Ways to improve the technology of constructing concrete hydraulic structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osipov, A.D.
1985-05-01
The authors state that there is a need for a critical analysis of the established technology of constructing massive concrete structures and for the search for new, cheap, faster, and less labor-intensive designs when constructing concrete dams. Improvement of the technology of constructing concrete hydraulic structures is possible, they say, by introducing the following suggestions: construction of massive structures mainly from a very stiff, low-cement concrete mix compacted by the vibrating roller method; use of poured self-compacting concrete mixes when constructing reinforced-concrete structural elements of hydrostations, water intakes, tunnel linings, etc.; and by development of the technology of delivering stiffmore » concrete mixes by conveyors and their placement by rotary throwers when revetting slopes. This paper examines these elements in detail.« less
NASA Astrophysics Data System (ADS)
Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya
2017-10-01
Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.
NASA Astrophysics Data System (ADS)
Tambichik, M. A.; Mohamad, N.; Samad, A. A. A.; Bosro, M. Z. M.; Iman, M. A.
2018-04-01
Green Concrete (GC) is defined as a concrete that utilize a waste material for at least one of its component. The production of GC has been increasing due to the drawback of conventional concrete that create many environmental problems. In Malaysia, the amount of waste generates from agricultural and construction industries were increasing every year. Hence, one of the solutions to reduce the impact of conventional concrete and limited landfill spaces due to excessive waste is by utilizing it in concrete. This paper reviews the possible use of construction waste (Recycle Concrete Aggregate) and agricultural waste (Palm Oil Fuel Ash, Rice Husk Ash and Palm Oil Fibre) as partial replacement for the basic material in a concrete to produce an innovative Green Concrete. The optimum replacement level for each type of waste was also been review. Green Concrete also has the potential to reduce environmental pollution and solve the depletion of natural sources. The result from this review shows that the addition of agricultural waste or construction waste in concrete indicate positive and satisfactory strength when compared to normal concrete. Finally, a mass production of Green Concrete can fulfil the Construction Industry Transformation Plan (CITP) 2016-2020 made by CIDB that emphasizes on a construction system which is environmentally sustainable.
Tam, Vivian W Y; Tam, Leona; Le, Khoa N
2010-02-01
Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.
Evaluation of Glass Fiber Reinforced Concrete Panels for Use in Military Construction.
1984-06-01
AD-A158 134 UNCLASSIFIED EVALUATION OF GLASS FIBER REINFORCED CONCRETE PANELS FOR USE IN MILITARY. . (U) CONSTRUCTION ENGINEERING RESEARCH LAB...Construction Engineering Research Laboratory i=h-C=iU. TECHNICAL REPORT M-85/15 June 1985 AD-A158 134 0~- 8 Evaluation of Glass Fiber ...Reinforced Concrete Panels for Use in Military Construction by Gilbert R. Williamson Glass fiber reinforced concrete (GFRC) materials are investigated
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for precast concrete. 1926.704 Section 1926..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.704 Requirements for precast concrete. (a) Precast concrete wall units, structural framing...
Measures to reduce construction time of high-rise buildings
NASA Astrophysics Data System (ADS)
Kolchedantsev, Leonid; Adamtsevich, Aleksey; Stupakova, Olga; Drozdov, Alexander
2018-03-01
The organizational and technological solutions for high-rise buildings construction efficiency increase are considered, primarily - decrease of typical floor construction time and improvement of bearing structures concrete quality. The essence of offered technology is: a concrete mixing station and a polygon mainly for load-bearing wall panels with starter bars casting are located on the building site; for reinforced concrete components manufacturing and butt joints grouting the warmed-up concrete mixtures are used. The results of researches and elaborations carried out by the SPSUACE in area of a preliminary warming-up of concrete mixtures are presented. The possibility and feasibility of their usage in high-rise buildings and of excess height buildings construction including cast-in-place and precast execution are shown. The essence of heat-vibro treating of concrete mixture is revealed as a kind of prior electroresistive curing, and the achieved results are: accelerated concrete strength gain, power inputs decrease, concrete quality improvement. It is shown that the location of a concrete mixing station on the building site enables to broaden possibilities of the "thermos" method use and to avoid concrete mixtures warming up in medium-mass structures erection (columns, girders) during the high-rise buildings construction. It is experimentally proved that the splice between precast elements encased with warmed-up concrete mixture is equal with conjugated elements in strength.
Crushed cement concrete substitution for construction aggregates; a materials flow analysis
Kelly, Thomas
1998-01-01
An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.
Concrete Masonry Designs: Educational Issue.
ERIC Educational Resources Information Center
Hertzberg, Randi, Ed.
2001-01-01
This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2)…
NASA Astrophysics Data System (ADS)
Lande Larsen, Ingrid; Granseth Aasbakken, Ida; O'Born, Reyn; Vertes, Katalin; Terje Thorstensen, Rein
2017-10-01
Ultra High Performance Concrete (UHPC) is a material that is attracting attention in the construction industry due to the high mechanical strength and durability, leading to structures having low maintenance requirements. The production of UHPC, however, has generally higher environmental impact than normal strength concrete due to the increased demand of cement required in the concrete mix. What is still not sufficiently investigated, is if the longer lifetime, slimmer construction and lower maintenance requirements lead to a net environmental benefit compared to standard concrete bridge design. This study utilizes life cycle assessment (LCA) to determine the lifetime impacts of two comparable highway crossing footbridges spanning 40 meters, designed respectively with UHPC and normal strength concrete. The results of the study show that UHPC is an effective material for reducing lifetime emissions from construction and maintenance of long lasting infrastructure, as the UHPC design outperforms the normal strength concrete bridge in most impact categories.
Self-cleaning geopolymer concrete - A review
NASA Astrophysics Data System (ADS)
Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor
2016-06-01
Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.
The foundation mass concrete construction technology of Hongyun Building B tower raft
NASA Astrophysics Data System (ADS)
Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying
2017-08-01
The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness and 2800mm beside side of the core tube. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing.
29 CFR 1926.700 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Concrete and Masonry Construction § 1926.700 Scope, application, and definitions applicable to this subpart... from the hazards associated with concrete and masonry construction operations performed in workplaces... parts 1910 and 1926 apply to concrete and masonry construction operations. (b) Definitions applicable to...
29 CFR 1926.700 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Concrete and Masonry Construction § 1926.700 Scope, application, and definitions applicable to this subpart... from the hazards associated with concrete and masonry construction operations performed in workplaces... parts 1910 and 1926 apply to concrete and masonry construction operations. (b) Definitions applicable to...
29 CFR 1926.700 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Concrete and Masonry Construction § 1926.700 Scope, application, and definitions applicable to this subpart... from the hazards associated with concrete and masonry construction operations performed in workplaces... parts 1910 and 1926 apply to concrete and masonry construction operations. (b) Definitions applicable to...
29 CFR 1926.700 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Concrete and Masonry Construction § 1926.700 Scope, application, and definitions applicable to this subpart... from the hazards associated with concrete and masonry construction operations performed in workplaces... parts 1910 and 1926 apply to concrete and masonry construction operations. (b) Definitions applicable to...
29 CFR 1926.700 - Scope, application, and definitions applicable to this subpart.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Concrete and Masonry Construction § 1926.700 Scope, application, and definitions applicable to this subpart... from the hazards associated with concrete and masonry construction operations performed in workplaces... parts 1910 and 1926 apply to concrete and masonry construction operations. (b) Definitions applicable to...
Identification of concrete deteriorating minerals by polarizing and scanning electron microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregerova, Miroslava, E-mail: mirka@sci.muni.cz; Vsiansky, Dalibor, E-mail: daliborv@centrum.cz
2009-07-15
The deterioration of concrete represents one of the most serious problems of civil engineering worldwide. Besides other processes, deterioration of concrete consists of sulfate attack and carbonation. Sulfate attack results in the formation of gypsum, ettringite and thaumasite in hardened concrete. Products of sulfate attack may cause a loss of material strength and a risk of collapse of the concrete constructions. The authors focused especially on the microscopical research of sulfate attack. Concrete samples were taken from the Charles Bridge in Prague, Czech Republic. A succession of degrading mineral formation was suggested. Microscope methods represent a new approach to solvingmore » the deterioration problems. They enable evaluation of the state of concrete constructions and in cooperation with hydro-geochemistry, mathematics and statistics permit prediction of the durability of a structure. Considering the number of concrete constructions and their age, research of concrete deterioration has an increasing importance. The results obtained can also be useful for future construction, because they identify the risk factors associated with formation of minerals known to degrade structures.« less
DOT National Transportation Integrated Search
2012-08-01
Concrete pavements can be designed and constructed to be as quiet as any other conventional pavement type in use today. This report provides an overview of how this can be doneand done consistently. In order to construct a quieter concrete pavemen...
DOT National Transportation Integrated Search
1976-01-01
Presented in this report is information concerning the characteristics of the concretes used to construct six experimental two-course bonded bridge decks in Virginia. The quality of the overlay concretes produced under standard specifications supplem...
Discussion on mass concrete construction of wind turbine generator foundation
NASA Astrophysics Data System (ADS)
Shang, Liang; Wu, Chaoxiang; Yin, Xiaoyong
2018-04-01
Wind power is one of the main power sources currently. China has rich wind power resources, wind power plants are developed faster and faster. However, China wind power construction started late, which is lack of relevant experience technology. It is easy to produce quality problems. The key to the construction quality of wind power plant is the construction quality of mass concrete construction. Therefore, construction technology and quality control of wind turbine generator foundation mass concrete are discussed and analyzed in the paper.
Lunar concrete for construction
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.; Keller, M. Dean
1992-01-01
Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.
1992-01-01
3 are severely deteriorated. The concrete deck and supporting wood -pile structure are nearing the end of their life cycle. Both piers are to be...PROPOSED CONSTRUCTION One-story building with concrete foundation walls, load bearing masonry walls, and concrete floors; roof with wood truss framing...concrete building addition; concrete foundation and slab on grade; wood truss roof; 750 KVA. 3 phase transformer; utilities; concrete and storm drain. 11
Review of coal bottom ash and coconut shell in the production of concrete
NASA Astrophysics Data System (ADS)
Faisal, S. K.; Mazenan, P. N.; Shahidan, S.; Irwan, J. M.
2018-04-01
Concrete is the main construction material in the worldwide construction industry. High demand of sand in the concrete production have been increased which become the problems in industry. Natural sand is the most common material used in the construction industry as natural fine aggregate and it caused the availability of good quality of natural sand keep decreasing. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of coal bottom ash and coconut shell as partial sand replacement in production of concrete. It is able to save cost and energy other than protecting the environment. In summary, 30% usage of coal bottom ash and 25% replacement of coconut shell as aggregate replacement show the acceptable and satisfactory strength of concrete.
Roller compacted concrete : field evaluation and mixture optimization.
DOT National Transportation Integrated Search
2014-08-01
Roller Compacted Concrete (RCC) as an economical, fast construction and sustainable materials has attracted increasing attention for pavement construction. The growth of roller-compacted concrete pavement used in different regions is impeded by conce...
Concrete pavement construction basics : tech notes.
DOT National Transportation Integrated Search
2006-08-01
This tech note has been produced for developers, consultants, and engineers planning concrete pavement construction projects, superintendents and supervisors who want a basic training aid and reference, and crew members new to the concrete paving ind...
DOT National Transportation Integrated Search
2017-09-01
In 2013, GDOT constructed more than 42,000 LF of concrete barrier utilizing a Class A concrete mixture design (3000 psi). There may be potential for the beneficial utilization of recycled tire chips in concrete barrier applications which can possibly...
Introduction to Concrete Finishing. Instructor Edition. Introduction to Construction Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This instructor's guide contains the materials required to teach a competency-based introductory course in concrete finishing to students who have chosen to explore careers in construction. The following topics are covered in the course's three instructional units: concrete materials, concrete tools, and applied skills. Each unit contains some or…
Vibration behaviour of foamed concrete floor with polypropylene and rise husk ash fibre
NASA Astrophysics Data System (ADS)
Azaman, N. A. Mohd; Ghafar, N. H. Abd; Ayub, N.; Ibrahim, M. Z.
2017-11-01
In the history of the construction industry, lightweight concrete or foamed concrete is a special concrete which can very useful in the construction sector because it is very lightweight and it can compact by itself at each angle of foamwork. Foamed concrete is one of lightweight concrete which widely used for floor construction due to its light weight and economic. The significant challenges in the floor design process are considering the vibration that needs improvements for the poor dynamic behaviour insulation. An alternative material to replace sand with certain amount of rice husk ash (RHA) and polypropylene was introduced. Research was determine the dynamic behavior of foam-polypropylene and foam-RHA concrete by using impact hammer test. The natural frequency for normal foamed concrete, 0.5 % of Polypropylene and 15% of RHA is 29.8 Hz, 29.3 Hz and 29.5 Hz respectively.
Lunar concrete for construction
NASA Technical Reports Server (NTRS)
Cullingford, Hatice S.; Keller, M. Dean
1988-01-01
Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.
Applicability of recycled aggregates in concrete piles for soft soil improvement.
Medeiros-Junior, Ronaldo A; Balestra, Carlos Et; Lima, Maryangela G
2017-01-01
The expressive generation of construction and demolition waste is stimulating several studies for reusing this material. The improvement of soft soils by concrete compaction piles has been widely applied for 40 years in some Brazilian cities. This technique is used to improve the bearing capacity of soft soils, allowing executing shallow foundations instead of deep foundations. The compaction piles use a high volume of material. This article explored the possibility of using recycled aggregates from construction waste to replace the natural aggregates in order to improve the bearing capacity of the soft soil, regarding its compressive strength. Construction wastes from different stages of a construction were used in order to make samples of concrete with recycled aggregates. The strength of concretes with natural aggregates was compared with the strength of concretes with recycled (fine and coarse) aggregates. Results show that all samples met the minimum compressive strength specified for compaction piles used to improve the bearing capacity of soft soils. The concrete with recycled aggregate from the structural stage had even higher resistances than the concrete with natural aggregates. This behaviour was attributed to the large amount of cementitious materials in the composition of this type of concrete. It was also observed that concrete with recycled fine aggregate has a superior resistance to concrete with recycled coarse aggregate.
Iowa task report : US 18 concrete overlay construction under traffic.
DOT National Transportation Integrated Search
2012-05-01
The National Concrete Pavement Technology Center, Iowa Department of Transportation, and Federal Highway Administration set out to demonstrate and document the design and construction of portland cement concrete (PCC) overlays on two-lane roadways wh...
Use of ground penetrating radar for construction quality assurance of concrete pavement.
DOT National Transportation Integrated Search
2009-11-01
Extracting concrete cores is the most common method for measuring the thickness of concrete pavement for construction : quality control. Although this method provides a relatively accurate thickness measurement, it is destructive, labor : intensive, ...
Influence of processing factors over concrete strength.
NASA Astrophysics Data System (ADS)
Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.
2018-03-01
Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.
Comparison of Thermal Stability of Dry High-strength Concrete and Wet High-strength Concrete
NASA Astrophysics Data System (ADS)
Musorina, Tatiana; Katcay, Aleksandr; Selezneva, Anna; Kamskov, Victor
2018-03-01
High-strength concrete is a modern material, which occupies it`s own niche on the construction material market. It is applicable in a large-scale high-rise construction, particularly an underground construction is a frequently used solution for a space saving. Usually underground structure is related to a wet usage environment. Though not all properties of the high-strength concrete are investigated to the full extent. Under adverse climatic conditions of the Russian Federation one of the most important properties for constructional materials is a thermal capacity. Therefore, the main purpose of the paper is to compare a thermal capacity of the high-strength concrete in humid conditions and a thermal capacity of the high-strength concrete in dry operational condition. During the study dependency between thermal capacity and design wall thickness and ambient humidity has to be proven with two experiments. As a result the theoretical relation between thermal capacity characteristic - thermal inertia and wall thickness and ambient humidity was confirmed by the experimental data. The thermal capacity of a building is in direct ratio to the construction thickness. It follows from the experiments and calculations that wet high-strength concrete has less thermal stability.
Laboratory fatigue evaluation of continuously fiber-reinforced concrete pavement.
DOT National Transportation Integrated Search
2013-09-01
Portland cement concrete (PCC) is the worlds most versatile construction material. PCC has : been in use in the United States for over 100 years. PCC pavement is generally constructed as : either continually reinforced concrete pavement (CRCP) or ...
Testing guide for implementing concrete paving quality control procedures.
DOT National Transportation Integrated Search
2008-03-01
Construction of portland cement concrete pavements is a complex process. A small fraction of the concrete pavements constructed in the : United States over the last few decades have either failed prematurely or exhibited moderate to severe distress. ...
Application of Roller Compacted Concrete in Colorado's Roadways
DOT National Transportation Integrated Search
2012-10-01
Roller Compacted Concrete (RCC) is a no-slump concrete mixture that is transported, placed, and compacted with : the same construction equipment as asphalt pavement. RCCs were used to construct three sections of pavement in : Weld County Road 28 (WCR...
Ammana Market Renovation Majjasim, Iraq. Sustainment Assessment
2009-07-30
compaction, and placement of 65 meter (m) x 45m x 15 centimeter (cm) concrete pads construction of four steel market stall roofs construction of a 1,771...framing and roofing construction of six benches construction of a security wall, including: reinforced concrete posts and cross beams with...performed only an expedited assessment of the areas available; a complete review of all work completed was not possible. Concrete Pad The SOW required
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China.
Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue
2016-06-24
This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO₂e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO₂e is 8215.31 tons. Based on the evaluation results, the CO₂e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO₂e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO₂e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO₂ in each phase, which accounts for more than 98% of total emissions. N₂O and CH₄ emissions are relatively insignificant.
Latex-modified fiber-reinforced concrete bridge deck overlay : construction/interim report.
DOT National Transportation Integrated Search
1993-06-01
Latex-modified concrete (LMC) is Portland cement concrete (PCC) with an admixture of latex. LMC is considered to be nearly impermeable to chlorides and is extensively used to construct bridge deck overlays. Unfortunately, some of these overlays have ...
Design and construction guidelines for thermally insulated concrete pavements.
DOT National Transportation Integrated Search
2013-01-01
The report describes the construction and design of composite pavements as a viable design strategy to use an : asphalt concrete (AC) wearing course as the insulating material and a Portland cement concrete (PCC) structural : layer as the load-carryi...
CF60 Concrete Composition Design and Application on Fudiankou Xijiang Super Large Bridge
NASA Astrophysics Data System (ADS)
Qiu, Yi Mei; Wen, Sen Yuan; Chen, Jun Xiang
2018-06-01
Guangxi Wuzhou City Ring Road Fudiankou Xijiang super large bridge CF60 concrete is a new multi-phase composite high-performance concrete, this paper for the Fudiankou Xijiang bridge structure and characteristics of the project, in accordance with the principle of local materials and technical specification requirements, combined with the site conditions of CF60 engineering high performance concrete component materials, proportion and the technical performance, quantify the main physical and mechanical performance index. Analysis main influencing factors of the technical indicators, reasonable adjustment of concrete mix design parameters, and the use of technical means of admixture and multi-function composite admixture of concrete, obtain the optimal proportion of good work, process, mechanical properties stability and durability of engineering properties, recommend and verification of concrete mix; to explore the CF60 high performance concrete Soil in the Fudiankou Xijiang bridge application technology, detection and tracking the quality of concrete construction, concrete structure during the construction of the key technology and control points is proposed, evaluation of CF60 high performance concrete in the actual engineering application effect and benefit to ensure engineering quality of bridge structure and service life, and super long span bridge engineering construction to provide basis and reference.
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK ...
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK CONSTRUCTION. INEEL PHOTO NUMBER NRTS-59-4305. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
Concrete Durability: A Multibillion-Dollar Opportunity
1987-01-01
Fum -Containing Products 79 MDF Materials 85 Fiber-Reinforced Materials 85 Modified - Sulfur Concretes 87 References 88 APPENDIX: BIOGRAPHICAL SKETCHES...construction. MODIFIED - SULFUR CONCRETES Molten sulfur-sand grouts have been used for many years in the constructLin of acid vats because of their
Construction of a thin-bonded Portland cement concrete overlay using accelerated paving techniques.
DOT National Transportation Integrated Search
1992-01-01
The report describes the Virginia Department of Transportations' first modern experience with the construction of thin-bonded Portland cement concrete overlays of existing concrete pavements and with the fast track mode of rigid paving. The study was...
What are the Dominant Factors of Students’ Productive Skills in Construction Services?
NASA Astrophysics Data System (ADS)
Oroh, R. R.; S, Haris A.; Sugandi, R. M.; Isnandar
2018-02-01
The purpose of this study to determine the dominant factors of students’ productive skills in doing the work of concrete structures that fit the needs of construction services. Sample of the respondents is vocational high school students from several districts and cities in North Sulawesi, Indonesia. Data are obtained through the performance test instruments of student. Whereas, data analysis is performed using factor analysis. The result of this research show the dominant factors of the students’ productive skills in doing the work of concrete structures that is according to the need of construction services, namely: (a) factor the working of concrete casting consists of making scaffolding from good materials and conducting concrete casting according to working method; and (b) factor the working of concrete reinforcing consists of read the working drawings for concrete reinforcement and make the concrete formwork from good material. Some of the respondent’s students in doing some concrete structure work have done well, but not yet according to working drawings, working methods and technical specifications of the work. The learning is done in accordance with the competency-oriented school curriculum but the teaching materials given have not been maximized in accordance with the needs of productive skills required construction services industry. The results have an impact on the low absorption of graduates in the implementation of the construction services industry.
Improving concrete overlay construction.
DOT National Transportation Integrated Search
2010-03-01
Several road construction projects involving concrete overlays at the state and county levels in Iowa in 2009 were studied for : construction techniques and methods. The projects that were evaluated consisted of sites in four Iowa counties: Osceola, ...
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1997-04-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.
1998-12-29
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1997-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Compressive strength of concrete and mortar containing fly ash
Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.
1998-01-01
The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.
Evaluation of concrete inlay for continuously reinforced concrete pavement rehabilitation.
DOT National Transportation Integrated Search
2010-06-01
In 1996, WisDOT constructed a concrete inlay test section on I43 in Manitowoc County. The existing pavement was CRCP constructed in 1978 and was badly deteriorated with punchouts. In the area of the 2777foot test section, the existing paveme...
Durability of coconut shell powder (CSP) concrete
NASA Astrophysics Data System (ADS)
Leman, A. S.; Shahidan, S.; Senin, M. S.; Shamsuddin, S. M.; Anak Guntor, N. A.; Zuki, S. S. Mohd; Khalid, F. S.; Azhar, A. T. S.; Razak, N. H. S.
2017-11-01
The rising cost of construction in developing countries like Malaysia has led concrete experts to explore alternative materials such as coconut shells which are renewable and possess high potential to be used as construction material. Coconut shell powder in varying percentages of1%, 3% and 5% was used as filler material in concrete grade 30 and evaluated after a curing period of 7 days and 28days respectively. Compressive strength, water absorption and carbonation tests were conducted to evaluate the strength and durability of CSP concrete in comparison with normal concrete. The test results revealed that 1%, 3% and 5% of CSP concrete achieved a compressive strength of 47.65 MPa, 45.6 MPa and 40.55% respectively. The rate of water absorption of CSP concrete was recorded as 3.21%, 2.47%, and 2.73% for 1%, 3% and 5% of CSP concrete respectively. Although CSP contained a carbon composition of 47%, the carbonation test showed that CSP no signs of carbon were detected inside the concrete. To conclude, CSP offers great prospects as it demonstrated relatively high durability as a construction material.
Airfield construction (3rd revised and enlarged edition)
NASA Astrophysics Data System (ADS)
Goretskii, Leonid I.; Boguslavskii, Adol'f. M.; Serebrenikov, Vadim A.; Barzdo, V. I.; Leshchitskaia, T. P.; Polosin-Nikitin, S. M.
The principal engineering aspects of airfield construction are discussed. In particular, attention is given to the fundamental principles and organizational aspects of airfield construction; excavation work and airfield layout; construction of drainage systems; foundations and pavements; and quality control and safety engineering. The discussion also covers the operation of various support plants, including concrete production and mixing, production of asphalt-concrete mixtures and organic binders, production of structural steel and reinforced concrete components, and operation of stone quarries and gravel pits.
Study on Construction Technology of Municipal Road and Bridge Concrete
NASA Astrophysics Data System (ADS)
Tang, Fuyong
2018-03-01
With the continuous development of social economy and the accelerating process of urbanization, municipal road and bridge projects have also shown a trend of rapid development. Municipal road and bridge work can fully reflect the economic and cultural development level of cities and is also an important symbol of urban development. As a basic material of construction, concrete is widely used in engineering construction. This article will analyze the municipal road and bridge concrete construction technology, put forward corresponding measures.
Fiber-Reinforced Concrete For Hardened Shelter Construction
1993-02-01
reduced cost and weight versus the symmetrically rebar reinforced beam design using normal-weight, standard-strength concrete currently used by the...while possibly reducing their cost and weight. Emphasis is placed on modular construction using prefabricated fiber- and rebar -reinforced concrete ...fiber- and rebar -reinforced concrete structural members into U.S. Air Force hardened structure designs. vii (The reverse of this page is blank) PREFACE
NASA Astrophysics Data System (ADS)
Tripoli; Mubarak; Nurisra; Mahmuddin
2018-05-01
This paper discusses the implementation of Indonesian National Standard (SNI) 7394: 2008 on procedures for calculating the unit price of concrete work for the construction of building and housing. The standard provides some reinforced concrete constructions unit price (UP) analysis by specified the total number of reinforcing uses. Related to reinforced concrete beam work (Analysis No. 6.31), the reinforcement requirement is stated at 200 kg/m3 of concrete. Once the implementation considers various earthquake zoning, the question will arise about the extent to which the standard is feasible to apply. Therefore, this research aimed to analyze the possibility of UP standard implementation by certain earthquake zonation. This research is focused on the construction of reinforced concrete beam for buildings with function as educational, residential and office buildings. The data used are sourced from 21 buildings in two zones in Aceh Province, covering Zone 10 and Zone 15 based on earthquake map of SNI 1726: 2012. The analysis results indicate that the UP standard for reinforced concrete beam cannot be applied to all zoning. The UP standard is only possible on buildings constructed in Zone 10 or zonation with seismic spectral response 0.6g to 0.7g or lower.
Optimization of Cost of Building with Concrete Slabs Based on the Maturity Method
NASA Astrophysics Data System (ADS)
Skibicki, Szymon
2017-10-01
The maturity method is a well-known technique for determination of mechanical properties of the concrete (e.g. compressive strength) based on the development of temperature during hardening. The compressive strength of concrete can be used to determine necessary striking time of the formwork. Use of this method for this purpose is economically effective and provides necessary safety measures. This method is used in many construction sites. Time of formwork striking depends on many factors e. g. class of concrete, grade of cement, type of cement, temperature, size of the element and air humidity. The existing technical Standards and scientific research on the striking of formwork present different estimated for the striking time. Striking time for the main structural elements ranges from 14 to 21 days. For structura elements such as slabs or beams with a span of more than 6 m need to reach the minimum of 70-85% of their designed strength to remove the formwork depend on the Standards. During the construction of the buildings in summer concrete acquires the required strength for striking of the formwork faster due to the higher ambient temperature. Knowing the maturity method, we are able to estimate the compressive strength of concrete. If concrete have the required strength, the striking time can be shortened. This allows to reduce the overall costs of construction. The more concrete works are done during the construction phase the bigger the generated savings. In this article formwork striking time for concrete slabs in building based on maturity method was determined. The structure was subjected to 10 different simulated weather conditions typical for the Central and Western Europe that varied by localization of the construction. Based on simulated weather conditions the temperature in structural elements was established. The results allowed to determine the formwork striking time using the maturity method. Presented analysis shows that use of the maturity method on construction site can result in lower overall costs due to shorter time of constructing.
Two-course bonded concrete bridge deck construction : condition and performance after six years.
DOT National Transportation Integrated Search
1981-01-01
This report presents the findings from a six-year study of two-course bonded concrete bridge decks constructed in Virginia. Each of three special portland cement concretes was applied as an overlay, or wearing course, on two experimental spans. The o...
Fiber Reinforced Concrete (FRC) for High Rise Construction: Case Studies
NASA Astrophysics Data System (ADS)
Gharehbaghi, Koorosh; Chenery, Rhea
2017-12-01
Due to its material element, Fiber Reinforced Concrete (FRC) could be stronger than traditional Concrete. This is due to FRC internal material compounds and elements. Furthermore, FRC can also significantly improve flexural strength when compared to traditional Concrete. This improvement in flexural strength can be varied depending on the actual fibers used. Although not new, FRC is gradually gaining popularity in the construction industry, in particular for high rise structures. This is due to its flexural strength, especially for high seismic zones, as it will provide a better solution then reinforced Concrete. The main aim of this paper is to investigate the structural importance of FRC for the high rise construction. Although there has been numerous studies and literature in justifying the FRC for general construction; this paper will consider its use specifically for high rise construction. Moreover, this paper will closely investigate eight case studies from Australian and United States as a part of the FRC validation for high rise construction. In doing so, this paper will examine their Structural Health Monitoring (SHM) to determine their overall structural performance.
The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China
Ma, Feng; Sha, Aimin; Yang, Panpan; Huang, Yue
2016-01-01
This study proposes an inventory analysis method to evaluate the greenhouse gas (GHG) emissions from Portland cement concrete pavement construction, based on a case project in the west of China. The concrete pavement construction process was divided into three phases, namely raw material production, concrete manufacture and pavement onsite construction. The GHG emissions of the three phases are analyzed by a life cycle inventory method. The CO2e is used to indicate the GHG emissions. The results show that for 1 km Portland cement concrete pavement construction, the total CO2e is 8215.31 tons. Based on the evaluation results, the CO2e of the raw material production phase is 7617.27 tons, accounting for 92.7% of the total GHG emissions; the CO2e of the concrete manufacture phase is 598,033.10 kg, accounting for 7.2% of the total GHG emissions. Lastly, the CO2e of the pavement onsite construction phase is 8396.59 kg, accounting for only 0.1% of the total GHG emissions. The main greenhouse gas is CO2 in each phase, which accounts for more than 98% of total emissions. N2O and CH4 emissions are relatively insignificant. PMID:27347987
Puthussery, Joseph V; Kumar, Rakesh; Garg, Anurag
2017-02-01
Construction and demolition waste disposal is a major challenge in developing nations due to its ever increasing quantities. In this study, the recycling potential of waste concrete as aggregates in construction activities was studied. The metal leaching from the recycled concrete aggregates (RCA) collected from the demolition site of a 50year old building, was evaluated by performing three different leaching tests (compliance, availability and Toxic Characteristic Leaching Procedure). The metal leaching was found mostly within the permissible limit except for Hg. Several tests were performed to determine the physical and mechanical properties of the fine and coarse aggregates produced from recycled concrete. The properties of recycled aggregates were found to be satisfactory for their utilization in road construction activities. The suitability of using recycled fine and coarse aggregates with Portland pozzolanic cement to make a sustainable and environmental friendly concrete mix design was also analyzed. No significant difference was observed in the compressive strength of various concrete mixes prepared by natural and recycled aggregates. However, only the tensile strength of the mix prepared with 25% recycled fine aggregates was comparable to that of the control concrete. For other mixes, the tensile strength of the concrete was found to drop significantly. In summary, RCA should be considered seriously as a building material for road construction, mass concrete works, lightly reinforced sections, etc. The present work will be useful for the waste managers and policy makers particularly in developing nations where proper guidelines are still lacking. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Matangulu Shrestha, Victor; Anandh, S.; Sindhu Nachiar, S.
