Science.gov

Sample records for concrete design reducing

  1. Composite binders for concrete with reduced permeability

    NASA Astrophysics Data System (ADS)

    Fediuk, R.; Yushin, A.

    2016-02-01

    Composite binder consisting of cement (55%), acid fly ash (40%) and limestone (5%) has been designed. It is obtained by co-milling to a specific surface of 550 kg/m2, it has an activity of 77.3 MPa and can produce a more dense cement stone structure. Integrated study revealed that the concrete on the composite binder basis provides an effective diffusion coefficient D. So we can conclude that the concrete layer protects buildings from toxic effects of expanded polystyrene. Low water absorption of the material (2.5% by weight) is due to the structure of its cement stone pore space. Besides lime powder prevents the penetration of moisture, reduces water saturation of the coverage that has a positive effect on useful life period. It also explains rather low water vapor permeability of the material - 0.021 mg/(m- hour-Pa).

  2. Hydraulic design of pervious concrete highway shoulders

    NASA Astrophysics Data System (ADS)

    Grahl, Nathan Andrew

    Stormwater drainage has been a factor in roadway design for years. Now stormwater quantity and quality are also becoming regulated for roadways. As regulations of stormwater management continue to increase so does the need for more viable and effect management practices. The research presented and discussed in this thesis presents the option of using pervious concrete in highway shoulders as a best management practice for stormwater management. Research focused on the hydraulic response of pervious concrete pavements exposed to sheet flowing water. Pervious concrete samples were placed in a hydraulic flume to determine capture discharges, infiltration rates, and by-pass flowrates for a broad range of void contents, across a broad range of pavement cross slopes. The results demonstrate that the capture discharge and infiltration rates are inversely related to the cross slope of the pavement. Results also showed the infiltration rate of the permeable pavement exposed to sheet flowing water, in the model, is significantly lower than the measured infiltration rate. Pervious concrete samples were also tested to determine hydraulic response when exposed to clogging associated with sand used in roadway de-icing. The results of the clogging of the permeable pavements followed similar trends as the unclogged samples, with the only difference being a more significant reduction in infiltration rates at higher applications of sand. Preliminary discussion of a design methodology is included with a design example.

  3. Strength Design of Reinforced Concrete Hydraulic Structures. Report 9. Analysis and Design of Reinforced Concrete Conduits

    DTIC Science & Technology

    1989-06-01

    American Concrete Pipe Association ( ACPA ) Approach 15. The "indirect method" of the ACPA (2-5) follows the D-load method of ASTM, but accounts for...been used on many occasions and is currently being converted from main frame to PC use. ACPA intends to distribute this program to designers, so there...Philadelphia, Pa., 1984. 2-5. American Concrete Pipe Association, "Concrete Pipe Handbook", Chap.4, ACPA , Vienna, Va. 1988. 2-6. Olander, H.C., U.S

  4. CONCRETE SUPPORT DESIGN FOR MISCELLANEOUS ESF UTILITIES

    SciTech Connect

    T.A. Misiak

    1999-06-21

    The purpose and objective of this analysis is to design concrete supports for the miscellaneous utility equipment used at the Exploratory Studies Facility (ESF). Two utility systems are analyzed: (1) the surface collection tanks of the Waste Water System, and (2) the chemical tracer mixing and storage tanks of the Non-Potable Water System. This analysis satisfies design recommended in the Title III Evaluation Reports for the Subsurface Fire Water System and Subsurface Portion of the Non-Potable Water System (CRWMS M&O 1998a) and Waste Water Systems (CRWMS M&O 1998b).

  5. Optimum detailed design of reinforced concrete frames using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Govindaraj, V.; Ramasamy, J. V.

    2007-06-01

    This article presents the application of the genetic algorithm to the optimum detailed design of reinforced concrete frames based on Indian Standard specifications. The objective function is the total cost of the frame which includes the cost of concrete, formwork and reinforcing steel for individual members of the frame. In order for the optimum design to be directly constructible without any further modifications, aspects such as available standard reinforcement bar diameters, spacing requirements of reinforcing bars, modular sizes of members, architectural requirements on member sizes and other practical requirements in addition to relevant codal provisions are incorporated into the optimum design model. The produced optimum design satisfies the strength, serviceability, ductility, durability and other constraints related to good design and detailing practice. The detailing of reinforcements in the beam members is carried out as a sub-level optimization problem. This strategy helps to reduce the size of the optimization problem and saves computational time. The proposed method is demonstrated through several example problems and the optimum results obtained are compared with those in the available literature. It is concluded that the proposed optimum design model can be adopted in design offices as it yields rational, reliable, economical, time-saving and practical designs.

  6. The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel

    DTIC Science & Technology

    2009-02-01

    concrete apart • All normal reinforced concrete (cast-in-place and precast ) may have a short service life due to corrosion U S A r m y E n g i n e e...the Army, the Nation The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel Sean W. Morefield1...TITLE AND SUBTITLE The Use of Vitreous Enamel Coatings to Improve Bonding and Reduce Corrosion in Concrete Reinforcing Steel 5a. CONTRACT NUMBER

  7. Exploring Floating Concrete and Beam Design.

    ERIC Educational Resources Information Center

    Snell, Billie G.; Snell, Luke M.

    2002-01-01

    Presents two construction activities that address both state and federal science standards and encourage students to consider career options in mathematics and science. Includes floating concrete and paper bridge activities. (YDS)

  8. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    SciTech Connect

    Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

    2013-07-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg. C (1,500 deg. F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg. C (212 deg. F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total

  9. Thermal Removal Of Tritium From Concrete And Soil To Reduce Groundwater Impacts

    SciTech Connect

    Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso-Neto, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

    2012-12-04

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg C (1,500 deg F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg C (212 deg F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total of

  10. Optimum design of concrete cable-stayed bridges

    NASA Astrophysics Data System (ADS)

    Martins, Alberto M. B.; Simões, Luís M. C.; Negrão, João H. J. O.

    2016-05-01

    The design of cable-stayed bridges involves a significant number of design variables and design objectives. The concrete cable-stayed bridge optimization is formulated here as a multi-objective optimization problem with objectives of minimum cost, minimum deflections and minimum stresses. A numerical method is developed to obtain the optimum design of such structures. This numerical method includes: structural analysis, sensitivity analysis and optimization. The structural analysis accounts for all the relevant effects (concrete time-dependent effects, construction stages and geometrical nonlinear effects). The structural response to changes in the design variables is achieved by a discrete direct sensitivity analysis procedure, and an entropy-based approach was used for structural optimization. The features and applicability of the proposed method are demonstrated by numerical examples concerning the optimization of a real-sized concrete cable-stayed bridge.

  11. Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments.

    PubMed

    Correia, S L; Souza, F L; Dienstmann, G; Segadães, A M

    2009-11-01

    Recycling of industrial wastes and by-products can help reduce the cost of waste treatment prior to disposal and eventually preserve natural resources and energy. To assess the recycling potential of a given waste, it is important to select a tool capable of giving clear indications either way, with the least time and work consumption, as is the case of modelling the system properties using the results obtained from statistical design of experiments. In this work, the aggregate reclaimed from the mud that results from washout and cleaning operations of fresh concrete mixer trucks (fresh concrete waste, FCW) was recycled into new concrete with various water/cement ratios, as replacement of natural fine aggregates. A 3(2) factorial design of experiments was used to model fresh concrete consistency index and hardened concrete water absorption and 7- and 28-day compressive strength, as functions of FCW content and water/cement ratio, and the resulting regression equations and contour plots were validated with confirmation experiments. The results showed that the fresh concrete workability worsened with the increase in FCW content but the water absorption (5-10 wt.%), 7-day compressive strength (26-36 MPa) and 28-day compressive strength (32-44 MPa) remained within the specified ranges, thus demonstrating that the aggregate reclaimed from FCW can be recycled into new concrete mixtures with lower natural aggregate content.

  12. A Statistical Approach to Optimizing Concrete Mixture Design

    PubMed Central

    Alghamdi, Saeid A.

    2014-01-01

    A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m3), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405

  13. Design optimization of continuous partially prestressed concrete beams

    NASA Astrophysics Data System (ADS)

    Al-Gahtani, A. S.; Al-Saadoun, S. S.; Abul-Feilat, E. A.

    1995-04-01

    An effective formulation for optimum design of two-span continuous partially prestressed concrete beams is described in this paper. Variable prestressing forces along the tendon profile, which may be jacked from one end or both ends with flexibility in the overlapping range and location, and the induced secondary effects are considered. The imposed constraints are on flexural stresses, ultimate flexural strength, cracking moment, ultimate shear strength, reinforcement limits cross-section dimensions, and cable profile geometries. These constraints are formulated in accordance with ACI (American Concrete Institute) code provisions. The capabilities of the program to solve several engineering problems are presented.

  14. Prestressed Concrete Fender Piles: Final Designs

    DTIC Science & Technology

    1987-12-01

    CONFIGURATION ....................... 4-1 4.1 Design Criteria ............................... 4-1 4.2 Residual Crack Width........................... 4-3...criteria were established based on the previous test pile programs [1.3]. The pile design procedure was further refined in this phase to limit residual ...with a residual crack width less than 0.012 in. after 100 cycles of working level load applications. Design aids were developed for a range of pile

  15. Liquid Coatings for Reducing Corrosion of Steel in Concrete

    NASA Technical Reports Server (NTRS)

    MacDowell, Louis G.; Curran, Joseph

    2003-01-01

    Inorganic coating materials are being developed to slow or stop corrosion of reinforcing steel members inside concrete structures. It is much simpler and easier to use these coating materials than it is to use conventional corrosion-inhibiting systems based on impressed electric currents. Unlike impressed electrical corrosion-inhibiting systems, these coatings do not require continuous consumption of electrical power and maintenance of power-supply equipment. Whereas some conventional systems involve the use of expensive arc-spray equipment to apply the metallic zinc used as the sacrificial anode material, the developmental coatings can be applied by use of ordinary paint sprayers. A coating material of the type under development is formulated as a liquid containing blended metallic particles and/or moisture-attracting compounds. The liquid mixture is sprayed onto a concrete structure. Experiments have shown that even though such a coat resides on the exterior surface, it generates a protective galvanic current that flows to the interior reinforcing steel members. By effectively transferring the corrosion process from the steel reinforcement to the exterior coating, the protective current slows or stops corrosion of the embedded steel. Specific formulations have been found to meet depolarization criteria of the National Association of Corrosion Engineers (NACE) for complete protection of steel reinforcing bars ("rebar") embedded in concrete.

  16. Thermal Insulating Concrete Wall Panel Design for Sustainable Built Environment

    PubMed Central

    Zhou, Ao; Wong, Kwun-Wah

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes. PMID:25177718

  17. Thermal insulating concrete wall panel design for sustainable built environment.

    PubMed

    Zhou, Ao; Wong, Kwun-Wah; Lau, Denvid

    2014-01-01

    Air-conditioning system plays a significant role in providing users a thermally comfortable indoor environment, which is a necessity in modern buildings. In order to save the vast energy consumed by air-conditioning system, the building envelopes in envelope-load dominated buildings should be well designed such that the unwanted heat gain and loss with environment can be minimized. In this paper, a new design of concrete wall panel that enhances thermal insulation of buildings by adding a gypsum layer inside concrete is presented. Experiments have been conducted for monitoring the temperature variation in both proposed sandwich wall panel and conventional concrete wall panel under a heat radiation source. For further understanding the thermal effect of such sandwich wall panel design from building scale, two three-story building models adopting different wall panel designs are constructed for evaluating the temperature distribution of entire buildings using finite element method. Both the experimental and simulation results have shown that the gypsum layer improves the thermal insulation performance by retarding the heat transfer across the building envelopes.

  18. Engineering and Design: Stability Criteria for Existing Concrete Navigation Structures on Rock Foundations

    DTIC Science & Technology

    2007-11-02

    Engineering and Design STABILITY CRITERIA FOR EXISTING CONCRETE NAVIGATION STRUCTURES ON ROCK FOUNDATIONS Distribution Restriction Statement Approved...Title and Subtitle Engineering and Design: Stability Criteria for Existing Concrete Navigation Structures on Rock Foundations Contract Number Grant... CONCRETE NAVIGATION STRUCTURES ON ROCK FOUNDATIONS 1. Purpose. The purpose of this letter is to provide interim criteria and procedures for analyzing

  19. RCC for seismic design. [Roller-Compacted Concrete

    SciTech Connect

    Wong, N.C.; Forrest, M.P.; Lo, S.H. )

    1994-09-01

    This article describes how the use of roller-compacted concrete is saving $10 million on the seismic retrofit of Southern California's historic multiple-arch Littlerock Dam. Throughout its 70-year existence, the Littlerock Dam in Southern California's Angeles National Forest has been a subject of the San Andreas Fault, could this 28-arch dam withstand any major movement from that fault line, much less the big one'' Working with the state's Division of Safety of Dams, Woodward-Clyde Consultants, Oakland, Calif., performed stability and stress analyses to find the answer. The evaluation showed that, as feared, the dam failed to meet required seismic safety criteria, principally due to its lack of lateral stability, a deficiency inherent in multiple-arch dams. To provide adequate seismic stability the authors developed a rehabilitation design centered around the use of roller-compacted concrete (RCC) to construct a gravity section between and around the downstream portions of the existing buttresses. The authors also proposed that the arches be resurfaced and stiffened with steel-fiber-reinforced silica fume. The alternative design would have required filling the arch bays between the buttresses with mass concrete at a cost of $22.5 million. The RCC buttress repair construction, scheduled for completion this fall, will cost about $13 million.

  20. Design Limits for Precast Concrete Sandwich Walls Subjected to External Explosions (PREPRINT)

    DTIC Science & Technology

    2010-02-01

    AFRL-RX-TY-TP-2010-0013 PREPRINT DESIGN LIMITS FOR PRECAST CONCRETE SANDWICH WALLS SUBJECTED TO EXTERNAL EXPLOSIONS Clay Naito and... Precast Concrete Sandwich Walls Subjected to External Explosions (PREPRINT) FA4819-09-C-0032 62012F 4918 C1 Q103013 *Naito, Clay; *Beacraft, Mark...Structures Congress, 12-14 May 2010, in Orlando FL. The use of precast /prestressed concrete and tilt‐up concrete for exterior walls is common

  1. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  2. Concrete storage tanks: Design and construction. (Latest citations from the EI Compendex*plus database). Published Search

    SciTech Connect

    1995-12-01

    The bibliography contains citations concerning reinforced concrete used for high-rise, above ground, and underground storage tanks. Topics include design criteria for tanks, tank construction, prestressed concrete, concrete formulations, and concrete repair. Applications of reinforced concrete tanks are presented, including storage of drinking water, oils, liquefied gases, and sewage. Pressure testing, and structural analyses of concrete storage tanks are examined. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Mix design and pollution control potential of pervious concrete with non-compliant waste fly ash.

    PubMed

    Soto-Pérez, Linoshka; Hwang, Sangchul

    2016-07-01

    Pervious concrete mix was optimized for the maximum compressive strength and the desired permeability at 7 mm/s with varying percentages of water-to-binder (W/B), fly ash-to-binder (FA/B), nano-iron oxide-to-binder (NI/B) and water reducer-to-binder (WR/B). The mass ratio of coarse aggregates in sizes of 4.75-9.5 mm to the binder was fixed at 4:1. Waste FA used in the study was not compliant with a standard specification for use as a mineral admixture in concrete. One optimum pervious concrete (Opt A) targeting high volume FA utilization had a 28-day compressive strength of 22.8 MPa and a permeability of 5.6 mm/s with a mix design at 36% W/B, 35% FA/B, 6% NI/B and 1.2% WR/B. The other (Opt B) targeting a less use of admixtures had a 28-day compressive strength and a permeability of 21.4 MPa and 7.6 mm/s, respectively, at 32% W/B, 10% FA/B, 0.5% NI/B and 0.8% WR/B. During 10 loads at a 2-h contact time each, the Opt A and Opt B achieved the average fecal coliform removals of 72.4% and 77.9% and phosphorus removals of 49.8% and 40.5%, respectively. Therefore, non-compliant waste FA could be utilized for a cleaner production of pervious concrete possessing a greater structural strength and compatible hydrological property and pollution control potential, compared to the ordinary pervious concrete.

  4. Development of high-strength concrete mix designs in support of the prestressed concrete reactor vessel design for a HTGR steam cycle/cogeneration plant

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1985-01-01

    Design optimization studies indicate that a significant reduction in the size of the PCRV for a 2240 MW(t) HTGR plant can be effected through utilization of high-strength concrete in conjunction with large capacity prestressing systems. A three-phase test program to develop and evaluate high-strength concretes (>63.4 MPa) is described. Results obtained under Phase I of the investigation related to materials selection-evaluation and mix design development are presented. 3 refs., 4 figs.

  5. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Design procedures for concrete....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell...

  6. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Design procedures for concrete....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell...

  7. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Design procedures for concrete....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell...

  8. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Design procedures for concrete....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell...

  9. 24 CFR 3285.306 - Design procedures for concrete block piers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Design procedures for concrete....306 Design procedures for concrete block piers. (a) Frame piers less than 36 inches high. (1) Frame piers less than 36 inches high are permitted to be constructed of single, open, or closed-cell...

  10. Handbook for Design of Undersea, Pressure-Resistant Concrete Structures

    DTIC Science & Technology

    1986-10-01

    21. S. Mindess and J.F. Young. Concrete. Prentice-Hall, Englewood Cliffs, N.J., 1981, pp 422-424. 22. Naval Civil Engineering Laboratory. Technical...Hellawell, "The solidification of cement," Scientific American, vol 237, no. 1, Jul 1977 , pp 82-90. 25. T.C. Powers, "The nature of concrete," Special...H.H. Haynes. Port Hueneme, Calif., Nov 1977 . 40. Technical Memorandum M-44-77-08: Data from hydrostatic test of concrete sphere AY-l1, by H.H. Haynes

  11. Design of a Precast Concrete Stay-in-Place Forming System for Lock Wall Rehabilitation

    DTIC Science & Technology

    1987-07-01

    RE-HABILITATION RESEARCH PROGNtAN ai ,_TECHNICAL REPORT REMR-CS-7 DESIGN OF A PRECAST CONCRETE AD-A 185 0 8 1 STAY-IN-PLACE FORMING SYSTEM FOR LOCK...ie report was prepred: Problem Area Probim Area CS Concrete snd Stee Structures EM Electrical end Mechanical GT Giotechnical El Environmentso Impacts...ment concrete , cracking problems can be eliminated. This report descr-bes the design of such a forming system. A range of design ’alternatives was

  12. Design Review Report for Concrete Cover Block Replaced by Steel Plate

    SciTech Connect

    JAKA, O.M.

    2000-07-27

    The design for the steel cover plates to replace concrete cover blocks for U-109 was reviewed and approved in a design review meeting. The design for steel plates to replace concrete blocks were reviewed and approved by comparison and similarity with U-109 for the following additional pits: 241-U-105. 241-I-103, 241-Ax-101. 241-A-101, 241-SX-105, 241-S-A, 241-S-C, 241-SX-A.

  13. Reduced neutral XLPE cable design

    SciTech Connect

    Valli, G.F.; Zawadzki, J.A.; Orton, H.E. )

    1990-04-01

    This paper describes the theoretical, laboratory and economic analyses undertaken to determine the optimum metallic concentric neutral design for its single conductor 750 and 500 kcmil aluminum XLPE 15 kV insulated concentric-neutral type feeder cables. The results suggest that reducing the cross-sectional area of this concentric neutral from the currently-recognized industry standard of 20 percent of the central conductor to 7% results in overall present-worth system cost saving of approximately $3 per conductor meter or approximately 22% of the cable first cost. The neutral configuration ultimately chosen to replace the previous standard 37 - number 14 AWG wires was 2 - 1 inch {times} 5 mil tinned copper tapes overlapped by 25%. Line voltage fault test were run in the high-power laboratory on samples with various neutral configurations to confirm they would successfully pass our worst-case fault duty of 10 kA for 20 cycles (i.e., .33 sec) with no reclosing.

  14. Engineering and Design: Design and Construction Management Practices for Concrete Pavements

    DTIC Science & Technology

    1998-03-01

    Construction Division ETL 1110-3-488 1 Mar 98 APPENDIX A: REFERENCES 1. TM 5-822-5 ( AFM 88-7, Chap. 1), "Pavement Design for Roads, Streets, Walks, and Open...Storage Areas." 2. TM 5-822-7 ( AFM 88-6, Chap. 8), "Standard Practice for Concrete Pavements." 3. TM 5-825-1 (AFJMAN 32-8008, Vol. 1), "General...Provisions for Airfield/Heliport Pavement Design." 4. TM 5-825-3 ( AFM 88-6, Chap. 3), "Rigid Pavements for Airfields." 5. EM 1110-2-2000, “Standard

  15. Designing a Sound Reducing Wall

    ERIC Educational Resources Information Center

    Erk, Kendra; Lumkes, John; Shambach, Jill; Braile, Larry; Brickler, Anne; Matthys, Anna

    2015-01-01

    Acoustical engineers use their knowledge of sound to design quiet environments (e.g., classrooms and libraries) as well as to design environments that are supposed to be loud (e.g., concert halls and football stadiums). They also design sound barriers, such as the walls along busy roadways that decrease the traffic noise heard by people in…

  16. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design

    PubMed Central

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-01-01

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms. PMID:25583870

  17. Efficient preliminary floating offshore wind turbine design and testing methodologies and application to a concrete spar design.

    PubMed

    Matha, Denis; Sandner, Frank; Molins, Climent; Campos, Alexis; Cheng, Po Wen

    2015-02-28

    The current key challenge in the floating offshore wind turbine industry and research is on designing economic floating systems that can compete with fixed-bottom offshore turbines in terms of levelized cost of energy. The preliminary platform design, as well as early experimental design assessments, are critical elements in the overall design process. In this contribution, a brief review of current floating offshore wind turbine platform pre-design and scaled testing methodologies is provided, with a focus on their ability to accommodate the coupled dynamic behaviour of floating offshore wind systems. The exemplary design and testing methodology for a monolithic concrete spar platform as performed within the European KIC AFOSP project is presented. Results from the experimental tests compared to numerical simulations are presented and analysed and show very good agreement for relevant basic dynamic platform properties. Extreme and fatigue loads and cost analysis of the AFOSP system confirm the viability of the presented design process. In summary, the exemplary application of the reduced design and testing methodology for AFOSP confirms that it represents a viable procedure during pre-design of floating offshore wind turbine platforms.

  18. Engineering and Design: Structural Design Using the Roller-Compacted Concrete (RCC) Construction Process

    DTIC Science & Technology

    1993-05-31

    American Concrete Institute (ACI) Committee 207 report 207.5R, "Roller Compacted Concrete " (Reference 12a), and in Engineer Manual (EM) 1110-2-2006...form, followed by RCC. The conventional concrete and conventional concrete RCC interface is consolidated with immersion-type vibrators . Final... Concrete Report should be included. The purpose of the Structural Report is to evaluate the ability of the completed RCC structure to perform as

  19. Self-protected nitrate reducing culture for intrinsic repair of concrete cracks

    PubMed Central

    Erşan, Yusuf Ç.; Gruyaert, Elke; Louis, Ghislain; Lors, Christine; De Belie, Nele; Boon, Nico

    2015-01-01

    Attentive monitoring and regular repair of concrete cracks are necessary to avoid further durability problems. As an alternative to current maintenance methods, intrinsic repair systems which enable self-healing of cracks have been investigated. Exploiting microbial induced CaCO3 precipitation (MICP) using (protected) axenic cultures is one of the proposed methods. Yet, only a few of the suggested healing agents were economically feasible for in situ application. This study presents a NO3− reducing self-protected enrichment culture as a self-healing additive for concrete. Concrete admixtures Ca(NO3)2 and Ca(HCOO)2 were used as nutrients. The enrichment culture, grown as granules (0.5–2 mm) consisting of 70% biomass and 30% inorganic salts were added into mortar without any additional protection. Upon 28 days curing, mortar specimens were subjected to direct tensile load and multiple cracks (0.1–0.6 mm) were achieved. Cracked specimens were immersed in water for 28 days and effective crack closure up to 0.5 mm crack width was achieved through calcite precipitation. Microbial activity during crack healing was monitored through weekly NOx analysis which revealed that 92 ± 2% of the available NO3− was consumed. Another set of specimens were cracked after 6 months curing, thus the effect of curing time on healing efficiency was investigated, and mineral formation at the inner crack surfaces was observed, resulting in 70% less capillary water absorption compared to healed control specimens. In conclusion, enriched mixed denitrifying cultures structured in self-protecting granules are very promising strategies to enhance microbial self-healing. PMID:26583015

  20. Muddy conditions reduce hygiene and lying time in dairy cattle and increase time spent on concrete.

    PubMed

    Chen, Jennifer M; Stull, Carolyn L; Ledgerwood, David N; Tucker, Cassandra B

    2017-03-01

    Dairy cattle spend less time lying and show signs of increased stress when housed in rainy and windy conditions, but no work has separated the effects of exposure to inclement weather from muddy conditions underfoot. Our objective was to evaluate the effects of muddy conditions alone on lying behavior, hygiene, and physiological responses. We housed pairs of pregnant, nonlactating dairy cattle (n = 12; 6 primigravid heifers, 6 multiparous cows) in enclosed pens with dirt floors and a concrete feed apron. Cattle were exposed to 3 levels of soil moisture: 90 (dry), 74 (muddy), or 67% (very muddy) dry matter for 5 d each in a replicated 3 × 3 Latin square design. Lying time was measured on all days with data loggers, and lying locations and postures were recorded on the final day of each treatment. Before and after each treatment, blood samples were collected, and the percentage of dirty surface area was measured on the udder, hind leg, and side of each animal. Cattle spent less time lying down in muddier conditions, especially in the first 24 h of exposure, when cows and heifers spent only 3.2 and 5.8 h, respectively, lying down in the muddiest treatment compared with 12.5 and 12.7 h on dry soil. When the soil was dry, cattle never chose to lie down on concrete, but in muddier conditions they spent a greater proportion of their lying time on concrete (mean ± SE: 56 ± 14 and 10 ± 8% in the very muddy and muddy treatments, respectively). The shift in lying location was more marked for heifers, and all 6 spent ≥87% of their lying time on concrete in the muddiest treatment. When cattle chose to lie down on wetter soil, they limited the surface area exposed to their surroundings by tucking their legs beneath their bodies (mean ± SE: 30 ± 11, 15 ± 4, and 5 ± 2% of lying observations in the very muddy, muddy, and dry treatments, respectively). Despite cattle spending less time on wetter soil, all 3 measured body parts became dirtier in muddier conditions (1.4-, 1

  1. Experimental Evaluation of the Failure of a Seismic Design Category - B Precast Concrete Beam-Column Connection System

    DTIC Science & Technology

    2014-12-01

    ER D C TR -1 4 -1 2 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam-Column Connection...ERDC TR-14-12 December 2014 Experimental Evaluation of the Failure of a Seismic Design Category – B Precast Concrete Beam-Column Connection...experiment to test a precast concrete beam-column system to failure. This experiment was designed to evaluate the performance of precast frame

  2. Design criteria for prestressed concrete reactor vessels for high-temperature reactors

    SciTech Connect

    Elter, C.; Becker, G.

    1982-11-01

    For the design and construction of prestressed concrete reactor vessels, data on loading, construction materials, and safety factors are required. A description is given of the design conditions according to the current state of technology in the Federal Republic of Germany. Special consideration is given to the allowable stresses and an appropriate proposal for such stresses is suggested.

  3. Design guidelines for steel-reinforced polymer concrete using resins based on recycled PET

    SciTech Connect

    Rebeiz, K.S.; Fowler, D.W.

    1996-10-01

    Very little research has been done on the structural behavior of steel-reinforced polymer concrete (PC). In all the previous studies, it was generally assumed that the structural behavior of reinforced PC is similar to the structural behavior of reinforced portland cement concrete because both are composite materials consisting of a binder and inorganic aggregates. However, the design equations developed for steel-reinforced portland cement concrete yield very conservative results when applied to reinforced PC. The objective of this paper is to recommend simple, yet effective design guidelines in shear and flexure for steel-reinforced PC. The recommended design procedures are mostly based on test results performed on PC beams using resins based on recycled poly(ethyleneterephthalate), PET, plastic waste (the PET waste is mainly recovered from used beverage bottles). Previous studies have shown that polyester resins based on recycled PET can produce very good quality PC at a potentially lower cost.

  4. Design and behavior of reinforced concrete beams strengthened with fiber-reinforced plastics (FRP)

    NASA Astrophysics Data System (ADS)

    El-Mihilmy, Mahmoud Tharwat

    A comprehensive investigation of the design and behavior of reinforced concrete beams strengthened with externally bonded FRP laminates has been conducted. The study has confirmed the applicability of the strain compatibility method for calculating the increased ultimate moment capacity of the repaired beams. An upper limit to the amount of FRP that can be added to a specific structure was recommended to ensure ductile behavior. Design charts to facilitate calculations of the ultimate moment capacity for reinforced concrete beams strengthened with FRP laminates were developed. The results of a subsequent parametric investigation indicate that strengthening reinforced concrete beams with FRP laminates can enhance their ultimate capacity by as much as three times the original strength, especially for beams with a low steel ratio. It was also determined that, increasing the concrete compressive strength and the FRP modulus of elasticity increases the beam ultimate flexural capacity significantly; however, the repaired beams are less ductile than the pre-repaired concrete beams. During the course of the study, it had been noticed that the current ACI recommended method for calculating deflections for ordinary reinforced concrete beams does not render an accurate estimate for reinforced concrete beams strengthened with FRP laminates. A simplified equation for predicting the deflection of reinforced concrete beams repaired with FRP was developed and verified with comparisons to experimental results. The effectiveness of strengthening an existing bridge with externally bonded FRP laminates was investigated through comprehensive static and dynamic finite element analyses. The results of these analyses correlate well with field load test results. The repaired girders exhibited an average reduction in reinforcing steel stresses of 11 percent and an average reduction in midspan girder deflections of 9 percent. The results of the study also indicated that existing methods for

  5. Mistake proofing: changing designs to reduce error

    PubMed Central

    Grout, J R

    2006-01-01

    Mistake proofing uses changes in the physical design of processes to reduce human error. It can be used to change designs in ways that prevent errors from occurring, to detect errors after they occur but before harm occurs, to allow processes to fail safely, or to alter the work environment to reduce the chance of errors. Effective mistake proofing design changes should initially be effective in reducing harm, be inexpensive, and easily implemented. Over time these design changes should make life easier and speed up the process. Ideally, the design changes should increase patients' and visitors' understanding of the process. These designs should themselves be mistake proofed and follow the good design practices of other disciplines. PMID:17142609

  6. Earthquake design of concrete masonry buildings, Vol. 2: Strength design of one-to-four-story buildings

    SciTech Connect

    Englekirk, R.E.; Hart, G.C.

    1984-01-01

    There is a broad zone extending south from Alaska through western South America that is particularly susceptible to severe earthquakes. Buildings erected in this zone should be earthquake resistant. This book, the second of three volumes, is a treatise on the design and construction of low-rise masonry buildings for such earthquake zones. The first volume covers general earthquake engineering. The third volume will cover high-rise buildings. This volume has a wider application than its title indicates; it could serve as a textbook for a course on the design of reinforced concrete buildings. The introductory chapter surveys the subject of building design and describes the design philosophy of the authors. This is followed by chapters on material properties, structural mechanics, modeling, strength design, design criteria development, and design case studies. One appendix contains an extensive treatment of strength reduction factors for concrete, and another contains a bibliography of over 70 items.

  7. Giant Atomic and Molecular Models and Other Lecture Demonstration Devices Designed for Concrete Operational Students.

    ERIC Educational Resources Information Center

    Battino, Rubin

    1983-01-01

    Describes the design, construction, and use of oversize lecture-demonstration atomic/molecular models. These models appeal to both concrete and formal operational students. Also describes construction and use of an "spdf" sandwich board and an experiment using attribute blocks. (JN)

  8. Using biological and physico-chemical test methods to assess the role of concrete mixture design in resistance to microbially induced corrosion

    NASA Astrophysics Data System (ADS)

    House, Mitchell Wayne

    Concrete is the most widely used material for construction of wastewater collection, storage, and treatment infrastructure. The chemical and physical characteristics of hydrated portland cement make it susceptible to degradation under highly acidic conditions. As a result, some concrete wastewater infrastructure may be susceptible to a multi-stage degradation process known as microbially induced corrosion, or MIC. MIC begins with the production of aqueous hydrogen sulfide (H2S(aq)) by anaerobic sulfate reducing bacteria present below the waterline. H2S(aq) partitions to the gas phase where it is oxidized to sulfuric acid by the aerobic sulfur oxidizing bacteria Thiobacillus that resides on concrete surfaces above the waterline. Sulfuric acid then attacks the cement paste portion of the concrete matrix through decalcification of calcium hydroxide and calcium silica hydrate coupled with the formation of expansive corrosion products. The attack proceeds inward resulting in reduced service life and potential failure of the concrete structure. There are several challenges associated with assessing a concrete's susceptibility to MIC. First, no standard laboratory tests exist to assess concrete resistance to MIC. Straightforward reproduction of MIC in the laboratory is complicated by the use of microorganisms and hydrogen sulfide gas. Physico-chemical tests simulating MIC by immersing concrete specimens in sulfuric acid offer a convenient alternative, but do not accurately capture the damage mechanisms associated with biological corrosion. Comparison of results between research studies is difficult due to discrepancies that can arise in experimental methods even if current ASTM standards are followed. This thesis presents two experimental methods to evaluate concrete resistance to MIC: one biological and one physico-chemical. Efforts are made to address the critical aspects of each testing method currently absent in the literature. The first method presented is a new test

  9. Demonstration and Validation of a High-Performance Floor-Sealant System to Reduce Concrete Degradation

    DTIC Science & Technology

    2015-05-01

    and cracks create in- cursion paths for liquids and other contaminants, which can result in large-scale peeling of the coating from the concrete...substrate. As the coat - ing becomes compromised, liquids , lubricants, and chemical contaminants such as road salts can permeate the porous concrete...permanently damag- ing and degrading the floor. Therefore, once epoxy-based coatings begin to chip and peel, their initial protective and cosmetic

  10. Investigation into the optimal hydrologic design of porous concrete sites using mathematical modeling

    NASA Astrophysics Data System (ADS)

    Syrrakou, C.; Fitch, J.; Eliassen, T.; Ahearn, W.; Pinder, G. F.

    2011-12-01

    Increase in the amount of paved areas as a result of urbanization in modern societies has lead to the need of stormwater best management practices (BMPs). In that direction, porous pavement has been used successfully in regions of warm climate and application in regions of colder climate is an object of ongoing research with encouraging results to date. The significant cost and effort that accompanies the maintenance of porous pavement facilities calls for a design tool that can be used prior construction to facilitate the design process and also post production to evaluate the site's overall performance. Such a tool is a mathematical model which takes into account the different physical processes that can occur in a porous concrete system including recharge from rainfall, runoff from surrounding conventionally paved areas, vertical flow, storage and finally infiltration into the subsurface. In this research a three-dimensional saturated-unsaturated flow and transport model is modified to account for flow through the porous concrete slab and also evaporation. Runoff is accounted by means of a two-dimensional surface flow model which calculates the infiltration into the perimeter porous concrete area. The mathematical model is used to simulate a porous concrete site which operates as a public parking lot facility in Randolph, Vermont. The subgrade soil in the area of interest consists mainly of dense till deposits typically found in New England. Such deposits can result in small infiltration rates. The specific site is unique not only in terms of the underlying geology but also the heavy instrumentation not usually observed in similar sites. The instrumentation includes a number of groundwater wells which are being monitored continuously through a pressure transducer system, temperature probes installed inside the porous concrete and a detailed underdrain system located in the porous concrete's sub-base accumulating infiltrated water. Laboratory research is also

  11. Laboratory evaluation to reduce respirable crystalline silica dust when cutting concrete roofing tiles using a masonry saw.

    PubMed

    Carlo, Rebecca V; Sheehy, John; Feng, H Amy; Sieber, William K

    2010-04-01

    Respirable crystalline silica dust exposure in residential roofers is a recognized hazard resulting from cutting concrete roofing tiles. Roofers cutting tiles using masonry saws can be exposed to high concentrations of respirable dust. Silica exposures remain a serious threat for nearly two million U.S. construction workers. Although it is well established that respiratory diseases associated with exposure to silica dust are preventable, they continue to occur and cause disability or death. The effectiveness of both a commercially available local exhaust ventilation (LEV) system and a water suppression system in reducing silica dust was evaluated separately. The LEV system exhausted 0.24, 0.13, or 0.12 m(3)/sec of dust laden air, while the water suppression system supplied 0.13, 0.06, 0.03, or 0.02 L/sec of water to the saw blade. Using a randomized block design, implemented under laboratory conditions, the aforementioned conditions were evaluated independently on two types of concrete roofing tiles (s-shape and flat) using the same saw and blade. Each engineering control (LEV or water suppression) was replicated eight times, or four times for each type of tile. Analysis of variance was performed by comparing the mean airborne respirable dust concentrations generated during each run and engineering control treatment. The use of water controls and ventilation controls compared with the "no control" treatment resulted in a statistically significant (p < 0.05) reduction of mean respirable dust concentrations generated per tile cut. The percent reduction for respirable dust concentrations was 99% for the water control and 91% for the LEV. Results suggest that water is an effective method for reducing crystalline silica exposures. However, water damage potential, surface discolorations, cleanup, slip hazards, and other requirements may make the use of water problematic in many situations. Concerns with implementing an LEV system to control silica dust exposures include

  12. Strength Design of Reinforced Concrete Hydraulic Structures: Report 8. Design of Buried Circular Conduits - Flexure and Shear

    DTIC Science & Technology

    1989-09-01

    American Concrete Pipe Association ( ACPA ) that will be discussed. The ACPA studies have resulted in design criteria for the effects of radial tension...7 (Gerstle, i988) for flexural strength with the radial tension and shear criteria developed by ACPA . The procedure uses the EM loading distribution... ACPA (Heger, Liepins, and Selig, 1985). The computer program called SPIDA (Soil-Pipe Interaction Design and Analysis) incorporates multiple finite

  13. Laboratory Testing of Electro-Osmotic Pulse Technology to Reduce and Maintain Low Moisture Content in Concrete

    DTIC Science & Technology

    2009-02-01

    part of US DoD Corrosion Prevention and Control Program • Funding – 50% OSD ATL – 50% Army ACSIM-IMCOM Background • Problems due to moisture – Corrosion...Equipment • Structural Reinforcing – Mold & Mildew – Poor Air Quality EOP Technology • EOP Technology stops water intrusion through concrete...injection materials – Reduces corrosion of interior assets – Improves indoor air quality Fundamental forces influencing the movement of a solution in a

  14. The Role of Rumination and Reduced Concreteness in the Maintenance of Posttraumatic Stress Disorder and Depression Following Trauma

    PubMed Central

    Ehring, Thomas; Frank, Silke

    2007-01-01

    Rumination has been linked to posttraumatic stress disorder (PTSD) and depression following trauma. A cross-sectional (N = 101) and a prospective longitudinal study (N = 147) of road traffic accident survivors assessed rumination, PTSD and depression with self-report measures and structured interviews. We tested the hypotheses that (1) rumination predicts the maintenance of PTSD and depression and (2) reduced concreteness of ruminative thinking may be a maintaining factor. Rumination significantly predicted PTSD and depression at 6 months over and above what could be predicted from initial symptom levels. In contrast to the second hypothesis, reduced concreteness in an iterative rumination task was not significantly correlated with self-reported rumination frequency, and did not consistently correlate with symptom severity measures. However, multiple regression analyses showed that the combination of reduced concreteness and self-reported frequency of rumination predicted subsequent PTSD better than rumination frequency alone. The results support the view that rumination is an important maintaining factor of trauma-related emotional disorders. PMID:20694036

  15. Dose reduction of scattered photons from concrete walls lined with lead: Implications for improvement in design of megavoltage radiation therapy facility mazes

    SciTech Connect

    Al-Affan, I. A. M. Hugtenburg, R. P.; Piliero, M.; Bari, D. S.; Al-Saleh, W. M.; Evans, S.; Al-Hasan, M.; Al-Zughul, B.; Al-Kharouf, S.; Ghaith, A.

    2015-02-15

    Purpose: This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Methods: Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by the FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. Results: It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. Conclusions: This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose.

  16. Reducing silica and dust exposures in construction during use of powered concrete-cutting hand tools: efficacy of local exhaust ventilation on hammer drills.

    PubMed

    Shepherd, S; Woskie, S R; Holcroft, C; Ellenbecker, M

    2009-01-01

    Concrete cutting in construction is a major source of exposure to respirable crystalline silica. To reduce exposures, local exhaust ventilation (LEV) may be integrated into the hand tools used in concrete cutting. Volunteers from the New England Laborers Training Center participated in a field study focused on the use of LEV on concrete-cutting hammer drills. A randomized block design field experiment employing four workers measured the efficacy of four hood-vacuum source combinations compared with no LEV in reducing dust and silica exposures. Using four-stage personal cascade impactors (Marple 294) to measure dust exposure, a total of 18 personal samples were collected. Reductions of over 80% in all three biologically relevant size fractions of dust (inhalable, thoracic, and respirable) were obtained by using any combination of hood and vacuum source. This study found that respirable dust concentrations were reduced from 3.77 mg/m(3) to a range of 0.242 to 0.370 mg/m(3); thoracic dust concentrations from 12.5 mg/m(3) to a range of 0.774 to 1.23 mg/m(3); and inhalable dust concentration from 47.2 mg/m(3) to a range of 2.13 to 6.09 mg/m(3). Silica concentrations were reduced from 0.308 mg/m(3) to a range of 0.006 to 0.028 mg/m(3) in the respirable size fraction, from 0.821 mg/m(3) to a range of 0.043 to 0.090 mg/m(3) in the thoracic size fraction, and from 2.71 mg/m(3) to a range of 0.124 to 0.403 mg/m(3) in the inhalable size fraction. Reductions in dust concentrations while using the four LEV systems were not statistically significantly different from each other.

  17. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  18. Computer-Aided Construction at Designing Reinforced Concrete Columns as Per Ec

    NASA Astrophysics Data System (ADS)

    Zielińska, M.; Grębowski, K.

    2015-02-01

    The article presents the authors' computer program for designing and dimensioning columns in reinforced concrete structures taking into account phenomena affecting their behaviour and information referring to design as per EC. The computer program was developed with the use of C++ programming language. The program guides the user through particular dimensioning stages: from introducing basic data such as dimensions, concrete class, reinforcing steel class and forces affecting the column, through calculating the creep coefficient taking into account the impact of imperfection depending on the support scheme and also the number of mating members at load shit, buckling length, to generating the interaction curve graph. The final result of calculations provides two dependence points calculated as per methods of nominal stiffness and nominal curvature. The location of those points relative to the limit curve determines whether the column load capacity is assured or has been exceeded. The content of the study describes in detail the operation of the computer program and the methodology and phenomena which are indispensable at designing axially and eccentrically the compressed members of reinforced concrete structures as per the European standards.

  19. Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and Testing

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Kacie Caple

    Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative

  20. Reducing empiricism in malaria vaccine design.

    PubMed

    Moorthy, Vasee S; Kieny, Marie Paule

    2010-03-01

    Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time.

  1. Applications of high-strength concrete to the development of the prestressed concrete reactor vessel (PCRV) design for an HTGR-SC/C plant

    SciTech Connect

    Naus, D.J.

    1984-01-01

    The PCRV research and development program at ORNL consists of generic studies to provide technical support for ongoing PCRV-related studies, to contribute to the technological data base, and to provide independent review and evaluation of the relevant technology. Recent activities under this program have concentrated on the development of high-strength concrete mix designs for the PCRV of a 2240 MW(t) HTGR-SC/C plant, and the testing of models to both evaluate the behavior of high-strength concretes (plain and fibrous) and to develop model testing techniques. A test program to develop and evaluate high-strength (greater than or equal to 63.4 MPa) concretes utilizing materials from four sources which are in close proximity to potential sites for an HTGR plant is currently under way. The program consists of three phases. Phase I involves an evaluation of the cement, fly ash, admixtures and aggregate materials relative to their capability to produce concretes having the desired strength properties. Phase II is concerned with the evaluation of the effects of elevated temperatures (less than or equal to 316/sup 0/C) on the strength properties of mixes selected for detailed evaluation. Phase III involves a determination of the creep characteristics and thermal properties of the selected mixes. An overview of each of these phases is presented as well as results obtained to date under Phase I which is approximately 75% completed.

