LED/filter/photodiode transducer monitors pH-induced changes in TNBS. Such a device needs no periodic calibration or maintenance. The optical window, the light-source and sensor can be easily housed and encapsulated in a chemically inert structure, and embedded in concrete.

  5. Experimental collaboration for thick concrete structures with alkali-silica reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ezell, N Dianne Bull; Hayes, Nolan W.; Lenarduzzi, Roberto

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developingmore » ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.« less

  6. Experimental collaboration for thick concrete structures with alkali-silica reaction

    NASA Astrophysics Data System (ADS)

    Ezell, N. Dianne Bull; Hayes, Nolan; Lenarduzzi, Roberto; Clayton, Dwight; Ma, Z. John; Le Pape, Sihem; Le Pape, Yann

    2018-04-01

    Alkali-Silica Reaction (ASR) is a reaction that occurs over time in concrete between alkaline cement paste and reactive, non-crystalline silica in aggregates. An expansive gel is formed within the aggregates which results in micro-cracks in aggregates and adjacent cement paste. The reaction requires the presence of water and has been predominantly detected in groundwater-impacted portions of below grade structures, with limited impact to exterior surfaces in above grade structures. ASR can potentially affect concrete properties and performance characteristics such as compressive strength, modulus of elasticity, shear strength, and tensile strength. Since ASR degradation often takes significant amounts of time, developing ASR detection techniques is important to the sustainability and extended operation lifetimes of nuclear power plants (NPPs). The University of Tennessee, Knoxville (UTK) in collaboration with Oak Ridge National Laboratory (ORNL) designed and built an experiment representative of typical NPP structures to study ASR in thick concrete structures.

  7. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO2 Emission Reduction

    PubMed Central

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-01-01

    In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction. PMID:28788171

  8. Material and Structural Performance Evaluations of Hwangtoh Admixtures and Recycled PET Fiber-Added Eco-Friendly Concrete for CO₂ Emission Reduction.

    PubMed

    Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho

    2014-08-19

    In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction.

  9. GRIZZLY Model of Multi-Reactive Species Diffusion, Moisture/Heat Transfer and Alkali-Silica Reaction for Simulating Concrete Aging and Degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Hai; Spencer, Benjamin W.; Cai, Guowei

    Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less

  10. Department of the Navy. FY 1994/FY 1995 Biennial Budget Estimates. Military Construction Program. FY 1994

    DTIC Science & Technology

    1992-01-01

    3 are severely deteriorated. The concrete deck and supporting wood -pile structure are nearing the end of their life cycle. Both piers are to be...PROPOSED CONSTRUCTION One-story building with concrete foundation walls, load bearing masonry walls, and concrete floors; roof with wood truss framing...concrete building addition; concrete foundation and slab on grade; wood truss roof; 750 KVA. 3 phase transformer; utilities; concrete and storm drain. 11

  11. General setting from alley, office to left, concrete structure in ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General setting from alley, office to left, concrete structure in center foreground, garage/shop to right, view to northeast - Former Umatilla Project Headquarters Buildings, Hermiston, Umatilla County, OR

  12. Probabilistic durability assessment of concrete structures in marine environments: Reliability and sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Yu, Bo; Ning, Chao-lie; Li, Bing

    2017-03-01

    A probabilistic framework for durability assessment of concrete structures in marine environments was proposed in terms of reliability and sensitivity analysis, which takes into account the uncertainties under the environmental, material, structural and executional conditions. A time-dependent probabilistic model of chloride ingress was established first to consider the variations in various governing parameters, such as the chloride concentration, chloride diffusion coefficient, and age factor. Then the Nataf transformation was adopted to transform the non-normal random variables from the original physical space into the independent standard Normal space. After that the durability limit state function and its gradient vector with respect to the original physical parameters were derived analytically, based on which the first-order reliability method was adopted to analyze the time-dependent reliability and parametric sensitivity of concrete structures in marine environments. The accuracy of the proposed method was verified by comparing with the second-order reliability method and the Monte Carlo simulation. Finally, the influences of environmental conditions, material properties, structural parameters and execution conditions on the time-dependent reliability of concrete structures in marine environments were also investigated. The proposed probabilistic framework can be implemented in the decision-making algorithm for the maintenance and repair of deteriorating concrete structures in marine environments.