2017-07-01
Concrete is a heterogeneous mixture constitute of cement as the main ingredient with a different mix of fine and coarse aggregate. The massive use of conventional concrete has a shortfall in its key ingredients, natural sand and coarse aggregate, due to increased industrialisation and globalisation. To overcome the shortage of material, an alternate material with similar mechanical properties and composition has to be studied, as replacement of conventional concrete. Coconut shell concrete is a prime option as replacement of key ingredients of conventional concrete as coconut is produced in massive quantity in south East Asia. Coconut shell concrete is lightweight concrete and different research is still ongoing concerning about its mix design and composition in the construction industry. Concrete is weak in tension as compared to compression, hence the fibre is used to refrain the crack in the concrete. Coconut fibre is one of many fibres which can be used in concrete. The main aim of this project is to analyse the use of natural by-products in the construction industry, make light weight concrete and eco-friendly construction. This project concerns with the comparison of the mechanical properties of coconut shell concrete and conventional concrete, replacing fine aggregate with quarry dust using coconut fibre. M25 grade of concrete was adopted and testing of concrete was done at the age of 3, 7 and 28 days. In this concrete mix, sand was replaced completely in volumetric measurement by quarry dust. The result was analysed and compared with addition of coconut fibre at varying percentage of 1%, 2%, 3%, 4% and 5%. From the test conducted, coconut shell concrete with quarry dust has the maximum value at 4% of coconut fibre while conventional concrete showed the maximum value at 2% of coconut fibre.
Sustainable construction: composite use of tyres and ash in concrete.
Snelson, D G; Kinuthia, J M; Davies, P A; Chang, S-R
2009-01-01
An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.
Sustainable construction: Composite use of tyres and ash in concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.
2009-01-15
An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chipsmore » 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.« less
DOT National Transportation Integrated Search
2003-08-26
The 3-mile long SHRP pavement project is located on US 23, 25-miles north of Columbus, Ohio, : in Delaware County. Northbound lanes were constructed of portland cement concrete (PCC), : while southbound lanes were constructed of asphalt concrete (AC)...
Construction of prestressed concrete single-tee bridge superstructures.
DOT National Transportation Integrated Search
1977-01-01
This report discusses in detail the construction of the first five precast, prestressed concrete, single-tee beam bridge superstructures to be let to contract in Virginia. The data suggest that this single-tee beam enables efficient construction of t...
Development of maturity protocol for construction of NJDOT concrete structures
DOT National Transportation Integrated Search
1999-12-01
In-place tests can be used to estimate concrete strength during construction so that : construction operations can be performed safely or curing procedures can be terminated. : Compression tests pertaining to field cylinders do not represent the stre...
Bonded concrete overlay performance in Illinois
DOT National Transportation Integrated Search
2002-04-01
Two bonded concrete overlay rehabilitation projects were constructed in Illinois during the 1990's. The first project was constructed in 1994 and 1995 on Interstate 80, east of Moline. The second project was constructed in 1996 on Interstate 88 near ...
Lift-Shape Construction, An EFL Project Report.
ERIC Educational Resources Information Center
Evans, Ben H.
Research development of a construction system is detailed in terms of--(1) design and analysis, (2) construction methods, (3) testing, (4) cost analysis, and (5) architectural potentials. The system described permits construction of usual shapes without the use of conventional concrete formwork. The concrete involves development of a structural…
SPERTI Reactor Pit Building (PER605) under construction. Poured concrete foundation ...
SPERT-I Reactor Pit Building (PER-605) under construction. Poured concrete foundation will enclosure a "Pit" into which the reactor vessel will be placed. Steel framework has been erected. To left of view is instrument cell (PER-606), constructed of concrete block. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1000 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DOT National Transportation Integrated Search
2009-08-01
The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...
DOT National Transportation Integrated Search
2009-08-01
The development and evaluation of low-cracking high-performance concrete (LC-HPC) for use in bridge decks : is described based on laboratory test results and experience gained during the construction of 14 bridges. This report : emphasizes the materi...
Developing design methods of concrete mix with microsilica additives for road construction
NASA Astrophysics Data System (ADS)
Dmitrienko, Vladimir; Shrivel, Igor; Kokunko, Irina; Pashkova, Olga
2017-10-01
Based on the laboratory test results, regression equations having standard cone and concrete strength, to determine the available amount of cement, water and microsilica were obtained. The joint solution of these equations allowed the researchers to develop the algorithm of designing heavy concrete compositions with microsilica additives for road construction.
The use of waste materials for concrete production in construction applications
NASA Astrophysics Data System (ADS)
Teara, Ashraf; Shu Ing, Doh; Tam, Vivian WY
2018-04-01
To sustain the environment, it is crucial to find solutions to deal with waste, pollution, depletion and degradation resources. In construction, large amounts of concrete from buildings’ demolitions made up 30-40 % of total wastes. Expensive dumping cost, landfill taxes and limited disposal sites give chance to develop recycled concrete. Recycled aggregates were used for reconstructing damaged infrastructures and roads after World War II. However, recycled concrete consists fly ash, slag and recycled aggregate, is not widely used because of its poor quality compared with ordinary concrete. This research investigates the possibility of using recycled concrete in construction applications as normal concrete. Methods include varying proportion of replacing natural aggregate by recycled aggregate, and the substitute of cement by associated slag cement with fly ash. The study reveals that slag and fly ash are effective supplementary elements in improving the properties of the concrete with cement. But, without cement, these two elements do not play an important role in improving the properties. Also, slag is more useful than fly ash if its amount does not go higher than 50%. Moreover, recycled aggregate contributes positively to the concrete mixture, in terms of compression strength. Finally, concrete strength increases when the amount of the RA augments, related to either the high quality of RA or the method of mixing, or both.
Preliminary study of neutron absorption by concrete with boron carbide addition
NASA Astrophysics Data System (ADS)
Abdullah, Yusof; Ariffin, Fatin Nabilah Tajul; Hamid, Roszilah; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat; Ahmad, Megat Harun Al Rashid Megat; Yazid, Hafizal; Ahmad, Sahrim; Mohamed, Abdul Aziz
2014-02-01
Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates the most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.
Steel slag in hot mix asphalt concrete : final report
DOT National Transportation Integrated Search
2000-04-01
In September 1994, steel slag test and control sections were constructed in Oregon to evaluate the use of steel slag in hot mix asphalt concrete (HMAC). This report covers the construction and five-year performance of a pavement constructed with 30% ...
Report of concrete pavement evaluation : project 105 C-4181-01 Donahoo Road, Wyandotte County.
DOT National Transportation Integrated Search
2013-12-01
The physical properties of hardened concrete cores and fresh concrete test results were compared with aggregate : gradation workability differences. The concrete cores were taken from a rural two-lane concrete road in northeastern Kansas : constructe...
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho
2014-01-01
In order to reduce carbon dioxide (CO2) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction. PMID:28788171
Koo, Bon-Min; Kim, Jang-Ho Jay; Kim, Sung-Bae; Mun, Sungho
2014-08-19
In order to reduce carbon dioxide (CO₂) emissions and produce an eco-friendly construction material, a type of concrete that uses a minimal amount of cement, yet still retains equivalent properties to ordinary cement concrete, has been developed and studied all over the world. Hwangtoh, a type of red clay broadly deposited around the world, has traditionally been considered an eco-friendly construction material, with bonus advantages of having health and cost benefits. Presently, Hwangtoh is not commonly used as a modern construction material due to properties such as low strength and high rates of shrinkage cracking. Recent studies, however, have shown that Hwangtoh can be used as a mineral admixture to improve the strength of concrete. In addition, polyethylene terephthalate (PET) fibers recycled from PET bottle waste can be used to control shrinkage cracks in Hwangtoh concrete. Therefore, in this study, performance verification is conducted on newly developed Hwangtoh concrete mixed with short recycled PET fibers. The results show that Hwangtoh concrete has compressive strength, elastic modulus, and pH properties that are similar to these features in ordinary cement concrete. The properties of carbonation depth and creep strain of Hwangtoh concrete, however, are larger and smaller, respectively, than in ordinary cement concrete. According to flexural tests, reinforced concrete (RC) specimens cast with Hwangtoh admixtures (with and without PET fibers) possess similar or better capacities than ordinary RC specimens. The addition of PET fibers significantly improves the structural ductility of RC specimens under normal environmental conditions. However, the implementations of the concrete in aggressive environment must be carefully considered, since a previous study result indicates degradation of its durability performance in aggressive environments, such as seawater [1]. The results of this study validate the possibility of using eco-friendly Hwangtoh concrete reinforced with recycled PET fibers as a structural material for modern construction.
Design, construction, and field testing of an ultra high performance concrete pi-girder bridge.
DOT National Transportation Integrated Search
2011-01-01
The Jakway Park Bridge in Buchanan County, Iowa is the first bridge constructed with a new prestesssed girder system composed of : precast Ultra-High Performance Concrete (UHPC). These girders employ an integral deck to facilitate construction and ar...
Separation and collection of coarse aggregate from waste concrete by electric pulsed power
NASA Astrophysics Data System (ADS)
Shigeishi, Mitsuhiro
2017-09-01
Waste concrete accounts for a substantial fraction of construction waste, and the recycling of waste concrete as concrete aggregate for construction is an important challenge associated with the rapid increase in the amount of waste concrete and the tight supply of natural aggregate. In this study, we propose a technique based on the use of high-voltage pulsed electric discharge into concrete underwater for separating and collecting aggregate from waste concrete with minimal deterioration of quality. By using this technique, the quality of the coarse aggregate separated and collected from concrete test specimens is comparable to that of coarse aggregate recycled by heating and grinding methods, thus satisfying the criteria in Japan Industrial Standard (JIS) A 5021 for the oven-dry density and the water absorption of coarse aggregate by advanced recycling.
The possibility of concrete production on the Moon
NASA Technical Reports Server (NTRS)
Ishikawa, Noboru; Kanamori, Hiroshi; Okada, Takeji
1992-01-01
When a long-term lunar base is constructed, most of the materials for the construction will be natural resources on the Moon, mainly for economic reasons. In terms of economy and exploiting natural resources, concrete would be the most suitable material for construction. This paper describes the possibility of concrete production on the Moon. The possible production methods are derived from the results of a series of experiments that were carried out taking two main environmental features, low gravity acceleration and vacuum, into consideration.
Concrete waterproofing in nuclear industry.
Scherbyna, Alexander N; Urusov, Sergei V
2005-01-01
One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests.
DOT National Transportation Integrated Search
1995-07-01
This report documents the construction and performance of two thin polymer concrete (with polyester/styrene resins) bridge deck overlays. The overlays were constructed in Biggs and Maupin, Oregon in June 1993. Construction of the overlays was less th...
35. Photo of concrete arch culvert constructed by Puget Sound ...
35. Photo of concrete arch culvert constructed by Puget Sound Construction Company, 1911, for the Northern Pacific Railroad, over flume. Photo by Brian C. Morris, Puget Power, 1989. - Puget Sound Power & Light Company, White River Hydroelectric Project, 600 North River Avenue, Dieringer, Pierce County, WA
DOT National Transportation Integrated Search
2013-12-01
The physical properties of hardened concrete cores and fresh concrete test results were compared with aggregate gradation workability differences. The concrete cores were taken from a rural two-lane concrete road in northeastern Kansas constructed in...
76 FR 34890 - Track Safety Standards; Concrete Crossties
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-15
...-0007, Notice No. 3] RIN 2130-AC01 Track Safety Standards; Concrete Crossties AGENCY: Federal Railroad... effective concrete crossties, for rail fastening systems connected to concrete crossties, and for automated inspections of track constructed with concrete crossties. The Track Safety Standards were amended via final...
Experimental Study on Impermeability of Recycled Concrete
NASA Astrophysics Data System (ADS)
Wang, Shao Zhen; Yang, Jian Gong; Wei, Lu
2018-06-01
Recycled concrete is a kind of concrete which is constructed by crushing and removing the building waste and concrete blocks and mixing them according to a certain proportion after grading. In this study, the applicability of recycled concrete is studied only in terms of impermeability.
Preliminary study of neutron absorption by concrete with boron carbide addition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, Yusof, E-mail: yusofabd@nuclearmalaysia.gov.my; Yusof, Mohd Reusmaazran; Zali, Nurazila Mat
2014-02-12
Concrete has become a conventional material in construction of nuclear reactor due to its properties like safety and low cost. Boron carbide was added as additives in the concrete construction as it has a good neutron absorption property. The sample preparation for concrete was produced with different weight percent of boron carbide powder content. The neutron absorption rate of these samples was determined by using a fast neutron source of Americium-241/Be (Am-Be 241) and detection with a portable backscattering neutron detector. Concrete with 20 wt % of boron carbide shows the lowest count of neutron transmitted and this indicates themore » most neutrons have been absorbed by the concrete. Higher boron carbide content may affect the concrete strength and other properties.« less
Towards high-performance materials for road construction
NASA Astrophysics Data System (ADS)
Gladkikh, V.; Korolev, E.; Smirnov, V.
2017-10-01
Due to constant increase of traffic, modern road construction is in need of high-performance pavement materials. The operational performance of such materials can be characterized by many properties. Nevertheless, the most important ones are resistance to rutting and resistance to dynamical loads. It was proposed earlier to use sulfur extended asphalt concrete in road construction practice. To reduce the emission of sulfur dioxide and hydrogen sulfide during the concrete mix preparation and pavement production stages, it is beneficial to make such a concrete on the base of complex sulfur modifier. In the present work the influence of the complex modifier to mechanical properties of sulfur extended asphalt concrete was examined. It was shown that sulfur extended asphalt concrete is of high mechanical properties. It was also revealed that there as an anomalous negative correlations between strain capacity, fatigue life and fracture toughness.
NASA Astrophysics Data System (ADS)
Li, Chunyan
2017-11-01
Prestressed reinforced concrete pipe has the advantages of good bending resistance, good anti-corrosion, anti-seepage, low price and so on. It is very common in municipal water supply and drainage engineering. This paper mainly explore the analyze the construction technology of the prestressed reinforced concrete pipe in municipal water supply and drainage engineering.
Bond of Field-Cast Grouts to Precast Concrete Elements
DOT National Transportation Integrated Search
2017-01-01
The performance of connections between prefabricated concrete elements constructed using field-cast cementitious grouts and groutlike materials is becoming a focus area for accelerated bridge construction (ABC) projects. These connections are require...
1. VIEW OF MECHANICAL ROOM CONSTRUCTED OF CONCRETE MASONRY UNITS ...
1. VIEW OF MECHANICAL ROOM CONSTRUCTED OF CONCRETE MASONRY UNITS AND A WOOD FRAME ENLISTED MEN BARRACKS. - Nike Hercules Missile Battery Summit Site, Battery Control Administration & Barracks Building, Anchorage, Anchorage, AK
Recycling the construction and demolition waste to produce polymer concrete
NASA Astrophysics Data System (ADS)
Hamza, Mohammad T.; Hameed, Awham M., Dr.
2018-05-01
The sustainable management for solid wastes of the construction and demolition waste stimulates searching for safety applications for these wastes. The aim of this research is recycling of construction and demolition waste with some different types of polymeric resins to be used in manufacturing process of polymer mortar or polymer concrete, and studying their mechanical and physical properties, and also Specify how the values of compressive strength and the density are affected via the different parameters. In this research two types of construction and demolition waste were used as aggregates replacement (i.e. waste cement/concrete debris, and the waste blocks) while the two types of polymer resins (i.e. Unsaturated polyester and Epoxy) as cement replacements. The used weight percentages of the resins were changed within (1°, 20, 25 and 30) % to manufacture this polymer concrete.
DOT National Transportation Integrated Search
2012-08-01
Concrete is one of the most produced and utilized materials in the world. Due to : the labor intensive and time consuming nature of concrete construction, new and : innovative concrete mixes are being explored. Self-consolidating concrete (SCC) is on...
DOT National Transportation Integrated Search
2009-01-01
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Recognizing this a two-lane single-span precast box girder bridge was constructed ...
DOT National Transportation Integrated Search
1998-04-01
A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...
Portland cement concrete pavement restoration : final summary report.
DOT National Transportation Integrated Search
1988-07-01
This final summary report is comprised of an Initial Construction Report; a Final Report; and two Interim Reports. These reports document the construction of Louisiana's Portland Cement Concrete Pavement Restoration project and its performance during...
Research on test of alkali-resistant glass fibre enhanced seawater coral aggregate concrete
NASA Astrophysics Data System (ADS)
Liu, Leiyang; Wang, Xingquan
2017-12-01
It is proposed in the 13th five-year plan that reefs of the south China sea should be constructed. In the paper, an innovative thinking was proposed for the first time in order to realize local material acquisition in island construction and life dependence on sea, namely alkali-resistant glass fibre is mixed in coralaggregate concrete as reinforcing material. The glass fibre is characterized by low price, low hardness, good dispersibility and convenient construction. Reliable guarantee is provided for widely applying the material in future projects. In the paper, an orthogonal test method is firstly applied to determine the mix proportion of grade C50 coral aggregate concrete. Then, the design plan ofmix proportion of alkali-resistant glass fibre enhanced seawater coral aggregate concrete is determined. Finally, the influence law of alkali-resistant glass fibre dosageon tensile compressiveflexture strength of seawatercoralaggregate concrete is made clear.
Review of palm oil fuel ash and ceramic waste in the production of concrete
NASA Astrophysics Data System (ADS)
Natasya Mazenan, Puteri; Sheikh Khalid, Faisal; Shahidan, Shahiron; Shamsuddin, Shamrul-mar
2017-11-01
High demand for cement in the concrete production has been increased which become the problems in the industry. Thus, this problem will increase the production cost of construction material and the demand for affordable houses. Moreover, the production of Portland cement leads to the release of a significant amount of CO2 and other gases leading to the effect on global warming. The need for a sustainable and green construction building material is required in the construction industry. Hence, this paper presents utilization of palm oil fuel ash and ceramic waste as partial cement replacement in the production of concrete. Using both of this waste in the concrete production would benefit in many ways. It is able to save cost and energy other than protecting the environment. In short, 20% usage of palm oil fuel ash and 30% replacement of ceramic waste as cement replacement show the acceptable and satisfactory strength of concrete.
Thick Concrete Specimen Construction, Testing, and Preliminary Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev
The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the variousmore » nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and initial results are also presented along with a discussion of the preliminary findings. Comparative NDE of various defects in reinforced concrete specimens is a key component in identifying the most promising techniques and directing the research and development efforts needed to characterize concrete degradation in commercial NPPs. This requires access to the specimens for data collection using state-of-the-art technology. The construction of the specimen detailed in this report allows for an evaluation of how different NDE techniques may interact with the size and complexities of NPP concrete structures. These factors were taken into account when determining specimen size and features to ensure a realistic design. The lateral dimensions of the specimen were also chosen to mitigate unrealistic boundary effects that would not affect the results of field NPP concrete testing. Preliminary results show that, while the current methods are able to identify some of the deeper defects, improvements in data processing or hardware are necessary to be able to achieve the precision and reliability achieved in evaluating thinner and less heavily reinforced concrete structures.« less
The raft foundation reinforcement construction technology of Hongyun Building B tower
NASA Astrophysics Data System (ADS)
Liu, Yu; Yin, Suhua; Wu, Yanli; Zhao, Ying
2017-08-01
The foundation of Hongyun building B tower is made of raft board foundation which is 3300mm in the thickness include four kinds of reinforcement Φ32, Φ28, Φ12 and 12 steel grade two, in respective. It is researched that the raft foundation mass concrete construction technology is expatiated from temperature and cracks of the raft foundation and the temperature control and monitoring of the concrete base slab construction and concrete curing. According to the characteristics with large volume and thickness of the engineering of raft foundation, the construction of the reinforced force was calculated and the quality control measures were used to the reinforcement binding and connection, so it is success that Hongyun Building B tower raft foundation reinforced construction.
A review on the suitability of rubberized concrete for concrete bridge decks
NASA Astrophysics Data System (ADS)
Syamir Senin, Mohamad; Shahidan, Shahiron; Radziah Abdullah, Siti; Anting Guntor, Nickholas; Syazani Leman, Alif
2017-11-01
Road authorities manage a large population of ageing bridges, a substantial number of which fail to meet the current requirements either due to deterioration and other structural deficiencies or as a result of the escalating demands imposed by increased traffic. This problem is related to the dynamic load from vehicles. This problem can be solved by producing a type of concrete that can reduce the amplitude of oscillation or vibration such as rubberized concrete. Green construction has been a very important aspect in concrete production field in the last decade. One of the most problematic waste materials is scrap tires. The use of scrap tires in civil engineering is increasing by producing rubberized concrete. Rubberized concrete is a type of concrete that is mixed with rubber. The purpose of this review is to justify the suitability of rubberized concrete for concrete bridge decks. Several parameters named physical, chemical and mechanical properties were measured to ensure the suitability of rubberized concrete for concrete bridge decks. Rubberized concrete has similar workability to normal concrete. The rubber reduced the density and compressive strength of the concrete while increased the flexural strength, water absorption and damping ratio. The used of rubber in concrete beyond 20% is not recommended due to decreasing in compressive strength. Rubberized concrete recommended to be used in circumstances where vibration damping was required such as in bridge construction as shock-wave absorber.
A brief history of long-life WSDOT concrete pavements.
DOT National Transportation Integrated Search
2010-02-01
The concrete pavements that were originally constructed in Washington State as part of the interstate construction program have performed remarkably well considering the dramatic increase in the anticipated traffic loads. To date, the primary distres...
DOT National Transportation Integrated Search
1995-06-01
The Research Unit recently published the construction report entitled Evaluation of PBA-6GR Binder for Open-Graded Asphalt Concrete. The report covers construction of open-graded concrete ("F" Mix) pavements with an asphalt-rubber binder, PBA-6GR. Th...
AC/CRC adjacent lane surfacing : construction report.
DOT National Transportation Integrated Search
1991-06-01
Asphaltic Concrete (AC) and Portland Cement Concrete (PCC) are common roadway materials used in Oregon. In a recent construction project -- Poverty Flats/Mecham Section -- the Oregon State Highway Division (OSHD) designed, as part of the project, a "...
Seismic Behavior and Design of Segmental Precast Post-Tensioned Concrete Piers
DOT National Transportation Integrated Search
2011-06-01
Segmental precast column construction is an economic environmental friendly solution to accelerate bridge construction in the United : States. Also, concrete-filled fiber reinforced polymer tubes (CFFT) represents a potential economic solution for du...
Fold-up concrete construction.
DOT National Transportation Integrated Search
1975-01-01
The fold-up method of concrete construction is a relatively new method of precasting a variety of structural shapes on a single flat surface and then folding portions up to form a three-dimensional shape. Structural members as beams, girders, columns...
Durability of lightweight concrete : Phase I : concrete temperature study.
DOT National Transportation Integrated Search
1968-08-01
This report describes a study conducted to determine the temperature gradient throughout the depth of a six inch concrete bridge deck. The bridge deck selected for study was constructed using lightweight concrete for the center spans and sand and gra...
The use of nanomodified concrete in construction of high-rise buildings
NASA Astrophysics Data System (ADS)
Prokhorov, Sergei
2018-03-01
Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.
Utilization of fly ash and ultrafine GGBS for higher strength foam concrete
NASA Astrophysics Data System (ADS)
Gowri, R.; Anand, K. B.
2018-02-01
Foam concrete is a widely accepted construction material, which is popular for diverse construction applications such as, thermal insulation in buildings, lightweight concrete blocks, ground stabilization, void filling etc. Currently, foam concrete is being used for structural applications with a density above 1800kg/m3. This study focuses on evolving mix proportions for foam concrete with a material density in the range of 1200 kg/m3 to 1600 kg/m3, so as to obtain strength ranges that will be sufficient to adopt it as a structural material. Foam concrete is made lighter by adding pre-formed foam of a particular density to the mortar mix. The foaming agent used in this study is Sodium Lauryl Sulphate and in order to densify the foam generated, Sodium hydroxide solution at a normality of one is also added. In this study efforts are made to make it a sustainable construction material by incorporating industrial waste products such as ultrafine GGBS as partial replacement of cement and fly ash for replacement of fine aggregate. The fresh state and hardened state properties of foam concrete at varying proportions of cement, sand, water and additives are evaluated. The proportion of ultrafine GGBS and fly ash in the foam concrete mix are varied aiming at higher compressive strength. Studies on air void-strength relationship of foam concrete are also included in this paper.
Final Report: Self Consolidating Concrete Construction for Modular Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly
This report outlines the development of a self-consolidating concrete (also termed “self-compacting concrete” or SCC) so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed and validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The self-roughening concrete produced as part of this research was assessed in SC structures at three scales: small-scale shear-friction specimens, mid-scale beams tested in in-planemore » and out-of-plane bending, and a full-scale validation test using an SC module produced by Westinghouse as part of the Plant Vogtle expansion. The experiments show that the self-roughening concrete can produce a cold-joint surface of 0.25 inches (6 mm) without external vibration during concrete placement. The experiments and subsequent analysis show that the shear friction provisions of ACI 318-14, Section 22.9 can be used to assess the shear capacity of the cold-joints in SC modular construction, and that friction coefficient of 1.35 is appropriate for use with these provisions.« less
Life Cycle Assessment of Completely Recyclable Concrete.
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-08-21
Since the construction sector uses 50% of the Earth's raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete.
Life Cycle Assessment of Completely Recyclable Concrete
De Schepper, Mieke; Van den Heede, Philip; Van Driessche, Isabel; De Belie, Nele
2014-01-01
Since the construction sector uses 50% of the Earth’s raw materials and produces 50% of its waste, the development of more durable and sustainable building materials is crucial. Today, Construction and Demolition Waste (CDW) is mainly used in low level applications, namely as unbound material for foundations, e.g., in road construction. Mineral demolition waste can be recycled as crushed aggregates for concrete, but these reduce the compressive strength and affect the workability due to higher values of water absorption. To advance the use of concrete rubble, Completely Recyclable Concrete (CRC) is designed for reincarnation within the cement production, following the Cradle-to-Cradle (C2C) principle. By the design, CRC becomes a resource for cement production because the chemical composition of CRC will be similar to that of cement raw materials. If CRC is used on a regular basis, a closed concrete-cement-concrete material cycle will arise, which is completely different from the current life cycle of traditional concrete. Within the research towards this CRC it is important to quantify the benefit for the environment and Life Cycle Assessment (LCA) needs to be performed, of which the results are presented in a this paper. It was observed that CRC could significantly reduce the global warming potential of concrete. PMID:28788174
Introduction to Concrete Reinforcing. Instructor Edition. Introduction to Construction Series.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This module on concrete reinforcing is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. This module contains three instructional units that cover the following topics: (1) concrete reinforcing materials; (2) concrete reinforcing tools; and (3) concrete reinforcing basic skills. Each…
Concrete Mixing Methods and Concrete Mixers: State of the Art
Ferraris, Chiara F.
2001-01-01
As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029
NASA Astrophysics Data System (ADS)
Kate, Gunavant K.; Thakare, Sunil B., Dr.
2017-08-01
Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.
Utilisation of Waste Marble Dust as Fine Aggregate in Concrete
NASA Astrophysics Data System (ADS)
Vigneshpandian, G. V.; Aparna Shruthi, E.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
Concrete is the important construction material and it is used in the construction industry due to its high compressive strength and its durability. Now a day’s various studies have been conducted to make concrete with waste material with the intention of reducing cost and unavailability of conventional materials. This paper investigates the strength properties of concrete specimens cast using waste marble dust as replacement of fine aggregate. The marble pieces are finely crushed to powdered and the gradation is compared with conventional fine aggregate. Concrete specimen were cast using wmd in the laboratory with different proportion (25%, 50% and 100%) by weight of cement and from the studies it reveals that addition of waste marble dust as a replacement of fine aggregate marginally improves compressive, tensile and flexural strength in concrete.
Evaluating the Effect of Slab Curling on IRI for South Carolina Concrete Pavements
DOT National Transportation Integrated Search
2010-10-01
Concrete pavements are known to curl due to a temperature gradient within the concrete caused by both daily : and seasonal temperature variations. This research project measured the magnitude of concrete pavement slab : curling of two newly construct...
Microsilica modified concrete for bridge deck overlays : construction report.
DOT National Transportation Integrated Search
1990-10-01
The study objective was to see if microsilica concrete (MC) is a viable alternative to the latex modified concrete (LMC) usually used on bridge deck overlays in Oregon. The study addresses MC overlays placed in 1989 on Portland cement concrete (PCC) ...
DOT National Transportation Integrated Search
1987-08-01
This report is concerned with the detemination of the relationship between asphaltic concrete suface course specifications and the level of performance of pavements constructed under these specifications. The relationship was investigated through com...
Evaluation of the performance of portable precast concrete traffic barriers.
DOT National Transportation Integrated Search
1978-01-01
The portable precast concrete traffic barrier is used to separate high speed vehicular traffic and construction activities. However, since there was a lack of information on the barrier's performance in a construction zone environment, officials of t...
Density measurement verification for hot mixed asphalt concrete pavement construction.
DOT National Transportation Integrated Search
2010-06-01
Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...
Density measurement verification for hot mix asphalt concrete pavement construction.
DOT National Transportation Integrated Search
2010-06-01
Oregon Department of Transportation (ODOT) requires a minimum density for the construction of dense-graded hot mix asphalt concrete (HMAC) pavements to ensure the likelihood that the pavement will not experience distresses that reduce the expected se...
Improving the accuracy of camber predictions for precast pretensioned concrete beams.
DOT National Transportation Integrated Search
2015-07-01
The discrepancies between the designed and measured camber of precast pretensioned concrete beams (PPCBs) observed by the : Iowa DOT have created challenges in the field during bridge construction, causing construction delays and additional costs. Th...
Comparison of conventional and self-consolidating concrete for drilled shaft construction.
DOT National Transportation Integrated Search
2015-04-01
Many entities currently use self-consolidating concrete (SCC), especially for drilled shaft construction. This project investigated the use of SCC : and various test methods to assess the suitability of SCC in underwater placement conditions. Eight m...
Losses due to weather phenomena in the bituminous concrete construction industry in Wisconsin
NASA Technical Reports Server (NTRS)
Kuhn, H. A. J.
1973-01-01
The losses (costs) due to weather phenomena as they affect the bituminous concrete industry in Wisconsin were studied. The bituminous concrete industry's response to precipitation, in the form of rain, is identified through the use of a model, albeit crude, which identifies a typical industry decision-response mechanism. Using this mechanism, historical weather data and 1969 construction activity, dollar losses resulting from rain occurrences were developed.
Environmental Assessment for Multiple Projects at Laughlin Air Forc Base, TX
2013-02-06
Table 5 5 Stormwater Concrete Removal 6 Area Disturbed (acres) Average Removal Depth (ft) Concrete Density (lb/ft 3 ) Concrete Removed (lb...600 feet to the north; and, • Repair and improve stormwater drainage and steep slopes at the Laughlin AFB airfield. Construction would include site...of exposed soils from stormwater runoff, best management practices (BMPs) would be implemented during construction and demolition (C&D). These
Determination of the neutralization depth of concrete under the aggressive environment influence
NASA Astrophysics Data System (ADS)
Morzhukhina, Anastasia; Nikitin, Stanislav; Akimova, Elena
2018-03-01
Aggressive environments have a significant impact on destruction of many reinforced concrete structures, such as high-rise constructions or chemical plants. For example, some high-rise constructions are equipped with a swimming pool, so they are exposed to chloride ions in the air. Penetration of aggressive chemical substances into the body of concrete contributes to acceleration of reinforced concrete structure corrosion that in turn leads to load bearing capacity loss and destruction of the building. The article considers and analyzes the main technologies for calculating penetration depth of various aggressive substances into the body of concrete. The calculation of corrosion depth was made for 50-year service life.