  2. Optimal seismic design of reinforced concrete structures under time-history earthquake loads using an intelligent hybrid algorithm

    NASA Astrophysics Data System (ADS)

    Gharehbaghi, Sadjad; Khatibinia, Mohsen

    2015-03-01

    A reliable seismic-resistant design of structures is achieved in accordance with the seismic design codes by designing structures under seven or more pairs of earthquake records. Based on the recommendations of seismic design codes, the average time-history responses (ATHR) of structure is required. This paper focuses on the optimal seismic design of reinforced concrete (RC) structures against ten earthquake records using a hybrid of particle swarm optimization algorithm and an intelligent regression model (IRM). In order to reduce the computational time of optimization procedure due to the computational efforts of time-history analyses, IRM is proposed to accurately predict ATHR of structures. The proposed IRM consists of the combination of the subtractive algorithm (SA), K-means clustering approach and wavelet weighted least squares support vector machine (WWLS-SVM). To predict ATHR of structures, first, the input-output samples of structures are classified by SA and K-means clustering approach. Then, WWLS-SVM is trained with few samples and high accuracy for each cluster. 9- and 18-storey RC frames are designed optimally to illustrate the effectiveness and practicality of the proposed IRM. The numerical results demonstrate the efficiency and computational advantages of IRM for optimal design of structures subjected to time-history earthquake loads.

  3. Improved design of special boundary elements for T-shaped reinforced concrete walls

    NASA Astrophysics Data System (ADS)

    Ji, Xiaodong; Liu, Dan; Qian, Jiaru

    2017-01-01

    This study examines the design provisions of the Chinese GB 50011-2010 code for seismic design of buildings for the special boundary elements of T-shaped reinforced concrete walls and proposes an improved design method. Comparison of the design provisions of the GB 50011-2010 code and those of the American code ACI 318-14 indicates a possible deficiency in the T-shaped wall design provisions in GB 50011-2010. A case study of a typical T-shaped wall designed in accordance with GB 50011-2010 also indicates the insufficient extent of the boundary element at the non-flange end and overly conservative design of the flange end boundary element. Improved designs for special boundary elements of T-shaped walls are developed using a displacement-based method. The proposed design formulas produce a longer boundary element at the non-flange end and a shorter boundary element at the flange end, relative to those of the GB 50011-2010 provisions. Extensive numerical analysis indicates that T-shaped walls designed using the proposed formulas develop inelastic drift of 0.01 for both cases of the flange in compression and in tension.

  4. Reduced truck fuel consumption through aerodynamic design

    NASA Technical Reports Server (NTRS)

    Steers, L. L.; Saltzman, E. J.

    1977-01-01

    Full-scale fuel consumption and drag tests were performed on a conventional cab-over-engine tractor-trailer combination and a version of the same vehicle with significant forebody modifications. The modified configuration had greatly increased radii on all front corners and edges of the tractor and a smooth fairing of the modified tractor top and sides extending to the trailer. Concurrent highway testing of the two configurations showed that the modified design used 20% to 24% less fuel than the baseline configuration at 88.5 km/hr (55 mph) with near-calm wind conditions. Coastdown test results showed that the modified configuration reduced the drag coefficient by 0.43 from the baseline value of 1.17 at 88.5 km/hr (55 mph) in calm wind conditions.

  5. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  6. Nitrate reducing bacterial activity in concrete cells of nuclear waste disposal

    NASA Astrophysics Data System (ADS)

    Alquier, M.; Kassim, C.; Bertron, A.; Rafrafi, Y.; Sablayrolles, C.; Albrecht, A.; Erable, B.

    2013-07-01

    Leaching experiments of solid matrices (bitumen and cement pastes) have been first implemented to define the physicochemical conditions that microorganisms are likely to meet at the bitumen-concrete interface (see the paper of Bertron et al.). Of course, as might be suspected, the cement matrix imposes highly alkaline pH conditions (10

  7. Towards Practical Carbonation Prediction and Modelling for Service Life Design of Reinforced Concrete Structures

    NASA Astrophysics Data System (ADS)

    Ekolu, O. S.

    2015-11-01

    Amongst the scientific community, the interest in durability of concrete structures has been high for quite a long time of over 40 years. Of the various causes of degradation of concrete structures, corrosion is the most widespread durability problem and carbonation is one of the two causes of steel reinforcement corrosion. While much scientific understanding has been gained from the numerous carbonation studies undertaken over the past years, it is still presently not possible to accurately predict carbonation and apply it in design of structures. This underscores the complex nature of the mechanisms as influenced by several interactive factors. Based on critical literature and some experience of the author, it is found that there still exist major challenges in establishing a mathematical constitutive relation for realistic carbonation prediction. While most current models employ permeability /diffusion as the main model property, analysis shows that the most practical material property would be compressive strength, which has a low coefficient of variation of 20% compared to 30 to 50% for permeability. This important characteristic of compressive strength, combined with its merit of simplicity and data availability at all stages of a structure's life, promote its potential use in modelling over permeability. By using compressive strength in carbonation prediction, the need for accelerated testing and permeability measurement can be avoided. This paper attempts to examine the issues associated with carbonation prediction, which could underlie the current lack of a sound established prediction method. Suggestions are then made for possible employment of different or alternative approaches.

  8. Accelerated corrosion testing, evaluation and durability design of bonded post-tensioned concrete tendons

    NASA Astrophysics Data System (ADS)

    Salas Pereira, Ruben Mario

    2003-06-01

    In the last few years, the effectiveness of cement grout in galvanized or polyethylene ducts, the most widely used corrosion protection system for multistrand bonded post-tensioned concrete tendons, has been under debate, due to significant tendon corrosion damage, several reported failures of individual tendons as well as a few collapses of non-typical structures. While experience in the USA has been generally good, some foreign experience has been less than satisfactory. This dissertation is part of a comprehensive research program started in 1993, which has the objectives to examine the use of post-tensioning in bridge substructures, identify durability concerns and existing technology, develop and carry out an experimental testing program, and conclude with durability design guidelines. Three experimental programs were developed: A long term macrocell corrosion test series, to investigate corrosion protection for internal tendons in precast segmental construction; a long term beam corrosion test series, to examine the effects of post-tensioning on corrosion protection as affected by crack width; and, a long term column corrosion test series, to examine corrosion protection in vertical elements. Preliminary design guidelines were developed previously in the overall study by the initial researchers, after an extensive literature review. This dissertation scope includes continuation of exposure testing of the macrocell, beam and column specimens, performing comprehensive autopsies of selected specimens and updating the durability design guidelines based on the exposure testing and autopsy results. After autopsies were performed, overall findings indicate negative durability effects due to the use of mixed reinforcement, small concrete covers, galvanized steel ducts, and industry standard or heat-shrink galvanized duct splices. The width of cracks was shown to have a direct negative effect on specimen performance. Grout voids were found to be detrimental to the

  9. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  10. Final Technical Report HFC Concrete: A Low­Energy, Carbon-Dioxide­Negative Solution for reducing Industrial Greenhouse Gas Emissions

    SciTech Connect

    Dr. Larry McCandlish, Principal Investigator; Dr. Richard Riman, Co-Principal Investigator

    2012-05-14

    Solidia/CCSM received funding for further research and development of its Low Temperature Solidification Process (LTS), which is used to create hydrate-free concrete (HFC). LTS/HFC is a technology/materials platform that offers wide applicability in the built infrastructure. Most importantly, it provides a means of making concrete without Portland cement. Cement and concrete production is a major consumer of energy and source of industrial greenhouse gas (GHG) emissions. The primary goal of this project was to develop and commercialize a novel material, HFC, which by replacing traditional concrete and cement, reduces both energy use and GHG emissions in the built infrastructure. Traditional concrete uses Portland Cement (PC) as a binder. PC production involves calcination of limestone at {approx}1450 C, which releases significant amounts of CO{sub 2} gas to the atmosphere and consumes a large amount of energy due to the high temperature required. In contrast, HFC is a carbonate-based hydrate-free concrete (HFC) that consumes CO{sub 2} gas in its production. HFC is made by reaction of silicate minerals with CO{sub 2} at temperatures below 100 C, more than an order-of-magnitude below the temperature required to make PC. Because of this significant difference in temperature, it is estimated that we will be able to reduce energy use in the cement and concrete industry by up to 30 trillion Btu by 2020. Because of the insulating properties of HFC, we believe we will also be able to significantly reduce energy use in the Building sector, though the extent of this saving is not yet quantified. It is estimated that production of a tonne of PC-based concrete requires about 6.2 million Btu of energy and produces over 1 tonne of CO{sub 2} emissions (Choate, 2003). These can be reduced to 1.9 million Btu and 0.025 tonnes of CO{sub 2} emissions per tonne of HFC (with overall CO{sub 2}-negativity possible by increasing carbonation yield). In this way, by replacing PC

  11. DESIGN OF A CONCRETE SLAB FOR STORAGE OF SNF AND HLW CASKS

    SciTech Connect

    J. Bisset

    2005-02-14

    This calculation documents the design of the Spent Nuclear Fuel (SNF) and High-Level Waste (HLW) Cask storage slab for the Aging Area. The design is based on the weights of casks that may be stored on the slab, the weights of vehicles that may be used to move the casks, and the layout shown on the sketch for a 1000 Metric Ton of Heavy Metal (MTHM) storage pad on Attachment 2, Sht.1 of the calculation 170-C0C-C000-00100-000-00A (BSC 2004a). The analytical model used herein is based on the storage area for 8 vertical casks. To simplify the model, the storage area of the horizontal concrete modules and their related shield walls is not included. The heavy weights of the vertical storage casks and the tensile forces due to pullout at the anchorages will produce design moments and shear forces that will envelope those that would occur in the storage area of the horizontal modules. The design loadings will also include snow and live loads. In addition, the design will also reflect pertinent geotechnical data. This calculation will document the preliminary thickness and general reinforcing steel requirements for the slab. This calculation also documents the initial design of the cask anchorage. Other slab details are not developed in this calculation. They will be developed during the final design process. The calculation also does not include the evaluation of the effects of cask drop loads. These will be evaluated in this or another calculation when the exact cask geometry is known.

  12. Design of the precast, post-tensioned concrete shielding structure for the TFTR neutral beam test cell

    SciTech Connect

    Kaminsky, E.L.; Nilsson, E.T.

    1981-01-01

    At the TFTR facility, the Neutral Beam Test Cell is a room separated from the TFTR Cell by a 4-foot-thick concrete wall and devoted to testing the neutral beam injector. The function of the shielding structure is to protect personnel from radiation casued by pulsing the injector. The distance from the TFTR device to the injector is large enough to permit use of magnetic materials in the shielding structure, and the neutron flux levels are small enough so that ordinary concrete of moderate thickness may be employed. Radiation considerations are not discussed in this paper, which is devoted to a description of the structural design of the shield.

  13. Leaching of Natural Gravel and Concrete by CO2 - Experimental Design, Leaching Behaviour and Dissolution Rates

    NASA Astrophysics Data System (ADS)

    Fuchs, Rita; Leis, Albrecht; Mittermayr, Florian; Harer, Gerhard; Wagner, Hanns; Reichl, Peter; Dietzel, Martin

    2015-04-01

    The durability of building material in aggressive aqueous environments is a key factor for evaluating the product quality and application as well as of high economic interest. Therefore, aspects of durability have been frequently investigated with different approaches such as monitoring, modelling and experimental work. In the present study an experimental approach based on leaching behaviour of natural calcite-containing siliceous gravel used as backfill material in tunnelling and sprayed concrete by CO2 was developed. CO2 was introduced to form carbonic acid, which is known as an important agent to induce chemical attack. The goals of this study were (i) to develop a proper experimental design to survey the leaching of building materials on-line, (ii) to decipher individual reaction mechanisms and kinetics and (iii) to estimate time-resolved chemical resistance of the used material throughout leaching. A combined flow through reactor unit was successfully installed, where both open and closed system conditions can be easily simulated by changing flow directions and rates. The chemical compositions of the experimental solutions were adjusted by CO2 addition at pHstat conditions and monitored in-situ by pH/SpC electrodes and by analysing the chemical composition of samples throughout an experimental run. From the obtained data e.g. dissolution rates with respect to calcite were obtained for the gravel material, which were dependent on the individual calcite content of the leached material. The rates were found to reflect the flow rate conditions, and the kinetic data lay within the range expected from dissolution experiments in the CaCO3-CO2-H2O system. In case of concrete the reactions throughout the leaching experiment were complex. Coupled dissolution and precipitation phenomena (e.g. portlandite dissolution, calcite formation) occurred. The coupled reactions can be followed by the evolution of the solution chemistry. The overall rates of elemental removal from

  14. Integrated Design Tools Reduce Risk, Cost

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Thanks in part to a SBIR award with Langley Research Center, Phoenix Integration Inc., based in Wayne, Pennsylvania, modified and advanced software for process integration and design automation. For NASA, the tool has resulted in lower project costs and reductions in design time; clients of Phoenix Integration are experiencing the same rewards.

  15. Quality control of concrete at the stage of designing its composition and technology

    NASA Astrophysics Data System (ADS)

    Kudyakov, A.; Prischepa, I.; Kiselev, D.; Prischepa, B.

    2016-01-01

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology - hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives - hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.

  16. Quality control of concrete at the stage of designing its composition and technology

    SciTech Connect

    Kudyakov, A. Prischepa, I. Kiselev, D.; Prischepa, B.

    2016-01-15

    The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology – hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives – hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.

  17. Reducing Depression in Pregnancy: Designing Multimodel Interventions.

    ERIC Educational Resources Information Center

    Cunningham, Maddy; Zayas, Luis H.

    2002-01-01

    High levels of stress on low-income, inner-city women from ethnic minority groups often causes both poor maternal functioning and infant development outcomes. This article reviews literature that proposes using several social work treatment options instead a single approach to reduce maternal depression, expand mothers' social networks, and…

  18. Design Criteria for Deflection Capacity of Conventionally reinforced Concrete Slabs. Phase III. Summary of Design Criteria and Design and Construction Details - Design Examples.

    DTIC Science & Technology

    1980-10-01

    Precast Bearing Wall Buildings to Withstand Abnormal Loads ," Journal of the Prestressed Concrete Institute, Vol. 21, No. 2, March/April 1976. - -76...details necessary to develop tensile membrane capacity of reinforced concrete slabs under uniform load . Major emphasis is placed on the deflection...on Johansen’s work (4). The theory has proved effective in predic- ting the initial hinging load in reinforced concrete slabs with

  19. Meter Designs Reduce Operation Costs for Industry

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Marshall Space Flight Center collaborated with Quality Monitoring and Control (QMC) of Humble, Texas, through a Space Act Agreement to design a balanced flow meter for the Space Shuttle Program. QMC founded APlus-QMC LLC to commercialize the technology, which has contributed to 100 new jobs, approximately $250,000 in yearly sales, and saved customers an estimated $10 million.

  20. Application of orthogonal test method in mix proportion design of recycled lightweight aggregate concrete

    NASA Astrophysics Data System (ADS)

    Zhao, Zhanshan; An, Le; Zhang, Yijing; Yuan, Jie

    2017-03-01

    Recycled lightweight aggregate concrete was made with construction waste and ceramsite brick mainly including brick. Using the orthogonal test method, the mix proportion of recycled lightweight aggregate concrete was studied, and the Influence regularity and significance of water binder ratio, fly ash, sand ratio, the amount of recycled aggregate proportion on the compressive strength of concrete, the strong influence of mass ratio, slump expansion degree was studied. Through the mean and range analysis of the test results, the results show that the water binder ratio has the greatest influence on the 28d intensity of recycled lightweight aggregate concrete. Secondly, the fly ash content, the recycled aggregate replacement rate and the sand ratio have little influence. For the factors of expansion: the proportion of fly ash = water binder ratio sand >sand rate> recycled aggregate replacement rate. When the content of fly ash is about 30%, the expanded degree of recycled lightweight aggregate concrete is the highest, and the workability of that is better and the strength of concrete with 28d and 56d are the highest. When the content of brickbat is about 40% brick particles, the strength of concrete reaches the highest.

  1. Ulexite-galena intermediate-weight concrete as a novel design for overcoming space and weight limitations in the construction of efficient shields against neutrons and photons.

    PubMed

    Aghamiri, S M R; Mortazavi, S M J; Razi, Z; Mosleh-Shirazi, M A; Baradaran-Ghahfarokhi, M; Rahmani, F; Faeghi, F

    2013-01-01

    Recently, due to space and weight limitations, scientists have tried to design and produce concrete shields with increased attenuation of radiation but not increased mass density. Over the past years, the authors' had focused on the production of heavy concrete for radiation shielding, but this is the first experience of producing intermediate-weight concrete. In this study, ulexite (hydrated sodium calcium borate hydroxide) and galena (lead ore) have been used for the production of a special intermediate-weight concrete. Shielding properties of this intermediate-weight concrete against photons have been investigated by exposing the samples to narrow and broad beams of gamma rays emitted from a ⁶⁰Co radiotherapy unit. Densities of the intermediate-weight concrete samples ranged 3.64-3.90 g cm⁻³, based on the proportion of the ulexite in the mix design. The narrow-beam half-value layer (HVL) of the ulexite-galena concrete samples for 1.25 MeV ⁶⁰Co gamma rays was 2.84 cm, much less than that of ordinary concrete (6.0 cm). The Monte Carlo (MC) code MCNP4C was also used to model the attenuation of ⁶⁰Co gamma-ray photons and Am-Be neutrons of the ulexite-galena concrete with different thicknesses. The ⁶⁰Co HVL calculated by MCNP simulation was 2.87 cm, indicating a good agreement between experimental measurements and MC simulation. Furthermore, MC-calculated results showed that thick ulexite-galena concrete shields (60-cm thickness) had a 7.22 times (722 %) greater neutron attenuation compared with ordinary concrete. The intermediate-weight ulexite-galena concrete manufactured in this study may have many important applications in the construction of radiation shields with weight limitations such as the swing or sliding doors that are currently used for radiotherapy treatment rooms.

  2. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  3. Prefabricated Tilt-up Concrete Panels for Blast Resistant Design PREPRINT

    DTIC Science & Technology

    2008-03-01

    purposed providing a comparison of analytical results to a theoretical wall section. Wall sections were cast with normal weight concrete having...were due to the test setup. While testing the precast wall panels, the deflection was measured through the use of scratch gauges placed at quarter...developed by AFRL at Tyndall APB. As was assumed at the outset of this effort, precast concrete panels are a viable option for goveTUIUent and

  4. Design Criteria for Deflection Capacity of Conventionally Reinforced Concrete Slabs. Phase II. Design and Construction Requirements.

    DTIC Science & Technology

    1980-10-01

    A T DERECHO , M IGRAL N68305-79-C00 UNCLASSIFIED CEL-CR-.A07 NL .... DTIC tC’ 80-EV27 T-4 CIVIL ENGINEERING LABORATORY Naval Construction Battalion...Design and Construction Requirements by T. Takayanagi, A.T. Derecho , and M. Iqbal* 1. INTRODUCTION 1.1 Objective and Scope The primary objective of this...functions are constructed for 6ult/L from slab test data and for cu from slab data and coupon tesY data other than slab data. This second approach allows a

  5. A Navy User’s Guide for Quality Assurance of New Concrete Construction

    DTIC Science & Technology

    2012-06-01

    pre-stressed concrete piles . In an effort to reduce the risk of premature distress, the quality assurance portion of this approach is designed to...new design and quality assurance procedures, including service life modeling of the concrete materials that improve the quality and durability of new... concrete structures in combination with prescriptive criteria. The goal is to allow all parties involved in the design and construction process to have

  6. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  7. Fiber-reinforced concretes with a high fiber volume fraction — a look in future. Can a design determine the fiber amount in concrete in real time in every part of a structure in production?

    NASA Astrophysics Data System (ADS)

    Tepfers, R.

    2010-09-01

    In near future, when the control of the load-bearing capacity of fiber-only-reinforced concrete members will be safely guaranteed, the deletion of the ordinary continuous steel reinforcing bars might be possible. For the time being, it is difficult to change the fiber amount during the casting with today's techniques. Therefore, the fiber concentration has to be determined by the maximum tensile stress in concrete structural members, resulting in an unnecessary fiber addition in compressed zones. However, if the right amount of fibers could be regulated and added to concrete in real time at the pump outlet, a future vision could be to design and produce a structure by using FEM-controlled equipment. The signals from calculation results could be transmitted to a concrete casting system for addition of a necessary amount of fibers to take care of the actual tensile stresses in the right position in the structure. The casting location could be determined by using a GPS for positioning the pump outlet for targeting the casting location horizontally and a laser vertically. The addition of fibers to concrete at the outlet of a concrete pump and proportioning them there according to the actual needs of the stress situation in a structure, given by a FEM analysis in real time, is a future challenge. The FEM analysis has to be based on material properties of fiber-only-reinforced concrete. This means that the resistance and stiffness of different-strength concrete members with a varying fiber content has to be determined in tests and conveyed to the FEM analysis. The FEM analysis has to be completed before the casting and controlled. Then it can be used as the base for adding a correct amount of fibers to concrete in every part of the structure. Thus, a system for introducing a correct amount of fibers into concrete has to be developed. The fibers have to be added at the outlet of concrete pump. Maybe a system to shotcrete concrete with electronically controlled fiber

  8. Lower Mississippi River Environmental Program. Report 13. Preliminary Environmental Design Considerations Associated with Articulated Concrete Mattress Revetments along the Lower Mississippi River

    DTIC Science & Technology

    1988-05-01

    Lower Mississippi River Environmcntal Program; Report 13, Preliminary Environmental Design Considerations Associated with Articulated Concrete Mattress...component of the LMREP is the revetment investigation. This report presents preliminary environmental design considerations for Articulated Concrete ...34 Research Report 80, US Fish and Wildlife Service, Washington, DC. Berner, L. M. 1951. "Limnology of the Lower Missouri River," E Vol 32, No. 1, pp 1-12

  9. Design and installation of a cathodic protection system for a large reinforced concrete intake structure in the Arabian Gulf

    SciTech Connect

    Ali, M.; Al-Ghannam, H.

    1997-09-01

    The paper describes the condition survey methodology, design and installation of a cathodic protection (C.P.) system for a large reinforced concrete reservoir and sea water intake structure. The structure is critical for the supply of cooling water for a 2.4 million metric ton steel plant. The C.P. System consisting of mixed metal oxide coating on titanium mesh type anodes and automatic voltage/current controlled rectifiers was successfully installed and has been operating within design guidelines for the past 15 months.

  10. Reducing Design Cycle Time and Cost Through Process Resequencing

    NASA Technical Reports Server (NTRS)

    Rogers, James L.

    2004-01-01

    In today's competitive environment, companies are under enormous pressure to reduce the time and cost of their design cycle. One method for reducing both time and cost is to develop an understanding of the flow of the design processes and the effects of the iterative subcycles that are found in complex design projects. Once these aspects are understood, the design manager can make decisions that take advantage of decomposition, concurrent engineering, and parallel processing techniques to reduce the total time and the total cost of the design cycle. One software tool that can aid in this decision-making process is the Design Manager's Aid for Intelligent Decomposition (DeMAID). The DeMAID software minimizes the feedback couplings that create iterative subcycles, groups processes into iterative subcycles, and decomposes the subcycles into a hierarchical structure. The real benefits of producing the best design in the least time and at a minimum cost are obtained from sequencing the processes in the subcycles.

  11. OECD MCCI project long-term 2-D molten core concrete interaction test design report, Rev. 0. September 30, 2002.

    SciTech Connect

    Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschliman, R. W.; Basu, S.

    2011-05-23

    The Melt Attack and Coolability Experiments (MACE) program at Argonne National Laboratory addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following two technical objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of the first program objective, the Small-Scale Water Ingression and Crust Strength (SSWICS) test series has been initiated to provide fundamental information on the ability of water to ingress into cracks and fissures that form in the debris during quench, thereby augmenting the otherwise conduction-limited heat transfer process. A test plan for Melt Eruption Separate Effects Tests (MESET) has also been developed to provide information on the extent of crust growth and melt eruptions as a function of gas sparging rate under well-controlled experiment conditions. In terms of the second program objective, the project Management Board (MB) has approved startup activities required to carry out

  12. Controller design via structural reduced modeling by FETM

    NASA Technical Reports Server (NTRS)

    Yousuff, Ajmal

    1987-01-01

    The Finite Element-Transfer Matrix (FETM) method has been developed to reduce the computations involved in analysis of structures. This widely accepted method, however, has certain limitations, and does not address the issues of control design. To overcome these, a modification of the FETM method has been developed. The new method easily produces reduced models tailored toward subsequent control design. Other features of this method are its ability to: (1) extract open loop frequencies and mode shapes with less computations, (2) overcome limitations of the original FETM method, and (3) simplify the design procedures for output feedback, constrained compensation, and decentralized control. This report presents the development of the new method, generation of reduced models by this method, their properties, and the role of these reduced models in control design. Examples are included to illustrate the methodology.

  13. The use of high-density concretes in radiotherapy treatment room design.

    PubMed

    Facure, A; Silva, A X

    2007-09-01

    With the modernization of radiotherapic centers, medical linear accelerators are largely replacing (60)Co teletherapy units. In many cases, the same vault housing the (60)Co teletherapy unit is reused for the linear accelerator and, when space is at a premium, high-density concrete (3.0-5.0 g/cm(3)) is employed to provide shielding against the primary, scatter and leakage radiation. This work presents a study based on Monte Carlo simulations of transmission of some clinical photon spectra (of 4-10 MV accelerators) through some types of high-density concretes, normally used in the construction of radiotherapy bunkers. From the simulations, the initial and subsequent tenth-value layers (TVL) for these materials, taking into account realistic clinical photon spectra, are presented, for primary radiation.

  14. Short Duration Reduced Gravity Drop Tower Design and Development

    NASA Astrophysics Data System (ADS)

    Osborne, B.; Welch, C.

    The industrial and commercial development of space-related activities is intimately linked to the ability to conduct reduced gravity research. Reduced gravity experimentation is important to many diverse fields of research in the understanding of fundamental and applied aspects of physical phenomena. Both terrestrial and extra-terrestrial experimental facilities are currently available to allow researchers access to reduced gravity environments. This paper discusses two drop tower designs, a 2.0 second facility built in Australia and a proposed 2.2 second facility in the United Kingdom. Both drop towers utilise a drag shield for isolating the falling experiment from the drag forces of the air during the test. The design and development of The University of Queensland's (Australia) 2.0 second drop tower, including its specifications and operational procedures is discussed first. Sensitive aspects of the design process are examined. Future plans are then presented for a new short duration (2.2 sec) ground-based reduced gravity drop tower. The new drop tower has been designed for Kingston University (United Kingdom) to support teaching and research in the field of reduced gravity physics. The design has been informed by the previous UQ drop tower design process and utilises a catapult mechanism to increase test time and also incorporates features to allow participants for a variety of backgrounds (from high school students through to university researchers) to learn and experiment in reduced gravity. Operational performance expectations for this new facility are also discussed.

  15. Design and Properties of Asphalt Concrete Mixtures Using Renewable Bioasphalt Binder

    NASA Astrophysics Data System (ADS)

    Setyawan, A.; Djumari; Irfansyah, P. A.; Shidiq, A. M.; Wibisono, I. S.; Fauzy, M. N.; Hadi, F. N.

    2017-02-01

    The needs of petroleum asphalt as materials for pavement is very large, while the petroleum classified as natural resources that cannot be renewable. As a result of petroleum dwindling and prices tend to be more expensive. So that requiring other alternative materials as a substitute for conventional asphalt derived from biomass or often called bioasphalt. This study aims to know the volumetric and Marshall characteristics on Asphalt Cement ( AC ) using the Damar asphalt modification to substitute 60/70 penetration asphalt as a binder. The volumetric and Marshall characteristic are porosity, density, flow, stability, and Marshall quotient. The characteristic of asphalt concrete at optimum bitumen content are compared to the conditions from highway agency 1987 and the general specification of asphalt concrete Bina Marga 2010 the third revision. The research uses experimental method in the laboratory with the samples made using the dasphalt modification as binder and incorporating the aggregate gradation no. VII SNI 03-1737-1989. The research is using 15 samples divided into 5 contents of damar asphalt, they are 5%, 5,5%, 6%, 6,5%, dan 7%. Tests carried out using Marshall test equipment to get the value of flow and stability and then be searched the value of optimum damar asphalt content. The result of asphalt concrete analysis using dasphalt modification as binder gives the value of optimum dasphalt content at 5,242%. The most characteristics already met the requirements and specifications.

  16. Designing GUIs for low vision by simulating reduced visual acuity: reduced resolution versus shrinking.

    PubMed

    Sandnes, Frode Eika

    2015-01-01

    The visual uniqueness of information carrying icon and text elements has received little attention in the HCI research literature. The information carrying elements of graphical designs must be visually unique in order to be visually recognizable. This is increasingly important with the diversity of form factors and types of information displays. This paper explores two simple strategies for testing visual designs by simulating low visual acuity, namely by reducing the resolution and by shrinking. Two case studies demonstrate that low vision simulation by shrinking is more effective than reducing the resolution. Moreover, the case studies show how the low vision simulation can help identify design aspects that need attention. Design shrinking is not a substitute for user testing on actual user groups, but meant as a tool for early screening of designs and an aid for designers to help understand the effects of their design. The method can also be used as a tool for communicating design problems and justifying design decisions to stakeholders of a project through presentations and reports.

  17. Integrated model for assessing the cost and CO2 emission (IMACC) for sustainable structural design in ready-mix concrete.

    PubMed

    Hong, Taehoon; Ji, Changyoon; Park, Hyoseon

    2012-07-30

    Cost has traditionally been considered the most important factor in the decision-making process. Recently, along with the consistent interest in environmental problems, environmental impact has also become a key factor. Accordingly, there is a need to develop a method that simultaneously reflects the cost and environmental impact in the decision-making process. This study proposed an integrated model for assessing the cost and CO(2) emission (IMACC) at the same time. IMACC is a model that assesses the cost and CO(2) emission of the various structural-design alternatives proposed in the structural-design process. To develop the IMACC, a standard on assessing the cost and CO(2) emission generated in the construction stage was proposed, along with the CO(2) emission factors in the structural materials, based on such materials' strengths. Moreover, using the economic and environmental scores that signify the cost and CO(2) emission reduction ratios, respectively, a method of selecting the best design alternative was proposed. To verify the applicability of IMACC, practical application was carried out. Structural designs were assessed, each of which used 21, 24, 27, and 30 MPa ready-mix concrete (RMC). The use of IMACC makes it easy to verify what the best design is. Results show the one that used 27 MPa RMC was the best design. Therefore, the proposed IMACC can be used as a tool for supporting the decision-making process in selecting the best design alternative.

  18. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  19. Reclamation chain of waste concrete: A case study of Shanghai.

    PubMed

    Xiao, Jianzhuang; Ma, Zhiming; Ding, Tao

    2016-02-01

    A mass of construction and demolition (C&D) waste are generated in Shanghai every year, and it has become a serious environment problem. Reclaiming the waste concrete to produce recycled aggregate (RA) and recycled aggregate concrete (RAC) is an effective method to reduce the C&D waste. This paper develops a reclamation chain of waste concrete based on the researches and practices in Shanghai. C&D waste management, waste concrete disposition, RA production and RAC preparation are discussed respectively. In addition, technical suggestions are also given according to the findings in practical engineering, which aims to optimize the reclamation chain. The results show that the properties of RA and RAC can well meet the requirement of design and practical application through a series of technical measures. The reclamation chain of waste concrete is necessary and appropriate for Shanghai, which provides more opportunities for the wider application of RA and RAC, and it shows a favorable environmental benefit.

  20. Reusing recycled aggregates in structural concrete

    NASA Astrophysics Data System (ADS)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  1. Seismic design of circular-section concrete-lined underground openings: Preclosure performance considerations for the Yucca Mountain Site

    SciTech Connect

    Richardson, A.M.; Blejwas, T.E.

    1992-07-01

    Yucca Mountain, the potential site of a repository for high-level radioactive waste, is situated in a region of natural and man-made seismicity. Underground openings excavated at this site must be designed for worker safety in the seismic environment anticipated for the preclosure period. This includes accesses developed for site characterization regardless of the ultimate outcome of the repository siting process. Experience with both civil and mining structures has shown that underground openings are much more resistant to seismic effects than surface structures, and that even severe dynamic strains can usually be accommodated with proper design. This paper discusses the design and performance of lined openings in the seismic environment of the potential site. The types and ranges of possible ground motions (seismic loads) are briefly discussed. Relevant historical records of underground opening performance during seismic loading are reviewed. Simple analytical methods of predicting liner performance under combined in situ, thermal, and seismic loading are presented, and results of calculations are discussed in the context of realistic performance requirements for concrete-lined openings for the preclosure period. Design features that will enhance liner stability and mitigate the impact of the potential seismic load are reviewed. The paper is limited to preclosure performance concerns involving worker safety because present decommissioning plans specify maintaining the option for liner removal at seal locations, thus decoupling liner design from repository postclosure performance issues.

  2. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  3. Upgrading the Neutron Radiography Facility in South Africa (SANRAD): Concrete Shielding Design Characteristics

    NASA Astrophysics Data System (ADS)

    de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.

    A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.

  4. Design and fabrication of polymer-concrete pipe for testing in geothermal-energy processes. Final report

    SciTech Connect

    Schroeder, J.E.

    1981-07-01

    Polymer concrete is a composite material which has strength and durability characteristics greatly superior to those of portland cement concrete and better durability in hot brine than steel. Polymer concrete has been successfully tested in brine, flashing brine, and steam at temperatures up to 260/sup 0/C (500/sup 0/F). Exposures were as long as 960 days. Glass-filament-wound polymer concrete pipe was developed with excellent strength, low weight, and a cost comparable to or less than Schedule 40 steel. Connections can be made with slip joints for low-pressure applications and flanged joints for high-pressure applications.

  5. Numerical Airfoil Optimization Using a Reduced Number of Design Coordinates

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.; Hicks, R. M.

    1976-01-01

    A method is presented for numerical airfoil optimization whereby a reduced number of design coordinates are used to define the airfoil shape. The approach is to define the airfoil as a linear combination of shapes. These basic shapes may be analytically or numerically defined, allowing the designer to use his insight to propose candidate designs. The design problem becomes one of determining the participation of each such function in defining the optimum airfoil. Examples are presented for two-dimensional airfoil design and are compared with previous results based on a polynomial representation of the airfoil shape. Four existing NACA airfoils are used as basic shapes. Solutions equivalent to previous results are achieved with a factor of more than 3 improvements in efficiency, while superior designs are demonstrated with an efficiency greater than 2 over previous methods. With this shape definition, the optimization process is shown to exploit the simplifying assumptions in the inviscid aerodynamic analysis used here, thus demonstrating the need to use more advanced aerodynamics for airfoil optimization.

  6. Migrating corrosion inhibitor protection of concrete

    SciTech Connect

    Bjegovic, D.; Miksic, B.

    1999-11-01

    Migrating corrosion inhibitors (MCI) were developed to protect steel rebar from corrosion in concrete. They were designed to be incorporated as an admixture during concrete batching or used for surface impregnation of existing concrete structures. Two investigations are summarized. One studied the effectiveness of MCIs as a corrosion inhibitor for steel rebar when used as an admixture in fresh concrete mix. The other is a long-term study of MCI concrete impregnation that chronicles corrosion rates of rebar in concrete specimens. Based on data from each study, it was concluded that migrating corrosion inhibitors are compatible with concrete and effectively delay the onset of corrosion.

  7. Computational design of patterned interfaces using reduced order models.

    PubMed

    Vattré, A J; Abdolrahim, N; Kolluri, K; Demkowicz, M J

    2014-08-29

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance.

  8. Computational design of patterned interfaces using reduced order models

    PubMed Central

    Vattré, A. J.; Abdolrahim, N.; Kolluri, K.; Demkowicz, M. J.

    2014-01-01

    Patterning is a familiar approach for imparting novel functionalities to free surfaces. We extend the patterning paradigm to interfaces between crystalline solids. Many interfaces have non-uniform internal structures comprised of misfit dislocations, which in turn govern interface properties. We develop and validate a computational strategy for designing interfaces with controlled misfit dislocation patterns by tailoring interface crystallography and composition. Our approach relies on a novel method for predicting the internal structure of interfaces: rather than obtaining it from resource-intensive atomistic simulations, we compute it using an efficient reduced order model based on anisotropic elasticity theory. Moreover, our strategy incorporates interface synthesis as a constraint on the design process. As an illustration, we apply our approach to the design of interfaces with rapid, 1-D point defect diffusion. Patterned interfaces may be integrated into the microstructure of composite materials, markedly improving performance. PMID:25169868

  9. Materials design data for reduced activation martensitic steel type EUROFER

    NASA Astrophysics Data System (ADS)

    Tavassoli, A.-A. F.; Alamo, A.; Bedel, L.; Forest, L.; Gentzbittel, J.-M.; Rensman, J.-W.; Diegele, E.; Lindau, R.; Schirra, M.; Schmitt, R.; Schneider, H. C.; Petersen, C.; Lancha, A.-M.; Fernandez, P.; Filacchioni, G.; Maday, M. F.; Mergia, K.; Boukos, N.; Baluc; Spätig, P.; Alves, E.; Lucon, E.

    2004-08-01

    Materials design limits derived so far from the data generated in Europe for the reduced activation ferritic/martensitic (RAFM) steel type Eurofer are presented. These data address the short-term needs of the ITER Test Blanket Modules and a DEMOnstration fusion reactor. Products tested include plates, bars, tubes, TIG and EB welds, as well as powder consolidated blocks and solid-solid HIP joints. Effects of thermal ageing and low dose neutron irradiation are also included. Results are sorted and screened according to design code requirements before being introduced in reference databases. From the physical properties databases, variations of magnetic properties, modulus of elasticity, density, thermal conductivity, thermal diffusivity, specific heat, mean and instantaneous linear coefficients of thermal expansion versus temperature are derived. From the tensile and creep properties databases design allowable stresses are derived. From the instrumented Charpy impact and fracture toughness databases, ductile to brittle transition temperature, toughness and behavior of materials in different fracture modes are evaluated. From the fatigue database, total strain range versus number of cycles to failure curves are plotted and used to derive fatigue design curves. Cyclic curves are also derived and compared with monotonic hardening curves. Finally, irradiated and aged materials data are compared to ensure that the safety margins incorporated in unirradiated design limits are not exceeded.

  10. Development of polymer concrete vaults for natural gas regulator stations

    SciTech Connect

    Fontana, J.J.; Miller, C.A.; Reams, W.; Elling, D.

    1990-08-01

    Vaults for natural gas regulator stations have traditionally been fabricated with steel-reinforced portland cement concrete. Since these vaults are installed below ground level, they are usually coated with a water-proofing material to prevent the ingress of moisture into the vault. In some cases, penetrations for piping that are normally cast into the vault do not line up with the gas lines in the streets. This necessitates off-setting the lines to line up with the penetrations in the vault or breaking out new penetrations which could weaken the structure and/or allow water ingress. By casting the vaults using a new material of construction such as polymer concrete, a longer maintenance free service life is possible because the physical and durability properties of polymer concrete composites are much superior to those of portland cement concrete. The higher strengths of polymer concrete allow the design engineer to reduce the wall, floor, and ceiling thicknesses making the vaults lighter for easier transportation and installation. Penetrations can be cut after casting to match existing street lines, thus making the vault more universal and reducing the number of vaults that are normally in stock. The authors developed a steel-fiber reinforced polymer concrete composite that could be used for regulator vaults. Based on the physical properties of his new composite, vaults were designed to replace the BUG PV-008 and Con Ed GR-6 regulator vaults made of reinforced portland cement concrete. Quarter-scale models of the polymer concrete vaults were tested and the results reaffirmed the reduced wall thickness design. Two sets of vaults, cast by Hardinge Bros., were inspected by representatives of the utilities and BNL (Brookhaven National Laboratory), and were accepted for delivery. 6 refs., 5 figs., 12 tabs.

  11. Can helmet design reduce the risk of concussion in football?

    PubMed

    Rowson, Steven; Duma, Stefan M; Greenwald, Richard M; Beckwith, Jonathan G; Chu, Jeffrey J; Guskiewicz, Kevin M; Mihalik, Jason P; Crisco, Joseph J; Wilcox, Bethany J; McAllister, Thomas W; Maerlender, Arthur C; Broglio, Steven P; Schnebel, Brock; Anderson, Scott; Brolinson, P Gunnar

    2014-04-01

    Of all sports, football accounts for the highest incidence of concussion in the US due to the large number of athletes participating and the nature of the sport. While there is general agreement that concussion incidence can be reduced through rule changes and teaching proper tackling technique, there remains debate as to whether helmet design may also reduce the incidence of concussion. A retrospective analysis was performed of head impact data collected from 1833 collegiate football players who were instrumented with helmet-mounted accelerometer arrays for games and practices. Data were collected between 2005 and 2010 from 8 collegiate football teams: Virginia Tech, University of North Carolina, University of Oklahoma, Dartmouth College, Brown University, University of Minnesota, Indiana University, and University of Illinois. Concussion rates were compared between players wearing Riddell VSR4 and Riddell Revolution helmets while controlling for the head impact exposure of each player. A total of 1,281,444 head impacts were recorded, from which 64 concussions were diagnosed. The relative risk of sustaining a concussion in a Revolution helmet compared with a VSR4 helmet was 46.1% (95% CI 28.1%-75.8%). When controlling for each player's exposure to head impact, a significant difference was found between concussion rates for players in VSR4 and Revolution helmets (χ(2) = 4.68, p = 0.0305). This study illustrates that differences in the ability to reduce concussion risk exist between helmet models in football. Although helmet design may never prevent all concussions from occurring in football, evidence illustrates that it can reduce the incidence of this injury.

  12. Rapid Testing of Fresh Concrete

    DTIC Science & Technology

    1975-05-01

    Cementforenlng, Oslo, 1952). 1.1 Orchard, 0. F., "The Effect of the Vacum Process on Concrete Mix Design ," Symposiwn on Mix Design and Qualify Control...ASTM, Vol 33, Part I (1933), pp 297-307. Orchard, D. F., "The Effect of the Vacuum Process on Concrete Mix Design ," Symposium on Mix Design and... Designed for Use in Determining Constituents of Fresh Concrete," Public floads, Vol 13, No. 9 (1932), p 151. 9 Cook, G. C, "Effect of Time of Haul

  13. Corrosion behaviour of steel rebars embedded in a concrete designed for the construction of an intermediate-level radioactive waste disposal facility

    NASA Astrophysics Data System (ADS)

    Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.

    2013-07-01

    The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.

  14. Metamorphic manipulating mechanism design for MCCB using index reduced iteration

    NASA Astrophysics Data System (ADS)

    Xu, Jinghua; Zhang, Shuyou; Zhao, Zhen; Lin, Xiaoxia

    2013-03-01

    The present research on moulded case circuit breaker(MCCB) focuses on the enhancement of current-limiting interrupting performance during short circuit, overload, under voltage and phase failure, involving electrics, magnetic, mechanics, thermal, material, friction, arc extinguishing, impact vibration, skin effect, etc. The rigid-flexible coupling of the parts and components of the metamorphic manipulating mechanism in multi-fields leads to the non-rigid, high frequency, high damping, singularity of the Euler-Lagrange equations which represents the multi-body dynamics. The small step iteration which is used for obtaining the instantaneous and short time critical interrupting performance of metamorphic mechanism appears inaccuracy. It is difficult to realize top-down design by existing CAD systems. Therefore, a metamorphic manipulating mechanism design method for MCCB using index reduced iteration(IRI) is put forward. The metamorphic manipulating mechanism of MCCB is decomposed into three mechanisms: main switch connector mechanism, electromagnet-drawbar-jump buckle mechanism, and bimetallic strip-drawbar mechanism, which is respectively described by electro-dynamic force, electromagnet force, and bimetallic strip force. The dummy part(virtual rigid) without moment of inertia and mass is employed as intermediate to join the flexible body and rigid body. The model of rigid-flexible coupling metamorphic mechanism multi-body dynamics is built. The differential algebraic equations(DAEs) of the multibody dynamics model are converted to pure ordinary differential equations(ODEs) by coordinate partition. Order reduced integration with multi-step and variable step-size is preceded based on IRI. The non-linear algebraic equations are solved in each integration step by Newton-Rapson iteration. There is no ill-condition and singularity of Jacobian matrix when step size reduces to zero. The independent prototype design system using ACIS R13, HOOPS V11.0 and Visual C++.NET 2003

  15. Radon emanation fractions from concretes containing fly ash and metakaolin.

    PubMed

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling.