  13. Esthetic enhancement of concrete structures using ferro-cement panels.

    DOT National Transportation Integrated Search

    1974-01-01

    An investigation of ferro-cement indicates that when used in colored panels, such panels can be used to enhance the appearance of concrete structures. The panels are simply made, light in weight, and easily attached to either old or new structures. W...

  14. 14. View of Clark Fork Vehicle Bridge facing north. Approach ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. View of Clark Fork Vehicle Bridge facing north. Approach from the south. Concrete barrier blocks access. Plaque was originally located where striped traffic sign is posted at right. - Clark Fork Vehicle Bridge, Spanning Clark Fork River, serves Highway 200, Clark Fork, Bonner County, ID

  15. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  16. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  17. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  18. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  19. 24 CFR 3285.310 - Pier location and spacing.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... engineer or registered architect. (c) Piers supporting the frame must be no more than 24 inches from both....312, as applicable, unless alternative designs are provided by a professional engineer or registered..., electrical, mechanical, equipment, crawlspaces, or other devices. 3. Single-stack concrete block pier loads...

  20. Study on the antiseepage mechanism of the PBFC slurry for landfill site

    NASA Astrophysics Data System (ADS)

    Dai, Guozhong; Shi, Weicheng; Jiang, Xiaoshu; Shi, Guicai; Zhang, Yaxing

    2017-07-01

    In order to develop a kind of slurry with low permeability which has some adsorption and retardation to the pollutants in leachate to be used in antiseepage engineering of leachate for landfill site, experiments based on orthogonal method were performed. The optimal PBFC slurry was selected: bentonite 18-26%, cement 16-24%, fly ash 18-20%, TOJ800-10 water reducing agent 0.01-0.03%, polyvinyl alcohol 0.2-0.8%, sodium carbonate 0.8-1.5% and water 680-780/1000 mL seriflus. The material has good groutability and a concretion stone ratio which is greater than 99.6%. The coefficient of permeability of 28-day concretion body is 0.53 × 10-8-1.86 × 10-8 cm/s and the compressive strength is 0.64-1.04 MPa. The slurry has good adsorption and retardation properties. The block rate of NH4-N and phosphorus reached 98.28%, and the block rate of CODCr and BOD5 reached 85.67%. The block rate of Hg, Pb and other heavy metal ions reached 99.8%. The PBFC slurry improved the retardation capability of the pollutants of the leachate at the landfill site by its infiltration sedimentation and adsorption fixation.

  1. Cost-effective and rapid concrete repair techniques.

    DOT National Transportation Integrated Search

    2016-02-08

    Concrete is a principal component of many transportation structures. While highly durable, a : variety of processes degrade and damage concrete. Replacement is expensive. Many cases : warrant repair instead of replacement. Since many damage processes...

  2. Influence of length-to-diameter ratio on shrinkage of basalt fiber concrete

    NASA Astrophysics Data System (ADS)

    Ruijie, MA; Yang, Jiansen; Liu, Yuan; Zheng, Xiaojun

    2017-09-01

    In order to study the shrinkage performance of basalt concrete, using the shrinkage rate as index, the work not only studied the influence of different length-to-diameter ratio (LDR) on plastic shrinkage and drying shrinkage of basalt fiber concrete, but also analyzed the action mechanism. The results show that when the fiber content is 0.1%, the LDR of 800 and 1200 take better effects on reducing plastic shrinkage, however the fiber content is 0.3%, that of LDR 600 is better. To improve drying shrinkage, the fiber of LDR 800 takes best effect. In the concrete structure, the adding basalt fibers form a uniform and chaotic supporting system, optimize the pore and the void structure of concrete, make the material further compacted, reduce the water loss, so as to decrease the shrinkage of concrete effectively.

