Science.gov

Sample records for concrete runway materials

  1. Test of LOX compatibility for asphalt and concrete runway materials

    NASA Technical Reports Server (NTRS)

    Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.

    1973-01-01

    A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.

  2. Water-compatible polymer concrete materials for use in rapid repair systems for airport runways. Final report

    SciTech Connect

    Sugama, T.; Kukacka, L.E.; Horn, W.

    1981-03-01

    Water-compatible polymer concrete (PC) formulations have been developed which appear to have potential for use in all-weather rapid repair procedures for bomb-damaged runways. Formulations consisting of furfuryl alcohol, water-saturated aggregate, dry silica flour, promoters, and catalysts produced composites with properties suitable for repair purposes when mixed and polymerized at temperatures from -20/sup 0/ to 30/sup 0/C. Calcium-unsaturated polyester complexed PC also produced excellent properties. However, the early strength criteria (2000 psi (13.78 MPa) at 1 h) and other requirements such as compatibility of the formulation with water and practical working times could be attained only at temperatures >20/sup 0/C. This system can be polymerized under water. Studies of the polymerization reaction mechanisms, materials properties, costs, and potential placement methods were performed.

  3. Tests of highly loaded skids on a concrete runway

    NASA Technical Reports Server (NTRS)

    Stubbs, Sandy M.; Daugherty, Robert H.

    1994-01-01

    Skids have been used at various times for aircraft landing gear ever since the Wright Flyer appeared in the early 1900's. Typically, skids have been employed as aircraft landing gear either at low speeds or at low bearing pressures. Tests were conducted to examine the friction and wear characteristics of various metals sliding on a rough, grooved concrete runway. The metals represented potential materials for an overload protection skid for the Space Shuttle orbiter. Data from tests of six skid specimens conducted at higher speeds and bearing pressures than those of previous tests in the open literature are presented. Skids constructed of tungsten with embedded carbide chips exhibited the lowest wear, whereas a skid constructed of Inconel 718 exhibited high wear rates. Friction coefficients for all the skid specimens were moderate and would provide adequate stopping performance on a long runway. Because of its low wear rate, a skid constructed of tungsten with embedded carbide chips is considered to be a likely candidate for an aircraft skid or overload protection skid.

  4. Remote sensing of voids in large concrete structures: runways, taxiways, bridges, and building walls and roofs

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1998-10-01

    Maintenance of our world's infrastructure presents many unique challenges. Engineering and maintenance personnel must maintain around the clock service to millions of people each year while maintaining millions of cubic meters of concrete distributed throughout facilities. This infrastructure includes runways, taxiways, roadways, walkways, bridges, building walls and roofs. Presently only a limited number of accurate and economical techniques exist to test this myriad of concrete structures for integrity and safety as well as insure that they meet original design specifications. Remote sensing, non-destructive testing techniques, such as Infrared Thermography, Ground Penetrating Radar, Magnetometer and Pachometer, measure physical properties affected by the various materials and conditions found within, and under, concrete infrastructure. These techniques have established reputations for accurate investigations of concrete anomalies. This paper will review the applications of different non- destructive testing techniques on many concrete infrastructure components.

  5. Nondestructive testing of airport concrete structures: runways, taxiways, roads, bridges, building walls, and roofs

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1998-03-01

    Maintenance of airport infrastructure presents many unique challenges. Airport engineering and maintenance personnel must maintain around the clock service to millions of people each year while maintaining millions of cubic meters of concrete distributed throughout the facilities. This infrastructure includes runways, taxiways, roadways, walkways, bridges, building walls and roofs. Presently only a limited number of accurate and economical techniques exist to test this myriad of concrete structures for integrity and safety as well as insure that they meet original design specifications. Remote sensing, non-destructive testing techniques, such as IR thermography, ground penetrating radar, magnetometer and pachometer, measure physical properties affected by the various materials and conditions found within, and under, concrete infrastructure. These techniques have established reputations for accurate investigations of concrete anomalies.

  6. STS-33 Discovery, OV-103, MLG touches down on concrete runway 04 at EAFB

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down on concrete runway 04 at Edwards Air Force Base (EAFB), California, at 16:31:02 pm Pacific Standard Time (PST). This view captures OV-103's profile (port side) as it glides down the runway.

  7. STS-33 Discovery, OV-103, MLG touches down on EAFB concrete runway 04

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touchdown is documented at Edwards Air Force Base (EAFB), California, on concrete runway 04. Views look forward from the space shuttle main engines (SSMEs) to the crew compartment as OV-103 glides down the runway. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).

  8. STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Mojave desert scrub brush appears in the foreground with mountain range appearing in the background.

  9. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's port side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  10. STS-40 Columbia, OV-102, lands on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1991-01-01

    STS-40 Columbia's, Orbiter Vehicle (OV) 102's, main landing gear (MLG) touches down on concrete runway 22 at Edwards Air Force Base (EAFB), California at 8:29:11 am (Pacific Daylight Time (PDT)). OV-102's starboard side is captured in this profile view as its nose landing gear (NLG) glides above the runway before touch down and wheel stop.

  11. STS-41 Discovery, OV-103, glides over concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 Discovery, Orbiter Vehicle (OV) 103, with nose landing gear (NLG) and main landing gear (MLG) deployed, glides over concrete runway 22 at Edwards Air Force Base (EAFB), California, prior to touchdown.

  12. STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.

  13. STS-49 Endeavour, OV-105, landing on concrete runway 22 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1992-01-01

    STS-49 Endeavour, Orbiter Vehicle (OV) 105, glides above concrete runway 22 at Edwards Air Force Base (EAFB), California, just before main landing gear (MLG) touchdown. Nose landing gear (NLG) is also deployed during the landing sequence. Landing occurred at 1:36:38 pm (Pacific Daylight Time (PDT)).

  14. STS-29 Discovery, OV-103, lands on Edwards AFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-29 Discovery, Orbiter Vehicle (OV) 103, main landing gear (MLG) touches down at a speed of approximately 205 knots (235 miles per hour) on concrete runway 22 at Edwards Air Force Base (AFB), California. Nose landing gear (NLG) is deployed and rides above runway surface prior touchdown. Rear view captures OV-103 as it glides past photographer to wheel stop showing the tail section (speedbrake/rudder) and three space shuttle main engines (SSMEs). Mojave desert scrub brush appears in the foreground with aircraft hangar appearing in the background.

  15. STS-41 crew poses in front of OV-103 on concrete runway 22 at EAFB, Calif

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 crewmembers pose in front of Discovery, Orbiter Vehicle (OV) 103, parked on concrete runway 22 at Edwards Air Force Base (EAFB), California. Having just completed their mission, the crewmembers are still wearing their launch and entry suits (LESs). From left to right are Mission Specialist (MS) Thomas D. Akers, Pilot Robert D. Cabana, Commander Richard N. Richards, MS Bruce E. Melnick, and MS William M. Shepherd.

  16. Plastic (wire-combed) grooving of a slip-formed concrete runway overlay at Patrick Henry Airport: An initial evaluation

    NASA Technical Reports Server (NTRS)

    Marlin, E. C.; Horne, W. B.

    1977-01-01

    A wire-comb technique is described for transversely grooving the surface of a freshly laid (plastic state) slip-formed concrete overlay installed at Patrick Henry Airport. This method of surface texturing yields better water drainage and pavement skid resistance than that obtained with an older conventional burlap drag concrete surface treatment installed on an adjacent portion of the runway.

  17. STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, rolls along concrete runway 22 at Edwards Air Force Base (EAFB), California, after nose landing gear (NLG) and main landing gear (MLG) touchdown. This view looks down OV-103's port side from the space shuttle main engines (SSMEs) to the nose section. The SSMEs are gimbaled to their descent position and the rudder/speedbrake is deployed on the vertical stabilizer. Wheel stop occurred at 6:51 am (Pacific Daylight Time (PDT)). In the distance EAFB facilities are visible.

  18. STS-31 crew poses on EAFB concrete runway after egressing OV-103

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 crewmembers, wearing their launch and entry suits (LESs), pose for an informal portrait on Edwards Air Force Base (EAFB) concrete runway 22 after egressing Discovery, Orbiter Vehicle (OV) 103. Left to right are Mission Specialist (MS) Steven A. Hawley, Pilot Charles F. Bolden, MS Kathryn D. Sullivan, Commander Loren J. Shriver, and MS Bruce McCandless II. A service vehicle and OV-103's main landing gear (MLG) are visible in the background. The highly successful five-day mission concluded at EAFB with wheel stop at 6:51:00 am (Pacific Daylight Time (PDT)).

  19. STS-41 crew poses in front of OV-103 on concrete runway 22 at EAFB, Calif

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-41 crewmembers give 'thumbs up' signal while standing in front of Discovery, Orbiter Vehicle (OV) 103, parked on concrete runway 22 at Edwards Air Force Base (EAFB), California. Having just completed their mission, the crewmembers are still wearing their launch and entry suits (LESs). From left to right are Mission Specialist (MS) Thomas D. Akers, Pilot Robert D. Cabana, Commander Richard N. Richards, MS Bruce E. Melnick, and MS William M. Shepherd. Set up at OV-103's side hatch is a mobile stairway which the crew uses to egress the vehicle and which technicians use when safing the vehicle during postflight operations.

  20. Structural Materials: 95. Concrete

    SciTech Connect

    Naus, Dan J

    2012-01-01

    Nuclear power plant concrete structures and their materials of construction are described, and their operating experience noted. Aging and environmental factors that can affect the durability of the concrete structures are identified. Basic components of a program to manage aging of these structures are identified and described. Application of structural reliability theory to devise uniform risk-based criteria by which existing facilities can be evaluated to achieve a desired performance level when subjected to uncertain demands and to quantify the effects of degradation is outlined. Finally, several areas are identified where additional research is desired.

  1. STS-33 Discovery, OV-103, approaches concrete runway 04 at EAFB, California

    NASA Technical Reports Server (NTRS)

    1989-01-01

    STS-33 Discovery, Orbiter Vehicle (OV) 103, approaches runway 04 at Edwards Air Force Base (EAFB), California. OV-103 with landing gear deployed is silhouetted against the orange sky of a sunset as it glides over the mountains. The landing occurred at 16:31:02 pm Pacific Standard Time (PST).

  2. Technical Note: Outlays on Construction of Airport Runways with Prestressed and Dowelled Pavements

    NASA Astrophysics Data System (ADS)

    Więckowski, Andrzej; Sznurawa, Alicja

    2015-09-01

    For two variants of runways with abrasive concrete pavements in the prestressed and dowelled technologies, analyses have been presented regarding labour, materials, use of machinery, and financial outlays, together with the necessary technological-organisational analyses and assessment of work execution cycles, by the example of construction of a runway at the Katowice Airport.

  3. Properties of Sulfur Concrete.

    DTIC Science & Technology

    1979-07-06

    This report summarizes the state of the art of sulfur concrete . Sulfur concrete is created by mixing molten sulfur with aggregate and allowing the...and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable properties. It has poor durability

  4. North End Runway Material Extraction and Transport Environmental Assessment

    DTIC Science & Technology

    2006-05-01

    dust generated from mining and hauling operations. Whenever required by weather conditions, water would be used to decrease dust emissions from these...suppress dust emissions during dry weather , would be implemented. Dust from previous material extraction operations was not known to cause an impact to...Based on 12 hours of operation daily for each piece of equipment. ** (AP 42, 2005) . Whenever required by weather conditions, water would be used

  5. Nuclear Concrete Materials Database Phase I Development

    SciTech Connect

    Ren, Weiju; Naus, Dan J

    2012-05-01

    The FY 2011 accomplishments in Phase I development of the Nuclear Concrete Materials Database to support the Light Water Reactor Sustainability Program are summarized. The database has been developed using the ORNL materials database infrastructure established for the Gen IV Materials Handbook to achieve cost reduction and development efficiency. In this Phase I development, the database has been successfully designed and constructed to manage documents in the Portable Document Format generated from the Structural Materials Handbook that contains nuclear concrete materials data and related information. The completion of the Phase I database has established a solid foundation for Phase II development, in which a digital database will be designed and constructed to manage nuclear concrete materials data in various digitized formats to facilitate electronic and mathematical processing for analysis, modeling, and design applications.

  6. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  7. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  8. Water-Compatible Polymer Concrete Materials for use in Rapid Repair Systems for Airport Runways

    DTIC Science & Technology

    1981-03-01

    resin systems, resorcinol phenol- formaldehyde (RPF), urea- formaldehyde (UF), melamine - formaldehyde (MF), and furfuryl alcohol (FA), were selected for...type polymer systems. Phenol- formaldehyde (PF), melamine - formaldehyde (MF), urea-formalde- hyde (UF), and furfuryl alcohol (FA) monomers contain OH and...1-1.5) (1-2) Urea- formaldehyde NH2 CONH2 - HCHO Liquid 7150 (1.0) (1.5-2.5) Melamine - formaldehyde NH2 C:NC(NH2 ):NC(N’H2 ):N-HCHO Powder 16 5b (3-4

  9. Evaluation and Repair of Concrete Structures: Annotated Bibliography 1978 - 1988. Volume 2. (Repair, Evaluation, Maintenance and Rehabilitation Research Program)

    DTIC Science & Technology

    1991-06-01

    concrete pores. C-37 Bretz, T. E., Jr. 1979 -(Jul). "Properties of Sulfur Concrete ," Report AFIT-CI-79-170T, Air Force Institute of Technology, Wright...Patterson-Air Force- Base, OH. This report summarizes the state of the art of sulfur concrete . Sulfur concrete is creatod by mixing molten sulfur with...excellent resistance -to acids, salts, and many organic compounds. It works well as a rapid runway repair material. Sulfur concrete also has unfavorable 21

  10. Guidelines for identification of concrete in a materials property database

    SciTech Connect

    Oland, C.B.; Frohnsdorff, G.

    1995-12-31

    Guidelines for the identification of concrete in a materials property database are presented to address the complex problem of distinguishing one concrete from another. These guidelines are based on a logical scheme for systematically organizing and subdividing data and information about concrete and its constituents; they reflect consensus recommendations for a multilevel material description and designation system. Aspects of the guidelines include a classification system used to establish a series of primary identifiers, methods for reporting constituent information and mixture proportions, fields describing the source of the concrete and its processing history, and recommendations for reporting baseline or reference properties.

  11. Frost resistance of concrete surfaces coated with waterproofing materials

    NASA Astrophysics Data System (ADS)

    Klovas, A.; Dauksys, M.; Ciuprovaite, G.

    2015-03-01

    Present research lays emphasis on the problem of concrete surface exposed to aggressive surrounding quality. The test was conducted with concrete surfaces coated with different waterproofing materials exposed in solution of 3 % of sodium sulphate. Research was performed according to LST EN 1338:2003 standard requirements. Technological properties of concrete mixture as well as physical-mechanical properties of formed concrete specimens were established. The resistance of concrete to freezing - thawing cycles was prognosticated according to the porosity parameters established by the kinetic of water absorption. Five different waterproofing materials (coatings) such as liquid bitumen-rubber based, elastic fiber-strengthened, silane-siloxane based emulsion, mineral binder based and liquid rubber (caoutchouc) based coatings were used. Losses by mass of coating materials and specimens surface fractures were calculated based on the results of frost resistance test. Open code program "ImageJ" was used for visual analysis of concrete specimens. Based on the results, aggressive surrounding did not influence specimens coated with elastic, fibre-strengthened, mineral materials. On the other hand, specimens coated with liquid rubber (caoutchouc) based material were greatly influenced by aggressive surrounding. The biggest losses of specimen surface concrete (fractures) were obtained with silane-siloxane based emulsion coating. Generally, specimens coated with waterproofing materials were less influenced by aggressive surrounding compared with those without.

  12. Micromechanical study of concrete materials with interfacial transition zone

    NASA Astrophysics Data System (ADS)

    Gambheera, Ramesh

    This thesis describes analytical and finite element micromechanical studies for investigating the mechanical behavior of concrete materials. A concrete material is treated as a three phase composite consisting of aggregate, bulk paste and an interfacial transition zone around the aggregate. Experimental work on the microstructure of concrete has demonstrated the existence of interfacial transition zone and that this is the weakest link in the composite system of concrete material. Hence, the main focus of this thesis is to understand the role of the interfacial transition zone on the overall mechanical behavior of concrete materials. A four phase composite model consisting of aggregate, ITZ, bulk paste and an equivalent homogeneous medium is proposed to represent the concrete material. Analytical solutions are derived for the overall elastic moduli of the four phase composite model. The effects of volume fraction and the elastic moduli of the transition zone on the overall elastic moduli are investigated. The results obtained using the analytical model are in good agreement with those obtained from experiments. Analytical stress solutions are also derived for the four phase composite model subjected to uniaxial compression in two and three dimensions. The stress concentration and the tensile stress development in the interfacial transition zone are investigated. The effect of imperfect shear interfacial bond on the overall elastic moduli and on the stresses in the transition zone is also investigated. Basic concepts of damage mechanics are applied to model the damage in the transition zone. The effect of local damage in the transition zone on the overall damage in a concrete material is illustrated. For the specific case of uniaxial compression, the pre-peak stress-strain curves are generated. Computational analysis of micromechanical models of concrete materials requires efficient finite elements. This thesis proposes the use of hybrid finite elements for the

  13. Use of selected waste materials in concrete mixes.

    PubMed

    Batayneh, Malek; Marie, Iqbal; Asi, Ibrahim

    2007-01-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  14. Use of selected waste materials in concrete mixes

    SciTech Connect

    Batayneh, Malek Marie, Iqbal; Asi, Ibrahim

    2007-07-01

    A modern lifestyle, alongside the advancement of technology has led to an increase in the amount and type of waste being generated, leading to a waste disposal crisis. This study tackles the problem of the waste that is generated from construction fields, such as demolished concrete, glass, and plastic. In order to dispose of or at least reduce the accumulation of certain kinds of waste, it has been suggested to reuse some of these waste materials to substitute a percentage of the primary materials used in the ordinary portland cement concrete (OPC). The waste materials considered to be recycled in this study consist of glass, plastics, and demolished concrete. Such recycling not only helps conserve natural resources, but also helps solve a growing waste disposal crisis. Ground plastics and glass were used to replace up to 20% of fine aggregates in concrete mixes, while crushed concrete was used to replace up to 20% of coarse aggregates. To evaluate these replacements on the properties of the OPC mixes, a number of laboratory tests were carried out. These tests included workability, unit weight, compressive strength, flexural strength, and indirect tensile strength (splitting). The main findings of this investigation revealed that the three types of waste materials could be reused successfully as partial substitutes for sand or coarse aggregates in concrete mixtures.

  15. Insitu electrical sensing and material health monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Rajabipour, Farshad

    While several structural health monitoring methods are available for assessing the applied loads, displacements, stresses, and strains in a concrete structure, very few techniques are available to enable condition assessment from a material durability viewpoint. Material health monitoring provides a valuable tool in assessing the current durability condition of a concrete structure (i.e., diagnosis), determining if and what preventative measures need to be taken to reduce future maintenance (i.e., prescription), and evaluating the remaining life and the future performance of the material (i.e., prognosis). The objective of this research is development of a new material sensing system that is designed to measure several properties and state parameters of concrete necessary for evaluation of the material's performance. This sensing system is composed of three electrical conductivity-based sensors and a temperature sensor. The electrical sensors include a concrete conductivity (sigma t) sensor (that monitors setting and hardening and measures microstructural and transport properties of concrete), a pore solution conductivity (sigma o) sensor (that monitors changes in the internal chemistry of the system due to ion penetration or carbonation), and a conductivity-based relative humidity (RH) sensor (to monitor moisture transport and shrinkage of the material). The temperature (T) sensor enables determination of the rate of hydration and strength development of concrete while it provides information needed for temperature calibration of the electrical sensors. It is shown that the combined measurements of the three electrical sensors and the temperature sensor provide sufficient calibration information that enables determination of the desired material properties and state parameters of concrete. This document provides a comprehensive description of several phases of the process used for development of the three conductivity-based sensors. To develop the prototype of

  16. Status of runway slipperiness research

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1976-01-01

    Runway slipperiness research performed in the United States and Europe since 1968 is reviewed. Topics discussed include: (1) runway flooding during rainstorms; (2) hydroplaning; (3) identification of slippery runways including the results from ground vehicle friction measurements and attempts to correlate these measurements with aircraft stopping performance; (4) progress and problems associated with the development of antihydroplaning runway surface treatments such as pavement grooving and porous friction course (PFC); and (5) runway rubber deposits and their removal.

  17. Eco-efficient concretes: the effects of using recycled ceramic material from sanitary installations on the mechanical properties of concrete.

    PubMed

    Guerra, I; Vivar, I; Llamas, B; Juan, A; Moran, J

    2009-02-01

    The aim of this research was to investigate some of the physical and mechanical properties of concrete mixed under laboratory conditions, where different proportions of coarse aggregate materials were substituted by porcelain from sanitary installations. The results of the tests show that the concrete produced has the same mechanical characteristics as conventional concrete, thus opening a door to selective recycling of sanitary porcelain and its use in the production of concrete.

  18. Volcano-related materials in concretes: a comprehensive review.

    PubMed

    Cai, Gaochuang; Noguchi, Takafumi; Degée, Hervé; Zhao, Jun; Kitagaki, Ryoma

    2016-04-01

    Massive volcano-related materials (VRMs) erupted from volcanoes bring the impacts to natural environment and humanity health worldwide, which include generally volcanic ash (VA), volcanic pumice (VP), volcanic tuff (VT), etc. Considering the pozzolanic activities and mechanical characters of these materials, civil engineers propose to use them in low carbon/cement and environment-friendly concrete industries as supplementary cementitious materials (SCMs) or artificial/natural aggregates. The utilization of VRMs in concretes has attracted increasing and pressing attentions from research community. Through a literature review, this paper presents comprehensively the properties of VRMs and VRM concretes (VRMCs), including the physical and chemical properties of raw VRMs and VRMCs, and the fresh, microstructural and mechanical properties of VRMCs. Besides, considering environmental impacts and the development of long-term properties, the durability and stability properties of VRMCs also are summarized in this paper. The former focuses on the resistance properties of VRMCs when subjected to aggressive environmental impacts such as chloride, sulfate, seawater, and freezing-thawing. The latter mainly includes the fatigue, creep, heat-insulating, and expansion properties of VRMCs. This study will be helpful to promote the sustainability in concrete industries, protect natural environment, and reduce the impacts of volcano disaster. Based on this review, some main conclusions are discussed and important recommendations regarding future research on the application of VRMs in concrete industries are provided.

  19. EXECUTION AND MAINTENANCE OF D-RUNWAY IN HANEDA AIRPORT

    NASA Astrophysics Data System (ADS)

    Noguchi, Takatoshi; Watabe, Yoichi; Suzuki, Hiroyuki; Oku, Nobuyuki; Yamatoya, Ryuji; Watanabe, Masaya

    In the Tokyo International Airport (Haneda Airport), a new runway named "D-runway" was constructed from March 2007 to October 2010. Because some part of the D-runway is located in a river mouth, a hybrid structure consisted of piled pier and reclamation fill was adopted. In the reclamation section, not only the ground improvement technologies (SD, CPD and CDM) but also the new developed construction materials (pneumatic mixing cement treated soil and air-foam treated lightweight soil) were utilized. This technical report describes the outline of the execution, quality control, and maintenance plan of the D-runway structure, from a view point of geotechnical engineering.

  20. DESIGN OF D-RUNWAY IN HANEDA AIRPORT

    NASA Astrophysics Data System (ADS)

    Noguchi, Takatoshi; Watabe, Yoichi; Suzuki, Hiroyuki; Sakaiya, Tsunehiro; Kakehashi, Koichiro; Ogura, Katsutoshi; Mizuno, Kenta

    In the Tokyo International Airport (Haneda Airport), a new runway named "D-runway" was planned and constructed from March 2007 to October 2010. Because some part of the D-runway is located in a river mouth, a hybrid structure consisting of piled pier and reclamation fill was adopted. In the reclamation section, not only the ground improvement technologies (SD, CPD and CDM) but also the new developed construction materials (pneumatic mixing cement treated soil and air-foam treated lightweight soil) were utilized. This technical report describes the outline of the project, ground investigation, and design of the D-runway structure, from a geotechnical point of view.

  1. Radiological and material characterization of high volume fly ash concrete.

    PubMed

    Ignjatović, I; Sas, Z; Dragaš, J; Somlai, J; Kovács, T

    2017-03-01

    The main goal of research presented in this paper was the material and radiological characterization of high volume fly ash concrete (HVFAC) in terms of determination of natural radionuclide content and radon emanation and exhalation coefficients. All concrete samples were made with a fly ash content between 50% and 70% of the total amount of cementitious materials from one coal burning power plant in Serbia. Physical (fresh and hardened concrete density) and mechanical properties (compressive strength, splitting tensile strength and modulus of elasticity) of concrete were tested. The radionuclide content ((226)Ra, (232)Th and (40)K) and radon massic exhalation of HVFAC samples were determined using gamma spectrometry. Determination of massic exhalation rates of HVFAC and its components using radon accumulation chamber techniques combined with a radon monitor was performed. The results show a beneficial effect of pozzolanic activity since the increase in fly ash content resulted in an increase in compressive strength of HVFAC by approximately 20% for the same mass of cement used in the mixtures. On the basis of the obtained radionuclide content of concrete components the I -indices of different HVFAC samples were calculated and compared with measured values (0.27-0.32), which were significantly below the recommended 1.0 index value. The prediction was relatively close to the measured values as the ratio between the calculated and measured I-index ranged between 0.89 and 1.14. Collected results of mechanical and radiological properties and performed calculations clearly prove that all 10 designed concretes with a certain type of fly ash are suitable for structural and non-structural applications both from a material and radiological point of view.

  2. HTGR Base Technology Program. Task 2: concrete properties in nuclear environment. A review of concrete material systems for application to prestressed concrete pressure vessels

    SciTech Connect

    Naus, D.J.

    1981-05-01

    Prestressed concrete pressure vessels (PCPVs) are designed to serve as primary pressure containment structures. The safety of these structures depends on a correct assessment of the loadings and proper design of the vessels to accept these loadings. Proper vessel design requires a knowledge of the component (material) properties. Because concrete is one of the primary constituents of PCPVs, knowledge of its behavior is required to produce optimum PCPV designs. Concrete material systems are reviewed with respect to constituents, mix design, placing, curing, and strength evaluations, and typical concrete property data are presented. Effects of extreme loadings (elevated temperature, multiaxial, irradiation) on concrete behavior are described. Finally, specialty concrete material systems (high strength, fibrous, polymer, lightweight, refractory) are reviewed. 235 references.

  3. Durability of concrete materials in high-magnesium brine

    SciTech Connect

    Wakeley, L.D.; Poole, T.S.; Burkes, J.P.

    1994-03-01

    Cement pastes and mortars representing 11 combinations of candidate concrete materials were cast in the laboratory and monitored for susceptibility to chemical deterioration in high-magnesium brine. Mixtures were selected to include materials included in the current leading candidate concrete for seals at the Waste Isolation Pilot Plant (WIPP). Some materials were included in the experimental matrix to answer questions that had arisen during study of the concrete used for construction of the liner of the WIPP waste-handling shaft. Mixture combinations compared Class C and Class F fly ashes, presence or absence of an expansive component, and presence or absence of salt as a mixture component. Experimental conditions exposed the pastes and mortars to extreme conditions, those being very high levels of Mg ion and an effectively unlimited supply of brine. All pastes and mortars showed deterioration with brine exposure. In general, mortars deteriorated more extensively than the corresponding pastes. Two-inch cube specimens of mortar were not uniformly deteriorated, but showed obvious zoning even after a year in the brine, with a relatively unreacted zone remaining at the center of each cube. Loss of calcium from the calcium hydroxide of paste/aggregate interfaces caused measurable strength loss in the reacted zone comprising the outer portion of every mortar specimen. The current candidate mass concrete for WIPP seals includes salt as an initial component, and has a relatively closed initial microstructure. Both of these features contribute to its suitability for use in large placements within the Salado Formation.

  4. Characterization of Concrete Material Flow During Projectile Penetration

    NASA Astrophysics Data System (ADS)

    Sobeski, Robert

    The Department of Defense (DoD) has an operational requirement to predict, quickly and accurately, the depth of penetration that a projectile can achieve for a given target and impact scenario. Fast-running analytical models can provide reliable predictions, but they often require the use of one or more dimensionless parameters that are derived from experimental data. These analytical models are continually evolving, and the dimensionless parameters are often adjusted to obtain new analytical models without a true understanding of the change in characteristics of material flow across targets of varying strength and projectile impact velocities. In this dissertation, the penetration of ogive-nose projectiles into concrete targets is investigated using finite element analyses. The Elastic-Plastic Impact Computation (EPIC) code is used to examine the velocity vector fields and their associated direction cosines for high and low-strength concrete target materials during projectile penetration. Two methodologies, referred as Normal Expansion Comparison Methodology (NECM) and Spherical Expansion Comparison Methodology (SECM), are developed in MATLAB to quantify the change in concrete material flow during this short-duration dynamic event. Improved velocity profiles are proposed for better characterization of cavity expansion stresses based on the application of NECM and SECM to EPIC outputs. Structural engineers and model developers working on improving the accuracy of current analytical concrete penetration models and potentially reducing their reliance on fitting parameters will benefit from the findings of this research.

  5. Use of concrete polymer materials in the transportation industry

    SciTech Connect

    Fontana, J J; Bartholomew, J

    1980-01-01

    Under contract to the FHWA, Brookhaven National Laboratory has developed a polymer concrete patching material that combines the premix characteristics of PCC with strength and durability properties that are higher than PCC. PC overlays have been shown to be highly impermeable to water and chlorides. Laydown techniques have been developed to allow bridge maintenance crews to place the overlays with little or no problems. Today several manufacturers are marketing PC materials, and their acceptance is becoming widespread.

  6. The use of waste materials in asphalt concrete mixtures.

    PubMed

    Tuncan, Mustafa; Tuncan, Ahmet; Cetin, Altan

    2003-04-01

    The purpose of this study was to investigate (a) the effects of rubber and plastic concentrations and rubber particle sizes on properties of asphalt cement, (b) on properties of asphalt concrete specimens and (c) the effects of fly ash, marble powder, rubber powder and petroleum contaminated soil as filler materials instead of stone powder in the asphalt concrete specimens. One type of limestone aggregate and one penetration-graded asphalt cement (75-100) were used. Three concentrations of rubber and plastic (i.e. 5%, 10% and 20% of the total weight of asphalt cement), three rubber particle sizes (i.e. No. 4 [4.75mm] - 20 [0.85 mm], No. 20 [0.85mm] - 200 [0.075mm] and No. 4 [4.75mm] - 200 [0.075mm]) and one plastic particle size (i.e. No. 4 [4.75mm] - 10 [2.00mm]) were also used. It was found that while the addition of plastic significantly increased the strength of specimens, the addition of rubber decreased it. No. 4 [4.75mm] - 200 [0.075mm] rubber particles showed the best results with respect to the indirect tensile test. The Marshall stability and indirect tensile strength properties of plastic modified specimens increased. Marble powder and fly ash could be used as filler materials instead of stone powder in the asphalt concrete pavement specimens.

  7. The Effect of Elevated Temperature on Concrete Materials and Structures - a Literature Review.

    SciTech Connect

    Naus, Dan J

    2006-03-01

    The objective of this limited study was to provide an overview of the effects of elevated temperature on the behavior of concrete materials and structures. In meeting this objective the effects of elevated temperatures on the properties of ordinary Portland cement concrete constituent materials and concretes are summarized. The effects of elevated temperature on high-strength concrete materials are noted and their performance compared to normal strength concretes. A review of concrete materials for elevated-temperature service is presented. Nuclear power plant and general civil engineering design codes are described. Design considerations and analytical techniques for evaluating the response of reinforced concrete structures to elevated-temperature conditions are presented. Pertinent studies in which reinforced concrete structural elements were subjected to elevated temperatures are described.

  8. Evaluation of high pressure water blast with rotating spray bar for removing paint and rubber deposits from airport runways, and review of runway slipperiness problems created by rubber contamination

    NASA Technical Reports Server (NTRS)

    Horne, W. B.; Griswold, G. D.

    1975-01-01

    A high pressure water blast with rotating spray bar treatment for removing paint and rubber deposits from airport runways is studied. The results of the evaluation suggest that the treatment is very effective in removing above surface paint and rubber deposits to the point that pavement skid resistance is restored to trafficked but uncontaminated runway surface skid resistance levels. Aircraft operating problems created by runway slipperiness are reviewed along with an assessment of the contributions that pavement surface treatments, surface weathering, traffic polishing, and rubber deposits make in creating or alleviating runway slipperiness. The results suggest that conventional surface treatments for both portland cement and asphaltic concrete runways are extremely vulnerable to rubber deposit accretions which can produce runway slipperiness conditions for aircraft operations as or more slippery than many snow and ice-covered runway conditions. Pavement grooving surface treatments are shown to be the least vulnerable to rubber deposits accretion and traffic polishing of the surface treatments examined.

  9. Modelling runway incursion severity.

    PubMed

    Wilke, Sabine; Majumdar, Arnab; Ochieng, Washington Y

    2015-06-01

    Analysis of the causes underlying runway incursions is fundamental for the development of effective mitigation measures. However, there are significant weaknesses in the current methods to model these factors. This paper proposes a structured framework for modelling causal factors and their relationship to severity, which includes a description of the airport surface system architecture, establishment of terminological definitions, the determination and collection of appropriate data, the analysis of occurrences for severity and causes, and the execution of a statistical analysis framework. It is implemented in the context of U.S. airports, enabling the identification of a number of priority interventions, including the need for better investigation and causal factor capture, recommendations for airfield design, operating scenarios and technologies, and better training for human operators in the system. The framework is recommended for the analysis of runway incursions to support safety improvements and the methodology is transferable to other areas of aviation safety risk analysis.

  10. A new yield criterion for the concrete materials

    NASA Astrophysics Data System (ADS)

    François, Marc

    2008-05-01

    The yield criterion proposed depends upon two material constants and is proven to be smooth and convex under a simple condition. These properties induce a mathematical robustness that allows a further use in a damage mechanics model. The analytical gradient and Hessian are given. The obtained yield surface is relevant to Kupfer's biaxial testings on concrete. The identification procedure, with respect to the classical uniaxial tension and compression testings, is detailed. To cite this article: M. François, C. R. Mecanique 336 (2008).