  16. Design and Analysis of Complex D-Regions in Reinforced Concrete Structures

    ERIC Educational Resources Information Center

    Yindeesuk, Sukit

    2009-01-01

    STM design provisions, such as those in Appendix A of ACI318-08, consist of rules for evaluating the capacity of the load-resisting truss that is idealized to carry the forces through the D-Region. These code rules were primarily derived from test data on simple D-Regions such as deep beams and corbels. However, these STM provisions are taken as…

  17. Blast Design of Reinforced Concrete and Masonry Components Retrofitted with FRP

    DTIC Science & Technology

    2010-07-01

    polymeric resin matrix . The fibers provide strength and stiffness to the composite, while the resin matrix provides stress transfer between fibers...unclassified 2 The most widely used type of polymer matrix for applications in building structures is epoxy resins. Other types of polymer matrix ...to the polymer matrix . All the fiber types in Table 1 can be used for blast design and the choice of fiber type is often an economic one. Table

  18. Reduced Design Load Basis for Ultimate Blade Loads Estimation in Multidisciplinary Design Optimization Frameworks

    NASA Astrophysics Data System (ADS)

    Pavese, Christian; Tibaldi, Carlo; Larsen, Torben J.; Kim, Taeseong; Thomsen, Kenneth

    2016-09-01

    The aim is to provide a fast and reliable approach to estimate ultimate blade loads for a multidisciplinary design optimization (MDO) framework. For blade design purposes, the standards require a large amount of computationally expensive simulations, which cannot be efficiently run each cost function evaluation of an MDO process. This work describes a method that allows integrating the calculation of the blade load envelopes inside an MDO loop. Ultimate blade load envelopes are calculated for a baseline design and a design obtained after an iteration of an MDO. These envelopes are computed for a full standard design load basis (DLB) and a deterministic reduced DLB. Ultimate loads extracted from the two DLBs with the two blade designs each are compared and analyzed. Although the reduced DLB supplies ultimate loads of different magnitude, the shape of the estimated envelopes are similar to the one computed using the full DLB. This observation is used to propose a scheme that is computationally cheap, and that can be integrated inside an MDO framework, providing a sufficiently reliable estimation of the blade ultimate loading. The latter aspect is of key importance when design variables implementing passive control methodologies are included in the formulation of the optimization problem. An MDO of a 10 MW wind turbine blade is presented as an applied case study to show the efficacy of the reduced DLB concept.

  19. Reducing the complexity of the software design process with object-oriented design

    NASA Technical Reports Server (NTRS)

    Schuler, M. P.

    1991-01-01

    Designing software is a complex process. How object-oriented design (OOD), coupled with formalized documentation and tailored object diagraming techniques, can reduce the complexity of the software design process is described and illustrated. The described OOD methodology uses a hierarchical decomposition approach in which parent objects are decomposed into layers of lower level child objects. A method of tracking the assignment of requirements to design components is also included. Increases in the reusability, portability, and maintainability of the resulting products are also discussed. This method was built on a combination of existing technology, teaching experience, consulting experience, and feedback from design method users. The discussed concepts are applicable to hierarchal OOD processes in general. Emphasis is placed on improving the design process by documenting the details of the procedures involved and incorporating improvements into those procedures as they are developed.

  20. Instability vaccination: A structural design to reduce Rayleigh Taylor instability

    NASA Astrophysics Data System (ADS)

    Esmaeili, Amin

    2013-10-01

    Instability vaccination can be defined as designing a structure to stimulate the system in order to develop immunity against its instability. In this work we have tried to do this stabilization by a new technique. Previously some suppression of R-M instability was done by insertion of magnetic field, but in this work we have tried to do this suppression by proposing a configuration similar to the shape of instability, we call it instability vaccination. This design will reduce the rotations (mostly rotations of Rayleigh Taylor instability) in the fluids that cause more mixing and instabilities. In this paper, we consider the evolution of the interface between two ideal semi-infinite fluid surfaces, using two-dimensional Riemann solver, to solve the Euler equations. First, we performed evolution of a rectangular disorder between the 2 surfaces using two-dimensional Riemann problem for the equations of Euler. Next, the interface was replaced with a perturbation that was part rectangular and part semi-circular (like a mushroom). The simulation was continued till some time steps using the HLL method. We have seen that the rotations of Rayleigh Taylor (R-T) instability were decreased in the second case. Email: amin@cavelab.cs.tsukuba.ac.jp

  1. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1998-12-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  2. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1998-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specification required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  3. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, J.W.; Wecharatana, M.; Jaturapitakkul, C.; Cerkanowicz, A.E.

    1997-04-29

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs. 33 figs.

  4. Compressive strength of concrete and mortar containing fly ash

    DOEpatents

    Liskowitz, John W.; Wecharatana, Methi; Jaturapitakkul, Chai; Cerkanowicz, deceased, Anthony E.

    1997-01-01

    The present invention relates to concrete, mortar and other hardenable mixtures comprising cement and fly ash for use in construction. The invention includes a method for predicting the compressive strength of such a hardenable mixture, which is very important for planning a project. The invention also relates to hardenable mixtures comprising cement and fly ash which can achieve greater compressive strength than hardenable mixtures containing only concrete over the time period relevant for construction. In a specific embodiment, a formula is provided that accurately predicts compressive strength of concrete containing fly ash out to 180 days. In other specific examples, concrete and mortar containing about 15% to 25% fly ash as a replacement for cement, which are capable of meeting design specifications required for building and highway construction, are provided. Such materials can thus significantly reduce construction costs.

  5. Potential polymer concrete heat exchanger tubes for corrosive environments

    SciTech Connect

    Fontana, J.J.; Reams, W.; Cheng, H.C.

    1986-11-01

    It has long been known that carbon steel exposed to some geothermal brines is aggressively attacked, and large corrosion allowances must be made in the design of piping used in such environments. In addition, scaling of the pipes reduces the flow through within a short period of time. Several high temperature polymer concretes have been developed which can be used as non-corrosive liner materials. In addition, polymer concretes with high thermal conductivities have been developed which may be used as heat exchanger tubes for geothermal brines. Studies have indicated that polymer concretes will not scale as rapidly as carbon steel does, thus making them attractive alternatives for heat exchanger tubes. Thin walled, thermally conductive polymer concrete tubes have been made that can withstand pressures >4.1 MPa at 150/sup 0/C without leaking. Continuing studies are being made to characterize these materials and evaluate them for heat exchanger applications.

  6. Precast Concrete Pavements

    DTIC Science & Technology

    1981-11-01

    Gorsuch 1962, Kruse 1966, Jacoby 1967, and Hargett 1970). The final slab design used in construction is shown in Figure 2. These slabs were 6 ft wide, 24...Experiment Station, CE, Vicksburg, Miss. Gorsuch , R. F. 1962. "Preliminary Investigation of Precast Prestressed Concrete Pavements," MS Thesis, South Dakota

  7. Strength Design of Reinforced Concrete Hydraulic Structures. Report 2. Design Aids for Use in the Design and Analysis of Reinforced Concrete Hydraulic Structural Members Subjected to Combined Flexure and Axial Loads.

    DTIC Science & Technology

    1981-12-01

    C1 0 1 1.06 1(.1! l-. 1 • 17 48. 0 01 1 . 05 1 I:𔃿 1 . 05 1 . 05 1 . 06 1. 0l6 1 . 0E. 1 . 6 1 " 17 50. I’lf 1. 05 1 . f15 1. 105 1. 05 1 . 05 1 . Oft...1_1506 1 1 . C1 . I 1 _5 I. i-15 1.1 It. I.0 72.01(, 1.0n5 1.05 1.05 1.115 1.0-5=. 1. 05 1. 05 1>. 1 . ia Table 4 Values of h/d for 3.5-in. Concrete...Cover h BFF I 12E ,- ~F’ 1.47 1 , 4 1 4𔃾 1 . C1 1 ,- 1 ’, ’’ 1 41 1 4c_ 1 4 1 44 . 4 . 4, 1. 4; 1 . n 1 C 14. ’’, 1 1 1 ’ 1 -4 , 1 41 4 1 4 1. 4’. 1 . 4

  8. Noise of fan designed to reduce stator lift fluctuations

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.; Woodward, R. P.; Stakolich, E. G.

    1977-01-01

    An existing fan stage was redesigned to reduce stator lift fluctuations and was acoustically tested at three nozzle sizes for reduced noise generation. The lift fluctuations on the stator were reduced by increasing the stator cord, adjusting incidence angles, and adjusting the rotor velocity diagrams. Broadband noise levels were signficantly reduced in the middle to high frequencies. Blade passage tone sound power was not lessened, but decreases in the harmonics were observed. Aerodynamic improvements in both performance and efficiency were obtained.

  9. PORTLAND CEMENT CONCRETE FOR ANTARCTICA.

    DTIC Science & Technology

    formulation of recommended procedures for batching, mixing, placing, and curing of portland cement concrete in Antarctica. The pertinent features of the mix and design and related procedures are given. (Author)

  10. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  11. Behaviour of concrete beams reinforced withFRP prestressed concrete prisms

    NASA Astrophysics Data System (ADS)

    Svecova, Dagmar

    The use of fibre reinforced plastics (FRP) to reinforce concrete is gaining acceptance. However, due to the relatively low modulus of FRP, in comparison to steel, such structures may, if sufficient amount of reinforcement is not used, suffer from large deformations and wide cracks. FRP is generally more suited for prestressing. Since it is not feasible to prestress all concrete structures to eliminate the large deflections of FRP reinforced concrete flexural members, researchers are focusing on other strategies. A simple method for avoiding excessive deflections is to provide sufficiently high amount of FRP reinforcement to limit its stress (strain) to acceptable levels under service loads. This approach will not be able to take advantage of the high strength of FRP and will be generally uneconomical. The current investigation focuses on the feasibility of an alternative strategy. This thesis deals with the flexural and shear behaviour of concrete beams reinforced with FRP prestressed concrete prisms. FRP prestressed concrete prisms (PCP) are new reinforcing bars, made by pretensioning FRP and embedding it in high strength grout/concrete. The purpose of the research is to investigate the feasibility of using such pretensioned rebars, and their effect on the flexural and shear behaviour of reinforced concrete beams over the entire loading range. Due to the prestress in the prisms, deflection of concrete beams reinforced with this product is substantially reduced, and is comparable to similarly steel reinforced beams. The thesis comprises both theoretical and experimental investigations. In the experimental part, nine beams reinforced with FRP prestressed concrete prisms, and two companion beams, one steel and one FRP reinforced were tested. All the beams were designed to carry the same ultimate moment. Excellent flexural and shear behaviour of beams reinforced with higher prestressed prisms is reported. When comparing deflections of three beams designed to have the

  12. QCGAT aircraft/engine design for reduced noise and emissions

    NASA Technical Reports Server (NTRS)

    Lanson, L.; Terrill, K. M.

    1980-01-01

    The high bypass ratio QCGAT engine played an important role in shaping the aircraft design. The aircraft which evolved is a sleek, advanced design, six-place aircraft with 3538 kg (7,800 lb) maximum gross weight. It offers a 2778 kilometer (1500 nautical mile) range with cruise speed of 0.5 Mach number and will take-off and land on the vast majority of general aviation airfields. Advanced features include broad application of composite materials and a supercritical wing design with winglets. Full-span fowler flaps were introduced to improve landing capability. Engines are fuselage-mounted with inlets over the wing to provide shielding of fan noise by the wing surfaces. The design objectives, noise, and emission considerations, engine cycle and engine description are discussed as well as specific design features.

  13. ADVANCED DEHYDRATOR DESIGN SAVES GAS AND REDUCES HAP EMISSIONS

    EPA Science Inventory

    Glycol dehydrators remove water from gas pipe lines. An advanced dehydrator by Engineered Concepts, Farmington, NM, saves a significant amount of gas, while reducing hazardous air pollutants, volatile organic compounds and CO2 air pollutants

  14. Reducing Birefringence Uncertainty in the Design of ATST Polarization Components

    NASA Astrophysics Data System (ADS)

    Sueoka, S. R.

    2014-10-01

    Scientific requirements for the Advanced Technology Solar Telescope push the limits of polarimetric calibration and modulation components. The super achromatic retarder and poly chromatic modulator designs comprise of a stack of wave plates with fast axes at different orientations. In order to design these elements over a broad wavelength range it is imperative to know the fundamental properties of the materials. Crystalline quartz, sapphire, and MgF2 have been selected as candidate materials due to their hardness, transmission, and unique birefringence properties. Previously published dispersion models for these crystals do not agree in areas of the design wavelength range. We performed a series of measurements to determine the birefringence from 0.38 μm to 5.0 μm in order to improve our design capabilities.

  15. Handbook of human engineering design data for reduced gravity conditions

    NASA Technical Reports Server (NTRS)

    Marton, T.; Rudek, F. P.; Miller, R. A.; Norman, D. G.

    1971-01-01

    A Handbook is presented for the use of engineers, designers, and human factors specialists during the developmental and detailed design phases of manned spacecraft programs. Detailed and diverse quantified data on man's capabilities and tolerances for survival and productive effort in the extraterrestrial environment are provided. Quantified data and information on the space environment as well as the characteristics of the vehicular or residential environment required to support man in outer space are also given.

  16. Design and evaluation of combustors for reducing aircraft engine pollution

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Grobman, J.

    1973-01-01

    Efforts in reducing exhaust emissions from turbine engines are reported. Various techniques employed and the results of testing are briefly described and referenced for detail. The experimental approaches taken to reduce oxides of nitrogen emissions include the use of: (1) multizone combustors incorporating reduced dwell times, (2) fuel-air premixing, (3) air atomization, (4) fuel prevaporization, and (5) gaseous fuel. Since emissions of unburned hydrocarbons and carbon monoxide are caused by poor combustion efficiency at engine idle, the studies of fuel staging in multizone combustors and air assist fuel nozzles have indicated that large reductions in these emissions can be achieved. Also, the effect of inlet-air humidity on oxides of nitrogen was studied as well as the very effective technique of direct water injection. The emission characteristics of natural gas and propane fuels were measured and compared with those of ASTM-Al kerosene fuel.

  17. Approaches for the design of reduced toxicant emission cigarettes.

    PubMed

    Dittrich, David J; Fieblekorn, Richard T; Bevan, Michael J; Rushforth, David; Murphy, James J; Ashley, Madeleine; McAdam, Kevin G; Liu, Chuan; Proctor, Christopher J

    2014-01-01

    Cigarette smoking causes serious diseases through frequent and prolonged exposure to toxicants. Technologies are being developed to reduce smokers' toxicant exposure, including filter adsorbents, tobacco treatments and substitutes. This study examined the effect of modifications to filter ventilation, variations in cigarette circumference and active charcoal filter length and loading, as well as combinations of these features in a reduced-toxicant prototype (RTP) cigarette, on the yields of toxicants in cigarette smoke. An air-dilution mechanism, called split-tipping, was developed in which a band of porous paper in the centre of the filter tipping functions to minimise the loss of effective filter ventilation that occurs at the high flow rates encountered during human-smoking, and to facilitate the diffusional loss of volatile toxicants. As compared with conventional filter ventilation cigarettes, split-tipping reduced tar and volatile smoke constituent emissions under high flow rate machine-smoking conditions, most notably for products with a 1-mg ISO tar yield. Furthermore, mouth level exposure (MLE) to tar and nicotine was reduced among smokers of 1-mg ISO tar cigarettes in comparison to smokers of cigarettes with traditional filter ventilation. For higher ISO tar level cigarettes, however, there were no significant reductions in MLE. Smaller cigarette circumferences reduced sidestream toxicant yields and modified the balance of mainstream smoke chemistry with reduced levels of aromatic amines and benzo[a]pyrene but increased yields of formaldehyde. Smaller circumference cigarettes also had lower mainstream yields of volatile toxicants. Longer cigarette filters containing increased levels of high-activity carbon (HAC) showed reduced machine-smoking yields of volatile toxicants: with up to 97% removal for some volatile toxicants at higher HAC loadings. Split-tipping was combined with optimal filter length and cigarette circumference in an RTP cigarette that gave

  18. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  19. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  20. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  1. Examination of Behavior of Fresh Concrete Under Pressure

    NASA Astrophysics Data System (ADS)

    Yücel, K. T.

    2012-05-01

    Transporting fresh concrete constitutes a significant part of the production process. Transferring ready-mixed concrete on-site is done using concrete pumps. Recent developments in concrete technology, and in mineral and chemical additives, have resulted in new developments in pumping techniques and the use of different concrete mixtures and equipment. These developments required further knowledge of the behavior of fresh concrete under pressure. Two criteria were determined for the pumpability of concrete: the power required to move the concrete or of the repulsive force; and the cohesion of the fresh concrete. It would be insufficient to relate pumpability to these two criteria; the values of segregation pressure, diffusion ability, water retention capacity, and side friction of the mixture are significant parameters in ensuring that concrete is pumped freely along the pipe. To solve the pumpability problem, friction stresses should be determined as a function of the linear pressure gradient, the pressure leading to segregation of the fresh concrete should be determined, and tests for the bleeding of concrete under pressure should be examined. The scope of the research is the examination of the behavior of fresh concrete under pressure. To determine the segregation pressures, a test apparatus was designed for the bleeding of concrete under pressure. The main purpose of the study is to determine whether the concrete can be pumped easily and whether it will lose its cohesion during the pumping, based on tests of concrete workability and bleeding of concrete under pressure.

  2. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  3. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  4. Ethical considerations for a better collaboration between architects and structural engineers: design of buildings with reinforced concrete frame systems in earthquake zones.

    PubMed

    Hurol, Yonca

    2014-06-01

    Architects design building structures, although structural design is the profession of structural engineers. Thus, it is better for architects and structural engineers to collaborate starting from the initial phases of the architectural design. However, this is not very common because of the contradictory design processes and value systems held within the two professions. This article provides a platform upon which architects and structural engineers can resolve the value conflicts between them by analysing phases of the structural design of reinforced concrete frame systems in architecture, the criteria of the structural design for each phase and determining the conflicting values for each criterion. The results shown in the article demonstrate that the architectural design of structures is a complex process, which is based on contradictory values and value systems. Finally, the article suggests to architects and structural engineers to use Value Sensitive Design and to choose an appropriate team leader in order to resolve the unethical conflict between them and to avoid any unreasonable decision making.

  5. Design and chemical evaluation of reduced machine-yield cigarettes.

    PubMed

    McAdam, K G; Gregg, E O; Bevan, M; Dittrich, D J; Hemsley, S; Liu, C; Proctor, C J

    2012-02-01

    Experimental cigarettes (ECs) were made by combining technological applications that individually reduce the machine measured yields of specific toxicants or groups of toxicants in mainstream smoke (MS). Two tobacco blends, featuring a tobacco substitute sheet or a tobacco blend treatment, were combined with filters containing an amine functionalised resin (CR20L) and/or a polymer-derived, high activity carbon adsorbent to generate three ECs with the potential for generating lower smoke toxicant yields than conventional cigarettes. MS yields of smoke constituents were determined under 4 different smoking machine conditions. Health Canada Intense (HCI) machine smoking conditions gave the highest MS yields for nicotine-free dry particulate matter and for most smoke constituents measured. Toxicant yields from the ECs were compared with those from two commercial comparator cigarettes, three scientific control cigarettes measured contemporaneously and with published data on 120 commercial cigarettes. The ECs were found to generate some of the lowest machine yields of toxicants from cigarettes for which published HCI smoke chemistry data are available; these comparisons therefore confirm that ECs with reduced MS machine toxicant yields compared to commercial cigarettes can be produced. The results encourage further work examining human exposure to toxicants from these cigarettes, including human biomarker studies.

  6. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 2, ventilated concrete slab

    SciTech Connect

    Chen, Yuxiang; Galal, Khaled; Athienitis, A.K.

    2010-11-15

    This paper is the second of two papers that describe the modeling and design of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) adopted in a prefabricated, two-storey detached, low energy solar house and their performance assessment based on monitored data. The VCS concept is based on an integrated thermal-structural design with active storage of solar thermal energy while serving as a structural component - the basement floor slab ({proportional_to}33 m{sup 2}). This paper describes the numerical modeling, design, and thermal performance assessment of the VCS. The thermal performance of the VCS during the commissioning of the unoccupied house is presented. Analysis of the monitored data shows that the VCS can store 9-12 kWh of heat from the total thermal energy collected by the BIPV/T system, on a typical clear sunny day with an outdoor temperature of about 0 C. It can also accumulate thermal energy during a series of clear sunny days without overheating the slab surface or the living space. This research shows that coupling the VCS with the BIPV/T system is a viable method to enhance the utilization of collected solar thermal energy. A method is presented for creating a simplified three-dimensional, control volume finite difference, explicit thermal model of the VCS. The model is created and validated using monitored data. The modeling method is suitable for detailed parametric study of the thermal behavior of the VCS without excessive computational effort. (author)

  7. Cryomdoule Test Stand Reduced-Magnetic Support Design at Fermilab

    SciTech Connect

    McGee, Mike; Chandrasekaran, Saravan Kumar; Crawford, Anthony; Harms, Elvin; Leibfritz, Jerry; Wu, Genfa

    2016-06-01

    In a partnership with SLAC National Accelerator Laboratory (SLAC) and Jefferson Lab, Fermilab will assemble and test 17 of the 35 total 1.3 GHz cryomodules for the Linac Coherent Light Source II (LCLS-II) Project. These devices will be tested at Fermilab's Cryomodule Test Facility (CMTF) within the Cryomodule Test Stand (CMTS-1) cave. The problem of magnetic pollution became one of major issues during design stage of the LCLS-II cryomodule as the average quality factor of the accelerating cavities is specified to be 2.7 x 10¹⁰. One of the possible ways to mitigate the effect of stray magnetic fields and to keep it below the goal of 5 mGauss involves the application of low permeable materials. Initial permeability and magnetic measurement studies regarding the use of 316L stainless steel material indicated that cold work (machining) and heat affected zones from welding would be acceptable.

  8. Seismic behavior of lightweight concrete columns

    NASA Astrophysics Data System (ADS)

    Rabbat, B. G.; Daniel, J. I.; Weinmann, T. L.; Hanson, N. W.

    1982-09-01

    Sixteen full-scale, column-beam assemblies, which represented a portion of a frame subjected to simulated seismic loading, were tested. Controlled test parameters included concrete type, column size, amount of main column steel, size and spacing of column confining hoops, and magnitude of column axial load. The columns were subjected to constant axial load and slow moment reversals at increasing inelastic deformations. Test data showed that properly designed lightweight concrete columns maintained ductility and strength when subjected to large inelastic deformations from load reversals. Confinement requirements for normal weight concrete columns were shown to be applicable to lightweight concrete columns up to thirty percent of the design strength.

  9. Microstructural investigations on aerated concrete

    SciTech Connect

    Narayanan, N.; Ramamurthy, K.

    2000-03-01

    Aerated concrete is characterized by the presence of large voids deliberately included in its matrix to reduce the density. This study reports the investigations conducted on the structure of cement-based autoclaved aerated concrete (AAC) and non-AAC with sand or fly ash as the filler. The reasons for changes in compressive strength and drying shrinkage are explained with reference to the changes in the microstructure. Compositional analysis was carried out using XRD. It was observed that fly ash responds poorly to autoclaving. The process of pore refinement in fly ash mixes is discussed with reference to the formation of Hadley grains as well as fly ash hydration. The paste-void interface in aerated concrete investigated in relation to the paste-aggregate interface in normal concrete revealed the existence of an interfacial transition zone.

  10. Clogging in permeable concrete: A review.

    PubMed

    Kia, Alalea; Wong, Hong S; Cheeseman, Christopher R

    2017-05-15

    Permeable concrete (or "pervious concrete" in North America) is used to reduce local flooding in urban areas and is an important sustainable urban drainage system. However, permeable concrete exhibits reduction in permeability due to clogging by particulates, which severely limits service life. This paper reviews the clogging mechanism and current mitigating strategies in order to inform future research needs. The pore structure of permeable concrete and characteristics of flowing particulates influence clogging, which occurs when particles build-up and block connected porosity. Permeable concrete requires regular maintenance by vacuum sweeping and pressure washing, but the effectiveness and viability of these methods is questionable. The potential for clogging is related to the tortuosity of the connected porosity, with greater tortuosity resulting in increased potential for clogging. Research is required to develop permeable concrete that can be poured on-site, which produces a pore structure with significantly reduced tortuosity.

  11. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  12. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  13. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  14. 7 CFR 3201.87 - Wood and concrete stains.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete stains. 3201.87 Section 3201.87... Designated Items § 3201.87 Wood and concrete stains. (a) Definition. Products that are designed to be applied as a finish for concrete and wood surfaces and that contain dyes or pigments to change the...

  15. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  16. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  17. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  18. Testing of plain and fibrous concrete single cavity prestressed concrete reactor vessel models

    SciTech Connect

    Oland, C.B.

    1985-01-01

    Two single-cavity prestressed concrete reactor vessel (PCRV) models were fabricated and tested to failure to demonstrate the structural response and ultimate pressure capacity of models cast from high-strength concretes. Concretes with design compressive strengths in excess of 70 MPa (10,000 psi) were developed for this investigation. One model was cast from plain concrete and failed in shear at the head region. The second model was cast from fiber reinforced concrete and failed by rupturing the circumferential prestressing at the sidewall of the structure. The tests also demonstrated the capabilities of the liner system to maintain a leak-tight pressure boundary. 3 refs., 4 figs.

  19. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  20. Design and fabrication of polymer-concrete-lined pipe for testing in geothermal-energy processes. Final report

    SciTech Connect

    Kaeding, A.O.

    1981-12-01

    A specific polymer-concrete formulation was applied as a steel pipe liner in response to a need for durable, economical materials for use in contact with high temperature geothermal brine. Processes are described for centrifugally applying the liner to straight pipe, for casting the liner in pipe fittings, and for closure of field joints. Physical properties of the liner materials were measured. Compressive strengths of up to 165.8 MPa (24,045 psi) and splitting tensile strengths of 23.5 MPa (3408 psi) were measured at ambient temperature. Compressive strengths of 24 MPa (3490 psi) and splitting tensile strengths of 2.5 MPa (366 psi) were measured at about 150/sup 0/C (302/sup 0/F). A full-scale production plant is described which would be capable of producing about 950 m (3120 ft) of lined 305-mm-diam (12 in.) pipe per day. Capital cost of the plant is estimated to be about $8.6 million with a calculated return on investment of 15.4%. Cost of piping a geothermal plant with PC and PC-lined steel pipe is calculated to be $1.21 million, which compares favorably with a similar plant piped with alloy steel piping at a cost of $1.33 million. Life-cycle cost analysis indicates that the cost of PC-lined steel pipe would be 82% of that of carbon steel pipe over a 20-year plant operating life.

  1. Properties of low-strength concrete for Meeks Cabin Dam modification project, Wyoming

    SciTech Connect

    Dolen, T.P.; Benavidez, A.A.

    1998-10-01

    Low-strength, plastic concrete mixtures were proportioned to construct a cut-off wall through permeable features in the foundation of Meeks Cabin Dam, Wyoming. Low strength concrete was required to match the deformation properties of the concrete with the embankment materials in the dam. The mixtures were proportioned with zero (control mixture), 10, 15, and 20% bentonite by mass of cement plus bentonite. The bentonite reduces compressive strength and elastic properties when compared to conventional concrete. Mixtures were proportioned to meet the desired fresh and hardened concrete properties. All mixtures met the 8 in. (200 mm) slump required for tremie placing. The design compressive strength is 200 lb/in.{sup 2} (1,380 kPa) at 7 days and 400 lb/in.{sup 2} (2,760 kPa) at 28 days. The 15% bentonite mixture met the strength requirements and was chosen for more detailed testing. Additional tests evaluated the triaxial shear strength, flow-pump permeability, and erodibility of the low-strength, hardened concrete, and determined the effect of adding a retarding mixture on setting time and slump loss of fresh concrete.

  2. Curvature ductility of reinforced and prestressed concrete columns

    SciTech Connect

    Suprenant, B.A.

    1984-01-01

    Engineers are concerned with the survival of reinforced and prestressed concrete columns during earthquakes. The prediction of column survival can be deduced from moment-curvature curves of the column section. An analytical approach is incorporated into a computer model. The computer program is based on assumed stress-strain relations for confined and unconfined concrete, nonprestressed and prestressing steel. The results of studies on reinforced and prestressed concrete columns indicate that reinforced concrete columns may be designed to resist earthquakes, while prestressed concrete columns may not. The initial reduction in moment capacity, after concrete cover spalling, of a prestressed concrete column could be as much as 50%. Analyses indicate that the bond between concrete and prestressing strand after concrete cover spalling is not critical.

  3. A Study on the Cover Failure in Concrete Structure Following Concrete Deterioration

    SciTech Connect

    Choo, Y.H.; Lee, Y.H.; Lee, C.M.; Lee, K.J.

    2008-07-01

    The RC (Reinforced Concrete) structures in the spent fuel dry storage is required structural integrity for a long period of the service life time. A study on the concrete cracking behavior by stress on concrete is necessary for life time estimation of structures because concrete cracking can reduce the radiation shielding performance and deteriorate the durability of spent fuel dry storage. The purpose of this study is to analyze the relationship between the range of the steel expansion and the crack creation and propagation using the ABAQUS tool. Parameters used in this study were concrete strength, concrete cover depth and the steel diameter. The value of steel radius to volume expansion was applied to suppose the expansion of reinforcing bar under the load condition. As a result of this case study, it is confirmed that the critical steel expansion which can initiate cracking is proportional to tensile strength. And primary factors which effect crack creation of concrete cover are in order of concrete strength, cover thickness and steel diameter. If concrete strength is lowered about its 30%, the rate of surface crack occurrence accelerates 15 times maximally. The critical expansion value of steel increased as the increment of concrete cover depth. The surface cracking of concrete cover was created at the value of steel expansion, ranging from 0.019 to 0.051 mm under the cover depth 50 mm. (authors)

  4. Strength of masonry blocks made with recycled concrete aggregates

    NASA Astrophysics Data System (ADS)

    Matar, Pierre; Dalati, Rouba El

    The idea of recycling concrete of demolished buildings aims at preserving the environment. Indeed, the reuse of concrete as aggregate in new concrete mixes helped to reduce the expenses related to construction and demolition (C&D) waste management and, especially, to protect the environment by reducing the development rate of new quarries. This paper presents the results of an experimental study conducted on masonry blocks containing aggregates resulting from concrete recycling. The purpose of this study is to investigate the effect of recycled aggregates on compressive strength of concrete blocks. Tests were performed on series of concrete blocks: five series each made of different proportions of recycled aggregates, and one series of reference blocks exclusively composed of natural aggregates. Tests showed that using recycled aggregates with addition of cement allows the production of concrete blocks with compressive strengths comparable to those obtained on concrete blocks made exclusively of natural aggregates.

  5. Reducing Design Risk Using Robust Design Methods: A Dual Response Surface Approach

    NASA Technical Reports Server (NTRS)

    Unal, Resit; Yeniay, Ozgur; Lepsch, Roger A. (Technical Monitor)

    2003-01-01

    Space transportation system conceptual design is a multidisciplinary process containing considerable element of risk. Risk here is defined as the variability in the estimated (output) performance characteristic of interest resulting from the uncertainties in the values of several disciplinary design and/or operational parameters. Uncertainties from one discipline (and/or subsystem) may propagate to another, through linking parameters and the final system output may have a significant accumulation of risk. This variability can result in significant deviations from the expected performance. Therefore, an estimate of variability (which is called design risk in this study) together with the expected performance characteristic value (e.g. mean empty weight) is necessary for multidisciplinary optimization for a robust design. Robust design in this study is defined as a solution that minimizes variability subject to a constraint on mean performance characteristics. Even though multidisciplinary design optimization has gained wide attention and applications, the treatment of uncertainties to quantify and analyze design risk has received little attention. This research effort explores the dual response surface approach to quantify variability (risk) in critical performance characteristics (such as weight) during conceptual design.

  6. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  7. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  8. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  9. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  10. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  11. 7 CFR 3201.65 - Concrete and asphalt cleaners.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt cleaners. 3201.65 Section 3201... PROCUREMENT Designated Items § 3201.65 Concrete and asphalt cleaners. (a) Definition. Chemicals used in concrete etching as well as to remove petroleum-based soils, lubricants, paints, mastics, organic...

  12. 7 CFR 3201.42 - Wood and concrete sealers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Wood and concrete sealers. 3201.42 Section 3201.42... Designated Items § 3201.42 Wood and concrete sealers. (a) Definition. (1) Products that are penetrating liquids formulated to protect wood and/or concrete, including masonry and fiber cement siding, from...

  13. Insitu electrical sensing and material health monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Rajabipour, Farshad

    While several structural health monitoring methods are available for assessing the applied loads, displacements, stresses, and strains in a concrete structure, very few techniques are available to enable condition assessment from a material durability viewpoint. Material health monitoring provides a valuable tool in assessing the current durability condition of a concrete structure (i.e., diagnosis), determining if and what preventative measures need to be taken to reduce future maintenance (i.e., prescription), and evaluating the remaining life and the future performance of the material (i.e., prognosis). The objective of this research is development of a new material sensing system that is designed to measure several properties and state parameters of concrete necessary for evaluation of the material's performance. This sensing system is composed of three electrical conductivity-based sensors and a temperature sensor. The electrical sensors include a concrete conductivity (sigma t) sensor (that monitors setting and hardening and measures microstructural and transport properties of concrete), a pore solution conductivity (sigma o) sensor (that monitors changes in the internal chemistry of the system due to ion penetration or carbonation), and a conductivity-based relative humidity (RH) sensor (to monitor moisture transport and shrinkage of the material). The temperature (T) sensor enables determination of the rate of hydration and strength development of concrete while it provides information needed for temperature calibration of the electrical sensors. It is shown that the combined measurements of the three electrical sensors and the temperature sensor provide sufficient calibration information that enables determination of the desired material properties and state parameters of concrete. This document provides a comprehensive description of several phases of the process used for development of the three conductivity-based sensors. To develop the prototype of

  14. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  15. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house: Part 1, BIPV/T system and house energy concept

    SciTech Connect

    Chen, Yuxiang; Athienitis, A.K.; Galal, Khaled

    2010-11-15

    This paper is the first of two papers that describe the modeling, design, and performance assessment based on monitored data of a building-integrated photovoltaic-thermal (BIPV/T) system thermally coupled with a ventilated concrete slab (VCS) in a prefabricated, two-storey detached, low energy solar house. This house, with a design goal of near net-zero annual energy consumption, was constructed in 2007 in Eastman, Quebec, Canada - a cold climate area. Several novel solar technologies are integrated into the house and with passive solar design to reach this goal. An air-based open-loop BIPV/T system produces electricity and collects heat simultaneously. Building-integrated thermal mass is utilized both in passive and active forms. Distributed thermal mass in the direct gain area and relatively large south facing triple-glazed windows (about 9% of floor area) are employed to collect and store passive solar gains. An active thermal energy storage system (TES) stores part of the collected thermal energy from the BIPV/T system, thus reducing the energy consumption of the house ground source heat pump heating system. This paper focuses on the BIPV/T system and the integrated energy concept of the house. Monitored data indicate that the BIPV/T system has a typical efficiency of about 20% for thermal energy collection, and the annual space heating energy consumption of the house is about 5% of the national average. A thermal model of the BIPV/T system suitable for preliminary design and control of the airflow is developed and verified with monitored data. (author)

  16. Serious Games for Higher Education: A Framework for Reducing Design Complexity

    ERIC Educational Resources Information Center

    Westera, W.; Nadolski, R. J.; Hummel, H. G. K.; Wopereis, I. G. J. H.

    2008-01-01

    Serious games open up many new opportunities for complex skills learning in higher education. The inherent complexity of such games, though, requires large efforts for their development. This paper presents a framework for serious game design, which aims to reduce the design complexity at conceptual, technical and practical levels. The approach…

  17. Unreliable numbers: error and harm induced by bad design can be reduced by better design

    PubMed Central

    Thimbleby, Harold; Oladimeji, Patrick; Cairns, Paul

    2015-01-01

    Number entry is a ubiquitous activity and is often performed in safety- and mission-critical procedures, such as healthcare, science, finance, aviation and in many other areas. We show that Monte Carlo methods can quickly and easily compare the reliability of different number entry systems. A surprising finding is that many common, widely used systems are defective, and induce unnecessary human error. We show that Monte Carlo methods enable designers to explore the implications of normal and unexpected operator behaviour, and to design systems to be more resilient to use error. We demonstrate novel designs with improved resilience, implying that the common problems identified and the errors they induce are avoidable. PMID:26354830

  18. Adjoint design sensitivity analysis of reduced atomic systems using generalized Langevin equation for lattice structures

    SciTech Connect

    Kim, Min-Geun; Jang, Hong-Lae; Cho, Seonho

    2013-05-01

    An efficient adjoint design sensitivity analysis method is developed for reduced atomic systems. A reduced atomic system and the adjoint system are constructed in a locally confined region, utilizing generalized Langevin equation (GLE) for periodic lattice structures. Due to the translational symmetry of lattice structures, the size of time history kernel function that accounts for the boundary effects of the reduced atomic systems could be reduced to a single atom’s degrees of freedom. For the problems of highly nonlinear design variables, the finite difference method is impractical for its inefficiency and inaccuracy. However, the adjoint method is very efficient regardless of the number of design variables since one additional time integration is required for the adjoint GLE. Through numerical examples, the derived adjoint sensitivity turns out to be accurate and efficient through the comparison with finite difference sensitivity.

  19. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  20. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  1. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  2. Properties of Sulfur Concrete.

    DTIC Science & Technology

    1979-07-06

    This report summarizes the state of the art of sulfur concrete . Sulfur concrete is created by mixing molten sulfur with aggregate and allowing the...and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable properties. It has poor durability

  3. Application of concrete in marine structures

    SciTech Connect

    Rashid, A.; Nygaard, C.

    1997-07-01

    The use of concrete in marine environment has gained tremendous popularity in the past decade and is continued to be a very popular material for marine industry in the world today. It has a very diversified use from large offshore platforms and floating structures in the North Sea, Canada and South America to offshore loading terminals and junction platforms in shallow waters in the marshes of southern Louisiana in the Gulf of Mexico. Also, precast concrete sections are extensively used all over the world in the construction of marine structures. Because of their large variety of shapes and sizes, they can be tailored to fit multiple applications in marine environment. The added quality control in the fabrication yard and the ease of installation by lifting makes them a very attractive option. The use of precast concrete sections is gaining a lot of popularity in South America. A lot of fabrication yards are manufacturing these sections locally. There are hundreds of offshore concrete platforms utilizing these sections in Lake Maracaibo, Venezuela. The paper discusses the use of concrete for offshore structures including floaters. It describes some general concepts and advantages to be gained by the use of concrete (precast and cast-in-place) in marine environment. It also discusses some general design considerations required for the use of different types of precast concrete sections that can be utilized for oil and gas platforms and loading terminals. Lastly the paper describes some typical examples of concrete platforms built out of concrete piles, precast concrete girders and beam sections and concrete decking.

  4. Design of experiments with multiple independent variables: a resource management perspective on complete and reduced factorial designs.

    PubMed

    Collins, Linda M; Dziak, John J; Li, Runze

    2009-09-01

    An investigator who plans to conduct an experiment with multiple independent variables must decide whether to use a complete or reduced factorial design. This article advocates a resource management perspective on making this decision, in which the investigator seeks a strategic balance between service to scientific objectives and economy. Considerations in making design decisions include whether research questions are framed as main effects or simple effects; whether and which effects are aliased (confounded) in a particular design; the number of experimental conditions that must be implemented in a particular design and the number of experimental subjects the design requires to maintain the desired level of statistical power; and the costs associated with implementing experimental conditions and obtaining experimental subjects. In this article 4 design options are compared: complete factorial, individual experiments, single factor, and fractional factorial. Complete and fractional factorial designs and single-factor designs are generally more economical than conducting individual experiments on each factor. Although relatively unfamiliar to behavioral scientists, fractional factorial designs merit serious consideration because of their economy and versatility.

  5. Proportioning and performance evaluation of self-consolidating concrete

    NASA Astrophysics Data System (ADS)

    Wang, Xuhao

    A well-proportioned self-consolidating concrete (SCC) mixture can be achieved by controlling the aggregate system, paste quality, and paste quantity. The work presented in this dissertation involves an effort to study and improve particle packing of the concrete system and reduce the paste quantity while maintaining concrete quality and performance. This dissertation is composed of four papers resulting from the study: (1) Assessing Particle Packing Based Self-Consolidating Concrete Mix Design; (2) Using Paste-To-Voids Volume Ratio to Evaluate the Performance of Self-Consolidating Concrete Mixtures; (3) Image Analysis Applications on Assessing Static Stability and Flowability of Self-Consolidating Concrete, and (4) Using Ultrasonic Wave Propagation to Monitor Stiffening Process of Self-Consolidating Concrete. Tests were conducted on a large matrix of SCC mixtures that were designed for cast-in-place bridge construction. The mixtures were made with different aggregate types, sizes, and different cementitious materials. In Paper 1, a modified particle-packing based mix design method, originally proposed by Brouwers (2005), was applied to the design of self-consolidating concrete (SCC) mixs. Using this method, a large matrix of SCC mixes was designed to have a particle distribution modulus (q) ranging from 0.23 to 0.29. Fresh properties (such as flowability, passing ability, segregation resistance, yield stress, viscosity, set time and formwork pressure) and hardened properties (such as compressive strength, surface resistance, shrinkage, and air structure) of these concrete mixes were experimentally evaluated. In Paper 2, a concept that is based on paste-to-voids volume ratio (Vpaste/Vvoids) was employed to assess the performance of SCC mixtures. The relationship between excess paste theory and Vpaste/Vvoids was investigated. The workability, flow properties, compressive strength, shrinkage, and surface resistivity of SCC mixtures were determined at various ages

  6. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    NASA Astrophysics Data System (ADS)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  7. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  8. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  9. Pentek concrete scabbling system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE{reg_sign}, SQUIRREL{reg_sign}-I, and SQUIRREL{reg_sign}-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  10. Relating Fresh Concrete Viscosity Measurements from Different Rheometers

    PubMed Central

    Ferraris, Chiara F.; Martys, Nicos S.

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis. PMID:27413607

  11. Wind Turbine Control Design to Reduce Capital Costs: 7 January 2009 - 31 August 2009

    SciTech Connect

    Darrow, P. J.

    2010-01-01

    This report first discusses and identifies which wind turbine components can benefit from advanced control algorithms and also presents results from a preliminary loads case analysis using a baseline controller. Next, it describes the design, implementation, and simulation-based testing of an advanced controller to reduce loads on those components. The case-by-case loads analysis and advanced controller design will help guide future control research.

  12. Development of a crumb rubber modified (CRM) asphalt concrete mix design. Final report, June 1993-May 1995

    SciTech Connect

    Hossain, M.; Swartz, S.E.; Hoque, M.E.; Funk, L.P.

    1995-05-01

    The objective of this project was to develop an asphalt mix design method incorporating crumb rubber and using the `Wet` or `Dry` method of producing Crumb Rubber Modified Asphalt (CRM). Several resurfacing projects have been constructed using both the `Wet` and `Dry` methods. Based on this study, KDOT could use CRM mixes with a binder content between 7.5% and 9.0% depending on the percent air voids, with 19% to 22% rubber content. In this study, it was observed that using 24% rubber produced mixed were too sticky to manage. With a rubber content of less than 18% combined with AC-5 it was difficult to satisfy the minimum requirements. Fracture tests can be used as a basis to determine the optimum binder content for any asphalt-rubber mix.

  13. Pavement management and rehabilitation of portland cement concrete pavements

    NASA Astrophysics Data System (ADS)

    Zegeer, C. V.; Agent, K. R.; Rizenbergs, R. L.; Curtayne, P. C.; Scullion, T.; Pedigo, R. D.; Hudson, W. R.; Roberts, F. L.; Karan, M. A.; Haas, R.

    Pavement management and rehabilitation projects and techniques are discussed. The following topics are discussed: economic analyses and dynamic programming in resurfacing project selection; implementation of an urban pavement management system; pavement performance modeling for pavement management; illustration of pavement management: from data inventory to priority analysis; rehabilitation of concrete pavements by using portland cement concrete overlays; pavement management study: Illinois tollway pavement overlays; resurfacing of plain jointed-concrete pavements; design procedure for premium composite pavement; model study of anchored pavement; prestressed concrete overlay at O'Hare International Airport: in-service evaluation; and, bonded portland cement concrete resurfacing.

  14. Application of Reduced Order Transonic Aerodynamic Influence Coefficient Matrix for Design Optimization

    NASA Technical Reports Server (NTRS)

    Pak, Chan-gi; Li, Wesley W.