  3. X-ray-induced acoustic computed tomography of concrete infrastructure

    NASA Astrophysics Data System (ADS)

    Tang, Shanshan; Ramseyer, Chris; Samant, Pratik; Xiang, Liangzhong

    2018-02-01

    X-ray-induced Acoustic Computed Tomography (XACT) takes advantage of both X-ray absorption contrast and high ultrasonic resolution in a single imaging modality by making use of the thermoacoustic effect. In XACT, X-ray absorption by defects and other structures in concrete create thermally induced pressure jumps that launch ultrasonic waves, which are then received by acoustic detectors to form images. In this research, XACT imaging was used to non-destructively test and identify defects in concrete. For concrete structures, we conclude that XACT imaging allows multiscale imaging at depths ranging from centimeters to meters, with spatial resolutions from sub-millimeter to centimeters. XACT imaging also holds promise for single-side testing of concrete infrastructure and provides an optimal solution for nondestructive inspection of existing bridges, pavement, nuclear power plants, and other concrete infrastructure.

  4. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    PubMed

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  5. 75 FR 71427 - Clean River Power 12, LLC; Notice of Preliminary Permit Application Accepted for Filing and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-23

    ..., reinforced concrete diversion weir on Ruth Creek; (2) a 45-foot-long, 15-foot-wide, 12-foot-high reinforced concrete intake structure adjacent to the weir with a trash rack, fish screen, and closure gate; (3) a 0.1... penstock from the intake structure to the powerhouse; (5) a 60-foot-long, 40-foot-wide reinforced concrete...

  6. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  7. Damage source identification of reinforced concrete structure using acoustic emission technique.

    PubMed

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures.

  8. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  9. 16. Detail, looking northwest, of the concrete structure of Trestle ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Detail, looking northwest, of the concrete structure of Trestle 16. - Lake Hodges Flume, Along San Dieguito River between Lake Hodges & San Dieguito Reservoir, Rancho Santa Fe, San Diego County, CA

  10. Volume changes in unrestrained structural lightweight concrete.

    DOT National Transportation Integrated Search

    1964-08-01

    In this study a comparator-type measuring system was developed to accurately determine volume change characteristics of one structural lightweight concrete. The specific properties studied were the coefficient of linear thermal expansion and unrestra...

  11. Corrosion inhibitors for concrete bridges.

    DOT National Transportation Integrated Search

    2004-12-01

    Deicing salts and salt-water spray can cause serious corrosion problems for reinforced concrete bridge structures. : These problems can lead to costly and labor-intensive repair and even replacement of the structure. Surface applied : corrosion inhib...

  12. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    NASA Astrophysics Data System (ADS)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  13. Finite element analysis of CFRP reinforced silo structure design method

    NASA Astrophysics Data System (ADS)

    Yuan, Long; Xu, Xinsheng

    2017-11-01

    Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.

  14. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  15. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  16. Warming of Monolithic Structures in Winter

    NASA Astrophysics Data System (ADS)

    Pikus, G. A.; Lebed, A. R.

    2017-11-01

    The present work attempts to develop a mathematical model for calculating the heat transfer coefficient of the fence of monolithic structures erected in winter. The urgency and, at the same time, the practical significance of the research lies in the fact that to date no simple, effective tool has been developed to ensure the elimination of the unfavorable thermally stressed state of a structure’s concrete from maximum equalization of temperatures across its cross-section. The main problem for concrete is a high temperature which leads to a sharp decrease in the quality of erected structures due to developing cracks. This paper based on the well-known Newton’s law and its differential equation demonstrates the formula of concrete cooling and the analysis of its proportionality coefficient. Based on the literature analysis, it is established that the proportionality coefficient is determined by the thermophysical properties of concrete, the size and shape of the structure, and the intensity of its heat exchange with the surrounding medium. A limitation was used on the temperature gradient over the section of the monolithic structure to derive a formula for calculating the reduced heat transfer coefficient of a concrete fence. All mathematical calculations are given for cooling monolithic constructions in the form of plates. At the end of the work an example is given for the calculation of the required reduced heat transfer coefficient for the fence ensuring compliance with the permissible concrete temperature gradient.