Production and construction technology of C100 high strength concrete filled steel tube
NASA Astrophysics Data System (ADS)
Wu, Yanli; Sun, Jinlin; Yin, Suhua; Liu, Yu
2017-10-01
In this paper, the effect of the amount of cement, water cement ratio and sand ratio on compressive strength of C100 concrete was studied. The optimum mix ratio was applied to the concrete filled steel tube for the construction of Shenyang Huangchao Wanxin mansion. The results show that the increase of amount of cement, water cement ratio can improve the compressive strength of C100 concrete but increased first and then decreased with the increase of sand ratio. The compressive strength of C100 concrete can reach 110MPa with the amount of cement 600kg/m3, sand ratio 40% and water cement ratio 0.25.
NASA Astrophysics Data System (ADS)
Van Tang, Lam; Bulgakov, Boris; Bazhenova, Sofia; Aleksandrova, Olga; Pham, Anh Ngoc; Dinh Vu, Tho
2018-03-01
The dense development of high-rise construction in urban areas requires a creation of new concretes with essential properties and innovative technologies for preparing concrete mixtures. Besides, it is necessary to develop new ways of presenting concrete mixture and keeping their mobility. This research uses the mathematical method of two-factors rotatable central compositional planning to imitate the effect of amount of rice husk (RHA) and fly ash of thermal power plants (FA) on the workability of high-mobility concrete mixtures. The results of this study displays regression equation of the second order dependence of the objective functions - slump cone and loss of concrete mixture mobility due to the input factors - the amounts RHA (x1) and FA (x2), as well as the surface expression image of these regression equations. An analysis of the regression equations also shows that the amount of RHA and FA had a significant influence on the concrete mixtures mobility. In fact, the particles of RHA and FA will play the role as peculiar "sliding bearings" between the grains of cement leading to the dispersion of cement in the concrete mixture. Therefore, it is possible to regulate the concrete mixture mobility when transporting fresh concrete to the formwork during the high-rise buildings construction in the hot and humid climate of Vietnam. Although the average value of slump test of freshly mixed concrete, measured 60 minutes later after the mixing completion, decreased from 18.2 to 10.52 cm, this value still remained within the allowable range to maintain the mixing and and the delivery of concrete mixture by pumping.
Low Shrinkage Cement Concrete Intended for Airfield Pavements
NASA Astrophysics Data System (ADS)
Małgorzata, Linek
2017-10-01
The work concerns the issue of hardened concrete parameters improvement intended for airfield pavements. Factors which have direct or indirect influence on rheological deformation size were of particular interest. The aim of lab testing was to select concrete mixture ratio which would make hardened concrete less susceptible to influence of basic operating factors. Analyses included two research groups. External and internal factors were selected. They influence parameters of hardened cement concrete by increasing rheological deformations. Research referred to innovative cement concrete intended for airfield pavements. Due to construction operation, the research considered the influence of weather conditions and forced thermal loads intensifying concrete stress. Fresh concrete mixture parameters were tested and basic parameters of hardened concrete were defined (density, absorbability, compression strength, tensile strength). Influence of the following factors on rheological deformation value was also analysed. Based on obtained test results, it has been discovered that innovative concrete, made on the basis of modifier, which changes internal structure of concrete composite, has definitely lower values of rheological deformation. Observed changes of microstructure, in connection with reduced deformation values allowed to reach the conclusion regarding advantageous characteristic features of the newly designed cement concrete. Applying such concrete for airfield construction may contribute to extension of its operation without malfunction and the increase of its general service life.
ERIC Educational Resources Information Center
LYMAN, ROBERT J.
THE USE OF PRESTRESSED CONCRETE IS EMPHASIZED IN THE AREAS OF SCHOOL PLANNING, DESIGN, AND CONSTRUCTION. THE PLANNING SECTION INCLUDES--(1) ROLES OF ACTIVE PARTIES AND RELATED ORGANIZATIONS, (2) PROCEDURES, AND (3) CONCEPTUAL DATA FOR SITE AND BUILDING. THE DESIGN SECTION CONTAINS--(1) DEVELOPMENT OF CONSTRUCTION SYSTEMS, (2) INTEGRATION OF…
An Analysis of Insulated Concrete Forms for use in Sustainable Military Construction
2014-03-27
CONSTRUCTION THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of Engineering and Management...which fit together and are filled with reinforced concrete to construct the exterior wall systems of a building. By design, this material provides a...Forms with Rebar .............................................................. 12 Figure 3. Cut outs of ICF wall systems
Quality control analysis : part III : concrete and concrete aggregates.
DOT National Transportation Integrated Search
1966-11-01
This is the third and last report on the Quality Control Analysis of highway construction materials. : It deals with the statistical evaluation of data from several construction projects to determine the basic pattern of variability with respect to s...
Evaluation of consolidation in concrete pavements.
DOT National Transportation Integrated Search
1994-01-01
Petrographic examinations of specimens from two recently constructed concrete pavements suggested that complete consolidation of the concrete may not have been achieved. Consequently, a quantitative evaluation of the degree of consolidation in these ...
1988-11-01
TERMS (Continue on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP Breakwater REMR (Repair, Evaluation, Concrete armor units...Maintenance, and Rehabilitation) Jetty Rubble-mound structures 19. ABSTRACT (Continue on reverse if necessary and identify by block number) :-This...have been repaired since construction. Other construction materials that have been used include steel, dolosse, concrete cap, concrete block , and
Eco-friendly GGBS Concrete: A State-of-The-Art Review
NASA Astrophysics Data System (ADS)
Saranya, P.; Nagarajan, Praveen; Shashikala, A. P.
2018-03-01
Concrete is the most commonly used material in the construction industry in which cement is its vital ingredient. Although the advantages of concrete are many, there are side effects leading to environmental issues. The manufacturing process of cement emits considerable amount of carbon dioxide (CO2). Therefore is an urgent need to reduce the usage of cement. Ground Granulated Blast furnace Slag (GGBS) is a by-product from steel industry. It has good structural and durable properties with less environmental effects. This paper critically reviews the literatures available on GGBS used in cement concrete. In this paper, the literature available on GGBS are grouped into engineering properties of GGBS concrete, hydraulic action of GGBS in concrete, durability properties of GGBS concrete, self- compacting GGBS concrete and ultrafine GGBS are highlighted. From the review of literature, it was found that the use of GGBS in concrete construction will be eco-friendly and economical. The optimum percentage of replacement of cement by GGBS lies between 40 - 45 % by weight. New materials that can be added in addition to GGBS for getting better strength and durability also highlighted.
Synthesis of concrete bridge piles prestressed with CFRP systems.
DOT National Transportation Integrated Search
2017-06-01
The Texas Department of Transportation frequently constructs prestressed concrete piles for use in bridge : foundations. Such prestressed concrete piles are typically built with steel strands that are highly susceptible to : environmental degradation...
DOT National Transportation Integrated Search
1995-07-01
This report documents the construction and performance of two thin polymer concrete (with polyester/styrene resins) bridge deck overlays. The overlays were constructed in Biggs and Maupin, Oregon in June 1993. : Several problems were encountered duri...
Comparison of properties of fresh and hardened concrete in bridge decks.
DOT National Transportation Integrated Search
1971-01-01
A study was made on 17 bridge decks constructed in 1963 under regular construction procedures. The purpose was (1) to compare important properties of concrete as freshly placed in randomly selected bridge decks with those after hardening of the concr...
Recommendations for the use of precast deck panels at expansion joints
DOT National Transportation Integrated Search
2008-11-01
Prestressed concrete panels have been used by the bridge construction industry in the state of Texas for many : years to increase construction speed and improve safety and economy. At expansion joints, cast-in-place concrete : is used and requires te...
Training Programme for Supervisors. An Element in Quality Assurance of the Construction Industry.
ERIC Educational Resources Information Center
Lo, Tommy Y.
1998-01-01
A customized program on concrete technology for the construction industry in Hong Kong is based on the ISO 9000 quality management system. More than 269 students have been trained; 48.7% of enrollment comes from concrete suppliers. (SK)
Evaluating the constructability of NUDECK precast concrete deck panels for Kearney Bypass Project.
DOT National Transportation Integrated Search
2015-02-01
The first generation of precast concrete deck system, NUDECK, was implemented on the Skyline Bridge, : Omaha, NE in 2004. The second generation of NUDECK system was developed to further simplify the : system and improve its constructability and durab...
Determination of entrance loss coefficients for pre-cast reinforced concrete box culverts.
DOT National Transportation Integrated Search
2012-12-01
There is an increased interest in constructing Pre-Cast (PC) Twin and Triple Reinforced Concrete Box (RCB) culverts : in Iowa due to the efficiency associated with their production in controlled environment and decrease of the construction : time at ...
Fine-grain concrete from mining waste for monolithic construction
NASA Astrophysics Data System (ADS)
Lesovik, R. V.; Ageeva, M. S.; Lesovik, G. A.; Sopin, D. M.; Kazlitina, O. V.; Mitrokhin, A. A.
2018-03-01
The technology of a monolithic construction is a well-established practice among most Russian real estate developers. The strong points of the technology are low cost of materials and lower demand for qualified workers. The monolithic construction uses various types of reinforced slabs and foamed concrete, since they are easy to use and highly durable; they also need practically no additional treatment.
Results of Laboratory Tests of the Filtration Characteristics of Clay-Cement Concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sol’skii, S. V., E-mail: solskiysv@vniig.ru; Lopatina, M. G., E-mail: LoptainaMG@vniig.ru; Legina, E. E.
Laboratory studies of the filtration characteristics of clay-cement concrete materials for constructing filtering diaphragms of earth dams by the method of secant piles are reported. Areas for further study aimed at improving the quality of construction, increasing operational safety, and developing a standards base for the design, construction, and operation of these systems are discussed.
Shell Structure Water Cellar’s Rapid Construct Technology
NASA Astrophysics Data System (ADS)
Xian Zhuang, Wen; Qing Yin, De; Chen, Shu Fa
2018-05-01
Tradition concrete water cellar’s problems, such as high cost, long construction term, easy to crack, are pointed out. A new construct method, and it’s matching airbag mould, of constructing concrete shell structure water cellars, are introduced. Combine with full-scale verifying cellar’s construct test, full-load water storage test, analyzed the technology in terms of construction term, cost, crack resistance, air bag pressure etc. It is believed that this new technology can successfully solve the problems that tradition technology has, and it will have a good prospect in rainfall resources utilization.
Geopolymer concretes: a green construction technology rising from the ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouche, E.
2009-07-01
Researchers at Louisiana Tech University have embarked on a multi-year research initiative to develop applications for inorganic polymer concrete, or geopolymer concrete, in the area of civil construction, and to bring solve of these applications to market. One objective was to produce a spray-on coating for use in the harsh environment of wastewater conveyance and treatment facilities. Another project is to establish relationships between fly ash composition and particle size distribution and the mechanical attributes and workability of the resulting geopolymer concrete. A third project is to develop a 'smart' geopolymer concrete whose response to a given electric current canmore » be correlated to the stress level to which the structure is subjected. 1 fig., 6 photos.« less
29 CFR 1926.702 - Requirements for equipment and tools.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry... the ejection system is not to be operated. (b) Concrete mixers. Concrete mixers with one cubic yard... the skip of materials; and (2) Guardrails installed on each side of the skip. (c) Power concrete...
NASA Astrophysics Data System (ADS)
Begunov, Oleg; Alexandrova, Olga; Solovyov, Vadim
2017-10-01
We observed causes of using fiber in nowadays construction industry and its influence on a final product properties, where the fine-grained concrete basing of repairing dry construction mix was used as a base. However, in Russia we do not have such experience. If we’re talking about changes occurring in the fine-grained concrete all of its are known about it, either in concrete, but in dry-construction mixes changes may have another purpose. Advantages and disadvantages of using fiber were oblieved also in that article. The main subject of this research is the influence of fiber on a mechanical properties of fine-grained concrete. The most attention is paid to estimate the influence of a concrete’s properties by metal fibers: casting time (initial and final), workability and strength (tensile strength and compressive strength) in this article. The most popular different type of metal fiber compares for its length and width and the optimum quantity of metal component chooses, which will indicate the maximum possible affirmative result of its using. Dependences comparing properties of fine-grained properties with fiber’s type, measurements and quantity which show the evident result of researching are discussed.
Development of construction materials like concrete from lunar soils without water
NASA Technical Reports Server (NTRS)
Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.
1989-01-01
The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.
NASA Astrophysics Data System (ADS)
Rakitin, B. A.; Pogorelov, S. N.; Kolmogorova, A. O.
2017-11-01
Modern highway construction technologies provide for the quality water discharge systems to increase facilities’ service life. Pipeline operating conditions require the use of durable and reliable materials and structures. The experience in using reinforced concrete pipes for these purposes shows their utilization efficiency. The present paper considers the experience in the use of non-pressure reinforced concrete pipes manufactured by the German company SCHLOSSER-PFEIFFER under the Ural region geological and climatic conditions. The authors analyzed the actual operation of underground pipelines and effective loads upon them. A detailed study of the mechanical properties of reinforced concrete pipes is necessary to improve their production technology and to enhance their serviceability. The use of software-based methods helped to develop a mathematical model and to estimate the strength and crack resistance of reinforced concrete pipes at different laying depths. The authors carried out their complex research of the strain-stress behaviour of reinforced concrete pipes and identified the most hazardous sections in the structure. The calculations performed were confirmed by the results of laboratory tests completed in the construction materials, goods, and structures test center. Based on the completed research, the authors formulated their recommendations to improve the design and technology of non-pressure reinforced concrete pipes.
Concrete aggregate durability study.
DOT National Transportation Integrated Search
2009-06-01
There are many factors that affect the durability of Portland cement concrete (PCC), including the mix design and the : materials used, the quality of construction, and the environment. Durability is not an intrinsic property of the concrete, but : i...
Investigation of fiber-reinforced self-consolidating concrete.
DOT National Transportation Integrated Search
2010-05-01
The rising cost of materials and labor, as well as the demand for faster construction, has prompted development of cheaper, faster alternatives to conventional building techniques. Self-consolidating concrete (SCC), a high performance concrete charac...
Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials
DOT National Transportation Integrated Search
2012-06-01
The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...
DOT National Transportation Integrated Search
2001-08-01
This report discusses the variability associated with the production, construction, and testing of structural and paving concrete. The study evaluated data from over 900 projects constructed between 1992 and 1999, representing over 25,000 lots. The d...
First bridge structure with lightweight high-performance concrete beams and deck in Virginia.
DOT National Transportation Integrated Search
2005-01-01
This study involved the construction and early performance of the first bridge in Virginia constructed with lightweight high-performance concrete (LWHPC) having a density of 120 lb/ft3 in the beams and deck. The design strength and permeability were ...
DOT National Transportation Integrated Search
2014-08-01
The goal of everyone in the transportation community is to build bridges : that are economic, easy to construct, and durable. Therefore, accelerating : bridge construction through the use of precast concrete or prefabricated : steel girders is a comm...
DOT National Transportation Integrated Search
2000-08-01
To minimize the lane closure time for construction, Caltrans is exploring the use of fast-setting hydraulic cement concrete (FSHCC). The principal property of the FSHCC is its high early strength gain. This accelerated strength gain would increase th...
DOT National Transportation Integrated Search
1994-01-01
The objective of this investigation was to evaluate the feasibility of using high-strength concrete in the design and construction of highway bridge structures. A literature search was conducted; a survey of five regional fabrication plants was perfo...
Methods for preventing ASR in new construction: results of field exposure sites.
DOT National Transportation Integrated Search
2013-12-01
As part of the FHWA ASR Development and Deployment Program, two sites were built to study ASR in new concrete construction. Concrete blocks were produced with a range of aggregates and cementitious materials and placed on outdoor exposure sites at th...
Monitoring of prestress losses using long-gauge fiber optic sensors
NASA Astrophysics Data System (ADS)
Abdel-Jaber, Hiba; Glisic, Branko
2017-04-01
Prestressed concrete has been increasingly used in the construction of bridges due to its superiority as a building material. This has necessitated better assessment of its on-site performance. One of the most important indicators of structural integrity and performance of prestressed concrete structures is the spatial distribution of prestress forces over time, i.e. prestress losses along the structure. Time-dependent prestress losses occur due to dimensional changes in the concrete caused by creep and shrinkage, in addition to strand relaxation. Maintaining certain force levels in the strands, and thus the concrete cross-sections, is essential to ensuring stresses in the concrete do not exceed design stresses, which could cause malfunction or failure of the structure. This paper presents a novel method for monitoring prestress losses based on long-gauge fiber optic sensors embedded in the concrete during construction. The method includes the treatment of varying environmental factors such as temperature to ensure accuracy of results in on-site applications. The method is presented as applied to a segment of a post-tensioned pedestrian bridge on the Princeton University campus, Streicker Bridge. The segment is a three-span continuous girder supported on steel columns, with sensors embedded at key locations along the structure during construction in October 2009. Temperature and strain measurements have been recorded intermittently since construction. The prestress loss results are compared to estimates from design documents.
Potential of Progressive Construction Systems in Slovakia
NASA Astrophysics Data System (ADS)
Kozlovska, Maria; Spisakova, Marcela; Mackova, Daniela
2017-10-01
Construction industry is a sector with rapid development. Progressive technologies of construction and new construction materials also called modern methods of construction (MMC) are developed constantly. MMC represent the adoption of construction industrialisation and the use of prefabrication of components in building construction. One of these modern methods is also system Varianthaus, which is based on, insulated concrete forms principle and provides complete production plant for wall, ceiling and roof elements for a high thermal insulation house construction. Another progressive construction system is EcoB, which represents an insulated precast concrete panel based on combination of two layers, insulation and concrete, produced in a factory as a whole. Both modern methods of construction are not yet known and wide-spread in the Slovak construction market. The aim of this paper is focused on demonstration of MMC using potential in Slovakia. MMC potential is proved based on comparison of the selected parameters of construction process - construction costs and construction time. The subject of this study is family house modelled in three material variants - masonry construction (as a representative of traditional methods of construction), Varianthaus and EcoB (as the representatives of modern methods of construction). The results of this study provide the useful information in decision-making process for potential investors of construction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sandvik, K.; Karal, K.
The paper gives a general description of the Concrete Gravity Base Structure (GBS) for the Draugen platform installed by Norwegian Contractors a.s. The GBS was installed at the Haltenbank area on the Norwegian continental shelf in May 1993 for A/S Norske Shell. Further, the paper describes the following challenging aspects encountered during the design and construction: design for high frequency response to wave loading, so called ringing, discovered during construction of the GBS; impact of the ringing effect discovery on the construction schedule; design to prevent delamination of concrete structural elements; modifications to prevent damages on pipe work caused bymore » deformations of the concrete structure.« less
Effect of water on the triaxial response under monotonic loading of asphalt concrete used in dams
NASA Astrophysics Data System (ADS)
Gaxiola Hernández, Alberto; Ossa López, Alexandra
2018-01-01
Embankment dams with asphalt concrete cores have been constructed on practically all continents with satisfactory results. Nowadays many advantages, such as the mechanical strength, are known that makes asphalt concrete a competitive alternative for the construction of the impervious elements of dams. However, the current available information does not describe the effect of prolonged contact between asphalt concrete and water on the structure of an embankment dam. In this research cylindrical asphalt concrete specimens with a void content similar to that used in impervious barriers of dams were fabricated and submerged in water for a prolonged period to simulate the conditions experienced by asphalt concrete placed inside an embankment dam as its core material. Subsequently, triaxial compression tests were conducted on the specimens. The results indicated that the asphalt concrete exhibited a reduction in strength because of the saturation process to which the material was subjected. However, no changes were observed in the mechanical response to prolonged contact with water for periods of up to 12 months.
Predicting camber, deflection, and prestress losses in prestressed concrete members.
DOT National Transportation Integrated Search
2011-07-01
Accurate predictions of camber and prestress losses for prestressed concrete bridge girders are essential to minimizing the frequency and cost of construction problems. The time-dependent nature of prestress losses, variable concrete properties, and ...
Systems Study of Precast Concrete Tunnel Liners
DOT National Transportation Integrated Search
1975-03-01
The study addresses precast concrete lining systems. Existing precast concrete systems designed or constructed in Europe, Japan, and the United States are evaluated. With these as a point of departure, designs for lining systems applicable to the spe...
Protection of structural concrete substructures.
DOT National Transportation Integrated Search
1992-12-01
The corrosion of reinforcing steel within concrete has always been a problem in construction of bridge decks. With low slump concrete and epoxy rebar, progress has been made in controlling the corrosion. There is concern, however, that the chloride a...
Concrete debris assessment for road construction activities : summary.
DOT National Transportation Integrated Search
2016-09-01
University of Florida researchers studied the possible : impact of recycled concrete aggregate (RCA) used in : roadway base layers on the acid/base balance of the : subsurface environment. They also examined a related : issue: management of concrete ...
Using recycled concrete in MDOT's transportation infrastructure : manual of practice.
DOT National Transportation Integrated Search
2011-08-01
"Crushed concrete aggregate (CCA) is granular material manufactured by removing, crushing, and : processing old concrete for reuse as an aggregate source in new construction. Although the Michigan : Department of Transportation (MDOT) has used CCA si...
Economic efficiency of application of innovative materials and structures in high-rise construction
NASA Astrophysics Data System (ADS)
Golov, Roman; Dikareva, Varvara; Gorshkov, Roman; Agarkov, Anatoly
2018-03-01
The article is devoted to the analysis of technical and economic efficiency of application of tube confined concrete structures in high-rise construction. The study of comparative costs of materials with the use of different supporting columns was carried out. The main design, operational, technological and economic advantages of the tube confined concrete technology were evaluated, conclusions were drawn about the high strength and deformation properties of axial compression of steel tubes filled with high-strength concrete. The efficiency of the tube confined concrete use is substantiated, which depends mainly on the scale factor and percentage of reinforcement affecting its load-bearing capacity.
DOT National Transportation Integrated Search
2010-12-01
As part of a national experiment sponsored by the FHWA under the Innovative Bridge Research and Construction (IBRC) : program, CDOT used self-consolidating concrete (SCC) to construct abutments, piers, and retaining walls on a bridge : replacement pr...
DOT National Transportation Integrated Search
2017-06-01
Recently developed corrosion-resistant reinforcing structural design guidelines were used to design, construct, and : assess a reinforced concrete bridge deck with high-strength ASTM A1035 CS steel bars. The bridge replacement is located : along the ...
DOT National Transportation Integrated Search
1992-12-01
The objective of this investigation was to evaluate the feasibility of using high-strength concrete in the design and construction of highway bridge structures. A literature search was conducted; a survey of five regional fabrication plants was perfo...
DOT National Transportation Integrated Search
1998-10-01
A study has been conducted to evaluate and analyze portland cement concrete (PCC) pavements in order to : develop recommendations for the design and construction of long-lived concrete pavements. It involved a : detailed evaluation and analysis of th...
Material Concerns: Evaluating Sulfur Concrete for use in the Lunar Environment
NASA Technical Reports Server (NTRS)
Grugel, Richard N.; Toutanji, Houssam
2006-01-01
On Earth sulfur "concrete" is an established construction material that has good mechanical properties, generally better than Portland cement, and can be used in corrosive environments. Troilite (FeS) has been found on the moon and raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. Troilite reduction to elemental sulfur and using it to make concrete in a lunar setting has been previously discussed. However, little has been experimentally done to evaluate its performance in the extreme lunar environment. This study subjected sets of sulfur concrete samples, prepared using JSC-1 lunar simulant, to I ) extended periods of high vacuum and 2) extreme temperature cycles. Here an overview of sulfur concrete and experimentally assessed properties, put in context of the lunar environment, is presented and discussed.
Properties of concrete blocks prepared with low grade recycled aggregates.
Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren
2009-08-01
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.
Performance of Waterless Concrete
NASA Technical Reports Server (NTRS)
Toutanji, Houssam; Evans, Steve; Grugel, Richard N.
2010-01-01
The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.
Plastometry for the Self-Compacting Concrete Mixes
NASA Astrophysics Data System (ADS)
Lapsa, V. Ā.; Krasnikovs, A.; Lusis, V.; Lukasenoks, A.
2015-11-01
Operative determination of consistence of self-compacting concrete mixes at plant or in construction conditions is an important problem in building practice. The Abram's cone, the Vebe's device, the U-box siphon, L-box or funnel tests are used in solving this problem. However, these field methods are targeted at determination of some indirect parameters of such very complicated paste-like material like concrete mix. They are not physical characteristics suitable for the rheological calculations of the coherence between the stress and strains, flow characteristics and the reaction of the concrete mix in different technological processes. A conical plastometer having higher precision and less sensitive to the inaccuracy of the tests in construction condition has been elaborated at the Concrete Mechanics Laboratory of RTU. In addition, a new method was elaborated for the calculation of plasticity limit τ0 taking into account the buoyancy force of the liquid or non-liquid concrete mix. In the present investigation rheological test of the concrete mix by use the plastometer and the method mentioned earlier was conducted for different self-compacting and not self-compacting concrete mixes.
Advantage of using high strength self compacting concrete for precast product
NASA Astrophysics Data System (ADS)
Murdono, Ferryandy; Agustin, Winda; Soeprapto, Gambiro; Sunarso, Mukhlis
2017-11-01
According to the development in the world of construction, the need for precast concrete also increases. Now the day there are many products with narrow range reinforcement and difficult dimensions. The ordinary concrete is difficult to pour in a mold with narrow range reinforcement inside without vibrator because the concrete can't fill in the gaps between the bars. SCC (Self Compacting Concrete) is a concrete that precast concrete industry needs to. The using of SCC also supports the green construction through the cement reducing and reducing the use of vibrator that requires not less energy. This research is using EFNARC standard as a condition of admission SCC (filling ability, passing ability, segregation resistance), and performed well against the application of the product by the production of Railway Sleeper without using a vibrator. The results of this study, the LB-2 and LB-3 qualified as SCC and compressive strength is expected that greater than 70 MPa, as well as products quality, is equal to standard and can be mass produced with the efficiency of the price of concrete up to 11%.
Nondestructive estimation of depth of surface opening cracks in concrete beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arne, Kevin; In, Chiwon; Kurtis, Kimberly
Concrete is one of the most widely used construction materials and thus assessment of damage in concrete structures is of the utmost importance from both a safety point of view and a financial point of view. Of particular interest are surface opening cracks that extend through the concrete cover, as this can expose the steel reinforcement bars underneath and induce corrosion in them. This corrosion can lead to significant subsequent damage in concrete such as cracking and delamination of the cover concrete as well as rust staining on the surface of concrete. Concrete beams are designed and constructed in suchmore » a way to provide crack depths up to around 13 cm. Two different types of measurements are made in-situ to estimate depths of real surface cracks (as opposed to saw-cut notches) after unloading: one based on the impact-echo method and the other one based on the diffuse ultrasonic method. These measurements are compared to the crack depth visually observed on the sides of the beams. Discussions are given as to the advantages and disadvantages of each method.« less
On Deterioration Mechanism of Concrete Exposed to Freeze-Thaw Cycles
NASA Astrophysics Data System (ADS)
Trofimov, B. Ya; Kramar, L. Ya; Schuldyakov, K. V.
2017-11-01
At present, concrete and reinforced concrete are gaining ground in all sectors of construction including construction in the extreme north, on shelves, etc. Under harsh service conditions, the durability of reinforced concrete structures is related to concrete frost resistance. Frost resistance tests are accompanied by the accumulation of residual dilation deformations affected by temperature-humidity stresses, ice formation and other factors. Porosity is an integral part of the concrete structure which is formed as a result of cement hydration. The prevailing hypothesis of a deterioration mechanism of concrete exposed to cyclic freezing, i.e. the hypothesis of hydraulic pressure of unfrozen water in microcapillaries, does not take into account a number of phenomena that affect concrete resistance to frost aggression. The main structural element of concrete, i.e. hardened cement paste, contains various hydration products, such as crystalline, semicrystalline and gel-like products, pores and non-hydrated residues of clinker nodules. These structural elements in service can gain thermodynamic stability which leads to the concrete structure coarsening, decrease in the relaxation capacity of concrete when exposed to cycling. Additional destructive factors are leaching of portlandite, the difference in thermal dilation coefficients of hydration products, non-hydrated relicts, aggregates and ice. The main way to increase concrete frost resistance is to reduce the macrocapillary porosity of hardened cement paste and to form stable gel-like hydration products.
Performance and Characterization of Geopolymer Concrete Reinforced with Short Steel Fiber
NASA Astrophysics Data System (ADS)
Abdullah, M. M. A. B.; Faris, M. A.; Tahir, M. F. M.; Kadir, A. A.; Sandu, A. V.; Mat Isa, N. A. A.; Corbu, O.
2017-06-01
In the recent years, geopolymer concrete are reporting as the greener construction technology compared to conventional concrete that made up of ordinary Portland cement. Geopolymer concrete is an innovative construction material that utilized fly ash as one of waste material in coal combustion industry as a replacement for ordinary Portland cement in concrete. The uses of fly ash could reduce the carbon dioxide emission to the atmosphere, redundant of fly ash waste and costs compared to ordinary Portland cement concrete. However, the plain geopolymer concrete suffers from numerous drawbacks such as brittleness and low durability. Thus, in this study the addition of steel fiber is introduced in plain geopolymer concrete to improve its mechanical properties especially in compressive and flexural strength. Characterization of raw materials also determined by using chemical composition analysis. Short type of steel fiber is added to the mix in weight percent of 1 wt%, 3 wt%, 5 wt% and 7 wt% with fixed molarity of sodium hydroxide of 12M and solid to liquid ratio as 2.0. The addition of steel fiber showed the excellent improvement in the mechanical properties of geopolymer concrete that are determined by various methods available in the literature and compared with each other.
DOT National Transportation Integrated Search
2015-07-01
The overall goal of this project is the experimental evaluation and design of unfilled and concrete-filled FRP composite piles for load-bearing in bridges. This report covers Task 4B, Materials and Construction Specifications. : This technical report...
DOT National Transportation Integrated Search
2009-01-01
The importance of rapid construction technologies has been recognized by the Federal Highway Administration (FHWA) and the Iowa : DOT Office of Bridges and Structures. Black Hawk County (BHC) has developed a precast modified beam-in-slab bridge (PMBI...
Innovative solutions to buried Portland concrete cement roadways : construction report.
DOT National Transportation Integrated Search
1999-01-01
Maine has hundreds of miles of highway that were constructed of Portland Concrete Cement : (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that time these : same highways have been paved and widened to 6.7 or 7 meter...
Introduction to Concrete Masonry. Introduction to Construction Series. Instructor Edition.
ERIC Educational Resources Information Center
Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.