    2009-01-01

    Supporting the Aeronautics Research Mission Directorate guidelines, the National Aeronautics and Space Administration [NASA] Dryden Flight Research Center is developing a multidisciplinary design, analysis, and optimization [MDAO] tool. This tool will leverage existing tools and practices, and allow the easy integration and adoption of new state-of-the-art software. Today s modern aircraft designs in transonic speed are a challenging task due to the computation time required for the unsteady aeroelastic analysis using a Computational Fluid Dynamics [CFD] code. Design approaches in this speed regime are mainly based on the manual trial and error. Because of the time required for unsteady CFD computations in time-domain, this will considerably slow down the whole design process. These analyses are usually performed repeatedly to optimize the final design. As a result, there is considerable motivation to be able to perform aeroelastic calculations more quickly and inexpensively. This paper will describe the development of unsteady transonic aeroelastic design methodology for design optimization using reduced modeling method and unsteady aerodynamic approximation. The method requires the unsteady transonic aerodynamics be represented in the frequency or Laplace domain. Dynamically linear assumption is used for creating Aerodynamic Influence Coefficient [AIC] matrices in transonic speed regime. Unsteady CFD computations are needed for the important columns of an AIC matrix which corresponded to the primary modes for the flutter. Order reduction techniques, such as Guyan reduction and improved reduction system, are used to reduce the size of problem transonic flutter can be found by the classic methods, such as Rational function approximation, p-k, p, root-locus etc. Such a methodology could be incorporated into MDAO tool for design optimization at a reasonable computational cost. The proposed technique is verified using the Aerostructures Test Wing 2 actually designed

  15. Interior design for ambulatory care facilities: how to reduce stress and anxiety in patients and families.

    PubMed

    Frasca-Beaulieu, K

    1999-01-01

    The following article illustrates some important factors to consider when designing ambulatory care facilities (ACFs), and focuses on how wayfinding, noise control, privacy, security, color and lighting, general ambience, textures, and nature can have a profound influence on patient and family stress, consumer satisfaction, health and well-being. Other important design issues: convenience and accessibility, accommodation to various populations, consumer and family focus, patient education, image, as well as current equipment needs and future growth are examined in light of the prevailing trends in health care delivery. In sum, this feature explores the important stress-reducing and health-promoting elements involved in successful ACF design.

  16. Recycling of portland cement concrete pavement, Johnson County. Final report, 1986-1995

    SciTech Connect

    Wojakowski, J.B.; Fager, G.A.; Catron, M.A.

    1995-08-01

    In recent years there has been increasing interest in recycling construction materials. Surface courses of bituminous pavements are currently being actively recycled all over Kansas. The recycling of portland cement concrete pavements (PCCP) can help alleviate any material disposal problems during construction, especially in urban areas and reduce the consumption or importation of virgin aggregate into aggregate poor areas. Two test sections using the coarser fraction from the original crushed portland cement concrete pavement were placed on K-7 in 1985. One section incorporated a recycled base and standard PCCP construction, another section was designed as a recycled base and recycled PCCP. Two other sections were control sections constructed with regular aggregate.

  17. Prestressed concrete using KEVLAR reinforced tendons

    SciTech Connect

    Dolan, C.W.

    1989-01-01

    KEVLAR is a high strength, high modulus synthetic fiber manufactured by the E.I. DuPont de Nemours Company. The fiber is resistant to chloride and alkali attack. The resistance is enhanced when the fibers are assembled into a resin matrix and fabricated as rods. These properties suggest that KEVLAR reinforced rods may be a substitute for high strength steel prestress tendons in certain applications such as bridge decks and parking structures. This dissertation presents the background, theoretical development, and experimental investigations of KEVLAR reinforced rod strength, anchorage, fabrication and performance in prestressed concrete structures. The study concludes that KEVLAR has significant potential for these prestressed concrete applications. However, the reliability of the long term anchorage of the KEVLAR reinforced rods must be improved before production applications are undertaken. KEVLAR has a low shear strength compared to its tensile capacity. The anchorage of KEVLAR reinforced rods is sensitive to the shear forces generated in the anchorage assembly. Finite element analyses, using interface elements to simulate the addition of a mold release agent in a conic anchor, predict the behavior of resin socketed anchors. Test results confirm that mold release agents reduce the anchor shear stresses and suggest that moderate strength resins may be used in the anchor. KEVLAR is nearly linearly elastic to failure, yet ductility of a structure is an important design concern. Prestressed concrete beam tests using both bonded and unbonded tendons demonstrated that ductile structural behavior is obtained. Methods of predicting the strength and deflection behavior of the prestressed beams are presented and the theoretical predictions are compared to the experimental results. The overall correlation between predicted and theoretical results is satisfactory.

  18. DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS USING THE BEST MODEL

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with a public domain computer software package, PHREEQCI. BEST is intended to be used in the design process of sulfate-reducing bacteria (SRB)field bioreactors to pas...

  19. DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL

    EPA Science Inventory

    DESIGNING SULFATE-REDUCING BACTERIA FIELD-BIOREACTORS USING THE BEST MODEL

    Marek H. Zaluski1,3, Brian T. Park1, Diana R. Bless2

    1 MSE Technology Applications; 200 Technology Way, Butte, Montana 59701, USA
    2 U.S. EPA, Office of Research and Development, Cincinna...

  20. Optimizing Railroad Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk

    ERIC Educational Resources Information Center

    Saat, Mohd Rapik

    2009-01-01

    The design of railroad tank cars is subject to structural and performance requirements and constrained by weight. They can be made safer by increasing tank thickness and adding various protective features, but these increase the weight and cost of the car and reduce its capacity and consequent transportation efficiency. Aircraft, automobiles and…

  1. COMPUTER SIMULATOR (BEST) FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is a spreadsheet-based model that is used in conjunction with public domain software, PhreeqcI. BEST is used in the design process of sulfate-reducing bacteria (SRB) field bioreactors to passively treat acid mine drainage (A...

  2. Efficient critical design load case identification for floating offshore wind turbines with a reduced nonlinear model

    NASA Astrophysics Data System (ADS)

    Matha, Denis; Sandner, Frank; Schlipf, David

    2014-12-01

    Design verification of wind turbines is performed by simulation of design load cases (DLC) defined in the IEC 61400-1 and -3 standards or equivalent guidelines. Due to the resulting large number of necessary load simulations, here a method is presented to reduce the computational effort for DLC simulations significantly by introducing a reduced nonlinear model and simplified hydro- and aerodynamics. The advantage of the formulation is that the nonlinear ODE system only contains basic mathematic operations and no iterations or internal loops which makes it very computationally efficient. Global turbine extreme and fatigue loads such as rotor thrust, tower base bending moment and mooring line tension, as well as platform motions are outputs of the model. They can be used to identify critical and less critical load situations to be then analysed with a higher fidelity tool and so speed up the design process. Results from these reduced model DLC simulations are presented and compared to higher fidelity models. Results in frequency and time domain as well as extreme and fatigue load predictions demonstrate that good agreement between the reduced and advanced model is achieved, allowing to efficiently exclude less critical DLC simulations, and to identify the most critical subset of cases for a given design. Additionally, the model is applicable for brute force optimization of floater control system parameters.

  3. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  4. Spall Repair of Wet Concrete Surfaces

    DTIC Science & Technology

    1990-01-01

    ILE COPY REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-25 SPALL REPAIR OF WET CONCRETE SURFACES by J...of the number designating technical reports of research published under the Repair, Evaluation. Maintenance. and Rehabilitation (REMR) Research ...Program identify the problem area under which the report was prepared Problem Area Problem Area CS Concrete and Steel Structures EM Electrical and

  5. An Alternative Mechanism for Accelerated Carbon Sequestration in Concrete

    SciTech Connect

    Haselbach, Liv M.; Thomle, Jonathan N.

    2014-07-01

    The increased rate of carbon dioxide sequestration (carbonation) is desired in many primary and secondary life applications of concrete in order to make the life cycle of concrete structures more carbon neutral. Most carbonation rate studies have focused on concrete exposed to air under various conditions. An alternative mechanism for accelerated carbon sequestration in concrete was investigated in this research based on the pH change of waters in contact with pervious concrete which have been submerged in carbonate laden waters. The results indicate that the concrete exposed to high levels of carbonate species in water may carbonate faster than when exposed to ambient air, and that the rate is higher with higher concentrations. Validation of increased carbon dioxide sequestration was also performed via thermogravimetric analysis (TGA). It is theorized that the proposed alternative mechanism reduces a limiting rate effect of carbon dioxide dissolution in water in the micro pores of the concrete.

  6. Reinforced Concrete Modeling

    DTIC Science & Technology

    1982-07-01

    AFWL-TR-82-9 AFWL-TR-82-9 REINFORCED CONCRETE MODELING H. L. Schreyer J. W. Jeter, Jr. New Mexico Engineering Reseprch Institute University of New...Subtitle) S. TYPE OF REPORT & PERIOD COVERED REINFORCED CONCRETE MODELING Final Report 6. PERFORMING OtG. REPORT NUMBER NMERI TA8-9 7. AUTHORg) S...loading were identified and used to evaluate current concrete models . Since the endochronic and viscoplastic models provide satisfactory descriptions

  7. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    NASA Astrophysics Data System (ADS)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  8. Monte Carlo simulations for optimization of neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    Piotrowski, Tomasz; Tefelski, Dariusz B.; Polański, Aleksander; Skubalski, Janusz

    2012-06-01

    Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

  9. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  10. Design and test of aircraft engine isolators for reduced interior noise

    NASA Technical Reports Server (NTRS)

    Unruh, J. F.; Scheidt, D. C.

    1982-01-01

    Improved engine vibration isolation was proposed to be the most weight and cost efficient retrofit structure-borne noise control measure for single engine general aviation aircraft. A study was carried out the objectives: (1) to develop an engine isolator design specification for reduced interior noise transmission, (2) select/design candidate isolators to meet a 15 dB noise reduction design goal, and (3) carry out a proof of concept evaluation test. Analytical model of the engine, vibration isolators and engine mount structure were coupled to an empirical model of the fuselage for noise transmission evaluation. The model was used to develop engine isolator dynamic properties design specification for reduced noise transmission. Candidate isolators ere chosen from available product literature and retrofit to a test aircraft. A laboratory based test procedure was then developed to simulate engine induced noise transmission in the aircraft for a proof of concept evaluation test. Three candidate isolator configurations were evaluated for reduced structure-borne noise transmission relative to the original equipment isolators.

  11. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  12. Readily implementable techniques can cut annual CO2 emissions from the production of concrete by over 20%

    NASA Astrophysics Data System (ADS)

    Miller, Sabbie A.; Horvath, Arpad; Monteiro, Paulo J. M.

    2016-07-01

    Due to its prevalence in modern infrastructure, concrete is experiencing the most rapid increase in consumption among globally common structural materials; however, the production of concrete results in approximately 8.6% of all anthropogenic CO2 emissions. Many methods have been developed to reduce the greenhouse gas emissions associated with the production of concrete. These methods range from the replacement of inefficient manufacturing equipment to alternative binders and the use of breakthrough technologies; nevertheless, many of these methods have barriers to implementation. In this research, we examine the extent to which the increased use of several currently implemented methods can reduce the greenhouse gas emissions in concrete material production without requiring new technologies, changes in production, or novel material use. This research shows that, through increased use of common supplementary cementitious materials, appropriate selection of proportions for cement replacement, and increased concrete design age, 24% of greenhouse gas emissions from global concrete production or 650 million tonnes (Mt) CO2-eq can be eliminated annually.

  13. An all-at-once reduced Hessian SQP scheme for aerodynamic design optimization

    NASA Technical Reports Server (NTRS)

    Feng, Dan; Pulliam, Thomas H.

    1995-01-01

    This paper introduces a computational scheme for solving a class of aerodynamic design problems that can be posed as nonlinear equality constrained optimizations. The scheme treats the flow and design variables as independent variables, and solves the constrained optimization problem via reduced Hessian successive quadratic programming. It updates the design and flow variables simultaneously at each iteration and allows flow variables to be infeasible before convergence. The solution of an adjoint flow equation is never needed. In addition, a range space basis is chosen so that in a certain sense the 'cross term' ignored in reduced Hessian SQP methods is minimized. Numerical results for a nozzle design using the quasi-one-dimensional Euler equations show that this scheme is computationally efficient and robust. The computational cost of a typical nozzle design is only a fraction more than that of the corresponding analysis flow calculation. Superlinear convergence is also observed, which agrees with the theoretical properties of this scheme. All optimal solutions are obtained by starting far away from the final solution.

  14. 51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE PATIO SLAB LOOKING SOUTHWEST. NOTICE MINE WORKINGS BACKGROUND LEFT. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  15. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    SciTech Connect

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  16. DOE's effort to reduce truck aerodynamic drag : joint experiments and computations lead to smart design.

    SciTech Connect

    Yaste, David M; Salari, Kambiz; Hammache, Mustapha; Browand, Fred; Pointer, W. David; Ortega, Jason M.; McCallen, Rose; Walker, Stephen M; Heineck, James T; Hassan, Basil; Roy, Christopher John; Storms, B.; Satran, D.; Ross, James; Englar, Robert; Chatalain, Philippe; Rubel, Mike; Leonard, Anthony; Hsu, Tsu-Ya; DeChant, Lawrence Justin.

    2004-06-01

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the smart design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  17. Some design philosophy for reducing the community noise of advanced counter-rotation propellers

    NASA Technical Reports Server (NTRS)

    Dittmar, J. H.

    1985-01-01

    Advanced counter-rotation propellers have been indicated as possibly generating an unacceptable amount of noise for the people living near an airport. This report has explored ways to reduce this noise level, which is treated as being caused by the interaction of the upstream propeller wakes and vortices with the downstream propeller. The noise reduction techniques fall into two categories: (1) reducing the strength of the wakes and vortices, and (2) reducing the response of the downstream blades to them. The noise from the wake interaction was indicated as being reduced by increased propeller spacing and decreased blade drag coefficient. The vortex-interaction noise could be eliminated by having the vortex pass over the tips of the downstream blade, and it could be reduced by increased spacing or decreased initial circulation. The downstream blade response could be lessened by increasing the reduced frequency parameter omega or by phasing of the response from different sections to have a mutual cancellation effect. Uneven blade to blade spacing for the downstream blading was indicated as having a possible effect on the annoyance of counter-rotation propeller noise. Although there are undoubtedly additional methods of noise reduction not covered in this report, the inclusion of the design methods discussed would potentially result in a counter-rotation propeller that is acceptably quiet.

  18. System Design Techniques for Reducing the Power Requirements of Advanced life Support Systems

    NASA Technical Reports Server (NTRS)

    Finn, Cory; Levri, Julie; Pawlowski, Chris; Crawford, Sekou; Luna, Bernadette (Technical Monitor)

    2000-01-01

    The high power requirement associated with overall operation of regenerative life support systems is a critical Z:p technological challenge. Optimization of individual processors alone will not be sufficient to produce an optimized system. System studies must be used in order to improve the overall efficiency of life support systems. Current research efforts at NASA Ames Research Center are aimed at developing approaches for reducing system power and energy usage in advanced life support systems. System energy integration and energy reuse techniques are being applied to advanced life support, in addition to advanced control methods for efficient distribution of power and thermal resources. An overview of current results of this work will be presented. The development of integrated system designs that reuse waste heat from sources such as crop lighting and solid waste processing systems will reduce overall power and cooling requirements. Using an energy integration technique known as Pinch analysis, system heat exchange designs are being developed that match hot and cold streams according to specific design principles. For various designs, the potential savings for power, heating and cooling are being identified and quantified. The use of state-of-the-art control methods for distribution of resources, such as system cooling water or electrical power, will also reduce overall power and cooling requirements. Control algorithms are being developed which dynamically adjust the use of system resources by the various subsystems and components in order to achieve an overall goal, such as smoothing of power usage and/or heat rejection profiles, while maintaining adequate reserves of food, water, oxygen, and other consumables, and preventing excessive build-up of waste materials. Reductions in the peak loading of the power and thermal systems will lead to lower overall requirements. Computer simulation models are being used to test various control system designs.

  19. A review of different behavior modification strategies designed to reduce sedentary screen behaviors in children.

    PubMed

    Steeves, Jeremy A; Thompson, Dixie L; Bassett, David R; Fitzhugh, Eugene C; Raynor, Hollie A

    2012-01-01

    Previous research suggests that reducing sedentary screen behaviors may be a strategy for preventing and treating obesity in children. This systematic review describes strategies used in interventions designed to either solely target sedentary screen behaviors or multiple health behaviors, including sedentary screen behaviors. Eighteen studies were included in this paper; eight targeting sedentary screen behaviors only, and ten targeting multiple health behaviors. All studies used behavior modification strategies for reducing sedentary screen behaviors in children (aged 1-12 years). Nine studies only used behavior modification strategies, and nine studies supplemented behavior modification strategies with an electronic device to enhance sedentary screen behaviors reductions. Many interventions (50%) significantly reduced sedentary screen behaviors; however the magnitude of the significant reductions varied greatly (-0.44 to -3.1 h/day) and may have been influenced by the primary focus of the intervention, number of behavior modification strategies used, and other tools used to limit sedentary screen behaviors.

  20. Technology Needs for Reduced Design and Manufacturing Cost of Commercial Transport Engines

    NASA Technical Reports Server (NTRS)

    Rohn, Douglas A.

    1997-01-01

    The objective of the study was to assess the needs in the design and manufacturing processes and identify areas where technology could impact in cost and cycle-time reduction. At the highest level, the team first identified the goals that were in line with long-range needs of the aeropropulsion industry, and to which technology and process improvements would be required to contribute. These goals are to reduce the time and costs in the development cycle of aircraft engines by a factor of two, reduce production cycle time by a factor of four, and to reduce production costs by 25%. Also, it was the intent of the team to identify the highest impact technologies that could be developed and demonstrated in five years.

  1. Seismic safety of high concrete dams

    NASA Astrophysics Data System (ADS)

    Chen, Houqun

    2014-08-01

    China is a country of high seismicity with many hydropower resources. Recently, a series of high arch dams have either been completed or are being constructed in seismic regions, of which most are concrete dams. The evaluation of seismic safety often becomes a critical problem in dam design. In this paper, a brief introduction to major progress in the research on seismic aspects of large concrete dams, conducted mainly at the Institute of Water Resources and Hydropower Research (IWHR) during the past 60 years, is presented. The dam site-specific ground motion input, improved response analysis, dynamic model test verification, field experiment investigations, dynamic behavior of dam concrete, and seismic monitoring and observation are described. Methods to prevent collapse of high concrete dams under maximum credible earthquakes are discussed.

  2. HIGH-COMPRESSIVE-STRENGTH CONCRETE.

    DTIC Science & Technology

    CONCRETE , COMPRESSIVE PROPERTIES), PERFORMANCE(ENGINEERING), AGING(MATERIALS), MANUFACTURING, STRUCTURES, THERMAL PROPERTIES, CREEP, DEFORMATION, REINFORCED CONCRETE , MATHEMATICAL ANALYSIS, STRESSES, MIXTURES, TENSILE PROPERTIES

  3. Hubble Space Telescope Reduced-Gyro Control Law Design, Implementation, and On-Orbit Performance

    NASA Technical Reports Server (NTRS)

    Clapp, Brian R.; Ramsey, Patrick R.; Wirzburger, John H.; Smith, Daniel C.; VanArsadall, John C.

    2008-01-01

    Following gyro failures in April 2001 and April 2003, HST Pointing Control System engineers designed reduced-gyro control laws to extend the spacecraft science mission. The Two-Gyro Science (TGS) and One-Gyro Science (OGS) control laws were designed and implemented using magnetometers, star trackers, and Fine Guidance Sensors in succession to control vehicle rate about the missing gyro axes. Both TGS and OGS have demonstrated on-orbit pointing stability of 7 milli-arcseconds or less, which depends upon the guide star magnitude used by the Fine Guidance Sensor. This paper describes the design, implementation, and on-orbit performance of the TGS and OGS control law fine-pointing modes using Fixed Head Star Trackers and Fine Guidance Sensors, after successfully achieving coarse-pointing control using magnetometers.

  4. Thermodynamic considerations for the design of a sonic-boom reducing powerplant.

    NASA Technical Reports Server (NTRS)

    Galanis, N.

    1972-01-01

    Third-order analytical expressions are obtained for the lift and wave-drag coefficients of a two-dimensional wing. The expressions are used to demonstrate the possibility of boomless lifting configuration designs when the cross-section area of the stream tube is reduced. The reduction is obtained by processing the captured airstream in such a manner that the stream tube area is smaller at the exit than at the entrance. Calculations by these expressions are shown to be in good agreement with exact results obtained from compressive flow tables. It is also shown that three-dimensional wing configurations of this design give the maximum thermodynamic effect when a propulsive power plant is employed for the reduction of the captured-stream area. Thermodynamic guidelines are given for power plant designs to be used for this purpose.

  5. Online Design Aid for Evaluating Manure Pit Ventilation Systems to Reduce Entry Risk.

    PubMed

    Manbeck, Harvey B; Hofstetter, Daniel W; Murphy, Dennis J; Puri, Virendra M

    2016-01-01

    On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is manure pit ventilation. This article describes an online computational fluid dynamics-based design aid for evaluating the effectiveness of manure pit ventilation systems to reduce the concentrations of toxic and asphyxiating gases in the manure pits. This design aid, developed by a team of agricultural engineering and agricultural safety specialists at Pennsylvania State University, represents the culmination of more than a decade of research and technology development effort. The article includes a summary of the research efforts leading to the online design aid development and describes protocols for using the online design aid, including procedures for data input and for accessing design aid results. Design aid results include gas concentration decay and oxygen replenishment curves inside the manure pit and inside the barns above the manure pits, as well as animated motion pictures of individual gas concentration decay and oxygen replenishment in selected horizontal and vertical cut plots in the manure pits and barns. These results allow the user to assess (1) how long one needs to ventilate the pits to remove toxic and asphyxiating gases from the pit and barn, (2) from which portions of the barn and pit these gases are most and least readily evacuated, and (3) whether or not animals and personnel need to be removed from portions of the barn above the manure pit being ventilated.

  6. Online Design Aid for Evaluating Manure Pit Ventilation Systems to Reduce Entry Risk

    PubMed Central

    Manbeck, Harvey B.; Hofstetter, Daniel W.; Murphy, Dennis J.; Puri, Virendra M.

    2016-01-01

    On-farm manure storage pits contain both toxic and asphyxiating gases such as hydrogen sulfide, carbon dioxide, methane, and ammonia. Farmers and service personnel occasionally need to enter these pits to conduct repair and maintenance tasks. One intervention to reduce the toxic and asphyxiating gas exposure risk to farm workers when entering manure pits is manure pit ventilation. This article describes an online computational fluid dynamics-based design aid for evaluating the effectiveness of manure pit ventilation systems to reduce the concentrations of toxic and asphyxiating gases in the manure pits. This design aid, developed by a team of agricultural engineering and agricultural safety specialists at Pennsylvania State University, represents the culmination of more than a decade of research and technology development effort. The article includes a summary of the research efforts leading to the online design aid development and describes protocols for using the online design aid, including procedures for data input and for accessing design aid results. Design aid results include gas concentration decay and oxygen replenishment curves inside the manure pit and inside the barns above the manure pits, as well as animated motion pictures of individual gas concentration decay and oxygen replenishment in selected horizontal and vertical cut plots in the manure pits and barns. These results allow the user to assess (1) how long one needs to ventilate the pits to remove toxic and asphyxiating gases from the pit and barn, (2) from which portions of the barn and pit these gases are most and least readily evacuated, and (3) whether or not animals and personnel need to be removed from portions of the barn above the manure pit being ventilated. PMID:27303661

  7. Analytical Assessment of the Blast Resistance of Precast, Prestressed Concrete Components (PREPRINT)

    DTIC Science & Technology

    2007-04-01

    Load Bearing Reinforced Concrete Shear Walls”, ASCE Practical Periodical on Structural Design and Construction , V. 11, No. 2, May...To illustrate this concept, the blast resistances of non- load bearing precast , prestressed concrete sandwich wall panels (WP) are examined. These...previous sections allow a designer to effectively analyze the blast capacity of a precast , prestressed concrete wall panel. The iso-damage

  8. Charge density distributions derived from smoothed electrostatic potential functions: design of protein reduced point charge models.

    PubMed

    Leherte, Laurence; Vercauteren, Daniel P

    2011-10-01

    To generate reduced point charge models of proteins, we developed an original approach to hierarchically locate extrema in charge density distribution functions built from the Poisson equation applied to smoothed molecular electrostatic potential (MEP) functions. A charge fitting program was used to assign charge values to the so-obtained reduced representations. In continuation to a previous work, the Amber99 force field was selected. To easily generate reduced point charge models for protein structures, a library of amino acid templates was designed. Applications to four small peptides, a set of 53 protein structures, and four KcsA ion channel models, are presented. Electrostatic potential and solvation free energy values generated by the reduced models are compared with the corresponding values obtained using the original set of atomic charges. Results are in closer agreement with the original all-atom electrostatic properties than those obtained with a previous reduced model that was directly built from the smoothed MEP functions [Leherte and Vercauteren in J Chem Theory Comput 5:3279-3298, 2009].

  9. Permeability predictions for sand-clogged Portland cement pervious concrete pavement systems.

    PubMed

    Haselbach, Liv M; Valavala, Srinivas; Montes, Felipe

    2006-10-01

    Pervious concrete is an alternative paving surface that can be used to reduce the nonpoint source pollution effects of stormwater runoff from paved surfaces such as roadways and parking lots by allowing some of the rainfall to permeate into the ground below. This infiltration rate may be adversely affected by clogging of the system, particularly clogging or covering by sand in coastal areas. A theoretical relation was developed between the effective permeability of a sand-clogged pervious concrete block, the permeability of sand, and the porosity of the unclogged block. Permeabilities were then measured for Portland cement pervious concrete systems fully covered with extra fine sand in a flume using simulated rainfalls. The experimental results correlated well with the theoretical calculated permeability of the pervious concrete system for pervious concrete systems fully covered on the surface with sand. Two different slopes (2% and 10%) were used. Rainfall rates were simulated for the combination of direct rainfall (passive runoff) and for additional stormwater runoff from adjacent areas (active runoff). A typical pervious concrete block will allow water to pass through at flow rates greater than 0.2 cm/s and a typical extra fine sand will have a permeability of approximately 0.02 cm/s. The limit of the system with complete sand coverage resulted in an effective system permeability of approximately 0.004 cm/s which is similar to the rainfall intensity of a 30 min duration, 100-year frequency event in the southeastern United States. The results obtained are important in designing and evaluating pervious concrete as a paving surface within watershed management systems for controlling the quantity of runoff.

  10. Reduced-Order Blade Mistuning Analysis Techniques Developed for the Robust Design of Engine Rotors

    NASA Technical Reports Server (NTRS)

    Min, James B.

    2004-01-01

    The primary objective of this research program is to develop vibration analysis tools, design tools, and design strategies to significantly improve the safety and robustness of turbine engine rotors. Bladed disks in turbine engines always feature small, random blade-to-blade differences, or mistuning. Mistuning can lead to a dramatic increase in blade forced-response amplitudes and stresses. Ultimately, this results in high-cycle fatigue, which is a major safety and cost concern. In this research program, the necessary steps will be taken to transform a state-of-the-art vibration analysis tool, the Turbo-Reduce forced-response prediction code, into an effective design tool by enhancing and extending the underlying modeling and analysis methods. Furthermore, novel techniques will be developed to assess the safety of a given design. In particular, a procedure will be established for using eigenfrequency curve veerings to identify "danger zones" in the operating conditions--ranges of rotational speeds and engine orders in which there is a great risk that the rotor blades will suffer high stresses. This work also will aid statistical studies of the forced response by reducing the necessary number of simulations. Finally, new strategies for improving the design of rotors will be pursued. Several methods will be investigated, including the use of intentional mistuning patterns to mitigate the harmful effects of random mistuning, and the modification of disk stiffness to avoid reaching critical values of interblade coupling in the desired operating range. Recent research progress is summarized in the following paragraphs. First, significant progress was made in the development of the component mode mistuning (CMM) and static mode compensation (SMC) methods for reduced-order modeling of mistuned bladed disks (see the following figure). The CMM method has been formalized and extended to allow a general treatment of mistuning. In addition, CMM allows individual mode

  11. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  12. Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

    PubMed Central

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to RSCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at RSCM of 0.9. Hence, it is recommended that RSCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete. PMID:25162049

  13. Feasibility tests on concrete with very-high-volume supplementary cementitious materials.

    PubMed

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70-90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m(3), and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (R SCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to R SCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at R SCM of 0.9. Hence, it is recommended that R SCM needs to be restricted to less than 0.8-0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete.

  14. Using the Design for Demise Philosophy to Reduce Casualty Risk Due to Reentering Spacecraft

    NASA Technical Reports Server (NTRS)

    Kelley, R. L.

    2012-01-01

    Recently the reentry of a number of vehicles has garnered public attention due to their risk of human casualty due to fragments surviving reentry. In order to minimize this risk for their vehicles, a number of NASA programs have actively sought to minimize the number of components likely to survive reentry at the end of their spacecraft's life in order to meet and/or exceed NASA safety standards for controlled and uncontrolled reentering vehicles. This philosophy, referred to as "Design for Demise" or D4D, has steadily been adopted, to at least some degree, by numerous programs. The result is that many programs are requesting evaluations of components at the early stages of vehicle design, as they strive to find ways to reduce the number surviving components while ensuring that the components meet the performance requirements of their mission. This paper will discuss some of the methods that have been employed to ensure that the consequences of the vehicle s end-of-life are considered at the beginning of the design process. In addition this paper will discuss the technical challenges overcome, as well as some of the more creative solutions which have been utilized to reduce casualty risk.

  15. Reducing environmental burdens of solid-state lighting through end-of-life design

    NASA Astrophysics Data System (ADS)

    Hendrickson, C. T.; Matthews, D. H.; Ashe, M.; Jaramillo, P.; McMichael, F. C.

    2010-01-01

    With 20% of US electricity used for lighting, energy efficient solid-state lighting technology could have significant benefits. While energy efficiency in use is important, the life cycle cost, energy and environmental impacts of light-emitting diode (LED) solid-state lighting could be reduced by reusing, remanufacturing or recycling components of the end products. Design decisions at this time for the nascent technology can reduce material and manufacturing burdens by considering the ease of disassembly, potential for remanufacturing, and recovery of parts and materials for reuse and recycling. We use teardowns of three commercial solid-state lighting products designed to fit in conventional Edison light bulb sockets to analyze potential end-of-life reuse strategies for solid-state lighting and recommend strategies for the industry. Current lamp designs would benefit from standardization of part connections to facilitate disassembly and remanufacturing of components, and fewer material types in structural pieces to maximize homogeneous materials recovery. The lighting industry should also start now to develop an effective product take-back system for collecting future end-of-life products.

  16. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  17. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  18. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  19. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  20. Electromagnetic Metrology on Concrete and Corrosion*

    PubMed Central

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete. PMID:26989590

  1. Electromagnetic Metrology on Concrete and Corrosion.

    PubMed

    Kim, Sung; Surek, Jack; Baker-Jarvis, James

    2011-01-01

    To augment current methods for the evaluation of reinforcing bar (rebar) corrosion within concrete, we are exploring unique features in the dielectric and magnetic spectra of pure iron oxides and corrosion samples. Any signature needs to be both prominent and consistent in order to identify corrosion within concrete bridge deck or other structures. In order to measure the permittivity and propagation loss through concrete as a function of temperature and humidity, we cut and carefully fitted samples from residential concrete into three different waveguides. We also poured and cured a mortar sample within a waveguide that was later measured after curing 30 days. These measurements were performed from 45 MHz to 12 GHz. Our concrete measurements showed that the coarse granite aggregate that occupied about half the sample volume reduced the electromagnetic propagation loss in comparison to mortar. We also packed ground corrosion samples and commercially available iron-oxide powders into a transmission-line waveguide and found that magnetite and corrosion sample spectra are similar, with a feature between 0.5 GHz and 2 GHz that may prove useful for quantifying corrosion. We also performed reflection (S 11) measurements at various corrosion surfaces and in loose powders from 45 MHz to 50 GHz. These results are a first step towards quantifying rebar corrosion in concrete.

  2. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    NASA Astrophysics Data System (ADS)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  3. Study on improvement of durability for reinforced concrete by surface-painting migrating corrosion inhibitor and engineering application

    NASA Astrophysics Data System (ADS)

    Song, Ning; WANG, Zixiao; LIU, Zhiyong; Zhou, Jiyuan; Zheng, Duo

    2017-01-01

    The corrosion currents of steel bar in concrete with three W/B and four chloride contents after surface-painting two migrating corrosion inhibitors (PCI-2015 and MCI-A) 14d to 150d in atmospheric condition were measured. The results showed that the corrosion current density (I corr) of steel bar reduced to 0.1 μA.cm-2 from the initial highest 3.833 μA.cm-2 (W/B=0.65, NaCl-1%) after surface-painting PCI-2015 14 d, and the I corr was still lower than 0.1 μA.cm-2 until 150d. The compressive strength and chloride migration coefficient of concrete specimens were tested. The possible reasons of the mechanisms of durability improvement for reinforced concrete by applying PCI-2015 inhibitor were PCI-2015 may be reacted with calcium hydroxide in cement concrete and lots of inhibitor particles may be adsorbed on the active sites first and then a stable protective layer may be formed. The I corr of steel bars in a hydraulic aqueduct concrete structure after painting PCI-2015, MCI-A (the United States) and MCI-B (Europe) during 6 months was monitored by Gecor 8 tester. The results showed that the average values of I corr of steel bars after painting the PCI-2015 150d fulfilled the specification requirements in “Design code for concrete structure strengthening (E.3) ”(GB 50367-2013).

  4. Reducing wrong patient selection errors: exploring the design space of user interface techniques.

    PubMed

    Sopan, Awalin; Plaisant, Catherine; Powsner, Seth; Shneiderman, Ben

    2014-01-01

    Wrong patient selection errors are a major issue for patient safety; from ordering medication to performing surgery, the stakes are high. Widespread adoption of Electronic Health Record (EHR) and Computerized Provider Order Entry (CPOE) systems makes patient selection using a computer screen a frequent task for clinicians. Careful design of the user interface can help mitigate the problem by helping providers recall their patients' identities, accurately select their names, and spot errors before orders are submitted. We propose a catalog of twenty seven distinct user interface techniques, organized according to a task analysis. An associated video demonstrates eighteen of those techniques. EHR designers who consider a wider range of human-computer interaction techniques could reduce selection errors, but verification of efficacy is still needed.

  5. A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer

    SciTech Connect

    Miller, William A

    2011-01-01

    A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce the heat transfer penetrating its roof deck by almost 85% of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibited attic air temperatures that did not exceed the peak day outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit home constructions in hot, moderate and cold climates to access economics for the assembly.

  6. A Prototype Roof Deck Designed to Self-Regulate Deck Temperature and Reduce Heat Transfer

    SciTech Connect

    Miller, William A

    2011-01-01

    A prototype roof and attic assembly exploits the use of radiation, convection and insulation controls to reduce its peak day heat transfer by almost 85 percent of the heat transfer crossing a conventional roof and attic assembly. The assembly exhibits attic air temperatures that do not exceed the maximum daily outdoor ambient temperature. The design includes a passive ventilation scheme that pulls air from the soffit and attic into an inclined air space above the roof deck. The design complies with fire protection codes because the air intake is internal and closed to the elements. Field data were benchmarked against an attic computer tool and simulations made for new and retrofit constructions in hot, moderate and cold climates to gauge the cost of energy savings and potential payback.

  7. Monitoring Network Design for Discriminating and Reducing Models in Bayesian Model Averaging Paradigm

    NASA Astrophysics Data System (ADS)

    Tsai, F. T.; Pham, H. V.

    2013-12-01

    Bayesian model averaging (BMA) is often adopted to quantify model prediction and uncertainty using multiple models generated from various sources of uncertainty. Due to the lack of data and knowledge, the number of models with non-dominant posterior model probabilities can be overwhelming. Conducting prediction and uncertainty analysis using a great deal of computationally intensive simulation models (e.g., groundwater models) can become intractable under the BMA framework. Moreover, prediction results using the BMA can be useless when prediction uncertainty is very high. This study implements a monitoring network design under the BMA framework to discriminate groundwater models and in turn reduce the number of models. The posterior model probabilities are re-evaluated by using BMA prediction as 'future observation data' and historical data. Given a design criterion of posterior model probability (e.g. 85%), the monitoring network design aims to find the optimal number and location of monitoring wells at existing wells for continuous observation. If using existing wells cannot achieve the design criterion, then exploration of new monitoring well location is necessary. Once the design criterion is met, other models will be discriminated from the best model. Between-model variance will be significantly reduced. We use the monitoring network design to discriminate 18 complex groundwater models that include the '1,200-foot', '1,500-foot', and '1,700-foot' sands in the Baton Rouge area, southeastern Louisiana. The sources of uncertainty that creates the groundwater models are from hydrostratigraphic architecture, fault permeability architecture, and boundary conditions. To speed up model calibration, we develop a parallel version of CMA-ES and implement it to SuperMike II cluster at Louisiana State University. Results show that in the model calibration period from 1975 to 2010, eleven models have posterior model probabilities ranging from 3.5% to 17.4%. The purpose of

  8. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  9. Design of blade-shaped-electrode linear ion traps with reduced anharmonic contributions

    SciTech Connect

    Deng, K.; Che, H.; Ge, Y. P.; Xu, Z. T.; Yuan, W. H.; Zhang, J.; Lu, Z. H.; Lan, Y.

    2015-09-21

    RF quadrupole linear Paul traps are versatile tools in quantum physics experiments. Linear Paul traps with blade-shaped electrodes have the advantages of larger solid angles for fluorescence collection. But with these kinds of traps, the existence of higher-order anharmonic terms of the trap potentials can cause large heating rate for the trapped ions. In this paper, we theoretically investigate the dependence of higher-order terms of trap potentials on the geometry of blade-shaped traps, and offer an optimized design. A modified blade electrodes trap is proposed to further reduce higher-order anharmonic terms while still retaining large fluorescence collection angle.

  10. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  11. The resistance to chloride penetration of concrete containing nano-particles for pavement

    NASA Astrophysics Data System (ADS)

    Zhang, Mao-hua; Li, Hui

    2006-03-01

    The resistance to chloride penetration of concrete containing nano-particles (TiO II and SiO II) for pavement is experimentally investigated and compared with that of plain concrete, the concrete containing polypropylene (PP) fibers and the concrete containing both nano-particles and PP fibers. The test results indicate that the addition of nano-particles (TiO II and SiO II) improves the resistance to chloride penetration of concrete. The effectiveness of nano-TiO II in improving the resistance to chloride penetration reduces with increasing content of nano-TiO II, and the similar results can be found for the concrete containing nano-SiO II. The resistance to chloride penetration of concrete containing nano-TiO II is better than that containing the same amount of nano-SiO II. However, the resistance to chloride penetration of concrete containing PP fibers is decreased. The larger the content of PP fibers is, the lower the resistance to chloride penetration of concrete is. For the concrete containing both nano-particles and PP fibers, the resistance to chloride penetration is also reduced and even lower than the concrete only containing the same amount of PP fibers. The relationship between the chloride diffusion coefficient and compressive strength of concrete approaches hyperbola basically, which shows that the resistance to chloride penetration of concrete enhances with increasing compressive strength and proves that compressive strength is an important factor influencing the resistance to chloride penetration of concrete.

  12. Electrokinetic Strength Enhancement of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  13. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  14. Numerical Study Of The Effects Of Preloading, Axial Loading And Concrete Shrinkage On Reinforced Concrete Elements Strengthened By Concrete Layers And Jackets

    NASA Astrophysics Data System (ADS)

    Lampropoulos, A. P.; Dritsos, S. E.

    2008-07-01

    In this study, the technique of seismic strengthening existing reinforced concrete columns and beams using additional concrete layers and jackets is examined. The finite element method and the finite element program ATENA is used in this investigation. When a reinforced jacket or layer is being constructed around a column it is already preloaded due to existing service loads. This effect has been examined for different values of the axial load normalized to the strengthened column. The techniques of strengthening with a concrete jacket or a reinforced concrete layer on the compressive side of the column are examined. Another phenomenon that is examined in this study is the shrinkage of the new concrete of an additional layer used to strengthen an existing member. For this investigation, a simply supported beam with an additional reinforced concrete layer on the tensile side is examined. The results demonstrate that the effect of preloading is important when a reinforced concrete layer is being used with shear connectors between the old and the new reinforcement. It was also found that the shrinkage of the new concrete reduces the strength of the strengthened beam and induces an initial sliding between the old and the new concrete.

  15. Prestressed concrete for the storage of liquefied gases

    SciTech Connect

    Bruggeling, A.S.G.

    1981-01-01

    Both concrete and prestressing-steel materials retain their strengths at cryogenic temperatures, making them ideal for LNG storage tanks and similar structures. Prestressed concrete lends itself to a wide variety of configurations, from containment dikes to integrated tank systems in which the steel, insulation, and concrete must interact efficiently. Of major importance in building prestressed-concrete storage tanks are the design loads and load factors to be adopted, especially the so-called special loads that depend on the nature and quantity of the product to be stored, the type of installation involved, the siting of the storage facilities, and the tank construction (flexible or rigid).

  16. Guidelines for identification of concrete in a materials property database

    SciTech Connect

    Oland, C.B.; Frohnsdorff, G.

    1995-12-31

    Guidelines for the identification of concrete in a materials property database are presented to address the complex problem of distinguishing one concrete from another. These guidelines are based on a logical scheme for systematically organizing and subdividing data and information about concrete and its constituents; they reflect consensus recommendations for a multilevel material description and designation system. Aspects of the guidelines include a classification system used to establish a series of primary identifiers, methods for reporting constituent information and mixture proportions, fields describing the source of the concrete and its processing history, and recommendations for reporting baseline or reference properties.

  17. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  18. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  19. Lightweight polymer concrete composites

    SciTech Connect

    Fontana, J.J.; Steinberg, M.; Reams, W.

    1985-08-01

    Lightweight polymer concrete composites have been developed with excellent insulating properties. The composites consist of lightweight aggregates such as expanded perlites, multicellular glass nodules, or hollow alumina silicate microspheres bound together with unsaturated polyester or epoxy resins. These composites, known as Insulating Polymer Concrete (IPC), have thermal conductivites from 0.09 to 0.19 Btu/h-ft-/sup 0/F. Compressive strengths, dependent upon the aggregates used, range from 1000 to 6000 psi. These materials can be precast or cast-in-place on concrete substrates. Recently, it has been demonstrated that these materials can also be sprayed onto concrete and other substrates. An overlay application of IPC is currently under way as dike insulation at an LNG storage tank facility. The composites have numerous potentials in the construction industry such as insulating building blocks or prefabricated insulating wall panels.

  20. Reducing aquatic hazards of industrial chemicals: probabilistic assessment of sustainable molecular design guidelines.

    PubMed

    Connors, Kristin A; Voutchkova-Kostal, Adelina M; Kostal, Jakub; Anastas, Paul; Zimmerman, Julie B; Brooks, Bryan W

    2014-08-01

    Basic toxicological information is lacking for the majority of industrial chemicals. In addition to increasing empirical toxicity data through additional testing, prospective computational approaches to drug development aim to serve as a rational basis for the design of chemicals with reduced toxicity. Recent work has resulted in the derivation of a "rule of 2," wherein chemicals with an octanol-water partition coefficient (log P) less than 2 and a difference between the lowest unoccupied molecular orbital and the highest occupied molecular orbital (ΔE) greater than 9 (log P<2 and ΔE >9 eV) are predicted to be 4 to 5 times less likely to elicit acute or chronic toxicity to model aquatic organisms. The present study examines potential reduction of aquatic toxicity hazards from industrial chemicals if these 2 molecular design guidelines were employed. Probabilistic hazard assessment approaches were used to model the likelihood of encountering industrial chemicals exceeding toxicological categories of concern both with and without the rule of 2. Modeling predicted that utilization of these molecular design guidelines for log P and ΔE would appreciably decrease the number of chemicals that would be designated to be of "high" and "very high" concern for acute and chronic toxicity to standard model aquatic organisms and end points as defined by the US Environmental Protection Agency. For example, 14.5% of chemicals were categorized as having high and very high acute toxicity to the fathead minnow model, whereas only 3.3% of chemicals conforming to the design guidelines were predicted to be in these categories. Considerations of specific chemical classes (e.g., aldehydes), chemical attributes (e.g., ionization), and adverse outcome pathways in representative species (e.g., receptor-mediated responses) could be used to derive future property guidelines for broader classes of contaminants.