  11. Progress Toward Future Runway Management

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Brown, Sherilyn A.; Atkins, Stephen; Eisenhawer, Stephen W.; Bott, Terrance F.; Long, Dou; Hasan, Shahab

    2011-01-01

    The runway is universally acknowledged as a constraining factor to capacity in the National Airspace System (NAS). It follows that investigation of the effective use of runways, both in terms of selection and assignment, is paramount to the efficiency of future NAS operations. The need to address runway management is not a new idea; however, as the complexities of factors affecting runway selection and usage increase, the need for effective research in this area correspondingly increases. Under the National Aeronautics and Space Administration s Airspace Systems Program, runway management is a key research area. To address a future NAS which promises to be a complex landscape of factors and competing interests among users and operators, effective runway management strategies and capabilities are required. This effort has evolved from an assessment of current practices, an understanding of research activities addressing surface and airspace operations, traffic flow management enhancements, among others. This work has yielded significant progress. Systems analysis work indicates that the value of System Oriented Runway Management tools is significantly increased in the metroplex environment over that of the single airport case. Algorithms have been developed to provide runway configuration recommendations for a single airport with multiple runways. A benefits analysis has been conducted that indicates the SORM benefits include supporting traffic growth, cost reduction as a result of system efficiency, NAS optimization from metroplex operations, fairness in aircraft operations, and rational decision making.

  12. Methane biofiltration using autoclaved aerated concrete as the carrier material.

    PubMed

    Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico

    2015-09-01

    The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.

  13. Shuttle landing runway modification to improve tire spin-up wear performance

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.; Stubbs, Sandy M.

    1988-01-01

    This paper presents the results of a series of tire spin-up wear tests on a simulated Kennedy Space Center (KSC) runway that were carried out to investigate the tire wear problem for Space Shuttle landings on the KSC runway and to test several modifications of the runway surface designed to alleviate the problem. It was found that the runway surface produced by a concrete smoothing machine using cutters spaced one and three-quarters blades per centimeter provided adequate wet cornering while limiting spin-up wear. Based on the test results, the KSC runway was smoothed for about 1066 m at each end, leaving the original high friction surface, for better wet steering and braking, in the 2438-m central section.

  14. Applying Grounded Coordination Challenges to Concrete Learning Materials: A Study of Number Line Estimation

    ERIC Educational Resources Information Center

    Vitale, Jonathan M.; Black, John B.; Swart, Michael I.

    2014-01-01

    Do concrete learning materials promote strong learning outcomes, or do they simply make learning tasks more initially accessible? Although concrete materials may offer an intuitive foothold on a topic, research on desirable difficulties suggests that more challenging tasks facilitate greater retention and transfer. In the approach introduced here,…

  15. National Runway Friction Measurement Program.

    DTIC Science & Technology

    1980-12-01

    wet Mu values less than 50. Of the 122 runways with low segments, 64 runways (52.5%) had wet Mu values less than 50 for less than 1000 feet. Other data...friction enhancement due to grooving is greater in areas of rubber accumulation than in uncontaminated areas for most pavement types. 4. For low -use...friction, as identified 4n Fiqure 9, should be considered in the planning and design of rpw -unway surfaces, particularly for low -use runways. 2. The

  16. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    NASA Astrophysics Data System (ADS)

    Winkel, B. V.

    1995-03-01

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  17. Concrete material characterization reinforced concrete tank structure Multi-Function Waste Tank Facility

    SciTech Connect

    Winkel, B.V.

    1995-03-03

    The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970`s, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/in{sup 2} mix and a 4.5 kip/in{sup 2} mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/in{sup 2}. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.

  18. Rapid Runway Repair Study.

    DTIC Science & Technology

    This report describes a series of tests to evaluate a system for rapidly repairing airfield pavement using polymer concrete (synthetic polymer plus...aggregate), thermally cured by microwave power. The technique, developed by the Syracuse University Research Corporation (SURC) for highway...maintenance, uses a truck-mounted 50-kilowatt microwave generator to irradiate areas patched with polymer concrete . Test results indicate that the polymer

  19. Runway Safety Monitor Algorithm for Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.; Jones, Denise R. (Technical Monitor)

    2002-01-01

    The Runway Safety Monitor (RSM) is an algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety Program's Synthetic Vision System element. The RSM algorithm provides pilots with enhanced situational awareness and warnings of runway incursions in sufficient time to take evasive action and avoid accidents during landings, takeoffs, or taxiing on the runway. The RSM currently runs as a component of the NASA Integrated Display System, an experimental avionics software system for terminal area and surface operations. However, the RSM algorithm can be implemented as a separate program to run on any aircraft with traffic data link capability. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Dallas-Ft Worth International Airport (DFW) during September and October of 2000, and the RSM performance results and lessons learned from those flight tests.

  20. Runway drainage characteristics related to tire friction performance

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1991-01-01

    The capability of a runway pavement to rapidly drain water buildup during periods of precipitation is crucial to minimize tire hydroplaning potential and maintain adequate aircraft ground operational safety. Test results from instrumented aircraft, ground friction measuring vehicles, and NASA Langley's Aircraft Landing Dynamics Facility (ALDF) track have been summarized to indicate the adverse effects of pavement wetness conditions on tire friction performance. Water drainage measurements under a range of rainfall rates have been evaluated for several different runway surface treatments including the transversely grooved and longitudinally grinded concrete surfaces at the Space Shuttle Landing Facility (SLF) runway at NASA Kennedy Space Center in Florida. The major parameters influencing drainage rates and extent of flooding/drying conditions are identified. Existing drainage test data are compared to a previously derived empirical relationship and the need for some modification is indicated. The scope of future NASA Langley research directed toward improving empirical relationships to properly define runway drainage capability and consequently, enhance aircraft ground operational safety, is given.

  1. Material Concerns: Evaluating Sulfur Concrete for use in the Lunar Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    On Earth sulfur "concrete" is an established construction material that has good mechanical properties, generally better than Portland cement, and can be used in corrosive environments. Troilite (FeS) has been found on the moon and raises the question of using extracted sulfur as a lunar construction material, an attractive alternative to conventional concrete as it does not require water. Troilite reduction to elemental sulfur and using it to make concrete in a lunar setting has been previously discussed. However, little has been experimentally done to evaluate its performance in the extreme lunar environment. This study subjected sets of sulfur concrete samples, prepared using JSC-1 lunar simulant, to I ) extended periods of high vacuum and 2) extreme temperature cycles. Here an overview of sulfur concrete and experimentally assessed properties, put in context of the lunar environment, is presented and discussed.

  2. Durability of recycled aggregate concrete using pozzolanic materials.

    PubMed

    Ann, K Y; Moon, H Y; Kim, Y B; Ryou, J

    2008-01-01

    In this study, pulverized fuel ash (PFA) and ground granulated blast furnace slag (GGBS) were used to compensate for the loss of strength and durability of concrete containing recycled aggregate. As a result, 30% PFA and 65% GGBS concretes increased the compressive strength to the level of control specimens cast with natural granite gravel, but the tensile strength was still lowered at 28 days. Replacement with PFA and GGBS was effective in raising the resistance to chloride ion penetrability into the concrete body, measured by a rapid chloride ion penetration test based on ASTM C 1202-91. It was found that the corrosion rate of 30% PFA and 65% GGBS concretes was kept at a lower level after corrosion initiation, compared to the control specimens, presumably due to the restriction of oxygen and water access. However, it was less effective in increasing the chloride threshold level for steel corrosion. Hence, it is expected that the corrosion time for 30% PFA and 65% GGBS concrete containing recycled aggregate mostly equates to the corrosion-free life of control specimens.

  3. Tire and runway surface research

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1986-01-01

    The condition of aircraft tires and runway surfaces can be crucial in meeting the stringent demands of aircraft ground operations, particularly under adverse weather conditions. Gaining a better understanding of the factors influencing the tire/pavement interface is the aim of several ongoing NASA Langley research programs which are described in this paper. Results from several studies conducted at the Langley Aircraft Landing Dynamics Facility, tests with instrumented ground vehicles and aircraft, and some recent aircraft accident investigations are summarized to indicate effects of different tire and runway properties. The Joint FAA/NASA Runway Friction Program is described together with some preliminary test findings. The scope of future NASA Langley research directed towards solving aircraft ground operational problems related to the tire/pavement interface is given.

  4. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction

    SciTech Connect

    Ostowari, Ken; Nosson, Ali

    2000-09-30

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction.

  5. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY: REPAIR MATERIALS AND TECHNOLOGIES.

    SciTech Connect

    SUGAMA,T.

    2007-01-01

    The objective of this program was to design and formulate organic polymer-based material systems suitable for repairing and restoring the overlay panels of insulating lightweight polymer concrete (ILPC) from the concrete floor and slope wall of a dike at KeySpan liquefied natural gas (LNG) facility in Greenpoint, Brooklyn, NY, just over sixteen years ago. It also included undertaking a small-scale field demonstration to ensure that the commercial repairing technologies were applicable to the designed and formulated materials.

  6. Phenomena of Foamed Concrete under Rolling of Aircraft Wheels

    NASA Astrophysics Data System (ADS)

    Jiang, Chun-shui; Yao, Hong-yu; Xiao, Xian-bo; Kong, Xiang-jun; Shi, Ya-jie

    2014-04-01

    Engineered Material Arresting System (EMAS) is an effective technique to reduce hazards associated with aircraft overrunning runway. In order to ascertain phenomena of the foamed concrete used for EMAS under rolling of aircraft wheel, a specially designed experimental setup was built which employed Boeing 737 aircraft wheels bearing actual vertical loads to roll through the foamed concrete. A number of experiments were conducted upon this setup. It is discovered that the wheel rolls the concrete in a pure rolling manner and crushes the concrete downwards, instead of crushing it forward, as long as the concrete is not higher than the wheel axle. The concrete is compressed into powder in-situ by the wheel and then is brought to bottom of the wheel. The powder under the wheel is loose and thus is not able to sustain wheel braking. It is also found that after being rolled by the wheel the concrete exhibits either of two states, i.e. either 'crushed through' whole thickness of the concrete or 'crushed halfway', depending on combination of strength of the concrete, thickness of the concrete, vertical load the wheel carries, tire dimension and tire pressure. A new EMAS design concept is developed that if an EMAS design results in the 'crushed through' state for the main gears while the 'crushed halfway' state for the nose gear, the arresting bed would be optimal to accommodate the large difference in strength between the nose gear and the main gear of an aircraft.

  7. Lightweight concrete materials and structural systems for water tanks for thermal storage. Final report

    SciTech Connect

    Buckman, R.W. Jr.; Elia, G.G.; Ichikawa, Y.

    1980-12-01

    Thermally efficient hot water storage tanks were designed, fabricated and evaluated. The tanks were made using cellular concrete at a nominal density of 100 lb/ft/sup 3/ for the structural elements and at a 30 lb/ft/sup 3/ density for the insulating elements. Thermal performance testing of the tanks was done using a static decay test since the test procedure specified in ASHRAE 94-77 was not experimentally practical. A series of composition modifications to the cellular concrete mix were investigated and the addition of alkaline resistant glass fibers was found to enhance the mechanical properties at no sacrifice in thermal behavior. Economic analysis indicated that cellular concrete provides a cost-effective insulating material. The total portability of the plant for producing cellular concrete makes cellular concrete amenable to on-site fabrication and uniquely adaptable to retrofit applications.

  8. NASA diagonal-braked test vehicle evaluation of traction characteristics of grooved and ungrooved runway surfaces at Miami International Airport, Miami, Florida, 8-9 May 1973

    NASA Technical Reports Server (NTRS)

    Horne, W. B.

    1977-01-01

    Two runways were evaluated under artificially wetted conditions with the NASA diagonal-braked vehicle (DBV). Results of the evaluation which included a pavement drainage analysis, a pavement skid resistance analysis, and a DBV wet/dry stopping distance ratio analysis indicated that the ungrooved runway surfaces had poor water drainage characteristics and poor skid resistance under wet conditions at high speeds especially in rubbercoated areas of the runways. Grooving runways to a transverse 1-1/4 x 1/4 x 1/4 inch pattern greatly improved both the water drainage and pavement skid resistance capability of these asphaltic concrete surfaces.

  9. Aerial view of Runway 33 at SLF

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This aerial view shows the approach on Runway 33 at the KSC Shuttle Landing Facility. The runway is 15,000 feet long, with 1,000-foot paved overruns at each end; 300 feet wide (about length of football field), with 50-foot asphalt shoulders each side; 16 inches thick in the center, and 15 inches thick on sides. It has a slope of 24 inches from the center line to the edge for drainage. The single landing strip is considered two runways, depending on approach -- Runway 15 from northwest, Runway 33 from southeast.

  10. Evaluation of Sulfur 'Concrete' for Use as a Construction Material on the Lunar Surface

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2008-01-01

    Combining molten sulfur with any number of aggregate materials forms, when solid, a mixture having attributes similar, if not better, to conventional water-based concrete. As a result the use of sulfur "concrete" on Earth is well established, particularly in corrosive environments. Consequently, discovery of troilite (FeS) on the lunar surface prompted numerous scenarios about its reduction to elemental sulfur for use, in combination with lunar regolith, as a potential construction material; not requiring water, a precious resource, for its manufacture is an obvious advantage. However, little is known about the viability of sulfur concrete in an environment typified by extreme temperatures and essentially no atmosphere. The experimental work presented here evaluates the response of pure sulfur and sulfur concrete subjected to laboratory conditions that approach those expected on the lunar surface, the results suggesting a narrow window of application.

  11. Evaluation of the environmental, material, and structural performance of recycled aggregate concrete

    NASA Astrophysics Data System (ADS)

    Michaud, Katherine Sarah

    Concrete is the most commonly used building material in the construction industry, and contributes to 52% of construction and demolition waste in Canada. Recycled concrete aggregate (RCA) is one way to reduce this impact. To evaluate the performance of coarse and granular (fine and coarse) RCA in structural concrete applications, four studies were performed: an environmental assessment, a material testing program, a shear performance study, and a flexural performance study. To determine the environmental benefits of recycled aggregate concrete (RAC), three case studies were investigated using different populations and proximities to city centres. Environmental modelling suggested that RCA replacement could result in energy savings and greenhouse gas emission reductions, especially in remote areas. Tests were performed to determine if the volumetric replacement of up to 30% coarse RCA and 20% granular RCA is suitable for structural concrete applications in Canada. Fresh, hardened, and durability properties were evaluated. All five (5) of the RCA mixes showed equivalent material performance to the control mixes and met the requirements for a structural concrete mix. The five (5) RAC mixes were also used in structural testing. One-way reinforced concrete slab specimens were tested to failure to evaluate the shear and flexural performance of the RAC members. Peak capacities of and crack formation within each member were analyzed to evaluate the performance of RAC compared to conventional concrete. The shear capacity of specimens made from four (4) of the five (5) RAC mixtures was higher or equivalent to the control specimens. Specimens of the concrete mixture containing the highest content of recycled aggregate, 20% volumetric replacement of granular RCA, had shear capacities 14.1% lower, and exhibited cracking at lower loads than the control. The average flexural capacities of all RAC specimens were within 3.7% of the control specimens. Results from this research

  12. Performance of Styrene Butadiene Rubber as a Concrete Repair Material in tropical climate

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, R.; Prakash, V. Syam; Thampan, C. K.; Varma, Prasad

    2012-11-01

    Deterioration of Concrete due to variety of reasons like corrosion of steel, inferior quality of materials as well as workmanship and exposure to aggressive environment like thermal cycling affect the performance or damage a number of Reinforced cement concrete structures. In order to repair these structures for enhancing the service life, number of methods and materials are available. But the degree of success of any repair in concrete depends mainly on the correct choice and the method of application of repair materials. This paper discusses the details of an experimental investigation on the performance of Styrene ñ Butadiene Rubber (SBR) as a concrete repair material in tropical climatic conditions. Resistance to water penetration and tensile cracking are two important performance criteria for any repair material. Cement mortar cubes of mix proportion 1:3 with SBR added at the rate of 20% of the weight of cement, and control specimens without SBR were made. Compressive strength and sorptivity values of the cubes were determined. Shear Bond strength (by slant shear test) and splitting tensile strength of the repaired cylinder specimens of standard dimensions, in which SBR used as a bonding agent were determined. These values were compared with the values obtained for the similar specimens, in which the bonding agent applied was conventional cement slurry. The influence of thermal cycling on the properties of repaired concrete specimens were also studied. A comparison has also been made with the values required to meet the standard specifications of a repair material.

  13. Health monitoring of a concrete structure using piezoceramic materials

    NASA Astrophysics Data System (ADS)

    Song, G.; Gu, H.; Mo, Y. L.; Hsu, T.; Dhonde, H.; Zhu, R. R. H.

    2005-05-01

    Health monitoring for reinforced concrete bridges and other large-scale civil infrastructure has received considerable attention in recent years. Traditional inspection methods (x-ray, C-scan etc.) are expensive and sometimes ineffective for large-scale structures. Piezoceramic transducers have emerged as new tools to health monitoring of large size structures due to the advantages of active sensing, low cost, quick response, availability in different shapes, and simplicity for implementation. In this research, piezoceramic transducers in the form of patches are used to detect internal cracks of a 6.1-meter long reinforced concrete bridge bent-cap. Piezoceramic patches are embedded in the concrete structure at pre-determined spatial locations prior to casting. This research can be considered as a continuation of an early work, where four piezoceramic patches were embedded in planar locations near one end of the bent-cap. This research involves ten piezoceramic patches embedded at spatial locations in four different cross-sections. To induce cracks in the bent-cap, the structure is subjected to loads from four hydraulic actuators with capacities of 80-ton and 100-ton. In addition to the piezoceramic sensors, strain gages, LVDTs, and microscopes are used in the experiment. During the experiment, one embedded piezoceramic patch is used as an actuator to generate sweep sinusoidal waves, and the other piezoceramic patches are used as sensors to detect the propagating waves. With the increase of number of and severity of cracks, the magnitude of the sensor output decreases. Wavelet packet analysis is used to analyze the recorded sensor signals. A damage index is formed on the basis of the wavelet packet analysis. The experimental results show that the proposed methods using piezoceramic transducers along with the damage index based on wavelet packet analysis is effective in identifying the existence and severity of cracks inside the concrete structure. The experimental

  14. Photocatalytic activity of titanium dioxide modified concrete materials - influence of utilizing recycled glass cullets as aggregates.

    PubMed

    Chen, Jun; Poon, Chi-Sun

    2009-08-01

    Combining the use of photocatalysts with cementitious materials is an important development in the field of photocatalytic air pollution mitigation. This paper presents the results of a systematic study on assessing the effectiveness of pollutant degradation by concrete surface layers that incorporate a photocatalytic material - Titanium Dioxide. The photocatalytic activity of the concrete samples was determined by photocatalytic oxidation of nitric oxide (NO) in the laboratory. Recycled glass cullets, derived from crushed waste beverage bottles, were used to replace sand in preparing the concrete surface layers. Factors, which may affect the pollutant removal performance of the concrete layers including glass color, aggregate size and curing age, were investigated. The results show a significant enhancement of the photocatalytic activity due to the use of glass cullets as aggregates in the concrete layers. The samples fabricated with clear glass cullets exhibited threefold NO removal efficiency compared to the samples fabricated with river sand. The light transmittance property of glass was postulated to account for the efficiency improvement, which was confirmed by a separate simulation study. But the influence of the size of glass cullets was not evident. In addition, the photocatalytic activity of concrete surface layers decreased with curing age, showing a loss of 20% photocatalytic activity after 56-day curing.

  15. BUILDING MATERIAL CHARACTERIZATION USING A CONCRETE FLOOR AND WALL CONTAMINATION PROFILING TECHNOLOGY

    SciTech Connect

    Aggarwal, Dr. S.,; Charters, G.; Thacker, Dr. D.

    2003-02-27

    Certain radioisotopes can penetrate concrete and contaminate the concrete well below the surface. The challenge is to determine the extent and magnitude of the contamination problem in real-time. The concrete profiling technology, TRUPROSM in conjunction with portable radiometric instrumentation produces a profile of radiological or chemical contamination through the material being studied. The data quality, quantity, and representativeness may be used to produce an activity profile from the hot spot surface into the material being sampled. This activity profile may then be expanded to ultimately characterize the facility and expedite waste segregation and facility closure at a reduced cost and risk. Performing a volumetric concrete or metal characterization safer and faster (without lab intervention) is the objective of this characterization technology. This way of determining contamination can save considerable time and money. Currently, concrete core bores are shipped to certified laboratories where the concrete residue is run through a battery of tests to determine the contaminants. The existing core boring operation volatilizes or washes out some of the contaminants (like tritium) and oftentimes cross-contaminates the area around the core bore site. The volatilization of the contaminants can lead to airborne problems in the immediate vicinity of the core bore. Cross-contamination can increase the contamination area and thereby increase the amount of waste generated. The goal is to avoid those field activities that could cause this type of release.

  16. Evaluation of Rapid-Setting Concretes for Airfield Spall Repair

    DTIC Science & Technology

    1991-04-01

    repair concretes for Rapid Runway Repair (RRR). The three were a methyl methacrylate binder (Silikal RI7AF), a magnesium phosphate mortar mix (Set-45...Performance Reauirements Definition of small repair 5. The Rapid Runway Repair Program of the US Air Force (USAF) includes the activities that must be performed...scenario for wartime spall repair includes the expectation that a runway will be damaged by tens to hundreds of spalls at one time. The repair activity

  17. Material property assessment and crack identification of recycled concrete with embedded smart cement modules

    NASA Astrophysics Data System (ADS)

    Qiao, Pizhong; Fan, Wei; Chen, Fangliang

    2011-04-01

    In this paper, the material property assessment and crack identification of concrete using embedded smart cement modules are presented. Both the concrete samples with recycled aggregates (RA) and natural aggregates (NA) were prepared. The smart cement modules were fabricated and embedded in concrete beams to serve as either the actuators or sensors, and the elastic wave propagation-based technique was developed to detect the damage (crack) in the recycled aggregate concrete (RAC) beams and monitor the material degradation of RAC beams due to the freeze/thaw (F/T) conditioning cycles. The damage detection results and elastic modulus reduction monitoring data demonstrate that the proposed smart cement modules and associated damage detection and monitoring techniques are capable of identifying crack-type damage and monitoring material degradation of the RAC beams. Both the RAC and natural aggregate concrete (NAC) beams degrade with the increased F/T conditioning cycles. Though the RAC shows a lower reduction percentage of the modulus of elasticity from both the dynamic modulus and wave propagation tests at the given maximum F/T conditioning cycle (i.e., 300 in this study), the RAC tends to degrade faster after the 180 F/T cycles. As observed in this study, the material properties and degradation rate of RAC are comparable to those of NAC, thus making the RAC suitable for transportation construction. The findings in development of damage detection and health monitoring techniques using embedded smart cement modules resulted from this study promote the widespread application of recycled concrete in transportation construction and provide viable and effective health monitoring techniques for concrete structures in general.

  18. Tire/runway friction interface

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1990-01-01

    An overview is given of NASA Langley's tire/runway pavement interface studies. The National Tire Modeling Program, evaluation of new tire and landing gear designs, tire wear and friction tests, and tire hydroplaning studies are examined. The Aircraft Landing Dynamics Facility is described along with some ground friction measuring vehicles. The major goals and scope of several joint FAA/NASA programs are identified together with current status and plans.

  19. Microwave processing of cement and concrete materials – towards an industrial reality?

    SciTech Connect

    Buttress, Adam Jones, Aled; Kingman, Sam

    2015-02-15

    Each year a substantial body of literature is published on the use of microwave to process cement and concrete materials. Yet to date, very few if any have lead the realisation of a commercial scale industrial system and is the context under which this review has been undertaken. The state-of the–art is evaluated for opportunities, and the key barriers to the development of new microwave-based processing techniques to enhance production, processing and recycling of cement and concrete materials. Applications reviewed include pyro-processing of cement clinker; accelerated curing, non-destructive testing and evaluation (NDT&E), and end-of-life processing including radionuclide decontamination.

  20. Pilot Evaluations of Runway Status Light System

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Wills, Robert W.; Smith, R. Marshall

    1996-01-01

    This study focuses on use of the Transport Systems Research Vehicle (TSRV) Simulator at the Langley Research Center to obtain pilot opinion and input on the Federal Aviation Administration's Runway Status Light System (RWSL) prior to installation in an operational airport environment. The RWSL has been designed to reduce the likelihood of runway incursions by visually alerting pilots when a runway is occupied. Demonstrations of the RWSL in the TSRV Simulator allowed pilots to evaluate the system in a realistic cockpit environment.

  1. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway...

  2. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway...

  3. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway...

  4. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway...

  5. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway...

  6. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway...

  7. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway...

  8. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway...

  9. 14 CFR 151.80 - Runway paving: Additional runway; other conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Additional runway; other conditions. 151.80 Section 151.80 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.80 Runway...

  10. 14 CFR 151.79 - Runway paving: Second runway; wind conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: Second runway; wind conditions. 151.79 Section 151.79 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.79 Runway...

  11. Studies of ancient concrete as analogs of cementitious sealing materials for a repository in tuff

    SciTech Connect

    Roy, D.M.; Langton, C.A.

    1989-03-01

    The durability of ancient cementitious materials has been investigated to provide data applicable to determining the resistance to weathering of concrete materials for sealing a repository for storage of high-level radioactive waste. Because tuff and volcanic ash are used in the concretes in the vicinity of Rome, the results are especially applicable to a waste repository in tuff. Ancient mortars, plasters, and concretes collected from Rome, Ostia, and Cosa dating to the third century BC show remarkable durability. The aggregates used in the mortars, plasters, and concretes included basic volcanic and pyroclastic rocks (including tuff), terra-cotta, carbonates, sands, and volcanic ash. The matrices of ancient cementitious materials have been characterized and classified into four categories: (1) hydraulic hydrated lime and hydrated lime cements, (2) hydraulic aluminous and ferruginous hydrated lime cements ({plus_minus} siliceous components), (3) pozzolana/hydrated lime cements, and (4) gypsum cements. Most of the materials investigated are in category (3). The materials were characterized to elucidate aspects of the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical, mineralogical, and microstructural factors. Their durability was found to be affected by the matrix mineralogy, particle size, and porosity; aggregate type, grading and proportioning; and the methodology of placement. 30 refs.

  12. Balanced improvement of high performance concrete material properties with modified graphite nanomaterials

    NASA Astrophysics Data System (ADS)

    Peyvandi, Amirpasha

    Graphite nanomaterials offer distinct features for effective reinforcement of cementitious matrices in the pre-crack and post-crack ranges of behavior. Thoroughly dispersed and well-bonded nanomaterials provide for effective control of the size and propagation of defects (microcracks) in matrix, and also act as closely spaced barriers against diffusion of moisture and aggressive solutions into concrete. Modified graphite nanomaterials can play multi-faceted roles towards enhancing the mechanical, physical and functional attributes of concrete materials. Graphite nanoplatelets (GP) and carbon nanofibers (CNF) were chosen for use in cementitious materials. Experimental results highlighted the balanced gains in diverse engineering properties of high-performance concrete realized by introduction of graphite nanomaterials. Nuclear Magnetic Resonance (NMR) spectroscopy was used in order to gain further insight into the effects of nanomaterials on the hydration process and structure of cement hydrates. NMR exploits the magnetic properties of certain atomic nuclei, and the sensitivity of these properties to local environments to generate data which enables determination of the internal structure, reaction state, and chemical environment of molecules and bulk materials. 27 Al and 29Si NMR spectroscopy techniques were employed in order to evaluate the effects of graphite nanoplatelets on the structure of cement hydrates, and their resistance to alkali-silica reaction (ASR), chloride ion diffusion, and sulfate attack. Results of 29Si NMR spectroscopy indicated that the percent condensation of C-S-H in cementitious paste was lowered in the presence of nanoplatelets at the same age. The extent of chloride diffusion was assessed indirectly by detecting Friedel's salt as a reaction product of chloride ions with aluminum-bearing cement hydrates. Graphite nanoplatelets were found to significantly reduce the concentration of Friedel's salt at different depths after various periods

  13. Nuclear Technology. Course 29: Civil/Structural Inspection. Module 29-3, Concrete Materials.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This third in a series of six modules for a course titled Civil/Structural Inspection deals with concrete component materials and discusses their properties, methods of handling and storage, selection, uniformity, and methods of acceptance. The module follows a typical format that includes the following sections: (1) introduction, (2) module…

  14. Current Practices in Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB)

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Williams, Daniel M.

    2008-01-01

    Significant air traffic increases are anticipated for the future of the National Airspace System (NAS). To cope with future traffic increases, fundamental changes are required in many aspects of the air traffic management process including the planning and use of NAS resources. Two critical elements of this process are the selection of airport runway configurations, and the effective management of active runways. Two specific research areas in NASA's Airspace Systems Program (ASP) have been identified to address efficient runway management: Runway Configuration Management (RCM) and Arrival/Departure Runway Balancing (ADRB). This report documents efforts in assessing past as well as current work in these two areas.

  15. Field applications of a carbon fiber sheet material for strengthening reinforced concrete structure

    SciTech Connect

    Thomas, J.; Kliger, H.S.; Yoshizawa, Hiroyuki

    1996-12-31

    Forca Tow Sheet is now being introduced into the USA as a viable alternative to conventional concrete strengthen techniques. This carbon fiber shoot material is externally bonded to reinforced concrete and masonry structures and serves to strengthen existing conditions. Based on the growing use of Tow Sheet in the Japanese market die US infrastructure market is beginning to apply this technology on a number of diverse repair projects. This paper describes actual field applications on industrial and public structures in the US and Japan. Also included are the results of one yen of monitoring of die Japanese structure.

  16. Analysis of Runway Incursion Data

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2013-01-01

    A statistical analysis of runway incursion (RI) events was conducted to ascertain relevance to the top ten challenges of the National Aeronautics and Space Administration Aviation Safety Program (AvSP). The information contained in the RI database was found to contain data that may be relevant to several of the AvSP top ten challenges. When combined with other data from the FAA documenting air traffic volume from calendar year 2000 through 2011, the structure of a predictive model emerges that can be used to forecast the frequency of RI events at various airports for various classes of aircraft and under various environmental conditions.

  17. Diffusion of Iodine and Rhenium in Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Whyatt, Greg A.; Powers, Laura; Parker, Kent E.; Wood, Marcus I.

    2006-12-15

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). This understanding will enable accurate prediction of radionuclide fate when the waste forms come in contact with groundwater. A set of diffusion experiments using carbonated and non-carbonated concrete-soil half cells was conducted under unsaturated conditions (4% and 7% by wt moisture content). Spiked concrete half-cell specimens were prepared with and without colloidal metallic iron addition and were carbonated using supercritical carbon dioxide. Spikes of I and Re were added to achieve measurable diffusion profile in the soil part of the half-cell. In addition, properties of concrete materials likely to influence radionuclide migration such as carbonation were evaluated in an effort to correlate these properties with the release of iodine and rhenium.

  18. Spot and Runway Departure Advisor

    NASA Technical Reports Server (NTRS)

    Jung, Yoon Chul

    2013-01-01

    The Spot and Runway Departure Advisor (SARDA) is a research prototype of a decision support tool for ATC tower controllers to assist in manging and controlling traffic on the surface of an airport. SARDA employs a scheduler to generate an optimal runway schedule and gate push-back - spot release sequence and schedule that improves efficiency of surface operations. The advisories for ATC tower controllers are displayed on an Electronic Flight Strip (EFS) system. The human-in-the-loop simulation of the SARDA tool was conducted for east operations of Dallas-Ft. Worth International Airport (DFW) to evaluate performance of the SARDA tool and human factors, such as situational awareness and workload. The results indicates noticeable taxi delay reduction and fuel savings by using the SARDA tool. Reduction in controller workload were also observed throughout the scenario runs. The future plan includes modeling and simulation of the ramp operations of the Charlotte International Airport, and develop a decision support tool for the ramp controllers.

  19. Concrete crushing and sampling, a methodology and technology for the unconditional release of concrete material from decommissioning

    SciTech Connect

    Gills, R.; Lewandowski, P.; Ooms, B.; Reusen, N.; Van Laer, W.; Walthery, R.

    2007-07-01

    Belgoprocess started the industrial decommissioning of the main process building of the former Eurochemic reprocessing plant in 1990, after completion of a pilot project. Two small storage buildings for final products from reprocessing were dismantled to verify the assumptions made in a previous paper study on decommissioning, to demonstrate and develop dismantling techniques and to train personnel. Both buildings were emptied and decontaminated to background levels. They were demolished and the remaining concrete debris was disposed of as industrial waste and green field conditions restored. Currently, the decommissioning operations carried out at the main building have made substantial progress. They are executed on an industrial scale. In view of the final demolition of the building, foreseen to start in the middle of 2008, a clearance methodology for the concrete from the cells into the Eurochemic building has been developed. It considers at least one complete measurement of all concrete structures and the removal of all detected residual radionuclides. This monitoring sequence is followed by a controlled demolition of the concrete structures and crushing of the resulting concrete parts to smaller particles. During the crushing operations, metal parts are separated from the concrete and representative concrete samples are taken. The frequency of sampling meets the prevailing standards. In a further step, the concrete samples are milled, homogenised, and a smaller fraction is sent to the laboratory for analyses. The paper describes the developed concrete crushing and sampling methodology. (authors)

  20. Development of construction materials like concrete from lunar soils without water

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Saadatmanesh, H.; Frantziskonis, G.

    1989-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. A unique approach is attempted that utilizes factors such as initial vacuum and then cyclic loading to enhance the mechanical properties of dry materials similar to those available on the moon. The application of such factors is expected to allow reorientation, and coming together, of particles of the materials toward the maximum theoretical density. If such a density can provide deformation and strength properties for even a limited type of construction, the approach can have significant application potential, although other factors such as heat and chemicals may be needed for specific construction objectives.

  1. Evaluation of near surface material degradation in concrete using nonlinear Rayleigh surface waves

    NASA Astrophysics Data System (ADS)

    Gross, J.; Kim, J.-Y.; Jacobs, L. J.; Kurtis, K. E.; Qu, J.

    2013-01-01

    Comparative studies of nondestructive evaluation methods have shown that nonlinear ultrasonic techniques are more sensitive than conventional linear methods to changes in material microstructure and the associated small-scale damage. Many of the material degradation processes such as carbonation in concrete, corrosion in metals, etc., initiate at the surface. In such cases, ultrasonic Rayleigh surface waves are especially appropriate for detection and characterization of damage since their energy is concentrated in the top layer of the test object. For the civil engineering infrastructure, only a limited number of field applicable nonlinear ultrasonic techniques have been introduced. In this paper a nonlinear ultrasonic measurement technique based on the use of Rayleigh waves is developed and used to characterize carbonation in concrete samples. This work develops a collinear mixing technique for concrete structures. Wedge transducer is used for the generation and an accelerometer for the detection of the fundamental and nonlinearity modulated ultrasonic signal components. The measurements are made by varying the input voltage and along the propagation distance. The slope of the normalized modulation amplitudes is taken as the nonlinearity parameter. Concrete samples with two different levels of damage are examined, and the difference of the two fundamental frequencies is used to quantify damage state.