This competency-based curriculum guide on the specialty area of concrete masonry is part of the Introduction to Construction series. The series is designed with the flexible training requirements of open shop contractors, preapprenticeship programs, multicraft high school programs, technology education programs, and cooperative education programs…
186. Photographic copy of original construction drawing dated March 28, ...
186. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; MISCELLANEOUS VERTICAL SECTIONS; THROUGH PANELS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
179. Photographic copy of original construction drawing dated July, 1932 ...
179. Photographic copy of original construction drawing dated July, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; TERMINAL BOARD FOR PANEL DEVICES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
181. Photographic copy of original construction drawing dated March 28, ...
181. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; LOCATION OF TERMINAL BOARDS AND CONDUCTS. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
185. Photographic copy of original construction drawing dated March 28, ...
185. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; CONTRACTION JOINT METER INSTALLATION. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
182. Photographic copy of original construction drawing dated March 28, ...
182. Photographic copy of original construction drawing dated March 28, 1932 (from Record Group 115, Denver Branch of the National Archives, Denver). VOLUME CHANGE IN MASS CONCRETE; OWYHEE DAM CONCRETE RESEARCH FOR HOOVER DAM; LAYOUT OF INTERNAL STRAIN MEASURING DEVICES. - Owyhee Dam, Across Owyhee River, Nyssa, Malheur County, OR
DOT National Transportation Integrated Search
2009-08-01
The objective of this study is to quantify the energy and environment impacts from using recycled materials : for highway construction. Specifically, when recycled asphalt pavement is re-used for producing hot mix : asphalt or when recycled concrete ...
DOT National Transportation Integrated Search
1998-10-01
A study has been conducted to evaluate and analyze Portland cement concrete (PCC) pavements in order to develop recommendations for the design and construction of long-lived concrete pavements. In involved a detailed evaluation and analysis of the PC...
DOT National Transportation Integrated Search
2005-01-01
History: LADOTD has been gradually introducing high performance, high strength concrete into its bridge construction program. At the same time, LTRC has been sponsoring research work to address design and construction issues related to the utilizatio...
Longitudinal cracking in widened portland cement concrete pavements.
DOT National Transportation Integrated Search
2013-02-01
The Wisconsin Department of Transportation constructed certain concrete pavements with lane widths greater : than the standard 12 feet in order to reduce stress and deflection caused by vehicle tires running near the edge of : the concrete slabs. Man...
Fly ash in concrete : final report.
DOT National Transportation Integrated Search
1990-08-01
This study was initiated to develop information regarding the use of fly ash in portland cement concrete for state construction projects. : Concrete mixes containing 10%, 20%, 30%, 40% and 60% fly ash were evaluated in the laboratory in combination w...
Concrete debris assessment for road construction activities : final report.
DOT National Transportation Integrated Search
2016-08-01
Two distinct but related issues of importance to FDOT were investigated: (1) the possible impact of : recycled concrete aggregate (RCA) used as road base on the subsurface environment and (2) the : management of concrete grinding residuals (CGR) resu...
7. Detail view of reinforced concrete archrings comprising dam's upstream ...
7. Detail view of reinforced concrete arch-rings comprising dam's upstream face. Impressions of the wooden formwork used in construction are visible in the concrete. - Little Rock Creek Dam, Little Rock Creek, Littlerock, Los Angeles County, CA
Investigation of concrete containing slag : Hampton River Bridge.
DOT National Transportation Integrated Search
1986-01-01
The study evaluated the properties of concretes containing slag in a 50% replacement of the portland cement to assess their suitability as an alternative to the portland cement concretes normally used in the construction of bridge substructures. For ...
Organic compounds in concrete from demolition works.
Van Praagh, M; Modin, H; Trygg, J
2015-11-01
This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. Copyright © 2015. Published by Elsevier Ltd.
Investigation of low compressive strengths of concrete in paving, precast and structural concrete
DOT National Transportation Integrated Search
2000-08-01
This research examines the causes for a high incidence of catastrophically low compressive strengths, primarily on structural concrete, during the 1997 construction season. The source for the low strengths was poor aggregate-paste bond associated wit...
Seismic Performance of Self-Consolidating Concrete Bridge Columns : Research Brief
DOT National Transportation Integrated Search
2017-09-01
Rectangular bridge columns in high seismic areas require high amounts of confining steel. Self-consolidating concrete is ideal for the construction of concrete members with high steel congestion. However, there is lack of data on the seismic performa...
Implementation of the concrete maturity meter for Maryland : December 2011.
DOT National Transportation Integrated Search
2011-12-01
The process of waiting for concrete to attain its desired strength for certain construction : applications can pose one of two problems. The concrete strength may be overestimated, : which creates a safety concern for workers and the general public. ...
Implementation of the concrete maturity meter for Maryland : November 2011.
DOT National Transportation Integrated Search
2011-11-01
The process of waiting for concrete to attain its desired strength for certain construction : applications can pose one of two problems. The concrete strength may be overestimated, : which creates a safety concern for workers and the general public. ...
Innovative concrete bridging systems for pedestrian bridges : implementation and monitoring.
DOT National Transportation Integrated Search
2013-08-01
Two precast, prestressed pedestrian bridges were designed for rapid construction in Rolla, MO, utilizing high-strength concrete (HSC) : and high-strength self-consolidating concrete (HS-SCC) with a target 28 day compressive strength of 68.9 MPa (10,0...
Implementation of the concrete maturity meter for Maryland : research summary.
DOT National Transportation Integrated Search
2011-12-01
Problem: : The process of waiting for concrete to attain its desired strength for certain : construction applications can pose one of two problems. The concrete strength : may be overestimated, which creates a safety concern for workers and the gener...
0-5997 : structural assessment of "D" regions affected by premature concrete deterioration.
DOT National Transportation Integrated Search
2014-08-01
Reinforced concrete bridge piers in Texas have : shown signs of concrete deterioration in the : form of map cracking within a few years after : construction. The pattern cracking is associated : with the deleterious effects of alkali-silica : reactio...
Construction and demolition waste indicators.
Mália, Miguel; de Brito, Jorge; Pinheiro, Manuel Duarte; Bravo, Miguel
2013-03-01
The construction industry is one of the biggest and most active sectors of the European Union (EU), consuming more raw materials and energy than any other economic activity. Furthermore, construction waste is the commonest waste produced in the EU. Current EU legislation sets out to implement construction and demolition waste (CDW) prevention and recycling measures. However it lacks tools to accelerate the development of a sector as bound by tradition as the building industry. The main objective of the present study was to determine indicators to estimate the amount of CDW generated on site both globally and by waste stream. CDW generation was estimated for six specific sectors: new residential construction, new non-residential construction, residential demolition, non-residential demolition, residential refurbishment, and non-residential refurbishment. The data needed to develop the indicators was collected through an exhaustive survey of previous international studies. The indicators determined suggest that the average composition of waste generated on site is mostly concrete and ceramic materials. Specifically for new residential and new non-residential construction the production of concrete waste in buildings with a reinforced concrete structure lies between 17.8 and 32.9 kg m(-2) and between 18.3 and 40.1 kg m(-2), respectively. For the residential and non-residential demolition sectors the production of this waste stream in buildings with a reinforced concrete structure varies from 492 to 840 kg m(-2) and from 401 to 768 kg/m(-2), respectively. For the residential and non-residential refurbishment sectors the production of concrete waste in buildings lies between 18.9 and 45.9 kg/m(-2) and between 18.9 and 191.2 kg/m(-2), respectively.
Mukharjee, Bibhuti Bhusan; Barai, Sudhirkumar V
2015-06-01
The present work addresses the development of novel construction materials utilising commercial grade nano-silica and recycled aggregates retrieved from construction and demolition waste. For this, experimental work has been carried out to examine the influence of nano-silica and recycled aggregates on compressive strength, modulus of elasticity, water absorption, density and volume of voids of concrete. Fully natural and recycled aggregate concrete mixes are designed by replacing cement with three levels (0.75%, 1.5% and 3%) of nano-silica. The results of the present investigation depict that improvement in early days compressive strength is achieved with the incorporation of nano-silica in addition to the restoration of reduction in compressive strength of recycled aggregate concrete mixes caused owing to the replacement of natural aggregates by recycled aggregates. Moreover, the increase in water absorption and volume of voids with a reduction of bulk density was detected with the incorporation of recycled aggregates in place of natural aggregates. However, enhancement in density and reduction in water absorption and volume of voids of recycled aggregate concrete resulted from the addition of nano-silica. In addition, the results of the study reveal that nano-silica has no significant effect on elastic modulus of concrete. © The Author(s) 2015.
Post-construction monitoring of a Core-Loc™ breakwater using tripod-based LiDAR
Podoski, Jessica H.; Bawden, Gerald W.; Bond, Sandra; Smith, Thomas D.; Foster, James
2010-01-01
The goal of the technology application described herein is to determine whether breakwater monitoring data collected using Tripod (or Terrestrial) Light Detection and Ranging (T-LiDAR) can give insight into processes such as how Core-Loc™ concrete armour units nest following construction, and in turn how settlement affects armour layer stability, concrete cap performance, and armour unit breakage. A further objective is that this information can then be incorporated into the design of future projects using concrete armour units. The results of this application of T-LiDAR, including the challenges encountered and the conclusions drawn regarding initial concrete armour unit movement will be presented in this paper.
Strength and Microstructure of Concrete with Iron Ore Tailings as Replacement for River Sand
NASA Astrophysics Data System (ADS)
Umara Shettima, Ali; Ahmad, Yusof; Warid Hussin, Mohd; Zakari Muhammad, Nasiru; Eziekel Babatude, Ogunbode
2018-03-01
River Sand is one of the basic ingredients used in the production of concrete. Consequently, continuous consumption of sand in construction industry contributes significantly to depletion of natural resources. To achieve more sustainable construction materials, this paper reports the use of iron ore tailings (IOT) as replacement for river sand in concrete production. IOT is a waste product generated from the production of iron ore and disposed to land fill without any economic value. Concrete mixtures containing different amount of IOT were designed for grade C30 with water to cement ratio of 0.60. The percentage ratios of the river sand replacements by IOT were 25%, 50%, 75% and 100%. Concrete microstructure test namely, XRD and Field Emission Scanned Electron Microscopic/Energy dispersive X-ray Spectroscopy (FESEM/EDX) were conducted for control and IOT concretes in order to determine the interaction and performance of the concrete containing IOT. Test results indicated that the slump values of 130 mm and 80 to 110 mm were recorded for the control and IOT concretes respectively. The concrete sample of 50% IOT recorded the highest compressive strength of 37.7 MPa at 28 days, and the highest flexural strength of 5.5 MPa compared to 4.7 MPa for reference concrete. The texture of the IOT is rough and angular which was able to improve the strength of the concrete.
Respirable concrete dust--silicosis hazard in the construction industry.
Linch, Kenneth D
2002-03-01
Concrete is an extremely important part of the infrastructure of modern life and must be replaced as it ages. Many of the methods of removing, repairing, or altering existing concrete structures have the potential for producing vast quantities of respirable dust. Since crystalline silica in the form of quartz is a major component of concrete, airborne respirable quartz dust may be produced during construction work involving the disturbance of concrete, thereby producing a silicosis hazard for exposed workers. Silicosis is a debilitating and sometimes fatal lung disease resulting from breathing microscopic particles of crystalline silica. Between 1992 and 1998, the National Institute for Occupational Safety and Health (NIOSH) made visits to construction projects where concrete was being mechanically disturbed in order to obtain data concerning respirable crystalline silica dust exposures. The construction activities studied included: abrasive blasting, concrete pavement sawing and drilling, and asphalt/concrete milling. Air samples of respirable dust were obtained using 10-mm nylon cyclone pre-separators, 37-mm polyvinyl chloride (PVC) filters, and constant-flow pumps calibrated at 1.7 L/min. In addition, high-volume respirable dust samples were obtained on 37-mm PVC filters using 1/2" metal cyclones (Sensidyne model 18) and constant-flow pumps calibrated at 9.0 L/min. Air sample analysis included total weight gain by gravimetric analysis according to NIOSH Analytical Method 600 and respirable crystalline silica (quartz and cristobalite) using x-ray diffraction, as per NIOSH Analytical Method 7500. For abrasive blasting of concrete structures, the respirable crystalline silica (quartz) concentration ranged up to 14.0 mg/m3 for a 96-minute sample resulting in an eight-hour time-weighted average (TWA) of 2.8 mg/m3. For drilling concrete highway pavement the respirable quartz concentrations ranged up to 4.4 mg/m3 for a 358-minute sample, resulting in an eight-hour TWA of 3.3 mg/m3. For concrete wall grinding during new building construction the respirable quartz measurements ranged up to 0.66 mg/m3 for a 191-minute sample, resulting in an eight-hour TWA of 0.26 mg/m3. The air sampling results for concrete sawing ranged up to 14.0 mg/m3 for a 350-minute sample resulting in an eight-hour TWA of 10.0 mg/m3. During the milling of asphalt from concrete highway pavement, the sampling indicated a respirable quartz concentration ranging up to 0.34 mg/m3 for a 504-minute sample, resulting in an eight-hour TWA of 0.36 mg/m3. The results of this work indicate the potential for respirable quartz concentrations involving disturbance of concrete to range up to 280 times the NIOSH Recommended Exposure Limit (REL) of 0.05 mg/m3 assuming exposure for an eight- to ten-hour workday. Considering the aging of the concrete infrastructure in the United States, these results pose a challenge to all who have an interest in preventing silica exposures and the associated disease silicosis.
DOT National Transportation Integrated Search
1990-12-01
This report covers the construction of open-graded asphalt concrete test sections using one conventional and three different polymerized binders. The binders were: 1) Chevron's conventional AC-20 as a control, 2) Elf Aquitane's Styrelf with SB polyme...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ...
15. ELECTRICAL REACTOR SHELVES, CONSTRUCTED OF CONCRETE IN THE BASEMENT ALONG EAST WALL, WITH REACTOR PADS BEHIND FRAMED AND SCREENED CAGE, AND PORCELAIN-LINED CABLE DUCTS VISIBLE IN WALL NEAR FLOOR AT REAR - Bonneville Power Administration South Bank Substation, I-84, South of Bonneville Dam Powerhouse, Bonneville, Multnomah County, OR
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL ...
3. CONSTRUCTION DETAIL WEST PORTAL SHOWING CONCRETE LINING. NOTE DRILL HOLES IN GRANITE AT RIGHT EDGE. US GEOLOGICAL SURVEY BENCHMARK AT BOTTOM CORNER OF SIDEWALK - 4,621 FEET. SLOT IN FAR WALL FOR SEMAPHORE OF OBSOLETE CARBON MONOXIDE WARNING SYSTEM. - Wawona Tunnel, Wawona Road through Turtleback Dome, Yosemite Village, Mariposa County, CA
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Requirements for precast concrete. 1926.704 Section 1926.704 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry...
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for precast concrete. 1926.704 Section 1926.704 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry...
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for precast concrete. 1926.704 Section 1926.704 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry...
29 CFR 1926.704 - Requirements for precast concrete.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for precast concrete. 1926.704 Section 1926.704 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry...
High-early-strength high-performance concrete for rapid pavement repair.
DOT National Transportation Integrated Search
2016-01-01
In the construction industry, High Early-Age Strength (HES) concrete was : traditionally regarded as a concrete that achieves a loading strength in matter of days : rather than weeks. However, in the last 10-15 years, this time has been reduced down ...
Physical Characteristics of Laboratory Tested Concrete as a Substituion of Gravel on Normal Concrete
NASA Astrophysics Data System (ADS)
Butar-butar, Ronald; Suhairiani; Wijaya, Kinanti; Sebayang, Nono
2018-03-01
Concrete technology is highly potential in the field of construction for structural and non-structural construction. The amount uses of this concrete material raise the problem of solid waste in the form of concrete remaining test results in the laboratory. This waste is usually just discarded and not economically valuable. In solving the problem, this experiment was made new materials by using recycle material in the form of recycled aggregate which aims to find out the strength characteristics of the used concrete as a gravel substitution material on the normal concrete and obtain the value of the substitution composition of gravel and used concrete that can achieve the strength of concrete according to the standard. Testing of concrete characteristic is one of the requirements before starting the concrete mixture. This test using SNI method (Indonesian National Standard) with variation of comparison (used concrete : gravel) were 15: 85%, 25: 75%, 35:65%, 50:50 %, 75: 25%. The results of physical tests obtained the mud content value of the mixture gravel and used concrete is 0.03 larger than the standard of SNI 03-4142-1996 that is equal to 1.03%. so the need watering or soaking before use. The water content test results show an increase in the water content value if the composition of the used concrete increases. While the specific gravity value for variation 15: 85% until 35: 65% fulfilled the requirements of SNI 03-1969-1990. the other variasion show the specifics gravity value included on the type of light materials.
NASA Astrophysics Data System (ADS)
Ananthkumar, M.; Sathyan, Dhanya; Prabha, B.
2018-02-01
The cost of construction materials is increasing day by day because of high demand, scarcity of raw materials and high price of energy. From the view point of energy saving and over consumption of resources, the use of alternative constituents in construction materials is now a global concern. From this, the extensive research and development works towards exploring new ingredients are required for producing sustainable and environment friendly construction materials. Bagasse pulp liquor is one such material that can be used as a chemical admixture which is obtained as a by-product of paper manufacturing process. Around 5 million tons of bagasse pulp is obtained throughout the world each year. since the material is a waste product from paper industry, this can be changed as a admixture by its effective use in concrete. In the present investigation black pulp liquor is added to fresh concrete in different dosages, the concrete is then tested for workability, compressive strength, flexural, split tensile strength and setting time. From results it is shown that 1% replacement of water with black pulp liquor increases the fresh properties of the concrete, 2% replacement of water with black pulp liquor increases the mechanical properties of the concrete and acts as a set retarder.
NASA Astrophysics Data System (ADS)
Karolina, R.; Putra, A. L. A.
2018-02-01
The Development of concrete technology is continues to grow. The requisite for efficient constructions that are often viewed in terms of concrete mechanical behavior, application on the field, and cost estimation of implementation increasingly require engineers to optimize construction materials, especially for concrete materials. Various types of concrete have now been developed according to their needs, such as high strength concrete. On high strength concrete design, it is necessary to consider several factors that will affect the reach of the quality strength, Those are cement, water cement ratio (w/c), aggregates, and proper admixture. In the use of natural mineral, it is important for an engineer to keep an eye on the natural conditions that have been explored. So the selection of aggregates as possible is a material that is not causing nature destruction. On this experiment the use of steel slag from PT.Growth Sumatra Industry as a substitute of coarse and fine aggregate, and volcanic ash of mount Sinabung as microsilka in concrete mixture substituted to create high strength concrete that is harmless for the environment. The use of mount sinabung volcanic ash as microsilika coupled with the use of Master Glenium Sky 8614 superplasticizer. This experiment intend to compare high strength concrete based slag steel as the main constituent aggregates and high strength concrete with a conventional mixture. The research result for 28 days old concrete shows that conventional concrete compressive strength is 67.567 MPa, slag concrete 75.958 Mpa, conventional tensile strength 5.435 Mpa while slag concrete 5.053 Mpa, conventional concrete bending strength 44064.96 kgcm while concrete slag 51473.94 kgcm and modulus of conventional concrete fracture 124.978 kg / cm2 while slag concrete 145.956 kg / cm2. Both concrete slump values shows similar results due to the use of superplasticizer.
Investigation of early timber–concrete composite bridges in the United States
James P. Wacker; Alfredo Dias; Travis K. Hosteng
2017-01-01
The use of timberâconcrete composite (TCC) bridges in the United States dates back to circa 1925. Two different TCC systems were constructed during this early period. The first system included a longitudinal nail-laminated deck composite with a concrete deck top layer. The second system included sawn timber stringers supporting a concrete deck top layer. Records...
Use of formwork systems in high-rise construction
NASA Astrophysics Data System (ADS)
Kurakova, Oksana
2018-03-01
Erection of high quality buildings and structures within a reasonable time frame is the crucial factor for the competitiveness of any construction organization. The main material used in high-rise construction is insitu reinforced concrete. The technology of its use is directly related to the use of formwork systems. Formwork systems and formwork technologies basically determine the speed of construction and labor intensity of concreting operations. Therefore, it is also possible to achieve the goal of reducing the construction time and labor intensity of works performed by improving the technology of formwork systems use. Currently there are unresolved issues in the area of implementation of monolithic technology projects, and problems related to the selection of a formwork technology, high labor intensity of works, poor quality of materials and structures, etc. are the main ones. The article presents organizational and technological measures, by means of which introduction it is possible to shorten the duration of construction. A comparison of operations performed during formwork installation according to the conventional technology and taking into account the implemented organizational and technological measures is presented. The results of a comparative analysis of economic efficiency assessments are also presented on the example of a specific construction project before and after the implementation of the above mentioned measures. The study showed that introduction of the proposed organizational and technological model taking into account optimization of reinforcing and concreting works significantly improves the efficiency of a high-rise construction project. And further improvement of technologies for the use of insitu reinforced concrete is a promising direction in the construction of high-rise buildings.
Repair and protection of hydraulic cement concrete bridge decks.
DOT National Transportation Integrated Search
1994-01-01
The report is an updated version of "A Manual for the Repair and Protection of Hydraulic Cement Concrete Bridge Decks" (VTRC 90-TAR2). The report was prepared for Chapter 2 of the Hydraulic Cement Concrete Construction School Study Guide which is dis...
Rapid curing and strength relationships of concrete : final report.
DOT National Transportation Integrated Search
1985-05-01
The rapid rate of construction has created a need to have information on the strength of concrete at the earliest possible time. Having to wait 28 days before the strength can be determined can cause serious problems if inferior concrete had been use...
Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.
DOT National Transportation Integrated Search
2011-04-01
The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...
Use of innovative concrete mixes for improved constructability and sustainability of bridge decks.
DOT National Transportation Integrated Search
2013-11-01
Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of : mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks...
DOT National Transportation Integrated Search
2014-08-01
This project assessed the use of ASTM A706 Grade 80 reinforcing bars in reinforced concrete columns. : Grade 80 is not currently allowed in reinforced concrete columns due to lack of information on the : material characteristics and column performanc...
Design of ultra high performance concrete as an overlay in pavements and bridge decks.
DOT National Transportation Integrated Search
2014-08-01
The main objective of this research was to develop ultra-high performance concrete (UHPC) as a reliable, economic, low carbon foot : print and durable concrete overlay material that can offer shorter traffic closures due to faster construction. The U...
The Feasibility of Palm Kernel Shell as a Replacement for Coarse Aggregate in Lightweight Concrete
NASA Astrophysics Data System (ADS)
Itam, Zarina; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Issa Ayash, Usama
2016-03-01
Implementing sustainable materials into the construction industry is fast becoming a trend nowadays. Palm Kernel Shell is a by-product of Malaysia’s palm oil industry, generating waste as much as 4 million tons per annum. As a means of producing a sustainable, environmental-friendly, and affordable alternative in the lightweight concrete industry, the exploration of the potential of Palm Kernel Shell to be used as an aggregate replacement was conducted which may give a positive impact to the Malaysian construction industry as well as worldwide concrete usage. This research investigates the feasibility of PKS as an aggregate replacement in lightweight concrete in terms of compressive strength, slump test, water absorption, and density. Results indicate that by using PKS for aggregate replacement, it increases the water absorption but decreases the concrete workability and strength. Results however, fall into the range acceptable for lightweight aggregates, hence it can be concluded that there is potential to use PKS as aggregate replacement for lightweight concrete.
Nuclear reactor containment structure with continuous ring tunnel at grade
Seidensticker, Ralph W.; Knawa, Robert L.; Cerutti, Bernard C.; Snyder, Charles R.; Husen, William C.; Coyer, Robert G.
1977-01-01
A nuclear reactor containment structure which includes a reinforced concrete shell, a hemispherical top dome, a steel liner, and a reinforced-concrete base slab supporting the concrete shell is constructed with a substantial proportion thereof below grade in an excavation made in solid rock with the concrete poured in contact with the rock and also includes a continuous, hollow, reinforced-concrete ring tunnel surrounding the concrete shell with its top at grade level, with one wall integral with the reinforced concrete shell, and with at least the base of the ring tunnel poured in contact with the rock.
[Occupational dermatitis in construction and public workers].
Frimat, Paul
2002-09-01
Construction workers perform a large variety of duties concerned with building, repairing, and wrecking buildings, bridges, dams, roads, railways and so on. The work may include mixing, pouring and spreading concrete, asphalt, gravel and other materials. Despite the increasing mechanization of construction and the more frequent use of precast concrete sections, contact with wet cement still occurs, particularly in small jobs. The work is hard physical labor, often under difficult conditions, including hot, cold, and wet weather. Occupational diseases of the skin in the construction have paralleled industrial development.
Reinforce Design and Construction Issues with a Comprehensive Laboratory Project.
ERIC Educational Resources Information Center
Schemmel, John J.
In 1996, a comprehensive project was introduced in the first course of Reinforced Concrete Design, CVEG 4303 at the University of Arkansas. The primary purpose of this project was to highlight issues related to the construction of reinforced concrete elements. This semester-long project involves the design, fabrication, and testing of 8-foot long…
Selection of suitable NDT methods for building inspection
NASA Astrophysics Data System (ADS)
Pauzi Ismail, Mohamad
2017-11-01
Construction of modern structures requires good quality concrete with adequate strength and durability. Several accidents occurred in the civil constructions and were reported in the media. Such accidents were due to poor workmanship and lack of systematic monitoring during the constructions. In addition, water leaking and cracking in residential houses was commonly reported too. Based on these facts, monitoring the quality of concrete in structures is becoming more and more important subject. This paper describes major Non-destructive Testing (NDT) methods for evaluating structural integrity of concrete building. Some interesting findings during actual NDT inspections on site are presented. The NDT methods used are explained, compared and discussed. The suitable methods are suggested as minimum NDT methods to cover parameters required in the inspection.
DOT National Transportation Integrated Search
2014-08-01
The evaluation of the curing process of a fresh concrete is critical to its construction process and monitoring. Traditionally stress : sensor and compressive wave sensor were often used to measure concrete properties. Bender element (BE) test, a non...
Evaluation of Canadian unconfined aggregate freeze-thaw tests for identifying nondurable aggregates.
DOT National Transportation Integrated Search
2012-06-01
Concrete is the most widely used material in construction. Aggregates contribute 60% to 75% of the total volume : of concrete. The aggregates play a key role in concrete durability. The U.S. Midwest has many aggregates that can : show distress in the...
Rapid test methods for the evaluation of concrete properties.
DOT National Transportation Integrated Search
1982-01-01
The objective of the project was to place a CERL/Kelly-Vail testing unit and a microwave oven in the field to perform tests of plastic concrete on construction projects. : The CERL/K-V tests were to determine water and cement content of the concrete ...
Relationship between properties of hardened concrete and bridge deck performance in Virginia.
DOT National Transportation Integrated Search
1985-01-01
Among Virginia's research efforts during the 1960's was the study of concrete placed in 17 randomly selected bridge decks during and subsequent to their construction in 1963, with the purpose of relating the properties of the concrete as placed to it...
DOT National Transportation Integrated Search
2011-04-01
The use of high performance concretes to provide longer bridge spans has been limited due to the capacity of existing infrastructure to handle the load of the girders during transportation. The use of High Strength Lightweight Concrete (HSLW) can pro...
DOT National Transportation Integrated Search
2013-11-01
Bridge deck crack surveys were performed on twelve bridges on US-59 south of Lawrence, Kansas, to determine the effects of mixture proportions, concrete properties, deck type, and girder type on the crack density of reinforced concrete bridge decks.
DOT National Transportation Integrated Search
2011-06-01
Damage to structures due to vibrations from pile driving operations is of great concern to engineers. This : research has stemmed from the need to address potential damage to concrete-filled pipe piles and recently : placed concrete structures that c...
A Review of the Mechanical Properties of Concrete Containing Biofillers
NASA Astrophysics Data System (ADS)
Ezdiani Mohamad, Mazizah; Mahmood, Ali A.; Min, Alicia Yik Yee; Khalid, Nur Hafizah A.
2016-11-01
Sustainable construction is a rapidly increasing research area. Investigators of all backgrounds are using industrial and agro wastes to replace Portland cement in concrete to reduce greenhouse emissions and the corresponding decline in general health. Many types of wastes have been used as cement replacements in concrete including: fly ash, slag and rice husk ash in addition to others. This study investigates the possibility of producing a sustainable approach to construction through the partial replacement of concrete using biofillers. This will be achieved by studying the physical and mechanical properties of two widely available biological wastes in Malaysia; eggshell and palm oil fuel ash (POFA). The mechanical properties tests that were studied and compared are the compression, tensile and flexural tests.
Investigations on Fresh and Hardened Properties of Recycled Aggregate Self Compacting Concrete
NASA Astrophysics Data System (ADS)
Revathi, P.; Selvi, R. S.; Velin, S. S.
2013-09-01
In the recent years, construction and demolition waste management issues have attracted the attention from researchers around the world. In the present study, the potential usage of recycled aggregate obtained from crushed demolition waste for making self compacting concrete (SCC) was researched. The barriers in promoting the use of recycled material in new construction are also discussed. In addition, the results of an experimental study involving the use of recycled concrete aggregate as coarse aggregates for producing self-compacting concrete to study their flow and strength characteristics are also presented. Five series of mixture were prepared with 0, 25, 50, 75, and 100 % coarse recycled aggregate adopting Nan Su's mix proportioning method. The fresh concrete properties were evaluated through the slump flow, J-ring and V-funnel tests. Compressive and tensile strengths were also determined. The results obtained showed that SCC could be successfully developed by incorporating recycled aggregates.
Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface
NASA Technical Reports Server (NTRS)
Grugel, R. N.
2008-01-01
Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.
609th Iraqi National Guard Battalion Garrison, Thi Qar Governorate, Iraq
2006-07-25
views of structural members (reinforced concrete footers, columns , beams , floor, and roof slabs). Mechanical drawings included plumbing plans and...well as reinforced concrete columns and beams . The exterior walls were constructed with sand lime block. Although the assessment team did not...foundation support for the perimeter wall included reinforced concrete footers to support the columns and a reinforced concrete tie beam under the wall
1984-08-01
This pasuivates and protects the steel rebars against corrosion . As highway construction has expanded. such concrete has gone into pave- ments and...experts are beginning to recognize attack unrelated to rebar corrosion (Stevens 1977). Concrete and masonry may become "punky" from salt .0 and...departments. Corrosion aspects The alkalinity (high pH) of concrete tends to passivate embedded steel " . reinforcement ( rebars ). Probably it was earlier
Debris Hazards Due to Overloaded Conventional Construction Facades
2015-12-01
hazards to buildings. This work will present results for experiments involving conventional façade materials (glass, concrete , and mason- ry) that have...ex- periments and a discussion of the distribution parameters are presented. Keywords: Blast, fragmentation, concrete , masonry, debris... concrete , glass, and concrete masonry. It was also desired to produce data for which the state of stress and strain rates could be estimated. There were
Croymans, Tom; Schroeyers, Wouter; Krivenko, Pavel; Kovalchuk, Oleksandr; Pasko, Anton; Hult, Mikael; Marissens, Gerd; Lutter, Guillaume; Schreurs, Sonja
2017-03-01
Bauxite residue, also known as red mud, can be used as an aggregate in concrete products. The study involves the radiological characterization of different types of concretes containing bauxite residue from Ukraine. The activity concentrations of radionuclides from the 238 U, 232 Th decay series and 40 K were determined for concrete mixture samples incorporating 30, 40, 50, 60, 75, 85 and 90% (by mass) of bauxite residue using gamma-ray spectrometry with a HPGe detector. The studied bauxite residue can, from a radiological point of view using activity concentration indexes developed by Markkanen, be used in concrete for building materials and in road construction, even in percentages reaching 90% (by mass). However, when also occupational exposure is considered it is recommended to incorporate less than 75% (by mass) of Ukrainian bauxite residue during the construction of buildings in order to keep the dose to workers below the dose criterion used by Radiation Protection (RP) 122 (0.3 mSv/a). Considering RP122 for evaluation of the total effective dose to workers no restrictions are required for the use of the Ukrainian bauxite residue in road construction. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOT National Transportation Integrated Search
2012-05-01
Premature deterioration of concrete pavement due to D-Cracking has been a problem in Kansas since the 1930s. : Limestone is the major source of coarse aggregate in eastern Kansas where the majority of the concrete pavements are : constructed. D-Crack...