  1. Hybrid fiber-reinforcement in mortar and concrete

    NASA Astrophysics Data System (ADS)

    Lawler, John Steven

    Performance of concrete and mortar is improved through use of discontinuous fibers because of the resulting fundamental changes in the failure mechanism. The role a specific type of fiber plays in this process is governed by the material and geometry of the fibers, the fiber-matrix bond and the matrix properties. Blending fiber types exhibiting complementary and additive properties in the composite is a means for maximizing the potential of fibers for the reinforcement of concrete. The specific blend pursued in this investigation is a combination of steel or PVA microfibers, that interact with developing cracks, and steel macrofibers, which become crucial once cracks develop. The objective of this investigation is to explore the mechanisms by which fibers interact with the composite matrix and to provide a rigorous characterization of performance achievable with hybrid reinforced concrete. The role of micro- and macrofibers in the failure of mortar is examined using Subregion Scanning Computer Vision. The fracture process occurs in three stages: microcrack formation, microcrack coalescence and finally the formation of macrocracks. Closely spaced microfibers bridge coalesced microcracks. This increases performance up to and around the peak load by delaying the initiation of macrocracking. Once macrocracks develop, macrofibers are most effective at imparting ductility to the composite. Hybrid reinforcing fibers reduce the water permeability of cracked mortar, which has implications for durability, through the induction of multiple cracking. An innovative method for measuring cracked permeability in uniaxial tension under load is presented. The workability of macro- and microfiber hybrids in concrete is governed by the high surface area of the microfibers. A mix design procedure is presented to determine the optimum paste volume to efficiently achieve the best flow and cohesion properties. The relationships between workability, fiber dispersion, and mechanical

  2. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  3. Numerical simulation analysis and optimum design for combined type pressure reducing valves

    NASA Astrophysics Data System (ADS)

    Gou, D. M.; Guo, P. C.; Zheng, X. B.; Luo, X. Q.; Sun, L. G.

    2016-05-01

    Pressure reducing valve is an extremely significant equipment of energy dissipation for the water supply by gravity with pressure reducing technology in hydropower stations, and which has a pronounced effect on the normal technical water supply even safety operation for the hydropower units. A three-dimensional numerical calculation of flow field and cavitation characteristics towards a combined type pressure reducing valves was carried out based on the system of technical water supply in this paper. The numerical results show that the investigated valve could meet the requirements of technological supply water pressure and great pressure loss was caused when the water flow was accelerated by narrow overflowing section between throttling cone and valve seat. At working operation, obvious cavitation phenomenon was observed on the surface of throttling cone, and the maximum volume fraction of vapor reached 0.537%. Based on above researches, this paper introduces an optimization model for profile line design of throttling cone. The optimal results show that the cavitation performance is effectively improved with identical pressure drop compared with original results.

  4. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  5. The effect of recycled concrete aggregate properties on the bond strength between RCA concrete and steel reinforcement

    SciTech Connect

    Butler, L. West, J.S.; Tighe, S.L.

    2011-10-15

    The purpose of this study was to investigate the influence that replacing natural coarse aggregate with recycled concrete aggregate (RCA) has on concrete bond strength with reinforcing steel. Two sources of RCA were used along with one natural aggregate source. Numerous aggregate properties were measured for all aggregate sources. Two types of concrete mixture proportions were developed replacing 100% of the natural aggregate with RCA. The first type maintained the same water-cement ratios while the second type was designed to achieve the same compressive strengths. Beam-end specimens were tested to determine the relative bond strength of RCA and natural aggregate concrete. On average, natural aggregate concrete specimens had bond strengths that were 9 to 19% higher than the equivalent RCA specimens. Bond strength and the aggregate crushing value seemed to correlate well for all concrete types.

  6. Concrete Slump Classification using GLCM Feature Extraction

    NASA Astrophysics Data System (ADS)

    Andayani, Relly; Madenda, Syarifudin

    2016-05-01

    Digital image processing technologies have been widely applies in analyzing concrete structure because the accuracy and real time result. The aim of this study is to classify concrete slump by using image processing technique. For this purpose, concrete mix design of 30 MPa compression strength designed with slump of 0-10 mm, 10-30 mm, 30-60 mm, and 60-180 mm were analysed. Image acquired by Nikon Camera D-7000 using high resolution was set up. In the first step RGB converted to greyimage than cropped to 1024 x 1024 pixel. With open-source program, cropped images to be analysed to extract GLCM feature. The result shows for the higher slump contrast getting lower, but higher correlation, energy, and homogeneity.

  7. Reducing Uncertainty in the Seismic Design Basis for the Waste Treatment Plant, Hanford, Washington

    SciTech Connect

    Brouns, T.M.; Rohay, A.C.; Reidel, S.P.; Gardner, M.G.

    2007-07-01

    sensitivity of the calculated response spectra to the velocity contrasts between the basalts and interbedded sediments, DOE initiated an effort to emplace additional boreholes at the WTP site and obtain direct Vs measurements and other physical property measurements in these layers. One core-hole and three boreholes have been installed at the WTP site to a maximum depth of 1468 ft (447 m) below ground surface. The three boreholes are within 500 ft (152 m) of and surrounding the high level waste vitrification and pretreatment facilities of the WTP, which were the Performance Category 3 (PC-3) structures affected by the interim design spectra. The core-hole is co-located with the borehole closest to the two PC-3 structures. These new measurements are expected to reduce the uncertainty in the modeled site response that is caused by the lack of direct knowledge of the Vs contrasts within these layers. (authors)

  8. Advanced gradient-index lens design tools to maximize system performance and reduce SWaP

    NASA Astrophysics Data System (ADS)

    Campbell, Sawyer D.; Nagar, Jogender; Brocker, Donovan E.; Easum, John A.; Turpin, Jeremiah P.; Werner, Douglas H.

    2016-05-01

    GRadient-INdex (GRIN) lenses have long been of interest due to their potential for providing levels of performance unachievable with traditional homogeneous lenses. While historically limited by a lack of suitable materials, rapid advancements in manufacturing techniques, including 3D printing, have recently kindled a renewed interest in GRIN optics. Further increasing the desire for GRIN devices has been the advent of Transformation Optics (TO), which provides the mathematical framework for representing the behavior of electromagnetic radiation in a given geometry by "transforming" it to an alternative, usually more desirable, geometry through an appropriate mapping of the constituent material parameters. Using TO, aspherical lenses can be transformed to simpler spherical and flat geometries or even rotationally-asymmetric shapes which result in true 3D GRIN profiles. Meanwhile, there is a critical lack of suitable design tools which can effectively evaluate the optical wave propagation through 3D GRIN profiles produced by TO. Current modeling software packages for optical lens systems also lack advanced multi-objective global optimization capability which allows the user to explicitly view the trade-offs between all design objectives such as focus quality, FOV, ▵nand focal drift due to chromatic aberrations. When coupled with advanced design methodologies such as TO, wavefront matching (WFM), and analytical achromatic GRIN theory, these tools provide a powerful framework for maximizing SWaP (Size, Weight and Power) reduction in GRIN-enabled optical systems. We provide an overview of our advanced GRIN design tools and examples which minimize the presence of mono- and polychromatic aberrations in the context of reducing SWaP.

  9. Strength Characteristics of Groundnut Leaf/Stem Ash (GLSA) Concrete

    NASA Astrophysics Data System (ADS)

    Oseni, O. W.; Audu, M. T.

    2016-09-01

    The compressive strength properties of concrete are substantial factors in the design and construction of concrete structures. Compressive strength directly affects the degree to which the concrete can be able to carry a load over time. These changes are complemented by deflections, cracks etc., in the structural elements of concrete. This research investigated the effect of groundnut leaf/stem ash (GLSA) on the compressive strength of concrete at 0%, 5 %, 10 % and 15 % replacements of cement. The effect of the water-cement ratio on properties such as the compressive strength, slump, flow and workability properties of groundnut leaf/stem ash (GLSA) mixes with OPC were evaluated to determine whether they are acceptable for use in concrete structural elements. A normal concrete mix with cement at 100 % (i.e., GLSA at 0%) with concrete grade C25 that can attain an average strength of 25 N/mm2 at 28 days was used as a control at design water-cement ratios of 0.65 and grading of (0.5-32) mm from fine to coarse aggregates was tested for: (1) compressive strength, and the (2) slump and flow Test. The results and observations showed that the concrete mixes from GLSA at 5 - 15 % ratios exhibit: pozzolanic properties and GLSA could be used as a partial replacement for cement at these percentage mix ratios compared with the control concrete; an increase in the water-cement ratio showed a significant decrease in the compressive strength and an increase in workability. Therefore, it is important that all concrete mixes exude an acceptably designed water-cement ratio for compressive strength characteristics for use in structures, water-cement ratio is a significant factor.

  10. Assessing relationships among properties of demolished concrete, recycled aggregate and recycled aggregate concrete using regression analysis.

    PubMed

    Tam, Vivian W Y; Wang, K; Tam, C M

    2008-04-01

    Recycled demolished concrete (DC) as recycled aggregate (RA) and recycled aggregate concrete (RAC) is generally suitable for most construction applications. Low-grade applications, including sub-base and roadwork, have been implemented in many countries; however, higher-grade activities are rarely considered. This paper examines relationships among DC characteristics, properties of their RA and strength of their RAC using regression analysis. Ten samples collected from demolition sites are examined. The results show strong correlation among the DC samples, properties of RA and RAC. It should be highlighted that inferior quality of DC will lower the quality of RA and thus their RAC. Prediction of RAC strength is also formulated from the DC characteristics and the RA properties. From that, the RAC performance from DC and RA can be estimated. In addition, RAC design requirements can also be developed at the initial stage of concrete demolition. Recommendations are also given to improve the future concreting practice.

  11. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  12. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    a reduction of saturation on the immediate inside of the membrane. Near the location of the waterproofing membrane on either side, the concrete material exhibits degrees of capillary saturation between 85 and 95 %. Moisture content in the membrane is found to be consistently in the range of 12-17 % by weight, corresponding to a degree of saturation of 30-35 %. Possible effects of such moisture contents are lower risk of freezing degradation, higher tensile bonding strengths at the membrane interfaces, and a reduced risk of pore pressure in the concrete material.

  13. Measuring time costs in interventions designed to reduce behavior problems among children and youth.

    PubMed

    Foster, E Michael; Johnson-Shelton, Deborah; Taylor, Ted K

    2007-09-01

    The economic evaluation of psychosocial interventions is a growing area of research. Though time costs are central to the economist's understanding of social costs, these costs generally have been ignored by prevention scientists. This article highlights the need to measure such costs and then reviews the principles economists use in valuing time. It then considers the specific time costs that often arise in interventions designed to reduce behavior problems among children and youth. These include classroom time devoted to program activities, the time of parents or other caregivers, the time of teachers (outside of the classroom), and the time of volunteers. We consider the economic principles that govern how economists value these inputs and then apply these principles to data from an evaluation of a prominent intervention in the field, the Incredible Years Program. We find that the time costs are potentially rather large and consider the implications for public policy of ignoring them.

  14. Nacelle Integration to Reduce the Sonic Boom of Aircraft Designed to Cruise at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Mack, Robert J.

    1999-01-01

    An empirical method for integrating the engine nacelles on a wing-fuselage-fin(s) configuration has been described. This method is based on Whitham theory and Seebass and George sonic-boom minimization theory, With it, both reduced sonic-boom as well as high aerodynamic efficiency methods can be applied to the conceptual design of a supersonic-cruise aircraft. Two high-speed civil transport concepts were used as examples to illustrate the application of this engine-nacelle integration methodology: (1) a concept with engine nacelles mounted on the aft-fuselage, the HSCT-1OB; and (2) a concept with engine nacelles mounted under an extended-wing center section, the HSCT-11E. In both cases, the key to a significant reduction in the sonic-boom contribution from the engine nacelles was to use the F-function shape of the concept as a guide to move the nacelles further aft on the configuration.

  15. Design of sensor networks for instantaneous inversion of modally reduced order models in structural dynamics

    NASA Astrophysics Data System (ADS)

    Maes, K.; Lourens, E.; Van Nimmen, K.; Reynders, E.; De Roeck, G.; Lombaert, G.

    2015-02-01

    In structural dynamics, the forces acting on a structure are often not well known. System inversion techniques may be used to estimate these forces from the measured response of the structure. This paper first derives conditions for the invertibility of linear system models that apply to any instantaneous input estimation or joint input-state estimation algorithm. The conditions ensure the identifiability of the dynamic forces and system states, their stability and uniqueness. The present paper considers the specific case of modally reduced order models, which are generally obtained from a physical, finite element model, or from experimental data. It is shown how in this case the conditions can be directly expressed in terms of the modal properties of the structure. A distinction is made between input estimation and joint input-state estimation. Each of the conditions is illustrated by a conceptual example. The practical implementation is discussed for a case study where a sensor network for a footbridge is designed.

  16. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  17. Concrete shaver. Innovative technology summary report

    SciTech Connect

    1998-12-01

    The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F to 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.

  18. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  19. A strategy to reduce older driver injuries at intersections using more accommodating roundabout design practices.

    PubMed

    Lord, Dominique; van Schalkwyk, Ida; Chrysler, Susan; Staplin, Loren

    2007-05-01

    This paper briefly summarizes a laboratory study investigating strategies designed to improve the ability of our most vulnerable drivers, the elderly, to safely negotiate the most dangerous and demanding of all traffic situations--intersections--through increased use of modern roundabouts. Compared to conventional intersections, roundabouts have demonstrated the potential to significantly reduce the most injurious (angle) type of crashes and slow the operating speed of all vehicles, while maintaining a high capacity for moving traffic through an intersection. This research sought to develop and evaluate countermeasures with the potential to improve the perceived comfort, confidence, and/or safety of seniors in using roundabouts. Research methods included focus groups and structured interviews utilizing photographs, which had been edited to include novel traffic control devices. The results suggest that design elements that improve the path guidance for older drivers are necessary to encourage roundabout use by this group. Recommendations for improved practice related to advance warning signs, guide signs, yield treatments, directional signs, and exit treatments are presented.

  20. Application of electromagnetic waves in damage detection of concrete structures

    NASA Astrophysics Data System (ADS)

    Feng, Maria Q.; De Flaviis, Franco; Kim, Yoo J.; Diaz, Rodolfo E.

    2000-04-01

    Jacketing technology using fiber reinforced polymer (FRP) composites is being applied for seismic retrofit of reinforced concrete (RC) columns designed and constructed under older specifications. In this study, the authors develop an electromagnetic (EM) imaging technology for detecting voids and debonding between the jacket and the column, which may significantly weaken the structural performance of the column otherwise attainable by jacketing. This technology is based on the reflection analysis of a continuous EM wave sent toward and reflected from layered FRP-adhesive-concrete medium: Poor bonding conditions including voids and debonding will generate air gaps which produce additional reflections of the EM wave. In this study, dielectric properties of various materials involved in the FRP-jacketed RC column were first measured. Second, the measured properties were used for a computer simulation of the proposed EM imaging technology. The simulation demonstrated the difficulty in detecting imperfect bonding conditions by using plane waves, as the scattering contribution from the voids and debonding is very small compared to that from the jacketed column. Third, in order to alleviate this difficulty, a special dielectric lens was designed and fabricated to focus the EM wave on the bonding interface. Furthermore, the time gating technique is used in order to reduce the noise resulting from various uncertainties associated with the jacketed columns. Finally, three concrete columns were constructed and wrapped with glass-FRP jackets with various voids and debonding condition artificially introduced in the bonding interface. Using the proposed EM imaging technology with the lens especially designed and installed, these voids and debonding condition were successfully detected.

  1. Lasers for the radioactive decontamination of concrete

    SciTech Connect

    Cannon, N.S.; Flesher, D.J.

    1993-10-01

    The use of lasers for removing radioactive contamination from concrete surfaces is being investigated at the US Department of Energy`s Hanford Site. A major advantage of a laser decontamination process is that no additional waste is generated. Test results using 50- and 600-W YAG (yttrium-aluminum-garnet) lasers have been extrapolated to more powerful commercially available units. The minimum removal rate for concrete in air is estimated at 420 cm{sup 2}/h (0.45 ft{sup 2}/h) to a depth of 0.64 cm (0.25 in.); underwater rates would be considerably reduced.

  2. Ergonomic basket design to reduce cumulative trauma disorders in tea leaf plucking operation.

    PubMed

    Bhattacharyya, N; Chakrabarti, D

    2012-01-01

    Work related musculoskeletal disorders are seen as an indicating parameter of occupational stress among the women workers engaged in tea leaf plucking operation. The hand plucking (no mechanized plucking is practiced in Assam) being a highly repetitive task requires forceful exertions to reach to the distant periphery of the tea bushes and mechanical compression (pressing against hard surfaces). Specifically it aggravates with awkward positions adopted. The current research addresses to minimize the risk factors associated with CTDs and to ascertain the role of ergonomic design development in improving the situation. Women workforce engaged in tea industry in Assam suffer from back, shoulder, arm and finger pains. Workers perform the activity for 440 minutes in the entire shift with one hour lunch break in between in the garden itself. An ergonomic investigation aiming at studying the strain index of plucking operation in tea industry was conducted. While performing the operation workers were found to assume unnatural posture which is static as well as highly dynamic with a load (tea leaf collecting basket up to weight of 30 kg when filled with plucked leaves) at back. With gradual increment of load and pain though the load is released intermittently the strain level found to remain at a high level. The total QEC scores found for plucking activity was 110 out of 138. To improve the situation and to reduce the work related upper limb disorder (WRULD) an ergonomically designed basket was conceived and trial results showed improvements. The newly designed plucking basket fits the back curvature of the workers well, which keeps the basket in place unlike the existing round basket. The new basket is light in weight having more leaf capacity. Significant reduction in energy expenditure and MSDs suffered was observed while using improved basket over existing basket.

  3. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  4. Interbody Spacer Material Properties and Design Conformity for Reducing Subsidence During Lumbar Interbody Fusion.

    PubMed

    Chatham, Lillian S; Patel, Vikas V; Yakacki, Christopher M; Dana Carpenter, R

    2017-05-01

    There is a need to better understand the effects of intervertebral spacer material and design on the stress distribution in vertebral bodies and endplates to help reduce complications such as subsidence and improve outcomes following lumbar interbody fusion. The main objective of this study was to investigate the effects of spacer material on the stress and strain in the lumbar spine after interbody fusion with posterior instrumentation. A standard spacer was also compared with a custom-fit spacer, which conformed to the vertebral endplates, to determine if a custom fit would reduce stress on the endplates. A finite element (FE) model of the L4-L5 motion segment was developed from computed tomography (CT) images of a cadaveric lumbar spine. An interbody spacer, pedicle screws, and posterior rods were incorporated into the image-based model. The model was loaded in axial compression, and strain and stress were determined in the vertebra, spacer, and rods. Polyetheretherketone (PEEK), titanium, poly(para-phenylene) (PPP), and porous PPP (70% by volume) were used as the spacer material to quantify the effects on stress and strain in the system. Experimental testing of a cadaveric specimen was used to validate the model's results. There were no large differences in stress levels (<3%) at the bone-spacer interfaces and the rods when PEEK was used instead of titanium. Use of the porous PPP spacer produced an 8-15% decrease of stress at the bone-spacer interfaces and posterior rods. The custom-shaped spacer significantly decreased (>37%) the stress at the bone-spacer interfaces for all materials tested. A 28% decrease in stress was found in the posterior rods with the custom spacer. Of all the spacer materials tested with the custom spacer design, 70% porous PPP resulted in the lowest stress at the bone-spacer interfaces. The results show the potential for more compliant materials to reduce stress on the vertebral endplates postsurgery. The custom spacer provided a

  5. Improving Representational Competence with Concrete Models

    ERIC Educational Resources Information Center

    Stieff, Mike; Scopelitis, Stephanie; Lira, Matthew E.; DeSutter, Dane

    2016-01-01

    Representational competence is a primary contributor to student learning in science, technology, engineering, and math (STEM) disciplines and an optimal target for instruction at all educational levels. We describe the design and implementation of a learning activity that uses concrete models to improve students' representational competence and…

  6. Concrete structure construction on the Moon

    NASA Technical Reports Server (NTRS)

    Matsumoto, Shinji; Namba, Haruyuki; Kai, Yoshiro; Yoshida, Tetsuji

    1992-01-01

    This paper describes a precast prestressed concrete structure system on the Moon and erection methods for this system. The horizontal section of the structural module is hexagonal so that various layouts of the modules are possible by connecting the adjacent modules to each other. For erection of the modules, specially designed mobile cranes are used.

  7. Identifying Concrete and Formal Operational Children.

    ERIC Educational Resources Information Center

    Docherty, Edward M.

    This paper presents a study designed to determine if groups of concrete and formal operational children can be identified through the technique of cluster analysis, using a battery of Piagetian tasks. A Total of 64 subjects, 8 boys and 8 girls from each of the second, fourth, sixth, and eighth grade levels, were selected from a public elementary…

  8. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    PubMed

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  9. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  10. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  11. Concrete dam on the Bratsk hydroelectric station

    SciTech Connect

    Solov'eva, Z.I.

    1988-07-01

    The Bratsk concrete dam was designed and constructed with a sufficient degree of reliability. Settlement of the dam together with the powerhouse developed uniformly under the entire foundation. Two irreversible processes causing aging of the dam have been established by operating observations: leaching of the concrete and decompression of the contact zone of the foundation near the upstream face of the powerhouse sections. The decompression is due to the fact that the powerhouse sections are lighter than the spillway sections. At the present level this process can only be slowed by the combined use of grouting and drainage unloading.

  12. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  13. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  14. Online Monitoring of Concrete Structures in Nuclear Power Plants: Interim Report

    SciTech Connect

    Mahadevan, Sankaran; Cai, Guowei; Agarwal, Vivek

    2015-03-01

    The existing fleet of nuclear power plants in the United States have initial operating licenses of 40 years, and many of these plants have applied for and received license extensions. As plant structures, systems, and components age, their useful life—considering both structural integrity and performance—is reduced as a result of deterioration of the materials. Assessment and management of aging concrete structures in nuclear plants require a more systematic approach than simple reliance on existing code-based design margins of safety. Structural health monitoring is required to produce actionable information regarding structural integrity that supports operational and maintenance decisions. The online monitoring of concrete structures project conducted under the Advanced Instrumentation, Information, and Control Technologies Pathway of the Light Water Reactor Sustainability program at Idaho National Laboratory is seeking to develop and demonstrate capabilities for concrete structures health monitoring. Through this research project, several national laboratories and Vanderbilt University propose to develop a framework of research activities for the health monitoring of nuclear power plant concrete structures that includes the integration of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report briefly discusses activities in this project during October-December, 2014. The most significant activity during this period was the organizing of a two-day workshop on research needs in online monitoring of concrete structures, hosted by Vanderbilt University in November 2014. Thirty invitees from academia, industry and government participated in the workshop. The presentations and discussions at the workshop surveyed current activities related to concrete structures deterioration modeling and monitoring, and identified the challenges, knowledge gaps, and opportunities for advancing the state of the art; these

  15. Using a centrifuge for quality control of pre-wetted lightweight aggregate in internally cured concrete

    NASA Astrophysics Data System (ADS)

    Miller, Albert E.

    Early age shrinkage of cementitious systems can result in an increased potential for cracking which can lead to a reduction in service life. Early age shrinkage cracking can be particularly problematic for high strength concretes, which are often specified due to their high strength and low permeability. However, these high strength concretes frequently exhibit a reduction in the internal relative humidity (RH) due to the hydration reaction (chemical shrinkage) and self-desiccation which results in a bulk shrinkage, termed autogenous shrinkage, which is substantial at early ages. Due to the low permeability of these concretes, standard external curing is not always efficient in addressing this reduction in internal RH since the penetration of water can be limited. Internal curing has been developed to reduce autogenous shrinkage. Internally cured mixtures use internal reservoirs filled with fluid (generally water) that release this fluid at appropriate times to counteract the effects of self-desiccation thereby maintaining a high internal RH. Internally cured concrete is frequently produced in North America using pre-wetted lightweight aggregate. One important aspect associated with preparing quality internally cured concrete is being able to determine the absorbed moisture and surface moisture associated with the lightweight aggregate which enables aggregate moisture corrections to be made for the concrete mixture. This thesis represents work performed to develop a test method using a centrifuge to determine the moisture state of pre-wetted fine lightweight aggregate. The results of the test method are then used in a series of worksheets that were developed to assist field technicians when performing the tests and applying the results to a mixture design. Additionally, research was performed on superabsorbent polymers to assess their ability to be used as an internal curing reservoir.

  16. Refining the maintenance techniques for Interlocking Concrete Paver GIs - abstract

    EPA Science Inventory

    Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. Determining the correct methods for remedial maintenances is crucial to recovering and maintaining efficient ICP performance. T...

  17. Refining the maintenance techniques for Interlocking Concrete Paver GIs

    EPA Science Inventory

    Surface clogging adversely affects the performance of Interlocking Concrete Pavements (ICP) by reducing their ability to infiltrate stormwater runoff. The clogging rate is a function of pavement type, traffic loading, surrounding physical environment and maintenance treatments. ...

  18. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  19. Structural Materials: 95. Concrete

    SciTech Connect

    Naus, Dan J

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  20. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  1. Analyzing environmental and structural charactersitics of concrete for carbon mitigation and climate adaptation in urban areas: A case study in Rajkot, India

    NASA Astrophysics Data System (ADS)

    Solis, Andrea Valdez

    Increasing temperatures, varying rain events accompanied with flooding or droughts coupled with increasing water demands, and decreasing air quality are just some examples of stresses that urban systems face with the onset of climate change and rapid urbanization. Literature suggests that greenhouse gases are a leading cause of climate change and are of a result of anthropogenic activities such as infrastructure development. Infrastructure development is heavily dependent on the production of concrete. Yet, concrete can contribute up to 7% of total CO29 emissions globally from cement manufacturing alone. The goal of this dissertation was to evaluate current concrete technologies that could contribute to carbon mitigation and climate adaptation in cities. The objectives used to reach the goal of the study included (1) applying a material flow and life cycle analysis (MFA-LCA) to determine the environmental impacts of pervious and high volume fly ash (HVFA) concrete compared to ordinary portland cement (OPC) concrete in a developing country; (2) performing a comparative assessment of pervious concrete mixture designs for structural and environmental benefits across the U.S. and India; and (3) Determining structural and durability benefits from HVFA concrete mixtures when subjected to extreme hot weather conditions (a likely element of climate change). The study revealed that cities have a choice in reducing emissions, improving stormwater issues, and developing infrastructure that can sustain higher temperatures. Pervious and HVFA concrete mixtures reduce emissions by 21% and 47%, respectively, compared to OPC mixtures. A pervious concrete demonstration in Rajkot, India showed improvements in water quality (i.e. lower levels of nitrogen by as much as 68% from initial readings), and a reduction in material costs by 25%. HVFA and OPC concrete mixtures maintained compressive strengths above a design strength of 27.6 MPa (4000 psi), achieved low to moderate permeability

  2. Evaluation of Sustainability of Multistory Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, A. K.; Ibrahim, A.; Al-Sughaiyer, N.

    Three different types of concrete mixes of design strengths 100 MPa, 50 MPa, and 50 MPa lightweight were designed, produced, and analyzed in the effort to quantify their effects on sustainability and economics. An overall comparison taking into consideration the structural, environmental, and economical effectiveness was conducted to find the most beneficial and reliable material to be used in sustainable structures. Different concrete types were used in the design of typical multi story buildings of the same loadings and dimensions. The only input variables in this research are the different mixes of concrete. By fixing the applied loadings and the buildings' dimensions, the three different materials were studied in terms of their effects on the structural design of members, carbon footprint and sustainability, and economics. High strength concrete using microsilica was concluded to be the most effective material to be used in construction with the best effects on sustainability and economics.

  3. Drying shrinkage of fibre-reinforced lightweight aggregate concrete containing fly ash

    SciTech Connect

    Kayali, O.; Haque, M.N.; Zhu, B.

    1999-11-01

    Lightweight aggregate concretes containing fly ash with a compressive strength between 61 to 67 NPa were produced. The lightweight aggregate used was sintered fly ash. The concretes were reinforced with either polypropylene or steel fibres. The fibres did not affect the compressive strength, but did increase the tensile strength of these concretes. The modulus of elasticity of all the lightweight concretes tested was about 21 GPa, compared to 35 GPa for the normal-weight concrete. Fibre reinforcement did not affect the value of the elastic modulus. This type of lightweight concrete, containing fly ash as 23% of the total cementitious content, resulted in long-term shrinkage that is nearly twice as large as normal-weight concrete of somewhat similar strength. Polypropylene fibre reinforcement did not reduce drying shrinkage, while steel fibres did. Early shrinkage behavior of this type of lightweight concrete was similar to normal-weight concrete. However, the rate of shrinkage of the lightweight concrete remained constant until nearly 100 days of drying. This is different from normal-weight concrete that showed appreciably after 56 days. Shrinkage of normal-weight concrete stabilized after 400 days, which shrinkage of lightweight concrete did not appear to stabilize after a similar period of continuous drying.

  4. Novel controller design for plants with relay nonlinearity to reduce amplitude of sustained oscillations: Illustration with a fractional controller.

    PubMed

    Kesarkar, Ameya Anil; Selvaganesan, N; Priyadarshan, H

    2015-07-01

    This paper proposes a novel constrained optimization problem to design a controller for plants containing relay nonlinearity to reduce the amplitude of sustained oscillations. The controller is additionally constrained to satisfy desirable loop specifications. The proposed formulation is validated by designing a fractional PI controller for a plant with relay.

  5. Improving transport container design to reduce broiler chicken PSE (pale, soft, exudative) meat in Brazil.

    PubMed

    Spurio, Rafael S; Soares, Adriana L; Carvalho, Rafael H; Silveira Junior, Vivaldo; Grespan, Moisés; Oba, Alexandre; Shimokomaki, Massami

    2016-02-01

    Throughout the chicken production chain, transport from farm to the commercial abattoir is one of the most critical sources of stress, particularly heat stress. The aim of this work was to describe the performance of a new prototype truck container designed to improve the microenvironment and reduce the incidence of pale, soft and exudative (PSE) meat and dead on arrival (DOA) occurrences. Experiments were carried out for four different conditions: regular and prototype truck, both with and without wetting loaded cages at the farm (for bird thermal stress relief) just before transporting. While there was no difference in the DOA index (P ≥ 0.05), the prototype truck caused a reduction (P < 0.05) in the occurrence of PSE meat by 66.3% and 49.6% with and without wetting, respectively. The results of this experiment clearly revealed a low-cost solution for transporting chickens that yields better animal welfare conditions and improves meat quality.

  6. How to Design an Opioid Drug That Causes Reduced Tolerance and Dependence

    PubMed Central

    Berger, Amy Chang; Whistler, Jennifer L.

    2010-01-01

    Mu opioid receptor (MOR) agonists such as morphine are extremely effective treatments for acute pain. In the setting of chronic pain, however, their long-term utility is limited by the development of tolerance and physical dependence. Drug companies have tried to overcome these problems by simply “dialing up” signal transduction at the receptor, designing more potent and efficacious agonists and more long-lasting formulations. Neither of these strategies has proven to be successful, however, because the net amount of signal transduction, particularly over extended periods of drug use, is a product of much more than the pharmacokinetic properties of potency, efficacy, half-life, and bioavailability, the mainstays of traditional pharmaceutical screening. Both the quantity and quality of signal transduction are influenced by many regulated processes, including receptor desensitization, trafficking, and oligomerization. Importantly, the efficiency with which an agonist first stimulates signal transduction is not necessarily related to the efficiency with which it stimulates these other processes. Here we describe recent findings that suggest MOR agonists with diminished propensity to cause tolerance and dependence can be identified by screening drugs for the ability to induce MOR desensitization, endocytosis, and recycling. We also discuss preliminary evidence that heteromers of the delta opioid receptor and the MOR are pronociceptive, and that drugs that spare such heteromers may also induce reduced tolerance. PMID:20437553

  7. Survey of Technical Preventative Measures to Reduce Whole-Body Vibration Effects when Designing Mobile Machinery

    NASA Astrophysics Data System (ADS)

    DONATI, P.

    2002-05-01

    Engineering solutions to minimize the effects on operators of vibrating mobile machinery can be conveniently grouped into three areas: Reduction of vibration at source by improvement of the quality of terrain, careful selection of vehicle or machine, correct loading, proper maintenance, etc.Reduction of vibration transmission by incorporating suspension systems (tyres, vehicle suspensions, suspension cab and seat) between the operator and the source of vibration.Improvement of cab ergonomics and seat profiles to optimize operator posture. These paper reviews the different techniques and problems linked to categories (2) and (3). According to epidemiological studies, the main health risk with whole-body vibration exposure would appear to be lower back pain. When designing new mobile machinery, all factors which may contribute to back injury should be considered in order to reduce risk. For example, optimized seat suspension is useless if the suspension seat cannot be correctly and easily adjusted to the driver's weight or if the driver is forced to drive in a bent position to avoid his head striking the ceiling due to the spatial requirement of the suspension seat.

  8. Performance Evaluation of Concrete using Marble Mining Waste

    NASA Astrophysics Data System (ADS)

    Kore, Sudarshan Dattatraya; Vyas, A. K.

    2016-12-01

    A huge amount waste (approximately 60%) is generated during mining and processing in marble industries. Such waste can be best utilized in infrastructure development works. Coarse aggregate 75% by weight was replaced by aggregate obtained from marble mining waste. The impact of marble waste as a partial replacement for conventional coarse aggregate on the properties of concrete mixes such as workability, compressive strength, permeability, abrasion, etc. was evaluated. The test results revealed that the compressive strength was comparable to that of control concrete. Other properties such as workability of concrete increased, water absorption reduced by 17%, and resistance to abrasion was marginally increased by 2% as compared to that of control concrete. Ultrasonic pulse velocity and FTIR results show improvement in quality of concrete with crushed marble waste. From the TGA analysis it was confirmed that, aggregate produced from marble waste shows better performance under elevated temperature than that of conventional aggregates.

  9. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  10. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  11. Concrete Block Pavements

    DTIC Science & Technology

    1983-03-01

    1967, Cedergren 1974, Federal Highway .’,U .. V,47 -’":: 37 Administration 1980). Block pavements have essentially the same prob- lems with moisture...Vicksburg, Miss. Cedergren , H. R. 1974. Drainage of Highway and Airfield Pavements, John Wiley and Sons, New VOk. I Cement and Concrete Association

  12. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  13. Micromechanics of Concrete.

    DTIC Science & Technology

    1988-01-25

    reflects the dispersion of the coarse aggregates on the mesoscale. Specifically, the experimental measure- ments indicate ( Mindess and Young 1981, Zaitsev...Mecanique des Materiaux Solides, Dunod, Paris. Mindess , S. and J. Young (1981), Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ. Mura, T. (1982

  14. Biodeterioration of concrete piling in the Arabian Gulf

    SciTech Connect

    Jadkowski, T.K.; Wiltsie, E.A.

    1985-03-01

    Concrete is one of the most widely used materials in marine construction because of its characteristic durability in sea environments. Recent inspection of concrete piles installed in the Arabian Gulf has revealed that concrete with high content of calcareous aggregate is susceptible to biodeterioration. Marine rock borers and sponges, which are common in areas where the seabed is composed of limestone rock, have been identified as the marine species responsible for the biodeterioration. Boring organisms pose a significant threat to concrete pile structural integrity. Boreholes deteriorate concrete and expose outer pile reinforcement to seawater. This paper describes the causes and magnitude of biodeterioration of piles installed in the Arabian Gulf and presents design parameters and material specifications for the selected preventive repair system.

  15. Application of Composite Mechanics to Composites Enhanced Concrete Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Gotsis, Pascal K.

    2006-01-01

    A new and effective method is described to design composites to repair damage or enhance the overload strength of concrete infrastructures. The method is based on composite mechanics which is available in computer codes. It is used to simulate structural sections made from reinforced concrete which are typical in infrastructure as well as select reinforced concrete structures. The structural sections are represented by a number of layers through the thickness where different layers are used in concrete, and for the composite. The reinforced concrete structures are represented with finite elements where the element stiffness parameters are from the structural sections which are represented by composite mechanics. The load carrying capability of the structure is determined by progressive structural fracture. Results show up to 40 percent improvements for damage and for overload enhancement with relatively small laminate thickness for the structural sections and up to three times for the composite enhanced select structures (arches and domes).

  16. Friction evaluation of concrete paver blocks for airport pavement applications

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1992-01-01

    The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.

  17. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  18. Integrated Design and Analysis Tools for Reduced Weight, Affordable Fiber Steered Composites

    DTIC Science & Technology

    2007-11-02

    Design Process Flow using FS Conceptual Design. FS conceptual design can be implemented in the process flow or CAD/CAM/ CAE for FP technology, as...described in Section 3.4. Figure 3.13: Process flow or CAD/CAM/ CAE for FP technology with the implementations of Fiber...80 3.1.3 FP Design Process Flow using FS Conceptual Design............................................... 85 3.1.4 Technical

  19. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  20. Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete.

    PubMed

    Shi, X S; Collins, F G; Zhao, X L; Wang, Q Y

    2012-10-30

    Six mixtures with different recycled aggregate (RA) replacement ratios of 0%, 50% and 100% were designed to manufacture recycled aggregate concrete (RAC) and alkali-activated fly ash geopolymeric recycled concrete (GRC). The physical and mechanical properties were investigated indicating different performances from each other. Optical microscopy under transmitted light and scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDX) were carried out in this study in order to identify the mechanism underlying the effects of the geopolymer and RA on concrete properties. The features of aggregates, paste and interfacial transition zone (ITZ) were compared and discussed. Experimental results indicate that using alkali-activated fly ash geopolymer as replacement of ordinary Portland cement (OPC) effectively improved the compressive strength. With increasing of RA contents in both RAC and GRC, the compressive strength decreased gradually. The microstructure analysis shows that, on one hand, the presence of RA weakens the strength of the aggregates and the structure of ITZs; on the other hand, due to the alkali-activated fly ash in geopolymer concrete, the contents of Portlandite (Ca(OH)(2)) and voids were reduced, as well as improved the matrix homogeneity. The microstructure of GRC was changed by different reaction products, such as aluminosilicate gel.

  1. Effect of Surrogate Aggregates on the Thermal Conductivity of Concrete at Ambient and Elevated Temperatures

    PubMed Central

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100°C during heating to ~800°C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m−1 K−1. The surrogate aggregates effectively reduce the conductivity to ~1.25 W m−1 K−1 at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating. PMID:24696666

  2. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures.

    PubMed

    Yun, Tae Sup; Jeong, Yeon Jong; Youm, Kwang-Soo

    2014-01-01

    The accurate assessment of the thermal conductivity of concretes is an important part of building design in terms of thermal efficiency and thermal performance of materials at various temperatures. We present an experimental assessment of the thermal conductivity of five thermally insulated concrete specimens made using lightweight aggregates and glass bubbles in place of normal aggregates. Four different measurement methods are used to assess the reliability of the thermal data and to evaluate the effects of the various sensor types. The concrete specimens are also assessed at every 100 °C during heating to ~800 °C. Normal concrete is shown to have a thermal conductivity of ~2.25 W m(-1) K(-1). The surrogate aggregates effectively reduce the conductivity to ~1.25 W m(-1) K(-1) at room temperature. The aggregate size is shown not to affect thermal conduction: fine and coarse aggregates each lead to similar results. Surface contact methods of assessment tend to underestimate thermal conductivity, presumably owing to high thermal resistance between the transducers and the specimens. Thermogravimetric analysis shows that the stages of mass loss of the cement paste correspond to the evolution of thermal conductivity upon heating.

  3. Development and construction of low-cracking high-performance concrete (LC-HPC) bridge decks: Free shrinkage tests, restrained ring tests, construction experience, and crack survey results

    NASA Astrophysics Data System (ADS)

    Yuan, Jiqiu

    2011-12-01

    specimens than those cured for a shorter period. The third portion of the study evaluates the cracking tendency of concrete mixtures using the restrained ring tests. Different concrete ring thicknesses and drying conditions have been tested. The results indicate that specimens with thinner concrete rings crack earlier than those with thicker concrete rings. Exposing specimens to severe drying conditions results in the earlier formation of cracks, although it does not result in increased crack width. Mixtures with a lower water-cement (w/c) ratio crack earlier than mixtures with a higher w/c ratio. Concretes with a higher paste content crack earlier than concretes with a lower paste content. The final portion of the study details the development, construction, and preliminary performance (with most bridges at three years of age) of LC-HPC and control bridge decks in Kansas. The results indicate that the techniques embodied in the LC-HPC bridge deck specifications are easy to learn. Contractor personnel can be trained in a relatively short time. The techniques used for LC-HPC bridge decks are effective in reducing bridge deck cracking. The crack surveys indicate that LC-HPC bridge decks are performing much better than the control decks, with average crack densities reduced by about seventy five percent at three years of age. The factors that may affect bridge deck cracking are analyzed. The analyses indicate that an increase in paste content, slump, compressive strength, maximum daily air temperature, and daily air temperature range causes increased crack densities. Contractor techniques influence cracking. Keywords: bridge construction, bridge deck, contractor, concrete mix design, compressive strength, cracking, curing, evaporable water, fly ash, free shrinkage, high-performance concrete, non-evaporable water, paste content, restrained shrinkage, restrained ring tests, shrinkage reducing admixture, slump

  4. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  5. Dataset of producing and curing concrete using domestic treated wastewater.

    PubMed

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2016-03-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m(3) of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m(3) of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96-100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m(3) of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water.

  6. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  7. Self-assembling particle-siloxane coatings for superhydrophobic concrete.

    PubMed

    Flores-Vivian, Ismael; Hejazi, Vahid; Kozhukhova, Marina I; Nosonovsky, Michael; Sobolev, Konstantin

    2013-12-26

    We report here, for the first time in the literature, a method to synthesize hydrophobic and superhydrophobic concrete. Concrete is normally a hydrophilic material, which significantly reduces the durability of concrete structures and pavements. To synthesize water-repellent concrete, hydrophobic emulsions were fabricated and applied on portland cement mortar tiles. The emulsion was enriched with the polymethyl-hydrogen siloxane oil hydrophobic agent as well as metakaolin (MK) or silica fume (SF) to induce the microroughness and polyvinyl alcohol (PVA) fibers to create hierarchical surfaces. Various emulsion types were investigated by using different mixing procedures, and single- and double-layer hydrophobic coatings were applied. The emulsions and coatings were characterized with optical microscope and scanning electron microscope (SEM), and their wetting properties, including the water contact angle (CA) and roll-off angle, were measured. A theoretical model for coated and non-coated concrete, which can be generalized for other types of materials, was developed to predict the effect of surface roughness and composition on the CA. An optimized distance between the aggregates was found where the CA has the highest value. The maximal CA measured was 156° for the specimen with PVA fibers treated with MK based emulsion. Since water penetration is the main factor leading to concrete deterioration, hydrophobic water-repellent concretes have much longer durability then regular concretes and can have a broad range of applications in civil and materials engineering.

  8. Performance of Lightweight Concrete based on Granulated Foamglass

    NASA Astrophysics Data System (ADS)

    Popov, M.; Zakrevskaya, L.; Vaganov, V.; Hempel, S.; Mechtcherine, V.

    2015-11-01

    The paper presents an investigation of lightweight concretes properties, based on granulated foamglass (GFG-LWC) aggregates. The application of granulated foamglass (GFG) in concrete might significantly reduce the volume of waste glass and enhance the recycling industry in order to improve environmental performance. The conducted experiments showed high strength and thermal properties for GFG-LWC. However, the use of GFG in concrete is associated with the risk of harmful alkali-silica reactions (ASR). Thus, one of the main aims was to study ASR manifestation in GFG-LWC. It was found that the lightweight concrete based on porous aggregates, and ordinary concrete, have different a mechanism of ASR. In GFG-LWC, microstructural changes, partial destruction of granules, and accumulation of silica hydro-gel in pores were observed. According to the existing methods of analysis of ASR manifestation in concrete, sample expansion was measured, however, this method was found to be not appropriate to indicate ASR in concrete with porous aggregates. Microstructural analysis and testing of the concrete strength are needed to evaluate the damage degree due to ASR. Low-alkali cement and various pozzolanic additives as preventive measures against ASR were chosen. The final composition of the GFG-LWC provides very good characteristics with respect to compressive strength, thermal conductivity and durability. On the whole, the potential for GFG-LWC has been identified.