  17. Monitoring of prestress losses using long-gauge fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Abdel-Jaber, Hiba; Glisic, Branko

    2017-04-01

    Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.

  18. Water footprint and life cycle assessment of concrete roof tile and brick products at PT. XYZ

    NASA Astrophysics Data System (ADS)

    Octavia, Caesara; Laurence; Hartono, Natalia

    2017-12-01

    PT. XYZ is an Indonesian company engaged in manufacturing concrete roof tile and paving block. The company has not paid attention to the environmental and human health aspects of their production activity, where there is so much water used and discarded during the production process and no water treatment for the wastewater produced. Therefore this topic proposed in order to determine the resulting impacts from the production processes of concrete roof tile and brick at PT. XYZ on the environment and human health. The impact on the environment and human health were identified through water footprint assessment (WFA) and life cycle assessment (LCA). Through the WFA accounting, it is known that the amount of water needed to produce a concrete roof tile is 21.384 L which consists of 16.433 L blue water and 4.951 L grey water, whereas for a brick is 10.496 L which consists of 10.48 L blue water and 0.016 L grey water. With ReCiPe midpoint (H) method, it is known that the dominant impact categories generated in one batch production processes of concrete roof tile and brick are natural land transformation, marine eco-toxicity, freshwater eutrophication, and freshwater eco-toxicity, where those impact categories represent the average of 75.5% from overall impact category for concrete roof tile and brick products.

  19. Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete

    NASA Astrophysics Data System (ADS)

    Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono

    2018-03-01

    Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.

  20. Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.

    2016-05-01

    Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.

  1. What are the Dominant Factors of Students’ Productive Skills in Construction Services?

    NASA Astrophysics Data System (ADS)

    Oroh, R. R.; S, Haris A.; Sugandi, R. M.; Isnandar

    2018-02-01

    The purpose of this study to determine the dominant factors of students’ productive skills in doing the work of concrete structures that fit the needs of construction services. Sample of the respondents is vocational high school students from several districts and cities in North Sulawesi, Indonesia. Data are obtained through the performance test instruments of student. Whereas, data analysis is performed using factor analysis. The result of this research show the dominant factors of the students’ productive skills in doing the work of concrete structures that is according to the need of construction services, namely: (a) factor the working of concrete casting consists of making scaffolding from good materials and conducting concrete casting according to working method; and (b) factor the working of concrete reinforcing consists of read the working drawings for concrete reinforcement and make the concrete formwork from good material. Some of the respondent’s students in doing some concrete structure work have done well, but not yet according to working drawings, working methods and technical specifications of the work. The learning is done in accordance with the competency-oriented school curriculum but the teaching materials given have not been maximized in accordance with the needs of productive skills required construction services industry. The results have an impact on the low absorption of graduates in the implementation of the construction services industry.

  2. Study of the internal confinement of concrete reinforced (in civil engineering) with woven reinforcement

    NASA Astrophysics Data System (ADS)

    Dalal, M.; Goumairi, O.; El Malik, A.