1993-07-01
Industrial applications of modified sulfur concrete (MSC) have been extremely successful in areas of high corrosive activity such as load-bearing...The ductility of MSC in the postyield regime, however, has not been determined in these tests. Bond strength, Modified sulfur concrete, Strength
DOT National Transportation Integrated Search
2014-01-01
Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) provided the opportunity to further study the time-dependent properties of SCC mix and its long-term performance; considering the results and recommendations of previous ...
DOT National Transportation Integrated Search
2014-01-01
Construction of a new prestressed bridge with Self-Consolidating Concrete (SCC) : provided the opportunity to further study the time-dependent properties of SCC mix and : its long-term performance; considering the results and recommendations of previ...
DOT National Transportation Integrated Search
2006-05-01
This research study, sponsored by the Federal Highway Administration, summarizes the field performance of eight high-early-strength (HES) : concrete patches between 1994 and 1998. The patches were constructed under the Strategic Highway Research Prog...
Properties and uses of concrete, appendix B
NASA Technical Reports Server (NTRS)
Corley, Gene
1992-01-01
Concretes that can now be formed have properties which may make them valuable for lunar or space construction. These properties include high compressive strength, good flexural strength (when reinforced), and favorable responses to temperature extremes (even increased strength at low temperatures). These and other properties of concrete are discussed.
Study of the lateral pressure of fresh concrete as related to the design of drilled shafts.
DOT National Transportation Integrated Search
1983-11-01
A series of tests were conducted to determine the effect of the consistency of : concrete, as measured by the slump test, on the lateral pressure of concrete. : Testing conditions simulated the construction of drilled shafts as practiced by the : Tex...
DOT National Transportation Integrated Search
2013-03-01
In recent years, the use of fi ber reinforced polymer (FRP) tube-encased concrete columns for new construction and rebuilding : of engineering structures has increased. The purpose in FRP tube-encased concrete columns is to replace the steel rebar by...
DOT National Transportation Integrated Search
2012-05-01
Introduction: Premature deterioration of concrete pavement due to D-cracking has been a problem in Kansas since the 1930s. Limestone is the major source of coarse aggregate in eastern Kansas where the majority of the concrete pavements are constructe...
2011-08-01
concrete box beams . Each pier is constructed of two drilled shafts with cast-in-place concrete cap beams to support the precast concrete wall beams ...and nose cell. The hollow, rectangular beams have an outside dimension of 10 feet by 10 feet. The weight of each of the precast beams is...a concrete-filled sheet-pile nose cell, which support five precast concrete beams . An example of this flexible impact beam is shown in Figures 1.5
Cement and Concrete Nanoscience and Nanotechnology
Raki, Laila; Beaudoin, James; Alizadeh, Rouhollah; Makar, Jon; Sato, Taijiro
2010-01-01
Concrete science is a multidisciplinary area of research where nanotechnology potentially offers the opportunity to enhance the understanding of concrete behavior, to engineer its properties and to lower production and ecological cost of construction materials. Recent work at the National Research Council Canada in the area of concrete materials research has shown the potential of improving concrete properties by modifying the structure of cement hydrates, addition of nanoparticles and nanotubes and controlling the delivery of admixtures. This article will focus on a review of these innovative achievements.
NASA Astrophysics Data System (ADS)
Fomina, E. V.; Lesovik, V. S.; Fomin, A. E.; Kozhukhova, N. I.; Lebedev, M. S.
2018-03-01
Argillite is a carbonaceous industrial by-product that is a potential source in environmentally friendly and source-saving construction industry. In this research, chemical and mineral composition as well as particle size distribution of argillite were studied and used to develop autoclave aerated concrete as partial substitute of quartz sand. Effect of the argillite as a mineral admixture in autoclave aerated concrete was investigated in terms of compressive and tensile strength, density, heat conductivity etc. The obtained results demonstrated an efficiency of argillite as an energy-saving material in autoclave construction composites.
ERIC Educational Resources Information Center
Purwandari, Ristiana Dyah
2015-01-01
The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…
Performance of Michigan's concrete barriers.
DOT National Transportation Integrated Search
2007-08-01
Modifications to design standards, material specifications, construction methods, and roadway : maintenance practices are believed to be major contributing causes for the observed premature : deterioration of Michigans Portland cement concrete bri...
Fraile-Garcia, Esteban; Ferreiro-Cabello, Javier; López-Ochoa, Luis M; López-González, Luis M
2017-07-18
The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study's methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product's performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete's strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete's performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced.
[Characteristic of Particulate Emissions from Concrete Batching in Beijing].
Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao
2016-01-15
With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.
Effect of insulating concrete forms in concrete compresive strength
NASA Astrophysics Data System (ADS)
Martinez Jerez, Silvio R.
The subject presented in this thesis is the effect of Insulating Concrete Forms (ICF's) on concrete compressive strength. This work seeks to identify if concrete cured in ICF's has an effect in compressive strength due to the thermal insulation provided by the forms. Modern construction is moving to energy efficient buildings and ICF's is becoming more popular in new developments. The thesis used a concrete mixture and a mortar mixture to investigate the effects of ICF's on concrete compressive strength. After the experimentations were performed, it was concluded that the ICF's do affect concrete strength. It was found that the forms increase concrete strength without the need for additional curing water. An increase of 50% in strength at 56 days was obtained. It was concluded that the longer concrete cures inside ICF's, the higher strength it reaches, and that ICF's effect on concrete strength is proportional to volume of concrete.
Concrete Construction Employees: When does procedural fairness shape self-evaluations?
Smith, Heather J.; Thomas, Timothy R.; Tyler, Tom R.
2007-01-01
According to the Group Value Model, group authorities and procedures communicate symbolic information to people about whether the group values or respects them. Employees for a concrete construction company completed a questionnaire about their work experiences in either English or Spanish. Among employees who identified more strongly with the concrete construction company, the quality of supervisor treatment predicted employees' feelings of respect and personal self-efficacy. Further, for employees who identified with the company, feeling respected by their colleagues mediated the relationship between fair treatment by a single supervisor and self-efficacy. Even when the working context encourages short term and instrumental goals, these results suggest that employees who identify with the company still care about fair treatment because of the self-relevant information it communicates to them. PMID:17364008
0-6652 : spliced Texas girder bridges.
DOT National Transportation Integrated Search
2015-02-01
Spliced girder technology continues to attract : attention due to its versatility over traditional : prestressed concrete highway bridge construction. : By joining multiple precast concrete girders using : post-tensioning, spliced girder technology :...
Research on the technologies of cracking-resistance of mass concrete in subway station
NASA Astrophysics Data System (ADS)
Sheng, Yanmin; Li, Shujin; Jiang, Guoquan; Shi, Xiaoqing; Yang, Zhu; Zhu, Zhihang
2018-03-01
This paper takes the theory of multi-field coupling and the model of hydration-temperature-humidity-constraint to assess the effect of cracking-resistance on structural concrete and optimize the controlling index of crack resistance. The effect is caused by structure, material and construction, etc. The preparation technology of high cracking-resistance concrete is formed through the researching on the temperature rising and deformation over the controlling influence of new anti-cracking materials and technologies. A series of technologies on anti-cracking and waterproof in underground structural concrete of urban rail transit are formed based on the above study. The technologies include design, construction, materials and monitoring. Those technologies are used in actual engineering to improve the quality of urban rail transit and this brings significant economic and social benefits.
DOT National Transportation Integrated Search
2006-08-01
Field test sections were constructed during 1992 as part of the Strategic Highway Research Program (SHRP) investigation of the frost resistance of concrete. The first freeze-thaw-related deterioration expected for pavement concrete exposed to de-icin...
ERIC Educational Resources Information Center
Zhang, Xiaohong; Han, Zaizhu; Bi, Yanchao
2013-01-01
Using the blocked-translation paradigm with healthy participants, we examined Crutch and Warrington's hypothesis that concrete and abstract concepts are organized by distinct principles: concrete concepts by semantic similarities and abstract ones by associations. In three experiments we constructed two types of experimental blocking (similar…
DOT National Transportation Integrated Search
2012-10-01
A rising concern in todays construction industry is environmental responsibility. : The addition of fly ash is a leading innovation in sustainable design of concrete. Fly ash, : a waste by-product of coal burning power plants, can be used to repla...
NASA Astrophysics Data System (ADS)
Raj, Anand; Nagarajan, Praveen; Shashikala, A. P.
2018-03-01
Railways form the backbone of all economies, transporting goods, and passengers alike. Sleepers play a pivotal role in track performance and safety in rail transport. This paper discusses in brief about the materials that have been used in making sleepers in the early stages of railways. Extensive studies have been carried out on the static, dynamic and impact analysis of prestressed sleepers all around the globe. It has been shown that majority of the sleepers do not last till their expected design life resulting in massive replacement and repair cost. The primary reasons leading to the failure of sleepers have been summarised. This article also highlights the use of new materials developed recently for the construction of prestressed concrete sleepers to improve the performance and life of railway sleepers. Use of geopolymer concrete and steel fibre reinforced concrete, assist in the reduction of flexural cracking, whereas rubber concrete enhances the impact resistance of concrete by three folds. This paper presents a review of state of the art of new materials for railway sleepers.
Finite element analysis of CFRP reinforced silo structure design method
NASA Astrophysics Data System (ADS)
Yuan, Long; Xu, Xinsheng
2017-11-01
Because of poor construction, there is a serious problem of concrete quality in the silo project, which seriously affects the safe use of the structure. Concrete quality problems are mainly seen in three aspects: concrete strength cannot meet the design requirements, concrete cracking phenomenon is serious, and the unreasonable concrete vibration leads to a lot of honeycombs and surface voids. Silos are usually reinforced by carbon fiber cloth in order to ensure the safe use of silos. By the example of an alumina silo in a fly ash plant in Binzhou, Shandong Province, the alumina silo project was tested and examined on site. According to filed test results, the actual concrete strength was determined, and the damage causes of the silo was analysed. Then, a finite element analysis model of this silo was established, the CFRP cloth reinforcement method was adopted to strengthen the silo, and other technology like additional reinforcement, rebar planting, carbon fiber bonding technology was also expounded. The research of this paper is of great significance to the design and construction of silo structure.
Methods of erection of high-rise buildings
NASA Astrophysics Data System (ADS)
Cherednichenko, Nadezhda; Oleinik, Pavel
2018-03-01
The article contains the factors determining the choice of methods for organizing the construction and production of construction and installation work for the construction of high-rise buildings. There are also indicated specific features of their underground parts, characterized by powerful slab-pile foundations, large volumes of earthworks, reinforced bases and foundations for assembly cranes. The work cycle is considered when using reinforced concrete, steel and combined skeletons of high-rise buildings; the areas of application of flow, separate and complex methods are being disclosed. The main conditions for the erection of high-rise buildings and their components are singled out: the choice of formwork systems, delivery and lifting of concrete mixes, installation of reinforcement, the formation of lifting and transporting and auxiliary equipment. The article prescribes the reserves of reduction in the duration of construction due to the creation of: complex mechanized technologies for the efficient construction of foundations in various soil conditions, including in the heaving, swelling, hindered, subsidence, bulk, water-saturated forms; complex mechanized technologies for the erection of monolithic reinforced concrete structures, taking into account the winter conditions of production and the use of mobile concrete-laying complexes and new generation machines; modular formwork systems, distinguished by their versatility, ease, simplicity in operation suitable for complex high-rise construction; more perfect methodology and the development of a set of progressive organizational and technological solutions that ensure a rational relationship between the processes of production and their maximum overlap in time and space.
Shrimer, Fred H.
2005-01-01
The supply of aggregates suitable for use in construction and maintenance of infrastructure in western North America is a continuing concern to the engineering and resources-management community. Steady population growth throughout the region has fueled demand for high-quality aggregates, in the face of rapid depletion of existing aggregate resources and slow and difficult permitting of new sources of traditional aggregate types. In addition to these challenges, the requirement for aggregates to meet various engineering standards continues to increase. In addition to their physical-mechanical properties, other performance characteristics of construction aggregates specifically depend on their mineralogy and texture. These properties can result in deleterious chemical reactions when aggregate is used in concrete mixes. When this chemical reaction-termed 'alkali-aggregate reaction' (AAR)-occurs, it can pose a major problem for concrete structures, reducing their service life and requiring expensive repair or even replacement of the concrete. AAR is thus to be avoided in order to promote the longevity of concrete structures and to ensure that public moneys invested in infrastructure are well spent. Because the AAR phenomenon is directly related to the mineral composition, texture, and petrogenesis of the rock particles that make up aggregates, an understanding of the relation between the geology and the performance of aggregates in concrete is important. In the Pacific Northwest, some aggregates have a moderate to high AAR potential, but many others have no or only a low AAR potential. Overall, AAR is not as widespread or serious a problem in the Pacific Northwest as in other regions of North America. The identification of reactive aggregates in the Pacific Northwest and the accurate prediction of their behavior in concrete continue to present challenges for the assessment and management of geologic resources to the owners and operators of pits and quarries and to the users of the concrete aggregates mined from these deposits. This situation is complicated by the length of time typically required for AAR to become noticeable in concrete construction in the Pacific Northwest, commonly on such a scale that other deterioration mechanisms may have masked the effects of AAR. Distinguishing between the effects of AAR and those related to other problems in concrete is important for understanding the nature and severity of AAR throughout the Pacific Northwest. Furthermore, developing an understanding of the extent of the problem will assist efforts to maximize the intelligent and stewardly use of aggregate resources in the Pacific Northwest. This chapter illustrates the current 'state of the art' of AAR studies in the Pacific Northwest, a region with a common geologic heritage as well as many distinct geologic elements. The optimal use of aggregates in the construction of concrete structures that will achieve their design life is possible through an understanding of the engineering and geologic properties of these aggregates and of their geologic setting.
40 CFR 278.4 - Certification and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... WASTES (CONTINUED) CRITERIA FOR THE MANAGEMENT OF GRANULAR MINE TAILINGS (CHAT) IN ASPHALT CONCRETE AND PORTLAND CEMENT CONCRETE IN TRANSPORTATION CONSTRUCTION PROJECTS FUNDED IN WHOLE OR IN PART BY FEDERAL...
Better concrete mixes for rapid repair in Wisconsin : research brief.
DOT National Transportation Integrated Search
2017-07-04
Research Benefits : Confirmed that Wisconsins current CIP rapid-repair concretes perform adequately : Recommended mixture improvements to alleviate construction difficulties : Determined that increasing the durability of rapid repair c...
Evaluation of ternary cementitious combinations : tech summary.
DOT National Transportation Integrated Search
2012-02-01
Portland cement concrete (PCC) is the worlds most versatile and utilized construction material. Modern concrete consists of six : main ingredients: coarse aggregate, sand, portland cement, supplementary cementitious materials (SCMs), chemical admi...
Final Report: Self-Consolidating Concrete Construction for Modular Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gentry, Russell; Kahn, Lawrence; Kurtis, Kimberly
This report focuses on work completed on DE-NE0000667, Self-Consolidating Concrete for Modular Units, in connection with the Department of Energy Nuclear Energy Enabling Technologies (DOE-NEET) program. This project was completed in the School of Civil and Environmental Engineering at the Georgia Institute of Technology, with Westinghouse Corporation as the industrial partner. The primary objective of this project was to develop self-consolidating concrete (also termed “self-compacting concrete” or SCC) mixtures so that concrete placement can be made into steel plate composite (SC) modular structures without the need for continuous concrete placement. As part of the research, SCC mixtures were developed andmore » validated to ensure sufficient shear capacity across cold-joints, while minimizing shrinkage and temperature increase during curing to enhance concrete bonding with the steel plate construction found in modular units. The SCC mixtures developed were able to carry shearing forces across the cold-joint boundaries. This “self-roughening” was achieved by adding a tailored fraction of lightweight aggregate (LWA) to the concrete mix, some of which raised to the surface during curing, forming a rough surface on which subsequent concrete placements were made. The self-roughening behavior was validated through three sets of structural tests. Shear friction on small-scale specimens with cold joints was assessed using varying fractions of LWA and with varying amounts of external steel plate reinforcement. The results show that the shear friction coefficient, to be used with the provisions of ACI 318-14, Section 22.9, can be taken as 1.35. Mid-scale beam tests were completed to assess the cold-joint capacity in both in-plane and out-of-plane bending. The results showed that the self-roughened joints performed as well as monolithic joints. The final assessment was a full-scale test using a steel composite module supplied by Westinghouse and similar in construction to the steel composite modules being assembled at the Vogtle and V.C. Summer plant expansions. The final test showed that the roughened cold-joint showed excellent shear and flexural capacity, and substantial ductility, when used in conjunction with steel composite construction.« less
Thin Bonded Concrete Overlay and Bonding Agents
DOT National Transportation Integrated Search
1996-06-01
This report presents the construction procedures and initial performance evaluation of a four-inch Bonded Concrete Overlay placed on Interstate 80 near Moline, Illinois. Preconstruction testing consisted of Falling Weight Deflectometer, permeability ...
Pervious concrete mix optimization for sustainable pavement solution
NASA Astrophysics Data System (ADS)
Barišić, Ivana; Galić, Mario; Netinger Grubeša, Ivanka
2017-10-01
In order to fulfill requirements of sustainable road construction, new materials for pavement construction are investigated with the main goal to preserve natural resources and achieve energy savings. One of such sustainable pavement material is pervious concrete as a new solution for low volume pavements. To accommodate required strength and porosity as the measure of appropriate drainage capability, four mixtures of pervious concrete are investigated and results of laboratory tests of compressive and flexural strength and porosity are presented. For defining the optimal pervious concrete mixture in a view of aggregate and financial savings, optimization model is utilized and optimal mixtures defined according to required strength and porosity characteristics. Results of laboratory research showed that comparing single-sized aggregate pervious concrete mixtures, coarse aggregate mixture result in increased porosity but reduced strengths. The optimal share of the coarse aggregate turn to be 40.21%, the share of fine aggregate is 49.79% for achieving required compressive strength of 25 MPa, flexural strength of 4.31 MPa and porosity of 21.66%.
Modelling the behaviour of steel fibre reinforced precast beam-to-column connection
NASA Astrophysics Data System (ADS)
Chai, C. E.; Sarbini, NN; Ibrahim, I. S.; Ma, C. K.; Tajol Anuar, M. Z.
2017-11-01
The numerical behaviour of steel fibre reinforced concrete (SFRC) corbels reinforced with different fibre volume ratio subjected to vertical incremental load is presented in this paper. Precast concrete structures had become popular in the construction field, which offer a faster, neater, safer, easier and cheaper construction work. The construction components are prefabricated in controlled environment under strict supervision before being erected on site. However, precast beam-column connections are prone to failure due to the brittle properties of concrete. Finite element analysis (FEA) is adopted due to the nonlinear behaviour of concrete and SFRC. The key objective of this research is to develop a reliable nonlinear FEA model to represent the behaviour of reinforced concrete corbel. The developed model is validated with experimental data from previous researches. Then, the validated FEA model is used to predict the behaviour of SFRC corbel reinforced with different fibre volume ratio by changing the material parameters. The results show that the addition of steel fibre (SF) increases the load carrying capacity, ductility, stiffness, and changed the failure mode of corbel from brittle bending-shear to flexural ductile. On the other hand, the increasing of SF volume ratio also leads to increased load carrying capacity, ductility, and stiffness of corbel.
Butera, Stefania; Christensen, Thomas H; Astrup, Thomas F
2014-07-15
Thirty-three samples of construction and demolition waste collected at 11 recycling facilities in Denmark were characterised in terms of total content and leaching of inorganic elements and presence of the persistent organic pollutants PCBs and PAHs. Samples included (i) "clean" (i.e. unmixed) concrete waste, (ii) mixed masonry and concrete, (iii) asphalt and (iv) freshly cast concrete cores; both old and newly generated construction and demolition waste was included. PCBs and PAHs were detected in all samples, generally in non-critical concentrations. Overall, PAHs were comparable to background levels in urban environments. "Old" and "new" concrete samples indicated different PCB congener profiles and the presence of PCB even in new concrete suggested that background levels in raw materials may be an issue. Significant variability in total content of trace elements, even more pronounced for leaching, was observed indicating that the number of analysed samples may be critical in relation to decisions regarding management and utilisation of the materials. Higher leaching of chromium, sulphate and chloride were observed for masonry-containing and partly carbonated samples, indicating that source segregation and management practices may be important. Generally, leaching was in compliance with available leaching limits, except for selenium, and in some cases chromium, sulphate and antimony. Copyright © 2014 Elsevier B.V. All rights reserved.
Characterisation and management of concrete grinding residuals.
Kluge, Matt; Gupta, Nautasha; Watts, Ben; Chadik, Paul A; Ferraro, Christopher; Townsend, Timothy G
2018-02-01
Concrete grinding residue is the waste product resulting from the grinding, cutting, and resurfacing of concrete pavement. Potential beneficial applications for concrete grinding residue include use as a soil amendment and as a construction material, including as an additive to Portland cement concrete. Concrete grinding residue exhibits a high pH, and though not hazardous, it is sufficiently elevated that precautions need to be taken around aquatic ecosystems. Best management practices and state regulations focus on reducing the impact on such aquatic environment. Heavy metals are present in concrete grinding residue, but concentrations are of the same magnitude as typically recycled concrete residuals. The chemical composition of concrete grinding residue makes it a useful product for some soil amendment purposes at appropriate land application rates. The presence of unreacted concrete in concrete grinding residue was examined for potential use as partial replacement of cement in new concrete. Testing of Florida concrete grinding residue revealed no dramatic reactivity or improvement in mortar strength.
NASA Astrophysics Data System (ADS)
Wałach, Daniel; Sagan, Joanna; Gicala, Magdalena
2017-10-01
The paper presents an environmental and economic analysis of the material solutions of multi-level garage. The construction project approach considered reinforced concrete structure under conditions of use of ordinary concrete and high-performance concrete (HPC). Using of HPC allowed to significant reduction of reinforcement steel, mainly in compression elements (columns) in the construction of the object. The analysis includes elements of the methodology of integrated lice cycle design (ILCD). By making multi-criteria analysis based on established weight of the economic and environmental parameters, three solutions have been evaluated and compared within phase of material production (information modules A1-A3).
DOT National Transportation Integrated Search
2017-08-01
The remarkable features of ultra-high performance concrete (UHPC) have been reported. Its application in bridge construction has been an active research area in recent years, attributed to its higher compressive strength, higher ductility and reduced...
Performance related specifications for bituminous concrete.
DOT National Transportation Integrated Search
1984-01-01
This report discusses the philosophy and evolution of performance related specifications. The properties of most .importance in the construction of asphaltic concrete pavements, as well as the associated specifications, are listed and discussed. The ...
Influences of Steelmaking Slags on Hydration and Hardening of Concretes
NASA Astrophysics Data System (ADS)
Kirsanova, A. A.; Dildin, A. N.; Maksimov, S. P.
2017-11-01
It is shown that the slag of metallurgical production can be used in the construction industry as an active mineral additive for concrete. This approach allows us to solve environmental problems and reduce costs for the production of binder and concrete simultaneously. Most often slag is used in the form of a filler, an active mineral additive or as a part of a binder for artificial conglomerates. The introduction of slag allows one to notice a part of the cement, to obtain concretes that are more resistant to the impact of aggressive sulfate media. The paper shows the possibility of using recycled steel-smelting slags in the construction industry for the production of cement. An assessment was made of their effect on the hydration of the cement stone and hardening of the concrete together with the plasticizer under normal conditions. In the process of work, we used the slag of the Zlatoust Electrometallurgical Factory. Possible limitations of the content of steel-slag slag in concrete because of the possible presence of harmful impurities are shown. It is necessary to enter slag in conjunction with superplasticizers to reduce the flow of water mixing. Slags can be used as a hardening accelerator for cement concrete as they allow one to increase the degree of cement hydration and concrete strength. It is shown that slags can be used to produce fast-hardening concretes and their comparative characteristics with other active mineral additives are given.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.
1978-12-01
A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Qualitymore » Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.« less
Safety risk assessment for vertical concrete formwork activities in civil engineering construction.
López-Arquillos, Antonio; Rubio-Romero, Juan Carlos; Gibb, Alistair G F; Gambatese, John A
2014-01-01
The construction sector has one of the worst occupational health and safety records in Europe. Of all construction tasks, formwork activities are associated with a high frequency of accidents and injuries. This paper presents an investigation of the activities and related safety risks present in vertical formwork for in-situ concrete construction in the civil engineering sector. Using the methodology of staticized groups, twelve activities and ten safety risks were identified and validated by experts. Every safety risk identified in this manner was quantified for each activity using binary methodology according to the frequency and severity scales developed in prior research. A panel of experts was selected according to the relevant literature on staticized groups. The results obtained show that the activities with the highest risk in vertical formwork tasks are: Plumbing and leveling of forms, cutting of material, handling materials with cranes, and climbing or descending ladders. The most dangerous health and safety risks detected were falls from height, cutting and overexertion. The research findings provide construction practitioners with further evidence of the hazardous activities associated with concrete formwork construction and a starting point for targeting worker health and safety programmes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. P. Pantelides; T. T. Garfield; W. D. Richins
2012-03-01
The paper presents experimental data generated for calibrating finite element models to predict the performance of reinforced concrete panels with a wide range of construction details under blast loading. The specimens were 1.2 m square panels constructed using Normal Weight Concrete (NWC) or Fiber Reinforced Concrete (FRC). FRC consisted of macro-synthetic fibers dispersed in NWC. Five types of panels were tested: NWC panels with steel bars; FRC panels without additional reinforcement; FRC panels with steel bars; NWC panels with glass fiber reinforced polymer (GFRP) bars; and NWC panels reinforced with steel bars and external GFRP laminates on both faces. Eachmore » panel type was constructed with three thicknesses: 152 mm, 254 mm, and 356 mm. FRC panels with steel bars had the best performance for new construction. NWC panels reinforced with steel bars and external GFRP laminates on both faces had the best performance for strengthening or rehabilitation of existing structures. The performance of NWC panels with GFRP bars was strongly influenced by the bar spacing. The behavior of the panels is classified in terms of damage using immediate occupancy, life safety, and near collapse performance levels. Preliminary dynamic simulations are compared to the experimental results.« less
Ferreiro-Cabello, Javier; López-González, Luis M.
2017-01-01
The construction industry generates a considerable amount of waste. Faced with this undesirable situation, the ready-mix concrete sector, in particular, has invested energy and resources into reusing its own waste in its production process as it works towards the goal of more sustainable construction. This study examines the feasibility of incorporating two types of concrete waste, which currently end up in landfill, into the production process of ready-mix concrete: the waste generated during the initial production stage (ready-mix concrete waste), and waste created when demolition waste is treated to obtain artificial aggregate. The first phase of the study’s methodology corroborates the suitability of the recycled aggregate through characterization tests. After this phase, the impact of incorporating different percentages of recycled coarse aggregate is evaluated by examining the performance of the produced concrete. The replacement rate varied between 15% and 50%. The results indicate that recycled aggregates are, indeed, suitable to be incorporated into ready-mix concrete production. The impact on the final product’s performance is different for the two cases examined herein. Incorporating aggregates from generic concrete blocks led to a 20% decrease in the produced concrete’s strength performance. On the other hand, using recycled aggregates made from the demolition waste led to a smaller decrease in the concrete’s performance: about 8%. The results indicate that with adequate management and prior treatment, the waste from these plants can be re-incorporated into their production processes. If concrete waste is re-used, concrete production, in general, becomes more sustainable for two reasons: less waste ends up as landfill and the consumption of natural aggregates is also reduced. PMID:28773183
Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A
2014-09-01
Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Latex-modified concrete overlay containing Type K cement.
DOT National Transportation Integrated Search
2005-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Crumb rubber modified asphalt concrete in Oregon : final report.
DOT National Transportation Integrated Search
2002-03-01
Since 1993, the Oregon Department of Transportation (ODOT) has been monitoring performance of seventeen rubber modified : asphalt and asphalt concrete sections constructed on Oregon highways. The study originated in response to the Intermodal Surface...
High plastic concrete temperature specifications for paving mixtures.
DOT National Transportation Integrated Search
2011-08-01
This report documents a study performed for the Illinois Department of Transportation (IDOT) regarding : concrete roadway construction in hot weather. The main objective in this project is to develop improved : specifications and procedures with resp...
Concrete overlays : an established technology with new applications
DOT National Transportation Integrated Search
2008-08-01
CPTP is an integrated, national effort to improve the long-term performance and cost-effectiveness of concrete pavements by implementing improved methods of design, construction, and rehabilitation and new technology. CPTP is an integrated, national ...
Evaluation of full depth asphaltic concrete pavements : interim report.
DOT National Transportation Integrated Search
1975-02-01
This report provides a review of the performance and structural characteristics exhibited on two full depth asphaltic concrete pavement projects constructed on the Louisiana interstate system. : The roughness characteristics of both full depth projec...
DOT National Transportation Integrated Search
1984-05-01
Past construction methods have resulted in the need for leveling : wedges of asphaltic cement concrete or mud jacking at locations where a : reinforced concrete box culvert was replaced with a pipe culvert . : With the restraint of limited funds, mor...
Repair of cracked prestressed concrete girders, I-565, Huntsville, Alabama.
DOT National Transportation Integrated Search
2011-07-01
Wide cracks were discovered in prestressed concrete bridge girders shortly after their construction in Huntsville, Alabama. Previous investigations of these continuous-for-live-load girders revealed that the cracking resulted from restrained thermal ...
Magnetic Tomography - Assessing Tie Bar and Dowel Bar Placement Accuracy
DOT National Transportation Integrated Search
2017-12-01
The Kansas Department of Transportation (KDOT) constructs portland cement concrete pavements (PCCP) for new highway expansions and/or for replacement of existing highway pavement using slip-form paving operations. Typical concrete pavement constructi...
Alternatives to Full-Depth Patching on Resurfacing Projects
DOT National Transportation Integrated Search
1993-09-01
The vast majority of Illinois' non-interstate network is constructed of jointed Portland cement concrete (PCC). Typically, Illinois' first significant rehabilitation efforts for jointed PCC pavements are in the form of full-depth bituminous concrete ...
Research notes : AC/CRC adjacent lane surfacing.
DOT National Transportation Integrated Search
1991-10-01
Asphaltic Concrete (AC) and Portland Cement Concrete (PCC) are common roadway materials used in Oregon. In a recent construction project, Poverty Flats - Mecham Section, the Oregon State Highway Division (OSHD) designed a "test section" consisting of...
Premature asphalt concrete pavement cracking.