  2. Construction Productivity Advancement Research (CPAR) Program: Improved Materials and Processes for Sealing and Resealing Joints in Portland Cement Concrete Pavements - Field Evaluation

    DTIC Science & Technology

    1993-10-01

    compositions of material- are currently used for scaling portland cement concrete (PCC) joints . These materials vary widely in chemi- cal complexity...PRODUCTIVITY ADVANCEMENT RESEARCH (CPAR) PROGRAM Improved Materials and Processes for Sealing and Resealing Joints in Portland Cement Concrete Pavements...Processes for Sealing and Resealing Joints in Portland Cement Concrete Pavements-Field Evaluation by Larry N. Lynch, Dewey W. White Accesion

  3. Airborne FLIR sensors for runway incursion detection

    NASA Astrophysics Data System (ADS)

    Archer, Cynthia; White, Joseph; Neece, Robert

    2009-05-01

    Forward Looking Infrared (FLIR) sensors are potential components in hazard monitoring systems for general aviation aircraft. FLIR sensors can provide images of the runway area when normal visibility is reduced by meteorological conditions. We are investigating short wave infrared (SWIR) and long wave infrared (LWIR) cameras. Pre-recorded video taken from an aircraft on approach to landing provides raw data for our analysis. This video includes approaches under four conditions: clear morning, cloudy afternoon, clear evening, and clear night. We used automatic object detection techniques to quantify the ability of these sensors to alert the pilot to potential runway hazards. Our analysis is divided into three stages: locating the airport, tracking the runway, and detecting vehicle sized objects. The success or failure of locating the runway provides information on the ability of the sensors to provide situational awareness. Tracking the runway position from frame to frame provides information on the visibility of runway features, such as landing lights or runway edges, in the scene. Detecting small objects quantifies clutter and provides information on the ability of these sensors to image potential hazards. In this paper, we present results from our analysis of sample approach video.

  4. System Oriented Runway Management: A Research Update

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Brown, Sherilyn A.; Stough, Harry P., III; Eisenhawer, Steve; Atkins, Stephen; Long, Dou

    2011-01-01

    The runway configuration used by an airport has significant implications with respect to its capacity and ability to effectively manage surface and airborne traffic. Aircraft operators rely on runway configuration information because it can significantly affect an airline's operations and planning of their resources. Current practices in runway management are limited by a relatively short time horizon for reliable weather information and little assistance from automation. Wind velocity is the primary consideration when selecting a runway configuration; however when winds are below a defined threshold, discretion may be used to determine the configuration. Other considerations relevant to runway configuration selection include airport operator constraints, weather conditions (other than winds) traffic demand, user preferences, surface congestion, and navigational system outages. The future offers an increasingly complex landscape for the runway management process. Concepts and technologies that hold the potential for capacity and efficiency increases for both operations on the airport surface and in terminal and enroute airspace are currently under investigation. Complementary advances in runway management are required if capacity and efficiency increases in those areas are to be realized. The System Oriented Runway Management (SORM) concept has been developed to address this critical part of the traffic flow process. The SORM concept was developed to address all aspects of runway management for airports of varying sizes and to accommodate a myriad of traffic mixes. SORM, to date, addresses the single airport environment; however, the longer term vision is to incorporate capabilities for multiple airport (Metroplex) operations as well as to accommodate advances in capabilities resulting from ongoing research. This paper provides an update of research supporting the SORM concept including the following: a concept of overview, results of a TRCM simulation, single

  5. Runway Incursion Prevention for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  6. Electronic System for Preventing Airport Runway Incursions

    NASA Technical Reports Server (NTRS)

    Dabney, Richard; Elrod, Susan

    2009-01-01

    A proposed system of portable illuminated signs, electronic monitoring equipment, and radio-communication equipment for preventing (or taking corrective action in response to) improper entry of aircraft, pedestrians, or ground vehicles onto active airport runways is described. The main overall functions of the proposed system would be to automatically monitor aircraft ground traffic on or approaching runways and to generate visible and/or audible warnings to affected pilots, ground-vehicle drivers, and control-tower personnel when runway incursions take place.

  7. Hard-Surface Runways in Antarctica

    DTIC Science & Technology

    1988-08-01

    required minimum strength. runways for McMurdo station and South Pole Given the difficulty of making all-season snow station . runways for heavy wheeled...an ice-free area about 50 miles R&D investment in snow runway technology for from McMurdo station , at the other side of the the South Pole , it might be...the snowfields close to Palmer at All flights which land at the South Pole or oth- almost any time of the year. er inland stations are made by ski

  8. Runway Safety Monitor Algorithm for Single and Crossing Runway Incursion Detection and Alerting

    NASA Technical Reports Server (NTRS)

    Green, David F., Jr.

    2006-01-01

    The Runway Safety Monitor (RSM) is an aircraft based algorithm for runway incursion detection and alerting that was developed in support of NASA's Runway Incursion Prevention System (RIPS) research conducted under the NASA Aviation Safety and Security Program's Synthetic Vision System project. The RSM algorithm provides warnings of runway incursions in sufficient time for pilots to take evasive action and avoid accidents during landings, takeoffs or when taxiing on the runway. The report documents the RSM software and describes in detail how RSM performs runway incursion detection and alerting functions for NASA RIPS. The report also describes the RIPS flight tests conducted at the Reno/Tahoe International Airport (RNO) and the Wallops Flight Facility (WAL) during July and August of 2004, and the RSM performance results and lessons learned from those flight tests.

  9. Effect of Uncertainty on Deterministic Runway Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2012-01-01

    Active runway scheduling involves scheduling departures for takeoffs and arrivals for runway crossing subject to numerous constraints. This paper evaluates the effect of uncertainty on a deterministic runway scheduler. The evaluation is done against a first-come- first-serve scheme. In particular, the sequence from a deterministic scheduler is frozen and the times adjusted to satisfy all separation criteria; this approach is tested against FCFS. The comparison is done for both system performance (throughput and system delay) and predictability, and varying levels of congestion are considered. The modeling of uncertainty is done in two ways: as equal uncertainty in availability at the runway as for all aircraft, and as increasing uncertainty for later aircraft. Results indicate that the deterministic approach consistently performs better than first-come-first-serve in both system performance and predictability.

  10. TRIZ Tool for Optimization of Airport Runway

    NASA Astrophysics Data System (ADS)

    Rao, K. Venkata; Selladurai, V.; Saravanan, R.

    TRIZ tool is used for conceptual design and layout of the novel ascending and descending runway model for the effective utilization of short length airports. Handling bigger aircrafts at smaller airports become the necessity for economic consideration and for the benefit of vast airliners and the aspiring air travelers of the region. The authors’ proposal of ascending and descending runway would enable the operational need of wide body aircrafts such as Boeing 747 and Airbus A380-800. Negotiating take-off and landing of bigger aircrafts at less than 10000 feet runway is an optimization solution. This conceptual model and the theoretical design with its layout is dealt in this paper as Part - I. The computer-aided design and analysis using MATLAB with Simulink tool box to confirm the adequacy of the runway length for the bigger aircrafts at smaller airports is however dealt in subsequent papers.

  11. Spot and Runway Departure Advisor (SARDA)

    NASA Technical Reports Server (NTRS)

    Jung, Yoon

    2016-01-01

    Spot and Runway Departure Advisor (SARDA) is a decision support tool to assist airline ramp controllers and ATC tower controllers to manage traffic on the airport surface to significantly improve efficiency and predictability in surface operations. The core function of the tool is the runway scheduler which generates an optimal solution for runway sequence and schedule of departure aircraft, which would minimize system delay and maximize runway throughput. The presentation also discusses the latest status of NASA's current surface research through a collaboration with an airline partner, where a tool is developed for airline ramp operators to assist departure pushback operations. The presentation describes the concept of the SARDA tool and results from human-in-the-loop simulations conducted in 2012 for Dallas-Ft. Worth International Airport and 2014 for Charlotte airport ramp tower.

  12. pH-dependent leaching of constituents of potential concern from concrete materials containing coal combustion fly ash.

    PubMed

    Kosson, David S; Garrabrants, Andrew C; DeLapp, Rossane; van der Sloot, Hans A

    2014-05-01

    Current concerns about the environmental safety of coal combustion fly ash have motivated this evaluation of the impact of fly ash use as a cement replacement in concrete materials on the leaching of constituents of potential concern. The chemical effects of fly ash on leaching were determined through characterization of liquid-solid partitioning using EPA Method 1313 for four fly ash materials as well as concrete and microconcrete materials containing 0% (control materials), 25% and 45% replacement of portland cement with the fly ash source. All source materials, concrete formulations and replacement levels are representative of US concrete industry practices. Eluate concentrations as a function of pH were compared to a broader range of available testing results for international concretes and mortars for which the leaching characteristics of the component fly ashes were unknown. The chemistry of the hydrated cement fraction was found to dominate the liquid-solid partitioning resulting in reduced leaching concentrations of most trace metals compared to concentrations from fly ash materials alone. Compared to controls, eluate concentrations of Sb, As, B, Cr, Mo, Se, Tl and V from concrete products containing fly ash were essentially the same as the eluate concentrations from control materials produced without fly ash replacement indicating little to no significant impact on aqueous partitioning.

  13. Joint Winter Runway Friction Program Accomplishments

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Wambold, James C.; Henry, John J.; Andresen, Arild; Bastian, Matthew

    2002-01-01

    The major program objectives are: (1) harmonize ground vehicle friction measurements to report consistent friction value or index for similar contaminated runway conditions, for example, compacted snow, and (2) establish reliable correlation between ground vehicle friction measurements and aircraft braking performance. Accomplishing these objectives would give airport operators better procedures for evaluating runway friction and maintaining acceptable operating conditions, providing pilots information to base go/no go decisions, and would contribute to reducing traction-related aircraft accidents.

  14. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandra; Verma, Savita Arora

    2011-01-01

    Parallel runway operations have been found to increase capacity within the National Airspace but poor visibility conditions reduce the use of these operations. The NextGen and SESAR Programs have identified the capacity benefits from increased use of closely-space parallel runway. Previous research examined the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This simulation study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s (+/- 10s error) at a coupling point that was about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: two levels of flight deck automation (current-day flight deck automation and auto speed control future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Results show the operations in this study were acceptable and safe. Subjective workload, when using the pairing procedures and tools, was generally low for both controllers and pilots, and situation awareness was typically moderate to high. Pilot workload was influenced by display type and automation condition. Further research on pairing and off-nominal conditions is required however, this investigation identified promising findings about the feasibility of closely-spaced parallel runway operations.

  15. Runway Scheduling Using Generalized Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Montoya, Justin; Wood, Zachary; Rathinam, Sivakumar

    2011-01-01

    A generalized dynamic programming method for finding a set of pareto optimal solutions for a runway scheduling problem is introduced. The algorithm generates a set of runway fight sequences that are optimal for both runway throughput and delay. Realistic time-based operational constraints are considered, including miles-in-trail separation, runway crossings, and wake vortex separation. The authors also model divergent runway takeoff operations to allow for reduced wake vortex separation. A modeled Dallas/Fort Worth International airport and three baseline heuristics are used to illustrate preliminary benefits of using the generalized dynamic programming method. Simulated traffic levels ranged from 10 aircraft to 30 aircraft with each test case spanning 15 minutes. The optimal solution shows a 40-70 percent decrease in the expected delay per aircraft over the baseline schedulers. Computational results suggest that the algorithm is promising for real-time application with an average computation time of 4.5 seconds. For even faster computation times, two heuristics are developed. As compared to the optimal, the heuristics are within 5% of the expected delay per aircraft and 1% of the expected number of runway operations per hour ad can be 100x faster.

  16. The diagnostic X-ray protection characteristics of Ytong, an aerated concrete based building material.

    PubMed

    Tsalafoutas, I A; Yakoumakis, E; Manetou, A; Flioni-Vyza, A

    1998-09-01

    Ytong is a widely used building material. The X-ray attenuation properties of Ytong for broad beam geometry conditions and for tube potentials in the 50-140 kVp range are investigated. Comparisons with published data for concrete and other building materials are made. The results suggest that Ytong is not suitable for primary X-ray shielding in common diagnostic installations. However, walls of Ytong, typically 15-20 cm thick, may offer adequate protection in dental and mammography installations, as well as in low workload diagnostic installations as a secondary barrier.

  17. Fly ash from cellulose industry as secondary raw material in autoclaved aerated concrete

    SciTech Connect

    Hauser, A.; Eggenberger, U.; Mumenthaler, T.

    1999-03-01

    Because fly ash from cellulose industries contains considerable amounts of free lime and sulfate, they are potential secondary raw materials for the production of autoclaved aerated concrete. Laboratory experiments were performed by replacing lime and sulfate in conventional autoclaved aerated concrete mixtures by fly ash. Compared to a reference series, samples with even higher compressive strength could be produced with lime-sulfate ash. At higher proportions of fly ash, the formation of calcium silicate hydrate phases is delayed and the presence of unreacted portlandite and newly formed scawtite produce a drop in strength and an increase in shrinkage. Low strength resulted by using Al-bearing ash with a lower amount of free CaO, which makes this type of ash not applicable in practice.

  18. High-strength fibrous concrete of Russian Far East natural materials

    NASA Astrophysics Data System (ADS)

    Fediuk, R.

    2016-02-01

    Fiber-reinforced concrete is designed on composite binder. At 1.6% of reinforcing steel anchoring fiber maximum physical and mechanical properties (Rcompr = 100.9 MPa) can be obtained. It was found that the combined effect of mechanical and chemical activation (the presence of limestone particles) increases the pozzolanic activity of acidic ashes. It has a catalytic effect on the reaction activity of the surface of ash and sand during machining in vario-planetary mill. Furthermore, the addition of limestone increases the alkalinity of the concrete, which leads to the formation of greater hydration products of cement per unit of time. Theoretical and experimental results can be recommended for expanded implementation of the construction in various regions of the Russian Federation, taking into account the availability of raw materials.

  19. Flexural behavior of reinforced concrete beams strengthened with advanced composite materials

    SciTech Connect

    Shahawy, M.A.; Beitelman, T.

    1996-12-31

    This paper presents the results of a feasibility study to investigate the flexural behavior of structurally damaged reinforced and prestressed concrete members retrofitted with bonded carbon fiber materials. The effect of CFRP laminates, bonded to the soffit of precracked reinforced concrete rectangular and tee beams, is investigated in terms of flexural strength, deflections, cracking behavior and failure modes. The results indicate that strengthening of significantly cracked structural members by bonding Carbon laminates is structurally efficient and that the retrofitted members are restored to stiffness and strength values nearly equal to or greater than those of the original. The results indicate that the retrofitted members maintained adequate structural integrity and composite action at all stages of testing up to failure.

  20. REAL-TIME IDENTIFICATION AND CHARACTERIZATION OF ASBESTOS AND CONCRETE MATERIALS WITH RADIOACTIVE CONTAMINATION

    SciTech Connect

    XU, X. George; Zhang, X.C.

    2002-05-10

    Concrete and asbestos-containing materials were widely used in DOE building construction in the 1940s and 1950s. Over the years, many of these porous materials have been contaminated with radioactive sources, on and below the surface. To improve current practice in identifying hazardous materials and in characterizing radioactive contamination, an interdisciplinary team from Rensselaer has conducted research in two aspects: (1) to develop terahertz time-domain spectroscopy and imaging system that can be used to analyze environmental samples such as asbestos in the field, and (2) to develop algorithms for characterizing the radioactive contamination depth profiles in real-time in the field using gamma spectroscopy. The basic research focused on the following: (1) mechanism of generating of broadband pulsed radiation in terahertz region, (2) optimal free-space electro-optic sampling for asbestos, (3) absorption and transmission mechanisms of asbestos in THz region, (4) the role of asbestos sample conditions on the temporal and spectral distributions, (5) real-time identification and mapping of asbestos using THz imaging, (7) Monte Carlo modeling of distributed contamination from diffusion of radioactive materials into porous concrete and asbestos materials, (8) development of unfolding algorithms for gamma spectroscopy, and (9) portable and integrated spectroscopy systems for field testing in DOE. Final results of the project show that the combination of these innovative approaches has the potential to bring significant improvement in future risk reduction and cost/time saving in DOE's D and D activities.

  1. Reliable classification of moving waste materials with LIBS in concrete recycling.

    PubMed

    Xia, Han; Bakker, M C M

    2014-03-01

    Effective discrimination between different waste materials is of paramount importance for inline quality inspection of recycle concrete aggregates from demolished buildings. The moving targeted materials in the concrete waste stream are wood, PVC, gypsum block, glass, brick, steel rebar, aggregate and cement paste. For each material, up to three different types were considered, while thirty particles of each material were selected. Proposed is a reliable classification methodology based on integration of the LIBS spectral emissions in a fixed time window, starting from the deployment of the laser shot. PLS-DA (multi class) and the hybrid combination PCA-Adaboost (binary class) were investigated as efficient classifiers. In addition, mean centre and auto scaling approaches were compared for both classifiers. Using 72 training spectra and 18 test spectra per material, each averaged by ten shots, only PLS-DA achieved full discrimination, and the mean centre approach made it slightly more robust. Continuing with PLS-DA, the relation between data averaging and convergence to 0.3% average error was investigated using 9-fold cross-validations. Single-shot PLS-DA presented the highest challenge and most desirable methodology, which converged with 59 PC. The degree of success in practical testing will depend on the quality of the training set and the implications of the possibly remaining false positives.

  2. Non-linear finite element-based material constitutive law for zero slump steel fiber reinforced concrete pipe structures

    NASA Astrophysics Data System (ADS)

    Mikhaylova, Alena

    This study presents a comprehensive investigation of performance and behavior of steel-fiber reinforced concrete pipes (SFRCP). The main goal of this study is to develop the material constitutive model for steel fiber reinforced concrete used in dry-cast application. To accomplish this goal a range of pipe sizes varying from 15 in. (400 mm) to 48 in. (1200 mm) in diameter and fiber content of 0.17%, 0.25%, 0.33%, 0.5%, 0.67% and 83% by volume were produced. The pipes were tested in three-edge bearing condition to obtain the load-deformation response and overall performance of the pipe. The pipes were also subjected to hydrostatic joint and joint shear tests to evaluate the performance of the fiber-pipe joints for water tightness and under differential displacements, respectively. In addition, testing on hardened concrete was performed to obtain the basic mechanical material properties. High variation in the test results for material testing was identified as a part of experimental investigation. A three-dimensional non-linear finite element model of the pipe under the three edge bearing condition was developed to identify the constitutive material relations of fiber-concrete composite. A constitutive model of concrete implementing the concrete plasticity and continuum fracture mechanics was considered for defining the complex non-linear behavior of fiber-concrete. Three main concrete damage algorithms were examined: concrete brittle cracking, concrete damaged plasticity with adaptive meshing technique and concrete damaged plasticity with visco-plastic regularization. The latter was identified as the most robust and efficient to model the post-cracking behavior of fiber reinforced concrete and was used in the subsequent studies. The tension stiffening material constitutive law for composite concrete was determined by converging the FEM solution of load-deformation response with the results of experimental testing. This was achieved by iteratively modifying the non

  3. Comparison of performance of partial prestressed beam-column subassemblages made of reactive powder concrete and normal concrete materials using finite element models

    NASA Astrophysics Data System (ADS)

    Nurjannah, S. A.; Budiono, B.; Imran, I.; Sugiri, S.

    2016-04-01

    Research on concrete material continues in several countries and had produced a concrete type of Ultra High Performance Concrete (UHPC) which has a better compressive strength, tensile strength, flexural strength, modulus of elasticity, and durability than normal concrete (NC) namely Reactive Powder Concrete (RPC). Researches on structures using RPC material showed that the RPC structures had a better performance than the NC structures in resisting gravity and lateral cyclic loads. In this study, an experiment was conducted to apply combination of constant axial and lateral cyclic loads to a prototype of RPC interior partial prestressed beam-column subassemblage (prototype of BCS-RPC) with a value of Partial Prestressed Ratio (PPR) of 31.72% on the beam. The test results were compared with finite element model of beam-column subassemblage made of RPC by PPR of 31.72% (BCS-RPC-31.72). Furthermore, there was BCS-RPC modeling with PPR of 21.39% (BCS-RPC-21.39) and beam-column subassemblages made of NC materials modeling with a value of PPR at 21.09% (BCS-NC-21.09) and 32.02% (BCS-NC-32.02). The purpose of this study was to determine the performance of the BCS-RPC models compared to the performance of the BCS-NC models with PPR values below and above 25%, which is the maximum limit of permitted PPR. The results showed that all models of BCS-RPC had a better performance than all models of BCS-NC and the BCS-RPC model with PPR above 25% still behaved ductile and was able to dissipate energy well.

  4. Low frequency ultrasonic array imaging using signal post-processing for concrete material

    NASA Astrophysics Data System (ADS)

    Ozawa, Akio; Izumi, Hideki; Nakahata, Kazuyuki; Ohira, Katsumi; Ogawa, Kenzo

    2017-02-01

    The use of ultrasonic arrays to conduct nondestructive evaluation has significantly increased in recent years. A post-processing beam-forming technique that utilizes a complete set of signals of all combinations of transmission and reception el-ements was proposed as an array imaging technique. In this study, a delay-and-sum beam reconstruction method utilizing post-processing was applied to the imaging of internal voids and reinforced steel bars in concrete material. Due to the high attenuation of the ultrasonic wave in concrete, it is necessary to use an ultrasonic wave as the incident wave at low frequencies and high in-tensities. In this study, an array transducer with a total of 16 elements was designed on the basis of a multigaussian beam model. The center frequency of the transducer was 50 kHz, and low frequency imaging was achieved by performing computations using a graphics processing unit accelerators in the post-processing beam formation. The results indicated that the shapes of through holes and steel bars in a concrete specimen with 700 mm height were reconstructed with high resolution.

  5. Space Shuttle Columbia hurtles down Runway 33

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- With drag chute deployed, the Space Shuttle Columbia hurtles down Runway 33 at KSC''';s Shuttle Landing Facility to conclude the Microgravity Science Laboratory-1 (MSL- 1) mission. With main gear touchdown at 2:33:11 p.m. EDT, April 8, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to a mechanical problem. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations.

  6. Runway Incursion Prevention: A Technology Solution

    NASA Technical Reports Server (NTRS)

    Young, Steven D.; Jones, Denise R.

    2001-01-01

    A runway incursion occurs any time an airplane, vehicle, person or object on the ground creates a collision hazard with an airplane that is taking off or landing at an airport under the supervision of Air Traffic Control (ATC). Despite the best efforts of the Federal Aviation Administration (FAA), runway incursions continue to occur more frequently. The number of incursions reported in the U.S. rose from 186 in 1993 to 431 in 2000, an increase of 132 percent. Recently, the National Transportation Safety Board (NTSB) has made specific recommendations for reducing runway incursions including a recommendation that the FAA require, at all airports with scheduled passenger service, a ground movement safety system that will prevent runway incursions; the system should provide a direct warning capability to flight crews. To this end, NASA and its industry partners have developed an advanced surface movement guidance and control system (A-SMGCS) architecture and operational concept that are designed to prevent runway incursions while also improving operational capability. This operational concept and system design have been tested in both full-mission simulation and operational flight test experiments at major airport facilities. Anecdotal, qualitative, and specific quantitative results will be presented along with an assessment of technology readiness with respect to equipage.

  7. Runway hazard detection in poor visibility conditions

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Rahman, Zia-ur

    2012-01-01

    More recently, research on enhancing the situational awareness of pilots, especially in poor visibility flight conditions, gains more and more interests. Since pilots may not be able to spot the runway clearly in poor visibility conditions, such as fog, smoke, haze or dim lighting conditions, aviation landing problem can occur due to the (unexpected) presence of objects on the runway. Complicated and trivial instruments, switches, bottoms, plus sudden happenings are enough for the pilots to take care of during landing approach. Therefore, an automatic hazard detection approach that combines non-linear Multi-scale Retinex (MSR) image enhancement, edge detection with basic edge pattern analysis, and image analysis is investigated. The effect of applying the enhancement method is to make the image of the runway almost independent from the poor atmospheric conditions. The following smart edge detection process extracts edge information, which can also reduce the storing space, the comparison and retrieval time, and the effect of sensor noise. After analyzing the features existing in the edge differences occurring in the runway area by digital image processing techniques, the existing potential hazard will be localized and labeled. Experimental results show that the proposed approach is effective in runway hazard detection in poor visibility conditions.

  8. Terminal Area Procedures for Paired Runways

    NASA Technical Reports Server (NTRS)

    Lozito, Sandy

    2011-01-01

    Parallel Runway operations have been found to increase capacity within the National Airspace (NAS) however, poor visibility conditions reduce this capacity [1]. Much research has been conducted to examine the concepts and procedures related to parallel runways however, there has been no investigation of the procedures associated with the strategic and tactical pairing of aircraft for these operations. This study developed and examined the pilot and controller procedures and information requirements for creating aircraft pairs for parallel runway operations. The goal was to achieve aircraft pairing with a temporal separation of 15s(+/- 10s error) at a coupling point that is about 12 nmi from the runway threshold. Two variables were explored for the pilot participants: Two levels of flight deck automation (current-day flight deck automation, and a prototype future automation) as well as two flight deck displays that assisted in pilot conformance monitoring. The controllers were also provided with automation to help create and maintain aircraft pairs. Data showed that the operations in this study were found to be acceptable and safe. Workload when using the pairing procedures and tools was generally low for both controllers and pilots, and situation awareness (SA) was typically moderate to high. There were some differences based upon the display and automation conditions for the pilots. Future research should consider the refinement of the concepts and tools for pilot and controller displays and automation for parallel runway concepts.

  9. Runway Incursion Prevention System Simulation Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2002-01-01

    A Runway Incursion Prevention System (RIPS) was evaluated in a full mission simulation study at the NASA Langley Research center in March 2002. RIPS integrates airborne and ground-based technologies to provide (1) enhanced surface situational awareness to avoid blunders and (2) alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted in a high fidelity simulator. The purpose of the study was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts. Eight commercial airline crews participated as test subjects completing 467 test runs. This paper gives an overview of the RIPS, simulation study, and test results.

  10. Polymer Research in Rapid Runway Repair Materials.

    DTIC Science & Technology

    1979-11-01

    Reactions with Resicure 30, with and without methyl nadic anhydride and with dibutyltin dilaurate, were attempted with widely varying results (see...Araldite CY179 Resicure 30 10 (a) 73-2 Araldite CY179 Resicure 30 10 10 min (b) 81-1 Araldite CY179 Dibutyltin 10 Did not cure Dilaurate 81-2 Araldite...CY183 Dibutyltin 10 Did not cure Dilaurate 7 5-1(c) Araldite CY179 NI4A 127.2 Did not cure Resicure 30 10 7-() Araldite CY179 NMA 127.2(a Resicure 30

  11. Materials for Emergency Repair of Runways.

    DTIC Science & Technology

    1984-04-30

    such as boric acid or borax , but only at the expense of the early strength develop- ment. (Figs. 4 and 5) Considering the shortness of the setting times...hint from the manufacturer of SET-45 is that boric acid is added which presumably have similar retarding effect as borax . In addition to the above...with water rapidly producing strength and heat. The hot weather formula also contains boric acid as a set retarder. The aluminum phosphate (ALP) mixture

  12. Materials for Emergency Repair of Runways.

    DTIC Science & Technology

    1985-03-20

    for the SET-45 cold mortar under identical conditions. This is attributed to the presence of borax ( boric acid ) in the hot mixture. Similar liquifying...Chemically active part of SET-45 mixtures consists of MgO grains and NH4H2 PO4 solid particles. Boric acid or borax may or may not be present. The...hot weather formula also contains boric acid as set retarder. pA, o - ~ ~ ~ - - -.-- 7~~ - . - Vi Mechanical Testing A major portion of the mechanical

  13. NASA tire/runway friction projects

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1995-01-01

    The paper reviews several aspects of NASA Langley Research Center's tire/runway friction evaluations directed towards improving the safety and economy of aircraft ground operations. The facilities and test equipment used in implementing different aircraft tire friction studies and other related aircraft ground performance investigations are described together with recent workshop activities at NASA Wallops Flight Facility. An overview of the pending Joint NASA/Transport Canada/FM Winter Runway Friction Program is given. Other NASA ongoing studies and on-site field tests are discussed including tire wear performance and new surface treatments. The paper concludes with a description of future research plans.

  14. Evaluation of two transport aircraft and several ground test vehicle friction measurements obtained for various runway surface types and conditions. A summary of test results from joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1990-01-01

    Tests with specially instrumented NASA Boeing 737 and 727 aircraft together with several different ground friction measuring devices were conducted for a variety of runway surface types and conditions. These tests are part of joint FAA/NASA Aircraft/Ground Vehicle Runway Friction Program aimed at obtaining a better understanding of aircraft ground handling performance under adverse weather conditions and defining relationships between aircraft and ground vehicle tire friction measurements. Aircraft braking performance on dry, wet, snow and ice-covered runway conditions is discussed as well as ground vehicle friction data obtained under similar runway conditions. For a given contaminated runway surface condition, the correlation between ground vehicles and aircraft friction data is identified. The influence of major test parameters on friction measurements such as speed, test tire characteristics, type and amount of surface contaminant, and ambient temperature are discussed. The effect of surface type on wet friction levels is also evaluated from comparative data collected on grooved and ungrooved concrete and asphalt surfaces.

  15. Nuclear Technology. Course 29: Civil/Structural Inspection. Module 29-6, Pre-Stressed Concrete Materials, Fabrication and Inspection.

    ERIC Educational Resources Information Center

    Groseclose, Richard

    This sixth in a series of six modules for a course titled Civil/Structural Inspection describes inspection activities associated with pre-stressed concrete such as reviewing material certifications and test reports, inspecting construction operations, performing materials testing, and preparing records and reports of inspection and testing…

  16. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    SciTech Connect

    Xu, George; Zhang, Xi-Cheng

    2000-06-01

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous-asbestos mixed-waste stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles in based solely on bore sampling, which is inefficient, costly, and unsafe. A three-year research project was started 1998 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

  17. Real-Time Identification and Characterization of Asbestos and Concrete Materials with Radioactive Contamination

    SciTech Connect

    Xu, George; Zhang, Xi-Cheng

    1999-06-01

    Concrete and asbestos-containing materials were widely used in U.S. Department of Energy (DOE) building construction in the 1940s and 1950s. Over the years, many of these porous building materials have been contaminated with radioactive sources, on and below the surface. This intractable radioactive-and-hazardous- asbestos mixed-waste-stream has created a tremendous challenge to DOE decontamination and decommissioning (D&D) project managers. The current practice to identify asbestos and to characterize radioactive contamination depth profiles involve bore sampling, and is inefficient, costly, and unsafe. A three-year research project was started on 10/1/98 at Rensselaer with the following ultimate goals: (1) development of novel non-destructive methods for identifying the hazardous asbestos in real-time and in-situ, and (2) development of new algorithms and apparatus for characterizing the radioactive contamination depth profile in real-time and in-situ.

  18. Some effects of grooved runway configurations on aircraft tire braking traction under flooded runway conditions

    NASA Technical Reports Server (NTRS)

    Byrdsong, T. A.

    1973-01-01

    An experimental investigation was conducted to study the effect of grooved runway configurations on aircraft tire braking traction on flooded runway surfaces. The investigation was performed, utilizing size 49 x 17, type VII, aircraft tires with an inflation pressure of 170 lb per square inch at ground speeds up to approximately 120 knots. The results of this investigation indicate that when the runway is flooded, grooved surfaces provide better braking traction than an ungrooved surface and, in general, the level of braking traction was found to improve as the tire bearing pressure was increased because of an increase in the groove area of either the surface or the tire tread. Rounding the groove edges tended to degrade the tire braking capability from that developed on the same groove configuration with sharp edges. Results also indicate that braking friction coefficients for the test tires and runway surfaces decreased as ground speed was increased because of the hydroplaning effects.

  19. Rapid Runway Repair (RRR): An Optimization for Minimum Operating Strip (MOS) Selection

    DTIC Science & Technology

    2007-03-01

    panels, foldable FRP mats, precast concrete slabs, precast asphalt concrete block, magnesium phosphate, crushed rock, polyurethane cap, and AM-2... designs of concrete and asphaltic concrete have also been evaluated to be utilized as caps. The obstacle these capping materials have yet to...fiberglass-reinforced plastic (FRP) mats, bolt-together FRP panels, foldable FRP mats, precast concrete slabs, precast asphalt concrete block, magnesium

  20. Machine vision for airport runway identification

    NASA Astrophysics Data System (ADS)

    Schubert, Matthew; Moore, Andrew J.; Dolph, Chester; Woodell, Glenn

    2015-03-01

    For rigid objects and fixed scenes, current machine vision technology is capable of identifying imagery rapidly and with specificity over a modest range of camera viewpoints and scene illumination. We applied that capability to the problem of runway identification using video of sixteen runway approaches at nine locations, subject to two simplifying assumptions. First, by using approach video from just one of the several possible seasonal variations (no snow cover and full foliage), we artificially removed one source of scene variation in this study. Secondly, by not using approach video at dawn and dusk, we limited the study to two illumination variants (day and night). We did allow scene variation due to atmospheric turbidity by using approach video from rainy and foggy days in some daytime approaches. With suitable ensemble statistics to account for temporal continuity in video, we observed high location specificity (<90% Bayesian posterior probability). We also tested repeatability, i.e., identification of a given runway across multiple videos, and observed robust repeatability only if illumination (day vs. night) was the same and approach visibility was good. Both specificity and repeatability degraded in poor weather conditions. The results of this simplified study show that geolocation via real-time comparison of cockpit image sensor video to a database of runway approach imagery is feasible, as long as the database contains imagery from about the same time of day (complete daylight and nighttime, excluding dawn and dusk) and the weather is clear at the time of the flight.

  1. Evaluation of Scheduling Methods for Multiple Runways

    NASA Technical Reports Server (NTRS)

    Bolender, Michael A.; Slater, G. L.

    1996-01-01

    Several scheduling strategies are analyzed in order to determine the most efficient means of scheduling aircraft when multiple runways are operational and the airport is operating at different utilization rates. The study compares simulation data for two and three runway scenarios to results from queuing theory for an M/D/n queue. The direction taken, however, is not to do a steady-state, or equilibrium, analysis since this is not the case during a rush period at a typical airport. Instead, a transient analysis of the delay per aircraft is performed. It is shown that the scheduling strategy that reduces the delay depends upon the density of the arrival traffic. For light traffic, scheduling aircraft to their preferred runways is sufficient; however, as the arrival rate increases, it becomes more important to separate traffic by weight class. Significant delay reduction is realized when aircraft that belong to the heavy and small weight classes are sent to separate runways with large aircraft put into the 'best' landing slot.