  9. Dataset of producing and curing concrete using domestic treated wastewater

    PubMed Central

    Asadollahfardi, Gholamreza; Delnavaz, Mohammad; Rashnoiee, Vahid; Fazeli, Alireza; Gonabadi, Navid

    2015-01-01

    We tested the setting time of cement, slump and compressive and tensile strength of 54 triplicate cubic samples and 9 cylindrical samples of concrete with and without a Super plasticizer admixture. We produced concrete samples made with drinking water and treated domestic wastewater containing 300, 400 kg/m3 of cement before chlorination and then cured concrete samples made with drinking water and treated wastewater. Second, concrete samples made with 350 kg/m3 of cement with a Superplasticizer admixture made with drinking water and treated wastewater and then cured with treated wastewater. The compressive strength of all the concrete samples made with treated wastewater had a high coefficient of determination with the control concrete samples. A 28-day tensile strength of all the samples was 96–100% of the tensile strength of the control samples and the setting time was reduced by 30 min which was consistent with a ASTMC191 standard. All samples produced and cured with treated waste water did not have a significant effect on water absorption, slump and surface electrical resistivity tests. However, compressive strength at 21 days of concrete samples using 300 kg/m3 of cement in rapid freezing and thawing conditions was about 11% lower than concrete samples made with drinking water. PMID:26862577

  10. Structural design space definition using neural networks and a reduced knowledge base

    NASA Astrophysics Data System (ADS)

    Batill, S. M.; Swift, R. A.

    1993-02-01

    A neural network application to preliminary structural design is presented. This application involved the recursive training of a neural network in order to represent the design space of a structural concept using the minimum amount of detailed, and expensive, information. The resulting neural network was used to determine the influence of various configurational design variables on structural performance. Minimizing the required neural network training data is an important goal. This approach was applied to two design problems; the configurational design of a 10 bar truss for minimum weight, and the configurational design of a four spar light aircraft wing-box with weight, displacement, and natural frequency as the constraints/objective functions. In both examples, design information obtained from a set of fully-stressed designs was used to train the neural network representation of the design space. The ability of the neural network to accurately and effectively predict structural behavior is demonstrated.

  11. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    approximate the 3-D concrete surface profiles. The errors were reduced when a weighted average of the four linear profiles approximated the corresponding 3-D parameter. The following chapter considers the parametric and sensitivity of concrete surface topography measurements. The weighted average of the four 2-D profiles consistently resulted in underestimation of the corresponding 3-D parameters: the dispersion of surface elevations (Sq) and the roughness (Sa). Results indicated the 3-D parameter, Sq, had the least sensitivity to data point reduction. The final chapter investigated surface modification using dry ice and sand blasting. The overall objective was to evaluate the change in the 3-D surface roughness (Sa) following blasting as functions of mix design and as induced by freeze-thaw cycling, and to compare the results obtained using dry ice with those obtained using sand as the blasting media. In general, sand blasting produced larger changes in Sa compared to dry ice blasting for the concrete mix designs considered. The primary mechanism responsible for altering the surface topography of the concrete was the scaling of the superficial cement paste layer on the exposed surface, which was due to freeze-thaw cycling. The largest relative change in roughness following blasting occurred in the control samples, which had not undergone freeze-thaw cycling.

  12. Innovative technology summary report: Concrete grinder

    SciTech Connect

    1998-09-01

    The Flex concrete grinder is a lightweight, hand-held concrete and coating removal system used for decontaminating or stripping concrete surfaces. The US Department of Energy has successfully demonstrated it for decontaminating walls and floors for free release surveys prior to demolition work. The grinder is an electric-powered tool with a vacuum port for dust extraction and a diamond grinding wheel. The grinder is suitable for flat or slightly curved surfaces and results in a smooth surface, which makes release surveys more reliable. The grinder is lightweight and produces very little vibration, thus reducing worker fatigue. The grinder is more efficient than traditional baseline, tools at removing contamination from concrete surfaces (more than four times faster than hand-held pneumatic scabbling and scaling tools). Grinder consumables (i.e., replacement diamond grinding wheel) are more expensive than the replacement carbide parts for the scaler and scabbler. However, operating costs are outweighed by the lower purchase price of the grinder (50% of the price of the baseline scaler and 8% of the price of the baseline scabbler). Overall, the concrete grinder is an attractive alternative to traditional scabbling and scaling pneumatic tools. To this end, in July 1998, the outer rod room exposed walls of the Safe Storage Enclosure (SSE), an area measuring approximately 150 m{sup 2}, may be decontaminated with the hand-held grinder. This concrete grinder technology was demonstrated for the first time at the DOE`s Hanford Site. Decontamination of a sample room walls was performed at the C Reactor to free release the walls prior to demolition. The demonstration was conducted by onsite D and D workers, who were instructed by the vendor prior to and during the demonstration.

  13. Elasticity Modulus and Flexural Strength Assessment of Foam Concrete Layer of Poroflow

    NASA Astrophysics Data System (ADS)

    Hajek, Matej; Decky, Martin; Drusa, Marian; Orininová, Lucia; Scherfel, Walter

    2016-10-01

    Nowadays, it is necessary to develop new building materials, which are in accordance to the principles of the following provisions of the Roads Act: The design of road is a subject that follows national technical standards, technical regulations and objectively established results of research and development for road infrastructure. Foam concrete, as a type of lightweight concrete, offers advantages such as low bulk density, thermal insulation and disadvantages that will be reduced by future development. The contribution focuses on identifying the major material characteristics of foam concrete named Poroflow 17-5, in order to replace cement-bound granular mixtures. The experimental measurements performed on test specimens were the subject of diploma thesis in 2015 and continuously of the dissertation thesis and grant research project. At the beginning of the contribution, an overview of the current use of foam concrete abroad is elaborated. Moreover, it aims to determine the flexural strength of test specimens Poroflow 17-5 in combination with various basis weights of the underlying geotextile. Another part of the article is devoted to back-calculation of indicative design modulus of Poroflow based layers based on the results of static plate load tests provided at in situ experimental stand of Faculty of Civil Engineering, University of Žilina (FCE Uniza). Testing stand has been created in order to solve problems related to research of road and railway structures. Concern to building construction presents a physical homomorphic model that is identical with the corresponding theory in all structural features. Based on the achieved material characteristics, the tensile strength in bending of previously used road construction materials was compared with innovative alternative of foam concrete and the suitability for the base layers of pavement roads was determined.

  14. Concrete decontamination by electro-hydraulic scabbling (EHS). Final report

    SciTech Connect

    1997-10-01

    Contamination of concrete structures by radionuclides, hazardous metals and organic substances (including PCB`s) occurs at many DOE sites. The contamination of concrete structures (walls, floors, ceilings, etc.) varies in type, concentration, and especially depth of penetration into the concrete. In many instances, only the surface layer of concrete is contaminated, up to a depth of one inch, according to estimates provided in the R and D ID document. Then, removal of the concrete surface layer (scabbling) is considered to be the most effective decontamination method. Textron Systems Corp. (TSC) has developed a scabbling concept based on electro-mechanical phenomena accompanying strong electric pulses generated by applying high voltage at the concrete/water interface. Depending on the conditions, the electric discharge may occur either through a waste layer or through the concrete body itself. This report describes the development, testing, and results of this electro-mechanical process. Phase 1 demonstrated the feasibility of the process for the controlled removal of a thin layer of contaminated concrete. Phase 2 designed, fabricated, and tested an integrated subscale unit. This was tested at Fernald. In Phase 3, the scabbling unit was reconfigured to increase its power and processing rate. Technology transfer to an engineering contracting company is continuing.

  15. Reducing Work Content in Early Stage Naval Ship Designs (Briefing Charts)

    DTIC Science & Technology

    2014-05-14

    Model Schema – NAVSEA Ship Focus Object Model • Product Model Data T LEAPS Product Model Presentation Manager SHCP/L Intact and Damaged Stability...Design Space Exploration via HPCMP CREATE- Ships RSDE Generating The Space Concept Comparison Select window and type to add message. View / Edit...components • Flexibility must start at ship concept design 28 Value-Added Design Philosophy: Rigorous Exploration of Larger Design Solution Space Need

  16. 10 CFR 36.39 - Design requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... concrete and design the walls, wall penetrations, and entranceways to meet the radiation shielding... licensee shall design the reinforced concrete radiation shields to retain their integrity in the event of... Concrete Institute Standard ACI 318-89, “Building Code Requirements for Reinforced Concrete,” Chapter...

  17. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Garwan, M A; Nagadi, M M; Al-Amoudi, O S B; Raashid, M; Khateeb-ur-Rehman

    2010-03-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  18. Low permeability asphalt concrete gamma ray shielding properties.

    PubMed

    Binney, S E; Sykes, K L

    1997-01-01

    Energy-dependent gamma ray shielding properties were measured as a function of gamma ray energy for a low permeability asphalt concrete that is used as a cap to prevent water infiltration into radioactive waste sites. Experimental data were compared to ISO-PC point kernel shielding calculations. Calculated dose equivalent rates compared well with experimental values, especially considering the poor detector resolution involved. The shielding properties of the asphalt concrete closely resembled those of aluminum. The results presented can be used to determine the asphalt concrete thickness required to reduce dose equivalent rates from several gamma ray emitting radionuclides.

  19. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  20. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment)

    PubMed Central

    Kim, Tae Hyoung; Tae, Sung Ho

    2016-01-01

    This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP), and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS) thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO2 eq/m3, 28.7 kg-SO2 eq/m3, 5.21 kg-PO43− eq/m3, 0.000049 kg-CFC11 eq/m3, 34 kg/m3, and 21 kg-Ethylene eq/m3, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC) was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories. PMID:27827843

  1. Proposal of Environmental Impact Assessment Method for Concrete in South Korea: An Application in LCA (Life Cycle Assessment).

    PubMed

    Kim, Tae Hyoung; Tae, Sung Ho

    2016-11-02

    This study aims to develop a system for assessing the impact of the substances discharged from concrete production process on six environmental impact categories, i.e., global warming (GWP), acidification (AP), eutrophication (EP), abiotic depletion (ADP), ozone depletion (ODP), and photochemical oxidant creation (POCP), using the life a cycle assessment (LCA) method. To achieve this, this study proposed an LCA method specifically applicable to the Korean concrete industry by adapting the ISO standards to suit the Korean situations. The proposed LCA method involves a system that performs environmental impact assessment on the basis of input information on concrete mix design, transport distance, and energy consumption in a batch plant. The Concrete Lifecycle Assessment System (CLAS) thus developed provides user-friendly support for environmental impact assessment with specialized database for concrete mix materials and energy sources. In the case analysis using the CLAS, among the substances discharged from the production of 24 MPa concrete, those contributing to GWP, AP, EP, ADP, ODP, and POCP were assessed to amount to 309 kg-CO₂ eq/m³, 28.7 kg-SO₂ eq/m³, 5.21 kg-PO₄(3-) eq/m³, 0.000049 kg-CFC11 eq/m³, 34 kg/m³, and 21 kg-Ethylene eq/m³, respectively. Of these six environmental impact categories selected for the LCA in this study, ordinary Portland cement (OPC) was found to contribute most intensely to GWP and POCP, and aggregates, to AP, EP, ODP, and ADP. It was also found that the mix design with increased prop proportion of recycled aggregate was found to contribute to reducing the impact in all other categories.

  2. Concrete containment aging study

    SciTech Connect

    Pachner, J.; Tai, T.M.; Naus, D.

    1994-04-01

    In 1989, IAEA initiated a pilot study on the management of aging of nuclear power plant components. The Phase I and II studies of concrete containment are discussed. With the data base, plant owners will be able to review and enhance their existing programs. IAEA will analyze data provided by participating plants and the report is scheduled to be released by late 1994 (final report release mid-1995).

  3. Mechanics of Concrete II

    DTIC Science & Technology

    1990-10-18

    diffusivity of undamaged concrete is a problem in itself since the diffusivity of the thin transition zones (at the aggregate- cement matrix interface...C3A anhydride remains in the cement after the hydration. Assuming that the amount of gypsum added to portland cement3 clinker is 4% of Mcm (Biczok 1972...enables establishment of rational relationships between the chemical composition of the hardened cement paste, morphology of the pore system, and defect

  4. Tonsil concretions and tonsilloliths.

    PubMed

    Pruet, C W; Duplan, D A

    1987-05-01

    Although infrequently seen in many clinical practices, tonsillar concretions can be the source of both fetor oris and physical and social concern for the patient. Though stones rarely form in the tonsil or peritonsillar area, the findings of calcified objects or stones anywhere within the body has long been a subject of interest. The salient features of these entities and their relevance to clinical practice are discussed in this article.

  5. Nondestructive Concrete Characterization System

    DTIC Science & Technology

    2013-05-20

    Park, NC 27709-2211 15. SUBJECT TERMS Ultrasonic Pulse Velocity (UPV), Impact-Echo, Ultrasonic Pulse-Echo, Ultrasonic Attenuation, STTR Report Aldo... ultrasonic testing in conjunction with the resonance frequency. All results were within the specified tolerance of ±1 ft. The compressive strength of the...concrete blocks was measured by measuring the P-wave and S-wave time of travel with the pitch-catch method of ultrasonic testing. All results were

  6. CFD-based Design of LOX Pump Inlet Duct for Reduced Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Dorney, Daniel J.; Dorney, Suzanne M.

    2003-01-01

    Numerical simulations have been completed for a variety of designs for a 90 deg elbow duct. The objective is to identify a design that minimizes the dynamic load entering a LOX turbopump located at the elbow exit. Designs simulated to date indicate that simpler duct geometries result in lower losses. Benchmark simulations have verified that the compressible flow code used in this study is applicable to these incompressible flow simulations.

  7. CFD-Based Design of Turbopump Inlet Duct for Reduced Dynamic Loads

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry; Dorney, Suzanne M.; Dorney, Daniel J.

    2003-01-01

    Numerical simulations have been completed for a variety of designs for a 90 deg elbow duct. The objective is to identify a design that minimizes the dynamic load entering a LOX turbopump located at the elbow exit. Designs simulated to date indicate that simpler duct geometries result in lower losses. Benchmark simulations have verified that the compressible flow codes used in this study are applicable to these incompressible flow simulations.

  8. Gamma radiation shielding analysis of lead-flyash concretes.

    PubMed

    Singh, Kanwaldeep; Singh, Sukhpal; Dhaliwal, A S; Singh, Gurmel

    2014-11-04

    Six samples of lead-flyash concrete were prepared with lead as an admixture and by varying flyash content - 0%, 20%, 30%, 40%, 50% and 60% (by weight) by replacing cement and keeping constant w/c ratio. Different gamma radiation interaction parameters used for radiation shielding design were computed theoretically and measured experimentally at 662keV, 1173keV and 1332keV gamma radiation energy using narrow transmission geometry. The obtained results were compared with ordinary-flyash concretes. The radiation exposure rate of gamma radiation sources used was determined with and without lead-flyash concretes.

  9. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  10. Anodes for cathodic protection of reinforced concrete

    SciTech Connect

    S.J. Bullard; B.S. Covino, Jr.; S.D. Cramer; G.R. Holcomb; J.H. Russell

    2000-03-01

    Consumable anodes were evaluated in the laboratory for use in cathodic protection systems for steel reinforced concrete bridges in coastal environments and in areas where de-icing salts are employed. The anode materials include Zn-hydrogel and thermal-sprayed Zn, Zn-15Al, and Al-12Zn-0.2In. These anodes were evaluated for service in both galvanic (GCP) and impressed current (ICCP) cathodic protection systems. ICCP anodes were electrochemically aged at a factor of 15 times greater than used by the Oregon Department of Transportation in typical coastal ICCP systems (2.2 mA/m{sup 2} based on anode area). Increasing moisture at the anode-concrete interface reduced the operating voltage of all the anodes. The pH at the anode-concrete interface fell to 7 to 8.5 with electrochemical age. Bond strength between the anodes and concrete decreased with electrochemical aging. Interfacial chemistry was the critical link between long-term anode performance and electrochemical age. Zn-hydrogel and the rmal-sprayed Zn and Al-12Zn-0.2In GCP anodes appear to supply adequate protection current to rebar in the Cape Perpetua Viaduct.

  11. Seismic retrofitting of reinforced concrete frame structures using GFRP-tube-confined-concrete composite braces

    NASA Astrophysics Data System (ADS)

    Moghaddasi B., Nasim S.; Zhang, Yunfeng; Hu, Xiaobin

    2012-03-01

    This paper presents a new type of structural bracing intended for seismic retrofitting use in framed structures. This special composite brace, termed glass-fiber-reinforced-polymer (GFRP)-tube-confined-concrete composite brace, is comprised of concrete confined by a GFRP tube and an inner steel core for energy dissipation. Together with a contribution from the GFRP-tube confined concrete, the composite brace shows a substantially increased stiffness to control story drift, which is often a preferred feature in seismic retrofitting. An analysis model is established and implemented in a general finite element analysis program — OpenSees, for simulating the load-displacement behavior of the composite brace. Using this model, a parametric study of the hysteretic behavior (energy dissipation, stiffness, ductility and strength) of the composite brace was conducted under static cyclic loading and it was found that the area ratio of steel core to concrete has the greatest influence among all the parameters considered. To demonstrate the application of the composite brace in seismic retrofitting, a three-story nonductile reinforced concrete (RC) frame structure was retrofitted with the composite braces. Pushover analysis and nonlinear time-history analyses of the retrofitted RC frame structure was performed by employing a suite of 20 strong ground motion earthquake records. The analysis results show that the composite braces can effectively reduce the peak seismic responses of the RC frame structure without significantly increasing the base shear demand.

  12. Self Healing Concrete: A Biological Approach

    NASA Astrophysics Data System (ADS)

    Jonkers, Henk M.

    Concrete can be considered as a kind of artificial rock with properties more or less similar to certain natural rocks. As it is strong, durable, and relatively cheap, concrete is, since almost two centuries, the most used construction material worldwide, which can easily be recognized as it has changed the physiognomy of rural areas. However, due to the heterogeneity of the composition of its principle components, cement, water, and a variety of aggregates, the properties of the final product can widely vary. The structural designer therefore must previously establish which properties are important for a specific application and must choose the correct composition of the concrete ingredients in order to ensure that the final product applies to the previously set standards. Concrete is typically characterized by a high-compressive strength, but unfortunately also by a rather low-tensile strength. However, through the application of steel or other material reinforcements, the latter can be compensated for as such reinforcements can take over tensile forces.

  13. Concrete sandwich construction for energy conservation. Final report, October 1975-September 1978

    SciTech Connect

    Keeton, J.R.

    1980-03-01

    An abbreviated research study on use of shrinkage-compensating expansive concrete in sandwich-type wall and roof panels containing insulation at mid-thickness is described. The use of expansive concrete is shown to be a technically viable concept for eliminating shrinkage cracking, thus preventing moisture penetration which can reduce insulation effectiveness, cause deterioration of the insulating material, and accelerate steel corrosion. Embeddable resistance strain gages proved to be reliable for measuring expansion and subsequent shrinkage of the experimental panels. As a result of this study, a comprehensive research program is proposed for experimental verification of design and field control measures that will permit the use of shrinkage-compensating cement mortars in sandwich panel construction.

  14. Promoting the use of crumb rubber concrete in developing countries.

    PubMed

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.

  15. Design-of-experiments to Reduce Life-cycle Costs in Combat Aircraft Inlets

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Baust, Henry D.; Agrell, Johan

    2003-01-01

    It is the purpose of this study to demonstrate the viability and economy of Design- of-Experiments (DOE), to arrive at micro-secondary flow control installation designs that achieve optimal inlet performance for different mission strategies. These statistical design concepts were used to investigate the properties of "low unit strength" micro-effector installation. "Low unit strength" micro-effectors are micro-vanes, set a very low angle-of incidence, with very long chord lengths. They are designed to influence the neat wall inlet flow over an extended streamwise distance. In this study, however, the long chord lengths were replicated by a series of short chord length effectors arranged in series over multiple bands of effectors. In order to properly evaluate the performance differences between the single band extended chord length installation designs and the segmented multiband short chord length designs, both sets of installations must be optimal. Critical to achieving optimal micro-secondary flow control installation designs is the understanding of the factor interactions that occur between the multiple bands of micro-scale vane effectors. These factor interactions are best understood and brought together in an optimal manner through a structured DOE process, or more specifically Response Surface Methods (RSM).

  16. Fiber reinforced concrete solar collector

    SciTech Connect

    Slemmons, A. J.; Newgard, P. J.

    1985-05-07

    A solar collector is disclosed comprising a glass member having a solar selective coating thereon, and a molded, glass-reinforced concrete member bonded to the glass member and shaped to provide a series of passageways between the glass member and the fiber-reinforced concrete member capable of carrying heat exchanging fluid therethrough. The fiber-reinforced concrete member may be formed by spraying a thin layer of concrete and chopped fibers such as chopped glass fibers onto a mold to provide an inexpensive and lightweight, thin-walled member. The fiber-reinforced concrete member may have a lightweight cellular concrete backing thereon for insulation purposes. The collector is further characterized by the use of materials which have substantially matching thermal coefficients of expansion over the temperature range normally encountered in the use of solar collectors.

  17. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  18. The jet engine design that can drastically reduce oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Agnone, A.

    1974-01-01

    The problem is analyzed for the case of hydrogen fuel, taking into account supersonic and hypersonic vehicles using scramjet engines. The combustion in scramjets occurs at very high velocity and in a short time. In scramjet combustor designs, two different criteria can be used to design the engine. The amount of NO formed in the diffusion flame depends substantially on the maximum temperature reached. Effects of changing the mode of combustion from a diffusion flame to a heat conduction flame are considered, giving attention to the amount of NO produced in an engine of a given design.

  19. Reducing Printed Circuit Board Emissions with Low-Noise Design Practices

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.

    2012-01-01

    This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.

  20. Latex Admixtures for Portland Cement Concrete and Mortar

    DTIC Science & Technology

    1986-07-01

    REPAIR, EVALUATION, MAINTENANCE, AND REHABILITATION RESEARCH PROGRAM TECHNICAL REPORT REMR-CS-3 LATEX ?uJIV11XTURES t-OR PORTLAND CEMENT CONCRETE ...designating technical reports of research published under the Repair, Evaluation, Maintenance, and Rehabilitation (REMR) Research Program identify the...problem area under which the report was prepared: cs GT HY Problem Area Concrete and Steel Structures Geotechnical Hydraulics EM El OM Problem

  1. Concentrated coal plant wastes contained with concrete cutoff

    SciTech Connect

    Not Available

    1984-03-01

    A 3-mile concrete cutoff wall around a huge scrubber-waste-disposal basin is being constructed in southeastern Montana. The $25-million cutoff is designed to seal highly pervious layers of baked shale surrounding the pond, protecting scarce groundwater reserves from the scrubber slurry generated by a power station 3 miles away. Groundwater contamination concerns led to the decision for the cutoff, which is made from interlocking concrete panels.

  2. BIOREACTOR ECONOMICS, SIZE AND TIME OF OPERATION (BEST) COMPUTER SIMULATOR FOR DESIGNING SULFATE-REDUCING BACTERIA FIELD BIOREACTORS

    EPA Science Inventory

    BEST (bioreactor economics, size and time of operation) is an Excel™ spreadsheet-based model that is used in conjunction with the public domain geochemical modeling software, PHREEQCI. The BEST model is used in the design process of sulfate-reducing bacteria (SRB) field bioreacto...

  3. Enjoyment and Perceived Value of Two School-Based Interventions Designed To Reduce Risk Factors for Eating Disorders in Adolescents.

    ERIC Educational Resources Information Center

    Wade, Tracey D.; Davidson, Susan; O'Dea, Jennifer A.

    2002-01-01

    Investigates the enjoyment and perceived value associated with two interventions designed to reduce risk factors for eating disorders in young adolescents, a media literacy program or a self-esteem program. Overall, the media literacy program was the intervention preferred by students. Students in both interventions said that they had learnt to…

  4. Fire Resistance of Geopolymer Concretes

    DTIC Science & Technology

    2010-03-21

    1 Project report – Grant FA23860814096, "Fire resistance of geopolymer concretes" – J. Provis, University of Melbourne 1. Background and...experimental program This project provided funding for us to carry out fire testing of geopolymer concrete specimens and associated laboratory...testing. The focus of this report will be the outcomes of the series of pilot-scale (4’×4’×6”) tests on geopolymer concrete panels, which were conducted

  5. Design of the reduced LQG compensator for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W.

    1993-01-01

    A linear-quadratic-Gaussian (LQG) compensator design procedure is proposed for the DSS-13 antenna. The procedure is based on two properties. It is shown that tracking and flexible motion of the antenna are almost independent (the separation property). As a consequence, compensators for the flexible and tracking parts can be designed separately. It is shown also that the balanced LQG compensator's effort is evenly divided between the controller and the estimator. This allows a minimization of the compensator order, which is important for implementation purposes. An efficient compensator reduction procedure that gives a stable low-order compensator of satisfactory performance is introduced. This approach is illustrated with a detailed compensator design for the DSS-13 antenna. The implementation of this compensator design requires an update of the antenna model.

  6. Toward Reduced Aircraft Community Noise Impact Via a Perception-Influenced Design Approach

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.

    2016-01-01

    This is an exciting time for aircraft design. New configurations, including small multi-rotor uncrewed aerial systems, fixed- and tilt-wing distributed electric propulsion aircraft, high-speed rotorcraft, hybrid-electric commercial transports, and low-boom supersonic transports, are being made possible through a host of propulsion and airframe technology developments. The resulting noise signatures may be radically different, both spectrally and temporally, than those of the current fleet. Noise certification metrics currently used in aircraft design do not necessarily reflect these characteristics and therefore may not correlate well with human response. Further, as operations and missions become less airport-centric, e.g., those associated with on-demand mobility or package delivery, vehicles may operate in closer proximity to the population than ever before. Fortunately, a new set of tools are available for assessing human perception during the design process in order to affect the final design in a positive manner. The tool chain utilizes system noise prediction methods coupled with auralization and psychoacoustic testing, making possible the inclusion of human response to noise, along with performance criteria and certification requirements, into the aircraft design process. Several case studies are considered to illustrate how this approach could be used to influence the design of future aircraft.

  7. Coating concrete secondary containment structures exposed to agrichemicals

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.

    1995-06-01

    Concrete has traditionally been the material of choice for building secondary containment structures because it is relatively inexpensive and has structural properties which make it ideal for supporting the loads of vehicles and large tanks. However, concrete`s chemical properties make it susceptible to corrosion by some common fertilizers. Though fairly impervious to water movement, concrete is easily penetrated by vapors and solvents. It is also prone to cracking. For these reasons, the Environmental Protection Agency (EPA) believes that concrete alone may not provide an effective barrier to pesticide movement and has proposed that concrete in pesticide secondary containment structures be sealed or coated to reduce its permeability. Some state secondary containment regulations require that concrete exposed to fertilizers and pesticides be sealed or protected with a coating. Lacking guidelines, some retailers have used penetrating sealants to satisfy the law, even though these products provide little protection from chemical attack nor do they prevent pesticide egress. Other retailers who have applied thick film coatings which were properly selected have had disastrous results because the application was poorly done. Consequently, much skepticism exists regarding the performance and benefit of protective coatings.

  8. Demonstration recommendations for accelerated testing of concrete decontamination methods

    SciTech Connect

    Dickerson, K.S.; Ally, M.R.; Brown, C.H.; Morris, M.I.; Wilson-Nichols, M.J.

    1995-12-01

    A large number of aging US Department of Energy (DOE) surplus facilities located throughout the US require deactivation, decontamination, and decommissioning. Although several technologies are available commercially for concrete decontamination, emerging technologies with potential to reduce secondary waste and minimize the impact and risk to workers and the environment are needed. In response to these needs, the Accelerated Testing of Concrete Decontamination Methods project team described the nature and extent of contaminated concrete within the DOE complex and identified applicable emerging technologies. Existing information used to describe the nature and extent of contaminated concrete indicates that the most frequently occurring radiological contaminants are {sup 137}Cs, {sup 238}U (and its daughters), {sup 60}Co, {sup 90}Sr, and tritium. The total area of radionuclide-contaminated concrete within the DOE complex is estimated to be in the range of 7.9 {times} 10{sup 8} ft{sup 2}or approximately 18,000 acres. Concrete decontamination problems were matched with emerging technologies to recommend demonstrations considered to provide the most benefit to decontamination of concrete within the DOE complex. Emerging technologies with the most potential benefit were biological decontamination, electro-hydraulic scabbling, electrokinetics, and microwave scabbling.

  9. Sustainable construction: Composite use of tyres and ash in concrete

    SciTech Connect

    Snelson, D.G.; Kinuthia, J.M.; Davies, P.A.; Chang, S.R.

    2009-01-15

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20 mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  10. Sustainable construction: composite use of tyres and ash in concrete.

    PubMed

    Snelson, D G; Kinuthia, J M; Davies, P A; Chang, S-R

    2009-01-01

    An investigation was carried out to establish the physical, mechanical and chemical characteristics of a non-standard (unprocessed) pulverised fuel ash (PFA) and waste tyres from a former landfill site at the Power Station Hill near Church Village, South Wales, United Kingdom. Investigations are on-going to establish the suitability of the fly ash and/or tyres in road construction (embankment and pavement) and also in concrete to be used in the construction of the proposed highway. This paper reports on concrete-based construction where concrete blends (using various levels of PFA as partial replacement for Portland cement (PC), and shredded waste tyres (chips 15-20mm) as aggregate replacement) were subjected to unconfined compressive strength tests to establish performance, hence, optimising mix designs. Strength development up to 180 days for the concrete made with PC-PFA blends as binders (PC-PFA concrete), with and without aggregate replacement with tyre chips, is reported. The binary PC-PFA concrete does not have good early strength but tends to improve at longer curing periods. The low early strength observed means that PC-PFA concrete cannot be used for structures, hence, only as low to medium strength applications such as blinding, low-strength foundations, crash barriers, noise reduction barriers, cycle paths, footpaths and material for pipe bedding.

  11. Criteria for Asphalt-Rubber Concrete in Civil Airport Pavements. Volume 2. Evaluation of Asphalt-Rubber Concrete.

    DTIC Science & Technology

    1987-03-01

    194 ix LIST OF TABLES Table Page 1 1977 FAA Aggregate Grading Band for Bituminous Surface Course with 1/2" (12.5m) Maximum Particle Size* ...... 6 2...Asphalt Concrete and Asphalt-Rubber Concrete. . . . . . . . . . . . . . . . . . . . . . . . . 106 xi LIST OF FthJiJRf1 Figure Page 1 1977 FAA...were blended to meet the 1977 FAA aggregate grading specification for pavements with a bituminous surface course and designed to accommodate aircraft

  12. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  13. Radar sensitivity and resolution in presence of range sidelobe reducing networks designed using linear programming

    NASA Astrophysics Data System (ADS)

    Bicocchi, R.; Melacci, P. T.; Bucciarelli, T.

    1984-06-01

    The design of a sidelobe-reduction network for coherent high-resolution radars using Barker codes and the results of an analytical investigation of its performance are presented and illustrated graphically. Compression is achieved by a matched filter followed by a weighting network designed using linear programming to minimize the implementation to adapt to different operating modes. It is found that the network gives significant increases in sensitivity and resolution while limiting mismatching losses to about 0.2 dB. A typical digital implementation requires only 66 devices for 10-bit input and sampling rate 150 nsec.

  14. Effect of Pre-Designed Instructions for Mothers of Children with Hypospadias on Reducing Postoperative Complications

    ERIC Educational Resources Information Center

    Mohamed, Sanaa A.

    2015-01-01

    Hypospadias is a common congenital anomaly with a prevalence estimated to be as high as 1 in 125 live male births. Complications after surgical procedures are possible. The incidence of complications can be reduced by meticulous preoperative planning, and judicious postoperative care. So the aim of the study was to investigate the effect of…

  15. Development of Advanced Technologies to Reduce Design, Fabrication and Construction Costs for Future Nuclear Power Plants

    SciTech Connect

    DiNunzio, Camillo A.; Gupta, Abhinav; Golay, Michael; Luk, Vincent; Turk, Rich; Morrow, Charles; Jin, Geum-Taek

    2002-11-30

    This report presents a summation of the third and final year of a three-year investigation into methods and technologies for substantially reducing the capital costs and total schedule for future nuclear plants. In addition, this is the final technical report for the three-year period of studies.

  16. Numerical acoustic characteristics and optimum design of the pressure reducing valve

    NASA Astrophysics Data System (ADS)

    Guo, P. C.; Sun, L. G.; Sun, S. H.; Feng, J. J.; Wu, K. G.; Luo, X. Q.

    2016-11-01

    The pressure reducing valves are widely used in the technological water supplied ways of gravity flow. A credible pressure reducing valve can provide stable cooling water for units with extremely low maintenance cost and labor intensity in a fairly long period of time. In this paper, a three-dimensional numerical simulation of flow field and acoustic characteristics towards a combined type pressure reducing valve was carried out based on ANSYS Fluent and the FW-H equation. The numerical results achieve the regulation of noise generation, transmission and attenuation. It shows that the sound pressure level of monitoring points seem to be higher and large gradient at low frequencies under the same flow velocity, while it presents reverse results with the increment of frequency and maintains a constant valve finally. At the same time, the monitoring points in the vicinity of throttling cone shows higher sound pressure level and upstream noise is lower than downstream's. Aiming at the problem of valve noise, a modified measure to reduce the flow-induced noise was proposed.

  17. Strain rate effects for concrete and fiber-reinforced concrete subjected to impact loading. Final report, September 1982-August 1987

    SciTech Connect

    Shah, S.P.

    1987-10-01

    Despite it's extensive use, low tensile strength has been recognized as one of the major drawbacks of concrete. Although one has learned to avoid exposing concrete structures to adverse static tensile loads, these structures cannot be shielded from short duration dynamic tensile loads. Such loads originate from sources such as impact from missiles and projectiles, wind gusts, earthquakes and machine vibrations. In addition, modern computer-aided analysis and use of concrete for special structures such as reactor containment vessels, missile storage silos and fall-out shelters, has led to a growing interest in the cracking behavior of concrete. Experimental results indicate that the fracture strength and cracking behavior of concrete are affected by the rate of loading. To accurately predict the structural response under impact conditions, the knowledge of behavior of concrete at high rates of loading is essential. Using a two degree of freedom model guidelines were developed for designing an impact test setup, thus enabling one to conduct impact tests free of adverse inertial effects. Based on these guidelines, the author has developed an instrumented modified Charpy impact testing system. This experimental test setup was used to obtain basic information such as load-deflection relationship, fracture toughness, crack velocity (measured using Krak Gages), and load-strain history during an impact fracture event of plain concrete and SFRC.

  18. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  19. Design of Mechanisms for Deployable, Optical Instruments: Guidelines for Reducing Hysteresis

    NASA Technical Reports Server (NTRS)

    Lake, Mark S.; Hachkowski, M. Roman

    2000-01-01

    This paper is intended to facilitate the development of deployable, optical instruments by providing a rational approach for the design, testing, and qualification of high-precision (i.e., low-hysteresis) deployment mechanisms for these instruments. Many of the guidelines included herein come directly from the field of optomechanical engineering, and are, therefore, neither newly developed guidelines, nor are they uniquely applicable to the design of high-precision deployment mechanisms. This paper is to be regarded as a guide to design and not a set of NASA requirements, except as may be defined in formal project specifications. Furthermore, due to the rapid pace of advancement in the field of precision deployment, this paper should be regarded as a preliminary set of guidelines. However, it is expected that this paper, with revisions as experience may indicate to be desirable, might eventually form the basis for a set of uniform design requirements for high-precision deployment mechanisms on future NASA space-based science instruments.

  20. A Multi-Component Intervention Designed To Reduce Disruptive Classroom Behavior.

    ERIC Educational Resources Information Center

    Kehle, Thomas J.; Bray, Melissa A.; Theodore, Lea A.; Jenson, William R.; Clark, Elaine

    2000-01-01

    Describes research that focused on the design of an effective, economical, and easily implemented treatment for disruptive classroom behavior in both general and special education students. Multi-component treatment options included mystery motivators, token economy with response cost, and antecedent strategies delivered within a group contingency…

  1. Cool barnacles: Do common biogenic structures enhance or retard rates of deterioration of intertidal rocks and concrete?

    PubMed

    Coombes, Martin A; Viles, Heather A; Naylor, Larissa A; La Marca, Emanuela Claudia

    2017-02-15

    Sedentary and mobile organisms grow profusely on hard substrates within the coastal zone and contribute to the deterioration of coastal engineering structures and the geomorphic evolution of rocky shores by both enhancing and retarding weathering and erosion. There is a lack of quantitative evidence for the direction and magnitude of these effects. This study assesses the influence of globally-abundant intertidal organisms, barnacles, by measuring the response of limestone, granite and marine-grade concrete colonised with varying percentage covers of Chthamalus spp. under simulated, temperate intertidal conditions. Temperature regimes at 5 and 10mm below the surface of each material demonstrated a consistent and statistically significant negative relationship between barnacle abundance and indicators of thermal breakdown. With a 95% cover of barnacles, subsurface peak temperatures were reduced by 1.59°C for limestone, 5.54°C for concrete and 5.97°C for granite in comparison to no barnacle cover. The amplitudes of short-term (15-30min) thermal fluctuations conducive to breakdown via 'fatigue' effects were also buffered by 0.70°C in limestone, 1.50°C in concrete and 1.63°C in granite. Furthermore, concentrations of potentially damaging salt ions were consistently lower under barnacles in limestone and concrete. These results indicate that barnacles do not enhance, but likely reduce rates of mechanical breakdown on rock and concrete by buffering near-surface thermal cycling and reducing salt ion ingress. In these ways, we highlight the potential role of barnacles as agents of bioprotection. These findings support growing international efforts to enhance the ecological value of hard coastal structures by facilitating their colonisation (where appropriate) through design interventions.

  2. 221-U Facility concrete and reinforcing steel evaluations specification for the canyon disposition initiative (CDI)

    SciTech Connect

    Baxter, J.T.

    1998-05-28

    This describes a test program to establish the in-situ material properties of the reinforced concrete in Building 221-U for comparison to the original design specifications. Field sampling and laboratory testing of concrete and reinforcing steel structural materials in Building 221-U for design verification will be undertaken. Forty seven samples are to be taken from radiologically clean exterior walls of the canyon. Laboratory testing program includes unconfined compressive strength of concrete cores, tensile strength of reinforcing steel, and petrographic examinations of concrete cores taken from walls below existing grade.

  3. Applying human factors principles to alert design increases efficiency and reduces prescribing errors in a scenario-based simulation

    PubMed Central

    Russ, Alissa L; Zillich, Alan J; Melton, Brittany L; Russell, Scott A; Chen, Siying; Spina, Jeffrey R; Weiner, Michael; Johnson, Elizabette G; Daggy, Joanne K; McManus, M Sue; Hawsey, Jason M; Puleo, Anthony G; Doebbeling, Bradley N; Saleem, Jason J

    2014-01-01

    Objective To apply human factors engineering principles to improve alert interface design. We hypothesized that incorporating human factors principles into alerts would improve usability, reduce workload for prescribers, and reduce prescribing errors. Materials and methods We performed a scenario-based simulation study using a counterbalanced, crossover design with 20 Veterans Affairs prescribers to compare original versus redesigned alerts. We redesigned drug–allergy, drug–drug interaction, and drug–disease alerts based upon human factors principles. We assessed usability (learnability of redesign, efficiency, satisfaction, and usability errors), perceived workload, and prescribing errors. Results Although prescribers received no training on the design changes, prescribers were able to resolve redesigned alerts more efficiently (median (IQR): 56 (47) s) compared to the original alerts (85 (71) s; p=0.015). In addition, prescribers rated redesigned alerts significantly higher than original alerts across several dimensions of satisfaction. Redesigned alerts led to a modest but significant reduction in workload (p=0.042) and significantly reduced the number of prescribing errors per prescriber (median (range): 2 (1–5) compared to original alerts: 4 (1–7); p=0.024). Discussion Aspects of the redesigned alerts that likely contributed to better prescribing include design modifications that reduced usability-related errors, providing clinical data closer to the point of decision, and displaying alert text in a tabular format. Displaying alert text in a tabular format may help prescribers extract information quickly and thereby increase responsiveness to alerts. Conclusions This simulation study provides evidence that applying human factors design principles to medication alerts can improve usability and prescribing outcomes. PMID:24668841

  4. Wooden concrete: High thermal efficiency using waste wood

    SciTech Connect

    Kosny, J.

    1994-09-01

    Wood concrete mixture of wood shavings, lime and cement is widely used in European building construction. In spite of many advantages, this material is almost unknown in the US. Eventual application of wooden concrete in building block production is discussed in this paper. Based on finite difference computer modeling, the thermal performance of several masonry wall systems and their components have been analyzed. The total wall system thermal performance for a typical single-story ranch house also has been determined. At present, typical experimental wall measurements and calculations do not include the effects of building envelope subsystems such as comers, window and door openings, and structural joints with roofs, floors, ceilings, and other walls. In masonry wall systems, these details may represent significant thermal bridges because of the highly conductive structural concrete. Many of the typical thermal bridges may be reduced by application of wood concrete elements.

  5. A collaborative approach to lean laboratory workstation design reduces wasted technologist travel.

    PubMed

    Yerian, Lisa M; Seestadt, Joseph A; Gomez, Erron R; Marchant, Kandice K

    2012-08-01

    Lean methodologies have been applied in many industries to reduce waste. We applied Lean techniques to redesign laboratory workstations with the aim of reducing the number of times employees must leave their workstations to complete their tasks. At baseline in 68 workflows (aggregates or sequence of process steps) studied, 251 (38%) of 664 tasks required workers to walk away from their workstations. After analysis and redesign, only 59 (9%) of the 664 tasks required technologists to leave their workstations to complete these tasks. On average, 3.4 travel events were removed for each workstation. Time studies in a single laboratory section demonstrated that workers spend 8 to 70 seconds in travel each time they step away from the workstation. The redesigned workstations will allow employees to spend less time travelling around the laboratory. Additional benefits include employee training in waste identification, improved overall laboratory layout, and identification of other process improvement opportunities in our laboratory.

  6. Effects of composition and exposure on the solar reflectance of Portland Cement Concrete

    SciTech Connect

    Levinson, Ronnen; Akbari, Hashem

    2002-06-01

    Increasing the solar reflectance (albedo) of a paved surface keeps it cooler in the sun, reducing convection of heat from pavement to air and thereby decreasing the ambient air temperature. Lower air temperatures decrease demand for cooling energy and slow the formation of urban smog. Variations with composition and environmental exposure of the albedos of portland cement concrete pavements were investigated through laboratory fabrication and exposure of 32 mixes of concrete. Concrete albedo generally correlated with cement albedo and sand albedo and, after abrasion, with rock albedo. Cement albedo had a disproportionately strong influence on the reflectance of concrete. Simulated weathering, soiling, and abrasion each reduced average concrete albedo, though some samples became slightly more reflective through weathering or soiling. Concrete albedo grew as the cement hydration reaction progressed, but stabilized within six weeks of casting.

  7. Evaluation of shrinkage and cracking in concrete of ring test by acoustic emission method

    NASA Astrophysics Data System (ADS)

    Watanabe, Takeshi; Hashimoto, Chikanori

    2015-03-01

    Drying shrinkage of concrete is one of the typical problems related to reduce durability and defilation of concrete structures. Lime stone, expansive additive and low-heat Portland cement are used to reduce drying shrinkage in Japan. Drying shrinkage is commonly evaluated by methods of measurement for length change of mortar and concrete. In these methods, there is detected strain due to drying shrinkage of free body, although visible cracking does not occur. In this study, the ring test was employed to detect strain and age cracking of concrete. The acoustic emission (AE) method was adopted to detect micro cracking due to shrinkage. It was recognized that in concrete using lime stone, expansive additive and low-heat Portland cement are effective to decrease drying shrinkage and visible cracking. Micro cracking due to shrinkage of this concrete was detected and evaluated by the AE method.

  8. Practical aspects of variable reduction formulations and reduced basis algorithms in multidisciplinary design optimization

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael

    1995-01-01

    This paper discusses certain connections between nonlinear programming algorithms and the formulation of optimization problems for systems governed by state constraints. The major points of this paper are the detailed calculation of the sensitivities associated with different formulations of optimization problems and the identification of some useful relationships between different formulations. These relationships have practical consequences; if one uses a reduced basis nonlinear programming algorithm, then the implementations for the different formulations need only differ in a single step.

  9. Reduced models and design principles for half-harmonic generation in synchronously pumped optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Hamerly, Ryan; Marandi, Alireza; Jankowski, Marc; Fejer, M. M.; Yamamoto, Yoshihisa; Mabuchi, Hideo

    2016-12-01

    We develop reduced models that describe half-harmonic generation in a synchronously pumped optical parametric oscillator above threshold, where nonlinearity, dispersion, and group-velocity mismatch are all relevant. These models are based on (1) an eigenmode expansion for low pump powers, (2) a simultonlike sech-pulse ansatz for intermediate powers, and (3) dispersionless box-shaped pulses for high powers. Analytic formulas for pulse compression, degenerate vs nondegenerate operation, and stability are derived and compared to numerical and experimental results.