DOT National Transportation Integrated Search
2015-06-01
Recently, the Oregon Department of Transportation (ODOT) has identified hot mix asphalt concrete : (HMAC) pavements that have displayed top-down cracking within three years of construction. The objective of : the study was to evaluate the top-down cr...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarun R. Naik; Yoon-moon Chun; Rudolph N. Kraus
2003-09-18
This research was conducted to establish mixture proportioning and production technologies for ready-mixed concrete containing pulp and paper mill residual solids and to study technical, economical, and performance benefits of using the residual solids in the concrete. Fibrous residuals generated from pulp and paper mills were used, and concrete mixture proportions and productions technologies were first optimized under controlled laboratory conditions. Based on the mixture proportions established in the laboratory, prototype field concrete mixtures were manufactured at a ready-mixed concrete plant. Afterward, a field construction demonstration was held to demonstrate the production and placement of structural-grade cold-weather-resistant concrete containing residualmore » solids.« less
Investigation on Wall Panel Sandwiched With Lightweight Concrete
NASA Astrophysics Data System (ADS)
Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.
2017-08-01
The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.
New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications
NASA Technical Reports Server (NTRS)
Toutanji, H.; Tucker, D.; Ethridge, E.
2005-01-01
Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.
A Preliminary Experimental Study on Vibration Responses of Foamed Concrete Composite Slabs
NASA Astrophysics Data System (ADS)
Rum, R. H. M.; Jaini, Z. M.; Ghaffar, N. H. Abd; Rahman, N. Abd
2017-11-01
In recent years, composite slab has received utmost demand as a floor system in the construction industry. The composite slab is an economical type of structure and able to accelerate the construction process. Basically, the composite slab can be casting by using a combination of corrugated steel deck and normal concrete in which selfweight represents a very large proportion of the total action. Therefore, foamed concrete become an attractive alternative to be utilized as a replacement of normal concrete. However, foamed concrete has high flexibility due to the presence of large amount of air-void and low modulus elasticity. It may result in vibration responses being greater. Hence, this experimental study investigates the vibration responses of composite slab made of corrugated steel deck and foamed concrete. The specimens were prepared with dimension of 750mm width, 1600mm length and 125mm thickness. The hammer-impact test was conducted to obtain the acceleration-time history. The analysis revealed that the first natural frequency is around 27.97 Hz to 40.94 Hz, while the maximum acceleration reaches 1.31 m/s2 to 1.88 m/s2. The first mode shape depicts normal pattern and favourable agreement of deformation.
Strength resistance of reinforced concrete elements of high-rise buildings under dynamic loads
NASA Astrophysics Data System (ADS)
Berlinov, Mikhail
2018-03-01
A new method for calculating reinforced concrete constructions of high-rise buildings under dynamic loads from wind, seismic, transport and equipment based on the initial assumptions of the modern phenomenological theory of a nonlinearly deformable elastic-creeping body is proposed. In the article examined the influence of reinforcement on the work of concrete in the conditions of triaxial stress-strain state, based on the compatibility of the deformation of concrete and reinforcement. Mathematical phenomenological equations have been obtained that make it possible to calculate the reinforced concrete elements working without and with cracks. A method for linearizing of these equations based on integral estimates is proposed, which provides the fixation of the vibro-creep processes in the considered period of time. Application of such a technique using the finite-difference method, step method and successive approximations will allow to find a numerical solution of the problem. Such an approach in the design of reinforced concrete constructions will allow not only more fully to take into account the real conditions of their work, revealing additional reserves of load capacity, but also to open additional opportunities for analysis and forecasting their functioning at various stages of operation.
Some engineering properties of heavy concrete added silica fume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap
Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.
Silica dust exposures during selected construction activities.
Flanagan, Mary Ellen; Seixas, Noah; Majar, Maria; Camp, Janice; Morgan, Michael
2003-01-01
This study characterized exposure for dust-producing construction tasks. Eight common construction tasks were evaluated for quartz and respirable dust exposure by collecting 113 personal task period samples for cleanup; demolition with handheld tools; concrete cutting; concrete mixing; tuck-point grinding; surface grinding; sacking and patching concrete; and concrete floor sanding using both time-integrating filter samples and direct-reading respirable dust monitors. The geometric mean quartz concentration was 0.10 mg/m(3) (geometric standard deviation [GSD]=4.88) for all run time samples, with 71% exceeding the threshold limit value. Activities with the highest exposures were surface grinding, tuck-point grinding, and concrete demolition (GM[GSD] of 0.63[4.12], 0.22[1.94], and 0.10[2.60], respectively). Factors recorded each minute were task, tool, work area, respiratory protection and controls used, estimated cross draft, and whether anyone nearby was making dust. Factors important to exposure included tool used, work area configuration, controls employed, cross draft, and in some cases nearby dust. More protective respirators were employed as quartz concentration increased, although respiratory protection was found to be inadequate for 42% of exposures. Controls were employed for only 12% of samples. Exposures were reduced with three controls: box fan for surface grinding and floor sanding, and vacuum/shroud for surface grinding, with reductions of 57, 50, and 71%, respectively. Exposures were higher for sweeping compound, box fan for cleanup, ducted fan dilution, and wetted substrate. Construction masons and laborers are frequently overexposed to silica. The usual protection method, respirators, was not always adequate, and engineering control use was infrequent and often ineffective.
Premixed polymer concrete overlays.
DOT National Transportation Integrated Search
1990-01-01
The results of a study undertaken to evaluate premixed polymer concrete overlays (PMPCO) over a 3-year period are presented. The PMPCO evaluated were constructed with polyester amide para resin and silica sand 1;. polyester styrene resin 1 and silica...
Performance of I-57 recycled concrete pavements.
DOT National Transportation Integrated Search
2009-01-01
In 1986-1987 the Illinois Department of Transportation (IDOT) constructed a demonstration project on I-57 near Effingham, Illinois to evaluate the viability : of recycling an existing jointed reinforced concrete pavement for use as its primary aggreg...
23. Surrender interview site, showing Pemberton Avenue concrete slab road ...
23. Surrender interview site, showing Pemberton Avenue concrete slab road type with gutter (asphalt construction typical on Union and Confederate Avenues), view to the sw. - Vicksburg National Military Park Roads & Bridges, Vicksburg, Warren County, MS
End region detailing of pretensioned concrete bridge girders : [summary].
DOT National Transportation Integrated Search
2013-03-01
Introduction of the Florida-I Beam (FIB) in 2009 renewed interest in prestressed concrete beam design, especially end region details. In this study, University of Florida researchers examined construction detailing at the FIB end region.
Life Cycle Cost Analysis of Portland Cement Concrete Pavements
DOT National Transportation Integrated Search
1999-09-01
This report describes the development of a new life cycle cost analysis methodology for Portland cement concrete pavements - one that considers all aspects of pavement design, construction, maintenance, and user impacts throughout the analysis period...
Implementation and field evaluation of pretensioned concrete girder end crack control.
DOT National Transportation Integrated Search
2016-05-01
Wisconsin bulb tee pretensioned concrete girders are currently used for bridge construction. Their efficiency in load resistance has made them particularly desirable. To provide that efficiency, these girders are heavily prestressed. Cracking is evid...
Implementation program on high performance concrete: guidelines for instrumentation on bridges
DOT National Transportation Integrated Search
1996-08-01
This report provides an outline for the instrumentation of bridges being constructed under the Federal Highway Administration's (FHWA's) Strategic Highway Research Program (SHRP) implementation effort in High Performance Concrete (HPC). The report de...
Very-Early-Strength Latex-Modified Concrete Overlays
DOT National Transportation Integrated Search
1998-12-01
This report describes the installation and condition of the first two very-early-strength latex-modified concrete (LMC-VE) overlays to be constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cem...
Very-early-strength latex-modified concrete overlay.
DOT National Transportation Integrated Search
1998-12-01
This paper describes the installation and condition of the first two very-early-strength latex modified concrete (LMC-VE) overlays constructed for the Virginia Department of Transportation. The overlays were prepared with a special blended cement rat...
Guide for curing of portland cement. Volume I
DOT National Transportation Integrated Search
2005-01-01
This document provides guidance on details of concrete curing practice as they pertain to construction of portland cement concrete pavements. The guide is organized around the major events in curing pavements: curing immediately after placement (init...
Performance specification for high performance concrete overlays on bridges.
DOT National Transportation Integrated Search
2004-01-01
Hydraulic cement concrete overlays are usually placed on bridges to reduce the infiltration of water and chloride ions and to improve skid resistance, ride quality, and surface appearance. Constructed in accordance with prescription specifications, s...
Phase I development of an aesthetic, precast concrete bridge rail.
DOT National Transportation Integrated Search
2012-02-01
Precast concrete bridge rail systems offer several advantages over traditional cast-in-place rail designs, including reduced construction : time and costs, installation in a wide range of environmental conditions, easier maintenance and repair, impro...
Evaluation of curing compound application time on concrete surface durability : [brief].
DOT National Transportation Integrated Search
2015-05-01
Roadways that are both durable and aesthetically pleasing are primary goals of Wisconsin : Department of Transportation (WisDOT) paving projects. Recently, Portland Cement Concrete : (PCC) pavement projects constructed by WisDOT have experienced incr...
High performance concrete pavement in Indiana.
DOT National Transportation Integrated Search
2011-01-01
Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern : pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the : United States in the late 1950s throu...
Design and construction of field-cast UHPC connections.
DOT National Transportation Integrated Search
2014-10-01
Advancements in the science of concrete : materials have led to the development of a : new class of cementitious composites called : ultra-high performance concrete (UHPC). UHPC : exhibits mechanical and durability properties : that make it an ideal ...
Concrete to Abstract -- A New Viewpoint
ERIC Educational Resources Information Center
Collis, K. F.
1972-01-01
Piaget's constructs of concrete-operational and formal-operational stages are illustrated by quoting comments from Piaget and Inhelder (1958), summarizing the kinds of reasoning to be expected at each substage, and relating this reasoning to specific mathematical items. (DT)
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
Development of lightweight concrete mixes for construction industry at the state of Arkansas
NASA Astrophysics Data System (ADS)
Almansouri, Mohammed Abdulwahab
As the construction industry evolved, the need for more durable, long lasting infrastructure increased. Therefore, more efforts have been put to find new methods to improve the properties of the concrete to prolong the service life of the structural elements. One of these methods is the use of lightweight aggregate as an internal curing agent to help reducing self-desiccation and shrinkage. This research studied the effects of using locally available lightweight aggregate (expanded clay), as a partial replacement of normal weight aggregate in the concrete matrix. The concrete mixtures contained lightweight aggregate with a replacement percentage of 12.5, 25, 37.5, and 50 percent by volume. Fresh properties as well as compressive strength, modulus of rupture, and drying shrinkage were measured. While was effective in reducing drying shrinkage, the use of lightweight aggregate resulted in slightly reducing both the compressive strength and modulus of rupture.
Corrosion Propagation of Rebar Embedded in High Performance Concrete
NASA Astrophysics Data System (ADS)
Nazim, Manzurul
The FDOT has been using supplementary cementitious materials while constructing steel reinforced concrete marine bridge structures for over 3 decades. Previous findings indicated that such additions in concrete mix make the concrete more durable. To better understand corrosion propagation of rebar in high performance concrete: mature concrete samples that were made (2008/2009) with Portland cement, a binary mix, a ternary mix and recently prepared (April 2016 with 50% OPC + 50% slag and 80% OPC + 20% Fly ash) concrete samples were considered. None of these concretes had any admixed chloride to start with. An accelerated chloride transport process was used to drive chloride ions into the concrete so that chlorides reach and exceed the chloride threshold at the rebar surface and initiate corrosion. Electrochemical measurements were taken at regular intervals (during and after the electro-migration process) to observe the corrosion propagation in each sample.
Strength of masonry blocks made with recycled concrete aggregates
NASA Astrophysics Data System (ADS)
Matar, Pierre; Dalati, Rouba El
The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.
Concrete lunar base investigation
NASA Technical Reports Server (NTRS)
Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles
1989-01-01
This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.
Concrete lunar base investigation
NASA Technical Reports Server (NTRS)
Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles
1992-01-01
This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.
Effects of Interlocking and Supporting Conditions on Concrete Block Pavements
NASA Astrophysics Data System (ADS)
Mahapatra, Geetimukta; Kalita, Kuldeep
2018-02-01
Concrete Block Paving (CBP) is widely used as wearing course in flexible pavements, preferably under light and medium vehicular loadings. Construction of CBP at site is quick and easy in quality control. Usually, flexible pavement design philosophy is followed in CBP construction, though it is structurally different in terms of small block elements with high strength concrete and their interlocking aspects, frequent joints and discontinuity, restrained edge etc. Analytical solution for such group action of concrete blocks under loading in a three dimensional multilayer structure is complex and thus, the need of conducting experimental studies is necessitated for extensive understanding of the load—deformation characteristics and behavior of concrete blocks in pavement. The present paper focuses on the experimental studies for load transfer characteristics of CBP under different interlocking and supporting conditions. It is observed that both interlocking and supporting conditions affect significantly on the load transfer behavior in CBP structures. Coro-lock block exhibits better performance in terms of load carrying capacity and distortion behavior under static loads. Plate load tests are performed over subgrade, granular sub-base (GSB), CBP with and without GSB using different block shapes. For an example case, the comparison of CBP with conventional flexible pavement section is also presented and it is found that CBP provides considerable benefit in terms of construction cost of the road structure.
Comparative environmental assessment of natural and recycled aggregate concrete.
Marinković, S; Radonjanin, V; Malešev, M; Ignjatović, I
2010-11-01
Constant and rapid increase in construction and demolition (C&D) waste generation and consumption of natural aggregate for concrete production became one of the biggest environmental problems in the construction industry. Recycling of C&D waste represents one way to convert a waste product into a resource but the environment benefits through energy consumption, emissions and fallouts reductions are not certain. The main purpose of this study is to determine the potentials of recycled aggregate concrete (concrete made with recycled concrete aggregate) for structural applications and to compare the environmental impact of the production of two types of ready-mixed concrete: natural aggregate concrete (NAC) made entirely with river aggregate and recycled aggregate concrete (RAC) made with natural fine and recycled coarse aggregate. Based on the analysis of up-to-date experimental evidence, including own tests results, it is concluded that utilization of RAC for low-to-middle strength structural concrete and non-aggressive exposure conditions is technically feasible. The Life Cycle Assessment (LCA) is performed for raw material extraction and material production part of the concrete life cycle including transport. Assessment is based on local LCI data and on typical conditions in Serbia. Results of this specific case study show that impacts of aggregate and cement production phases are slightly larger for RAC than for NAC but the total environmental impacts depend on the natural and recycled aggregates transport distances and on transport types. Limit natural aggregate transport distances above which the environmental impacts of RAC can be equal or even lower than the impacts of NAC are calculated for the specific case study. Copyright © 2010 Elsevier Ltd. All rights reserved.
Promoting the use of crumb rubber concrete in developing countries.
Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim
2008-11-01
The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.
The potential use of silica sand as nanomaterials for mortar
NASA Astrophysics Data System (ADS)
Setiati, N. Retno
2017-11-01
The development of nanotechnology is currently experiencing rapid growth. The use of the term nanotechnology is widely applied in areas such as healthcare, industrial, pharmaceutical, informatics, or construction. By the nanotechnology in the field of concrete construction, especially the mechanical properties of concrete are expected to be better than conventional concrete. This study aims to determine the effect of the potential of silica sand as a nanomaterial that is added into the concrete mix The methodology used consist of nanomaterial synthesis process of silica sand using Liquid Polishing Milling Technology (PLMT). The XRF and XRD testing were conducted to determine the composition of silica contained in the silica sand and the level of reactivity of the compound when added into the concrete mix. To determine the effect of nano silica on mortar, then made the specimen with size 50 mm x 50 mm x 50 mm. The composition of mortar is made in two variations, ie by the addition of 3% nano silica and without the addition of nanosilica. To know the mechanical properties of mortar, it is done testing of mortar compressive strength at the age of 28 days. Based on the analysis and evaluation, it is shown that compounds of silica sand in Indonesia, especially Papua reached more than 99% SiO2 and so that the amorphous character of silica sand can be used as a nanomaterial for concrete construction. The results of mechanical tests show that there is an increase of 12% compressive strength of mortar that is added with 3% nano silica.
16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...
16. VIEW SOUTHWEST OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA
Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.
DOT National Transportation Integrated Search
2011-12-01
"This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulat...
Reduction of minimum required weight of cementitious materials in WisDOT concrete mixes.
DOT National Transportation Integrated Search
2011-12-01
This project was designed to explore the feasibility of lowering the cementitious materials content : (CMC) used in Wisconsin concrete pavement construction. The cementitious materials studied included : portland cement, fly ash, and ground granulate...
Ultra-thin whitetopping for general aviation airports in New Mexico.
DOT National Transportation Integrated Search
2002-06-01
Whitetopping is a pavement rehabilitation construction practice where portland cement concrete (PCC) is placed over an existing asphalt concrete pavement as an overlay. Ultra-thin whitetopping (UTW) is generally a thin overlay with a thickness betwee...
Investigation of nuclear asphalt content gauge : final report.
DOT National Transportation Integrated Search
1995-07-01
The introduction of new aggregate sources to Louisiana in the mid 1980s has presented problems in asphalt concrete mix design and construction. Absorptive aggregates such as reclaimed portland cement concrete and some stones now being supplied have m...
Pozzolan cement study : final report.
DOT National Transportation Integrated Search
1979-12-01
An experimental section using Type 1P cement concrete was poured on an active construction project in south Louisiana, near Franklin. A comparison in quality was made between this section and the normal Type 1(B) cement concrete poured on the remaind...
Quality control of recycled asphaltic concrete : final report.
DOT National Transportation Integrated Search
1982-07-01
This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...
Development of rational pay factors based on concrete compressive strength data
DOT National Transportation Integrated Search
2008-06-01
This research project addresses the opportunity to contain the escalating costs of concrete materials in construction projects. Both statistical process control and rational acceptance criteria show that quality improvement and cost savings can be ac...
Internally sealed concrete for bridge deck protection : final report.
DOT National Transportation Integrated Search
1983-01-01
This study investigated the characteristics of internally sealed concrete through tests on specimens fabricated in the laboratory to determine its properties and an installation in a bridge deck to assess the controls needed during construction and i...
Evaluation of Long-Life Concrete Pavement Practices for Use in Florida
DOT National Transportation Integrated Search
2012-11-01
Current Florida construction practices produce asphalt pavements with a service life of 12 to 20 years before needing rehabilitation; concrete pavements are typically designed for 20 years. However, pavements with much longer design lives are possibl...
Polypropylene fiber reinforced concrete detention ponds : final report.
DOT National Transportation Integrated Search
1995-09-01
In 1991, two Durafiber polypropylene fiber reinforced concrete lined detention ponds were constructed. The detention ponds are located on the north side of the 181st Avenue Interchange, on the Columbia River Highway (I-84), approximately ten miles ea...
Laboratory evaluation of 100% fly ash cementitious systems containing Ekkomaxx.
DOT National Transportation Integrated Search
2013-09-01
Long-lasting, durable concrete is a must have for DOTs in todays construction : and economic climate. Many entities are turning to alternative concrete : mixtures, such as ternary mixtures, lower w/cm ratios, lower cementitious : materials cont...
High early strength latex modified concrete overlay.
DOT National Transportation Integrated Search
1988-01-01
This report describes the condition of the first high early strength latex modified concrete (LMC-HE) overlay to be constructed for the Virginia Department of Transportation. The overlay was prepared with type III cement and with more cement and less...
Environmental suitability of recycled concrete aggregate in highways.
DOT National Transportation Integrated Search
2015-01-01
The use of recycled concrete aggregate materials in highway constructions as compared to the use of virgin : materials reduces virgin natural resource demands on the environment. In order to evaluate their potential use of : recycle materials in high...
Laboratory evaluation of 100 percent fly ash cementitious systems : tech summary.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting durable concrete is a must-have for departments of transportation (DOTs) in todays : construction and economic climate. Many entities are turning to alternative concrete mixtures to : ensure long-term durability such as ternary mixtur...
Evaluation of full depth asphaltic concrete pavements : final report.
DOT National Transportation Integrated Search
1982-10-01
the aim of this study was to evaluate the full depth asphaltic concrete pavement design concept by observing the performance characteristics of two 13-inch pavements constructed in 1970. Pavement performance measurements, over an 11-year period, incl...
DOT National Transportation Integrated Search
2018-04-01
Precast prestressed concrete bent caps may provide significant benefits by enabling accelerated construction of bridge substructures and improve longevity by reducing the propensity for cracking. The Texas Department of Transportation enables the use...
Quality control of fireproof coatings for reinforced concrete structures
NASA Astrophysics Data System (ADS)
Gravit, Marina; Dmitriev, Ivan; Ishkov, Alexander
2017-10-01
The article analyzes methods of quality inspection of fireproof coatings (work flow, measuring, laboratory, etc.). In modern construction there is a problem of lack of distinct monitoring for the fire protection testing. There is a description of this testing for reinforced concrete structures. The article shows the results of calculation quality control of hatches as an example of fireproof coating for reinforced concrete structures.
NASA Astrophysics Data System (ADS)
Fomina, E. V.; Kozhukhova, N. I.; Sverguzova, S. V.; Fomin, A. E.
2018-05-01
In this paper, the regression equations method for design of construction material was studied. Regression and polynomial equations representing the correlation between the studied parameters were proposed. The logic design and software interface of the regression equations method focused on parameter optimization to provide the energy saving effect at the stage of autoclave aerated concrete design considering the replacement of traditionally used quartz sand by coal mining by-product such as argillite. The mathematical model represented by a quadric polynomial for the design of experiment was obtained using calculated and experimental data. This allowed the estimation of relationship between the composition and final properties of the aerated concrete. The surface response graphically presented in a nomogram allowed the estimation of concrete properties in response to variation of composition within the x-space. The optimal range of argillite content was obtained leading to a reduction of raw materials demand, development of target plastic strength of aerated concrete as well as a reduction of curing time before autoclave treatment. Generally, this method allows the design of autoclave aerated concrete with required performance without additional resource and time costs.
Construction Simulation Analysis of 60m-span Concrete Filled Steel Tube arch bridge
NASA Astrophysics Data System (ADS)
Shi, Jing Xian; Ding, Qing Hua
2018-06-01
The construction process of the CFST arch bridge is complicated. The construction process not only affects the structural stress in the installation, but also determines the form a bridge and internal force of the bridge. In this paper, a 60m span concrete filled steel tube tied arch bridge is taken as the background, and a three-dimensional finite element simulation model is established by using the MIDAS/Civil bridge structure analysis software. The elevation of the main arch ring, the beam stress, the forces in hanger rods and the modal frequency of the main arch during the construction stage are calculated, and the construction process is simulated and analyzed. Effectively and reasonably guide the construction and ensure that the line and force conditions of the completed bridge meet the design requirements and provides a reliable technical guarantee for the safe construction of the bridge.
NASA Astrophysics Data System (ADS)
Limantara, A. D.; Widodo, A.; Winarto, S.; Krisnawati, L. D.; Mudjanarko, S. W.
2018-04-01
The use of natural gravel (rivers) as concrete mixtures is rarely encountered after days of demands for a higher strength of concrete. Moreover, today people have found High-Performance Concrete which, when viewed from the rough aggregate consisted mostly of broken stone, although the fine grain material still used natural sand. Is it possible that a mixture of concrete using natural gravel as a coarse aggregate is capable of producing concrete with compressive strength equivalent to a concrete mixture using crushed stone? To obtain information on this, a series of tests on concrete mixes with crude aggregates of Kalitelu Crusher, Gondang, Tulungagung and natural stone (river gravel) from the Brantas River, Ngujang, Tulungagung in the Materials Testing Laboratory Tugu Dam Construction Project, Kab. Trenggalek. From concrete strength test results using coarse material obtained value 19.47 Mpa, while the compressive strength of concrete with a mixture of crushed stone obtained the value of 21.12 Mpa.
Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing
Rui, Yi; Kechavarzi, Cedric; O’Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi
2017-01-01
The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry. PMID:29257094
Grengg, Cyrill; Mittermayr, Florian; Ukrainczyk, Neven; Koraimann, Günther; Kienesberger, Sabine; Dietzel, Martin
2018-05-01
Microbial induced concrete corrosion (MICC) is recognized as one of the main degradation mechanisms of subsurface infrastructure worldwide, raising the demand for sustainable construction materials in corrosive environments. This review aims to summarize the key research progress acquired during the last decade regarding the understanding of MICC reaction mechanisms and the development of durable materials from an interdisciplinary perspective. Special focus was laid on aspects governing concrete - micoorganisms interaction since being the central process steering biogenic acid corrosion. The insufficient knowledge regarding the latter is proposed as a central reason for insufficient progress in tailored material development for aggressive wastewater systems. To date no cement-based material exists, suitable to withstand the aggressive conditions related to MICC over its entire service life. Research is in particular needed on the impact of physiochemical material parameters on microbial community structure, growth characteristics and limitations within individual concrete speciation. Herein an interdisciplinary approach is presented by combining results from material sciences, microbiology, mineralogy and hydrochemistry to stimulate the development of novel and sustainable materials and mitigation strategies for MICC. For instance, the application of antibacteriostatic agents is introduced as an effective instrument to limit microbial growth on concrete surfaces in aggressive sewer environments. Additionally, geopolymer concretes are introduced as highly resistent in acid environments, thus representing a possible green alternative to conventional cement-based construction materials. Copyright © 2018 Elsevier Ltd. All rights reserved.
Integrity Testing of Pile Cover Using Distributed Fibre Optic Sensing.
Rui, Yi; Kechavarzi, Cedric; O'Leary, Frank; Barker, Chris; Nicholson, Duncan; Soga, Kenichi
2017-12-19
The integrity of cast-in-place foundation piles is a major concern in geotechnical engineering. In this study, distributed fibre optic sensing (DFOS) cables, embedded in a pile during concreting, are used to measure the changes in concrete curing temperature profile to infer concrete cover thickness through modelling of heat transfer processes within the concrete and adjacent ground. A field trial was conducted at a high-rise building construction site in London during the construction of a 51 m long test pile. DFOS cables were attached to the reinforcement cage of the pile at four different axial directions to obtain distributed temperature change data along the pile. The monitoring data shows a clear development of concrete hydration temperature with time and the pattern of the change varies due to small changes in concrete cover. A one-dimensional axisymmetric heat transfer finite element (FE) model is used to estimate the pile geometry with depth by back analysing the DFOS data. The results show that the estimated pile diameter varies with depth in the range between 1.40 and 1.56 m for this instrumented pile. This average pile diameter profile compares well to that obtained with the standard Thermal Integrity Profiling (TIP) method. A parametric study is conducted to examine the sensitivity of concrete and soil thermal properties on estimating the pile geometry.
A Navy User’s Guide for Quality Assurance of New Concrete Construction
2012-06-01
types and blends of cements, fly ash, silica fume, and blast furnace slag . During construction, concrete samples are taken to test and document the...chemical compositions provided by specific types and blends of cements, fly ash, silica fume, and blast furnace slag when used with specific aggregates...of portland cement and blast furnace slag . Before the 11 owner accepts the completed structure, all cracks transverse to the steel rebar in excess
2008-05-27
into a new insoluble lead-phosphate mineral for on-site or off-site paint stripping; and 4. Encapsulation, where a liquid coating is applied over the...convert the LBP-contaminated masonry materials from hazardous wastes into new , environmentally friendly construction materials at minimum cost. 4...used to produce high strength concrete (Andrzej and Alina, 2002). The major concerns for use of recycled aggregates in new construction are now more
1988-03-01
in reference HRS 78.) The ASTM C 883 effective shrinkage standard test method involves constructing a laminate consisting of an epoxy-resin system...Evaluation of a Hiah-Strenrth Polyester Snythetic Concrete, U.S. Army Construction Engineering Research Laboratory, CERL Technical Report M-2, Champaign...Colorado, August 1, 1983. Can 67 F. Canovas, (Effects of ) Temperature Ch anges on Epoxy Pavements, Informes de la construccion (Madrid), 19, No. 189, pp
Highlights of worldwide production and utilization of coal ash -- A survey for the period 1959--1989
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manz, O.E.; Stewart, B.R.
1997-09-01
In 1960, the Coal Committee for the United Nations Economic Committee for Europe requested a group of rapporteurs to undertaken work on the utilization of ash from coal fueling thermal power stations. This later became the Group of Experts on the Utilization of Ash. In 1959, out of a world production of 100 million tons of ash, only 2% was put to use, whereas in 1969, about 15% of a production of 200 million tons was used. In 1989, 562 million tons were produced, and 90.5 million tons were used. The main uses of coal ash have been in cementmore » and concrete manufacture; in road construction and as filler on construction sites; in cellular concrete; and in lightweight aggregate and brick. Worldwide, in 1989, 27.7 million tons were used in cement and concrete manufacture, 23.6 million tons in road construction and as filler on construction sites, 2.8 million tons in cellular concrete, and 6.8 million tons in lightweight aggregate and bricks. This paper presents a worldwide survey of the production and utilization of coal ash from 1959 to 1989. The data were collected from various working papers of the US Group of Experts on the utilization of Ash and from two papers by O.E. Manz on the worldwide production and utilization of coal ash.« less
Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors.
Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo
2017-08-10
The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams.
Construction Condition and Damage Monitoring of Post-Tensioned PSC Girders Using Embedded Sensors
Shin, Kyung-Joon; Lee, Seong-Cheol; Kim, Yun Yong; Kim, Jae-Min; Park, Seunghee; Lee, Hwanwoo
2017-01-01
The potential for monitoring the construction of post-tensioned concrete beams and detecting damage to the beams under loading conditions was investigated through an experimental program. First, embedded sensors were investigated that could measure pre-stress from the fabrication process to a failure condition. Four types of sensors were installed on a steel frame, and the applicability and the accuracy of these sensors were tested while pre-stress was applied to a tendon in the steel frame. As a result, a tri-sensor loading plate and a Fiber Bragg Grating (FBG) sensor were selected as possible candidates. With those sensors, two pre-stressed concrete flexural beams were fabricated and tested. The pre-stress of the tendons was monitored during the construction and loading processes. Through the test, it was proven that the variation in thepre-stress had been successfully monitored throughout the construction process. The losses of pre-stress that occurred during a jacking and storage process, even those which occurred inside the concrete, were measured successfully. The results of the loading test showed that tendon stress and strain within the pure span significantly increased, while the stress in areas near the anchors was almost constant. These results prove that FBG sensors installed in a middle section can be used to monitor the strain within, and the damage to pre-stressed concrete beams. PMID:28796156
15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA ...
15. VIEW SOUTH OF CONCRETE PIER SUPPORTING CAMELBACK AND PENNSYLVANIA PETIT TRUSSES. ORIGINAL PIER LYING IN FOREGROUND DESTROYED BY 1915 FLOOD DURING ORIGINAL CONSTRUCTION - New River Bridge, Spanning New River at State Route 623, Pembroke, Giles County, VA
DOT National Transportation Integrated Search
2015-04-01
Prior to statewide acceptance of self-consolidating concrete (SCC) in precast, prestressed bridge member : production, the Alabama Department of Transportation sponsored an investigation of the material to be : performed by the Auburn University High...
Evaluation of Long-Life Concrete Pavement Practices for Use in Florida : [Summary
DOT National Transportation Integrated Search
2012-01-01
Current Florida construction practices produce asphalt pavements with a service life of 12 to 20 years before needing rehabilitation; concrete pavements are typically designed for 20 years. However, pavements with much longer design lives are possibl...
Crumb rubber modified asphalt concrete in Oregon : summary report.