  2. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials

    SciTech Connect

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  3. Runway Operations Planning: A Two-Stage Solution Methodology

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. Thus, Runway Operations Planning (ROP) is a critical component of airport operations planning in general and surface operations planning in particular. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, may be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. Generating optimal runway operations plans was approached in with a 'one-stage' optimization routine that considered all the desired objectives and constraints, and the characteristics of each aircraft (weight class, destination, Air Traffic Control (ATC) constraints) at the same time. Since, however, at any given point in time, there is less uncertainty in the predicted demand for departure resources in terms of weight class than in terms of specific aircraft, the ROP problem can be parsed into two stages. In the context of the Departure Planner (OP) research project, this paper introduces Runway Operations Planning (ROP) as part of the wider Surface Operations Optimization (SOO) and describes a proposed 'two stage' heuristic algorithm for solving the Runway Operations Planning (ROP) problem. Focus is specifically given on including runway crossings in the planning process of runway operations. In the first stage, sequences of departure class slots and runwy crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the

  4. Perseus B Landing on Runway

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Perseus B high-altitude, remotely piloted research vehicle touches down on the runway at Edwards AFB, adjacent to NASA's Dryden Flight Research Center, after a test flight in September 1999. The Perseus B was the third version of the Perseus design developed by Aurora Flight Sciences under the Dryden-managed Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third

  5. Perseus B Landing on Runway

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The Perseus B high-altitude, remotely piloted research vehicle touches down on the runway at Edwards AFB, adjacent to NASA's Dryden Flight Research Center, after a test flight in September 1999. The Perseus B was the third version of the Perseus design developed by Aurora Flight Sciences under the Dryden-managed Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third

  6. HIGH-COMPRESSIVE-STRENGTH CONCRETE.

    DTIC Science & Technology

    CONCRETE , COMPRESSIVE PROPERTIES), PERFORMANCE(ENGINEERING), AGING(MATERIALS), MANUFACTURING, STRUCTURES, THERMAL PROPERTIES, CREEP, DEFORMATION, REINFORCED CONCRETE , MATHEMATICAL ANALYSIS, STRESSES, MIXTURES, TENSILE PROPERTIES

  7. Preliminary Sound-Abatement Tests Using Shock-Attenuating Concrete (SACON) and Other Materials, Big Black Test Facility

    DTIC Science & Technology

    1989-08-01

    was obtained by the use of the material and configurations of the two structures. The project mixtures were composed of two categories of Portland ... Cement Concrete: (performed foam and expanded polystyrene beads (EPSB)), each with steel fibers, polypropylene fibers, or alkaline-resistant glass fibers

  8. Studying the effect of a hydrostatic stress/strain reduction factor on damage mechanics of concrete materials

    NASA Astrophysics Data System (ADS)

    Taqieddin, Ziad N.; Voyiadjis, George Z.

    2013-12-01

    In the non-linear finite element analysis (NFEA) of concrete materials, continuum damage mechanics (CDM) provides a powerful framework for the derivation of constitutive models capable of describing the mechanical behavior of such materials. The internal state variables of CDM can be introduced to the elastic analysis of concrete to form elastic-damage models (no inelastic strains), or to the elastic-plastic analysis in order to form coupled/uncoupled elastic-plastic-damage models. Experimental evidence that is well documented in literature shows that the susceptibility of concrete to damage and failure is distinguished under deviatoric loading from that corresponding to hydrostatic loading. A reduction factor is usually introduced into a CDM model to reduce the susceptibility of concrete to hydrostatic stresses/strains. In this work, the effect of a hydrostatic stress/strain reduction factor on the performances of two NFEA concrete models will be studied. These two (independently published) models did not provide any results showing such effect. One of these two models is an elastic-damage model, whereas the other is an uncoupled elastic-plastic-damage model. Simulations and comparisons are carried out between the performances of the two models under uniaxial tensile and compressive loading conditions. Simulations are also provided for the uncoupled elastic-plastic-damage model under the following additional loading conditions: biaxial tension and biaxial compression, uniaxial cyclic loading, and varying ratios of triaxial compressive loadings. These simulations clearly show the effect of the reduction factor on the numerically depicted behaviors of concrete materials. To have rational comparisons, the hydrostatic stress reduction factor applied to each model is chosen to be a function of the internal state variables common to both models. Therefore, once the two models are calibrated to simulate the experimental behaviors, their corresponding reduction factors

  9. Forward problem studies of electrical resistance tomography system on concrete materials

    NASA Astrophysics Data System (ADS)

    Ang, Vernoon; Rahiman, M. H. F.; Rahim, R. A.; Aw, S. R.; Wahab, Y. A.; Thomas W. K., T.; Siow, L. T.

    2017-03-01

    Electrical resistance tomography (ERT) is well known as non-invasive imaging technique, inexpensive, radiation free, visualization measurements of the multiphase flows and frequently applied in geophysical, medical and Industrial Process Tomography (IPT) applications. Application of ERT in concrete is a new exploration field, which can be used in monitoring and detecting the health and condition of concrete without destroying it. In this paper, ERT model under the condition of concrete is studied in which the sensitivity field model is produced and simulated by using COMSOL software. The affects brought by different current injection values with different concrete conductivity are studied in detail. This study able to provide the important direction for the further study of inverse problem in ERT system. Besides, the results of this technique hopefully can open a new exploration in inspection method of concrete structures in order to maintain the health of the concrete structure for civilian safety.

  10. Sequestering Lead in Paint by Utilizing Deconstructed Masonry Materials as Recycled Aggregate in Concrete. Revision 1

    DTIC Science & Technology

    2008-05-27

    related to concrete durability, such as drying-shrinkage cracking, carbonation, and freezing- thawing resistances . The goal of the present study is...and funding, the study of concrete durability, such as shrinkage cracking, carbonation, alkali-silica reaction, and freezing-thawing resistance was not...Desai and Limbachiya 2006; Dhir et al. 2004, Anon 2005). The freezing-thawing resistance of concrete mixtures with recycled aggregate was

  11. Feasibility and Practical Limits for the Use of Lightweight Prestressed Concrete (LWPC) as a Shipbuilding Material.

    DTIC Science & Technology

    1982-10-01

    concrete elements is predictable: however, further work is necessary to improve the durability and alkali resistance of fiberglass. The investigation...cracks are kept small enough, they do not result in undesirable effects such as corrosion of the reinforcement, for the alkalies in the concrete are abl...traditional structural lightweight concretes. Future demand for such products should speed research activities to result in a more thorough

  12. Runway Operations Planning: A Two-Stage Heuristic Algorithm

    NASA Technical Reports Server (NTRS)

    Anagnostakis, Ioannis; Clarke, John-Paul

    2003-01-01

    The airport runway is a scarce resource that must be shared by different runway operations (arrivals, departures and runway crossings). Given the possible sequences of runway events, careful Runway Operations Planning (ROP) is required if runway utilization is to be maximized. From the perspective of departures, ROP solutions are aircraft departure schedules developed by optimally allocating runway time for departures given the time required for arrivals and crossings. In addition to the obvious objective of maximizing throughput, other objectives, such as guaranteeing fairness and minimizing environmental impact, can also be incorporated into the ROP solution subject to constraints introduced by Air Traffic Control (ATC) procedures. This paper introduces a two stage heuristic algorithm for solving the Runway Operations Planning (ROP) problem. In the first stage, sequences of departure class slots and runway crossings slots are generated and ranked based on departure runway throughput under stochastic conditions. In the second stage, the departure class slots are populated with specific flights from the pool of available aircraft, by solving an integer program with a Branch & Bound algorithm implementation. Preliminary results from this implementation of the two-stage algorithm on real-world traffic data are presented.

  13. Formal Verification of the Runway Safety Monitor

    NASA Technical Reports Server (NTRS)

    Siminiceanu, Radu; Ciardo, Gianfranco

    2006-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce runway accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems.

  14. Investigation of Self Consolidating Concrete Containing High Volume of Supplementary Cementitious Materials and Recycled Asphalt Pavement Aggregates

    NASA Astrophysics Data System (ADS)

    Patibandla, Varun chowdary

    The use of sustainable technologies such as supplementary cementitiuous materials (SCMs), and/or recycled materials is expected to positively affect the performance of concrete mixtures. However, it is important to study and qualify such mixtures and check if the required specifications of their intended application are met before they can be implemented in practice. This study presents the results of a laboratory investigation of Self Consolidating concrete (SCC) containing sustainable technologies. A total of twelve concrete mixtures were prepared with various combinations of fly ash, slag, and recycled asphalt pavement (RAP). The mixtures were divided into three groups with constant water to cementitiuous materials ratio of 0.37, and based on the RAP content; 0, 25, and 50% of coarse aggregate replaced by RAP. All mixtures were prepared to achieve a target slump flow equal to or higher than 500 mm (24in). A control mixture for each group was prepared with 100% Portland cement whereas all other mixtures were designed to have up to 70% of portland cement replaced by a combination of supplementary cementitiuous materials (SCMs) such as class C fly ash and granulated blast furnace slag. The properties of fresh concrete investigated in this study include flowability, deformability; filling capacity, and resistance to segregation. In addition, the compressive strength at 3, 14, and 28 days, the tensile strength, and the unrestrained shrinkage up to 80 days was also investigated. As expected the inclusion of the sustainable technologies affected both fresh and hardened concrete properties. Analysis of the experimental data indicated that inclusion of RAP not only reduces the ultimate strength, but it also affected the compressive strength development rate. Moreover, several mixes satisfied compressive strength requirements for pavements and bridges; those mixes included relatively high percentages of SCMs and RAP. Based on the results obtained in this study, it is not

  15. Construction Productivity Advancement Research (CPAR) Program. Investigation of Modified Sulfur Concrete as a Structural Material

    DTIC Science & Technology

    1993-07-01

    Industrial applications of modified sulfur concrete (MSC) have been extremely successful in areas of high corrosive activity such as load-bearing...The ductility of MSC in the postyield regime, however, has not been determined in these tests. Bond strength, Modified sulfur concrete , Strength

  16. Cockpit Technology for Prevention of General Aviation Runway Incursions

    NASA Technical Reports Server (NTRS)

    Prinzel, Lawrence J., III; Jones, Denise R.

    2007-01-01

    General aviation accounted for 74 percent of runway incursions but only 57 percent of the operations during the four-year period from fiscal year (FY) 2001 through FY2004. Elements of the NASA Runway Incursion Prevention System were adapted and tested for general aviation aircraft. Sixteen General Aviation pilots, of varying levels of certification and amount of experience, participated in a piloted simulation study to evaluate the system for prevention of general aviation runway incursions compared to existing moving map displays. Pilots flew numerous complex, high workload approaches under varying weather and visibility conditions. A rare-event runway incursion scenario was presented, unbeknownst to the pilots, which represented a typical runway incursion situation. The results validated the efficacy and safety need for a runway incursion prevention system for general aviation aircraft.

  17. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  18. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Runway paving: General rules. 151.77 Section 151.77 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.77 Runway paving:...

  19. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Runway paving: General rules. 151.77 Section 151.77 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.77 Runway paving:...

  20. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Runway paving: General rules. 151.77 Section 151.77 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.77 Runway paving:...

  1. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Runway paving: General rules. 151.77 Section 151.77 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.77 Runway paving:...

  2. 14 CFR 151.77 - Runway paving: General rules.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Runway paving: General rules. 151.77 Section 151.77 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRPORTS FEDERAL AID TO AIRPORTS Project Programming Standards § 151.77 Runway paving:...

  3. 32 CFR 256.6 - Runway classification by aircraft type.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 2 2011-07-01 2011-07-01 false Runway classification by aircraft type. 256.6 Section 256.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS AIR INSTALLATIONS COMPATIBLE USE ZONES § 256.6 Runway classification by...

  4. 32 CFR 256.6 - Runway classification by aircraft type.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 2 2010-07-01 2010-07-01 false Runway classification by aircraft type. 256.6 Section 256.6 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS AIR INSTALLATIONS COMPATIBLE USE ZONES § 256.6 Runway classification by...

  5. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    SciTech Connect

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.; Parker, Kent E.; Clayton, Libby N.; Powers, Laura; Recknagle, Kurtis P.; Wood, Marcus I.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of

  6. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  7. Feasibility Tests on Concrete with Very-High-Volume Supplementary Cementitious Materials

    PubMed Central

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70–90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m3, and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (RSCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to RSCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at RSCM of 0.9. Hence, it is recommended that RSCM needs to be restricted to less than 0.8–0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete. PMID:25162049

  8. Feasibility tests on concrete with very-high-volume supplementary cementitious materials.

    PubMed

    Yang, Keun-Hyeok; Jeon, Yong-Su

    2014-01-01

    The objective of this study is to examine the compressive strength and durability of very high-volume SCM concrete. The prepared 36 concrete specimens were classified into two groups according to their designed 28-day compressive strength. For the high-volume SCM, the FA level was fixed at a weight ratio of 0.4 and the GGBS level varied between the weight ratio of 0.3 and 0.5, which resulted in 70-90% replacement of OPC. To enhance the compressive strength of very high-volume SCM concrete at an early age, the unit water content was controlled to be less than 150 kg/m(3), and a specially modified polycarboxylate-based water-reducing agent was added. Test results showed that as SCM ratio (R SCM) increased, the strength gain ratio at an early age relative to the 28-day strength tended to decrease, whereas that at a long-term age increased up to R SCM of 0.8, beyond which it decreased. In addition, the beneficial effect of SCMs on the freezing-and-thawing and chloride resistances of the concrete decreased at R SCM of 0.9. Hence, it is recommended that R SCM needs to be restricted to less than 0.8-0.85 in order to obtain a consistent positive influence on the compressive strength and durability of SCM concrete.

  9. Nondestructive identification of material properties of fibre concrete: A time-harmonic electromagnetic field

    NASA Astrophysics Data System (ADS)

    Hobst, L.; Bílek, P.

    2016-06-01

    The magnetic approach to the identification of mechanical properties of fibre concrete, using permanent magnets, has its electromagnetic alternative, more suitable to the nondestructive detection of orientation of fibres, in addition to the evaluation of their volume fraction. This paper sketches related approaches to both experimental settings and computational simulations.

  10. Throughput Benefit Assessment for Tactical Runway Configuration Management (TRCM)

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Fenbert, James W.

    2014-01-01

    The System-Oriented Runway Management (SORM) concept is a collection of needed capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, monitoring the active runway configuration for suitability given existing factors, based on a 90 minute planning horizon. This study evaluates the throughput benefits using a representative sample of today's traffic volumes at three airports: Memphis International Airport (MEM), Dallas-Fort Worth International Airport (DFW), and John F. Kennedy International Airport (JFK). Based on this initial assessment, there are statistical throughput benefits for both arrivals and departures at MEM with an average of 4% for arrivals, and 6% for departures. For DFW, there is a statistical benefit for arrivals with an average of 3%. Although there is an average of 1% benefit observed for departures, it is not statistically significant. For JFK, there is a 12% benefit for arrivals, but a 2% penalty for departures. The results obtained are for current traffic volumes and should show greater benefit for increased future demand. This paper also proposes some potential TRCM algorithm improvements for future research. A continued research plan is being worked to implement these improvements and to re-assess the throughput benefit for today and future projected traffic volumes.

  11. Crack detection methods for concrete and steel using radio frequency identification and electrically conductive materials and its applications

    NASA Astrophysics Data System (ADS)

    Morita, Koichi; Noguchi, Kazuya

    2008-03-01

    Radio Frequency IDentification (RFID) tag is a promising device for the management of products at a very low cost. Huge number of such low-cost sensors can be installed to the structure beforehand, after a disaster we can access to these sensors wirelessly and very easily. In this system, an electrically conductive paint or printed sheet is applied to a part of structure in which crack will occur. Copper wire is connected to the attachment on the structure and a RFID tag. When a crack occurs, the paint or printed sheet is broken, resulting in an increase in resistance. Crack width can be estimated by the ability of an RFID transmitter to communicate with the tag. By bending tests of concrete specimens, the relationships between concrete crack width and conductivity of the materials are examined. It is shown that the level of concrete crack width can be related to the ability of the paint or printed sheet to conduct electricity or not. This printed sheet is also applied for steel crack. By fatigue test of steel specimen with a notch, very small steel crack can be detected by this sensor.

  12. A Concept for Rapid Repair of Bomb-Damaged Runways Using Regulated-Set Cement

    DTIC Science & Technology

    1975-07-01

    report was prepared by Mr. G. C. Hoff, Chief, Materials Proper- ties Branch, Concrete Laboratory (CL), U. S. Army Engineer Waterways Experiment...early setting times and gain strength very rapidly upon setting. Concrete made with regulated-set cement has been reported to exhibit the same...in Section ^.3.2 and Appendix A. Regulated-set concretes have been reported placed at 150F when the concrete temperature was 350F and, with no

  13. Runway Incursion Prevention System for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel III, Lawrence J.

    2006-01-01

    A Runway Incursion Prevention System (RIPS) and additional incursion detection algorithm were adapted for general aviation operations and evaluated in a simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC) in the fall of 2005. RIPS has been designed to enhance surface situation awareness and provide cockpit alerts of potential runway conflicts in order to prevent runway incidents while also improving operational capability. The purpose of the study was to evaluate the airborne incursion detection algorithms and associated alerting and airport surface display concepts for general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  14. Nondestructive evaluation of frost heave effects on a runway

    NASA Astrophysics Data System (ADS)

    Lenngren, Carl A.

    1998-03-01

    An Airport located inland central Sweden is susceptible to frost heave. The runway is uneven especially at the end of each winter. The Swedish Road and Transportation Institute Laser Profiler was brought to the site in the spring of 1997 in order to study this seasonal effect. Several longitudinal profiles were sampled along the entire length of the runway. The test was then repeated in the fall when the runway had settled. The profiles were then investigated to see if certain criteria were fulfilled, like the International Civil Aviation Organization straightedge guideline. Several different wavelength intervals of unevenness were also examined. It was found that the frost heave affected certain wavelength bands more than others. It was also possible to determine exactly where the most troublesome spots were located and if they would adversely interfere with an expansion of the runway. Data from the profile could also serve as help in preparing guidelines for safety rules related to roughness.

  15. Runway Incursion Prevention System Testing at the Wallops Flight Facility

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.

    2005-01-01

    A Runway Incursion Prevention System (RIPS) integrated with a Synthetic Vision System concept (SVS) was tested at the Reno/Tahoe International Airport (RNO) and Wallops Flight Facility (WAL) in the summer of 2004. RIPS provides enhanced surface situational awareness and alerts of runway conflicts in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using a Gulfstream-V (G-V) aircraft as the test platform and a NASA test aircraft and a NASA test van as incurring traffic. The purpose of the study, from the RIPS perspective, was to evaluate the RIPS airborne incursion detection algorithms and associated alerting and airport surface display concepts, focusing on crossing runway incursion scenarios. This paper gives an overview of the RIPS, WAL flight test activities, and WAL test results.

  16. Evaluation of a tritium runway-lighting system. Technical note

    SciTech Connect

    Katz, E.S.

    1992-04-01

    A tritium powered runway lighting system was installed and evaluated at the Federal Aviation Administration (FAA) Technical Center. The purpose of this evaluation was to determine if the tritium runway lighting system would safely support Federal Aviation Regulations (FAR) Part 135 commercial operations, during nighttime visual flight rules (VFR) conditions at remote airports. Subject pilots having flight experience levels appropriate for pilots conducting FAR Part 135 air taxi operations were afforded the opportunity of flight testing the system. Results of the evaluation indicate that the tritium runway lighting system does not meet all of the minimum criteria necessary for FAA approval and, therefore, would not guarantee an acceptable level of safety. Tritium Runway Lighting System, Remote Airports.

  17. Repair and rehabilitation with polymer concrete

    SciTech Connect

    Kukacka, L.E.

    1988-09-01

    As a result of their fast setting characteristics and excellent mechanical and physical properties, polymer concretes (PC) are finding ever increasing useage for the repair of deteriorated portland cement concrete structures. Applications include the repair of highway pavements and bridge decks, airport runways, hydrotechnical structures, tunnels, and industrial flooring. The most commonly used resins and monomer systems for these applications are epoxies, polyesters and methylmethacrylate. Furfuryl alcohol has been used experimentally, and shows promise for use in making emergency repairs under adverse moisture or extreme temperature conditions. In the paper, repair procedures will be discussed and several case histories given. 6 refs.

  18. Lateral runway approach guidance using Loran-C

    NASA Technical Reports Server (NTRS)

    Simpson, R. W.

    1983-01-01

    The design and flight test of a lateral guidance system for flying approaches to a runway by general aviation aircraft are examined. The issue is whether or not good dynamic response can be obtained by exploiting the repeatable accuracy of Loran-C position data and combining it with heading rate data. The pilot needs cross pointer displays so he can keep the aircraft within approx. 75 feet of the runway centerline at approach speeds typical of general aviation aircraft.

  19. The runway model of drug self-administration

    PubMed Central

    Ettenberg, Aaron

    2009-01-01

    Behavioral scientists have employed operant runways as a means of investigating the motivational impact of incentive stimuli for the better part of the past 100 years. In this task, the speed with which a trained animal traverses a long straight alley for positive incentive stimuli, like food or water, provides a reliable index of the subject’s motivation to seek those stimuli. The runway is therefore a particularly appropriate tool for investigating the drug-seeking behavior of animals working for drugs of abuse. The current review describes our laboratory’s work over the past twenty years developing and implementing an operant runway model of drug self-administration. Procedures are described that methodologically dissociate the antecedent motivational processes that induce an animal to seek a drug, from the positive reinforcing consequences of actually earning the drug. Additional work is reviewed on the use of the runway method as a means of modeling the factors that often result in a “relapse” of drug self-administration after a period of abstinence (i.e., a response reinstatement test), as are runway studies that revealed the presence of opposing positive and negative consequences of self-administered cocaine. This body of work suggests that the runway method has served as a powerful behavioral tool for the study of the behavioral and neurobiological basis of drug self-administration. PMID:19032964

  20. Aircraft and ground vehicle friction correlation test results obtained under winter runway conditions during joint FAA/NASA Runway Friction Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.; Vogler, William A.; Baldasare, Paul

    1988-01-01

    Aircraft and ground vehicle friction data collected during the Joint FAA/NASA Runway Friction Program under winter runway conditions are discussed and test results are summarized. The relationship between the different ground vehicle friction measurements obtained on compacted snow- and ice-covered conditions is defined together with the correlation to aircraft tire friction performance under similar runway conditions.

  1. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  2. E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations

    SciTech Connect

    Phifer, M. A.

    2014-03-11

    Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Special Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I

  3. Monte Carlo modelling of single and multiple Compton scattering profiles in a concrete material

    NASA Astrophysics Data System (ADS)

    Akar Tarim, U.; Ozmutlu, E. N.; Gurler, O.; Yalcin, S.; Gundogdu, O.; Sharaf, J. M.; Bradley, D. A.

    2013-04-01

    A Monte Carlo simulation study has been conducted of 60Co photons Compton scattered in concrete, illustrating the degraded energy spectra of gamma-ray radiation. Results are produced representing a NaI(Tl) detector model. We were able to analyse energy distributions of photons that reach the detector system after suffering several successive Compton scatterings in the target. The predicted decrease in intensity of single- and multiple-scattering peaks with increase in thickness of the target medium are in good agreement with experimental observations and findings reported by others.

  4. Improved Acrylic Systems for Rapid Runway Repair.

    DTIC Science & Technology

    1983-05-01

    Concrete * Fast-Setting Concrete N Acrylic Polymer Research * 1 k UST mACV lC@ea. ON -- -0 - OW. 00....Y d*Ip OF 40 domb) The objectives of this...available to the general public, including foreign nationals. This technical report has been reviewed and is approved for publication. DANIEL J. PIERRE, Capt...resins. The aggregate and resin might be premixed for placement or (as in the research reported herein) the cap might be formed by percolation of liquid

  5. Field site leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; Wibetoe, Grethe; van der Sloot, Hans A; Lund, Walter; Petkovic, Gordana

    2012-06-15

    The release of major and trace elements from recycled concrete aggregates used in an asphalt covered road sub-base has been monitored for more than 4 years. A similar test field without an asphalt cover, directly exposed to air and rain, and an asphalt covered reference field with natural aggregates in the sub-base were also included in the study. It was found that the pH of the infiltration water from the road sub-base with asphalt covered concrete aggregates decreased from 12.6 to below pH 10 after 2.5 years of exposure, whereas this pH was reached within only one year for the uncovered field. Vertical temperature profiles established for the sub-base, could explain the measured infiltration during parts of the winter season. When the release of major and trace elements as function of field pH was compared with pH dependent release data measured in the laboratory, some similar pH trends were found. The field concentrations of Cd, Ni, Pb and Zn were found to be low throughout the monitoring period. During two of the winter seasons, a concentration increase of Cr and Mo was observed, possibly due to the use of de-icing salt. The concentrations of the trace constituents did not exceed Norwegian acceptance criteria for ground water and surface water Class II.

  6. STS-70 Discovery approaches Runway 33

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Space Shuttle orbiter Discovery approaches KSC's Runway 33, with the Vehicle Assembly Building in the background, marking a successful conclusion to the STS-70 mission. Discovery landed on orbit 143, during the second opportunity of the day. Main gear touchdown was unofficially listed at 8:02 a.m. EDT on July 22, 1995. The orbiter traveled some 3.7 million statute miles during the nearly nine-day flight, which included a one-day extension because of fog and low visibility conditions at the KSC Shuttle Landing Facility. STS-70 was the 24th Shuttle landing at KSC and the 70th Space Shuttle mission. The five-member crew deployed the NASA Tracking and Data Relay Satellite-G (TDRS-G). Crew members were Commander Terence 'Tom' Henricks, Pilot Kevin R. Kregel, and Mission Specialists Nancy Jane Currie, Donald A. Thomas and Mary Ellen Weber. STS-70 also was the maiden flight of the new Block 1 orbiter main engine, which flew in the number one position. The other two engines were of the existing Phase II design.

  7. Material Evaluation of an Elastomer, Epoxy and Lightweight Concrete Rail Attachment System for Direct Fixation Light Rail Applications

    NASA Astrophysics Data System (ADS)

    Swarner, Benjamin R.

    Sound Transit plans to extend its current light rail system, which runs along the I-5 corridor in Seattle, Washington, across the I-90 Homer Hadley floating bridge as part of a project to connect the major city centers in the region. But, no light rail has ever crossed a floating bridge due to several unique engineering challenges. One of these challenges is attaching the rails to the existing bridge deck without drilling into the bridge pontoons. This research program was developed to test and analyze a direct fixation method that uses lightweight concrete plinths and an elastomer-epoxy system to attach the rails to the bridge deck. The elastomer used was a two-part, pourable elastomer with cork particles intermixed to alter the mechanical properties of the material. A lightweight concrete mixture was analyzed for use in the plinths, and system tests investigated the system response under tensile, compressive and shear loading. The shear response of the system was examined further under varying loading conditions including different surface preparations, elastomer thicknesses, strain-rates and after freeze-thaw conditioning. Experimental data was examined for trends based on these parameters to best characterize the system, and the elastomer was evaluated in the context of modern elastomer research.

  8. STS-94 Columbia Landing at KSC (South Runway)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The Space Shuttle orbiter Columbia touches down on Runway 33 at KSCs Shuttle Landing Facility at 6:46:34 a.m. EDT with Mission Commander James D. Halsell Jr. and Pilot Susan L. Still at the controls to complete the STS-94 mission. Also on board are Mission Specialist Donald A. Thomas, Mission Specialist Michael L. Gernhardt, Payload Commander Janice Voss, and Payload Specialists Roger K. Crouch and Gregory T. Linteris. During the Microgravity Science Laboratory-1 (MSL-1) mission, the Spacelab module was used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station while the flight crew conducted combustion, protein crystal growth and materials processing experiments. This mission was a reflight of the STS-83 mission that lifted off from KSC in April of this year. That space flight was cut short due to indications of a faulty fuel cell. This was Columbias 11th landing at KSC and the 38th landing at the space center in the history of the Shuttle program.

  9. Space Shuttle Columbia touches down on Runway 33

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia touches down on Runway 33 at KSC''';s Shuttle Landing Facility at 2:33:11 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration was 3 days, 23 hours, 12 minutes. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L. Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations.

  10. Space Shuttle Columbia prepares to touch down on Runway 33

    NASA Technical Reports Server (NTRS)

    1997-01-01

    KENNEDY SPACE CENTER, FLA. -- The Space Shuttle Columbia prepares to touch down on Runway 33 at KSC''';s Shuttle Landing Facility at approximately 2:33 p.m. EDT, April 8, to conclude the Microgravity Science Laboratory-1 (MSL-1) mission. At main gear touchdown, the STS-83 mission duration will be just under four days. The planned 16-day mission was cut short by a faulty fuel cell. This is only the third time in Shuttle program history that an orbiter was brought home early due to mechanical problems. This was also the 36th KSC landing since the program began in 1981. Mission Commander James D. Halsell, Jr. flew Columbia to a perfect landing with help from Pilot Susan L. Still. Other crew members are Payload Commander Janice E. Voss; Mission Specialists Michael L.Gernhardt and Donald A. Thomas; and Payload Specialists Roger K. Crouch and Gregory T. Linteris. In spite of the abbreviated flight, the crew was able to perform MSL-1 experiments. The Spacelab-module-based experiments were used to test some of the hardware, facilities and procedures that are planned for use on the International Space Station and to conduct combustion, protein crystal growth and materials processing investigations.

  11. ELWIRA "Plants, wood, steel, concrete - a lifecycle as construction materials": University meets school - science meets high school education

    NASA Astrophysics Data System (ADS)

    Strauss-Sieberth, Alexandra; Strauss, Alfred; Kalny, Gerda; Rauch, Hans Peter; Loiskandl, Willibald

    2016-04-01

    The research project "Plants, wood, steel, concrete - a lifecycle as construction materials" (ELWIRA) is in the framework of the Sparkling Science programme performed by the University of Natural Resources and Life Sciences together with the Billroth Gymnasium in Vienna. The targets of a Sparkling Science project are twofold (a) research and scientific activities should already be transferred in the education methods of schools in order to fascinate high school students for scientific methods and to spark young people's interest in research, and (b) exciting research questions not solved and innovative findings should be addressed. The high school students work together with the scientists on their existing research questions improve the school's profile and the high school student knowledge in the investigated Sparkling Science topic and can lead to a more diverse viewing by the involvement of the high school students. In the project ELWIRA scientists collaborate with the school to quantify and evaluate the properties of classical building materials like concrete and natural materials like plants and woodlogs in terms of their life cycle through the use of different laboratory and field methods. The collaboration with the high school students is structured in workshops, laboratory work and fieldworks. For an efficient coordination/communication, learning and research progress new advanced electronic media like "Moodle classes/courses" have been used and utilized by the high school students with great interest. The Moodle classes are of high importance in the knowledge transfer in the dialogue with the high school students. The research project is structured into four main areas associated with the efficiencies of building materials: (a) the aesthetic feeling of people in terms of the appearance of materials and associated structures will be evaluated by means of jointly developed and collected questionnaires. The analysis, interpretation and evaluation are carried

  12. Transient creep effects and the lubricating power of water in materials ranging from paper to concrete and Kevlar

    NASA Astrophysics Data System (ADS)

    Vlahinić, Ivan; Thomas, Jeffrey J.; Jennings, Hamlin M.; Andrade, José E.

    2012-07-01

    A diverse class of viscous materials, which includes familiar materials such concrete, wood, and Kevlar, exhibit surprising, counterintutive properties under internal moisture content fluctuations. In test after test over the past 50 years, the viscosity of these materials is observed to decrease, often dramatically, during wetting and drying. The key characteristics of the observed viscous softening are: the decrease in viscosity is temporary, and depending on the specimen size can be greatly delayed with respect to the associated change in weight; the decrease in viscosity is absent under steady state flow. Based on recent research on the properties of water and other polar fluids confined by hydrophilic surfaces, we provide a physical explanation and propose a constitutive law. The resulting model accurately captures the interplay between the pore fluid movement and macroscopic constitutive properties in totality. The model is verified against published data for the creep of paper sheets exposed to cyclic moisture conditions. Experimental data of different materials under similar boundary conditions are compared using a new metric, the creep rate factor. The results further reinforce the idea that nanoscale movement of water enhances the internal 'lubrication' of the studied materials, interpreted as loosening of the hydrogen bonds.

  13. Some considerations in the evaluation of concrete as a structural material for alternative LLW (low-level radioactive waste) disposal technologies

    SciTech Connect

    MacKenzie, D.R.; Siskind, B.; Bowerman, B.S.; Piciulo, P.L.

    1987-01-01

    The objective of this study was to develop information needed to evaluate the long-term performance of concrete and reinforced concrete as a structural material for alternative LLW disposal methods. The capability to carry out such an evaluation is required for licensing a site which employs one of these alternative methods. The basis for achieving the study objective was the review and analysis of the literature on concrete and its properties, particularly its durability. In carrying out this program characteristics of concrete useful in evaluating its performance and factors that can affect its performance were identified. The factors are both intrinsic, i.e., associated with composition of the concrete (and thus controllable), and extrinsic, i.e., due to external environmental forces such as climatic conditions and aggressive chemicals in the soil. The testing of concrete, using both accelerated tests and long-term non-accelerated tests, is discussed with special reference to its application to modeling of long-term performance prediction. On the basis of the study's results, conditions for acceptance are recommended as an aid in the licensing of disposal sites which make use of alternative methods.

  14. The Effects of Weather on Rapid Runway Repair. Volume 1

    DTIC Science & Technology

    1983-05-01

    Probabilities for Arbitrary 4-Hour Periods. .. ............ . .. ....... .. .. . .. 64 B-1 CLO Insulation Units for Individual Items of Clothing and...Formula for Obtaining Total Intrinsic Insulation ............. 75 "D-1 Concrete Cap Material Strengths .................. 117 Xi. (The reverse of this page...result if used before warming. This may apply to rubber heater hoses and hydraulic lines. Leather, as well as rubber, becomes less pliable . Plas- tics

  15. Analysis of Physical Properties and Mineralogical of Pyrolysis Tires Rubber Ash Compared Natural Sand in Concrete material

    NASA Astrophysics Data System (ADS)

    Syamir Senin, Mohamad; Shahidan, Shahiron; Syazani Leman, Alif; Izzati Raihan Ramzi Hannan, Nurul

    2016-11-01

    Waste tires pose significant health and environmental concerns if not recycled or discarded properly. At the same time, natural sand is becoming scarcer and costlier due to its non-availability. Waste tires as fine aggregate can be an economical and sustainable alternative to the natural sand. Recent years, the interest on recycling waste tires into civil engineering applications by the researchers has increased. In this research, the chemical and physical properties of the tires rubber ash and the natural sand have been analysed. The densities of the rubber ash are lower than the natural sand. Rubber ash had finer particle size compared to the natural sand. Almost all chemical in the natural sand had in rubber ash with the additional sulphur trioxide and zinc oxide in the rubber ash, made the rubber ash better than natural sand. Rubber ash seems to be a suitable material to use in concrete as sand replacement.

  16. A Runway Surface Monitor using Internet of Things

    NASA Astrophysics Data System (ADS)

    Troiano, Amedeo; Pasero, Eros

    2014-05-01

    The monitoring of runway surfaces, for the detection of ice formation or presence of water, is an important issue for reducing maintenance costs and improving traffic safety. An innovative sensor was developed to detect the presence of ice or water on its surface, and its repeatability, stability and reliability were assessed in different simulations and experiments, performed both in laboratory and in the field. Three sensors were embedded in the runway of the Turin-Caselle airport, in the north-west of Italy, to check the state of its surface. Each sensor was connected to a GPRS modem to send the collected data to a common database. The entire system was installed about three years ago, and up to now it shows correct work and automatic reactivation after malfunctions without any external help. The state of the runway surface is virtual represented in an internet website, using the Internet of Things features and opening new scenarios.