  10. Population impact of strategies designed to reduce peptic ulcer risks associated with NSAID use.

    PubMed

    Langman, Michael

    2003-04-01

    The risk of ulcer complications rises steeply with dose for aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) but estimates of the overall incidence of bleeding ulcer are unreliable. Drug utilisation data, epidemiological data on the frequency of bleeding ulcer and death, and the relative risks associated with different NSAIDs, indicate that the number of cases of bleeding ulcer attributable to NSAIDs in the United Kingdom is approximately 2,400. Substitution of ibuprofen at a dose of 2.4 g/day for all other NSAIDs would reduce the number of events attributable to NSAIDs from 2,431 to 695 annually. At a dose of 1200 mg/day, substituting ibuprofen or another safe NSAID would be likely to reduce events to zero. Similarly, substitution of ibuprofen 2.4 g/day for all other NSAIDs would reduce attributable ulcer mortality to 80. The total number of excess cases attributable to aspirin is 753 annually. If prophylactic aspirin was prescribed solely at a dose of 75 mg/day, the number of cases would fall to 445 annually and the number of related deaths from 87 to 51 annually. NSAIDs and aspirin account for approximately one-third and previous ulcer for about one-fifth of the overall risk of bleeding ulcer and its complications.

  11. Concrete Operations and Attentional Capacity.

    ERIC Educational Resources Information Center

    Chapman, Michael; Lindenberger, Ulman

    1989-01-01

    To test predictions regarding the attentional capacity requirements of Piaget's stage of concrete operations, a battery of concrete operational tasks and two measures of attentional capacity were administered to 120 first-, second-, and third-graders. Findings concern class inclusion, transitivity of length and weight, and multiplication of…

  12. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  13. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  14. Technology and building design: initiatives to reduce inpatient falls among the elderly.

    PubMed

    Hignett, Sue

    2010-01-01

    This paper offers a narrative exploration of interventions for inpatient falls among the elderly with respect to the design of technology (equipment and furniture) and buildings. Most of the contributory risk factors for inpatient falls among the elderly were identified in the 1950s, but incident and injury rates remain relatively unchanged in the 2000s. Interventions have predominantly focused on staff and organizational changes, for example monitoring (observation) and communication, possibly in response to increased patient privacy (isolation) in single rooms. The clinical response has been to modify the patient by means of medication review, continence management, and impact protectors. This paper considers whether technology and building design have helped or hindered the newly admitted frail and/or confused elderly patient at risk of falling, assuming the provision of good nursing and medical practice (e.g., observation, treatment, and care).

  15. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  16. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    PubMed

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study.

  17. Mechanical properties of high-strength concrete

    NASA Astrophysics Data System (ADS)

    Mokhtarzadeh, Alireza

    This report summarizes an experimental program conducted to investigate production techniques and mechanical properties of high strength concrete in general and to provide recommendations for using these concretes in manufacturing precast/prestressed bridge girders. Test variables included total amount and composition of cementitious material (portland cement, fly ash, and silica fume), type and brand of cement, type of silica fume (dry densified and slurry), type and brand of high-range water-reducing admixture, type of aggregate, aggregate gradation, maximum aggregate size, and curing. Tests were conducted to determine the effects of these variables on changes in compressive strength and modulus of elasticity over time, splitting tensile strength, modulus of rupture, creep, shrinkage, and absorption potential (as an indirect indicator of permeability). Also investigated were the effects of test parameters such as mold size, mold material, and end condition. Over 6,300 specimens were cast from approximately 140 mixes over a period of 3 years.

  18. Reduced-Noise Gas Flow Design Guide Developed as a Noise-Control Design Tool for Meeting Glenn's Hearing Conservation and Community Noise Goals

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2000-01-01

    A Reduced-Noise Gas Flow Design Guide has been developed for the NASA Glenn Research Center at Lewis Field by Nelson Acoustical Engineering of Elgin, Texas. Gas flow systems are a significant contributor to t he noise exposure landscape at Glenn. Because of the power of many of these systems, hearing conservation and community noise are importan t issues. The purpose of the Guide is to allow Glenn engineers and de signers to address noise emission and control at the design stage by using readily available system parameters. Although the Guide was deve loped with Glenn equipment and systems in mind, it is expected to hav e wide application in industry.

  19. Increasing value and reducing waste in research design, conduct, and analysis.

    PubMed

    Ioannidis, John P A; Greenland, Sander; Hlatky, Mark A; Khoury, Muin J; Macleod, Malcolm R; Moher, David; Schulz, Kenneth F; Tibshirani, Robert

    2014-01-11

    Correctable weaknesses in the design, conduct, and analysis of biomedical and public health research studies can produce misleading results and waste valuable resources. Small effects can be difficult to distinguish from bias introduced by study design and analyses. An absence of detailed written protocols and poor documentation of research is common. Information obtained might not be useful or important, and statistical precision or power is often too low or used in a misleading way. Insufficient consideration might be given to both previous and continuing studies. Arbitrary choice of analyses and an overemphasis on random extremes might affect the reported findings. Several problems relate to the research workforce, including failure to involve experienced statisticians and methodologists, failure to train clinical researchers and laboratory scientists in research methods and design, and the involvement of stakeholders with conflicts of interest. Inadequate emphasis is placed on recording of research decisions and on reproducibility of research. Finally, reward systems incentivise quantity more than quality, and novelty more than reliability. We propose potential solutions for these problems, including improvements in protocols and documentation, consideration of evidence from studies in progress, standardisation of research efforts, optimisation and training of an experienced and non-conflicted scientific workforce, and reconsideration of scientific reward systems.

  20. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  1. Monitoring corrosion in reinforced concrete structures

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Many defects can cause deterioration and cracks in concrete; these are results of poor concrete mix, poor workmanship, inadequate design, shrinkage, chemical and environmental attack, physical or mechanical damage, and corrosion of reinforcing steel (RS). We want to develop a suite of sensors and systems that can detect that corrosion is taking place in RS and inform owners how serious the problem is. By understanding the stages of the corrosion process, we can develop special a sensor that detects each transition. First, moisture ingress can be monitored by a fiber optics humidity sensor, then ingress of Chloride, which acts as a catalyst and accelerates the corrosion process by converting iron into ferrous compounds. We need a fiber optics sensor which can quantify Chloride ingress over time. Converting ferric to ferrous causes large volume expansion and cracks. Such pressure build-up can be detected by a fiber optic pressure sensor. Finally, cracks emit acoustic waves, which can be detected by a high frequency sensor made with phase-shifted gratings. This paper will discuss the progress in our development of these special sensors and also our plan for a field test by the end of 2014. We recommend that we deploy these sensors by visually inspecting the affected area and by identifying locations of corrosion; then, work with the designers to identify spots that would compromise the integrity of the structure; finally, drill a small hole in the concrete and insert these sensors. Interrogation can be done at fixed intervals with a portable unit.

  2. Evaluating damage potential of cryogenic concrete using acoustic emission sensors and permeability testing

    NASA Astrophysics Data System (ADS)

    Kogbara, Reginald B.; Parsaei, Boback; Iyengar, Srinath R.; Grasley, Zachary C.; Masad, Eyad A.; Zollinger, Dan G.

    2014-04-01

    This study evaluates the damage potential of concrete of different mix designs subjected to cryogenic temperatures, using acoustic emission (AE) and permeability testing. The aim is to investigate design methodologies that might be employed to produce concrete that resists damage when cooled to cryogenic temperatures. Such concrete would be suitable for primary containment of liquefied natural gas (LNG) and could replace currently used 9% Ni steel, thereby leading to huge cost savings. In the experiments described, concrete cubes, 150 mm x 150 mm x 150 mm, were cast using four different mix designs. The four mixes employed siliceous river sand as fine aggregate. Moreover, limestone, sandstone, trap rock and lightweight aggregate were individually used as coarse aggregates in the mixes. The concrete samples were then cooled from room temperature (20°C) to cryogenic temperature (-165°C) in a temperature chamber. AE sensors were placed on the concrete cubes during the cryogenic freezing process. The damage potential was evaluated in terms of the growth of damage as determined from AE, as a function of temperature and concrete mixture design. The damage potential observed was validated with water permeability testing. Initial results demonstrate the effects of the coefficient of thermal expansion (CTE) of the aggregates on damage growth. Concrete damage (cracking) resistance generally decreased with increasing coarse aggregate CTE, and was in the order, limestone ≥ trap rock << lightweight aggregate ≥ sandstone. Work is in progress to fully understand thermal dilation and damage growth in concrete due to differential CTE of its components.

  3. Evaluation of the shrinkage and creep of medium strength self compacting concrete

    NASA Astrophysics Data System (ADS)

    De La Cruz, C. J.; Ramos, G.; Hurtado, W. A.

    2017-02-01

    The difference between self compacting concrete (SCC) and conventional concrete (CC) is in fresh state, is the high fluidity at first and the need for vibration at second, but in hardened state, both concretes must comply with the resistance specified, in addition to securing the safety and functionality for which it was designed. This article describes the tests and results for shrinkage and creep at some medium strength Self Compacting Concrete with added sand (SCC-MSs) and two types of cement. The research was conducted at the Laboratorio de Tecnología de Estructuras (LTE) of the Universitat Politécnica de Catalunya (UPC), in dosages of 200 liters; with the idea of evaluating the effectiveness of implementation of these new concretes at elements designed with conventional concrete (CCs).

  4. Nonlinear pushover analysis of infilled concrete frames

    NASA Astrophysics Data System (ADS)

    Huang, Chao Hsun; Tuan, Yungting Alex; Hsu, Ruo Yun

    2006-12-01

    Six reinforced concrete frames with or without masonry infills were constructed and tested under horizontal cyclic loads. All six frames had identical details in which the transverse reinforcement in columns was provided by rectangular hoops that did not meet current ACI specifications for ductile frames. For comparison purposes, the columns in three of these frames were jacketed by carbon-fiber-reinforced-polymer (CFRP) sheets to avoid possible shear failure. A nonlinear pushover analysis, in which the force-deformation relationships of individual elements were developed based on ACI 318, FEMA 356, and Chen’s model, was carried out for these frames and compared to test results. Both the failure mechanisms and impact of infills on the behaviors of these frames were examined in the study. Conclusions from the present analysis provide structural engineers with valuable information for evaluation and design of infilled concrete frame building structures.

  5. Cathodic protection on concrete offshore platforms

    SciTech Connect

    Heuze, B.

    1980-05-01

    Experience with five cathodically protected North Sea concrete platforms has demonstrated the value of interconnecting the concrete-reinforcement steel with cathodically protected metal items on the structure (rather than insulating the steel from them) as a means of bringing the entire structure under the protection of the corrosion-control system. Lessons learned from this experience point out the importance of the duct material in safeguarding the prestressing tendons, the limitations of cathodic protection in cases of coating cracking and disbondment, and the precautions to be taken against stray welding currents. An improved approach to corrosion prevention focuses on the design philosophy, the current required by the reinforcing bar and well casing, the corrosion protection inside piping shafts and risers, and the required monitoring systems.

  6. Engineering properties of inorganic polymer concretes (IPCs)

    SciTech Connect

    Sofi, M.; Deventer, J.S.J. van . E-mail: jannie@unimelb.edu.au; Mendis, P.A. . E-mail: pamendis@unimelb.edu.au; Lukey, G.C.

    2007-02-15

    This paper presents the engineering properties of inorganic polymer concretes (IPCs) with a compressive strength of 50 MPa. The study includes a determination of the modulus of elasticity, Poisson's ratio, compressive strength, and the splitting tensile strength and flexural strength of IPCs, formulated using three different sources of Class-F fly ash. Six IPC mix designs were adopted to evaluate the effects of the inclusion of coarse aggregates and granulated blast furnace slag into the mixes. A total of 90 cylindrical and 24 small beam specimens were investigated, and all tests were carried out pursuant to the relevant Australian Standards. Although some variability between the mixes was observed, the results show that, in most cases, the engineering properties of IPCs compare favorably to those predicted by the relevant Australian Standards for concrete mixtures.

  7. Innovative Retrofit Insulation Strategies for Concrete Masonry Foundations

    SciTech Connect

    Huelman, P.; Goldberg, L.; Jacobson, R.

    2015-05-06

    This study was designed to test a new approach for foundation insulation retrofits, with the goal of demonstrating improved moisture control, improved occupant comfort, and reduced heat loss. Because conducting experimental research on existing below-grade assemblies is very difficult, most of the results are based on simulations. The retrofit approach consists of filling open concrete block cores with an insulating material and adding R-10 exterior insulation that extends 1 ft below grade. The core fill is designed to improve the R-value of the foundation wall and increase the interior wall surface temperature, but more importantly to block convection currents that could otherwise increase moisture loads on the foundation wall and interior space. The exterior insulation significantly reduces heat loss through the most exposed part of the foundation and further increases the interior wall surface temperature. This improves occupant comfort and decreases the risk of condensation. Such an insulation package avoids the full-depth excavation necessary for exterior insulation retrofits, reduces costs, and eliminates the moisture and indoor air quality risks associated with interior insulation retrofits. Retrofit costs for the proposed approach were estimated at roughly half those of a full-depth exterior insulation retrofit.

  8. Effectiveness of crime prevention through environmental design in reducing criminal activity in liquor stores: a pilot study.

    PubMed

    Casteel, Carri; Peek-Asa, Corinne; Howard, John; Kraus, Jess F

    2004-05-01

    Liquor store employees experience disproportionately higher rates of workplace injury death than employees in any other retail setting. However, efforts to introduce workplace violence prevention programs into liquor stores have been minimal. This study examines the effectiveness of a Crime Prevention Through Environmental Design intervention in reducing criminal activity in Santa Monica, California liquor stores. Nine stores enrolling in the study received an individualized intervention safety plan; the remaining 13 served as a comparison group. Mixed-effects Poisson regression was used to examine intervention effectiveness. The largest reductions in criminal activity occurred for robbery and shoplifting outcomes. We conclude that the Crime Prevention Through Environmental Design program reduced crime and injury in liquor stores and educated small businesses about the risks associated with retail violence and the countermeasures that can be taken.

  9. Design and simulation of MEMS vector hydrophone with reduced cross section based meander beams

    NASA Astrophysics Data System (ADS)

    Kumar, Manoj; Dutta, S.; Pal, Ramjay; Jain, K. K.; Gupta, Sudha; Bhan, R. K.

    2016-04-01

    MEMS based vector hydrophone is being one of the key device in the underwater communications. In this paper, we presented a bio-inspired MEMS vector hydrophone. The hydrophone structure consists of a proof mass suspended by four meander type beams with reduced cross-section. Modal patterns of the structure were studied. First three modal frequencies of the hydrophone structure were found to be 420 Hz, 420 Hz and 1646 Hz respectively. The deflection and stress of the hydrophone is found have linear behavior in the 1 µPa - 1Pa pressure range.

  10. Designing a protocol to reduce catheter-associated urinary tract infections among hospitalized patients.

    PubMed

    Gokula, Murthy; Smolen, Dianne; Gaspar, Phyllis M; Hensley, Sandra J; Benninghoff, Mary C; Smith, Mindy

    2012-12-01

    Hospital-acquired urinary tract infections comprise 40% of hospital-acquired infections with over 80% of these hospital-acquired urinary tract infections associated with the use of urinary catheters. The process that was used to establish a new hospital protocol using the "IAIMS" (identifying, assessing, implementing, modifying/maintaining, spread/surveillance) model to reduce the incidence of catheter-associated urinary tract infections is described. The example is intended to serve as a framework for the development of protocols to address other hospital-acquired infections.

  11. Reducing noise in the time-frequency representation using sparsity promoting kernel design

    NASA Astrophysics Data System (ADS)

    Jokanović, Branka; Amin, Moeness G.; Zhang, Yimin D.

    2014-05-01

    Missing samples in the time domain introduce noise-like artifacts in the ambiguity domain due to their de facto zero values assumed by the bilinear transform. These artifacts clutter the dual domain of the time-frequency signal representation and obscures the time-frequency signature of single and multicomponent signals. In order to suppress the artifacts influence, we formulate a problem based on the sparsity aware kernel. The proposed kernel design is more robust to the artifacts caused by the missing samples.

  12. Design and evaluation of a patient website to reduce crowding in emergency departments: a preliminary study.

    PubMed

    Schiro, Jessica; Marcilly, Romaric; Leroy, Nicolas; Wawrzyniak, Clément; Martinot, Alain; Pelayo, Sylvia

    2015-01-01

    The study aims to identify the information useful to support a patients' EDs' choice in order to design a patient Web-based system. For that purpose, a focus group and a formative user test have been performed. The results show that five types of information can be relevant. The spontaneous favored information is the "distance" to EDs. The "Wait time", that is sanctified in literature, is only used in a second time. A larger summative evaluation should be planned to evaluate and validate the befits of this kind of tool.

  13. Consensus Standardization of Slurry Simulant Development Process to Reduce Design Risk Within the DOE Complex

    SciTech Connect

    Smith, Gary L.; Enderlin, Carl W.; Wells, Beric E.; Kurath, Dean E.; Denslow, Kayte M.

    2014-06-30

    A critical responsibility of DOE’s Office of Environmental Management is the design, construction, and operation of equipment and facilities to process legacy radioactive waste slurries for safe, long-term disposal. The accomplishment of this mission requires the extensive use of physical and chemical simulants to represent the hazardous radioactive waste. Development and characterization of simulants can often be difficult to compare or utilize as questions exist as to the basis, techniques, or consistency associated with reported parameters. In addition, controversy has existed in the interpretation and application of the characterization data for the wastes that the simulants are intended to represent.

  14. Toward a new spacecraft optimal design lifetime? Impact of marginal cost of durability and reduced launch price

    NASA Astrophysics Data System (ADS)

    Snelgrove, Kailah B.; Saleh, Joseph Homer

    2016-10-01

    The average design lifetime of satellites continues to increase, in part due to the expectation that the satellite cost per operational day decreases monotonically with increased design lifetime. In this work, we challenge this expectation by revisiting the durability choice problem for spacecraft in the face of reduced launch price and under various cost of durability models. We first provide a brief overview of the economic thought on durability and highlight its limitations as they pertain to our problem (e.g., the assumption of zero marginal cost of durability). We then investigate the merging influence of spacecraft cost of durability and launch price, and we identify conditions that give rise cost-optimal design lifetimes that are shorter than the longest lifetime technically achievable. For example, we find that high costs of durability favor short design lifetimes, and that under these conditions the optimal choice is relatively robust to reduction in launch prices. By contrast, lower costs of durability favor longer design lifetimes, and the optimal choice is highly sensitive to reduction in launch price. In both cases, reduction in launch prices translates into reduction of the optimal design lifetime. Our results identify a number of situations for which satellite operators would be better served by spacecraft with shorter design lifetimes. Beyond cost issues and repeat purchases, other implications of long design lifetime include the increased risk of technological slowdown given the lower frequency of purchases and technology refresh, and the increased risk for satellite operators that the spacecraft will be technologically obsolete before the end of its life (with the corollary of loss of value and competitive advantage). We conclude with the recommendation that, should pressure to extend spacecraft design lifetime continue, satellite manufacturers should explore opportunities to lease their spacecraft to operators, or to take a stake in the ownership

  15. Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

    DTIC Science & Technology

    2014-10-01

    AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete ...EXPERIMENTS ON CONCRETE N/A N/A 2502 9210 W0DT (1) Bradley E. Martin, RWMW (2) William F. Heard, Engineer Research and Development Center (3) Thomas...the dynamic compressive response of concretes . The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in

  16. New design of a gamma camera detector with reduced edge effect for breast imaging

    NASA Astrophysics Data System (ADS)

    Yeon Hwang, Ji; Lee, Seung-Jae; Baek, Cheol-Ha; Hyun Kim, Kwang; Hyun Chung, Yong

    2011-05-01

    In recent years, there has been a growing interest in developing small gamma cameras dedicated to breast imaging. We designed a new detector with trapezoidal shape to expand the field of view (FOV) of camera without increasing its dimensions. To find optimal parameters, images of point sources at the edge area as functions of the angle and optical treatment of crystal side surface were simulated by using a DETECT2000. Our detector employs monolithic CsI(Tl) with dimensions of 48.0×48.0×6.0 mm coupled to an array of photo-sensors. Side surfaces of crystal were treated with three different surface finishes: black absorber, metal reflector and white reflector. The trapezoidal angle varied from 45° to 90° in steps of 15°. Gamma events were generated on 15 evenly spaced points with 1.0 mm spacing in the X-axis starting 1.0 mm away from the side surface. Ten thousand gamma events were simulated at each location and images were formed by calculating the Anger-logic. The results demonstrated that all the 15 points could be identified only for the crystal with trapezoidal shape having 45° angle and white reflector on the side surface. In conclusion, our new detector proved to be a reliable design to expand the FOV of small gamma camera for breast imaging.

  17. Back-stepping active disturbance rejection control design for integrated missile guidance and control system via reduced-order ESO.

    PubMed

    Xingling, Shao; Honglun, Wang

    2015-07-01

    This paper proposes a novel composite integrated guidance and control (IGC) law for missile intercepting against unknown maneuvering target with multiple uncertainties and control constraint. First, by using back-stepping technique, the proposed IGC law design is separated into guidance loop and control loop. The unknown target maneuvers and variations of aerodynamics parameters in guidance and control loop are viewed as uncertainties, which are estimated and compensated by designed model-assisted reduced-order extended state observer (ESO). Second, based on the principle of active disturbance rejection control (ADRC), enhanced feedback linearization (FL) based control law is implemented for the IGC model using the estimates generated by reduced-order ESO. In addition, performance analysis and comparisons between ESO and reduced-order ESO are examined. Nonlinear tracking differentiator is employed to construct the derivative of virtual control command in the control loop. Third, the closed-loop stability for the considered system is established. Finally, the effectiveness of the proposed IGC law in enhanced interception performance such as smooth interception course, improved robustness against multiple uncertainties as well as reduced control consumption during initial phase are demonstrated through simulations.

  18. Design of a robust model predictive controller with reduced computational complexity.

    PubMed

    Razi, M; Haeri, M

    2014-11-01

    The practicality of robust model predictive control of systems with model uncertainties depends on the time consumed for solving a defined optimization problem. This paper presents a method for the computational complexity reduction in a robust model predictive control. First a scaled state vector is defined such that the objective function contours in the defined optimization problem become vertical or horizontal ellipses or circles, and then the control input is determined at each sampling time as a state feedback that minimizes the infinite horizon objective function by solving some linear matrix inequalities. The simulation results show that the number of iterations to solve the problem at each sampling interval is reduced while the control performance does not alter noticeably.

  19. Evaluation of 4D CT acquisition methods designed to reduce artifacts.

    PubMed

    Castillo, Sarah J; Castillo, Richard; Castillo, Edward; Pan, Tinsu; Ibbott, Geoffrey; Balter, Peter; Hobbs, Brian; Guerrero, Thomas

    2015-03-08

    Four-dimensional computed tomography (4D CT) is used to account for respiratory motion in radiation treatment planning, but artifacts resulting from the acquisition and postprocessing limit its accuracy. We investigated the efficacy of three experimental 4D CT acquisition methods to reduce artifacts in a prospective institutional review board approved study. Eighteen thoracic patients scheduled to undergo radiation therapy received standard clinical 4D CT scans followed by each of the alternative 4D CT acquisitions: 1) data oversampling, 2) beam gating with breathing irregularities, and 3) rescanning the clinical acquisition acquired during irregular breathing. Relative values of a validated correlation-based artifact metric (CM) determined the best acquisition method per patient. Each 4D CT was processed by an extended phase sorting approach that optimizes the quantitative artifact metric (CM sorting). The clinical acquisitions were also postprocessed by phase sorting for artifact comparison of our current clinical implementation with the experimental methods. The oversampling acquisition achieved the lowest artifact presence among all acquisitions, achieving a 27% reduction from the current clinical 4D CT implementation (95% confidence interval = 34-20). The rescan method presented a significantly higher artifact presence from the clinical acquisition (37%; p < 0.002), the gating acquisition (26%; p < 0.005), and the oversampling acquisition (31%; p < 0.001), while the data lacked evidence of a significant difference between the clinical, gating, and oversampling methods. The oversampling acquisition reduced artifact presence from the current clinical 4D CT implementation to the largest degree and provided the simplest and most reproducible implementation. The rescan acquisition increased artifact presence significantly, compared to all acquisitions, and suffered from combination of data from independent scans over which large internal anatomic shifts occurred.

  20. The jet engine design that can drastically reduce oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Agnone, A.

    1977-01-01

    The NOx pollution problem of hydrogen fueled turbojets and supersonic combustion ramjets (scramjets) was investigated to determine means of substantially alleviating the problem. Since the NOx reaction rates are much slower than the energy producing reactions, the NOx production depends mainly on the maximum local temperatures in the combustor and the NOx concentration is far from equilibrium at the end of a typical combustor (L approximately 1 ft). In diffusion flames, as used in present turbojets and scramjets combustor designs, the maximum local temperature occurs at the flame and is equal to the stoichiometric value. Whereas, in the heat conduction flames, wherein the flame propagates due to a heat conduction process away from the flame to the cooler oncoming premixed unburnt gases, the maximum temperature is lower than in the diffusion flame. Hence the corresponding pollution index is also lower.

  1. Sodium-reduced lean sausages with fish oil optimized by a mixture design approach.

    PubMed

    Marchetti, L; Argel, N; Andrés, S C; Califano, A N

    2015-06-01

    A partial NaCl replacement by KCl and sodium tripolyphosphate on low-fat meat sausages formulated with fish oil was studied using a mixture design. Thermal behavior by modulated differential scanning calorimetry, physicochemical, and textural properties were determined; afterwards they were mathematically modeled as a function of salts content. The thermo-rheological behavior of the different formulations was also studied in a control-stress rheometer. The optimal sodium reduction was found employing a desirability function approach. This formulation was experimentally validated and employed for microstructure analysis by environmental scanning microscopy. The results obtained in this work revealed that partial sodium replacement affected the matrix microstructure, but this change had no impact on sensory acceptability. In comparison with US and Argentinean commercial sausages, our product has 58% and 70% less Na(+) respectively.

  2. Solar-Array Substrate From Glass-Reinforced Concrete

    NASA Technical Reports Server (NTRS)

    Eirls, J. L.

    1985-01-01

    Design elminiates glass superstrate and associated metal framing. Panel has two trapezoidal stiffening ribs for structural support. Strategic placement of ribs with embedded support tubes (standard PVC tubing) minimizes bending moments and resulting stresses produced by installation and windloads. Glass-reinforced concrete panel has smooth flat surface suitable for solar substrate and includes structural bracing for rigidity and design adaptable to mass production.

  3. Causeway and bridge design to reduce roadway contaminant runoff to a saltmarsh ecosystem

    SciTech Connect

    Leitman, P.A.; Ross, P.E.

    1995-12-31

    At the insistence of the local fishermen and landowners the Isle of Palms connector (Charleston, South Carolina) was built with a unique set of environmental safeguards so that the saltmarsh beneath the bridge would remain uncontaminated. This study evaluates the effectiveness of the bridge, in order to judge the suitability of the design for other areas. A two kilometer causeway over the marsh has catch pans to hold runoff, except that a heavy rain causes the pans to overflow. A one kilometer span over the Intracoastal waterway has pipes that redirect the runoff into gravel lined spoils. The bridge was monitored quarterly from January to December 1994. Extensive testing was performed during October 1994 to compare sites around the bridge and within the watershed to a pristine site and a to highly contaminated site. Sediment and water samples were tested with the Microtox{reg_sign} bioluminescence assay and a Latuca sativa (lettuce) seed germination and growth assay. Sediment samples were also tested with a Mercenaria mercenaria (littleneck clam) growth bioassay. Benthic community structure was analyzed for sites around the bridge. While very few statistically significant instances of toxicity were found, there are some trends that make it apparent that the bridge runoff may have some effects. There is no apparent accumulation of toxic contaminants from the pan overflow in sediments beneath the bridge, and this bridge design should ameliorate the effects of bridge runoff in almost any area. Future research using chemical analysis of the fate and transport of contaminants within the bridge and the surrounding area is suggested.

  4. Proliferation resistance assessments during the design phase of a recycling facility as a means of reducing proliferation risks

    SciTech Connect

    Lindell, M.A.; Grape, S.; Haekansson, A.; Jacobsson Svaerd, S.

    2013-07-01

    The sustainability criterion for Gen IV nuclear energy systems inherently presumes the availability of efficient fuel recycling capabilities. One area for research on advanced fuel recycling concerns safeguards aspects of this type of facilities. Since a recycling facility may be considered as sensitive from a non-proliferation perspective, it is important to address these issues early in the design process, according to the principle of Safeguards By Design. Presented in this paper is a mode of procedure, where assessments of the proliferation resistance (PR) of a recycling facility for fast reactor fuel have been performed so as to identify the weakest barriers to proliferation of nuclear material. Two supplementing established methodologies have been applied; TOPS (Technological Opportunities to increase Proliferation resistance of nuclear power Systems) and PR-PP (Proliferation Resistance and Physical Protection evaluation methodology). The chosen fuel recycling facility belongs to a small Gen IV lead-cooled fast reactor system that is under study in Sweden. A schematic design of the recycling facility, where actinides are separated using solvent extraction, has been examined. The PR assessment methodologies make it possible to pinpoint areas in which the facility can be improved in order to reduce the risk of diversion. The initial facility design may then be slightly modified and/or safeguards measures may be introduced to reduce the total identified proliferation risk. After each modification of design and/or safeguards implementation, a new PR assessment of the revised system can then be carried out. This way, each modification can be evaluated and new ways to further enhance the proliferation resistance can be identified. This type of iterative procedure may support Safeguards By Design in the planning of new recycling plants and other nuclear facilities. (authors)

  5. Dynamic Response of Concrete and Concrete Structures.

    DTIC Science & Technology

    1986-05-30

    dia.) are designated as Andesite , Seattle gravel, and a lightweight aggregate called Solite. The fourth material with a manufactured limestone...up to more than 30 KSI at 120/sec. In preliminary tests [16], the Andesite specimens had a static strength of 16.1 KSl and dynamic strengths varying

  6. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    found that the maximum aggregate size of the FAM is mixture dependent, but consistent with a gradation parameter from the Baily Method of mixture design. Mechanistic modeling of these different length scales reveals that although many consider asphalt concrete to be a LVE material, it is in fact only quasi-LVE because it shows some tendencies that are inconsistent with LVE theory. Asphalt FAM and asphalt mastic show similar nonlinear tendencies although the exact magnitude of the effect differs. These tendencies can be ignored for damage modeling in the mixture and FAM scales as long as the effects are consistently ignored, but it is found that they must be accounted for in mastic and binder damage modeling. The viscoelastic continuum damage (VECD) model is used for damage modeling in this research. To aid in characterization and application of the VECD model for cyclic testing, a simplified version (S-VECD) is rigorously derived and verified. Through the modeling efforts at each scale, various factors affecting the fundamental and engineering properties at each scale are observed and documented. A microstructure association model that accounts for particle interaction through physico-chemical processes and the effects of aggregate structuralization is developed to links the moduli at each scale. This model is shown to be capable of upscaling the mixture modulus from either the experimentally determined mastic modulus or FAM modulus. Finally, an initial attempt at upscaling the damage and nonlinearity phenomenon is shown.

  7. Determining prestressing forces for inspection of prestressed concrete containments

    SciTech Connect

    Not Available

    1990-07-01

    General Design Criterion 53, Provisions for Containment Testing and Inspection,'' of Appendix A, General Design Criteria for Nuclear Power Plants,'' to 10 CFR Part 50, Domestic Licensing of Production and Utilization Facilities,'' requires, in part, that the reactor containment be designed to permit (1) periodic inspection of all important areas and (2) an appropriate surveillance program. Regulatory Guide 1.35, Inservice Inspection of Ungrouted Tendons in Prestressed Concrete Containment Structures,'' describes a basis acceptable to the NRC staff for developing an appropriate inservice inspection and surveillance program for ungrouted tendons in prestressed concrete containment structures of light-water-cooled reactors. This guide expands and clarifies the NRC staff position on determining prestressing forces to be used for inservice inspections of prestressed concrete containment structures.

  8. Environmental durability of polymer concrete

    SciTech Connect

    Palmese, G.R.; Chawalwala, A.J.

    1996-12-31

    Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and cure conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.

  9. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    PubMed

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  10. Structure of the Myotonic Dystrophy Type 2 RNA and Designed Small Molecules That Reduce Toxicity

    PubMed Central

    Park, HaJeung; Lohman, Jeremy R.; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C.; Disney, Matthew D.

    2014-01-01

    Myotonic dystrophy type 2 (DM2) is an untreatable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)exp) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5’CCUG/3’GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG)exp refined to 2.35 Å. Structural analysis of the three 5’CCUG/3’GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na+ and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5’CCUG/3’GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops. PMID:24341895

  11. Design Options to Reduce Development Cost of First Generation Surface Reactors

    SciTech Connect

    Poston, David I.; Marcille, Thomas F.

    2006-01-20

    Low-power surface reactors have the potential to have the lowest development cost of any space reactor application, primarily because system alpha (mass/kg) is not of utmost importance and mission lifetimes do not have to be a decade or more. Even then, the development cost of a surface reactor can vary substantially depending on the performance requirements (e.g. mass, power, lifetime, reliability) and technical development risk deemed acceptable by the end-user. It is important for potential users to be aware of these relationships before they determine their future architecture (i.e. decide what they need). Generally, the greatest potential costs of a space reactor program are a nuclear-powered ground test and extensive material development campaigns, so it is important to consider options that can minimize the need for or complexity of such tasks. The intended goal of this paper is to inform potential surface reactor users of the potential sensitivities of surface reactor development cost to design requirements, and areas where technical risk can be traded with development cost.

  12. Structure of the myotonic dystrophy type 2 RNA and designed small molecules that reduce toxicity.

    PubMed

    Childs-Disney, Jessica L; Yildirim, Ilyas; Park, HaJeung; Lohman, Jeremy R; Guan, Lirui; Tran, Tuan; Sarkar, Partha; Schatz, George C; Disney, Matthew D

    2014-02-21

    Myotonic dystrophy type 2 (DM2) is an incurable neuromuscular disorder caused by a r(CCUG) expansion (r(CCUG)(exp)) that folds into an extended hairpin with periodically repeating 2×2 nucleotide internal loops (5'CCUG/3'GUCC). We designed multivalent compounds that improve DM2-associated defects using information about RNA-small molecule interactions. We also report the first crystal structure of r(CCUG) repeats refined to 2.35 Å. Structural analysis of the three 5'CCUG/3'GUCC repeat internal loops (L) reveals that the CU pairs in L1 are each stabilized by one hydrogen bond and a water-mediated hydrogen bond, while CU pairs in L2 and L3 are stabilized by two hydrogen bonds. Molecular dynamics (MD) simulations reveal that the CU pairs are dynamic and stabilized by Na(+) and water molecules. MD simulations of the binding of the small molecule to r(CCUG) repeats reveal that the lowest free energy binding mode occurs via the major groove, in which one C residue is unstacked and the cross-strand nucleotides are displaced. Moreover, we modeled the binding of our dimeric compound to two 5'CCUG/3'GUCC motifs, which shows that the scaffold on which the RNA-binding modules are displayed provides an optimal distance to span two adjacent loops.

  13. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  14. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  15. Physio-chemical reactions in recycle aggregate concrete.

    PubMed

    Tam, Vivian W Y; Gao, X F; Tam, C M; Ng, K M

    2009-04-30

    Concrete waste constitutes the major proportion of construction waste at about 50% of the total waste generated. An effective way to reduce concrete waste is to reuse it as recycled aggregate (RA) for the production of recycled aggregate concrete (RAC). This paper studies the physio-chemical reactions of cement paste around aggregate for normal aggregate concrete (NAC) and RAC mixed with normal mixing approach (NMA) and two-stage mixing approach (TSMA) by differential scanning calorimetry (DSC) and scanning electron microscopy (SEM). Four kinds of physio-chemical reactions have been recorded from the concrete samples, including the dehydration of C(3)S(2)H(3), iron-substituted ettringite, dehydroxylation of CH and development of C(6)S(3)H at about 90 degrees C, 135 degrees C, 441 degrees C and 570 degrees C, respectively. From the DSC results, it is confirmed that the concrete samples with RA substitution have generated less amount of strength enhancement chemical products when compared to those without RA substitution. However, the results from the TSMA are found improving the RAC quality. The pre-mix procedure of the TSMA can effectively develop some strength enhancing chemical products including, C(3)S(2)H(3), ettringite, CH and C(6)S(3)H, which shows that RAC made from the TSMA can improve the hydration processes.

  16. Use of waste plastic in concrete mixture as aggregate replacement.

    PubMed

    Ismail, Zainab Z; Al-Hashmi, Enas A

    2008-11-01

    Industrial activities in Iraq are associated with significant amounts of non-biodegradable solid waste, waste plastic being among the most prominent. This study involved 86 experiments and 254 tests to determine the efficiency of reusing waste plastic in the production of concrete. Thirty kilograms of waste plastic of fabriform shapes was used as a partial replacement for sand by 0%, 10%, 15%, and 20% with 800 kg of concrete mixtures. All of the concrete mixtures were tested at room temperature. These tests include performing slump, fresh density, dry density, compressive strength, flexural strength, and toughness indices. Seventy cubes were molded for compressive strength and dry density tests, and 54 prisms were cast for flexural strength and toughness indices tests. Curing ages of 3, 7, 14, and 28 days for the concrete mixtures were applied in this work. The results proved the arrest of the propagation of micro cracks by introducing waste plastic of fabriform shapes to concrete mixtures. This study insures that reusing waste plastic as a sand-substitution aggregate in concrete gives a good approach to reduce the cost of materials and solve some of the solid waste problems posed by plastics.

  17. Concrete Construction Using Slipform Techniques.

    DTIC Science & Technology

    1982-11-01

    Operations 75 4.1.3 Ramp, Curb, Gutter, Sidewalk and Median Paving "/ 4.1.4 Canal Lining 80 4.2 Cast-in-Place Pipe 82 4.3 Tunnel Inverts 83 4.4...101 APPENDIX B - Bibliography 102 b. -E CHAPTER 1 INTRODUCTION 1.1 BACKGROUND The formwork for concrete structures represents a critical part of...concrete construction, in terms of cost and importance toward getting the job done properly and on time. In fact, concrete formwork frequently costs more

  18. Reuse of thermosetting plastic waste for lightweight concrete.

    PubMed

    Panyakapo, Phaiboon; Panyakapo, Mallika

    2008-01-01

    This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm2 and 1395 kg/m3, respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.

  19. Monitoring of concrete structures using the ultrasonic pulse velocity method

    NASA Astrophysics Data System (ADS)

    Karaiskos, G.; Deraemaeker, A.; Aggelis, D. G.; Van Hemelrijck, D.

    2015-11-01

    Concrete is the material most produced by humanity. Its popularity is mainly based on its low production cost and great structural design flexibility. Its operational and ambient loadings including environmental effects have a great impact in the performance and overall cost of concrete structures. Thus, the quality control, the structural assessment, the maintenance and the reliable prolongation of the operational service life of the existing concrete structures have become a major issue. In the recent years, non-destructive testing (NDT) is becoming increasingly essential for reliable and affordable quality control and integrity assessment not only during the construction of new concrete structures, but also for the existing ones. Choosing the right inspection technique is always followed by a compromise between its performance and cost. In the present paper, the ultrasonic pulse velocity (UPV) method, which is the most well known and widely accepted ultrasonic concrete NDT method, is thoroughly reviewed and compared with other well-established NDT approaches. Their principles, inherent limitations and reliability are reviewed. In addition, while the majority of the current UPV techniques are based on the use of piezoelectric transducers held on the surface of the concrete, special attention is paid to a very promising technique using low-cost and aggregate-size piezoelectric transducers embedded in the material. That technique has been evaluated based on a series of parameters, such as the ease of use, cost, reliability and performance.

  20. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    SciTech Connect

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  1. A study of the effects of LCD glass sand on the properties of concrete.

    PubMed

    Wang, Her-Yung

    2009-01-01

    In order to study the recycling of discarded liquid crystal display (LCD) glass into concrete (LCDGC), a portion of the usual river sand was replaced by sand prepared from discarded LCD glass. Three different mix designs were regulated by the ACI method (fc(28)=21, 28, and 35MPa) with 0%, 20%, 40%, 60%, and 80% LCD glass sand replacements investigated; their engineering properties were determined. Test results revealed that, when compared to the design slump of 15cm, the 20% glass sand concrete for the three different mix designs kept good slump and slump flow. Furthermore, a slump loss ranging from 7 to 11cm was observed for specimens with 60% and 80% glass sand replacement for the design strengths of 28 and 35MPa. The compressive strengths of the concrete with glass sand replacement were higher than the design strengths. Moreover, the durability of the concrete with 20% glass sand replacement was better than that of the control group. Surface resistivity for specimens with different amounts of LCD glass sand replacement was also higher than that in the control group for mid to long curing ages. The sulfate attack in concrete with different amounts of glass sand replacement caused less weight loss than in the control group. Moderate chloride ion penetration was observed for glass sand concrete. Furthermore, the measured ultrasonic pulse velocities for LCD glass sand concrete specimens were higher than 4100m/s, which qualified these specimens as good concrete. OM and SEM indicate that the dense C-S-H gel hydrate was produced at the interface between the glass sand and cement paste. The test results indicate that the addition of 20% LCD glass sand to concrete satisfies the slump requirements and improves the strength and durability of concrete. This suggests that LCD glass sand can potentially be used as a recycled material in concrete applications.

  2. Design characteristics to reduce inadvertent cross-axis coupling during side stick handling of aircraft pitch and roll axis control

    NASA Astrophysics Data System (ADS)

    Cote, Marie-Eve

    Integrating a manual flight control inceptor with coupled axes such as the side stick within a flight deck creates challenges for the pilot to input a one-axis command without inadvertently inducing inputs in the opposite axis. The present paper studies three design features of the side stick and armrest setup believed to help reduce inadvertent cross-axis coupling occurrences. Design features address the aimed pilot population anthropometry (1.57m woman to 1.9m male) and their variability in upper segment measurements. Seven pilots of varying anthropometric sizes were asked to perform one-axis manoeuvres in pitch and roll for each setup configuration. To compare the setups both the duration and the definite integral of the unintended cross-axis input were processed and analyzed for each manoeuvre. Findings show that a short armrest reduces the occurrences of cross-axis input for the roll manoeuvre, whereas the side stick skew reduces inadvertent cross-axis coupling for the pitch manoeuvres.

  3. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.

    2015-01-01

    Flight vehicle aeroacoustic environments induced during transonic and supersonic flight are usually predicted by subscale wind tunnel testing utilizing high frequency miniature pressure transducers. In order to minimize noise induced by the measurement itself, transducer flush mounting with the model surface is very important. The National Aeronautics and Space Administration (NASA) has accomplished flushness in recent testing campaigns via use of a transducer holder that can be machined and sanded. A single hole in the holder allows the flow medium to interact with the transducer diaphragm. Noise is induced by the resulting cavity however, and is a challenge to remove in post-processing. A new holder design has been developed that minimizes the effects of this transducer mount induced noise (XMIN) by reducing the resonance amplitude or increasing its resonance frequency beyond the range of interest. This paper describes a test conducted at the NASA/George C. Marshall Space Flight Center Trisonic Wind Tunnel intended to verify the effectiveness of this design. The results from this test show that this new transducer holder design does significantly reduce the influence of XMIN on measured fluctuating pressure levels without degrading a transducer's ability to accurately measure the noise external to the model.

  4. Effect of silica forms in rice husk ash on the properties of concrete

    NASA Astrophysics Data System (ADS)

    Bui, Le Anh-Tuan; Chen, Chun-Tsun; Hwang, Chao-Lung; Wu, Wei-Sheng

    2012-03-01

    The strength and durability properties of concrete with or without three types of rice husk ash (RHA), namely, amorphous, partial crystalline, and crystalline RHA, were investigates. The three types of RHA were added into concrete at a 20% replacement level. Consequently, the pozzolanic reactivity of amorphous RHA was higher than that of partial crystalline and crystalline RHA. Concrete added with amorphous RHA showed excellent characteristics in its mechanical and durability properties. The results showed that the higher the amount of crystalline silica in RHA, the lower the concrete resistivity value became. When compared with each other, concretes with 20% of the cement replaced with these types of RHA achieved similar ultrasonic pulse velocity values, but all were lower than that of the control concrete. The incorporation of these kinds of RHA significantly reduced chloride penetration. The results not only encourage the use of amorphous materials, they also support the application of crystalline or partial crystalline RHA as mineral and pozzolanic admixtures for cement.