DOT National Transportation Integrated Search
1995-07-01
Over the last nine years, the Oregon Department of Transportation (ODOT) has constructed 13 projects using crumb rubber modifiers (CRMs) in asphalt concrete pavements using both the wet and dry process. Three of the projects included more than one ty...
Hot plant recycling of asphaltic concrete : final report.
DOT National Transportation Integrated Search
1980-05-01
This report covers the design, construction and evaluation of two hot mix recycling projects. One project recycled two inches of existing dense-asphaltic concrete through a modified batch plant. The second project recycled a total of five inches of e...
Health monitoring of post-tension tendons in bridges.
DOT National Transportation Integrated Search
2003-01-01
Post-tensioned concrete has been used in a number of bridge structures and is expected to be used more in future construction in Virginia. This type of detail offers unique advantages for improving the performance of concrete members. Recent problems...
Performance determination of precast concrete slabs used for the repair of rigid pavements.
DOT National Transportation Integrated Search
2014-10-01
The safety of civilians is of paramount importance during the construction and repair of concrete pavements. : A complete understanding of the pavement distresses that compromise the structural stability and performance : of rigid pavements are requi...
Laboratory evaluation of 100 percent fly ash cementitious systems : final report 573.
DOT National Transportation Integrated Search
2016-12-01
Long-lasting, durable concrete is a must have for Departments of Transportation (DOTs) in todays construction and economic climate. Many entities are : turning to alternative concrete mixtures to ensure long-term durability such as ternary mixt...
Portland cement concrete pavement best practices summary report.
DOT National Transportation Integrated Search
2010-08-01
This report summarizes the work and findings from WA-RD 744. This work consisted of four separate efforts related to best practices for portland cement concrete (PCC) pavement design and construction: (1) a review of past and current PCC pavement, (2...
Evaluating Pavement Design Features: Five Year Performance Evaluation of FA 401 and FA 409
DOT National Transportation Integrated Search
1993-02-01
In the summer of 1986, the Illinois Department of Transportation began the construction of four demonstration projects which focused on evaluating proposed mechanistically-based asphalt concrete (AC) and Portland cement concrete (PCC) pavement design...
Experimental validation of bracing recommendations for long-span concrete girders : final report.
DOT National Transportation Integrated Search
2012-12-01
During bridge construction, flexible support conditions provided by steel-reinforced neoprene bearing pads supporting precast, prestressed concrete girders may allow the girders to become unstable, rolling about an axis parallel to the span of the gi...
Long-term Metal Performance of Three Permeable Pavements
EPA constructed a 4,000-m2 parking lot surfaced with three permeable pavements (permeable interlocking concrete pavers, pervious concrete, and porous asphalt) on the Edison Environmental Center in Edison, NJ in 2009. Samples from each permeable pavement infiltrate were collected...
DOT National Transportation Integrated Search
2016-04-01
Achieving environmental sustainability of the US transportation infrastructure via more environmentally sound construction is not a trivial task. Our : proposal, which addresses this critical area, is aiming at transforming concrete, the material of ...
Investigation of the Use of Match Cure Technology in the Precast Concrete Industry
DOT National Transportation Integrated Search
1998-08-01
This project was proposed to evaluate the feasibility and methodology of implementing match cure technology and maturity measurement systems into TxDOT acceptance criteria for concrete construction projects. This report will deal strictly with the in...
High performance concrete pavement in Indiana : [technical summary].
DOT National Transportation Integrated Search
2011-01-01
Until the early 1990s, curling and warping of Portland cement concrete pavement did not concern pavement engineers in many transportation agencies. Since beginning construction of the interstate system in the United States in the late 1950s through t...
Evaluation of hydraulic cement concretes containing slag added at the mixer.
DOT National Transportation Integrated Search
1985-01-01
The study evaluated the effect of ground, granulated, iron slags on the properties of hydraulic cement concretes such as normally used in highway construction. Two cements with different alkali contents and two slags with different activity indices, ...
Evaluation of recycled asphaltic concrete : final report.
DOT National Transportation Integrated Search
1977-01-01
This report describes a project in which approximately 6,200 tons (5,630 Mg) of asphaltic concrete were recycled through a conventional asphalt batch plant. During the construction of the project, a buildup of asphalt-coated fines occurred in the dry...
The use of ternary mixtures in concrete.
DOT National Transportation Integrated Search
2014-05-01
This manual is a summary of the findings of a comprehensive study. Its purpose is to provide engineers with the information they need to make educated decisions on the use of ternary mixtures for constructing concrete structures. It discusses the eff...
29 CFR 1926.706 - Requirements for masonry construction.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for masonry construction. 1926.706 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.706 Requirements for masonry construction. (a) A limited access zone shall be established...
29 CFR 1926.706 - Requirements for masonry construction.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for masonry construction. 1926.706 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.706 Requirements for masonry construction. (a) A limited access zone shall be established...
29 CFR 1926.706 - Requirements for masonry construction.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 29 Labor 8 2012-07-01 2012-07-01 false Requirements for masonry construction. 1926.706 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.706 Requirements for masonry construction. (a) A limited access zone shall be established...
29 CFR 1926.706 - Requirements for masonry construction.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for masonry construction. 1926.706 Section..., DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete and Masonry Construction § 1926.706 Requirements for masonry construction. (a) A limited access zone shall be established...
Mapping Of Construction Waste Illegal Dumping Using Geographical Information System (GIS)
NASA Astrophysics Data System (ADS)
Zainun, Noor Yasmin; Rahman, Ismail Abdul; Azwana Rothman, Rosfazreen
2016-11-01
Illegal dumping of solid waste not only affecting the environment but also social life of communities, hence authorities should have an effective system to cater this problem. Malaysia is experiencing extensive physical developments and this has led to an increase of construction waste illegal dumping. However, due to the lack of proper data collection, the actual figure for construction waste illegal dumping in Malaysia are not available. This paper presents a mapping of construction waste illegal dumping in Kluang district, Johor using Geographic Information System (GIS) software. Information of the dumped waste such as coordinate, photos, types of material and quantity of waste were gathered manually through site observation for three months period. For quantifying the dumped waste, two methods were used which are the first method is based on shape of the waste (pyramids or squares) while the second method is based weighing approach. All information regarding the waste was assigned to the GIS for the mapping process. Results indicated a total of 12 types of construction waste which are concrete, tiles, wood, gypsum board, mixed construction waste, brick and concrete, bricks, sand, iron, glass, pavement and tiles, and concrete at 64 points locations of illegal dumping on construction waste in Kluang. These wastes were accounted to an estimated volume of 427.2636 m3. Hopefully, this established map will assist Kluang authority to improve their solid waste management system in Kluang.
Freeze-thaw durability of microwave cured air-entrained concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pheeraphan, T.; Leung, C.K.Y.
1997-03-01
The strength development of concrete can be greatly accelerated by curing with microwave energy. Microwave curing can therefore be beneficial to construction operations such as concrete precasting and repair. To provide freeze-thaw durability for infrastructure applications, air entrainment has to be introduced. In this investigation, the freeze-thaw resistance of microwave cured air-entrained concrete is measured, and compared to that of air-entrained concrete under normal curing. Their compressive strength at 14 days and air-void characteristics are also measured and compared. The test results indicate that microwave curing can impair the freeze-thaw durability of high w/c concrete but not for low w/cmore » concrete. Also, under microwave curing, the decrease in strength due to air entrainment becomes more significant. Based on these observations, it is recommended that for microwave cured air-entrained concrete, a low w/c ratio should be employed.« less
Durability of styrene-butadiene latex modified concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaker, F.A.; El-Dieb, A.S.; Reda, M.M.
1997-05-01
The durability of reinforced concrete structures represents a major concern to many investigators. The use of latex modified concrete (LMC) in construction has urged researchers to review and investigate its different properties. This study is part of a comprehensive investigation carried on the use of polymers in concrete. The main objective of this study to investigate and evaluate the main durability aspects of Styrene-Butadiene latex modified concrete (LMC) compared to those of conventional concrete. Also, the main microstructural characteristics of LMC were studied using a Scanning Electron Microscope (SEM). The SEM investigation of the LMC showed major differences in itsmore » microstructure compared to that of the conventional concrete. The LMC proved to be superior in its durability compared to the durability of conventional concrete especially its water tightness (measured by water penetration, absorption, and sorptivity tests), abrasion, corrosion, and sulphate resistance.« less
Experimental study on the performance of pervious concrete
NASA Astrophysics Data System (ADS)
Liu, Haojie; Liu, Rentai; Yang, Honglu; Ma, Chenyang; Zhou, Heng
2018-02-01
With the construction of sponge city, the pervious concrete material has been developed rapidly. A high-performance pervious concrete is developed by using cement, silica fume (SF) and superplasticizer (SP). The effects of SF, SP, aggregate size, water-cement ration and aggregate-cement ratio on the permeability coefficient, compressive strength and flexural strength are studied by controlling variables, and exploring the corrosion resistance and abrasion resistance of pervious concrete. The results show that using 0.5% SP, 5% SF and small aggregate can greatly improve the strength. There is an optimum value for water-cement ratio to make the strength and permeability coefficient maximum. Compared to ordinary pervious concrete, the corrosion resistance and abrasion resistance of this pervious concrete are very good.
Mineral resource of the month: hydraulic cement
van Oss, Hendrik G.
2012-01-01
Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.
Ultra-High-Performance Concrete And Advanced Manufacturing Methods For Modular Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sawab, Jamshaid; Lim, Ing; Mo, Yi-Lung
Small modular reactors (SMR) allow for less onsite construction, increase nuclear material security, and provide a flexible and cost-effective energy alternative. SMR can be factory-built as modular components, and shipped to desired locations for fast assembly. This project successfully developed a new class of ultra-high performance concrete (UHPC), which features a compressive strength greater than 22 ksi (150 MPa) without special treatment and self-consolidating characteristics desired for SMR modular construction. With an ultra-high strength and dense microstructure, it will facilitate rapid construction of steel plate-concrete (SC) beams and walls with thinner and lighter modules, and can withstand harsh environments andmore » mechanical loads anticipated during the service life of nuclear power plants. In addition, the self-consolidating characteristics are crucial for the fast construction and assembly of SC modules with reduced labor costs and improved quality. Following the UHPC material development, the capacity of producing self-consolidating UHPC in mass quantities was investigated and compared to accepted self-consolidating concrete standards. With slightly adjusted mixing procedure using large-scale gravity-based mixers (compared with small-scale force-based mixer), the self-consolidating UHPC has been successfully processed at six cubic yards; the product met both minimum compressive strength requirements and self-consolidating concrete standards. Steel plate-UHPC beams (15 ft. long, 12 in. wide and 16 in. deep) and wall panels (40 in. X 40 in. X 3 in.) were then constructed using the self-consolidating UHPC without any external vibration. Quality control guidelines for producing UHPC in large scale were developed. When the concrete is replaced by UHPC in a steel plate concrete (SC) beam, it is critical to evaluate its structural behavior with both flexure and shear-governed failure modes. In recent years, SC has been widely used for buildings and nuclear containment structures to resist lateral forces induced by severe earthquakes and heavy winds. SC modules have good potential for SMR because of their cost-effectiveness and reduced construction time. However, the minimum shear reinforcement (i.e. cross tie) ratio needs to be determined for the steel plate-UHPC (S-UHPC) beams to exhibit a ductile failure mode. In this project, S-UHPC beams were designed and constructed. The beams were tested to evaluate structural capacity and identify the minimum cross ties ratios. In addition, as the bond between UHPC and steel plate is essential for ensuring structural integrity under shear and flexure, it was measured and examined in this project through digital image correlation system and smart piezoelectric aggregate sensors. Large-scale testing and finite element simulation were also performed on S-UHPC wall panels. New bond slip-based constitutive models of steel plate were developed for S-UHPC, which were used in finite element analysis program to predict S-UHPC behavior under shear. The results were well validated through experimental data. The long-term durability of UHPC were established in this project. UHPC specimens were tested under free shrinkage, restrained shrinkage, elevated temperature, water permeation, chloride diffusion, corrosion, and alkali silica reaction. UHPC has demonstrated significantly improved durability compared with control concrete specimens. This research led to a new generation of steel plate-UHPC modules for SMR that can provide large benefits to the electric power industry. Taking advantage of the high strength and durability of UHPC, their modularity and ease of assembly can address the high cost barriers of typical nuclear power plants.« less
Improving bridges with prefabricated precast concrete systems.
DOT National Transportation Integrated Search
2013-12-01
In order to minimize the impact of construction on the traveling public, MDOT utilizes innovative and specialized construction methods such as Accelerated Bridge Construction (ABC). Michigan, like other highway agencies in the region, has several cha...
Evaluation of continuity detail for precast prestressed girders.
DOT National Transportation Integrated Search
2011-08-01
The construction of highway bridges using precast prestressed concrete (PSC) girders is considered one of the most : economical construction alternatives because of the advantages they offer (e.g. reducing formwork and rapid construction). : Construc...
Mujarrah Canal Bridge, Ramadi, Iraq
2009-07-14
eastern span (Span No. 1) of the structure. The detonation caused damage to the pier cap (the beam across the column top) of Bent No. 1 and post-tensioned...damage to the existing bridge, the temporary jacking and support of the existing structure, construction of the post-tensioned concrete beams and...placed directly onto the precast -concrete pans; and vertical offsets between the individual precast -concrete deck pans. Also, SIGIR identified
Guide for Visual Inspection of Structural Concrete Building Components.
1991-07-01
Formalin Aqueous solution of formaldehyde disintegrates concrete Fruit juices Most fruit juices have little, if any, effect as tartaric acid and citric ...corrected. Cracks in concrete can be either passive or active. Passive cracks can be caused by construction ei-ors, material shrinkage, variations in...commonly in heavily trafficked areas. Too much water in the mix causes excessive bleeding, which brings fines and cements to the surface, weakening the
Study on Strength and Durability Characteristics of Concrete with Ternary Blend
NASA Astrophysics Data System (ADS)
Nissi Joy, C.; Ramakrishnan, K.; Snega, M.; Ramasundram, S.; Venkatasubramanian, C.; Muthu, D.
2017-07-01
In the present scenario to fulfill the demands of sustainable construction, concrete made with multi-blended cement system of Ordinary Portland Cement (OPC) and different mineral admixtures is the wise choice for the construction industry. In this research work, M20 grade mix of concrete (with water - binder ratio as 0.48) is adopted with glass powder (GP) and Sugar Cane Bagasse Ash (SCBA) as partial replacement of cement. GP is an inert material, they occupy the landfill space for considerable amount of time unless there is a potential for recycling. Such glass wastes in the crushed form have a good potential in the infrastructure industry. Replacement of cement by GP from 30% to 0% by weight of cement in step of 5% and by SCBA from 0% to 30% in step of 5% respectively was adopted. In total, seven different combinations of mixes were studied at two different ages of concrete namely 7 and 28 days. Compressive strength of cubes for various percentage of replacement were investigated and compared with conventional concrete to find out the maximum mix ratio. Flexural strength of concrete for the maximum mix ratio was found out and durability parameters viz., water absorption and sorptivity were studied. From the experimental study, 20% SCBA and 10% GP combination was found to be the maximum mix ratio.
Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products.
Xuan, Dongxing; Zhan, Baojian; Poon, Chi Sun; Zheng, Wei
2016-07-15
Concrete slurry waste (CSW) is generated from ready-mixed concrete plants during concrete production and is classified as a corrosive hazardous material. If it is disposed of at landfills, it would cause detrimental effects for our surrounding environment and ecosystems due to its high pH value as well as heavy metal contamination and accumulation. A new method in this study has been introduced to effectively reuse CSW in new construction products. In this method, the calcium-silicate rich CSW in the fresh state was considered as a cementitious paste as well as a CO2 capture medium. The experimental results showed that the pH values of the collected CSWs stored for 28 days ranged from 12.5 to 13.0 and a drastic decrease of pH value was detected after accelerated mineral carbonation. The theoretically calculated CO2 sequestration extent of CSWs was from 27.05% to 31.23%. The practical water to solid ratio in the fresh CSW varied from 0.76 to 1.12, which had a significant impact on the compressive strength of the mixture with CSWs. After subjecting to accelerated mineral carbonation, rapid initial strength development and lower drying shrinkage for the prepared concrete mixture were achieved. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Bhattarai, Santosh; Zhou, Yihong; Zhao, Chunju; Zhou, Huawei
2018-02-01
Thermal cracking on concrete dams depends upon the rate at which the concrete is cooled (temperature drop rate per day) within an initial cooling period during the construction phase. Thus, in order to control the thermal cracking of such structure, temperature development due to heat of hydration of cement should be dropped at suitable rate. In this study, an attempt have been made to formulate the relation between cooling rate of mass concrete with passage of time (age of concrete) and water cooling parameters: flow rate and inlet temperature of cooling water. Data measured at summer season (April-August from 2009 to 2012) from recently constructed high concrete dam were used to derive a prediction model with the help of Genetic Programming (GP) software “Eureqa”. Coefficient of Determination (R) and Mean Square Error (MSE) were used to evaluate the performance of the model. The value of R and MSE is 0.8855 and 0.002961 respectively. Sensitivity analysis was performed to evaluate the relative impact on the target parameter due to input parameters. Further, testing the proposed model with an independent dataset those not included during analysis, results obtained from the proposed GP model are close enough to the real field data.
Aggregate Effect on the Concrete Cone Capacity of an Undercut Anchor under Quasi-Static Tensile Load
Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie
2018-01-01
In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means. PMID:29723972
Marcon, Marco; Ninčević, Krešimir; Boumakis, Ioannis; Czernuschka, Lisa-Marie; Wan-Wendner, Roman
2018-05-01
In the last decades, fastening systems have become an essential part of the construction industry. Post-installed mechanical anchors are frequently used in concrete members to connect them with other load bearing structural members, or to attach appliances. Their performance is limited by the concrete related failure modes which are highly influenced by the concrete mix design. This paper aims at investigating the effect that different aggregates used in the concrete mix have on the capacity of an undercut anchor under tensile quasi-static loading. Three concrete batches were cast utilising three different aggregate types. For two concrete ages (28 and 70 days), anchor tensile capacity and concrete properties were obtained. Concrete compressive strength, fracture energy and elastic modulus are used to normalize and compare the undercut anchor concrete tensile capacity employing some of the most widely used prediction models. For a more insightful comparison, a statistical method that yields also scatter information is introduced. Finally, the height and shape of the concrete cones are compared by highly precise and objective photogrammetric means.
Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling
NASA Astrophysics Data System (ADS)
Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip
2016-06-01
Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.
DOT National Transportation Integrated Search
2012-05-01
This report documents the performance of concrete pavements constructed on I-5 in the vicinity of Federal : Way, Washington. The pavements were built using three types of texture; carpet drag, longitudinal tining, and : transverse tining. The pavemen...
Evaluation of Rocky Point Viaduct Concrete Beam : Final Report
DOT National Transportation Integrated Search
2000-06-01
This study was intended to determine why it was necessary to replace the Rocky Point Viaduct after a period of service that was much shorter than that of many other reinforced concrete bridges on the Oregon coast; to identify construction practices t...
Evaluation of Rocky Point Viaduct concrete beam : appendices
DOT National Transportation Integrated Search
2000-06-01
This study was intended to determine why it was necessary to replace the Rocky Point Viaduct after a period of service that was much shorter than that of many other reinforced concrete bridges on the Oregon coast; to identify construction practices t...
Environmental suitability of recycled concrete aggregate in highways : [research summary].
DOT National Transportation Integrated Search
2015-01-01
Natural highway aggregate is a finite resource that with continued use in construction : activities but some good quality aggregates used in existing concrete structures may be : re-used to replace with the natural aggregate. Due to the repair or rep...
Remaining life of reinforced concrete beams with diagonal-tension cracks : final report.
DOT National Transportation Integrated Search
2004-04-01
This report covers the initial efforts of a research study investigating the remaining capacity and life of cast-in-place reinforced concrete deck-girder (RCDG) bridges with diagonal tension cracks. A database of 442 bridges constructed from 1947 to ...
Post construction review, district 8, San Bernardino County, Interstate 15 - southbound
DOT National Transportation Integrated Search
2001-06-01
A concrete pavement project, complete May 2000 on Interstate 15 near Barstow in San Bernardino County, began to exhibit sighs of premature deterioration. The Office of Rigid Pavement and Structural Concrete was asked to evaluate the situation and mak...
Evaluating the effects of concrete pavement curling and warping on ride quality.
DOT National Transportation Integrated Search
2015-09-01
Construction of a jointed concrete pavement on US 34 near Greeley, Colorado in 2012 led to an investigation of slab curling : and warping that appeared to be contributing to undesirable levels of pavement roughness. Specifically, the westbound lanes ...
DOT National Transportation Integrated Search
1974-06-01
The primary purpose of this research effort was to assess the presently specified smoothness criteria for new construction of asphaltic concrete surfaces using various rolling straightedges and roadmeters. This assessment was to be based on the corre...
DOT National Transportation Integrated Search
2014-06-01
Concretes remarkable role in construction depends on its marriage with reinforcing steel. Concrete is very strong in compression, but weak in tension, so reinforcing steel is added to increase tensile strength, yielding structural components capab...
Nitrogen Transformations in Three Types of Permeable Pavement
In 2009, USEPA constructed a 0.4-ha (1-ac) parking lot at the Edison Environmental Center in Edison, NJ, that incorporated three different permeable pavement types - permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA). The driving lanes...
Development of MASH TL-3 transition between guardrail and portable concrete barriers.
DOT National Transportation Integrated Search
2014-06-01
Often, road construction causes the need to create a work zone. In these scenarios, portable concrete barriers (PCBs) : are typically installed to shield workers and equipment from errant vehicles as well as prevent motorists from striking other : ro...
Seismic evaluation and retrofit of deteriorated concrete bridge components.
DOT National Transportation Integrated Search
2013-06-01
Corrosion of steel bars in reinforced concrete structures is a major durability problem for bridges constructed in the New York State : (NYS). The heavy use of deicing salt compounds this problem. Corrosion of steel bars results in loss of steel cros...
DOT National Transportation Integrated Search
2017-07-04
Large numbers of conventionally reinforced concrete bridges (RC) were constructed during the interstate highway expansion of the 1950s and remain in the national inventory. Coincidently, deformed steel reinforcing bars were standardized. The stand...
Quality control of highway concrete containing fly ash.
DOT National Transportation Integrated Search
1981-01-01
This report is essentially a synthesis of pertinent information concerning the use of fly ash as an ingredient in concrete for highway construction. It has been prepared to provide a basis for an adequate response by the Department of Highways and Tr...
DOT National Transportation Integrated Search
2016-03-14
Ultra-high performance concrete (UHPC) is a new class of cementitious materials that have : exceptional mechanical and durability characteristics. UHPC is commercially available. : However, its cost for construction of highway structures is prohibiti...
Hilfiker reinforced soil embankment with full-height, cast-in-place concrete panels
DOT National Transportation Integrated Search
1992-05-01
The objective of this project was to evaluate the construction and performance of a full-height retaining wall system. The contractor chose to use the Hilfiker Reinforced Soil Embankment with cast-in-place, concrete panels. The project included three...
Evaluation of a highway bridge constructed using high strength lightweight concrete bridge girders.
DOT National Transportation Integrated Search
2011-04-01
The purpose of this research was to characterize the performance of High Strength Lightweight Concrete (HSLW) in precast, prestressed bridge girders and to evaluate their performance in a highway bridge. The mechanical properties and long-term time-d...
Application of granulated lead-zinc slag in concrete as an opportunity to save natural resources
NASA Astrophysics Data System (ADS)
Alwaeli, Mohamed
2013-02-01
The last decades marked a period of growth and prosperity in construction industry which involves the use of natural resources. This growth is jeopardized by the lack of natural resources that are available. On the other hand there has been rapid increase in the industrial waste production. Most of the waste do not find any effective use and cause a waste disposal crisis, thereby contributing to health and environmental problems. Recycling of industrial waste as aggregate is thus a logical option to manage this problem. The paper reports on some experimental results obtained from the production of concretes containing granulated slag of lead and zinc industry as sand replacement mixed in different proportions. Granulated slag is substituted for raw sand, partly or totally. Ratios of 25%, 50%, 75% and 100% by weight of sand are used. The effects of granulated lead-zinc slag (GLZS) as sand replacement material on the compressive strength and gamma radiation attenuation properties of concrete are investigated and analyzed. Then, these properties are compared with those of ordinary concrete. The results showed that replacement material have some effects on the compressive strength and gamma radiation properties of the concrete. The experimental results indicate that, the concrete mixed with GLZS as a sand replacement have better strength. Concerning the absorption properties for gamma radiation the data show that the addition of GLZS resulted in an increase of the attenuation of gamma radiation. Consequently, these concretes could be used for construction of shields protecting personnel who work in laboratories where radiation is used. Additionally, the thickness of the concrete with GLZS was calculated and compared with ordinary concrete.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-03-02
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls.
Liu, Wenchao; Cao, Wanlin; Zhang, Jianwei; Qiao, Qiyun; Ma, Heng
2016-01-01
The seismic performance of recycled aggregate concrete (RAC) composite shear walls with different expandable polystyrene (EPS) configurations was investigated. Six concrete shear walls were designed and tested under cyclic loading to evaluate the effect of fine RAC in designing earthquake-resistant structures. Three of the six specimens were used to construct mid-rise walls with a shear-span ratio of 1.5, and the other three specimens were used to construct low-rise walls with a shear-span ratio of 0.8. The mid-rise and low-rise shear walls consisted of an ordinary recycled concrete shear wall, a composite wall with fine aggregate concrete (FAC) protective layer (EPS modules as the external insulation layer), and a composite wall with sandwiched EPS modules as the insulation layer. Several parameters obtained from the experimental results were compared and analyzed, including the load-bearing capacity, stiffness, ductility, energy dissipation, and failure characteristics of the specimens. The calculation formula of load-bearing capacity was obtained by considering the effect of FAC on composite shear walls as the protective layer. The damage process of the specimen was simulated using the ABAQUS Software, and the results agreed quite well with those obtained from the experiments. The results show that the seismic resistance behavior of the EPS module composite for shear walls performed better than ordinary recycled concrete for shear walls. Shear walls with sandwiched EPS modules had a better seismic performance than those with EPS modules lying outside. Although the FAC protective layer slightly improved the seismic performance of the structure, it undoubtedly slowed down the speed of crack formation and the stiffness degradation of the walls. PMID:28773274
Work-related to musculoskeletal disorder amongst Malaysian construction trade workers: Bricklayers
NASA Astrophysics Data System (ADS)
Lop, Nor Suzila; Kamar, Izatul Farrita Mohd; Aziz, Mohd Nasiruddin Abdul; Abdullah, Lizawati; Akhir, Norizan Mt
2017-10-01
Construction sector is one of the highest risk industries contributing to the development of work-related musculoskeletal disorders. In general construction activities involve the composition of various construction trades, such as painting, plastering, concreting, paving and bricklaying. Different construction trades workers are exposed to risk factors depending their job and task. There are risk factors associated with the construction trade workers activities such as concrete work, brickwork, piling work excavation works and etc. Thus, the aim of this research is to document the critical activities that affect the musculoskeletal disorders amongst Malaysian construction trade workers, in particular to the bricklayers. The objective of this research is to identify the critical activities that affect to the musculoskeletal disorder among the bricklayers. The data for this research was collected via observation to the construction workers for the specific trades which are bricklayers in Perak. Finding of this research is by identifying the critical activities involved that affect the musculoskeletal disorder suffering among bricklayers.
Supplanting the rapid chloride permeability test with a quick measurement of concrete conductivity.
DOT National Transportation Integrated Search
2005-01-01
The rapid chloride permeability test (RCPT) (AASHTO T 277, ASTM C 1202) is increasingly being used as an acceptance test for concrete constructions in the transportation industry. As more and more projects are subject to such testing, the capabilitie...
Determination of mechanical properties of materials used in WAY-30 test pavements.
DOT National Transportation Integrated Search
2010-05-01
The US Route 30 bypass of Wooster, Ohio, in Wayne County, WAY-30, was constructed to demonstrate two types of : extended service pavements, a long-life Portland cement concrete (PCC) pavement on the eastbound lanes and an asphalt : concrete (AC...
DOT National Transportation Integrated Search
2013-10-01
A significant proportion of the United States bridge inventory is based on bonded post-tensioned (PT) concrete construction. An important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly groute...
DOT National Transportation Integrated Search
2003-08-01
Prestressed Concrete Pavement (PCP) has been around for almost 60 years. Its application started in Europe in : the 1940s, and since then it has been applied with fair success in other countries, including the United States. : Domestic application of...
DOT National Transportation Integrated Search
2006-03-01
Cracking in reinforced concrete decks is inevitable. It leads to the corrosion and eventual deterioration of the deck system. The use of non-corrosive reinforcement is one alternative to steel in reinforced concrete construction. : This report deals ...
DOT National Transportation Integrated Search
2016-07-01
Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the : corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial : to extend it...
DOT National Transportation Integrated Search
2013-10-01
"A significant proportion of the U.S. bridge inventory is based on bonded post-tensioned (PT) concrete construction. An : important aspect of maintaining corrosion protection of these PT systems is assuring that tendon ducts are properly grouted : wi...
DOT National Transportation Integrated Search
1994-12-01
Prestressed concrete box beams incorporated in a bridge project under construction in the Houston District encountered cracking in the notched (dapped) ends during fabrication. Because the members in question are trapezoidal in section and have inter...
Performances of Metal Concentrations from Three Permeable Pavement Infiltrates
The U.S. Environmental Protection Agency designed and constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements: permeable interlocking concrete pavers, pervious concrete, and porous asphalt. Water sampling was con...
This project will provide a scientifically defensible estimate of the performance of the three permeable surfaces: porous concrete, porous asphalt, and interlocking concrete pavers. The U.S. Environmental Protection Agency (EPA) can provide the results to municipalities enabling...
DOT National Transportation Integrated Search
2009-01-01
PROBLEM: The coefficient of thermal expansion (CTE) is a fundamental property of construction : materials such as steel and concrete. Although the CTE of steel is a well-defined : constant, the CTE of concrete varies substantially with aggregate type...
Effects of concrete moisture on polymer overlay bond over new concrete.
DOT National Transportation Integrated Search
2015-06-01
Epoxy polymer overlays have been used for decades on existing bridge decks to protect the deck and extend its : service life. The polymer overlays ability to seal a bridge deck is now being specified for new construction. Questions exist : about t...
Performances of Metal Concentrations from Three Permeable Pavement Infiltrates
The U.S. Environmental Protection Agency constructed a 4000-m2 parking lot in Edison, New Jersey in 2009. The parking lot is surfaced with three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)]. Samples of each p...
Self-consolidating concrete, applications for slip-form paving : phase II.
DOT National Transportation Integrated Search
2011-05-01
The goal of the project was to develop a new type of self-consolidating concrete (SCC) for slip-form paving to simplify construction and make smoother pavements. Developing the new SCC involved two phases: a feasibility study (Phase I sponsored by TP...
DOT National Transportation Integrated Search
2017-05-01
The main objective of this research is to develop and validate the behavior of a new class of environmentally friendly and costeffective : high-performance concrete (HPC) referred to herein as Eco-HPC. The proposed project aimed at developing two cla...
Compaction of bituminous concrete with self-propelled pneumatic tire rollers in Louisiana.