  17. Aircraft and Ground Vehicle Winter Runway Friction Assessment

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1999-01-01

    Some background information is given together with the scope and objectives of a 5-year, Joint Winter Runway Friction Measurement Program between the National Aeronautics & Space Administration (NASA), Transport Canada (TC), and the Federal Aviation Administration (FAA). The primary objective of this effort is to perform instrumented aircraft and ground vehicle tests aimed at identifying a common number that all the different ground vehicle devices would report. This number, denoted the International Runway Friction Index (IRFI), will be related to all types of aircraft stopping performance. The range of test equipment, the test sites, test results and accomplishments, the extent of the substantial friction database compiled, and future test plans will be described. Several related studies have also been implemented including the effects of contaminant type on aircraft impingement drag, and the effectiveness of various runway and aircraft de-icing chemical types, and application rates.

  18. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, A.J.; Spence, R.D.

    1988-05-04

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  19. Process for impregnating a concrete or cement body with a polymeric material

    DOEpatents

    Mattus, Alfred J.; Spence, Roger D.

    1989-01-01

    A process for impregnating cementitious solids with polymeric materials by blending polymeric materials in a grout, allowing the grout to cure, and contacting the resulting solidified grout containing the polymeric materials with an organic mixture containing a monomer, a cross-linking agent and a catalyst. The mixture dissolves the polymerized particles and forms a channel for distributing the monomer throughout the network formed by the polymeric particles. The organic components are then cured to form a substantially water-impermeable mass.

  20. Determination of some radionucluides and heavy elements concentrations in concrete raw materials

    NASA Astrophysics Data System (ADS)

    ElFaham, Mohamed M.; Khalil, Osama M.; Elhassan, Asmaa; Salama, S.

    2015-08-01

    The presence of natural radionuclides in raw materials used in cement manufacturing was determined by using analytical methods. The used Raw materials are limestone, clay, slag, and gypsum, which be used with different concentrations in cement production. Different analytical techniques such as Laser Induced Breakdown Spectroscopy (LIBS) technique, Gamma spectroscopy, Inductively Coupled Plasma (ICP) spectroscopy, X-ray fluorescence spectroscopy (XRF), in addition to X-Ray Diffraction (XRD) for phase identification of a crystalline material. The obtained data show that there is no significant radiological hazards arising from using the present cement components in the different applications. XRD data shows that there is no crystalline structures in the raw materials.

  1. The Impact of Coal Combustion Fly Ash Used as a Supplemental Cementitious Material on the Leaching of Constituents from Cements and Concretes

    EPA Science Inventory

    The objective of this report is to compare the leaching of portland cement-based materials that have been prepared with and without coal combustion fly ash to illustrate whether there is evidence that the use of fly ash in cement and concrete products may result in increased leac...

  2. Aluminum runway surface as possible aid to aircraft braking

    NASA Technical Reports Server (NTRS)

    Miller, C. D.; Pinkel, I. I.

    1973-01-01

    Several concepts are described for use singly or in combination to improve aircraft braking. All involve a thin layer of aluminum covering all or part of the runway. Advantage would derive from faster heat conduction from the tire-runway interface. Heating of tread surface with consequent softening and loss of friction coefficient should be reduced. Equations are developed indicating that at least 99 percent of friction heat should flow into the aluminum. Preliminary test results indicate a coefficient of sliding friction of 1.4, with predictably slight heating of tread. Elimination of conventional brakes is at least a remote possibility.

  3. Measures to increase airfield capacity by changing aircraft runway occupancy characteristics

    NASA Technical Reports Server (NTRS)

    Gosling, G. D.; Kanafani, A.; Rockaday, S. L. M.

    1981-01-01

    Airfield capacity and aircraft runway occupancy characteristics were studied. Factors that caused runway congestion and airfield crowding were identified. Several innovations designed to alleviate the congestion are discussed. Integrated landing management, the concept that the operation of the final approach and runway should be considered in concert, was identified as underlying all of the innovations.

  4. Tungsten - Tungsten Trioxide Electrodes for the Long-term Monitoring of Corrosion Processes in Highly Alkaline Media and Concrete-based Materials.

    PubMed

    Kolar, Mitja; Doliška, Aleš; Svegl, Franc; Kalcher, Kurt

    2010-12-01

    The determination of pH in highly alkaline solutions and concrete materials is extremely important for monitoring or predicting the corrosion processes of reinforced concrete structures and to follow the hydration process of Portland cement, fly-ash, micro silica and other materials used in concrete manufacturing. The corrosion of reinforced concrete structures and the hydration of pozzolanic materials are long-term processes, which means, that appropriate durable, and resilient pH electrodes are needed, for direct implantation regarding solid concrete bodies. The purpose of this work was to characterise the potentiometric and surface properties of tungsten electrodes after exposure to extreme alkaline solutions. The tungsten wire surface was activated at 800 °C for 30 min within an oxygen flow. The formation of homogenous and compact multiple layers of WO3 crystals was observed using X-ray diffraction and scanning electron microscopy. X-ray diffraction of those tungsten electrodes exposed to saturated calcium hydroxide solution or the pore-water of cement-based materials during 10 months, indicated partly dissolved WO3. Two new compounds appeared on the electrodes surfaces; pure tungsten and CaWO4. The presence of tungsten was affecting any potentiometric response in acidic pH region (2-5) but in pH 5-12 region the response still remained linear with a slope of 42 ± 2 mV/pH unit. The W/WO3 electrode was suitable for the long-term monitoring of corrosion processes in concrete-based materials according to the pH changes as it has stable and repeatable responses to alkaline solutions (pH > 12). All the tested interferring ions had no significant influence on electrode potential. The W/WO3 electrode is simple, robust, inexpensive, and temperature resistant and can be applied in potentiometric titrations as well as in batch and flow-injection analysis. The prepared electrode is a highly promising pH sensor for the monitoring of pH changes in highly alkaline capillary

  5. Developing an Innovative Field Expedient Fracture Toughness Testing Protocol for Concrete Materials

    SciTech Connect

    Wang, Jy-An John; Liu, Ken C; Naus, Dan J

    2008-09-01

    The Spiral Notch Torsion Fracture Toughness Test (SNTT) was developed recently to determine the intrinsic fracture toughness (KIC) of structural materials. The SNTT system operates by applying pure torsion to uniform cylindrical specimens with a notch line that spirals around the specimen at a 45 pitch. KIC values are obtained with the aid of a three-dimensional finite-element computer code, TOR3D-KIC. The SNTT method is uniquely suitable for testing a wide variety of materials used extensively in pressure vessel and piping structural components and weldments. Application of the method to metallic, ceramic, and graphite materials has been demonstrated. One important characteristic of SNTT is that neither a fatigue precrack or a deep notch are required for the evaluation of brittle materials, which significantly reduces the sample size requirement. In this paper we report results for a Portland cement-based mortar to demonstrate applicability of the SNTT method to cementitious materials. The estimated KIC of the tested mortar samples with compressive strength of 34.45 MPa was found to be 0.19 MPa m.

  6. Innovative hyperspectral imaging (HSI) based techniques applied to end-of-life concrete drill core characterization for optimal dismantling and materials recovery

    NASA Astrophysics Data System (ADS)

    Bonifazi, Giuseppe; Picone, Nicoletta; Serranti, Silvia

    2015-02-01

    The reduction of EOL concrete disposal in landfills, together with a lower exploitation of primary raw materials, generates a strong interest to develop, set-up and apply innovative technologies to maximize Construction and Demolition Waste (C&DW) conversion into useful secondary raw materials. Such a goal can be reached starting from a punctual in-situ efficient characterization of the objects to dismantle in order to develop demolition actions aimed to set up innovative mechanical-physical processes to recover the different materials and products to recycle. In this paper an innovative recycling-oriented characterization strategy based on HyperSpectral Imaging (HSI) is described in order to identify aggregates and mortar in drill core samples from end-of-life concrete. To reach this goal, concrete drill cores from a demolition site were systematically investigated by HSI in the short wave infrared field (1000-2500 nm). Results obtained by the adoption of the HSI approach showed as this technology can be successfully applied to analyze quality and characteristics of C&DW before dismantling and as final product to reutilise after demolition-milling-classification actions. The proposed technique and the related recognition logics, through the spectral signature detection of finite physical domains (i.e. concrete slice and/or particle) of different nature and composition, allows; i) to develop characterization procedures able to quantitatively assess end-of-life concrete compositional/textural characteristics and ii) to set up innovative sorting strategies to qualify the different materials constituting drill core samples.

  7. Parallel runway requirement analysis study. Volume 2: Simulation manual

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Yaghoob S.; Chun, Ken S.

    1993-01-01

    This document is a user manual for operating the PLAND_BLUNDER (PLB) simulation program. This simulation is based on two aircraft approaching parallel runways independently and using parallel Instrument Landing System (ILS) equipment during Instrument Meteorological Conditions (IMC). If an aircraft should deviate from its assigned localizer course toward the opposite runway, this constitutes a blunder which could endanger the aircraft on the adjacent path. The worst case scenario would be if the blundering aircraft were unable to recover and continue toward the adjacent runway. PLAND_BLUNDER is a Monte Carlo-type simulation which employs the events and aircraft positioning during such a blunder situation. The model simulates two aircraft performing parallel ILS approaches using Instrument Flight Rules (IFR) or visual procedures. PLB uses a simple movement model and control law in three dimensions (X, Y, Z). The parameters of the simulation inputs and outputs are defined in this document along with a sample of the statistical analysis. This document is the second volume of a two volume set. Volume 1 is a description of the application of the PLB to the analysis of close parallel runway operations.

  8. General view of runway 33 at the Kennedy Space Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of runway 33 at the Kennedy Space Center looking at the ground support equipment and the aft and starboard side of the Orbiter Discovery as the orbiter is undergoing post flight processing and preparations to be towed to the Orbiter Processing Facility. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  9. General view of runway 33 at the Kennedy Space Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of runway 33 at the Kennedy Space Center looking at the ground support equipment and the port side of the Orbiter Discovery as the orbiter is undergoing post flight processing and preparations to be towed to the Orbiter Processing Facility. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  10. General view of the Orbiter Discovery on runway 33 at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of the Orbiter Discovery on runway 33 at Kennedy Space Center shortly after landing. The orbiter is processed and prepared for being towed to the Orbiter Processing Facility for continued post flight processing and pre flight preparations for its next mission. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  11. General view of runway 33 at the Kennedy Space Center ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of runway 33 at the Kennedy Space Center looking at the ground support equipment and the aft and port side of the Orbiter Discovery as the orbiter is undergoing post flight processing and preparations to be towed to the Orbiter Processing Facility. - Space Transportation System, Orbiter Discovery (OV-103), Lyndon B. Johnson Space Center, 2101 NASA Parkway, Houston, Harris County, TX

  12. Airport runway detection in satellite images by Adaboost learning

    NASA Astrophysics Data System (ADS)

    Zongur, Ugur; Halici, Ugur; Aytekin, Orsan; Ulusoy, Ilkay

    2009-09-01

    Advances in hardware and pattern recognition techniques, along with the widespread utilization of remote sensing satellites, have urged the development of automatic target detection systems in satellite images. Automatic detection of airports is particularly essential, due to the strategic importance of these targets. In this paper, a runway detection method using a segmentation process based on textural properties is proposed for the detection of airport runways, which is the most distinguishing element of an airport. Several local textural features are extracted including not only low level features such as mean, standard deviation of image intensity and gradient, but also Zernike Moments, Circular-Mellin Features, Haralick Features, as well as features involving Gabor Filters, Wavelets and Fourier Power Spectrum Analysis. Since the subset of the mentioned features, which have a role in the discrimination of airport runways from other structures and landforms, cannot be predicted trivially, Adaboost learning algorithm is employed for both classification and determining the feature subset, due to its feature selector nature. By means of the features chosen in this way, a coarse representation of possible runway locations is obtained. Promising experimental results are achieved and given.

  13. System-Oriented Runway Management Concept of Operations

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Atkins, Stephen

    2015-01-01

    This document describes a concept for runway management that maximizes the overall efficiency of arrival and departure operations at an airport or group of airports. Specifically, by planning airport runway configurations/usage, it focuses on the efficiency with which arrival flights reach their parking gates from their arrival fixes and departure flights exit the terminal airspace from their parking gates. In the future, the concept could be expanded to include the management of other limited airport resources. While most easily described in the context of a single airport, the concept applies equally well to a group of airports that comprise a metroplex (i.e., airports in close proximity that share resources such that operations at the airports are at least partially dependent) by including the coordination of runway usage decisions between the airports. In fact, the potential benefit of the concept is expected to be larger in future metroplex environments due to the increasing need to coordinate the operations at proximate airports to more efficiently share limited airspace resources. This concept, called System-Oriented Runway Management (SORM), is further broken down into a set of airport traffic management functions that share the principle that operational performance must be measured over the complete surface and airborne trajectories of the airport's arrivals and departures. The "system-oriented" term derives from the belief that the traffic management objective must consider the efficiency of operations over a wide range of aircraft movements and National Airspace System (NAS) dynamics. The SORM concept is comprised of three primary elements: strategic airport capacity planning, airport configuration management, and combined arrival/departure runway planning. Some aspects of the SORM concept, such as using airport configuration management1 as a mechanism for improving aircraft efficiency, are novel. Other elements (e.g., runway scheduling, which is a part

  14. Concrete density estimation by rebound hammer method

    SciTech Connect

    Ismail, Mohamad Pauzi bin Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-22

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  15. Concrete density estimation by rebound hammer method

    NASA Astrophysics Data System (ADS)

    Ismail, Mohamad Pauzi bin; Jefri, Muhamad Hafizie Bin; Abdullah, Mahadzir Bin; Masenwat, Noor Azreen bin; Sani, Suhairy bin; Mohd, Shukri; Isa, Nasharuddin bin; Mahmud, Mohamad Haniza bin

    2016-01-01

    Concrete is the most common and cheap material for radiation shielding. Compressive strength is the main parameter checked for determining concrete quality. However, for shielding purposes density is the parameter that needs to be considered. X- and -gamma radiations are effectively absorbed by a material with high atomic number and high density such as concrete. The high strength normally implies to higher density in concrete but this is not always true. This paper explains and discusses the correlation between rebound hammer testing and density for concrete containing hematite aggregates. A comparison is also made with normal concrete i.e. concrete containing crushed granite.

  16. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  17. Study of Asphaltic Concrete Produced in Dryer Drum Mixers for Airport Pavements.

    DTIC Science & Technology

    1976-10-01

    STWDARDS-163- w S 4 -- , ,a, i I Report No-c FAA-RD-76-165 STUDY OF ASPHALTIC CONCRETE PRODUCED IN DRYER DRUM MIXERS FOR AIRPORT PAVEMENTS 0 E. T...PREFACE This study was supported by the Systems Research and Development Service of the Federal Aviation Administration. This is a final report presenting...the asphaltic concrete . In September, 1976 the Alaskan Region of FAA reported that the runway pavement had transverse thermal cracks approximately 200

  18. Environmental impact of highway construction and repair materials on surface and ground waters. Case study: crumb rubber asphalt concrete.

    PubMed

    Azizian, Mohammad F; Nelson, Peter O; Thayumanavan, Pugazhendhi; Williamson, Kenneth J

    2003-01-01

    The practice of incorporating certain waste products into highway construction and repair materials (CRMs) has become more popular. These practices have prompted the National Academy of Science, National Cooperative Highway Research Program (NCHRP) to research the possible impacts of these CRMs on the quality of surface and ground waters. State department of transportations (DOTs) are currently experimenting with use of ground tire rubber ( crumb rubber) in bituminous construction and as a crack sealer. Crumb rubber asphalt concrete (CR-AC) leachates contain a mixture of organic and metallic contaminants. Benzothiazole and 2(3H)-benzothiazolone (organic compounds used in tire rubber manufacturing) and the metals mercury and aluminum were leached in potentially harmful concentrations (exceeding toxic concentrations for aquatic toxicity tests). CR-AC leachate exhibited moderate to high toxicity for algae ( Selenastrum capriconutum) and moderate toxicity for water fleas ( Daphnia magna). Benzothiazole was readily removed from CR-AC leachate by the environmental processes of soil sorption, volatilization, and biodegradation. Metals, which do not volatilize or photochemically or biologically degrade, were removed from the leachate by soil sorption. Contaminants from CR-AC leachates are thus degraded or retarded in their transport through nearby soils and ground waters.

  19. Uncertainty Analysis for the Evaluation of a Passive Runway Arresting System

    NASA Technical Reports Server (NTRS)

    Deloach, Richard; Marlowe, Jill M.; Yager, Thomas J.

    2009-01-01

    This paper considers the stopping distance of an aircraft involved in a runway overrun incident when the runway has been provided with an extension comprised of a material engineered to induce high levels of rolling friction and drag. A formula for stopping distance is derived that is shown to be the product of a known formula for the case of friction without drag, and a dimensionless constant between 0 and 1 that quantifies the further reduction in stopping distance when drag is introduced. This additional quantity, identified as the Drag Reduction Factor, D, is shown to depend on the ratio of drag force to friction force experienced by the aircraft as it enters the overrun area. The specific functional form of D is shown to depend on how drag varies with speed. A detailed uncertainty analysis is presented which reveals how the uncertainty in estimates of stopping distance are influenced by experimental error in the force measurements that are acquired in a typical evaluation experiment conducted to assess candidate overrun materials.

  20. PIXE/RBS as a tool to study cementitious materials: Application to the dynamic leaching of concrete

    NASA Astrophysics Data System (ADS)

    Llorente, I.; Castellote, M.; Gonzalez-Arrabal, R.; Ynsa, M. D.; Muñoz-Martin, A.; de Viedma, P. G.; Castillo, A.; Martínez, I.; Andrade, C.; Zuloaga, P.; Ordoñez, M.

    2009-12-01

    The suitability of the application of Ion Beam Analysis (IBA) techniques such as Particle Induced X-ray Emission spectrometry (PIXE) and Rutherford Backscattering Spectrometry (RBS) to elemental depth profiling in concrete is analysed, studying hardened samples of concrete prior to and after a dynamic leaching test. A calibration of the data has been done by comparing the results obtained by IBA techniques with those obtained by Chemical and Thermogravimetric Analysis (TG/DTA). From PIXE and RBS data relevant information about the migration of minor elements, within the concrete matrix after leaching is obtained.

  1. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  2. Measurement of tritium penetration through concrete material covered by various paints coating

    SciTech Connect

    Edao, Y.; Kawamura, Y.; Kurata, R.; Hayashi, T.; Yamanishi, T.; Fukada, S.; Takeishi, T.

    2015-03-15

    The present study aims at obtaining fundamental data on tritium migration in porous materials, which include soaking effect, interaction between tritium and cement paste coated with paints and transient tritium sorption in porous cement. The amounts of tritium penetrated into or released from cement paste with epoxy and urethane paint coatings were measured. The tritium penetration amounts were increased with the HTO (tritiated water) exposure time. Time to achieve a saturated value of tritium sorption was more than 60 days for cement paste coated with epoxy paint and with urethane paint, while that for cement paste without any paint coating took 2 days to achieve it. The effect of tritium permeation reduction by the epoxy paint was higher than that of the urethane. Although their paint coatings were effective for reduction of tritium penetration through the cement paste which was exposed to HTO for a short period, it was found that the amount of tritium trapped in the paints became large for a long period. Tritium penetration rates were estimated by an analysis of one-dimensional diffusion in the axial direction of a thickness of a sample. Obtained data were helpful for evaluation of tritium contamination and decontamination. (authors)

  3. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  4. Lightweight polymer concrete composites

    SciTech Connect

    Fontana, J.J.; Steinberg, M.; Reams, W.

    1985-08-01

    Lightweight polymer concrete composites have been developed with excellent insulating properties. The composites consist of lightweight aggregates such as expanded perlites, multicellular glass nodules, or hollow alumina silicate microspheres bound together with unsaturated polyester or epoxy resins. These composites, known as Insulating Polymer Concrete (IPC), have thermal conductivites from 0.09 to 0.19 Btu/h-ft-/sup 0/F. Compressive strengths, dependent upon the aggregates used, range from 1000 to 6000 psi. These materials can be precast or cast-in-place on concrete substrates. Recently, it has been demonstrated that these materials can also be sprayed onto concrete and other substrates. An overlay application of IPC is currently under way as dike insulation at an LNG storage tank facility. The composites have numerous potentials in the construction industry such as insulating building blocks or prefabricated insulating wall panels.

  5. Runway Exit Designs for Capacity Improvement Demonstrations. Phase 1: Algorithm Development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Sherali, H.; Kim, B. J.; Sadam, C. K.

    1990-01-01

    A description and results are presented of a study to locate and design rapid runway exits under realistic airport conditions. The study developed a PC-based computer simulation-optimization program called REDIM (runway exit design interactive model) to help future airport designers and planners to locate optimal exits under various airport conditions. The model addresses three sets of problems typically arising during runway exit design evaluations. These are the evaluations of existing runway configurations, addition of new rapid runway turnoffs, and the design of new runway facilities. The model is highly interactive and allows a quick estimation of the expected value of runway occupancy time. Aircraft populations and airport environmental conditions are among the multiple inputs to the model to execute a viable runway location and geometric design solution. The results presented suggest that possible reductions on runway occupancy time (ROT) can be achieved with the use of optimally tailored rapid runway designs for a given aircraft population. Reductions of up to 9 to 6 seconds are possible with the implementation of 30 m/sec variable geometry exits.

  6. Development of a Bayesian Belief Network Runway Incursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous paper, a statistical analysis of runway incursion (RI) events was conducted to ascertain their relevance to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to perhaps several of the AvSP top ten TC. That data also identified several primary causes and contributing factors for RI events that served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events. The system-level BBN model will allow NASA to generically model the causes of RI events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of RI events in particular, and to improve runway safety in general. The development, structure and assessment of that BBN for RI events by a Subject Matter Expert panel are documented in this paper.

  7. NASA Research For Instrument Approaches To Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Elliott, Dawn M.; Perry, R. Brad

    2000-01-01

    Within the NASA Aviation Systems Capacity Program, the Terminal Area Productivity (TAP) Project is addressing airport capacity enhancements during instrument meteorological condition (IMC). The Airborne Information for Lateral Spacing (AILS) research within TAP has focused on an airborne centered approach for independent instrument approaches to closely spaced parallel runways using Differential Global Positioning System (DGPS) and Automatic Dependent Surveillance-Broadcast (ADS-B) technologies. NASA Langley Research Center (LaRC), working in partnership with Honeywell, Inc., completed in AILS simulation study, flight test, and demonstration in 1999 examining normal approaches and potential collision scenarios to runways with separation distances of 3,400 and 2,500 feet. The results of the flight test and demonstration validate the simulation study.

  8. The noise impact of proposed runway alternatives at Craig Airport

    NASA Technical Reports Server (NTRS)

    Deloach, R.

    1982-01-01

    Four proposed runway expansion alternatives at Craig Airport in Jacksonville, Florida have been assessed with respect to their forecasted noise impact in the year 2005. The assessment accounts for population distributions around the airport and human subjective response to noise, as well as the distribution of noise levels in the surrounding community (footprints). The impact analysis was performed using the Airport-noise Levels and Annoyance Model (ALAMO), an airport community response model recently developd at Langley Research Center.

  9. North Field 󈨛 Rapid Runway Repair Test Report. Volume 1.

    DTIC Science & Technology

    1988-11-01

    the grass, south of the repair site. Paint, polymer, and solvent, as well as storage drums for paint and polymer wastes, were stored in a designated ...events began. Fire and crash rescue support was provided by North Auxiliary Field. A "hot brakes" area was designated at the intersection of the NE/SW...upheaval and sag limits for each repair. Computer simulations, using the results of a runway survey and a test limit of 80 percent design limit load for

  10. Benefits Assessment for Tactical Runway Configuration Management Tool

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamongkolkij, Nipa; Lohr, Gary; Fenbert, James W.

    2013-01-01

    The Tactical Runway Configuration Management (TRCM) software tool was developed to provide air traffic flow managers and supervisors with recommendations for airport configuration changes and runway usage. The objective for this study is to conduct a benefits assessment at Memphis (MEM), Dallas Fort-Worth (DFW) and New York's John F. Kennedy (JFK) airports using the TRCM tool. Results from simulations using the TRCM-generated runway configuration schedule are compared with results using historical schedules. For the 12 days of data used in this analysis, the transit time (arrival fix to spot on airport movement area for arrivals, or spot to departure fix for departures) for MEM departures is greater (7%) than for arrivals (3%); for JFK, there is a benefit for arrivals (9%) but not for departures (-2%); for DFW, arrivals show a slight benefit (1%), but this is offset by departures (-2%). Departure queue length benefits show fewer aircraft in queue for JFK (29%) and MEM (11%), but not for DFW (-13%). Fuel savings for surface operations at MEM are seen for both arrivals and departures. At JFK there are fuel savings for arrivals, but these are offset by increased fuel use for departures. In this study, no surface fuel benefits resulted for DFW. Results suggest that the TRCM algorithm requires modifications for complex surface traffic operations that can cause taxi delays. For all three airports, the average number of changes in flow direction (runway configuration) recommended by TRCM was many times greater than the historical data; TRCM would need to be adapted to a particular airport's needs, to limit the number of changes to acceptable levels. The results from this analysis indicate the TRCM tool can provide benefits at some high-capacity airports. The magnitude of these benefits depends on many airport-specific factors and would require adaptation of the TRCM tool; a detailed assessment is needed prior to determining suitability for a particular airport.

  11. The effect of shoe material on the kinetics and kinematics of foot slip at impact on concrete.

    PubMed

    Pardoe, C H; McGuigan, M P; Rogers, K M; Rowe, L L; Wilson, A M

    2001-04-01

    Previous studies on shoeing have demonstrated that shoe material alters the time taken from foot impact to the foot stopping sliding (slip time) and the distance slid. These are assumed to reflect differences in the craniocaudal ground reaction force (GRF) between the shoe and the ground during foot slip. This study tested the hypothesis that the slip time and distance are reflected in the resistance to slippage of the foot after impact. The forefeet of 8 horses were shod in horseshoes constructed of steel, plastic and rubber. Each horse was trotted for 8 placements per forefoot in each shoe type over a concrete topped forceplate and simultaneous kinematic data recorded at 240 Hz. Slip distance and slip time were calculated from the kinematic data and craniocaudal (Fy), and vertical (Fz) GRFs determined during slip the averaged for each shoe type. The slip time and distance were variable between runs in all 3 shoe types, and there was no significant difference between the mean values for the 3 shoe types. Fy reached a value of 0.98 +/- 0.17 N/kg during slip in the plastic shoes which was significantly lower than the rubber shoes, at 1.13 +/- 0.17 N/kg, P = 0.02. The Fy/Fz ratio (a measure of dynamic friction) was significantly lower in the plastic shoes, 0.34 +/- 0.08, compared to the steel shoes, 0.46 +/- 0.04, P = 0.003. This study is being extended to investigate effects of shoe slippage at the end of the stance phase and the energy dissipation during foot slip in the different shoe types. Future investigations should aim to identify the optimum slip characteristics to modulate loading (magnitude and rate) during impact, with the aim of reducing the risk of injury.

  12. Parallel runway requirement analysis study. Volume 1: The analysis

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Yaghoob S.

    1993-01-01

    The correlation of increased flight delays with the level of aviation activity is well recognized. A main contributor to these flight delays has been the capacity of airports. Though new airport and runway construction would significantly increase airport capacity, few programs of this type are currently underway, let alone planned, because of the high cost associated with such endeavors. Therefore, it is necessary to achieve the most efficient and cost effective use of existing fixed airport resources through better planning and control of traffic flows. In fact, during the past few years the FAA has initiated such an airport capacity program designed to provide additional capacity at existing airports. Some of the improvements that that program has generated thus far have been based on new Air Traffic Control procedures, terminal automation, additional Instrument Landing Systems, improved controller display aids, and improved utilization of multiple runways/Instrument Meteorological Conditions (IMC) approach procedures. A useful element to understanding potential operational capacity enhancements at high demand airports has been the development and use of an analysis tool called The PLAND_BLUNDER (PLB) Simulation Model. The objective for building this simulation was to develop a parametric model that could be used for analysis in determining the minimum safety level of parallel runway operations for various parameters representing the airplane, navigation, surveillance, and ATC system performance. This simulation is useful as: a quick and economical evaluation of existing environments that are experiencing IMC delays, an efficient way to study and validate proposed procedure modifications, an aid in evaluating requirements for new airports or new runways in old airports, a simple, parametric investigation of a wide range of issues and approaches, an ability to tradeoff air and ground technology and procedures contributions, and a way of considering probable

  13. Benefit Assessment for Metroplex Tactical Runway Configuration Management (mTRCM) in a Simulated Environment

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Oseguera-Lohr, Rosa M.; Lohr, Gary W.; Robbins, Steven W.; Fenbert, James W.; Hartman, Christopher L.

    2015-01-01

    The System-Oriented Runway Management (SORM) concept is a collection of capabilities focused on a more efficient use of runways while considering all of the factors that affect runway use. Tactical Runway Configuration Management (TRCM), one of the SORM capabilities, provides runway configuration and runway usage recommendations, and monitoring the active runway configuration for suitability given existing factors. This report focuses on the metroplex environment, with two or more proximate airports having arrival and departure operations that are highly interdependent. The myriad of factors that affect metroplex opeations require consideration in arriving at runway configurations that collectively best serve the system as a whole. To assess the metroplex TRCM (mTRCM) benefit, the performance metrics must be compared with the actual historical operations. The historical configuration schedules can be viewed as the schedules produced by subject matter experts (SMEs), and therefore are referred to as the SMEs' schedules. These schedules were obtained from the FAA's Aviation System Performance Metrics (ASPM) database; this is the most representative information regarding runway configuration selection by SMEs. This report focused on a benefit assessment of total delay, transit time, and throughput efficiency (TE) benefits using the mTRCM algorithm at representative volumes for today's traffic at the New York metroplex (N90).

  14. Cold Weather Construction Materials. Part 2. Regulated-Set Cement for Cold Weather Concreting. Field Validation of Laboratory Results.

    DTIC Science & Technology

    1981-09-01

    been used by the civilian sec- tor for a number of years in such activities as highway patching, slip- form tunnel liners, and cast-in-place roof...for this minimum needs to be verified. Once known, this will also dictate the earliest times at which formwork or concrete protection could be removed

  15. Cold Weather Construction Materials. Part 2. Field Validation of Laboratory Tests on Regulated-Set Cement for Cold Weather Concreting.

    DTIC Science & Technology

    1982-12-01

    patches, slipform tunnel liners and cast-in- place roof decking. Letters requesting information (construction problems, cracking, durability, cost, etc...this minimum mst be verified. Once known, this will also dictate the earliest times at which formwork or concrete protection could be removed. The

  16. STS-31 on Runway 22 at Edwards with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Personnel and equipment converge on the orbiter Discovery to begin servicing the spacecraft following its landing April 29, 1990, at NASA's then Ames-Dryden Flight Research Facility, Edwards, California. Post-landing servicing by the recovery convoy is carried out after each Space Shuttle landing and includes safety checks for flammable and toxic gases escaping from systems aboard the orbiters, hooking up engine fuel purge and equipment coolant lines, and inspecting the brakes before the vehicle is towed from the runway to the shuttle facility at Dryden where it is prepared for the ferry flight back to the Kennedy Space Center in Florida. Up to 24 vehicles and scores of personnel make up the landing recovery convoys at Dryden. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain

  17. STS-36 on Edwards Runway with Recovery Personnel

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Personnel and equipment converge on the orbiter Atlantis to begin servicing the spacecraft following its landing 4 March 1990, at NASA's then Ames-Dryden Flight Research Facility, Edwards, California. Mission elapsed time for the Department of Defense mission was 4 days, 10 hours, 19 minutes and 15 seconds. Actual landing time was 10:08 a.m. Post-landing servicing by the recovery convoy is carried out after each Space Shuttle landing and includes safety checks for flammable and toxic gases escaping from systems aboard the orbiters, hooking up engine fuel purge and equipment coolant lines, and inspecting the brakes before the vehicle is towed from the runway to the shuttle facility at Dryden where it is prepared for the ferry flight back to the Kennedy Space Center in Florida. Up to 24 vehicles and scores of personnel make up the landing recovery convoys at Dryden. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed

  18. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  19. Factors that determine depth perception of trapezoids, windsurfers, runways

    PubMed Central

    Tseng, Chia-Huei; Gobell, Joetta L.; Sperling, George

    2015-01-01

    We report here a windsurfer1 illusion, a naturally occurring trapezoidal illusion in which the small end of the sail viewed at a distance appears to be pointed away from the observer even when it is closer. This naturally occurring illusion is so compelling that observers are unaware of their gross perceptual misinterpretation of the scene. Four laboratory experiment of this kind of trapezoidal illusion investigated the joint effects of retinal orientation, head position, relative motion, and the relative direction of gravity on automatic depth perception. Observers viewed two adjacent white trapezoids outlined on a black background rotating back and forth ± 20° on a vertical axis much like the sails of two adjacent windsurfers. Observers reported which side of the trapezoids (long or short) appeared to be closer to them (i.e., in front). The longer edge of the trapezoid was reported in front 76 ± 2% of trials (“windsurfer effect”) whether it was on the left or on the right. When the display was rotated 90°to produce a runway configuration, there was a striking asymmetry: the long edge was perceived to be in front 97% when it was on the bottom but only 43% when it was on top (“runway effect”). The runway effect persisted when the head was tilted 90° or when displays on the ceiling were viewed from the floor. Ninety-five percent of the variance of the variance in the strikingly different 3D perceptions produced by the same 2D trapezoid image was quantitatively explained by a model that assumes there are just three additive bias factors that account for perceiving an edge as closer: Implicit linear perspective, lower position on the retina (based on an automatic assumption of viewing from above), and being lower in world coordinates. PMID:26029073

  20. Fiber reinforced concrete solar collector

    SciTech Connect

    Slemmons, A. J.; Newgard, P. J.

    1985-05-07

    A solar collector is disclosed comprising a glass member having a solar selective coating thereon, and a molded, glass-reinforced concrete member bonded to the glass member and shaped to provide a series of passageways between the glass member and the fiber-reinforced concrete member capable of carrying heat exchanging fluid therethrough. The fiber-reinforced concrete member may be formed by spraying a thin layer of concrete and chopped fibers such as chopped glass fibers onto a mold to provide an inexpensive and lightweight, thin-walled member. The fiber-reinforced concrete member may have a lightweight cellular concrete backing thereon for insulation purposes. The collector is further characterized by the use of materials which have substantially matching thermal coefficients of expansion over the temperature range normally encountered in the use of solar collectors.