  5. Performance of intact and partially degraded concrete barriers in limiting mass transport

    SciTech Connect

    Walton, J.C. )

    1992-06-01

    Mass transport through concrete barriers and release rate from concrete vaults are quantitatively evaluated. The thorny issue of appropriate diffusion coefficients for use in performance assessment calculations is covered, with no ultimate solution found. Release from monolithic concrete vaults composed of concrete waste forms is estimated with a semi-analytical solution. A parametric study illustrates the importance of different parameters on release. A second situation of importance is the role of a concrete shell or vault placed around typical waste forms in limiting mass transport. In both situations, the primary factor controlling concrete performance is cracks. The implications of leaching behavior on likely groundwater concentrations is examined. Frequently, lower groundwater concentrations can be expected in the absence of engineered covers that reduce infiltration.

  6. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  7. Influence of metakaolin on chemical resistance of concrete

    NASA Astrophysics Data System (ADS)

    Mlinárik, L.; Kopecskó, K.

    2013-12-01

    Nowadays the most suitable and widely used construction material is concrete. We could develop concrete for every request in connection with the properties of fresh concrete and the quality of hardened concrete, too. The demand is rising in application of special concretes, like high performance and ultra high performance concretes (HPC, UHPC). These are usable in extreme natural circumstances or in very corrosive surroundings (for example: sewage farm, sewer, cooling tower, biogas factories). The pH value of the commercial sewage is between 7-8, but this value is often around 4 or less. The concrete pipes, which transport the sewage, are under corrosion, because above the liquid level sulphuric acid occurs due to microbes. Acidic surroundings could start the corrosion of concrete. When the pH value reduces, the influence of the acids will increase. The most significant influence has the sulphuric acid. The pH value of sulphuric acid is about 1, or less. Earlier in the cooling towers of coal thermal power stations used special coating on the concrete wall. Recently application of high performance concrete without polymeric coating is more general. Cementitious supplementary materials are widely used to protect the concrete from these corrosive surroundings. Usually used cementitious supplementary materials are ground granulated blastfurnace slag (GGBS), flying ash (FA) or silica fume (SF). In the last years there has been a growing interest in the application of metakaolin. Metakaolin is made by heat treatment, calcinations of a natural clay mineral, kaolinite. In our present research the chemical resistance of mortars in different corrosive surroundings (pH=1 sulphuric acid; pH=3 acetic acid) and the chloride ion migration were studied on series of mortar samples using rapid chloride migration test. Cement paste and mortar samples were made with 17% metakaolin replacement or without metakaolin. The following cements were used: CEM II/A-S 42.5 N, CEM I 42.5 N-S. We

  8. Lightweight concrete OTEC cold water pipe tests, phase 2

    NASA Astrophysics Data System (ADS)

    Oconnor, J. S.

    1981-03-01

    A one third scale model of a cold water pipe (CWP) for a 40 MW/sub ocean thermal energy conversion (OTEC) plantship was constructed of reinforced lightweight concrete and tested to destruction. Failure occurred at approximately 138 percent of the design load for the once in 100 year storm condition in the Atlantic-1 siting area. The concept of using Neoprene bearing pads to provide flexibility of the joint between pipe segments was also verified. Measured deflections and stresses generally agreed with computer generated predictions and validated the design methods used. It is indicated that a light weight concrete CWP can be built with conventional material, and processes.

  9. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  10. Concrete density estimation by rebound hammer method

    SciTech Connect

    Ismail, Mohamad Pauzi bin Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  11. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  12. Concrete density estimation by rebound hammer method

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  13. Shock Load Capacity of Concrete Expansion Anchoring Systems in Uncracked Concrete

    DTIC Science & Technology

    2005-08-01

    mission ( NUREG ) 1998], namely, steel failure, cone h1ilure, pull- out failure, pull-through failure, and splitting failure. One com- mon failure mode...member, or installed in a thin member ( NUREG 1 998). Cur- rently, there is no model that exists to predict splitting failures. Concrete Capacity Design...34Steel-stud retrofit cunnection development and de- sign." MS thesis, Univ. or Missouri, Columbia. Mo. U.S. Nuclear Regularory Commission. ( NUREG

  14. Performance and cost analysis of a structured concrete thermocline thermal energy storage system

    NASA Astrophysics Data System (ADS)

    Strasser, Matthew N.

    Increasing global energy demands and diminishing fossil fuel resources have raised increased interest in harvesting renewable energy resources. Solar energy is a promising candidate, as sufficient irradiance is incident to the Earth to supply the energy demands of all of its inhabitants. At the utility scale, concentrating solar power (CSP) plants provide the most cost-efficient method of harnessing solar energy for conversion to electrical energy. A major roadblock to the large-scale implementation of CSP plants is the lack of thermal energy storage (TES) that would allow the continued production of electricity during the absence of constant irradiance. Sensible heat TES has been suggested as the most viable form of TES for CSP plants. Two-tank fluid TES systems have been incorporated at several CSP plants, significantly enhancing the performance of the plants. A single-tank thermocline TES system, requiring a reduced liquid media volume, has been suggested as a cost-reducing alternative. Unfortunately, the packed-aggregate bed of such TES system introduces the issue of thermal ratcheting and rupture of the tank's walls. To address this issue, it has been suggested that structured concrete be used in place of the aggregate bed. Potential concrete mix designs have been developed and tested for this application. Finite-difference-based numeric models are used to study the performance of packed-bed and structured concrete thermocline TES systems. Optimized models are developed for both thermocline configurations. The packed-bed thermocline model is used to determine whether or not assuming constant fluid properties over a temperature range is an acceptable assumption. A procedure is developed by which the cost of two-tank and single-tank thermocline TES systems in the capacity range of 100-3000 MWhe can be calculated. System Advisory Model is used to perform life-cycle cost and performance analysis of a central receiver plant incorporating four TES scenarios: no TES

  15. Imagining the truth and the moon: an electrophysiological study of abstract and concrete word processing.

    PubMed

    Gullick, Margaret M; Mitra, Priya; Coch, Donna

    2013-05-01

    Previous event-related potential studies have indicated that both a widespread N400 and an anterior N700 index differential processing of concrete and abstract words, but the nature of these components in relation to concreteness and imagery has been unclear. Here, we separated the effects of word concreteness and task demands on the N400 and N700 in a single word processing paradigm with a within-subjects, between-tasks design and carefully controlled word stimuli. The N400 was larger to concrete words than to abstract words, and larger in the visualization task condition than in the surface task condition, with no interaction. A marked anterior N700 was elicited only by concrete words in the visualization task condition, suggesting that this component indexes imagery. These findings are consistent with a revised or extended dual coding theory according to which concrete words benefit from greater activation in both verbal and imagistic systems.

  16. Development of high performance and high strength heavy concrete for radiation shielding structures

    NASA Astrophysics Data System (ADS)

    Peng, Yu-Chu; Hwang, Chao-Lung

    2011-02-01

    Heavy concrete currently used for construction contains special materials that are expensive and difficult to work with. This study replaced natural aggregate (stones) in concrete with round steel balls, which are inexpensive and easily obtainable. The diameters of the steel balls were 0.5 and 1 cm, and their density was 7.8 kg/m3. Dense packing mixture methods were used to produce heavy concrete with densities of 3500 and 5000 kg/m3. The various properties of this concrete were tested according to the standards of the American Society for Testing and Materials (ASTM). The results indicated that the construction slump of the concrete could reach 260-280 mm and its slump flow could reach 610-710 mm. More important, its compressive strength could reach 8848 MPa. These results will significantly alter traditional construction methods that use heavy concrete and enhance innovative ideas for structural design.

  17. The optimization of concrete mixtures for use in highway applications

    NASA Astrophysics Data System (ADS)

    Moini, Mohamadreza

    Portland cement concrete is most used commodity in the world after water. Major part of civil and transportation infrastructure including bridges, roadway pavements, dams, and buildings is made of concrete. In addition to this, concrete durability is often of major concerns. In 2013 American Society of Civil Engineers (ASCE) estimated that an annual investment of 170 billion on roads and 20.5 billion for bridges is needed on an annual basis to substantially improve the condition of infrastructure. Same article reports that one-third of America's major roads are in poor or mediocre condition [1]. However, portland cement production is recognized with approximately one cubic meter of carbon dioxide emission. Indeed, the proper and systematic design of concrete mixtures for highway applications is essential as concrete pavements represent up to 60% of interstate highway systems with heavier traffic loads. Combined principles of material science and engineering can provide adequate methods and tools to facilitate the concrete design and improve the existing specifications. In the same manner, the durability must be addressed in the design and enhancement of long-term performance. Concrete used for highway pavement applications has low cement content and can be placed at low slump. However, further reduction of cement content (e.g., versus current specifications of Wisconsin Department of Transportation to 315-338 kg/m 3 (530-570 lb/yd3) for mainstream concrete pavements and 335 kg/m3 (565 lb/yd3) for bridge substructure and superstructures) requires delicate design of the mixture to maintain the expected workability, overall performance, and long-term durability in the field. The design includes, but not limited to optimization of aggregates, supplementary cementitious materials (SCMs), chemical and air-entraining admixtures. This research investigated various theoretical and experimental methods of aggregate optimization applicable for the reduction of cement content

  18. A Review of Evidence-Based Traffic Engineering Measures Designed to Reduce Pedestrian–Motor Vehicle Crashes

    PubMed Central

    Retting, Richard A.; Ferguson, Susan A.; McCartt, Anne T.

    2003-01-01

    We provide a brief critical review and assessment of engineering modifications to the built environment that can reduce the risk of pedestrian injuries. In our review, we used the Transportation Research Information Services database to conduct a search for studies on engineering countermeasures documented in the scientific literature. We classified countermeasures into 3 categories—speed control, separation of pedestrians from vehicles, and measures that increase the visibility and conspicuity of pedestrians. We determined the measures and settings with the greatest potential for crash prevention. Our review, which emphasized inclusion of studies with adequate methodological designs, showed that modification of the built environment can substantially reduce the risk of pedestrian–vehicle crashes. PMID:12948963

  19. An experimental investigation of a psychoeducational strategy designed to reduce men's endorsement of societal ideals of women's attractiveness.

    PubMed

    Yamamiya, Yuko; Thompson, J Kevin

    2009-01-01

    The current study evaluated whether a psychoeducational manipulation, focused on reducing an unrealistic view of women's attractiveness, might affect men's ratings of the attractiveness of females. The participants were 159 male undergraduate students who were randomly assigned to four conditions: psychoeducational message (beauty ideals; marketing strategies) and photo exposure (attractive females; household products). The results indicated that males pre-exposed to attractive female images subsequently evaluated average females as less attractive than those exposed to household products. However, a psychoeducational information condition designed to challenge "beauty ideals" did not reduce the adverse exposure effect and was comparable in effectiveness to the "marketing strategies" manipulation. The limitations of the findings are discussed and avenues for future research in this area offered.

  20. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    properties and pore structure information as inputs. Concrete exposed to deicing salts resulted to have a reduced gas transport due to the higher degree of saturation (DOS). The higher DOS is believed to contribute to the premature deterioration observed in concrete pavements exposed to deicing salts. Moisture diffusion and moisture profiles in concrete are known to directly relate with the stresses generated during shrinkage and creep mechanisms. The alteration due to the presence of shrinkage reducing admixtures on drying was also investigated in this work. Liquid properties were used to predict the diffusion coefficient in presence of SRA. Moisture profiles obtained using Fick's second law for diffusion were compared to relative humidity profiles measured on concrete slabs. Results confirm that a qualitative prediction of drying in concrete elements is realistic when using this type of approach.

  1. Concrete structural analysis tools and properties for Hanford site waste tank evaluation

    SciTech Connect

    Moore, C.J.; Peterson, W.S.; Winkel, B.V.; Weiner, E.O.

    1995-09-01

    As Hanford Site Contractors address maintenance and future structural demands on nuclear waste tanks built as early as 1943, it is necessary to address their current safety margins and ensure safe margins are maintained. Although the current civil engineering practice has building codes for reinforced concrete design guidelines, the tanks were not constructed to today`s building codes and future demands potentially result in loads and modifications to the tanks that are outside the original design basis and current practice. The Hanford Site engineering staff has embraced nonlinear finite-element modeling of concrete in an effort to obtain a more accurate understanding of the actual tank margins. This document brings together and integrates past Hanford Site nonlinear reinforced concrete analysis methods, past Hanford Site concrete testing, public domain research testing, and current concrete research directions. This document, including future revisions, provides the structural engineering overview (or survey) for a consistent, accurate approach to nonlinear finite-element modeling of reinforced concrete for Hanford Site waste storage tanks. This report addresses concrete strength and modulus degradation with temperature, creep, shrinkage, long-term sustained loads, and temperature degradation of rebar and concrete bonds. Recommendations are given for parameter studies and evaluation techniques for review of nonlinear finite-element analysis of concrete.

  2. Prediction of residual shear strength of corroded reinforced concrete beams

    NASA Astrophysics Data System (ADS)

    Imam, Ashhad; Azad, Abul Kalam

    2016-09-01

    With the aim of providing experimental data on the shear capacity and behavior of corroded reinforced concrete beams that may help in the development of strength prediction models, the test results of 13 corroded and four un-corroded beams are presented. Corrosion damage was induced by accelerated corrosion induction through impressed current. Test results show that loss of shear strength of beams is mostly attributable to two important damage factors namely, the reduction in stirrups area due to corrosion and the corrosion-induced cracking of concrete cover to stirrups. Based on the test data, a method is proposed to predict the residual shear strength of corroded reinforced concrete beams in which residual shear strength is calculated first by using corrosion-reduced steel area alone, and then it is reduced by a proposed reduction factor, which collectively represents all other applicable corrosion damage factors. The method seems to yield results that are in reasonable agreement with the available test data.

  3. Constitutive Behavior of Reinforced Concrete Membrane Elements under Tri-directional Shear

    NASA Astrophysics Data System (ADS)

    Labib, Moheb

    The two-dimensional behavior of typical reinforced concrete (RC) structures has been extensively studied in the past several decades by investigating the constitutive behavior of full-scale reinforced concrete elements subjected to a bi-axial state of stress. In order to understand the true behavior of many large complex structures, the goal of this investigation is to develop new constitutive relationships for RC elements subjected to tri-directional shear stresses. Recently, additional out-of-plane jacks were installed on the panel tester at University of Houston so that concrete elements could be subjected to tri-directional shear stresses. This upgrade makes the panel tester the only one of its kind in the US that is capable of applying such combinations of stresses on full-scale reinforced concrete elements. This dissertation presents the details of the mounting and installation of the additional hydraulic jacks on the universal panel tester. The experimental program includes a series of seven reinforced concrete elements subjected to different combinations of in-plane and out-of-plane shear stresses. Increasing the applied out-of-plane shear stresses reduced the membrane shear strength of the elements. The effect of applying out-of-plane shear stresses on the in-plane shear strength was represented by modifying the softening coefficient in the compression stress strain curve of concrete struts. The modified model was able to capture the behavior and the ultimate capacity of the tested elements. The effect of the in-plane shear reinforcement ratio on the interaction between in-plane and out-of-plane shear stresses was evaluated. The model was implemented in the Finite Element package FEAP and was used to predict the ultimate capacity of many structures subjected to a combination of in-plane and out-of-plane shear stresses. The results of the analytical model were used to develop simplified design equations for members subjected to bi-directional shear loads

  4. Application of stochastic optimal reduced state feedback gain computation procedures to the design of aircraft gust alleviation controllers

    NASA Technical Reports Server (NTRS)

    Sobel, K.; Kaufman, H.

    1979-01-01

    A stochastic linear model that accounts for process parameter and initial uncertainty, measurement noise, and a restricted number of measurable outputs was used to determine feedback gains useful for reducing the vertical acceleration which results from the presence of a vertical wind gust. Considered in the study were the influence of various feedback configurations, the effects of sensor noise, flight condition changes, and initialization procedures. Results showed that for sixth order linearized longitudinal motion, a controller with feedback on three states could be designed for effective gust alleviation taking into account both sensor noise and flight condition variation.

  5. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  6. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  7. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  8. Implementing the water framework directive: contract design and the cost of measures to reduce nitrogen pollution from agriculture.

    PubMed

    Bartolini, Fabio; Gallerani, Vittorio; Raggi, Meri; Viaggi, Davide

    2007-10-01

    The performance of different policy design strategies is a key issue in evaluating programmes for water quality improvement under the Water Framework Directive (60/2000). This issue is emphasised by information asymmetries between regulator and agents. Using an economic model under asymmetric information, the aim of this paper is to compare the cost-effectiveness of selected methods of designing payments to farmers in order to reduce nitrogen pollution in agriculture. A principal-agent model is used, based on profit functions generated through farm-level linear programming. This allows a comparison of flat rate payments and a menu of contracts developed through mechanism design. The model is tested in an area of Emilia Romagna (Italy) in two policy contexts: Agenda 2000 and the 2003 Common Agricultural Policy (CAP) reform. The results show that different policy design options lead to differences in policy costs as great as 200-400%, with clear advantages for the menu of contracts. However, different policy scenarios may strongly affect such differences. Hence, the paper calls for greater attention to the interplay between CAP scenarios and water quality measures.

  9. Reduced softening of EUROFER 97 under thermomechanical and multiaxial fatigue loading and its impact on the design rules

    NASA Astrophysics Data System (ADS)

    Aktaa, J.; Weick, M.; Petersen, C.

    2009-04-01

    Within the development of the test blanket module (TBM) for use in the ITER and DEMO fusion power plants, interest increasingly focuses on design rules for components built from EUROFER 97. One of the specific characteristics of EUROFER 97 as a ferritic-martensitic steel is its cyclic softening yielding to lower stresses under strain-controlled fatigue loading and, hence, longer lifetimes. Our thermomechanical and multiaxial fatigue tests, however, revealed lifetimes that were remarkably lower than those expected on the basis of isothermal uniaxial fatigue tests. The reduced cyclic softening observed in these experiments is believed to be one of the reasons of the shorter fatigue lifetimes. When applying the design rules derived for EUROFER 97 from isothermal uniaxial data considering the recommendations in the ASME and RCC-MR codes to our thermomechanical and multiaxial fatigue tests for verification purposes, strong loss of their conservatism was found. The lifetimes observed in some of the multiaxial experiments were even lower than the design lifetimes that had been supposed to be sufficiently conservative. To overcome this problem, new design rules will be proposed, which are based among others on the damage and lifetime prediction model developed lately for EUROFER 97.

  10. Concrete waterproofing in nuclear industry.

    PubMed

    Scherbyna, Alexander N; Urusov, Sergei V

    2005-01-01

    One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests.

  11. Optimization of the Infrastructure of Reinforced Concrete Reservoirs by a Particle Swarm Algorithm

    NASA Astrophysics Data System (ADS)

    Kia, Saeed; Sebt, Mohammad Hassan; Shahhosseini, Vahid

    2015-03-01

    Optimization techniques may be effective in finding the best modeling and shapes for reinforced concrete reservoirs (RCR) to improve their durability and mechanical behavior, particularly for avoiding or reducing the bending moments in these structures. RCRs are one of the major structures applied for reserving fluids to be used in drinking water networks. Usually, these structures have fixed shapes which are designed and calculated based on input discharges, the conditions of the structure's topology, and geotechnical locations with various combinations of static and dynamic loads. In this research, the elements of reservoir walls are first typed according to the performance analyzed; then the range of the membrane based on the thickness and the minimum and maximum cross sections of the bar used are determined in each element. This is done by considering the variable constraints, which are estimated by the maximum stress capacity. In the next phase, based on the reservoir analysis and using the algorithm of the PARIS connector, the related information is combined with the code for the PSO algorithm, i.e., an algorithm for a swarming search, to determine the optimum thickness of the cross sections for the reservoir membrane's elements and the optimum cross section of the bar used. Based on very complex mathematical linear models for the correct embedding and angles related to achain of peripheral strengthening membranes, which optimize the vibration of the structure, a mutual relation is selected between the modeling software and the code for a particle swarm optimization algorithm. Finally, the comparative weight of the concrete reservoir optimized by the peripheral strengthening membrane is analyzed using common methods. This analysis shows a 19% decrease in the bar's weight, a 20% decrease in the concrete's weight, and a minimum 13% saving in construction costs according to the items of a checklist for a concrete reservoir at 10,000 m3.

  12. Protective coatings for concrete

    SciTech Connect

    NAGY, KATHRYN L.; CYGAN, RANDALL T.; BRINKER, C. JEFFREY; SELLINGER, ALAN

    2000-05-01

    The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

  13. Reducing the Effect of Transducer Mount Induced Noise on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    NASA Technical Reports Server (NTRS)

    Herron, A. J.; Reed, D. K.; Nance, D. K.

    2015-01-01

    Characterization of launch vehicle unsteady aerodynamics is a field best studied through experimentation, which is often carried out in the form of large scale wind tunnel testing. Measurement of the fluctuating pressures induced by the boundary layer noise is customarily made with miniature pressure transducers installed into a model of the vehicle of interest. Literature shows that noise level increases between two to five decibels (dB referenced to 20 micropascal) can be induced when the transducer surface is not mounted perfectly flush with the model outer surface. To reduce this artificially induced noise, special transducer holders have been used for aeroacoustic wind tunnel testing by NASA. This holder is a sleeve into which the transducer fits, with a cap that allows it to be mounted in a recessed hole in the model. A single hole in the holder allows the transport of the tunnel medium so the transducer can discriminate the fluctuating pressure due to the turbulent boundary layer noise. The holder is first dry fitted into the model and any difference in height between the holder and the model surface can be sanded flush. The holder is then removed from the model, the transducer glued inside the holder, and the holder replaced in the model, secured also with glue, thus eliminating the problem of noise level increases due to lack of flushness. In order to work with this holder design, special transducers have been ordered with their standard screen removed and the diaphragm moved as close to the top of the casing as possible to minimize any cavity volume. Although this greatly reduces induced noise due to the transducers being out of flush, the holders can also induce a cavity resonance that is usually at a very high frequency. This noise is termed transducer mount induced noise (XMIN). The peak of the mode can vary with the cavity depth, boundary layer noise that can excite the mode, tunnel flow medium, and the build of the transducers. Because the boundary

  14. Thick Concrete Specimen Construction, Testing, and Preliminary Analysis

    SciTech Connect

    Clayton, Dwight A.; Hoegh, Kyle; Khazanovich, Lev

    2015-03-01

    The purpose of the U.S. Department of Energy Office of Nuclear Energy’s Light Water Reactor Sustainability (LWRS) Program is to develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the operating lifetimes of nuclear power plants (NPPs) beyond 60 years. Since many important safety structures in an NPP are constructed of concrete, inspection techniques must be developed and tested to evaluate the internal condition. In-service containment structures generally do not allow for the destructive measures necessary to validate the accuracy of these inspection techniques. This creates a need for comparative testing of the various nondestructive evaluation (NDE) measurement techniques on concrete specimens with known material properties, voids, internal microstructure flaws, and reinforcement locations. A preliminary report detailed some of the challenges associated with thick reinforced concrete sections and prioritized conceptual designs of specimens that could be fabricated to represent NPP concrete structures for using in NDE evaluation comparisons. This led to the construction of the concrete specimen presented in this report, which has sufficient reinforcement density and cross-sectional size to represent an NPP containment wall. Details on how a suitably thick concrete specimen was constructed are presented, including the construction materials, final nominal design schematic, as well as formwork and rigging required to safely meet the desired dimensions of the concrete structure. The report also details the type and methods of forming the concrete specimen as well as information on how the rebar and simulated defects were embedded. Details on how the resulting specimen was transported, safely anchored, and marked to allow access for systematic comparative NDE testing of defects in a representative NPP containment wall concrete specimen are also given. Data collection using the MIRA Ultrasonic NDE equipment and

  15. Experimental study on bond of prestressing strand in high-strength concrete

    NASA Astrophysics Data System (ADS)

    Marti Vargas, Jose Rocio

    The bond between strand and concrete is essential to guarantee, on one hand, the appropriate prestressing transfer and, on the other, to allow the anchoring of the strand throughout the useful life of the structural element. However, nowadays there is some uncertainty on the knowledge of the bond behaviour of prestressing strands to concrete, even more in concretes with high initial performance. We have conducted a revision of the scientific literature from three different perspectives: (1) compilation of existing types of tests in order to classify the bond properties; (2) analysis of the influence on bond of the main parameters studied in experimental research; and (3) analysis of the calculation expressions for the determination of transfer and development lengths suggested by researchers and standards. We have designed a test to determine the bond characteristics of prestressing strands to concrete using transfer and development lengths. The most remarkable innovation is that it allows to determine the strand development length after the prestressed force transfer. With this test method, the operations of release and removal are performed on the same piece of concrete, and this situation displays with a higher degree of reliability the actual state of the pretensioned prestressed concrete elements, as the transfer operations of prestressing and start are sequentially reproduced. We have developed an experimental program to assess the bond of steel strands upon prestressing 7 wires in initial high performance concrete, and we have analysed the influence on bond of variables such as the dosification of concrete, the age of release, the transversal section of the element, the level of stress, the level of concrete tensions, the energy of concrete compaction and the speeds of load applications during release and removal operations. Finally, we have checked the feasibility of the application of the test previously designed and the transfer and development lengths

  16. A design of DDS single-frequency signal generator based on phrase jitter technology to reduce scattering noise

    NASA Astrophysics Data System (ADS)

    Liu, Zhihui; Fan, Muwen; Zhou, Luchun

    2015-10-01

    In order to test the working status of adaptive optics systems, it is necessary to design a disturbance signal module. Disturbance signal module based on DDS (Direct Digital frequency Synthesis) is used to generate single-frequency disturbance signal to test the working conditions of deformable mirror and adaptive optics systems. But DDS is a periodic sampling sequence and will inevitably lead to the introduction of periodic noise which makes the disturbance signal scattering. This paper uses two methods to reduce the scattering of the single-frequency signal generated by DDS technology. The first method is the compression ROM table. In the case of the same ROM capacity, it is equivalent to extend the compressed ROM table with 256 points to ROM table with 1024 points. In this process, Oversampling is introduced to improve spectral purity to reduce the scattering of the single-frequency signal. The second method is the random phase jitter technology. It introduces m sequence as DDS sampling output random phase jitter unit. The purpose is to generate some random number added at the end of the phase accumulator. As a result, the output does not always push back than ideal, but randomly in advance, thus breaking its periodicity. This method changes the original uniform look-up sampling into a random non-uniform look-up sampling, making DDS output spectrum white. It can also improve spectral purity of the DDS output, thereby reducing the scatting of the single-frequency signal generated by DDS technology.

  17. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  18. Effects of divided attention and word concreteness on correct recall and false memory reports.

    PubMed

    Pérez-Mata, M Nieves; Read, J Don; Diges, Margarita

    2002-05-01

    Lists of thematically related words were presented to participants with or without a concurrent task. In Experiments 1 and 2, respectively, English or Spanish word lists were either low or high in concreteness (concrete vs abstract words) and were presented, respectively, auditorily or visually for study. The addition of a concurrent visual or auditory task, respectively, substantially reduced correct recall and doubled the frequency of false memory reports (nonstudied critical or theme words). Divided attention was interpreted as having reduced the opportunity for participants to monitor successfully their elicitations of critical associates. Comparisons of concrete and abstract lists revealed significantly more recalls of false memories for abstract than concrete word lists. Comparisons between two levels of attention, two levels of word concreteness, and two presentation modalities failed to support the "more is less" effect by which enhanced correct recall is accompanied by increased frequencies of false memories.

  19. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes.

    PubMed

    Kou, S C; Lee, G; Poon, C S; Lai, W L

    2009-02-01

    This paper aims to investigate the fresh and hardened properties of lightweight aggregate concretes that are prepared with the use of recycled plastic waste sourced from scraped PVC pipes to replace river sand as fine aggregates. A number of laboratory prepared concrete mixes were tested, in which river sand was partially replaced by PVC plastic waste granules in percentages of 0%, 5%, 15%, 30% and 45% by volume. Two major findings are identified. The positive side shows that the concrete prepared with a partial replacement by PVC was lighter (lower density), was more ductile (greater Poisson's ratios and reduced modulus of elasticity), and had lower drying shrinkage and higher resistance to chloride ion penetration. The negative side reveals that the workability, compressive strength and tensile splitting strength of the concretes were reduced. The results gathered would form a part of useful information for recycling PVC plastic waste in lightweight concrete mixes.

  20. Radon resistant potential of concrete manufactured using Ordinary Portland Cement blended with rice husk ash

    NASA Astrophysics Data System (ADS)

    Chauhan, R. P.; Kumar, Amit

    2013-12-01

    The emission of radon from building materials and soil depends upon the radium content, porosity, moisture content and radon diffusion length of materials. Several techniques have been used to reduce the radon emission from the soil using different flooring materials. But the effectiveness of radon shielding depends upon the diffusion of radon through these materials. The present study proposes a method for producing a radon resistant material for decreasing radon diffusion through it. The method involves rice husk ash (RHA) in addition to cement for the preparation of concrete used for flooring and walls. The radon diffusion, exhalation and mechanical property of concrete prepared by rice husk ash blended cement were studied. The addition of RHA caused the reduction in radon diffusion coefficient, exhalation rates, porosity and enhanced the compressive strength of concrete. The bulk radon diffusion coefficient of cementitious concrete was reduced upto 69% by addition of rice husk ash as compare to that of control concrete.

  1. Performance of concrete pavements containing recycled concrete aggregate. Interim report, October 1993-October 1996

    SciTech Connect

    Wade, M.J.; Cuttell, G.D.; Vandenbossche, J.M.; Yu, H.T.; Smith, K.D.

    1997-03-01

    This interim report documents the field performance of nine concrete pavement projects that incorporate recycled concrete aggregate (RCA) in the construction of the pavement. Multiple sections were evaluated on many of the nine projects, due to perceived differences in performance levels or variations in pavement design (such as the use of virgin aggregate or the inclusion of dowel bars). All told, a total of 17 sections (of which 12 contain RCA) were subjected to an extensive field testing program, consisting of pavement condition surveys, drainage surveys, falling weight deflectometer (FWD) testing, coring, and serviceability assessments. A minimum of eight cores were retrieved from each section for laboratory evaluation of compressive strength, split tensile strength, dynamic elastic modulus, static elastic modulus, and thermal coefficient of expansion, as well as for volumetric surface testing and petrographic analyses.

  2. Polymer concrete for precast repair of continuously reinforced concrete pavement on IH 30, near Mt. Pleasant

    NASA Astrophysics Data System (ADS)

    Meyer, A. M.; McCullough, B. F.; Fowler, D. W.

    1981-08-01

    Two punchout repairs made in a continuously reinforced concrete pavement (CRCP) using precast portland cement panels are described. The two repairs, one 1.44 sq. ft., the other 36 sq. ft., were completed and opened to traffic in one afternoon. This technique provides a rapid method of repair that produces a repair that is structurally as good or better than the surrounding pavement. With a trained crew, the repair time can be reduced and thus reducing lane closure time. Since lane closure time is a critical consideration in high volume highways, this method is cost effective in those areas.

  3. Energy Efficiency Improvement and Cost Saving Oportunities for the Concrete Industry

    SciTech Connect

    Kermeli, Katerina; Worrell, Ernst; Masanet, Eric

    2011-12-01

    The U.S. concrete industry is the main consumer of U.S.-produced cement. The manufacturing of ready mixed concrete accounts for more than 75% of the U.S. concrete production following the manufacturing of precast concrete and masonry units. The most significant expenditure is the cost of materials accounting for more than 50% of total concrete production costs - cement only accounts for nearly 24%. In 2009, energy costs of the U.S. concrete industry were over $610 million. Hence, energy efficiency improvements along with efficient use of materials without negatively affecting product quality and yield, especially in times of increased fuel and material costs, can significantly reduce production costs and increase competitiveness. The Energy Guide starts with an overview of the U.S. concrete industry’s structure and energy use, a description of the various manufacturing processes, and identification of the major energy consuming areas in the different industry segments. This is followed by a description of general and process related energy- and cost-efficiency measures applicable to the concrete industry. Specific energy and cost savings and a typical payback period are included based on literature and case studies, when available. The Energy Guide intends to provide information on cost reduction opportunities to energy and plant managers in the U.S. concrete industry. Every cost saving opportunity should be assessed carefully prior to implementation in individual plants, as the economics and the potential energy and material savings may differ.

  4. Rational design of viscosity reducing mutants of a monoclonal antibody: Hydrophobic versus electrostatic inter-molecular interactions

    PubMed Central

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption. PMID:25559441

  5. Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions.

    PubMed

    Nichols, Pilarin; Li, Li; Kumar, Sandeep; Buck, Patrick M; Singh, Satish K; Goswami, Sumit; Balthazor, Bryan; Conley, Tami R; Sek, David; Allen, Martin J

    2015-01-01

    High viscosity of monoclonal antibody formulations at concentrations ≥100 mg/mL can impede their development as products suitable for subcutaneous delivery. The effects of hydrophobic and electrostatic intermolecular interactions on the solution behavior of MAB 1, which becomes unacceptably viscous at high concentrations, was studied by testing 5 single point mutants. The mutations were designed to reduce viscosity by disrupting either an aggregation prone region (APR), which also participates in 2 hydrophobic surface patches, or a negatively charged surface patch in the variable region. The disruption of an APR that lies at the interface of light and heavy chain variable domains, VH and VL, via L45K mutation destabilized MAB 1 and abolished antigen binding. However, mutation at the preceding residue (V44K), which also lies in the same APR, increased apparent solubility and reduced viscosity of MAB 1 without sacrificing antigen binding or thermal stability. Neutralizing the negatively charged surface patch (E59Y) also increased apparent solubility and reduced viscosity of MAB 1, but charge reversal at the same position (E59K/R) caused destabilization, decreased solubility and led to difficulties in sample manipulation that precluded their viscosity measurements at high concentrations. Both V44K and E59Y mutations showed similar increase in apparent solubility. However, the viscosity profile of E59Y was considerably better than that of the V44K, providing evidence that inter-molecular interactions in MAB 1 are electrostatically driven. In conclusion, neutralizing negatively charged surface patches may be more beneficial toward reducing viscosity of highly concentrated antibody solutions than charge reversal or aggregation prone motif disruption.

  6. Durability of an inorganic polymer concrete coating

    NASA Astrophysics Data System (ADS)

    Wasserman, Kenneth

    The objective of the research program reported in this thesis is to evaluate the durability of an inorganic polymer composite coating exposed to freeze/thaw cycling and wet-dry cycling. Freeze/thaw cycling is performed following ASTM D6944-09 Standard Practice for Resistance of Cured Coatings to Thermal Cycling and wet/dry cycling is performed following guidelines set forth in a thesis written by Ronald Garon at Rutgers University. For both sets of experiments, four coating mixture proportions were evaluated. The variables were: silica/alumina ratio, mixing protocol using high shear and normal shear mixing, curing temperatures of 70 and 120 degrees Fahrenheit and use of nano size constituent materials. The mix with highest silica/alumina ratio was designated as Mix 1 and mixes with lower ratios were designated as Mix 2 and Mix 3. Mix 4 had nano silica particles. Four prisms were used for each variable including control that had no coating. The performance of the coating was evaluated using adhesion strength measured using: ASTM D7234 Test Method for Pull-Off Strength of Coatings on Concrete Using Portable Adhesion Testers. Tests were performed after every five consecutive cycles of thermal conditioning and six consecutive cycles of wet-dry exposure. Results from the thermal cycling and wet-dry testing demonstrate that all coating formulations are durable. The minimum adhesion strength was 300 psi even though a relatively weak base concrete surface was chosen for the study. The weak surface was chosen to simulate aged concrete surfaces present in actual field conditions. Due to the inherent nature of the test procedure the variation in test results is high. However, based on the test results, high shear mixer and high temperature curing are not recommended. As expected nano size constituent materials provide better performance.

  7. Stress-based topology optimization of concrete structures with prestressing reinforcements

    NASA Astrophysics Data System (ADS)

    Luo, Yangjun; Wang, Michael Yu; Deng, Zichen

    2013-11-01

    Following the extended two-material density penalization scheme, a stress-based topology optimization method for the layout design of prestressed concrete structures is proposed. The Drucker-Prager yield criterion is used to predict the asymmetrical strength failure of concrete. The prestress is considered by making a reasonable assumption on the prestressing orientation in each element and adding an additional load vector to the structural equilibrium function. The proposed optimization model is thus formulated as to minimize the reinforcement material volume under Drucker-Prager yield constraints on elemental concrete local stresses. In order to give a reasonable definition of concrete local stress and prevent the stress singularity phenomenon, the local stress interpolation function and the ɛ -relaxation technique are adopted. The topology optimization problem is solved using the method of moving asymptotes combined with an active set strategy. Numerical examples are given to show the efficiency of the proposed optimization method in the layout design of prestressed concrete structures.

  8. Virtual environments for nuclear power plant design

    SciTech Connect

    Brown-VanHoozer, S.A.; Singleterry, R.C. Jr.; King, R.W.

    1996-03-01

    In the design and operation of nuclear power plants, the visualization process inherent in virtual environments (VE) allows for abstract design concepts to be made concrete and simulated without using a physical mock-up. This helps reduce the time and effort required to design and understand the system, thus providing the design team with a less complicated arrangement. Also, the outcome of human interactions with the components and system can be minimized through various testing of scenarios in real-time without the threat of injury to the user or damage to the equipment. If implemented, this will lead to a minimal total design and construction effort for nuclear power plants (NPP).

  9. Mechanical, hydric and thermal properties of fine-grained high performance concrete

    NASA Astrophysics Data System (ADS)

    KoÅáková, D.; Čáchová, M.; Doleželová, M.; Kočí, V.; Vejmelková, E.; Černý, R.

    2017-02-01

    The experimental analysis of several types of fine-grained high performance concretes is presented in this paper. Besides mechanical parameters, presented analysis aims also at determination of basic physical and heat and moisture transport and storage parameters. Within the frame of this paper, three different mixtures of fine-grained high performance concrete were designed, distinguished by the type of binder (unitary-, binary- or ternary-based) and their properties were compared with two types common concretes. Experimental results show that the compressive and bending strength, static modulus of elasticity of high performance concretes are significantly better than for other two concrete mixtures, regardless of the type of binder. Thermal conductivity of high performance concretes was higher in dry state, but due to lower open porosity and lower values of moisture diffusivity these concretes are more resistance to liquid moisture intake, therefore they evince better thermal properties in fully saturated state. Since the ternary-based high performance concrete contains also secondary raw materials as partial cement replacement and its properties were mostly better than other investigated concretes, it can be considered as an environmental friendly solution.

  10. Shaking table experimental study of recycled concrete frame-shear wall structures

    NASA Astrophysics Data System (ADS)

    Zhang, Jianwei; Cao, Wanlin; Meng, Shaobin; Yu, Cheng; Dong, Hongying

    2014-06-01

    In this study, four 1/5 scaled shaking table tests were conducted to investigate the seismic performance of recycled concrete frame-shear wall structures with different recycled aggregates replacement rates and concealed bracing detail. The four tested structures included one normal concrete model, one recycled coarse aggregate concrete model, and two recycled coarse and fine aggregate concrete models with or without concealed bracings inside the shear walls. The dynamic characteristics, dynamic response and failure mode of each model were compared and analyzed. Finite element models were also developed and nonlinear time-history response analysis was conducted. The test and analysis results show that the seismic performance of the recycled coarse aggregate concrete frame-shear wall structure is slightly worse than the normal concrete structure. The seismic resistance capacity of the recycled concrete frame-shear wall structure can be greatly improved by setting up concealed bracings inside the walls. With appropriate design, the recycled coarse aggregate concrete frame-shear wall structure and recycled concrete structure with concealed bracings inside the walls can be applied in buildings.

  11. Chemical-mineralogical characterisation of coarse recycled concrete aggregate

    SciTech Connect

    Limbachiya, M.C. . E-mail: m.limbachiya@kingston.ac.uk; Marrocchino, E.; Koulouris, A.

    2007-07-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO{sub 2}, Al{sub 2}O{sub 3} and CaO) of concrete, but thereafter there was a marginal decrease in SiO{sub 2} and increase in Al{sub 2}O{sub 3} and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  12. Chemical-mineralogical characterisation of coarse recycled concrete aggregate.

    PubMed

    Limbachiya, M C; Marrocchino, E; Koulouris, A

    2007-01-01

    The construction industry is now putting greater emphasis than ever before on increasing recycling and promoting more sustainable waste management practices. In keeping with this approach, many sectors of the industry have actively sought to encourage the use of recycled concrete aggregate (RCA) as an alternative to primary aggregates in concrete production. The results of a laboratory experimental programme aimed at establishing chemical and mineralogical characteristics of coarse RCA and its likely influence on concrete performance are reported in this paper. Commercially produced coarse RCA and natural aggregates (16-4 mm size fraction) were tested. Results of X-ray fluorescence (XRF) analyses showed that original source of RCA had a negligible effect on the major elements and a comparable chemical composition between recycled and natural aggregates. X-ray diffraction (XRD) analyses results indicated the presence of calcite, portlandite and minor peaks of muscovite/illite in recycled aggregates, although they were directly proportioned to their original composition. The influence of 30%, 50%, and 100% coarse RCA on the chemical composition of equal design strength concrete has been established, and its suitability for use in a concrete application has been assessed. In this work, coarse RCA was used as a direct replacement for natural gravel in concrete production. Test results indicated that up to 30% coarse RCA had no effect on the main three oxides (SiO2, Al2O3 and CaO) of concrete, but thereafter there was a marginal decrease in SiO2 and increase in Al2O3 and CaO contents with increase in RCA content in the mix, reflecting the original constituent's composition.

  13. Monitoring Corrosion of Steel Bars in Reinforced Concrete Structures

    PubMed Central

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion. PMID:24558346

  14. Monitoring corrosion of steel bars in reinforced concrete structures.

    PubMed

    Verma, Sanjeev Kumar; Bhadauria, Sudhir Singh; Akhtar, Saleem

    2014-01-01

    Corrosion of steel bars embedded in reinforced concrete (RC) structures reduces the service life and durability of structures causing early failure of structure, which costs significantly for inspection and maintenance of deteriorating structures. Hence, monitoring of reinforcement corrosion is of significant importance for preventing premature failure of structures. This paper attempts to present the importance of monitoring reinforcement corrosion and describes the different methods for evaluating the corrosion state of RC structures, especially hal-cell potential (HCP) method. This paper also presents few techniques to protect concrete from corrosion.

  15. Repair, Evaluation, Maintenance, and Rehabilitation Research Program. Comparison of Cast-in-Place Concrete Stay-in-Place Forming Systems for Lock Wall Rehabilitation

    DTIC Science & Technology

    1993-10-01

    Maintenance, and Technical Report REMR-CS-41 Rehabilitation Research Program October 1993 Comparison of Cast-in-Place Concrete Versus Precast Concrete ...Rehabilitation Research Program Comparison of Cast-in-Place Concrete Versus Precast Concrete Stay-in-Place Forming Systems for Lock Wall Rehabilitation...Headquarters, U.S. Army Corps of Engineers The follow ino t,, o letters used as part of the number designating technical reports of research published

  16. Finite Element Simulation and Assessment of Single-Degree-of-Freedom Prediction Methodology for Insulated Concrete Sandwich Panels Subjected to Blast Loads

    DTIC Science & Technology

    2011-02-01

    tests referenced in this report. 2.3. Precast /Prestressed Sandwich Wall Panels The typical configuration of concrete sandwich wall panels is two...Sandwich Wall Panels,” Journal of the Precast /Prestressed Concrete Institute, 42 (2). PCI Industry Handbook Committee (2004). PCI Design Handbook...the Composite Behavior of Precast Concrete Sandwich Wall Panels,” PCI Journal, Precast /Prestressed Concrete Institute, Vol. 48, No. 2, March-April

  17. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  18. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  19. Principles of Concrete, Instructor's Manual; Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This guide, prepared for a 2-year course in junior colleges and technical institutes, is designed to be a national program to train persons for employment as technicians in the cement and concrete industries. Included are 48 session outlines divided into four units of study. Each unit contains objectives, outline, related information, and…

  20. Concrete airship sheds at Orly, France. Part I

    NASA Technical Reports Server (NTRS)

    FREYSSINET

    1925-01-01

    This report details the contest to design and build concrete airship hangers. The difficulty lies in the magnitude of the absolute dimensions. An airship shed must withstand two principal types of stresses: those resulting from its own weight and those due to the wind. This report discusses both problems in detail.