DOT National Transportation Integrated Search
1958-10-01
The main objective of this investigation was to study the possibilities of improving the density of asphaltic concrete pavements at the time of construction to approach the values obtained during the first year of traffic service, in order to elimina...
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2009-12-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
Research on seismic behavior and filling effect of a new CFT column-CFT beam frame structure
NASA Astrophysics Data System (ADS)
Wang, Ying; Shima, Hiroshi
2010-03-01
Concrete filled-steel tube (CFT) structure is popularly used in practical structures nowadays. Self-compacting concrete (SCC) was employed to construct a new CFT column-CFT beam frame structure (hereinafter cited as new CFT frame structure) in this research. Three specimens, two CFT column-CFT beam joints and one hollow steel column-I beam joint were tested to investigate seismic behavior of the new CFT frame structure. The experimental results showed that SCC can be successfully compacted into the new CFT frame structure joints in the lab, and the joints provided adequate seismic behavior. In order to further assess filling effect of SCC in the long steel tube, scale column-beam subassembly made of acrylics plate was employed and concrete visual model experiment was done. The results showed that the concrete was able to be successfully cast into the subassembly which indicated that the new CFT frame structure is possible to be constructed in the real building.
Characterization of a sustainable sulfur polymer concrete using activated fillers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence
Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less
Utilization of power plant bottom ash as aggregates in fiber-reinforced cellular concrete.
Lee, H K; Kim, H K; Hwang, E A
2010-02-01
Recently, millions tons of bottom ash wastes from thermoelectric power plants have been disposed of in landfills and coastal areas, regardless of its recycling possibility in construction fields. Fiber-reinforced cellular concrete (FRCC) of low density and of high strength may be attainable through the addition of bottom ash due to its relatively high strength. This paper focuses on evaluating the feasibility of utilizing bottom ash of thermoelectric power plant wastes as aggregates in FRCC. The flow characteristics of cement mortar with bottom ash aggregates and the effect of aggregate type and size on concrete density and compressive strength were investigated. In addition, the effects of adding steel and polypropylene fibers for improving the strength of concrete were also investigated. The results from this study suggest that bottom ash can be applied as a construction material which may not only improve the compressive strength of FRCC significantly but also reduce problems related to bottom ash waste.
Characterization of a sustainable sulfur polymer concrete using activated fillers
Moon, Juhyuk; Kalb, Paul D.; Milian, Laurence; ...
2016-01-02
Sulfur polymer concrete (SPC) is a thermoplastic composite concrete consisting of chemically modified sulfur polymer and aggregates. This study focused on the characterization of a new SPC that has been developed as a sustainable construction material. It is made from industrial by-product sulfur that is modified with activated fillers of fly ash, petroleum refinery residual oil, and sand. Unlike conventional sulfur polymer cements made using dicyclopentadiene as a chemical modifier, the use of inexpensive industrial by-products enables the new SPC to cost-effectively produce sustainable, low-carbon, thermoplastic binder that can compete with conventional hydraulic cement concretes. A series of characterization analysesmore » was conducted including thermal analysis, X-ray diffraction, and spatially-resolved Xray absorption spectroscopy to confirm the polymerization of sulfur induced from the presence of the oil. In addition, mechanical testing, internal pore structure analysis, and scanning electron microscope studies evaluate the performance of this new SPC as a sustainable construction material with a reduced environmental impact.« less
The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete
Langer, W.H.
2011-01-01
An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.
NASA Astrophysics Data System (ADS)
Aziz, M. A.; Idris, K. M.; Majid, Z.; Ariff, M. F. M.; Yusoff, A. R.; Luh, L. C.; Abbas, M. A.; Chong, A. K.
2016-09-01
Nowadays, terrestrial laser scanning shows the potential to improve construction productivity by measuring the objects changes using real-time applications. This paper presents the process of implementation of an efficient framework for precast concrete using terrestrial laser scanning that enables contractors to acquire accurate data and support Quality Assessment System in Construction (QLASSIC). Leica Scanstation C10, black/white target, Autodesk Revit and Cyclone software were used in this study. The results were compared with the dimensional of based model precast concrete given by the company as a reference with the AutoDesk Revit model from the terrestrial laser scanning data and conventional method (measuring tape). To support QLASSIC, the tolerance dimensions of cast in-situ & precast elements is +10mm / -5mm. The results showed that the root mean square error for a Revit model is 2.972mm while using measuring tape is 13.687mm. The accuracy showed that terrestrial laser scanning has an advantage in construction jobs to support QLASSIC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesvijski, E.; Nesvijski, T.
1996-12-31
Concrete as one of the main construction materials, which is used for building of industrial and civil structures, highways, bridges, etc. requires periodical evaluation of its properties by different nondestructive methods. Application of acoustic emission (AE) for these purposes occupies a modest place among other nondestructive methods. But the AE methods proved to be very effective for testing of concrete and reinforced concrete elements and structures under load. This work is devoted to an important, from methodological point of view, problem connected with two opposite effects: of Kaiser and of Felicity, and their application for evaluation of concrete by themore » AE method.« less
Civil engineering reference guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merritt, F.S.
1986-01-01
The civil engineering reference guide contains the following: Structural theory. Structural steel design. Concrete design and construction. Wood design and construction. Bridge engineering. Geotechnical engineering. Water engineering. Environmental engineering. Surveying.
Natural Corrosion Inhibitors for Steel Reinforcement in Concrete — a Review
NASA Astrophysics Data System (ADS)
Raja, Pandian Bothi; Ghoreishiamiri, Seyedmojtaba; Ismail, Mohammad
2015-04-01
Reinforced concrete is one of the widely used construction materials for bridges, buildings, platforms and tunnels. Though reinforced concrete is capable of withstanding a large range of severe environments including marine, industrial and alpine conditions, there are still a large number of failures in concrete structures for many reasons. Either carbonation or chloride attack is the main culprit which is due to depassivation of reinforced steel and subsequently leads to rapid steel corrosion. Among many corrosion prevention measures, application of corrosion inhibitors play a vital role in metal protection. Numerous range of corrosion inhibitors were reported for concrete protection that were also used commercially in industries. This review summarizes the application of natural products as corrosion inhibitors for concrete protection and also scrutinizes various factors influencing its applicability.
Analysis of Transparent Concrete as an Innovative Material Used in Civil Engineering
NASA Astrophysics Data System (ADS)
Zielińska, Monika; Ciesielski, Albert
2017-10-01
Since the dawn of history concrete has been, right behind stone and brick, one of the oldest building materials. The ancient Romans took advantage of its opportunities. They constructed amazing architectural objects, which survived centuries as whole buildings or parts of them. Concrete is so ubiquitous, that when we are walking in a newer districts of cities we are virtually surrounded by concrete from everywhere. Sometimes we do not realize in how many cases and various ways concrete is used in towns and cities. As we know, human curiosity and quest for newer and newer solutions and capabilities does not leave such amazing material as concrete alone. There are many varieties of concrete, depending on what people want to achieve. By changing its chemical composition, technological process and adding various other materials, we receive various types of concrete. We use them to create durable supporting structures, a variety of concrete which is resistant to constant moisture or different chemical types. Additionally, some aspects of aesthetics in architecture are made with the help of concrete.
Bond behavior of self compacting concrete
NASA Astrophysics Data System (ADS)
Ponmalar, S.
2018-03-01
The success of an optimum design lies in the effective load transfer done by the bond forces at the steel-concrete interface. Self Compacting Concrete, is a new innovative concrete capable of filling intrinsic reinforcement and gets compacted by itself, without the need of external mechanical vibration. For this reason, it is replacing the conventional vibrated concrete in the construction industry. The present paper outlays the materials and methods adopted for attaining the self compacting concrete and describes about the bond behavior of this concrete. The bond stress-slip curve is similar in the bottom bars for both SCC and normal concrete whereas a higher bond stress and stiffness is experienced in the top and middle bars, for SCC compared to normal concrete. Also the interfacial properties revealed that the elastic modulus and micro-strength of interfacial transition zone [ITZ] were better on the both top and bottom side of horizontal steel bar in the SCC mixes than in normal vibrated concrete. The local bond strength of top bars for SCC is about 20% less than that for NC. For the bottom bars, however, the results were almost the same.
Life Cycle Cost Analysis of Ready Mix Concrete Plant
NASA Astrophysics Data System (ADS)
Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.
2013-11-01
India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.
NASA Astrophysics Data System (ADS)
Khavanov, Pavel; Fomina, Ekaterina; Kozhukhova, Natalia
2018-03-01
Nowadays, the problem of energy saving is very relevant. One of the ways to reduction energy consumption in construction materials production and construction of civil and industrial high-rise buildings is the application of claddings with heat-insulating performance. The concept of energy efficiency of high-rise buildings is closely related to environmental aspect and sustainability of applied construction materials; reducing service costs; energy saving and microclimate comfortability. A complexity of architectural and structural design as well as aesthetic characteristics of construction materials are also should be considered. The high interest focused on materials with combined properties. This work is oriented on the study of energy efficiency of buildings by improving heat-insulation and strength performance of autoclave aerated concrete. The applied method of sulfate activation of lime allows monitoring phase and structure formation in aerated concrete. The optimal mix design of aerated concrete with the compressive strength up to 8.5 MPa and decreased density up to 760 kg/m3 was proposed. Analysis of structure at macro-and microscale was performed as well as the criteria of an optimal porosity formation was considered a number, size, shape of pore and density of interior partition. SEM analysis and BET method were performed in this research work. The research results demonstrated the correlation between structure and vapor permeability resistance, also it was found that the increase of strength can lead to reduction of thermal conductivity.
NASA Astrophysics Data System (ADS)
Remec, Igor; Rosseel, Thomas M.; Field, Kevin G.; Pape, Yann Le
2017-09-01
Life extensions of nuclear power plants (NPPs) to 60 years of operation and the possibility of subsequent license renewal to 80 years have renewed interest in long-term material degradation in NPPs. Large irreplaceable sections of most nuclear generating stations are constructed from concrete, including safety-related structures such as biological shields and containment buildings; therefore, concrete degradation is being considered with particular focus on radiation-induced effects. Based on the projected neutron fluence values (E > 0.1 MeV) in the concrete biological shields of the US pressurized water reactor fleet and the currently available data on radiation effects on concrete, some decrease in mechanical properties of concrete cannot be ruled out during extended operation beyond 60 years. An expansion of the irradiated concrete database is desirable to ensure reliable risk assessment for extended operation of nuclear power plants.
NASA Astrophysics Data System (ADS)
Wibowo; Fadillah, Y.
2018-03-01
Efficiency in a construction works is a very important thing. Concrete with ease of workmanship and rapid achievement of service strength will to determine the level of efficiency. In this research, we studied the optimization of accelerator usage in achieving performance on compressive strength of concrete in function of time. The addition of variation of 0.3% - 2.3% to the weight of cement gives a positive impact of the rapid achievement of hardened concrete, however the speed of increasing of concrete strength achievement in term of time influence present increasing value of filling ability parameter of self-compacting concrete. The right composition of accelerator aligned with range of the values standard of filling ability parameters of HSSCC will be an advantage guidance for producers in the ready-mix concrete industry.
NASA Astrophysics Data System (ADS)
Misri, Z.; Ibrahim, M. H. W.; Awal, A. S. M. A.; Desa, M. S. M.; Ghadzali, N. S.
2018-04-01
Concrete is well-known as a construction material which is widely used in building and infrastructure around the world. However, its widespread use has affected the reduction of natural resources. Hence, many approached have been made by researchers to study the incorporation of waste materials in concrete as a substitution for natural resources besides reducing waste disposal problems. Concrete is basically verified by determining its properties; strengths, permeability, shrinkage, durability, thermal properties etc. In various thermal properties of concrete, thermal conductivity (TC) has received a large amount of attention because it is depend upon the composition of concrete. Thermal conductivity is important in building insulation to measure the ability of a material to transfer heat. The aim of this paper is to discuss the methods and influence factors of TC of concrete containing various type of waste materials.
Comminution and sizing processes of concrete block waste as recycled aggregates.
Gomes, P C C; Ulsen, C; Pereira, F A; Quattrone, M; Angulo, S C
2015-11-01
Due to the environmental impact of construction and demolition waste (CDW), recycling is mandatory. It is also important that recycled concrete aggregates (RCA) are used in concrete to meet market demands. In the literature, the influence of RCAs on concrete has been investigated, but very limited studies have been conducted on how the origin of concrete waste and comminution processes influence RCA characteristics. This paper aims to investigate the influence of three different comminution and sizing processes (simple screening, crushing and grinding) on the composition, shape and porosity characteristics of RCA obtained from concrete block waste. Crushing and grinding implies a reduction of RCA porosity. However, due to the presence of coarse quartz rounded river pebbles in the original concrete block mixtures, the shape characteristics deteriorated. A large amount of powder (<0.15 mm) without detectable anhydrous cement was also generated. Copyright © 2015 Elsevier Ltd. All rights reserved.
Properties of concrete containing coconut shell powder (CSP) as a filler
NASA Astrophysics Data System (ADS)
Leman, A. S.; Shahidan, S.; Nasir, A. J.; Senin, M. S.; Zuki, S. S. Mohd; Ibrahim, M. H. Wan; Deraman, R.; Khalid, F. S.; Azhar, A. T. S.
2017-11-01
Coconut shellsare a type of agricultural waste which can be converted into useful material. Therefore,this study was conducted to investigate the properties of concrete which uses coconut shell powder (CSP) filler material and to define the optimum percentage of CSP which can be used asfiller material in concrete. Comparisons have been made between normal concrete mixes andconcrete containing CSP. In this study, CSP was added into concrete mixes invaryingpercentages (0%, 2%, 4%, 6%, 8% and 10%). The coconut shell was grounded into afine powder before use. Experimental tests which have been conducted in this study include theslump test, compressive test and splitting tensile strength test. CSP have the potential to be used as a concrete filler and thus the findings of this study may be applied to the construction industry. The use of CSP as a filler in concrete can help make the earth a more sustainable and greener place to live in.
NASA Astrophysics Data System (ADS)
Ardiyati, Tanti; Rozali, Bang; Kasmudin
2018-02-01
An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.
The Improvement of Foam Concrete Geoecoprotective Properties in Transport Construction
NASA Astrophysics Data System (ADS)
Svatovskaya, Larisa; Kabanov, Alexander; Sychov, Maxim
2017-10-01
The article analyses 2 kinds of properties of silica sol foam concrete: technical and geoecoprotective ones. Foam concrete stabilized with silica sol foam has lower heat conductivity resulting in fuel saving. Foam concrete obtained according to sol absorption technology has lower water absorption and is good enough for blocking to prevent the environment pollution. Pollution blocking can be achieved by two methods. The first method is saturation of an article affected by oil products with silica sol. The second method is to create a special preventive protection using silica sol screen. The article shows geoecoprotective properties of protein foam soil systems.
An Experimental Study on Shrinkage Strains of Normal-and High-Strength Concrete-Filled Frp Tubes
NASA Astrophysics Data System (ADS)
Vincent, Thomas; Ozbakkaloglu, Togay
2017-09-01
It is now well established that concrete-filled fiber reinforced polymer (FRP) tubes (CFFTs) are an attractive construction technique for new columns, however studies examining concrete shrinkage in CFFTs remain limited. Concrete shrinkage may pose a concern for CFFTs, as in these members the curing of concrete takes place inside the FRP tube. This paper reports the findings from an experimental study on concrete shrinkage strain measurements for CFFTs manufactured with normal- and high-strength concrete (NSC and HSC). A total of 6 aramid FRP (AFRP)-confined concrete specimens with circular cross-sections were manufactured, with 3 specimens each manufactured using NSC and HSC. The specimens were instrumented with surface and embedded strain gauges to monitor shrinkage development of exposed concrete and concrete sealed inside the CFFTs, respectively. All specimens were cylinders with a 152 mm diameter and 305 mm height, and their unconfined concrete strengths were 44.8 or 83.2 MPa. Analysis of the shrinkage measurements from concrete sealed inside the CFFTs revealed that embedment depth and concrete compressive strength only had minor influences on recorded shrinkage strains. However, an analysis of shrinkage measurements from the exposed concrete surface revealed that higher amounts of shrinkage can occur in HSC. Finally, it was observed that shrinkage strains are significantly higher for concrete exposed at the surface compared to concrete sealed inside the CFFTs.
Experimental Study for Structural Behaviour of Precast Lightweight Panel (PLP) Under Flexural Load
NASA Astrophysics Data System (ADS)
Goh, W. I.; Mohamad, N.; Tay, Y. L.; Rahim, N. H. A.; Jhatial, A. A.; Samad, A. A. A.; Abdullah, R.
2017-06-01
Precast lightweight concrete slab is first fabricated in workshop or industrial before construction and then transported to site and installed by skilled labour. It can reduce construction time by minimizing user delay and time for cast-in-situ to increase workability and efficiency. is environmental friendly and helps in resource reduction. Although the foamed concrete has low compressive strength compared to normal weight concrete but it has excellent thermal insulation and sound absorption. It is environmental friendly and helps in resource reduction. To determine the material properties of foamed concrete, nine cubes and six cylindrical specimens were fabricated and the results were recorded. In this study, structural behaviour of precast lightweight panel (PLP) with dry density of 1800 kg/m3 was tested under flexural load. The results were recorded and analysed in terms of ultimate load, crack pattern, load-deflection profiles and strain distribution. Linear Voltage Displacement Transducers (LVDT) and strain gauges were used to determine the deflection and strain distribution of PLP. The theoretical and experimental ultimate load of PLP was analysed and recorded to be 70 and 62 kN respectively, having a difference of 12.9%. Based on the results, it can be observed that PLP can resist the adequate loading. Thus, it can be used in precast industry for construction purposes.
Effects of concrete moisture on polymer overlay bond over new concrete : [technical summary].
DOT National Transportation Integrated Search
2015-06-01
Epoxy polymer overlays have been used for decades on existing bridge decks to protect : the deck and extend its service life. The polymer overlays ability to seal a bridge deck : is now being specified for new construction. Questions exist about t...
DOT National Transportation Integrated Search
2000-08-03
Salt-induced reinforcing steel corrosion in concrete bridges has undoubtedly become a considerable economic burden to many State and local transportation agencies. Since the iron in the steel has a natural tendency to revert eventually to its most st...
Void parameters of 24 cores of concrete removed from a consolidation test study section of I-64.
DOT National Transportation Integrated Search
1972-01-01
During the construction of I-64 near Charlottesville, Virginia, the Ballenger Paving Company chose to set up a limited experiment to investigate various factors affecting the consolidation of concrete by vibration. The test design varied the speed of...
Correlation of Water Quality Parameters with Metal Concentrations in Permeable Pavement Infiltrate
EPA constructed a 4,000-m2 parking lot for research and demonstration of three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)] at the Edison Environmental Center in Edison, NJ in 2009. Infiltrate samples from e...
Long-term performance of concrete containing hydrated hydraulic lime as an admixture.
DOT National Transportation Integrated Search
1976-01-01
In 1941 two bridges were constructed with decks using concrete incorporating as an experimental feature the use of hydrated lime as an admixture in amounts varying from zero to 12%. After 35 years of service the decks were scheduled for repairs to co...
The EPA is providing notice of a proposed Administrative Penalty Assessment against Joy Development Properties, LLC and Summit Concrete, Inc., for alleged violations at the companies’ residential construction site known as the Schutter Farms Addition loca
Study of lime vs. no lime in cold in-place recycled asphalt concrete pavements : final report.
DOT National Transportation Integrated Search
1991-09-01
The resilient characteristics of cold in-place recycled asphalt concrete with and without lime were examined. Six core samples were obtained from a site two months after construction; six months later, six additional core samples were obtained from t...
DOT National Transportation Integrated Search
2000-08-01
Sixteen high performance concrete overlays were placed on two 28-span bridges on Route 60 over Lynnhaven Inlet in Virginia Beach, Virginia, in the spring of 1996. The construction was funded with 20 percent Virginia Department of Transportation maint...
Characterization of concrete from Roman theatre and amphitheater in Emerita Augusta (Mérida, Spain)
NASA Astrophysics Data System (ADS)
Mota-Lopez, Maria Isabel; Fort, Rafael; Alvarez de Buergo, Monica; Pizzo, Antonio; Maderuelo-Sanz, Ruben; Meneses-Rodríguez, Juan Miguel
2016-04-01
The restoration of historical buildings is very important for the history and culture of the cities and their population. It requires an advanced knowledge of the building materials used for the construction of these structures. Previously to any intervention in historical buildings, it is necessary a historic-scientific study of the original material. Historic mortars or concretes can reveal us different composition and the dependence on the geographical location and the time period of its construction. Historical concretes are complex systems that contain aerial or hydraulic binders or a blend of them, with aggregates, not always crystalline, and others elements that interact with the binder. The use of different techniques for microstructural characterization of materials, like optical microscopy, X-ray diffractometry or petrophysical analysis, allows the determination of the composition and some properties of these concretes. However, each technique has its own limits and, in many cases, several characterization techniques must be used to obtain coherent and reliable results. The present study focuses on the compositional characterization of Roman concrete from Roman buildings for public spectacles of Emerita Augusta, Mérida, Spain. An advanced knowledge of the Roman concrete composition is required to get a reliable restoration and preservation of these ancient monuments. Various samples of concrete were extracted from different zones from this archaeological site. The concrete was studied through mineralogical analysis (petrographic microscope and XRD) and petrophysical properties determination (bulk and real density, open porosity, mercury porosimetry intrusion, compressive strength and Ultrasound propagation velocity). The results obtained allow us to know the original composition of the concrete and the provenance of the aggregates used in it. Acknowledgements: Community of Madrid for financing Geomateriales2 program (P2013/MIT2914), to the funding provided by BIA 2014-53911-R project and to the Consortium for the Monumental City of Merida for the permission granted to collect concrete samples.
DOT National Transportation Integrated Search
2012-01-01
One of the major obstacles facing rapid bridge construction for typical span type bridges is the time required to construct bridge abutments and foundations. This can be remedied by using the controlled low strength materials (CLSM) bridge abutment. ...
Effect of notch position on fracture energy for foamed concrete
NASA Astrophysics Data System (ADS)
Naqiuddin Zamri, Mohd; Rahman, Norashidah Abd; Jaini, Zainorizuan Mohd; Shamila Bahador, Nurul
2017-11-01
Foamed concrete is one of the lightweight concrete used to replace normal concrete. Foamed concrete has potential as a building construction material in Malaysia due to low density range. However, the behavior of fracture energy on foamed concrete still under investigation. Therefore, a study to determine the fracture energy of foamed concrete was conducted. In this study, foamed concrete fracture energy was obtained using the three-point bending test methods develop by RILEM and Hillerborg. A total of 12 beams with different types of notch and positions of notch were tested on the load-deflection condition. In addition, a total of 9 cube samples were cast to support the result of fracture energy by using model from Bazant and Becq-Giraudon and Comite Euro-International du Beton (CEB). Results showed the far the position of the notch from midpoint, the higher the value of fracture energy. In this study, the value of fracture energy ranges between 15 N/m and 40 N/m.
NASA Astrophysics Data System (ADS)
Nurfaidhi Rizalman, Ahmad; Tahir, Ng Seong Yap Mahmood Md; Mohammad, Shahrin
2018-03-01
Concrete filled hollow steel section column have been widely accepted by structural engineers and designers for high rise construction due to the benefits of combining steel and concrete. The advantages of concrete filled hollow steel section column include higher strength, ductility, energy absorption capacity, and good structural fire resistance. In this paper, comparison on the fire performance between circular and square concrete filled hollow steel section column is established. A three-dimensional finite element package, ABAQUS, was used to develop the numerical model to study the temperature development, critical temperature, and fire resistance time of the selected composite columns. Based on the analysis and comparison of typical parameters, the effect of equal cross-sectional size for both steel and concrete, concrete types, and thickness of external protection on temperature distribution and structural fire behaviour of the columns are discussed. The result showed that concrete filled hollow steel section column with circular cross-section generally has higher fire resistance than the square section.
Designing a supply chain of ready-mix concrete using Voronoi diagrams
NASA Astrophysics Data System (ADS)
Kozniewski, E.; Orlowski, M.; Orlowski, Z.
2017-10-01
Voronoi diagrams are used to solve scientific and practical problems in many fields. In this paper Voronoi diagrams have been applied to logistic problems in construction, more specifically in the design of the ready-mix concrete supply chain. Apart from the Voronoi diagram, the so-called time-distance circle (circle of range), which in metric space terminology is simply a sphere, appears useful. It was introduced to solve the problem of supplying concrete-related goods.
NASA Astrophysics Data System (ADS)
Ghadzali, N. S.; Ibrahim, M. H. W.; Sani, M. S. H. Mohd; Jamaludin, N.; Desa, M. S. M.; Misri, Z.
2018-04-01
Concrete is the chief material of construction and it is non-combustible in nature. However, the exposure to the high temperature such as fire can lead to change in the concrete properties. Due to the higher temperature, several changes in terms of mechanical properties were observed in concrete such as compressive strength, modulus of elasticity, tensile strength and durability of concrete will decrease significantly at high temperature. The exceptional fire-proof achievement of concrete is might be due to the constituent materials of concrete such as its aggregates. The extensive use of aggregate in concrete will leads to depletion of natural resources. Hence, the use of waste and other recycled and by-product material as aggregates replacements becomes a leading research. This review has been made on the utilization of waste materials in concrete and critically evaluates its effects on the concrete performances during the fire exposure. Therefore, the objective of this paper is to review the previous search work regarding the concrete containing waste material as aggregates replacement when exposed to elevated temperature and come up with different design recommendations to improve the fire resistance of structures.
DOT National Transportation Integrated Search
2013-10-01
The long-term goals of this study are to facilitate the use of ultra-high performance concrete (UHPC) among U.S. suppliers and contractors, accelerate its application in U.S. construction, and promote a more resilient and sustainable future U.S. infr...
DOT National Transportation Integrated Search
2016-07-01
Glass fiber reinforced polymer (GFRP) composites are emerging as a feasible economical solution to eliminate the corrosion problem of steel reinforcements in the concrete industry. Confirmation of GFRP long-term durability is crucial to extend its ap...
EPA constructed a 4,000-m2 parking lot for research and demonstration of three permeable pavements [permeable interlocking concrete pavers (PICP), pervious concrete (PC), and porous asphalt (PA)] at the Edison Environmental Center in Edison, NJ in 2009. Infiltrate samples from e...
Design and construction of a bonded fiber concrete overlay of CRCP : final report.
DOT National Transportation Integrated Search
1992-01-01
The purpose of this study was to evaluate a bonded steel fiber reinforced concrete overlay on an existing 8-inch CRC pavement on Interstate 10 south of Baton Rough, LA. The project objectives were to provide an overlay with a high probability for lon...
DOT National Transportation Integrated Search
2010-06-01
The performance of flexible pavements relies heavily on the final quality of the hot-mix asphalt concrete (HMAC) as it : is produced and placed in the field. To account for production and construction variability while ensuring the quality of the : H...
Innovative solutions to buried portland cement concrete roadways : first interim report.
DOT National Transportation Integrated Search
2000-05-01
Maine has hundreds of miles of highway that were constructed of Portland Cement : Concrete (PCC) roughly 6 to 6.1 meters (18 to 20 feet) wide forty or more years ago. Since that : time these same highways have been paved and widened to 6.7 or 7 meter...
DOT National Transportation Integrated Search
1983-01-01
The installation of thin polymer concrete overlays on five bridges on I-85 near Williamsburg, Virginia, has demonstrated that an overlay of low permeability and high skid resistance can be successfully installed by a contractor with a minimum of disr...
Evaluation of latex-modified and silica fume concrete overlays placed on six bridges in Virginia.
DOT National Transportation Integrated Search
2000-08-01
Latex-modified and silica fume concrete overlays were placed on six bridges on I-95 south of Emporia, Virginia, in the fall of 1994. The construction was funded with 20% Virginia Department of Transportation maintenance funds and 80% special ISTEA Se...
DOT National Transportation Integrated Search
2011-04-01
This report documents the construction of the first Next Generation Concrete Surface (NGCS) by the Washington State Department of Transportation (WSDOT). A 1,500 foot test section was installed on the eastbound lanes of I-82 near Sunnyside, WA in Oct...
DOT National Transportation Integrated Search
1999-04-01
Sixteen high performance concrete overlays were placed on two 28-span bridges on Rte. 60 over Lynnhaven Inlet, Virginia Beach, : Virginia, in the spring of 1996. The construction was funded with 20 percent Virginia Department of Transportation mainte...
LOFT/FET complex. Construction view of abutment footings for arches of ...
LOFT/FET complex. Construction view of abutment footings for arches of hangar (TAN-629). Tunnels between basement of hangar and control building (TAN-630) had to fit between arches. (Note concrete work taking place at hole at lower edge of view. This photo may document unexpected bubble in underlying lava rock. It was dumped full of concrete and a footing made. Source: Interview with John DeClue). Date: December 19, 1957. Photographer: Jack L. Anderson. INEEL negative no. 57-6203 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Arch-Axis Coefficient Optimization of Long-Span Deck-Type Concrete-Filled Steel Tubular Arch Bridge
NASA Astrophysics Data System (ADS)
Liu, Q. J.; Wan, S.; Liu, H. C.
2017-11-01
This paper is based on Nanpuxi super major bridge which is under construction and starts from Wencheng Zhejiang province to Taishun highway. A finite element model of the whole bridge is constructed using Midas Civil finite element software. The most adverse load combination in the specification is taken into consideration to determine the method of calculating the arch-axis coefficient of long-span deck-type concrete-filled steel tubular arch bridge. By doing this, this paper aims at providing references for similar engineering projects.
Corrosion control for reinforced concrete
NASA Astrophysics Data System (ADS)
Torigoe, R. M.
The National Bureau of Standards has recorded that in 1975 the national cost of corrosion was estimated at $70 billion. Approximately 40% of that total was attributed to the corrosion of steel reinforcements in concrete. Though concrete is generally perceived as a permanent construction material, cracking and spalling can occur when corrosion of steel reinforcements progresses to an advanced stage. This problem frequently occurs in reinforced concrete highway bridge decks, wharves, piers, and other structures in marine and snowbelt environments. Since concrete has a very low tensile strength, steel reinforcements are added to carry the tensile load of the composite member. Corrosion reduces the effective diameter of the reinforcements and, therefore, decreases the load carrying capability of the member. Though the corrosion process may occur in various forms and may be caused by different sources, the ultimate result is still the failure of the reinforced concrete.
Study on performance of concrete with over-burnt bricks aggregates and micro-silica admixture
NASA Astrophysics Data System (ADS)
Praveen, K.; Sathyan, Dhanya; Mini, K. M.
2016-09-01
Concrete is made by mixing cement, sand, aggregates and water in required proportion, where aggregates occupy the major volume. Addition of aggregates in concrete improves properties of concrete. With the natural resources depleting rapidly, limiting the use of natural resources and enhancing the use of waste materials is very important for sustainable development. Over-burnt bricks are a waste material which cannot be used in construction directly because of their irregular shape and dark colour. Use of over-burnt bricks helps to preserve natural aggregate source. The present study focuses on the effects of microsilica at various percentages as a partial cement replacement in concrete with over-burnt bricks as coarse aggregates. The mechanical properties of hardened concrete such as splitting tensile strength, flexural strength and compressive strength are studied and analyzed.
Zhou, Wei; Feng, Chuqiao; Liu, Xinghong; Liu, Shuhua; Zhang, Chao; Yuan, Wei
2016-01-01
This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention. PMID:28773517