  1. The Joint Winter Runway Friction Measurement Program: NASA Perspective

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    Some background information is given together with the scope and objectives of the 5-year, Joint National Aeronautics & Space Administration (NASA)/Transport Canada (TC)/Federal Aviation Administration (FAA) Winter Runway Friction Measurement Program. The range of the test equipment, the selected test sites and a tentative test program schedule are described. NASA considers the success of this program critical in terms of insuring adequate ground handling performance capability in adverse weather conditions for future aircraft being designed and developed as well as improving the safety of current aircraft ground operations.

  2. Graphical User Interface Development and Design to Support Airport Runway Configuration Management

    NASA Technical Reports Server (NTRS)

    Jones, Debra G.; Lenox, Michelle; Onal, Emrah; Latorella, Kara A.; Lohr, Gary W.; Le Vie, Lisa

    2015-01-01

    The objective of this effort was to develop a graphical user interface (GUI) for the National Aeronautics and Space Administration's (NASA) System Oriented Runway Management (SORM) decision support tool to support runway management. This tool is expected to be used by traffic flow managers and supervisors in the Airport Traffic Control Tower (ATCT) and Terminal Radar Approach Control (TRACON) facilities.

  3. 76 FR 67018 - Notice to Manufacturers of Airport In-Pavement Stationary Runway Weather Information Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-28

    ... Information Systems AGENCY: Federal Aviation Administration (FAA), U.S. DOT. ACTION: Notice to Manufacturers of In-Pavement Stationary Runway Weather Information Systems. SUMMARY: Projects funded under the... Active or Passive In- Pavement Stationary Runway Weather Information Systems that meet the...

  4. Impact resistance performance of green construction material using light weight oil palm shells reinforced bamboo concrete slab

    NASA Astrophysics Data System (ADS)

    Muda, Z. C.; Usman, F.; Beddu, S.; Alam, M. A.; Thiruchelvam, S.; Sidek, L. M.; Basri, H.; Saadi, S.

    2013-06-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete with varied bamboo reinforcement content for the concrete slab of 300mm x 300mm size reinforced with different thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter for a constant spacing for various slab thickness using 0.45 OPS and 0.6 OPS bamboo reinforced concrete. The increment in bamboo diameter has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Increment in slab thickness of the slab has more effect on the crack resistance as compare to the increment in the diameter of the bamboo reinforcement.

  5. Comparison of Procedures for Dual and Triple Closely Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Ballinger, Deborah; Subramanian Shobana; Kozon, Thomas

    2012-01-01

    A human-in-the-loop high fidelity flight simulation experiment was conducted, which investigated and compared breakout procedures for Very Closely Spaced Parallel Approaches (VCSPA) with two and three runways. To understand the feasibility, usability and human factors of two and three runway VCSPA, data were collected and analyzed on the dependent variables of breakout cross track error and pilot workload. Independent variables included number of runways, cause of breakout and location of breakout. Results indicated larger cross track error and higher workload using three runways as compared to 2-runway operations. Significant interaction effects involving breakout cause and breakout location were also observed. Across all conditions, cross track error values showed high levels of breakout trajectory accuracy and pilot workload remained manageable. Results suggest possible avenues of future adaptation for adopting these procedures (e.g., pilot training), while also showing potential promise of the concept.

  6. Exploration of the Theoretical Physical Capacity of the John F. Kennedy International Airport Runway System

    NASA Technical Reports Server (NTRS)

    Neitzke, Kurt W.; Guerreiro, Nelson M.

    2014-01-01

    A design study was completed to explore the theoretical physical capacity (TPC) of the John F. Kennedy International Airport (KJFK) runway system for a northflow configuration assuming impedance-free (to throughput) air traffic control functionality. Individual runways were modeled using an agent-based, airspace simulation tool, the Airspace Concept Evaluation System (ACES), with all runways conducting both departures and arrivals on a first-come first-served (FCFS) scheduling basis. A realistic future flight schedule was expanded to 3.5 times the traffic level of a selected baseline day, September 26, 2006, to provide a steady overdemand state for KJFK runways. Rules constraining departure and arrival operations were defined to reflect physical limits beyond which safe operations could no longer be assumed. Safety buffers to account for all sources of operational variability were not included in the TPC estimate. Visual approaches were assumed for all arrivals to minimize inter-arrival spacing. Parallel runway operations were assumed to be independent based on lateral spacing distances. Resulting time intervals between successive airport operations were primarily constrained by same-runway and then by intersecting-runway spacing requirements. The resulting physical runway capacity approximates a theoretical limit that cannot be exceeded without modifying runway interaction assumptions. Comparison with current KJFK operational limits for a north-flow runway configuration indicates a substantial throughput gap of approximately 48%. This gap may be further analyzed to determine which part may be feasibly bridged through the deployment of advanced systems and procedures, and which part cannot, because it is either impossible or not cost-effective to control. Advanced systems for bridging the throughput gap may be conceptualized and simulated using this same experimental setup to estimate the level of gap closure achieved.

  7. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  8. Craters in concrete slabs due to detonation - drawbacks of material models with a Mohr-Coulomb yield surface

    NASA Astrophysics Data System (ADS)

    Conrad, Markus

    2015-09-01

    Numerical simulations have been performed with a commercial distributed explicit FE-solver and the results have been compared with experiments. High explosive was placed in front of different concrete slabs with the dimension 100 × 100 × 16 cm. Some of the results of the simulations, in particular the profile of the craters, are not in agreement with the test results. Therefore the key characteristics of the constitutive equation based on Mohr-Coulomb yield surfaces and a damage evolution linked to the plastic strain has been reviewed.

  9. Physical properties of core-concrete systems: Al2O3-ZrO2 molten materials measured by aerodynamic levitation

    NASA Astrophysics Data System (ADS)

    Ohishi, Yuji; Kargl, F.; Nakamori, F.; Muta, Hiroaki; Kurosaki, Ken; Yamanaka, Shinsuke

    2017-04-01

    During a molten core-concrete interaction, molten oxides consisting of molten core materials (UO2 and ZrO2) and concrete (Al2O3, SiO2, CaO) are formed. Reliable data on the physical properties of the molten oxides will allow us to accurately predict the progression of a nuclear reactor core meltdown accident. In this study, the viscosities and densities of molten (ZrO2)x(Al2O3)1-x (x = 0.356 and 0.172) were measured using an aerodynamic levitation technique. The densities of two small samples were estimated from their masses and their volumes (calculated from recorded images of the molten samples). The droplets were forced to oscillate using speakers, and their viscosities were evaluated from the damping behaviors of their oscillations. The results showed that the viscosity of molten (ZrO2)x(Al2O3)1-x compared to that of pure molten Al2O3 is 25% lower for x = 0.172, while it is unexpectedly 20% higher for x = 0.356.

  10. Incorporating Active Runway Crossings in Airport Departure Scheduling

    NASA Technical Reports Server (NTRS)

    Gupta, Gautam; Malik, Waqar; Jung, Yoon C.

    2010-01-01

    A mixed integer linear program is presented for deterministically scheduling departure and ar rival aircraft at airport runways. This method addresses different schemes of managing the departure queuing area by treating it as first-in-first-out queues or as a simple par king area where any available aircraft can take-off ir respective of its relative sequence with others. In addition, this method explicitly considers separation criteria between successive aircraft and also incorporates an optional prioritization scheme using time windows. Multiple objectives pertaining to throughput and system delay are used independently. Results indicate improvement over a basic first-come-first-serve rule in both system delay and throughput. Minimizing system delay results in small deviations from optimal throughput, whereas minimizing throughput results in large deviations in system delay. Enhancements for computational efficiency are also presented in the form of reformulating certain constraints and defining additional inequalities for better bounds.

  11. KSC off-runway contingency operation - Mode 7

    NASA Technical Reports Server (NTRS)

    Maples, Arthur; Doerr, Donald

    1991-01-01

    The possibility of a mishap during a space shuttle landing at Kennedy Space Center (KSC) dictates the need for plans to rescue astronauts from areas other than the Shuttle Landing Facility (SLF). All shuttle landings are unpowered, gliding flight maneuvers, and a deviation from the planned flight profile could result in a shuttle landing or crashing somewhere other than the SLF runway. The geography of the Kennedy Space Center makes helicopter airlifting the only universal means of transportation for the rescue crew. This rescue crew is composed of KSC contractor fire-rescuemen who would ride to the crash scene on USAF HH-3 helicopters. These crews are provided with personal protective suits and training in shallow water, swamp, and dry land rescues. They aid the egress of the crew to a safe area for helicopter pickup and subsequent triage and medevac.

  12. NASA Runway Incursion Prevention System (RIPS) Dallas-Fort Worth Demonstration Performance Analysis

    NASA Technical Reports Server (NTRS)

    Cassell, Rick; Evers, Carl; Esche, Jeff; Sleep, Benjamin; Jones, Denise R. (Technical Monitor)

    2002-01-01

    NASA's Aviation Safety Program Synthetic Vision System project conducted a Runway Incursion Prevention System (RIPS) flight test at the Dallas-Fort Worth International Airport in October 2000. The RIPS research system includes advanced displays, airport surveillance system, data links, positioning system, and alerting algorithms to provide pilots with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warnings of runway incursions. This report describes the aircraft and ground based runway incursion alerting systems and traffic positioning systems (Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information Service - Broadcast (TIS-B)). A performance analysis of these systems is also presented.

  13. Construction, Maintenance, and Operation of a Glacial Runway, McMurdo Station, Antarctica

    DTIC Science & Technology

    1998-03-01

    Station ""-"- \\ /4 Amundsen - Scott ItS~~ South Pole Station t 01, ",,0 Marble Pt. • "",McMurdo •.•o/j... Scott South Pole Station , Concepts for such runways include "blue-ice"t and Palmer Station on the Antarctic Peninsula runways on glacier ice and runways...February. Numerous LC-130 flights (on wheels) were operated in supplying South Pole station , and a C-130 was operated between Christchurch and

  14. Wake Encounter Analysis for a Closely Spaced Parallel Runway Paired Approach Simulation

    NASA Technical Reports Server (NTRS)

    Mckissick,Burnell T.; Rico-Cusi, Fernando J.; Murdoch, Jennifer; Oseguera-Lohr, Rosa M.; Stough, Harry P, III; O'Connor, Cornelius J.; Syed, Hazari I.

    2009-01-01

    A Monte Carlo simulation of simultaneous approaches performed by two transport category aircraft from the final approach fix to a pair of closely spaced parallel runways was conducted to explore the aft boundary of the safe zone in which separation assurance and wake avoidance are provided. The simulation included variations in runway centerline separation, initial longitudinal spacing of the aircraft, crosswind speed, and aircraft speed during the approach. The data from the simulation showed that the majority of the wake encounters occurred near or over the runway and the aft boundaries of the safe zones were identified for all simulation conditions.

  15. Concrete waterproofing in nuclear industry.

    PubMed

    Scherbyna, Alexander N; Urusov, Sergei V

    2005-01-01

    One of the main points of aggregate safety during the transportation and storage of radioactive materials is to supply waterproofing for all constructions having direct contact with radiating substances and providing strength, seismic shielding etc. This is the problem with all waterside structures in nuclear industry and concrete installations in the treatment and storage of radioactive materials. In this connection, the problem of developing efficient techniques both for the repair of operating constructions and the waterproofing of new objects of the specified assignment is genuine. Various techniques of concrete waterproofing are widely applied in the world today. However, in conditions of radiation many of these techniques can bring not a profit but irreparable damage of durability and reliability of a concrete construction; for instance, when waterproofing materials contain organic constituents, polymers etc. Application of new technology or materials in basic construction elements requires in-depth analysis and thorough testing. The price of an error might be very large. A comparative analysis shows that one of the most promising types of waterproofing materials for radiation loaded concrete constructions is "integral capillary systems" (ICS). The tests on radiation, thermal and strength stability of ICS and ICS-treated concrete samples were initiated and fulfilled in RFNC-VNIITF. The main result is--ICS applying is increasing of waterproofing and strength properties of concrete in conditions of readiation The paper is devoted to describing the research strategy, the tests and their results and also to planning of new tests.

  16. Development of polymer concrete for dike insulation at LNG facilities: Phase 4, Low cost materials. Final report, September 1, 1987--April 30, 1990

    SciTech Connect

    Kukacka, L.E.

    1991-01-01

    Earlier GRI-sponsored work at Brookhaven National Laboratory has resulted in the development and utilization of insulating polymer concrete composites (IPC) as a means of reducing the evaporation rate of liquified natural gas in the event of a spill into a containment dike, thereby improving the safety at these sites. Although all of the required properties can be attained with the IPC, it was estimated that a low-cost replacement for the expensive organic binder would be necessary before use of the material would be cost-effective. In the current program, several latex modified cement formulations were evaluated and the most promising one identified. A mixture of two carboxylated styrene-butadiene latexes was selected for use in detailed laboratory property characterizations and a subsequent field evaluation. When compared to the properties of IPC, the latex-modified insulating materials display somewhat higher thermal conductivities, greater permeability to water, and reduced strength. However, these properties still meet most of the performance criteria, and the unit cost of the material is less than one-fifth that of IPC made with epoxy binders. When installed as a 0.75-in. thick overlay, material costs are estimated to be $1.00/ft{sup 2}.

  17. STS-68 on Runway with 747 SCA - Columbia Ferry Flyby

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The space shuttle Endeavour receives a high-flying salute from its sister shuttle, Columbia, atop NASA's Shuttle Carrier Aircraft, shortly after Endeavor's landing 12 October 1994, at Edwards, California, to complete mission STS-68. Columbia was being ferried from the Kennedy Space Center, Florida, to Air Force Plant 42, Palmdale, California, where it will undergo six months of inspections, modifications, and systems upgrades. The STS-68 11-day mission was devoted to radar imaging of Earth's geological features with the Space Radar Laboratory. The orbiter is surrounded by equipment and personnel that make up the ground support convoy that services the space vehicles as soon as they land. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay throughout the

  18. White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    White Sands Space Harbor Area 1, Runway 17/35, Extending 35,000 feet north from Range Road 10, beginning approximately 4.2 miles northeast of intersection with Range Road 7, White Sands, Dona Ana County, NM

  19. Three-track runway and taxiway profiles measured at international airports G and H

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1972-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designated airports G and H).

  20. Three-track runway and taxiway profiles measured at International Airports E and F

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1971-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. This report presents the tabulated and plotted data for two international airports (designed airports E and F).

  1. Three-track runway and taxiway profiles measured at international airports I and J

    NASA Technical Reports Server (NTRS)

    Hall, A. W.

    1972-01-01

    Three-track runway and taxiway profiles are presented for use in studies of airplane response to ground roughness. Tabulated and plotted data for two international airports, (designated I and J), are included.

  2. Effects of various runway lighting parameters upon the relation between runway visual range and visual range of centerline and edge lights in fog

    NASA Technical Reports Server (NTRS)

    Haines, R. F.

    1973-01-01

    Thirty six students and 54 commercial airline pilots were tested in the fog chamber to determine the effect of runway edge and centerline light intensity and spacing, fog density, ambient luminance level, and lateral and vertical offset distance of the subject from the runway's centerline upon horizontal visual range. These data were obtained to evaluate the adequacy of a balanced lighting system to provide maximum visual range in fog viewing both centerline and runway edge lights. The daytime system was compared against two other candidate lighting systems; the nighttime system was compared against other candidate lighting systems. The second objective was to determine if visual range is affected by lights between the subject and the farthestmost light visible through the fog. The third objective was to determine if college student subjects differ from commercial airline pilots in their horizontal visual range through fog. Two studies were conducted.

  3. Development and Execution of the RUNSAFE Runway Safety Bayesian Belief Network Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2015-01-01

    One focus area of the National Aeronautics and Space Administration (NASA) is to improve aviation safety. Runway safety is one such thrust of investigation and research. The two primary components of this runway safety research are in runway incursion (RI) and runway excursion (RE) events. These are adverse ground-based aviation incidents that endanger crew, passengers, aircraft and perhaps other nearby people or property. A runway incursion is the incorrect presence of an aircraft, vehicle or person on the protected area of a surface designated for the landing and take-off of aircraft; one class of RI events simultaneously involves two aircraft, such as one aircraft incorrectly landing on a runway while another aircraft is taking off from the same runway. A runway excursion is an incident involving only a single aircraft defined as a veer-off or overrun off the runway surface. Within the scope of this effort at NASA Langley Research Center (LaRC), generic RI, RE and combined (RI plus RE, or RUNSAFE) event models have each been developed and implemented as a Bayesian Belief Network (BBN). Descriptions of runway safety issues from the literature searches have been used to develop the BBN models. Numerous considerations surrounding the process of developing the event models have been documented in this report. The event models were then thoroughly reviewed by a Subject Matter Expert (SME) panel through multiple knowledge elicitation sessions. Numerous improvements to the model structure (definitions, node names, node states and the connecting link topology) were made by the SME panel. Sample executions of the final RUNSAFE model have been presented herein for baseline and worst-case scenarios. Finally, a parameter sensitivity analysis for a given scenario was performed to show the risk drivers. The NASA and LaRC research in runway safety event modeling through the use of BBN technology is important for several reasons. These include: 1) providing a means to clearly

  4. Determination of optimal trajectories for an aircraft returning to the runway following a complete loss of thrust after takeoff

    NASA Astrophysics Data System (ADS)

    Gordon, Craig A.

    This thesis examines the ability of a small, single-engine airplane to return to the runway following an engine failure shortly after takeoff. Two sets of trajectories are examined. One set of trajectories has the airplane fly a straight climb on the runway heading until engine failure. The other set of trajectories has the airplane perform a 90° turn at an altitude of 500 feet and continue until engine failure. Various combinations of wind speed, wind direction, and engine failure times are examined. The runway length required to complete the entire flight from the beginning of the takeoff roll to wheels stop following the return to the runway after engine failure is calculated for each case. The optimal trajectories following engine failure consist of three distinct segments: a turn back toward the runway using a large bank angle and angle of attack; a straight glide; and a reversal turn to align the airplane with the runway. The 90° turn results in much shorter required runway lengths at lower headwind speeds. At higher headwind speeds, both sets of trajectories are limited by the length of runway required for the landing rollout, but the straight climb cases generally require a lower angle of attack to complete the flight. The glide back to the runway is performed at an airspeed below the best glide speed of the airplane due to the need to conserve potential energy after the completion of the turn back toward the runway. The results are highly dependent on the rate of climb of the airplane during powered flight. The results of this study can aid the pilot in determining whether or not a return to the runway could be performed in the event of an engine failure given the specific wind conditions and runway length at the time of takeoff. The results can also guide the pilot in determining the takeoff profile that would offer the greatest advantage in returning to the runway.

  5. Vertical Temperature Simulation of Pegasus Runway, McMurdo Station, Antarctica

    DTIC Science & Technology

    2015-01-01

    surface. The report describes the methods for estimating the sensible heat, latent heat, shortwave radiation , and long- wave radia- tion surface heat...The meteorological station at Pegasus Runway was augmented with sensors to measure the downwelling broadband shortwave and long- wave radiation ...and long- wave radiation surface heat fluxes. Finally, we simulate the Pegasus Runway temperatures for three austral summer seasons (2011–12, 2012–13

  6. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  7. An airport runway centerline location method for one-off aerial imaging system

    NASA Astrophysics Data System (ADS)

    Ge, Shule; Xu, Tingfa; Ni, Guoqiang; Shao, Xiaoguang

    2010-11-01

    An airport runway centerline location method is proposed for extracting airport runway in images from one-off aerial imaging system. One-off aerial imaging system captures image at an altitude about one kilometer or below, thus detailed feature of the scenery reveals itself clearly. The proposed method relies on this precondition to detect and locate centerline of airport runway. This method has four steps: edge detection, dominating line orientation extraction, distance histogram building and centerline location. A salient edge detection method is developed with Sobel detector, which could detect edges of runway strips at the disturbance of edges features from surrounding objects. Then, a traditional Hough transform is performed to build a Hough map, within which the dominating line orientation is extracted. After getting the dominating line orientation, a reference straight line is chosen for building distance histogram. This distance histogram is a one-dimensional one, built up with the distance of all edge pixels in the edge map to the reference line. Airport centerline has a three-peak pattern in the one-dimensional distance histogram, and the center peak is corresponding to the centerline of airport runway. Experiments with simulated images show this method could location airport runway centerline effectively.

  8. A method for determining landing runway length for a STOL aircraft

    NASA Technical Reports Server (NTRS)

    Watson, D. M.; Hardy, G. H.; Moran, J. F.; Warner, D. N., Jr.

    1981-01-01

    Based on data obtained from flight tests of the augmentor wing jet STOL research aircraft, a method is proposed for determining the length of the landing runway for powered-lift STOL aircraft. The suggested method determines runway landing length by summing three segments: the touchdown-dispersion distance, the transition distance from touchdown to application of brakes, and the stopping distance after brakes are applied. It is shown how the landing field length can be reduced either through improved autoland system design or by providing the pilot with appropriate information to allow him to identify a "low probability" long or short landing and to execute a go-around. The proposed method appears to determine a safe runway landing length for the STOL application and offers the potential for reducing runway length if great emphasis is placed on a short-runway capability. FAR Parts 25 and 121 appear conservative and suitable for the situation where no great emphasis is placed on reducing the runway length requirement.

  9. Long-term leaching from recycled concrete aggregates applied as sub-base material in road construction.

    PubMed

    Engelsen, Christian J; van der Sloot, Hans A; Petkovic, Gordana

    2017-06-01

    In the present study, the metal leaching from recycled concrete aggregates (RCA) used in road sub-base is presented after >10years of exposure. The released levels of inorganic constituents, the effect of small variation of pH and the use of de-icing salt during winter season were studied. In addition, speciation modelling for the major elements has been provided. The pH varied from 7.5 to 8.5 for the sub-base constructed with RCA whereas the pH of around 8 was obtained for the test section not affected by the traffic and de-icing salts. Despite a small variation in pH, the leachability of Al, Ca and Mg was found to be strongly dependent on pH and fair agreement between the measured and predicted concentrations was obtained. The speciation modelling indicated that gibbsite, calcite and magnesite controlled the solubility of Al, Ca and Mg, respectively, which was in agreement with the expected carbonation products. Due to the larger pH fluctuations in the test sections exposed to the road traffic, increased concentrations were observed for the oxyanions. The same effect was not seen for the trace metal cations Cd, Cu, Ni, Pb and Zn. The distinct pH dependent leaching profile (solubility maximum in the mildly basic pH region) for vanadium could be seen after 10years of exposure. The simplified risk assessment showed that the released quantities did not exceed the chosen acceptance criteria for groundwater and fresh water. The results obtained for the test section not influenced by road dust and de-icing salts, complied with these criteria even without considering any dilution effects caused by the mixing of pore water with groundwater.

  10. Investigating the Impact of Temperature Changes, Material Aging, and Service Load on the Strain of a Reinforced Concrete Construction

    NASA Astrophysics Data System (ADS)

    Kanciruk, Adam

    2014-12-01

    Intensive exploitation of coal beds in the Upper Silesia Coal Basin led to the degradation of the Katowice-Muchowiec civilian/military airport. As a result, it became necessary to adapt the Pyrzowice military airport for use as a public transport facility. This involved reconstruction of a hangar located at the airport. As part of this process, a new hangar slab was constructed, designed in such a way as to bear the load of passenger aircraft. In the area of the greatest wheel load to the slab, three strain rosettes were installed for the purpose of monitoring the slab strain. The mointoring process - which has been automatically conducted for almost three years now - revealed deformations resulting from service load, the aging of reinforced concrete, and changes of its temperature. Intensywna eksploatacja górnośląskich złóż węgla doprowadziła do degradacji cywilno-wojskowego lotniska Katowice-Muchowiec. W związku z tym, wynikła konieczność przystosowania do celów komunikacyjnych lotniska wojskowego w Pyrzowicach, w tym przebudowy znajdującego się na jego terenie hangaru. W ramach przebudowy wykonano nową posadzkę, zdolną przenosić ciężar samolotów pasażerskich. W posadzce tej, w rejonie występowania największych nacisków zainstalowano 3 rozety tensometryczne w celu monitorowania jej odkształceń. Monitorowanie to, prowadzone w sposób automatyczny już niemal 3 lata, wykazało występowanie odkształceń będących skutkiem obciążeń eksploatacyjnych, starzenia się żelbetu oraz zmian jego temperatury.

  11. Environmental durability of polymer concrete

    SciTech Connect

    Palmese, G.R.; Chawalwala, A.J.

    1996-12-31

    Over the past two decades, polymer concrete has increasingly been used for a number of applications including piping, machine bases, chemically resistant flooring, and bridge overlays. Currently, the use of polymer concrete as a wear surface for polymeric composite bridge decks is being investigated. Polymer concrete is a particulate composite comprised of mineral aggregate bound by a polymeric matrix. Such materials possess significantly higher mechanical properties than Portland cement concrete. However, the mechanical characteristics and environmental durability of polymer concrete are influenced by a number of factors. Among these are the selection of aggregate and resin, surface treatment, and cure conditions. In this work the influence of matrix selection and cure history on the environmental durability of polymer concrete was investigated. Particular attention was given to the effects of water on composite properties and to the mechanisms by which degradation occurs. The basalt-based polymer concrete systems investigated were susceptible to attack by water. Furthermore, results suggest that property loss associated with water exposure was primarily a result of interfacial weakening.

  12. Fuel dispersal modeling for aircraft-runway impact scenarios

    SciTech Connect

    Tieszen, S.R.

    1995-11-01

    A fuel dispersal model for C-141 transport accidents was developed for the Defense Nuclear Agency`s Fuel Fire Technology Base Program to support Weapon System Safety Assessments. The spectrum of accidents resulting from aircraft impact on a runway was divided into three fuel dispersal regimes: low, intermediate, and high-velocity impact. Sufficient data existed in the accident, crash test, and fuel-filled bomb literature to support development of a qualitative framework for dispersal models, but not quantitative models for all regimes. Therefore, a test series at intermediate scale was conducted to generate data on which to base the model for the high-velocity regime. Tests were conducted over an impact velocity range from 12 m/s to 91 m/s and angles of impact from 22.5{degrees} to 67.5{degrees}. Dependent variables were area covered by dispersed fuel, amount of mass in that area, and location of the area relative to the impact line. Test results showed that no liquid pooling occurred for impact velocities greater than 61 m/s, independent of the angle of impact. Some pooling did occur at lower velocities, but in no test was the liquid-layer thickness greater than 5.25 mm.

  13. Runway Independent Aircraft Extremely Short Takeoff and Landing

    NASA Technical Reports Server (NTRS)

    Hall, David W.; Pasman, Renee

    2004-01-01

    This report Summarizes the work done is support of NASA/Ames Runway Independent Aircraft Research during the summer of 2003. This work centered on the tasks laid out by the Statement of Work, which was to: Identify and assess operational scenarios including airport air and ground operations and how RIA operations would interface; 2) Identify critical technologies and create a list of technologies that might be pushed to provide a quantum jump in operating economy, reliability, and safety should sufficient finding be available; 3) Create public domain powered high lift methodologies; and 4) Identify and assess vehicle concepts that provide innovative approaches to RIA operations. All these tasks were accomplished, with certain areas needing additional exploration in future grant work. Three designs were analyzed to provide strawman configurations for the RIA operations. All three aircraft carried 60 passengers, with a stage length of 1,000 nautical miles. They were capable of operating with a balanced field length of 2000 feet or less. Three different technology approaches were explored. The first, the Model 115, was a mid-wing USB design, developed as a near-term, low risk concept. The second aircraft, the EMAX, used a directed thrust system, was a far-term, high-risk approach. The third configuration was the Model 114, whose development began in summer 2002. In addition, further research was conducted on issues related to STOL operations, such as noise concerns, SNI operations, and other areas of interest.

  14. Hydroelastic response of a floating runway to cnoidal waves

    SciTech Connect

    Ertekin, R. C.; Xia, Dingwu

    2014-02-15

    The hydroelastic response of mat-type Very Large Floating Structures (VLFSs) to severe sea conditions, such as tsunamis and hurricanes, must be assessed for safety and survivability. An efficient and robust nonlinear hydroelastic model is required to predict accurately the motion of and the dynamic loads on a VLFS due to such large waves. We develop a nonlinear theory to predict the hydroelastic response of a VLFS in the presence of cnoidal waves and compare the predictions with the linear theory that is also developed here. This hydroelastic problem is formulated by directly coupling the structure with the fluid, by use of the Level I Green-Naghdi theory for the fluid motion and the Kirchhoff thin plate theory for the runway. The coupled fluid structure system, together with the appropriate jump conditions are solved in two-dimensions by the finite-difference method. The numerical model is used to study the nonlinear response of a VLFS to storm waves which are modeled by use of the cnoidal-wave theory. Parametric studies show that the nonlinearity of the waves is very important in accurately predicting the dynamic bending moment and wave run-up on a VLFS in high seas.

  15. Penetration of concrete targets

    SciTech Connect

    Forrestal, M.J.; Cargile, J.D.; Tzou, R.D.Y.

    1993-08-01

    We developed penetration equations for ogive-nosed projectiles that penetrated concrete targets after normal impact. Our penetration equations predict axial force on the projectile nose, rigid-body motion, and final penetration depth. For target constitutive models, we conducted triaxial material experiments to confining pressures of 600 MPa and curve-fit these data with a linear pressure-volumetric strain relation and with a linear Mohr-Coulomb, shear strength-pressure relation. To verify our penetration equations, we conducted eleven penetration experiments with 0.90 kg, 26.9-mm-diameter, ogive-nosed projectiles into 1.37-m-diameter concrete targets with unconfined compressive strengths between 32-40 MPa. Predictions from our penetration equation are compared with final penetration depth measurements for striking velocities between 280--800 m/s.

  16. Aircraft and runway deicers at General Mitchell International Airport, Milwaukee, Wisconsin, USA. 2. Toxicity of aircraft and runway deicer

    USGS Publications Warehouse

    Corsi, Steven; Hall, David W.; Geis, Steven W.

    2001-01-01

    Streams receiving runoff from General Mitchell International Airport (GMIA), Milwaukee, Wisconsin, USA, were studied to assess toxic impacts of aircraft and runway deicers. Elevated levels of constituents related to deicing (propylene glycol, ethylene glycol, and ammonia) were observed in stream samples. The LC50s of type I deicer for Ceriodaphnia dubia, Pimephelas promelas, Hyalela azteca, and Chironimus tentans and the EC50 for Microtox® were less than 5,000 mg/L of propylene glycol. Concentrations up to 39,000 mg/L were observed at airport outfall sites in samples collected during deicing events. The IC25s of type I deicer for C. dubia and P. promelas were less than 1,500 mg/L of propylene glycol. Concentrations up to 960 mg/L were observed in low-flow samples at an airport outfall site. Measured toxicity of stream water was greatest during winter storms when deicers were applied. Chronic toxicity was observed at airport outfall samples from low-flow periods in the winter and the summer, with the greater toxic impacts from the winter sample. All forms of toxicity in stream-water samples decreased as downstream flows increased.

  17. Benefits Assessment for Single-Airport Tactical Runway Configuration Management Tool (TRCM)

    NASA Technical Reports Server (NTRS)

    Oseguera-Lohr, Rosa; Phojanamonogkolkij, Nipa; Lohr, Gary W.

    2015-01-01

    The System-Oriented Runway Management (SORM) concept was developed as part of the Airspace Systems Program (ASP) Concepts and Technology Development (CTD) Project, and is composed of two basic capabilities: Runway Configuration Management (RCM), and Combined Arrival/Departure Runway Scheduling (CADRS). RCM is the process of designating active runways, monitoring the active runway configuration for suitability given existing factors, and predicting future configuration changes; CADRS is the process of distributing arrivals and departures across active runways based on local airport and National Airspace System (NAS) goals. The central component in the SORM concept is a tool for taking into account all the various factors and producing a recommendation for what would be the optimal runway configuration, runway use strategy, and aircraft sequence, considering as many of the relevant factors required in making this type of decision, and user preferences, if feasible. Three separate tools were initially envisioned for this research area, corresponding to the time scale in which they would operate: Strategic RCM (SRCM), with a planning horizon on the order of several hours, Tactical RCM (TRCM), with a planning horizon on the order of 90 minutes, and CADRS, with a planning horizon on the order of 15-30 minutes[1]. Algorithm development was initiated in all three of these areas, but the most fully developed to date is the TRCM algorithm. Earlier studies took a high-level approach to benefits, estimating aggregate benefits across most of the major airports in the National Airspace Systems (NAS), for both RCM and CADRS [2]. Other studies estimated the benefit of RCM and CADRS using various methods of re-sequencing arrivals to reduce delays3,4, or better balancing of arrival fixes5,6. Additional studies looked at different methods for performing the optimization involved in selecting the best Runway Configuration Plan (RCP) to use7-10. Most of these previous studies were high

  18. Investigation of Cement-Replacement Materials. Report 10. Use of Large Amounts of Possolans in Lean Mass Concrete.

    DTIC Science & Technology

    proportioned with crushed limestone aggregate graded up to 6 in. Five mixtures contained no pozzolan and from 189 to 312 lb of portland cement per cubic...yard. Thirty-three mixtures contained one bag (94 lb) of portland cement per cubic yard with various amounts of one of four pozzolanic materials. A...greater weight of pozzolan than of portland cement was used in 24 of the 33 mixtures. Many of the mixtures appeared to develop ample strength and

  19. Controllers and Pilots Play a Key Role in Runway Safety Initiatives Through Real-Time Simulation

    NASA Technical Reports Server (NTRS)

    Madson, Mike; Bender, Kim

    2004-01-01

    A new and innovative way to evaluate runway safety initiatives for airports is through the use of interactive real-time simulation. The National Aeronautics and Space Administration (NASA) operates an integrated suite of simulators that can give both pilots and tower controllers the ability to simultaneously "try out" ideas in the safety of virtual reality. In February of 2003, the FAA conducted a demonstration in the NASA facilities for Dallas/Fort Worth International Airport (DFW) of a concept to reduce runway crossings and enhance the efficiency of the airport. Currently DFW experiences about 1,700 runway crossings per day, which contribute to arrival and departure delays and the potential for runway incursions. The proposed concept included the addition of new perimeter taxiways on the East and West sides of the airport. Through use of NASA's unique simulation capabilities, DFW controllers and commercial pilots provided expert feedback on the safety and operational implications by directly experiencing the proposed changes. Overall, the data collected from the participants and the simulators demonstrated that the concept would improve operations at DFW, if implemented. Improvements were observed in many areas including departure rates, taxi duration, runway crossings, and controller and pilot communications.

  20. From Runway to Orbit: Reflections of a NASA Engineer

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Peebles, Curtis L.