    2017-10-01

    Concrete is generally the most used material in the field of construction. Despite its extensive use in structures, it represents some drawbacks related to its properties including its low tensile strength and low ductility. To solve this problem, the use of steel reinforcement in concrete structures is possible. Another possibility is the introduction of different types of continuous fibre / staple in the concrete, such as steel fibres or synthetic fibres, to obtain ″Concretes bundles″. Many types of fibre concrete, which have been developed and for many of them, the gain provided by the fibre was rather low and no significant improvement in tensile strength was really reaching. By cons, the ductility was higher than that of ordinary concrete. The objective of this study is to examine concrete reinforcement by inserting reinforcements woven polyester. These are either woven bidirectional (2D) or three-dimensional woven (3D). So we will report the properties of each type of reinforcement and the influence of the method of weaving on the strength reinforcements and on the strength of concrete in which they are incorporated. Such influence should contribute to improving the sustainability and enhancement of reinforcement

  3. Corrosion of post-tensioned tendons with deficient grout : [summary].

    DOT National Transportation Integrated Search

    2016-10-01

    Stressed steel cables greatly increase the strength and capability of concrete structural : components, providing tensile strength that concrete alone does not possess. The cables : called tendons run through sealed tubes in the concrete whic...

  4. Performance of self-consolidating concrete in prestressed girders.

    DOT National Transportation Integrated Search

    2010-04-01

    A structural investigation of self-consolidating concrete (SCC) in AASHTO Type I precast, : prestressed girders was performed. Six test girders were subjected to transfer length and : flexural testing. Three separate concrete mixtures, two girders pe...

  5. Modeling reinforced concrete durability : [summary].

    DOT National Transportation Integrated Search

    2014-06-01

    Many Florida bridges are built of steel-reinforced concrete. Floridas humid and marine : environments subject steel in these structures : to corrosion once water and salt penetrate the : concrete and contact the steel. Corroded steel : takes up mo...

  6. Effect of cementitious permanent formwork on moisture field of internal-cured concrete under drying

    NASA Astrophysics Data System (ADS)

    Wang, Jiahe; Zhang, Jun; Ding, Xiaoping; Zhang, Jiajia

    2018-02-01

    Drying shrinkage of concrete may still be the main source of cracking in concrete structures, even though the autogenous shrinkage of concrete can be effectively reduced by using internal curing. In the present paper, the effect of internal curing with pre-soaked lightweight aggregate and engineered cementitious composite permanent formwork (ECC-PF) on a moisture distribution in three kinds of concrete in a drying environment are investigated from both aspects of experiments and theoretical modeling. The test results show that the combination use of ECC-PF and internal curing can well maintain the humidity at a relatively high level not only at a place far from drying surface, but also at a place close to the drying surfaces. The developed model can well catch the characteristics of the moisture distribution in concrete under drying and the impacts of internal curing and ECC-PF can well be reflected as well. The model can be used for the design of concrete structures with combination use of internal curing and permanent formwork.

  7. Pore Structure Characterization in Concrete Prepared with Carbonated Fly Ash

    NASA Astrophysics Data System (ADS)

    Sahoo, Sanjukta

    2018-03-01

    Carbon dioxide capture and storage (CCS) is a technique to address the global concern of continuously rising CO2 level in the atmosphere. Fly ash is considered as a suitable medium for CCS due to presence of metal oxides. The fly ash which has already sequestered carbon dioxide is referred to as carbonated fly ash. Recent research reveals better durability of concretes using carbonated fly ash as part replacement of cement. In the present research pore structure characterization of the carbonated fly ash concrete has been carried out. Mercury Intrusion porosimetry test has been conducted on control concrete and concrete specimens using fly ash and carbonated fly ash at replacement levels of 25% and 40%. The specimens have been water cured for 28 days and 90 days. It is observed that porosity reduction rate is more pronounced in carbonated fly ash concrete compared to control concrete at higher water curing age. Correlation analysis is also carried out which indicates moderately linear relationship between porosity % and pore distribution with particle size and water curing.

  8. Trade Masonry Syllabus.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Occupational Education Curriculum Development.