    2004-01-01

    In his remarkable memoir Runway to Orbit, Dr. Kenneth W. Iliff - the recently retired Chief Scientist of the NASA Dryden Flight Research Center- tells a highly personal, yet a highly persuasive account of the last forty years of American aeronautical research. His interpretation of events commands respect, because over these years he has played pivotal roles in many of the most important American aeronautics and spaceflight endeavors. Moreover, his narrative covers much of the second half of the first 100 years of flight, a centennial anniversary being celebrated this year. aerospace knowledge. He arrived at the then NASA Flight Research Center in 1962 as a young aeronautical engineer and quickly became involved in two of the seminal projects of modern flight, the X-15 and the lifting bodies. In the process, he pioneered (with Lawrence Taylor) the application of digital computing to the reduction of flight data, arriving at a method known as parameter estimation, now applied the world over. Parameter estimation not only enabled researchers to acquire stability and control derivatives from limited flight data, but in time allowed them to obtain a wide range of aerodynamic effects. Although subsequently involved in dozens of important projects, Dr. Iliff devoted much of his time and energy to hypersonic flight, embodied in the Shuttle orbiter (or as he refers to it, the world s fastest airplane). To him, each Shuttle flight, instrumented to obtain a variety of data, represents a research treasure trove, one that he has mined for years. This book, then, represents the story of Dr. Ken Iliff s passion for flight, his work, and his long and astoundingly productive career. It can be read with profit not just by scientists and engineers, but equally by policy makers, historians, and journalists wishing to better comprehend advancements in flight during the second half of the twentieth century. Dr. Iliff's story is one of immense contributions to the nation s repository of

  1. Mechanical behavior of concrete and related porous materials under partial saturation: The effective stress and the viscous softening due to movement of nanometer-scale pore fluid

    NASA Astrophysics Data System (ADS)

    Vlahinic, Ivan

    becomes necessary to describe the fluid flow in a double porosity medium, i.e. a medium containing both macro- and nano-scale porosity. We show that the proposed model can quantitatively capture the key observations that have thus far evaded a simple mechanical description. The materials more closely examined in this work enjoy a wide variety of practical uses. Wood and concrete are used as a basis for infrastructure the world over; porous glass with engineered nanometer-sized openings is used for its sorptive and filtering abilities; KevlarRTM and similar synthetic polymers are used for their high strength-to-weight ratio in creating body armor, ropes, and even sails.

  2. Experimental needs of high temperature concrete

    SciTech Connect

    Chern, J.C.; Marchertas, A.H.

    1985-01-01

    The needs of experimental data on concrete structures under high temperature, ranging up to about 370/sup 0/C for operating reactor conditions and to about 900/sup 0/C and beyond for hypothetical accident conditions, are described. This information is required to supplement analytical methods which are being implemented into the finite element code TEMP-STRESS to treat reinforced concrete structures. Recommended research ranges from material properties of reinforced/prestressed concrete, direct testing of analytical models used in the computer codes, to investigations of certain aspects of concrete behavior, the phenomenology of which is not well understood. 10 refs.

  3. Runway exit designs for capacity improvement demonstrations. Phase 2: Computer model development

    NASA Technical Reports Server (NTRS)

    Trani, A. A.; Hobeika, A. G.; Kim, B. J.; Nunna, V.; Zhong, C.

    1992-01-01

    The development is described of a computer simulation/optimization model to: (1) estimate the optimal locations of existing and proposed runway turnoffs; and (2) estimate the geometric design requirements associated with newly developed high speed turnoffs. The model described, named REDIM 2.0, represents a stand alone application to be used by airport planners, designers, and researchers alike to estimate optimal turnoff locations. The main procedures are described in detail which are implemented in the software package and possible applications are illustrated when using 6 major runway scenarios. The main output of the computer program is the estimation of the weighted average runway occupancy time for a user defined aircraft population. Also, the location and geometric characteristics of each turnoff are provided to the user.

  4. Non-airborne conflicts: The causes and effects of runway transgressions

    NASA Technical Reports Server (NTRS)

    Tarrel, Richard J.

    1985-01-01

    The 1210 ASRS runway transgression reports are studied and expanded to yield descriptive statistics. Additionally, a one of three subset was studied in detail for purposes of evaluating the causes, risks, and consequences behind trangression events. Occurrences are subdivided by enabling factor and flight phase designations. It is concluded that a larger risk of collision is associated with controller enabled departure transgressions over all other categories. The influence of this type is especially evident during the period following the air traffic controllers' strike of 1981. Causal analysis indicates that, coincidentally, controller enabled departure transgressions also, show the strongest correlations between causal factors. It shows that departure errors occur more often when visibility is reduced, and when multiple takeoff runways or intersection takeoffs are employed. In general, runway transgressions attributable to both pilot and controller errors arise from three problem areas: information transfer, awareness, and spatial judgement. Enhanced awareness by controllers will probably reduce controller enabled incidents.

  5. Method and device for landing aircraft dependent on runway occupancy time

    NASA Technical Reports Server (NTRS)

    Ghalebsaz Jeddi, Babak (Inventor)

    2012-01-01

    A technique for landing aircraft using an aircraft landing accident avoidance device is disclosed. The technique includes determining at least two probability distribution functions; determining a safe lower limit on a separation between a lead aircraft and a trail aircraft on a glide slope to the runway; determining a maximum sustainable safe attempt-to-land rate on the runway based on the safe lower limit and the probability distribution functions; directing the trail aircraft to enter the glide slope with a target separation from the lead aircraft corresponding to the maximum sustainable safe attempt-to-land rate; while the trail aircraft is in the glide slope, determining an actual separation between the lead aircraft and the trail aircraft; and directing the trail aircraft to execute a go-around maneuver if the actual separation approaches the safe lower limit. Probability distribution functions include runway occupancy time, and landing time interval and/or inter-arrival distance.

  6. Runway Incursion Prevention System: Demonstration and Testing at the Dallas/Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Quach, Cuong C.; Young, Steven D.

    2007-01-01

    A Runway Incursion Prevention System (RIPS) was tested at the Dallas-Ft. Worth International Airport (DFW) in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. A series of test runs was conducted using NASA s Boeing 757 research aircraft and a test van equipped to emulate an incurring aircraft. The system was also demonstrated to over 100 visitors from the aviation community. This paper gives an overview of the RIPS, DFW flight test activities, and quantitative and qualitative results of the testing.

  7. Action-specific effects in aviation: what determines judged runway size?

    PubMed

    Gray, Rob; Navia, José Antonio; Allsop, Jonathan

    2014-01-01

    Several recent studies have shown that the performance of a skill that involves acting on a goal object can influence one's judgment of the size of that object. The present study investigated this effect in an aviation context. Novice pilots were asked to perform a series of visual approach and landing manoeuvres in a flight simulator. After each landing, participants next performed a task in which runway size was judged for different simulated altitudes. Gaze behaviour and control stick kinematics were also analyzed. There were significant relationships between judged runway size and multiple action-related variables including touchdown velocity, time fixating the runway, and the magnitude and frequency of control inputs. These findings suggest that relationship between the perception of a target object and action is not solely determined by performance success or failure but rather involves a relationship between multiple variables that reflect the actor's ability.

  8. Simulator Evaluation of Runway Incursion Prevention Technology for General Aviation Operations

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Prinzel, Lawrence J., III

    2011-01-01

    A Runway Incursion Prevention System (RIPS) has been designed under previous research to enhance airport surface operations situation awareness and provide cockpit alerts of potential runway conflict, during transport aircraft category operations, in order to prevent runway incidents while also improving operations capability. This study investigated an adaptation of RIPS for low-end general aviation operations using a fixed-based simulator at the National Aeronautics and Space Administration (NASA) Langley Research Center (LaRC). The purpose of the study was to evaluate modified RIPS aircraft-based incursion detection algorithms and associated alerting and airport surface display concepts for low-end general aviation operations. This paper gives an overview of the system, simulation study, and test results.

  9. Construction Cluster Volume IV: [Concrete Work].

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Justice, Harrisburg. Bureau of Correction.

    The document is the fourth of a series, to be integrated with a G.E.D. program, containing instructional materials for the construction cluster. The volume focuses on concrete work and consists of 20 instructional units which require a month of study. The units include: (1) uses of concrete and occupational information; (2) soils, drainage, and…

  10. Final Environmental Assessment for the Runway Extension and New Parking Apron at Tyndall Air Force Base, Florida

    DTIC Science & Technology

    2004-01-01

    SO 2), nitrogen dioxide (NO2), carbon monoxide (CO), ozone (03), and lead ( Pb ). Although the ozone standards are being reduced significantly with... lead ( Pb ). Response: Similar statement modification inserted. Final Environmental Assessment for the Runway Extension and New Parking Apron 29 Final Environmental Assessment for the Runway Extension and New Parking Apron 30

  11. A fresh look at runway incursions: onboard surface movement awareness and alerting system based on SVS

    NASA Astrophysics Data System (ADS)

    Vernaleken, Christoph; Mihalic, Lamir; Güttler, Mathias; Klingauf, Uwe

    2006-05-01

    Increasing traffic density on the aerodrome surface due to the continuous worldwide growth in the number of flight operations does not only cause capacity and efficiency problems, but also increases the risk of serious incidents and accidents on the airport movement area. Of these, Runway Incursions are the by far most safety-critical. In fact, the worst-ever accident in civil aviation, the collision of two Boeing B747s on Tenerife in 1977 with 583 fatalities, was caused by a Runway Incursion. Therefore, various Runway Safety programs have recently been initiated around the globe, often focusing on ground-based measures such as improved surveillance. However, as a lack of flight crew situational awareness is a key causal factor in many Runway Incursion incidents and accidents, there is a strong need for an onboard solution, which should be capable of interacting cooperatively with ground-based ATM systems, such as A-SMGCS where available. This paper defines the concept of preventive and reactive Runway Incursion avoidance and describes a Surface Movement Awareness & Alerting System (SMAAS) designed to alert the flight crew if they are at risk of infringing a runway. Both the SVS flight deck displays and the corresponding alerting algorithms utilize an ED 99A/RTCA DO-272A compliant aerodrome database, as well as airport operational, traffic and clearance data received via ADS-B or other data links, respectively. The displays provide the crew with enhanced positional, operational, clearance and traffic awareness, and they are used to visualize alerts. A future enhancement of the system will provide intelligent alerting for conflicts caused by surrounding traffic.

  12. Interval Management with Spacing to Parallel Dependent Runways (IMSPIDR) Experiment and Results

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Swieringa, Kurt A.; Capron, William R.

    2012-01-01

    An area in aviation operations that may offer an increase in efficiency is the use of continuous descent arrivals (CDA), especially during dependent parallel runway operations. However, variations in aircraft descent angle and speed can cause inaccuracies in estimated time of arrival calculations, requiring an increase in the size of the buffer between aircraft. This in turn reduces airport throughput and limits the use of CDAs during high-density operations, particularly to dependent parallel runways. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR) concept uses a trajectory-based spacing tool onboard the aircraft to achieve by the runway an air traffic control assigned spacing interval behind the previous aircraft. This paper describes the first ever experiment and results of this concept at NASA Langley. Pilots flew CDAs to the Dallas Fort-Worth airport using airspeed calculations from the spacing tool to achieve either a Required Time of Arrival (RTA) or Interval Management (IM) spacing interval at the runway threshold. Results indicate flight crews were able to land aircraft on the runway with a mean of 2 seconds and less than 4 seconds standard deviation of the air traffic control assigned time, even in the presence of forecast wind error and large time delay. Statistically significant differences in delivery precision and number of speed changes as a function of stream position were observed, however, there was no trend to the difference and the error did not increase during the operation. Two areas the flight crew indicated as not acceptable included the additional number of speed changes required during the wind shear event, and issuing an IM clearance via data link while at low altitude. A number of refinements and future spacing algorithm capabilities were also identified.

  13. Effect of Iron and Carbonation of the Diffusion of Iodine and Rhenium in Waste Encasement Concrete and Soil Fill Material under Hydraulically Unsaturated Conditions

    SciTech Connect

    Wellman, Dawn M.; Parker, Kent E.; Powers, Laura; Whyatt, Greg A.; Clayton, Libby N.; Mattigod, Shas V.; Wood, Marcus I.

    2008-07-31

    Assessing long-term performance of Category 3 cement wasteforms and accurate prediction for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e. sorption or precipitation). A set of sediment-concrete half-cell diffusion experiments was conducted under unsaturated conditions (4% and 7% by weight moisture content) using carbonated and non-carbonated concrete-soil half-cells. Results indicate the behavior of rhenium and iodine release was comparable within a given half-cell test. Diffusivity in soil is a function of moisture content; a 3% increase in moisture content affords a one to two order of magnitude increase in diffusivity. Release of iodine and rhenium was 1 to 3 orders of magnitude less from non-carbonated, relative to carbonated, concrete monoliths. Inclusion of iron in non-carbonate monoliths resulted in the lowest concrete diffusivity values for both iodine and rhenium. This suggests that in the presence of iron, iodine and rhenium are converted to reduced species, which are less soluble and better retained within the concrete monolith. The release of iodine and rhenium was greatest from iron-bearing, carbonated concrete monoliths, suggesting carbonation negates the effect of iron on the retention of iodine and rhenium within concrete monoliths. This is likely due to enhanced formation of microcracks in the presence of iron, which provide preferential paths for contaminant migration. Although the release of iodine and rhenium were greatest from carbonated concrete monoliths containing iron, the migration of iodine and rhenium within a given half-cell is dependent on the moisture content, soil diffusivity, and diffusing species.

  14. Reliability Modeling Methodology for Independent Approaches on Parallel Runways Safety Analysis

    NASA Technical Reports Server (NTRS)

    Babcock, P.; Schor, A.; Rosch, G.

    1998-01-01

    This document is an adjunct to the final report An Integrated Safety Analysis Methodology for Emerging Air Transport Technologies. That report presents the results of our analysis of the problem of simultaneous but independent, approaches of two aircraft on parallel runways (independent approaches on parallel runways, or IAPR). This introductory chapter presents a brief overview and perspective of approaches and methodologies for performing safety analyses for complex systems. Ensuing chapter provide the technical details that underlie the approach that we have taken in performing the safety analysis for the IAPR concept.

  15. Air Traffic and Operational Data on Selected US Airports with Parallel Runways

    NASA Technical Reports Server (NTRS)

    Doyle, Thomas M.; McGee, Frank G.

    1998-01-01

    This report presents information on a number of airports in the country with parallel runways and focuses on those that have at least one pair of parallel runways closer than 4300 ft. Information contained in the report describes the airport's current operational activity as obtained through contact with the facility and from FAA air traffic tower activity data for FY 1997. The primary reason for this document is to provide a single source of information for research to determine airports where Airborne Information for Lateral Spacing (AILS) technology may be applicable.

  16. Texture Modification of the Shuttle Landing Facility Runway at the NASA Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1996-01-01

    This paper describes the test procedures and the selection criteria used in selecting the best runway surface texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-kt crosswinds if desired. This 5-kt increase over the previous 15-kt limit drastically increases landing safety and the ability to make on-time launches to support missions where space station rendezvous is planned.

  17. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways

    NASA Technical Reports Server (NTRS)

    Kibbee, G. W.

    1978-01-01

    The development, evaluation, and evaluation results of a DC-9-10 runway directional control simulator are described. An existing wide bodied flight simulator was modified to this aircraft configuration. The simulator was structured to use either two of antiskid simulations; (1) an analog mechanization that used aircraft hardware; or (2) a digital software simulation. After the simulation was developed it was evaluated by 14 pilots who made 818 simulated flights. These evaluations involved landings, rejected takeoffs, and various ground maneuvers. Qualitatively most pilots evaluated the simulator as realistic with good potential especially for pilot training for adverse runway conditions.

  18. Model experiments to evaluate vortex dissipation devices proposed for installation on or near aircraft runways

    NASA Technical Reports Server (NTRS)

    Kohl, R. E.

    1973-01-01

    The effectiveness of various vortex dissipation devices proposed for installation on or near aircraft runways is evaluated on basis of results of experiments conducted with a 0.03-scale model of a Boeing 747 transport aircraft in conjunction with a simulated runway. The test variables included type of vortex dissipation device, mode of operation of the powered devices, and altitude, lift coefficient and speed of the generating aircraft. A total of fifteen devices was investigated. The evaluation is based on time sequence photographs taken in the vertical and horizontal planes during each run.

  19. Self-cleaning geopolymer concrete - A review

    NASA Astrophysics Data System (ADS)

    Norsaffirah Zailan, Siti; Mahmed, Norsuria; Bakri Abdullah, Mohd Mustafa Al; Sandu, Andrei Victor

    2016-06-01

    Concrete is the most widely used construction materials for building technology. However, cement production releases high amounts of carbon dioxide (CO2) to the atmosphere that leads to increasing the global warming. Thus, an alternative, environmental friendly construction material such as geopolymer concrete has been developed. Geopolymer concrete applies greener alternative binder, which is an innovative construction material that replaces the Portland cement. This technology introduced nano-particles such as nanoclay into the cement paste in order to improve their mechanical properties. The concrete materials also have been developed to be functioned as self-cleaning construction materials. The self-cleaning properties of the concrete are induced by introducing the photocatalytic materials such as titania (TiO2) and zinc oxide (ZnO). Self-cleaning concrete that contains those photocatalysts will be energized by ultraviolet (UV) radiation and accelerates the decomposition of organic particulates. Thus, the cleanliness of the building surfaces can be maintained and the air surrounding air pollution can be reduced. This paper briefly reviews about self-cleaning concrete.

  20. Patio Stone Project Gives Students a Concrete Learning Experience

    ERIC Educational Resources Information Center

    Fitzgerald, Mike

    2005-01-01

    In this article, the author presents an overview of concrete as a building material and as an example of a particle composite, and discusses the origins of concrete in ancient Rome. He then describes an activity in which students can cast a concrete patio stone. Students can apply the technological design process, as well as the elements of…

  1. 8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Photocopied August 1978. BREAKING CONCRETE BARS, JULY 1898. TESTING MACHINE USED BY VON SCHON IN EXPERIMENTS ON METHODS OF MIXING CONCRETE AND ON CONCRETE AGGREGATES WHICH USED LOCAL MATERIALS. (4) - Michigan Lake Superior Power Company, Portage Street, Sault Ste. Marie, Chippewa County, MI

  2. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  3. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  4. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  5. 7 CFR 2902.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Concrete and asphalt release fluids. 2902.36 Section... PROCUREMENT Designated Items § 2902.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  6. 7 CFR 3201.36 - Concrete and asphalt release fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Concrete and asphalt release fluids. 3201.36 Section... PROCUREMENT Designated Items § 3201.36 Concrete and asphalt release fluids. (a) Definition. Products that are designed to provide a lubricating barrier between the composite surface materials (e.g., concrete...

  7. Workability of Mass Concrete. Report 2. Supplemental Proportioning Parameters.

    DTIC Science & Technology

    1996-09-01

    proportions for mass concrete with assurance that the concrete will have adequate workability. The initial phase of this study was to obtain information...Corps of Engineers (HQUSACE), as a part of Civil Works Investigation Studies Work Unit 32768, "Workability of Mass Concrete ." The study was conducted...Paul F. Mlakar, Chief, Concrete and Materials Division (CMD), and Mr. Edward F. O’Neil, Acting Chief, Engineering Mechanics Branch (EMB), CMD. Dr

  8. Down-to-the-runway enhanced flight vision system (EFVS) approach test results

    NASA Astrophysics Data System (ADS)

    McKinley, John B.; Heidhausen, Eric; Cramer, James A.; Krone, Norris J., Jr.

    2008-04-01

    Flight tests where conducted at Cambridge-Dorchester Airport (KCGE) and Easton Municipal Airport / Newnam Field (KESN) in a Cessna 402B aircraft using a head-up display (HUD) and a Kollsman Enhanced Vision System (EVS-I) infrared camera. These tests were sponsored by the MITRE Corporation's Center for Advanced Aviation System Development (CAASD) and the Federal Aviation Administration. Imagery of the EVS-I infrared camera, HUD guidance cues, and out-the-window video were each separately recorded at an engineering workstation for each approach, roll-out, and taxi operation. The EVS-I imagery was displayed on the HUD with guidance cues generated by the mission computer. Also separately recorded was the inertial flight path data. Enhanced Flight Vision System (EFVS) approaches were conducted from the final approach fix to runway flare, touchdown, roll-out and taxi using the HUD and EVS-I sensor as the only visual reference. Flight conditions included two-pilot crew, day, night, non-precision course offset approaches, ILS approach, crosswind approaches, and missed approaches. Results confirmed the feasibility for safe conduct of down-to-the-runway precision approaches in low visibility to runways with and without precision approach systems, when consideration is given to proper aircraft instrumentation, pilot training, and acceptable procedures. Operational benefits include improved runway occupancy rates, and reduced delays and diversions.

  9. 14 CFR 151.15 - Federal-aid Airport Program: Policy affecting runway or taxiway remarking.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Federal-aid Airport Program: Policy... § 151.15 Federal-aid Airport Program: Policy affecting runway or taxiway remarking. No project for... remarking if the present marking is obliterated by construction, alteration or repair work included in...

  10. 14 CFR 151.15 - Federal-aid Airport Program: Policy affecting runway or taxiway remarking.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Federal-aid Airport Program: Policy... § 151.15 Federal-aid Airport Program: Policy affecting runway or taxiway remarking. No project for... remarking if the present marking is obliterated by construction, alteration or repair work included in...

  11. Sensitivity of Runway Occupancy Time (ROT) to Various Rollout and Turnoff (ROTO) Factors. Volume 1

    NASA Technical Reports Server (NTRS)

    Goldthorpe, S. H.

    1997-01-01

    The Terminal Area Productivity (TAP) research program was initiated by NASA to increase the airport capacity for transport aircraft operations. One element of the research program is called Low Visibility Landing and Surface Operations (LVLASO). A goal of the LVLASO research is to develop transport aircraft technologies which reduce Runway Occupancy Time (ROT) so that it does not become the limiting factor in the terminal area operations that determine the capacity of a runway. Under LVLASO, the objective of this study was to determine the sensitivity of ROT to various factors associated with the Rollout and Turnoff (ROTO) operation for transport aircraft. The following operational factors were studied and are listed in the order of decreasing ROT sensitivity: ice/flood runway surface condition, exit entrance ground speed, number of exits, high-speed exit locations and spacing, aircraft type, touchdown ground speed standard deviation, reverse thrust and braking method, accurate exit prediction capability, maximum reverse thrust availability, spiral-arc vs. circle-arc exit geometry, dry/slush/wet/snow runway surface condition, maximum allowed deceleration, auto asymmetric braking on exit, do not stow reverse thrust before the exit, touchdown longitudinal location standard deviation, flap setting, anti-skid efficiency, crosswind conditions, stopping on the exit and touchdown lateral offset.

  12. Design and development of a modified runway model of mouse drug self-administration

    PubMed Central

    Pandy, Vijayapandi; Khan, Yasmin

    2016-01-01

    The present study established a novel mouse model of a runway drug self-administration in our laboratory. The operant runway apparatus consisted of three long runways arranged in a zig-zag manner. The methodology consisted of six distinct phases: habituation, preconditioning, conditioning, post-conditioning, extinction and reinstatement. The effects of saline were compared with escalating doses of either ethanol (0.5–4.0 g/kg, i.p), heroin (5–40 mg/kg, i.p), or nicotine (0.1–0.5mg/kg, i.p) administered in the goal box during the conditioning phase (day 1 to day 5). A significant decrease in the time of trained (conditioned) mice to reach the goal box confirmed the subjects’ motivation to seek those drugs on day 6 (expression). The mice were then subjected to non-rewarded extinction trials for 5 days over which run times were significantly increased. After 5 days of abstinence, a priming dose of ethanol or heroin (1/5th of maximum dose used in conditioning) significantly reinstated the drug-seeking behavior. These results suggest that the modified runway model can serve as a powerful behavioral tool for the study of the behavioral and neurobiological bases of drug self-administration and, as such, is appropriate simple but powerful tool for investigating the drug-seeking behavior of laboratory mice. PMID:26902717

  13. Preliminary Human-in-the-Loop Assessment of Procedures for Very-Closely-Spaced Parallel Runways

    NASA Technical Reports Server (NTRS)

    Verma, Savita; Lozito, Sandra C.; Ballinger, Deborah S.; Trot, Greg; Hardy, Gordon H.; Panda, Ramesh C.; Lehmer, Ronald D.; Kozon, Thomas E.

    2010-01-01

    Demand in the future air transportation system concept is expected to double or triple by 2025 [1]. Increasing airport arrival rates will help meet the growing demand that could be met with additional runways but the expansion airports is met with environmental challenges for the surrounding communities when using current standards and procedures. Therefore, changes to airport operations can improve airport capacity without adding runways. Building additional runways between current ones, or moving them closer, is a potential solution to meeting the increasing demand, as addressed by the Terminal Area Capacity Enhancing Concept (TACEC). TACEC requires robust technologies and procedures that need to be tested such that operations are not compromised under instrument meteorological conditions. The reduction of runway spacing for independent simultaneous operations dramatically exacerbates the criticality of wake vortex incursion and the calculation of a safe and proper breakout maneuver. The study presented here developed guidelines for such operations by performing a real-time, human-in-the-loop simulation using precision navigation, autopilot-flown approaches, with the pilot monitoring aircraft spacing and the wake vortex safe zone during the approach.

  14. Development of a Bayesian Belief Network Runway Incursion and Excursion Model

    NASA Technical Reports Server (NTRS)

    Green, Lawrence L.

    2014-01-01

    In a previous work, a statistical analysis of runway incursion (RI) event data was conducted to ascertain the relevance of this data to the top ten Technical Challenges (TC) of the National Aeronautics and Space Administration (NASA) Aviation Safety Program (AvSP). The study revealed connections to several of the AvSP top ten TC and identified numerous primary causes and contributing factors of RI events. The statistical analysis served as the basis for developing a system-level Bayesian Belief Network (BBN) model for RI events, also previously reported. Through literature searches and data analysis, this RI event network has now been extended to also model runway excursion (RE) events. These RI and RE event networks have been further modified and vetted by a Subject Matter Expert (SME) panel. The combined system-level BBN model will allow NASA to generically model the causes of RI and RE events and to assess the effectiveness of technology products being developed under NASA funding. These products are intended to reduce the frequency of runway safety incidents/accidents, and to improve runway safety in general. The development and structure of the BBN for both RI and RE events are documented in this paper.

  15. Development of the Runway Incursion Advisory and Alerting System (RIAAS): Research Summary

    NASA Technical Reports Server (NTRS)

    Jones, Denise R. (Technical Monitor); Cassell, Rick

    2005-01-01

    This report summarizes research conducted on an aircraft based Runway Incursion Advisory and Alerting System (RIAAS) developed under a cooperative agreement between Rannoch Corporation and the NASA Langley Research Center. A summary of RIAAS is presented along with results from simulation and flight testing, safety benefits, and key technical issues.

  16. Response of a WB-47E Airplane to Runway Roughness at Eielson AFB, Alaska, September 1964

    NASA Technical Reports Server (NTRS)

    Morris, Garland J.; Hall, Albert W.

    1965-01-01

    An investigation has been conducted to measure the response of a WB-47E airplane to the roughness of the runway at Eielson AFB, Alaska. The acceleration level in the pilot's compartment and the pitching oscillation of the airplane were found to be sufficiently high to possibly cause pilot discomfort and have an adverse effect on the precision of take-off.

  17. Design and development of a modified runway model of mouse drug self-administration.

    PubMed

    Pandy, Vijayapandi; Khan, Yasmin

    2016-02-23

    The present study established a novel mouse model of a runway drug self-administration in our laboratory. The operant runway apparatus consisted of three long runways arranged in a zig-zag manner. The methodology consisted of six distinct phases: habituation, preconditioning, conditioning, post-conditioning, extinction and reinstatement. The effects of saline were compared with escalating doses of either ethanol (0.5-4.0 g/kg, i.p), heroin (5-40 mg/kg, i.p), or nicotine (0.1-0.5mg/kg, i.p) administered in the goal box during the conditioning phase (day 1 to day 5). A significant decrease in the time of trained (conditioned) mice to reach the goal box confirmed the subjects' motivation to seek those drugs on day 6 (expression). The mice were then subjected to non-rewarded extinction trials for 5 days over which run times were significantly increased. After 5 days of abstinence, a priming dose of ethanol or heroin (1/5th of maximum dose used in conditioning) significantly reinstated the drug-seeking behavior. These results suggest that the modified runway model can serve as a powerful behavioral tool for the study of the behavioral and neurobiological bases of drug self-administration and, as such, is appropriate simple but powerful tool for investigating the drug-seeking behavior of laboratory mice.

  18. Aircraft and avionic related research required to develop an effective high-speed runway exit system

    NASA Technical Reports Server (NTRS)

    Schoen, M. L.; Hosford, J. E.; Graham, J. M., Jr.; Preston, O. W.; Frankel, R. S.; Erickson, J. B.

    1979-01-01

    Research was conducted to increase airport capacity by studying the feasibility of the longitudinal separation between aircraft sequences on final approach. The multidisciplinary factors which include the utility of high speed exits for efficient runway operations were described along with recommendations and highlights of these studies.

  19. Functional Analysis for an Integrated Capability of Arrival/Departure/Surface Management with Tactical Runway Management

    NASA Technical Reports Server (NTRS)

    Phojanamongkolkij, Nipa; Okuniek, Nikolai; Lohr, Gary W.; Schaper, Meilin; Christoffels, Lothar; Latorella, Kara A.

    2014-01-01

    The runway is a critical resource of any air transport system. It is used for arrivals, departures, and for taxiing aircraft and is universally acknowledged as a constraining factor to capacity for both surface and airspace operations. It follows that investigation of the effective use of runways, both in terms of selection and assignment as well as the timing and sequencing of the traffic is paramount to the efficient traffic flows. Both the German Aerospace Center (DLR) and NASA have developed concepts and tools to improve atomic aspects of coordinated arrival/departure/surface management operations and runway configuration management. In December 2012, NASA entered into a Collaborative Agreement with DLR. Four collaborative work areas were identified, one of which is called "Runway Management." As part of collaborative research in the "Runway Management" area, which is conducted with the DLR Institute of Flight Guidance, located in Braunschweig, the goal is to develop an integrated system comprised of the three DLR tools - arrival, departure, and surface management (collectively referred to as A/D/S-MAN) - and NASA's tactical runway configuration management (TRCM) tool. To achieve this goal, it is critical to prepare a concept of operations (ConOps) detailing how the NASA runway management and DLR arrival, departure, and surface management tools will function together to the benefit of each. To assist with the preparation of the ConOps, the integrated NASA and DLR tools are assessed through a functional analysis method described in this report. The report first provides the highlevel operational environments for air traffic management (ATM) in Germany and in the U.S., and the descriptions of the DLR's A/D/S-MAN and NASA's TRCM tools at the level of details necessary to compliment the purpose of the study. Functional analyses of each tool and a completed functional analysis of an integrated system design are presented next in the report. Future efforts to fully

  20. Dryden B-52 Launch Aircraft on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA's venerable workhorse, the B-52 mothership, rolls out on the Edwards AFB runway after a test flight in 1996. Over the course of more than 40 years, the B-52 launched numerous experimental aircraft, ranging from the X-15 to the X-38, and was also used as a flying testbed for a variety of other research projects. NASA B-52, Tail Number 008, is an air launch carrier aircraft, 'mothership,' as well as a research aircraft platform that has been used on a variety of research projects. The aircraft, a 'B' model built in 1952 and first flown on June 11, 1955, is the oldest B-52 in flying status and has been used on some of the most significant research projects in aerospace history. Some of the significant projects supported by B-52 008 include the X-15, the lifting bodies, HiMAT (highly maneuverable aircraft technology), Pegasus, validation of parachute systems developed for the space shuttle program (solid-rocket-booster recovery system and the orbiter drag chute system), and the X-38. The B-52 served as the launch vehicle on 106 X-15 flights and flew a total of 159 captive-carry and launch missions in support of that program from June 1959 to October 1968. Information gained from the highly successful X-15 program contributed to the Mercury, Gemini, and Apollo human spaceflight programs as well as space shuttle development. Between 1966 and 1975, the B-52 served as the launch aircraft for 127 of the 144 wingless lifting body flights. In the 1970s and 1980s, the B-52 was the launch aircraft for several aircraft at what is now the Dryden Flight Research Center, Edwards, California, to study spin-stall, high-angle-of attack, and maneuvering characteristics. These included the 3/8-scale F-15/spin research vehicle (SRV), the HiMAT (Highly Maneuverable Aircraft Technology) research vehicle, and the DAST (drones for aerodynamic and structural testing). The aircraft supported the development of parachute recovery systems used to recover the space shuttle solid rocket

  1. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  2. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  3. Rollout and Turnoff (ROTO) Guidance and Information Displays: Effect on Runway Occupancy Time in Simulated Low-Visibility Landings

    NASA Technical Reports Server (NTRS)

    Hueschen, Richard M.; Hankins, Walter W., III; Barker, L. Keith

    2001-01-01

    This report examines a rollout and turnoff (ROTO) system for reducing the runway occupancy time for transport aircraft in low-visibility weather. Simulator runs were made to evaluate the system that includes a head-up display (HUD) to show the pilot a graphical overlay of the runway along with guidance and steering information to a chosen exit. Fourteen pilots (airline, corporate jet, and research pilots) collectively flew a total of 560 rollout and turnoff runs using all eight runways at Hartsfield Atlanta International Airport. The runs consisted of 280 runs for each of two runway visual ranges (RVRs) (300 and 1200 ft). For each visual range, half the runs were conducted with the HUD information and half without. For the runs conducted with the HUD information, the runway occupancy times were lower and more consistent. The effect was more pronounced as visibility decreased. For the 1200-ft visibility, the runway occupancy times were 13% lower with HUD information (46.1 versus 52.8 sec). Similarly, for the 300-ft visibility, the times were 28% lower (45.4 versus 63.0 sec). Also, for the runs with HUD information, 78% (RVR 1200) and 75% (RVR 300) had runway occupancy times less than 50 sec, versus 41 and 20%, respectively, without HUD information.

  4. Diffusion and Leaching of Selected Radionuclides (Iodine-129, Technetium-99, and Uranium) Through Category 3 Waste Encasement Concrete and Soil Fill Material

    SciTech Connect

    Mattigod, Shas V.; Whyatt, Greg A.; Serne, R. Jeffrey; Martin, P. F.; Schwab, Kristen E.; Wood, Marcus I.

    2001-09-24

    An assessment of long-term performance of Category 3 waste-enclosing cement grouts requires data about the leachability/diffusion of radionuclide species (iodine-129, technetium-99, and uranium) when the waste forms come in contact with groundwater. Leachability data were collected by conducting dynamic (ANS-16.1) and static leach tests on radionuclide-containing cement specimens. The diffusivity of radionuclides in soil and concrete media was collected by conducting soil-soil and concrete-soil half-cell experiments.