    Designed for a two-year course of study, this syllabus encompasses six areas of the masonry trade: concrete, block, brick, stone, tile, and plaster. For each area, the separate units of instruction contain course content outline, student behavioral objectives, and suggested teaching methods and audiovisuals. The six sections and their units are as…

  9. More than a Little Red Schoolhouse.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    The new fine arts complex at Memphis State University (Tennessee) has extensive south-facing windows and massive Trombe walls, composed of concrete blocks that absorb heat and release it slowly, that together provide about 20 percent of the building's heat. Part of the masonry was also designed to absorb sound. (Author/MLF)

  10. 78 FR 76402 - Notice of Proposed Buy America Waiver for the Pad and Rubber Boot of a Concrete Block for a Low...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... replacement parts manufactured in the United States; and (3) MTA's market research demonstrating the extent to... it likely would have to find a U.S.-manufactured pad and rubber boot, MTA began conducting market research [[Page 76403

  11. Using Virtual Manipulatives with Pre-Service Mathematics Teachers to Create Representational Models

    ERIC Educational Resources Information Center

    Cooper, Thomas E.

    2012-01-01

    In mathematics education, physical manipulatives such as algebra tiles, pattern blocks, and two-colour counters are commonly used to provide concrete models of abstract concepts. With these traditional manipulatives, people can communicate with the tools only in one another's presence. This limitation poses difficulties concerning assessment and…

  12. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors

    PubMed Central

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-01-01

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data. PMID:27669251

  13. Strain Sharing Assessment in Woven Fiber Reinforced Concrete Beams Using Fiber Bragg Grating Sensors.

    PubMed

    Montanini, Roberto; Recupero, Antonino; De Domenico, Fabrizio; Freni, Fabrizio

    2016-09-22

    Embedded fiber Bragg grating sensors have been extensively used worldwide for health monitoring of smart structures. In civil engineering, they provide a powerful method for monitoring the performance of composite reinforcements used for concrete structure rehabilitation and retrofitting. This paper discusses the problem of investigating the strain transfer mechanism in composite strengthened concrete beams subjected to three-point bending tests. Fiber Bragg grating sensors were embedded both in the concrete tensioned surface and in the woven fiber reinforcement. It has been shown that, if interface decoupling occurs, strain in the concrete can be up to 3.8 times higher than that developed in the reinforcement. A zero friction slipping model was developed which fitted very well the experimental data.

  14. Evaluation of crack status in a meter-size concrete structure using the ultrasonic nonlinear coda wave interferometry.

    PubMed

    Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent

    2017-10-01

    The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.

  15. Compressive strength and resistance to chloride ion penetration and carbonation of recycled aggregate concrete with varying amount of fly ash and fine recycled aggregate.

    PubMed

    Sim, Jongsung; Park, Cheolwoo

    2011-11-01

    Construction and demolition waste has been dramatically increased in the last decade, and social and environmental concerns on the recycling have consequently been increased. Recent technology has greatly improved the recycling process for waste concrete. This study investigates the fundamental characteristics of concrete using recycled concrete aggregate (RCA) for its application to structural concrete members. The specimens used 100% coarse RCA, various replacement levels of natural aggregate with fine RCA, and several levels of fly ash addition. Compressive strength of mortar and concrete which used RCA gradually decreased as the amount of the recycled materials increased. Regardless of curing conditions and fly ash addition, the 28 days strength of the recycled aggregate concrete was greater than the design strength, 40 MPa, with a complete replacement of coarse aggregate and a replacement level of natural fine aggregate by fine RCA up to 60%. The recycled aggregate concrete achieved sufficient resistance to the chloride ion penetration. The measured carbonation depth did not indicate a clear relationship to the fine RCA replacement ratio but the recycled aggregate concrete could also attain adequate carbonation resistance. Based on the results from the experimental investigations, it is believed that the recycled aggregate concrete can be successfully applied to structural concrete members. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Research on Anchorage Performance of Grouting Anchor Connection of Precast Concrete Structure

    NASA Astrophysics Data System (ADS)

    Wang, Donghui; Liu, Xudong; Wang, Sheng; Cao, Xixi

    2018-03-01

    The bonding of grouted anchor bars is one of the vertical connection forms of steel bars in fabricated concrete structures. The performance of grouted connection is mainly affected by the anchorage length and lap length of steel bars. The mechanisms of bond and anchorage between steel bar and concrete are analyzed, and the factors that influence the anchorage performance of steel bar are systematically summarized. Results show that the bond and anchorage performance of steel and concrete have been studied widely, but there are still shortcomings, and the connection forms need to be further improved.

  17. Durability performance of submerged concrete structures - phase 2.

    DOT National Transportation Integrated Search

    2015-09-01

    This project determined that severe corrosion of steel can occur in the submerged : portions of reinforced concrete structures in marine environments. Field studies of decommissioned : pilings from Florida bridges revealed multiple instances of stron...

  18. Open cycle ocean thermal energy conversion system

    DOEpatents

    Wittig, J. Michael

    1980-01-01

    An improved open cycle ocean thermal energy conversion system including a flash evaporator for vaporizing relatively warm ocean surface water and an axial flow, elastic fluid turbine having a vertical shaft and axis of rotation. The warm ocean water is transmitted to the evaporator through a first prestressed concrete skirt-conduit structure circumferentially situated about the axis of rotation. The unflashed warm ocean water exits the evaporator through a second prestressed concrete skirt-conduit structure located circumferentially about and radially within the first skirt-conduit structure. The radially inner surface of the second skirt conduit structure constitutes a cylinder which functions as the turbine's outer casing and obviates the need for a conventional outer housing. The turbine includes a radially enlarged disc element attached to the shaft for supporting at least one axial row of radially directed blades through which the steam is expanded. A prestressed concrete inner casing structure of the turbine has upstream and downstream portions respectively situated upstream and downstream from the disc element. The radially outer surfaces of the inner casing portions and radially outer periphery of the axially interposed disc cooperatively form a downwardly radially inwardly tapered surface. An annular steam flowpath of increasing flow area in the downward axial direction is radially bounded by the inner and outer prestressed concrete casing structures. The inner casing portions each include a transversely situated prestressed concrete circular wall for rotatably supporting the turbine shaft and associated structure. The turbine blades are substantially radially coextensive with the steam flowpath and receive steam from the evaporator through an annular array of prestressed concrete stationary vanes which extend between the inner and outer casings to provide structural support therefor and impart a desired flow direction to the steam.

  19. Mujarrah Canal Bridge, Ramadi, Iraq

    DTIC Science & Technology

    2009-07-14

    eastern span (Span No. 1) of the structure. The detonation caused damage to the pier cap (the beam across the column top) of Bent No. 1 and post-tensioned...damage to the existing bridge, the temporary jacking and support of the existing structure, construction of the post-tensioned concrete beams and...placed directly onto the precast -concrete pans; and vertical offsets between the individual precast -concrete deck pans. Also, SIGIR identified

  20. On stress-state optimization in steel-concrete composite structures

    NASA Astrophysics Data System (ADS)

    Brauns, J.; Skadins, U.

    2017-10-01

    The plastic resistance of a concrete-filled column commonly is given as a sum of the components and taking into account the effect of confinement. The stress state in a composite column is determined by taking into account the non-linear relationship of modulus of elasticity and Poisson’s ratio on the stress level in the concrete core. The effect of confinement occurs at a high stress level when structural steel acts in tension and concrete in lateral compression. The stress state of a composite beam is determined taking into account non-linear dependence on the position of neutral axis. In order to improve the stress state of a composite element and increase the safety of the construction the appropriate strength of steel and concrete has to be applied. The safety of high-stressed composite structures can be achieved by using high-performance concrete (HPC). In this study stress analysis of the composite column and beam is performed with the purpose of obtaining the maximum load-bearing capacity and enhance the safety of the structure by using components with the appropriate strength and by taking into account the composite action. The effect of HPC on the stress state and load carrying capacity of composite elements is analysed.

Top