  5. Flow conditions of fresh mortar and concrete in different pipes

    SciTech Connect

    Jacobsen, Stefan; Haugan, Lars; Hammer, Tor Arne; Kalogiannidis, Evangelos

    2009-11-15

    The variation in fresh concrete flow rate over the pipe cross section was investigated on differently coloured and highly flowable concrete mixes flowing through pipes of different materials (rubber, steel, acryl). First, uncoloured (gray) concrete was poured through the pipe and the pipe blocked. Similar but coloured (black) concrete was then poured into the pipe filled with gray concrete, flowing after the gray concrete for a while before being blocked and hardened. The advance of the colouring along the pipe wall (showing boundary flow rate) was observed on the moulded concrete surface appearing after removing the pipe from the hardened concrete. The shapes of the interfaces between uncoloured and coloured concrete (showing variation of flow rate over the pipe cross section) were observed on sawn surfaces of concrete half cylinders cut along the length axes of the concrete-filled pipe. Flow profiles over the pipe cross section were clearly seen with maximum flow rates near the centre of the pipe and low flow rate at the pipe wall (typically rubber pipe with reference concrete without silica fume and/or stabilizers). More plug-shaped profiles, with long slip layers and less variation of flow rate over the cross section, were also seen (typically in smooth acrylic pipes). Flow rate, amount of concrete sticking to the wall after flow and SEM-images of pipe surface roughness were observed, illustrating the problem of testing full scale pumping.

  6. Studies on recycled aggregates-based concrete.

    PubMed

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  7. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  8. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  9. Lunar concrete for construction

    SciTech Connect

    Cullingford, H.S.; Keller, M.D.

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base. 10 refs., 3 figs., 2 tabs.

  10. Application of concrete in marine structures

    SciTech Connect

    Rashid, A.; Nygaard, C.

    1997-07-01

    The use of concrete in marine environment has gained tremendous popularity in the past decade and is continued to be a very popular material for marine industry in the world today. It has a very diversified use from large offshore platforms and floating structures in the North Sea, Canada and South America to offshore loading terminals and junction platforms in shallow waters in the marshes of southern Louisiana in the Gulf of Mexico. Also, precast concrete sections are extensively used all over the world in the construction of marine structures. Because of their large variety of shapes and sizes, they can be tailored to fit multiple applications in marine environment. The added quality control in the fabrication yard and the ease of installation by lifting makes them a very attractive option. The use of precast concrete sections is gaining a lot of popularity in South America. A lot of fabrication yards are manufacturing these sections locally. There are hundreds of offshore concrete platforms utilizing these sections in Lake Maracaibo, Venezuela. The paper discusses the use of concrete for offshore structures including floaters. It describes some general concepts and advantages to be gained by the use of concrete (precast and cast-in-place) in marine environment. It also discusses some general design considerations required for the use of different types of precast concrete sections that can be utilized for oil and gas platforms and loading terminals. Lastly the paper describes some typical examples of concrete platforms built out of concrete piles, precast concrete girders and beam sections and concrete decking.

  11. A comparison of the lattice discrete particle method to the finite-element method and the K&C material model for simulating the static and dynamic response of concrete.

    SciTech Connect

    Smith, Jovanca J.; Bishop, Joseph E.

    2013-11-01

    This report summarizes the work performed by the graduate student Jovanca Smith during a summer internship in the summer of 2012 with the aid of mentor Joe Bishop. The projects were a two-part endeavor that focused on the use of the numerical model called the Lattice Discrete Particle Model (LDPM). The LDPM is a discrete meso-scale model currently used at Northwestern University and the ERDC to model the heterogeneous quasi-brittle material, concrete. In the first part of the project, LDPM was compared to the Karagozian and Case Concrete Model (K&C) used in Presto, an explicit dynamics finite-element code, developed at Sandia National Laboratories. In order to make this comparison, a series of quasi-static numerical experiments were performed, namely unconfined uniaxial compression tests on four varied cube specimen sizes, three-point bending notched experiments on three proportional specimen sizes, and six triaxial compression tests on a cylindrical specimen. The second part of this project focused on the application of LDPM to simulate projectile perforation on an ultra high performance concrete called CORTUF. This application illustrates the strengths of LDPM over traditional continuum models.

  12. Radiation Damage In Reactor Cavity Concrete

    SciTech Connect

    Field, Kevin G; Le Pape, Yann; Naus, Dan J; Remec, Igor; Busby, Jeremy T; Rosseel, Thomas M; Wall, Dr. James Joseph

    2015-01-01

    License renewal up to 60 years and the possibility of subsequent license renewal to 80 years has established a renewed focus on long-term aging of nuclear generating stations materials, and recently, on concrete. Large irreplaceable sections of most nuclear generating stations include concrete. The Expanded Materials Degradation Analysis (EMDA), jointly performed by the Department of Energy, the Nuclear Regulatory Commission and Industry, identified the urgent need to develop a consistent knowledge base on irradiation effects in concrete. Much of the historical mechanical performance data of irradiated concrete does not accurately reflect typical radiation conditions in NPPs or conditions out to 60 or 80 years of radiation exposure. To address these potential gaps in the knowledge base, The Electric Power Research Institute and Oak Ridge National Laboratory are working to disposition radiation damage as a degradation mechanism. This paper outlines the research program within this pathway including: (i) defining the upper bound of the neutron and gamma dose levels expected in the biological shield concrete for extended operation (80 years of operation and beyond), (ii) determining the effects of neutron and gamma irradiation as well as extended time at temperature on concrete, (iii) evaluating opportunities to irradiate prototypical concrete under accelerated neutron and gamma dose levels to establish a conservative bound and share data obtained from different flux, temperature, and fluence levels, (iv) evaluating opportunities to harvest and test irradiated concrete from international NPPs, (v) developing cooperative test programs to improve confidence in the results from the various concretes and research reactors, (vi) furthering the understanding of the effects of radiation on concrete (see companion paper) and (vii) establishing an international collaborative research and information exchange effort to leverage capabilities and knowledge.

  13. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation

  14. Perseus B Heads for Landing on Edwards AFB Runway

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Perseus B remotely piloted aircraft approaches the runway at Edwards Air Force Base, Calif. at the conclusion of a development flight at NASA's Dryden flight Research Center in April 1998. The Perseus B is the latest of three versions of the Perseus design developed by Aurora Flight Sciences under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Perseus B is a remotely piloted aircraft developed as a design-performance testbed under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) project. Perseus is one of several flight vehicles involved in the ERAST project. A piston engine, propeller-powered aircraft, Perseus was designed and built by Aurora Flight Sciences Corporation, Manassas, Virginia. The objectives of Perseus B's ERAST flight tests have been to reach and maintain horizontal flight above altitudes of 60,000 feet and demonstrate the capability to fly missions lasting from 8 to 24 hours, depending on payload and altitude requirements. The Perseus B aircraft established an unofficial altitude record for a single-engine, propeller-driven, remotely piloted aircraft on June 27, 1998. It reached an altitude of 60,280 feet. In 1999, several modifications were made to the Perseus aircraft including engine, avionics, and flight-control-system improvements. These improvements were evaluated in a series of operational readiness and test missions at the Dryden Flight Research Center, Edwards, California. Perseus is a high-wing monoplane with a conventional tail design. Its narrow, straight, high-aspect-ratio wing is mounted atop the fuselage. The aircraft is pusher-designed with the propeller mounted in the rear. This design allows for interchangeable scientific-instrument payloads to be placed in the forward fuselage. The design also allows for unobstructed airflow to the sensors and other devices mounted in the payload compartment. The Perseus B that underwent test and development in 1999 was the third generation

  15. Nondestructive evaluation of thick concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.

    2015-03-01

    Concrete has been used in the construction of nuclear power plants (NPPs) due to three primary properties: its low cost, structural strength, and ability to shield radiation. Examples of concrete structures important to the safety of Light Water Reactor (LWR) plants include the containment building, spent fuel pool, and cooling towers. Use in these structures has made concrete's long-term performance crucial for the safe operation of commercial NPPs. Extending LWR operating period to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. New mechanisms of materials degradation are also possible. This creates the need to be able to nondestructively evaluate the current subsurface concrete condition of aging concrete material in NPP structures. The size and complexity of NPP containment structures and heterogeneity of Portland cement concrete make characterization of the degradation extent a difficult task. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular nondestructive evaluation (NDE) technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Representative large heavily reinforced concrete specimens would allow for comparative testing to evaluate the state-of-the-art NDE in this area and to identify additional developments necessary to address the challenges potentially found in NPPs.

  16. Moisture Transport Through Sprayed Concrete Tunnel Linings

    NASA Astrophysics Data System (ADS)

    Holter, Karl Gunnar; Geving, Stig

    2016-01-01

    Waterproofing of permanent sprayed concrete tunnel linings with sprayed membranes in a continuous sandwich structure has been attempted since 2000 and has seen increased use in some countries. The main function of a sprayed membrane from a waterproofing perspective is to provide crack bridging and hence prevent flow of liquid water into the tunnel through cracks and imperfections in the concrete material. However, moisture can migrate through the concrete and EVA-based membrane materials by capillary and vapor diffusion mechanisms. These moisture transport mechanisms can have an influence on the degree of saturation, and may influence the pore pressures in the concrete material as well as risk of freeze-thaw damage of the concrete and membrane. The paper describes a detailed study of moisture transport material parameters, moisture condition in tunnel linings and climatic conditions tunnels in hard rock in Norway. These data have been included in a hygrothermal simulation model in the software WUFI for moisture transport to substantiate moisture transport and long-term effects on saturation of the concrete and membrane material. The findings suggest that EVA-based membranes exhibit significant water absorption and vapor transport properties although they are impermeable to liquid water flow. State-of-the-art sprayed concrete material applied with the wet mix method exhibits very low hydraulic conductivities, lower than 10-14 m/s, thus saturated conductive water flow is a very unlikely dominant transport mechanism. Moisture transport through the lining structure by capillary flow and vapor diffusion are calculated to approximately 3 cm3/m2 per day for lining thicknesses in the range of 25-35 cm and seasonal Nordic climate variations. The calculated moisture contents in the tunnel linings from the hygrothermal simulations are largely in agreement with the measured moisture contents in the tunnel linings. The findings also indicate that the concrete material exhibits

  17. Ultrasonic testing of reactive powder concrete.

    PubMed

    Washer, Glenn; Fuchs, Paul; Graybeal, Benjamin A; Hartmann, Joseph Lawrence

    2004-02-01

    Concrete is a critical material for the construction of infrastructure facilities throughout the world. Traditional concretes consist of cement paste and aggregates ranging in size from 6 to 25 mm that form a heterogeneous material with substantial compressive strength and a very low tensile strength. Steel reinforcement is used to provide tensile strength for reinforced concrete structures and as a composite the material is useful for structural applications. A new material known as reactive powder concrete (RPC) is becoming available. It differs significantly from traditional concrete; RPC has no large aggregates, and contains small steel fibers that provide additional strength and, in some cases, can replace traditional steel reinforcement. Due to its high density and lack of aggregates, ultrasonic inspections at frequencies 10 to 20 times that of traditional concrete inspections are possible. This paper reports on the initial findings of research conducted to determine the applicability of ultrasonic testing techniques for the condition assessment of RPC. Pulse velocities for shear and longitudinal waves and ultrasonic measurement of the modulus of elasticity for RPC are reported. Ultrasonic crack detection for RPC also is investigated.

  18. Comparative testing of nondestructive examination techniques for concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight A.; Smith, Cyrus M.

    2014-03-01

    A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide foundation, support, shielding, and containment functions. Concrete has been used in the construction of nuclear power plants (NPPs) because of three primary properties, its inexpensiveness, its structural strength, and its ability to shield radiation. Examples of concrete structures important to the safety of LWR plants include containment building, spent fuel pool, and cooling towers. Comparative testing of the various NDE concrete measurement techniques requires concrete samples with known material properties, voids, internal microstructure flaws, and reinforcement locations. These samples can be artificially created under laboratory conditions where the various properties can be controlled. Other than NPPs, there are not many applications where critical concrete structures are as thick and reinforced. Therefore, there are not many industries other than the nuclear power plant or power plant industry that are interested in performing NDE on thick and reinforced concrete structures. This leads to the lack of readily available samples of thick and heavily reinforced concrete for performing NDE evaluations, research, and training. The industry that typically performs the most NDE on concrete structures is the bridge and roadway industry. While bridge and roadway structures are thinner and less reinforced, they have a good base of NDE research to support their field NDE programs to detect, identify, and repair concrete failures. This paper will summarize the initial comparative testing of two concrete samples with an emphasis on how these techniques could perform on NPP concrete structures.

  19. An overview of the joint FAA/NASA aircraft/ground runway friction program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1989-01-01

    There is a need for information on runways which may become slippery due to various forms and types of contaminants. Experience has shown that since the beginning of all weather aircraft operations, there have been landing and aborted takeoff incidents and/or accidents each year where aircraft have either run off the end or veered off the shoulder of low friction runways. NASA Langley's Landing and Impact Dynamics Branch is involved in several research programs directed towards obtaining a better understanding of how different tire properties interact with varying pavement surface characteristics to produce acceptable performance for aircraft ground handling requirements. One such effort, which was jointly supported by not only NASA and the FAA but by several aviation industry groups including the Flight Safety Foundation, is described.

  20. NASA Boeing 737 Aircraft Test Results from 1996 Joint Winter Runway Friction Measurement Program

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1996-01-01

    A description of the joint test program objectives and scope is given together with the performance capability of the NASA Langley B-737 instrumented aircraft. The B-737 test run matrix conducted during the first 8 months of this 5-year program is discussed with a description of the different runway conditions evaluated. Some preliminary test results are discussed concerning the Electronic Recording Decelerometer (ERD) readings and a comparison of B-737 aircraft braking performance for different winter runway conditions. Detailed aircraft parameter time history records, analysis of ground vehicle friction measurements and harmonization with aircraft braking performance, assessment of induced aircraft contaminant drag, and evaluation of the effects of other factors on aircraft/ground vehicle friction performance will be documented in a NASA Technical Report which is being prepared for publication next year.

  1. Los Angeles International Airport Runway Incursion Studies: Phase III--Center-Taxiway Simulation

    NASA Technical Reports Server (NTRS)

    Madson, Michael D.

    2004-01-01

    Phase III of the Los Angeles International Airport Runway Incursion Studies was conducted, under an agreement with HNTB Corporation, at the NASA Ames FutureFlight Central (FFC) facility in June 2003. The objective of the study was the evaluation of a new center-taxiway concept at LAX. This study is an extension of the Phase I and Phase II studies previously conducted at FFC. This report presents results from Phase III of the study, in which a center-taxiway concept between runways 25L and 25R was simulated and evaluated. Phase III data were compared objectively against the Baseline data. Subjective evaluations by participating LAX controllers were obtained with regard to workload, efficiency, and safety criteria. To facilitate a valid comparison between Baseline and Phase III data, the same scenarios were used for Phase III that were tested during Phases I and II. This required briefing participating controllers on differences in airport and airline operations between 2001 and today.

  2. Proceedings of the NASA Workshop on Flight Deck Centered Parallel Runway Approaches in Instrument Meteorological Conditions

    NASA Technical Reports Server (NTRS)

    Waller, Marvin C. (Editor); Scanlon, Charles H. (Editor)

    1996-01-01

    A Government and Industry workshop on Flight-Deck-Centered Parallel Runway Approaches in Instrument Meteorological Conditions (IMC) was conducted October 29, 1996 at the NASA Langley Research Center. This document contains the slides and records of the proceedings of the workshop. The purpose of the workshop was to disclose to the National airspace community the status of ongoing NASA R&D to address the closely spaced parallel runway problem in IMC and to seek advice and input on direction of future work to assure an optimized research approach. The workshop also included a description of a Paired Approach Concept which is being studied at United Airlines for application at the San Francisco International Airport.

  3. Preliminary evaluation of the effect of a dynamic preferential runway system upon community noise disturbance

    NASA Technical Reports Server (NTRS)

    Patterson, H. P.; Edmiston, R. P.; Connor, W. K.

    1972-01-01

    A dynamic preferential runway system (DPRS) was developed for John F. Kennedy International Airport for the purpose of controlling short term noise exposure in the neighboring communities. The DPRS is a computer-aided procedure for optimum selection of runways from the standpoint of noise and is based upon a community disturbance model which takes into account flyover levels, size of exposed populations, time of day and week, and persistence of overflights. A preliminary evaluation of the DPRS is presented on the basis of social survey data and telephone complaint records, for the trial period of August and September, 1971. Comparative use is made of data taken in a previous survey of the same community areas in 1969.

  4. Sequestration of CO2 by concrete carbonation.

    PubMed

    Galan, Isabel; Andrade, Carmen; Mora, Pedro; Sanjuan, Miguel A

    2010-04-15

    Carbonation of reinforced concrete is one of the causes of corrosion, but it is also a way to sequester CO2. The characteristics of the concrete cover should ensure alkaline protection for the steel bars but should also be able to combine CO2 to a certain depth. This work attempts to advance the knowledge of the carbon footprint of cement. As it is one of the most commonly used materials worldwide, it is very important to assess its impact on the environment. In order to quantify the capacity of cement based materials to combine CO2 by means of the reaction with hydrated phases to produce calcium carbonate, Thermogravimetry and the phenolphthalein indicator have been used to characterize several cement pastes and concretes exposed to different environments. The combined effect of the main variables involved in this process is discussed. The moisture content of the concrete seems to be the most influential parameter.

  5. Views of the Columbia sitting on Lakebed runway during crew egress of STS-2

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Greeted by their medical doctor, Astronauts Joe H. Engle and Richard H. Truly egress the capbin of the shuttle Columbia at Edwards Air Force Base at the end of the STS-2 mission. Dr. Charles LaPinta of JSC's Medical Sciences Division is at right (39578); Engle, left, and Truly, still wearing their ejection/escape suits step out on to the runway at Edwards AFB (39579).

  6. Texture Modification of the Shuttle Landing Facility Runway at Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Daugherty, Robert H.; Yager, Thomas J.

    1997-01-01

    This paper describes the test procedures and the criteria used in selecting an effective runway-surface-texture modification at the Kennedy Space Center (KSC) Shuttle Landing Facility (SLF) to reduce Orbiter tire wear. The new runway surface may ultimately result in an increase of allowable crosswinds for launch and landing operations. The modification allows launch and landing operations in 20-knot crosswinds, if desired. This 5-knot increase over the previous 15-knot limit drastically increases landing safety and the ability to make on-time launches to support missions in which Space Station rendezvous are planned. The paper presents the results of an initial (1988) texture modification to reduce tire spin-up wear and then describes a series of tests that use an instrumented ground-test vehicle to compare tire friction and wear characteristics, at small scale, of proposed texture modifications placed into the SLF runway surface itself. Based on these tests, three candidate surfaces were chosen to be tested at full-scale by using a highly modified and instrumented transport aircraft capable of duplicating full Orbiter landing profiles. The full-scale Orbiter tire testing revealed that tire wear could be reduced approximately by half with either of two candidates. The texture-modification technique using a Humble Equipment Company Skidabrader(trademark) shotpeening machine proved to be highly effective, and the entire SLF runway surface was modified in September 1994. The extensive testing and evaluation effort that preceded the selection of this particular surface-texture-modification technique is described herein.

  7. Cockpit Displays for Enhancing Terminal-Area Situational Awareness and Runway Safety

    NASA Technical Reports Server (NTRS)

    Hyer, Paul V.; Otero, Sharon; Jones, Denise R. (Technical Monitor)

    2007-01-01

    HUD and PFD displays have been developed to enhance situational awareness and improve runway safety. These displays were designed to seamlessly transition through all phases of flight providing guidance and information to the pilot. This report describes the background of the Langley Research Center (LaRC) HUD and PFD work, the steps required to integrate the displays with those of other LaRC programs, the display characteristics of the several operational modes and the transitional logic governing the transition between displays.

  8. Non-Airborne Conflicts: The Causes and Effects of Runway Transgressions

    DTIC Science & Technology

    1985-09-01

    and O’Hara, Dolores B., "Human Factors Associated with Runway Incursions", NASA Aviation Safety Reporting System: Eighth Quarterly Report, NASA...ararararocearx OUUU13UUK O_<X<X<XCJ<X<X<X 3uaa« a zaacjzcicjzzi zu uzu D <I <I D <I U d <c za <r a. ZUOU.ZUUUIUUUUO t

  9. Properties of Concrete partially replaced with Coconut Shell as Coarse aggregate and Steel fibres in addition to its Concrete volume

    NASA Astrophysics Data System (ADS)

    Kalyana Chakravarthy, P. R.; Janani, R.; Ilango, T.; Dharani, K.

    2017-03-01

    Cement is a binder material with various composition of Concrete but instantly it posses low tensile strength. The study deals with mechanical properties of that optimized fiber in comparison with conventional and coconut shell concrete. The accumulation of fibers arbitrarily dispersed in the composition increases the resistance to cracking, deflection and other serviceability conditions substantially. The steel fiber in extra is one of the revision in coconut shell concrete and the outcome of steel fiber in coconut shell concrete was to investigate and compare with the conventional concrete. For the given range of steel fibe from 0.5 to 2.0%, 12 beams and 36 cylindrical specimens were cast and tested to find the mechanical properties like flexural strength, split tensile, impact resistance and the modulus of elasticity of both conventional and coconut shell concrete has been studied and the test consequences are compared with the control concrete and coconut shell concrete for M25 Grade. It is fulfilled that, the steel fibers used in this venture has shown significant development in all the properties of conventional and coconut shell concrete while compared to controlled conventional and coconut shell concrete like, Flexural strength by 6.67 % for 1.0 % of steel fiber in conventional concrete and by 5.87 % for 1.5 % of steel fiber in coconut shell concrete.

  10. Evaluation and Repair of Concrete Slabs

    DTIC Science & Technology

    1992-01-01

    is duce a readily flowable concrete that is capable of listed in Table 1. completely filling the formed area. For large surface areas, it may be...Poor compaction, irregular surfaces, expansive soils , and the presence of mud or soft organic material can all result in a yielding subgrade. Again... fill all the spaces around the coarse aggregate. It is easily recognized by voids in the surface where the concrete appears as coarse aggregate

  11. Modeling of concrete response at high temperature

    SciTech Connect

    Pfeiffer, P.; Marchertas, A.

    1984-01-01

    A rate-type creep law is implemented into the computer code TEMP-STRESS for high temperature concrete analysis. The disposition of temperature, pore pressure and moisture for the particular structure in question is provided as input for the thermo-mechanical code. The loss of moisture from concrete also induces material shrinkage which is accounted for in the analytical model. Examples are given to illustrate the numerical results.

  12. Models for estimating runway landing capacity with Microwave Landing System (MLS)

    NASA Technical Reports Server (NTRS)

    Tosic, V.; Horonjeff, R.

    1975-01-01

    A model is developed which is capable of computing the ultimate landing runway capacity, under ILS and MLS conditions, when aircraft population characteristics and air traffic control separation rules are given. This model can be applied in situations when only a horizontal separation between aircraft approaching a runway is allowed, as well as when both vertical and horizontal separations are possible. It is assumed that the system is free of errors, that is that aircraft arrive at specified points along the prescribed flight path precisely when the controllers intend for them to arrive at these points. Although in the real world there is no such thing as an error-free system, the assumption is adequate for a qualitative comparison of MLS with ILS. Results suggest that an increase in runway landing capacity, caused by introducing the MLS multiple approach paths, is to be expected only when an aircraft population consists of aircraft with significantly differing approach speeds and particularly in situations when vertical separation can be applied. Vertical separation can only be applied if one of the types of aircraft in the mix has a very steep descent angle.

  13. Effects of ATC automation on precision approaches to closely space parallel runways

    NASA Technical Reports Server (NTRS)

    Slattery, R.; Lee, K.; Sanford, B.

    1995-01-01

    Improved navigational technology (such as the Microwave Landing System and the Global Positioning System) installed in modern aircraft will enable air traffic controllers to better utilize available airspace. Consequently, arrival traffic can fly approaches to parallel runways separated by smaller distances than are currently allowed. Previous simulation studies of advanced navigation approaches have found that controller workload is increased when there is a combination of aircraft that are capable of following advanced navigation routes and aircraft that are not. Research into Air Traffic Control automation at Ames Research Center has led to the development of the Center-TRACON Automation System (CTAS). The Final Approach Spacing Tool (FAST) is the component of the CTAS used in the TRACON area. The work in this paper examines, via simulation, the effects of FAST used for aircraft landing on closely spaced parallel runways. The simulation contained various combinations of aircraft, equipped and unequipped with advanced navigation systems. A set of simulations was run both manually and with an augmented set of FAST advisories to sequence aircraft, assign runways, and avoid conflicts. The results of the simulations are analyzed, measuring the airport throughput, aircraft delay, loss of separation, and controller workload.

  14. Concreteness Fading in Mathematics and Science Instruction: A Systematic Review

    ERIC Educational Resources Information Center

    Fyfe, Emily R.; McNeil, Nicole M.; Son, Ji Y.; Goldstone, Robert L.

    2014-01-01

    A longstanding debate concerns the use of concrete versus abstract instructional materials, particularly in domains such as mathematics and science. Although decades of research have focused on the advantages and disadvantages of concrete and abstract materials considered independently, we argue for an approach that moves beyond this dichotomy and…

  15. Laser ablation studies of concrete

    SciTech Connect

    Savina, M.; Xu, Z.; Wang, Y.; Reed, C.; Pellin, M.

    1999-10-20

    Laser ablation was studied as a means of removing radioactive contaminants from the surface and near-surface regions of concrete. The authors present the results of ablation tests on cement and concrete samples using a 1.6 kW pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied using cement and high density concrete as targets. Ablation efficiency and material removal rates were determined as functions of irradiance and pulse overlap. Doped samples were also ablated to determine the efficiency with which surface contaminants were removed and captured in the effluent. The results show that the cement phase of the material melts and vaporizes, but the aggregate portion (sand and rock) fragments. The effluent consists of both micron-size aerosol particles and chunks of fragmented aggregate material. Laser-induced optical emission spectroscopy was used to analyze the surface during ablation. Analysis of the effluent showed that contaminants such as cesium and strontium were strongly segregated into different regions of the particle size distribution of the aerosol.

  16. Monte Carlo simulations for optimization of neutron shielding concrete

    NASA Astrophysics Data System (ADS)

    Piotrowski, Tomasz; Tefelski, Dariusz B.; Polański, Aleksander; Skubalski, Janusz

    2012-06-01

    Concrete is one of the main materials used for gamma and neutron shielding. While in case of gamma rays an increase in density is usually efficient enough, protection against neutrons is more complex. The aim of this paper is to show the possibility of using the Monte Carlo codes for evaluation and optimization of concrete mix to reach better neutron shielding. Two codes (MCNPX and SPOT — written by authors) were used to simulate neutron transport through a wall made of different concretes. It is showed that concrete of higher compressive strength attenuates neutrons more effectively. The advantage of heavyweight concrete (with barite aggregate), usually used for gamma shielding, over the ordinary concrete was not so clear. Neutron shielding depends on many factors e.g. neutron energy, barrier thickness and atomic composition. All this makes a proper design of concrete as a very important issue for nuclear power plant safety assurance.

  17. Relating Fresh Concrete Viscosity Measurements from Different Rheometers

    PubMed Central

    Ferraris, Chiara F.; Martys, Nicos S.

    2003-01-01

    Concrete rheological properties need to be properly measured and predicted in order to characterize the workability of fresh concrete, including special concretes such as self-consolidating concrete (SCC). It was shown by a round-robin test held in 2000 [1,2] that different rheometer designs gave different values of viscosity for the same concrete. While empirical correlation between different rheometers was possible, for a procedure that is supposed to “scientifically” improve on the empirical slump tests, this situation is unsatisfactory. To remedy this situation, a new interpretation of the data was developed. In this paper, it is shown that all instruments tested could be directly and quantitatively compared in terms of relative plastic viscosity instead of the plastic viscosity alone. This should eventually allow the measurements from various rheometer designs to be directly calibrated against known standards of plastic viscosity, putting concrete rheometry and concrete workability on a sounder materials science basis. PMID:27413607

  18. Environmental Assessment for Repair of Airfield Pavement and Lighting, Runway 03R/21L Travis Air Force Base, Fairfield, California. Revision

    DTIC Science & Technology

    2009-12-01

    R e v i s e d F i n a l Environmental Assessment for Repair of Airfield Pavement and Lighting, Runway 03R/21L Travis Air Force Base... I NO ACTION ALTERNATIVE Under the no action alternative, the airfield runway would continue to be used and maintained. The existing runway and...Based on the analyses accomplished as a part of the enviromnental assessment (EA), which is herewith incorporated by reference, I determine that no

  19. Microstructure of high-strength foam concrete

    SciTech Connect

    Just, A.; Middendorf, B.

    2009-07-15

    Foam concretes are divided into two groups: on the one hand the physically foamed concrete is mixed in fast rotating pug mill mixers by using foaming agents. This concrete cures under atmospheric conditions. On the other hand the autoclaved aerated concrete is chemically foamed by adding aluminium powder. Afterwards it is cured in a saturated steam atmosphere. New alternatives for the application of foam concretes arise from the combination of chemical foaming and air curing in manufacturing processes. These foam concretes are new and innovative building materials with interesting properties: low mass density and high strength. Responsible for these properties are the macro-, meso- and microporosity. Macropores are created by adding aluminium powder in different volumes and with different particle size distributions. However, the microstructure of the cement matrix is affected by meso- and micropores. In addition, the matrix of the hardened cement paste can be optimized by the specific use of chemical additives for concrete. The influence of aluminium powder and chemical additives on the properties of the microstructure of the hardened cement matrices were investigated by using petrographic microscopy as well as scanning electron microscopy.

  20. Some engineering properties of heavy concrete added silica fume

    NASA Astrophysics Data System (ADS)

    Akkaş, Ayşe; Başyiǧit, Celalettin; Esen, Serap

    2013-12-01

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes' added Silica fume have been investigated.

  1. Feasibility of Computing Residual Displacements in Runways and Crater Repairs.

    DTIC Science & Technology

    1982-04-01

    seem to be unreasonable. A possible field check to determine proper compaction of pushback material would be to employ a cone penetrometer. Sanglerat ...671, pp. 84-91. 12. Sanglerat , G., The Penetrometer and Soil Exploration, New York: Elsevier Scientific Publishing Company, 1972. 52 13. Selig

  2. Use of recycled plastics in concrete: A critical review.

    PubMed

    Gu, Lei; Ozbakkaloglu, Togay

    2016-05-01

    Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics.

  3. Reinforced Concrete Modeling

    DTIC Science & Technology

    1982-07-01

    AFWL-TR-82-9 AFWL-TR-82-9 REINFORCED CONCRETE MODELING H. L. Schreyer J. W. Jeter, Jr. New Mexico Engineering Reseprch Institute University of New...Subtitle) S. TYPE OF REPORT & PERIOD COVERED REINFORCED CONCRETE MODELING Final Report 6. PERFORMING OtG. REPORT NUMBER NMERI TA8-9 7. AUTHORg) S...loading were identified and used to evaluate current concrete models . Since the endochronic and viscoplastic models provide satisfactory descriptions

  4. The Use of Natural Pozzolan in Concrete as an Additive or Substitute for Cement

    DTIC Science & Technology

    2011-12-01

    17 Figure 28. Materials used for concrete mix...activity index with different pozzaolanic materials . ................................................ 62 Table 31. ASTM C1260 Aggregate grading...is feasible that a significant portion of cement in a concrete mixture may be replaced by pozzolan. This study ex- plored the properties of concrete

  5. 78 FR 37236 - Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... COMMISSION Prestressed Concrete Steel Rail Tie Wire From China, Mexico, and Thailand Determinations On the... injured by reason of imports from China, Mexico, and Thailand of prestressed concrete steel rail tie wire... materially injured or threatened with material injury by reason of LTFV imports of prestressed concrete...

  6. Development of Environmentally Benign and Reduced Corrosion Runway Deicing Fluid

    DTIC Science & Technology

    2009-08-01

    galvanized steel . More recently, two additional serious material compatibility problems, not addressed by the AMS 1435 standards, have emerged. First...2009. Cycling Cadmium Corrosion Test. The AMS 1435 cadmium (Cd) corrosion test follows ASTM F 1111. Coupons of 4130 steel , 1- x 2-in. by 0.048-in...and Alclad) (b) Total immersion corrosion of Al, Mg, Ti alloys, and carbon steel (c) Low-embrittling Cd plate and Hydrogen embrittlement (d) Stress

  7. Hydrothermal alteration of concrete: Yucca Mountain repository analogues

    SciTech Connect

    Myers, K.B.; Meike, A.

    1997-10-01

    Concrete could comprise a major share of construction materials present in the potential Yucca Mountain high-level radioactive waste repository. Concrete and shotcrete would be used as mechanical support (precast concrete liners), or road bed (invert) in repository emplacement drifts. These drifts could reach at least 150 to 200{degrees}C for extended periods of time, possibly in the presence of fluids. This study characterizes chemical and structural transformations in concrete that may occur as a result of a repository hydrothermal cycle. The specific concrete formulation to be used in the potential Yucca Mountain repository had not been determined at the time of the experiment. Invert and Fibercrete{sup TM} materials from the Exploratory Studies Facility (ESF) were chosen for these experiments as representatives of standard construction concrete used in this setting.

  8. Laboratory constitutive characterization of cellular concrete.

    SciTech Connect

    Hardy, Robert Douglas; Lee, Moo Yul; Bronowski, David R.

    2004-03-01

    To establish mechanical material properties of cellular concrete mixes, a series of quasi-static, compression and tension tests have been completed. This report summarizes the test methods, set-up, relevant observations, and results from the constitutive experimental efforts. Results from the uniaxial and triaxial compression tests established failure criteria for the cellular concrete in terms of stress invariants I{sub 1} and J{sub 2}. {radical}J{sub 2} (MPa) = 297.2 - 278.7 exp{sup -0.000455 I}{sub 1}{sup (MPa)} for the 90-pcf concrete {radical}J{sub 2} (MPa) = 211.4 - 204.2 exp {sup -0.000628 I}{sub 1}{sup (MPa)} for the 60-pcf concrete

  9. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    NASA Astrophysics Data System (ADS)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  10. 51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    51. DETAIL VIEW OF VIVIANNA ERA CONCRETE HOUSE WITH CONCRETE PATIO SLAB LOOKING SOUTHWEST. NOTICE MINE WORKINGS BACKGROUND LEFT. - Mariscal Quicksilver Mine & Reduction Works, Terlingua, Brewster County, TX

  11. Radionuclide Retention in Concrete Wasteforms

    SciTech Connect

    Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.; Wood, Marcus I.

    2011-09-30

    Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate prediction of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.

  12. Nanomechanics and Multiscale Modeling of Sustainable Concretes

    NASA Astrophysics Data System (ADS)

    Zanjani Zadeh, Vahid

    The work presented in this dissertation is aimed to implement and further develop the recent advances in material characterization for porous and heterogeneous materials and apply these advances to sustainable concretes. The studied sustainable concretes were concrete containing fly ash and slag, Kenaf fiber reinforced concrete, and lightweight aggregate concrete. All these cement-based materials can be categorized as sustainable concrete, by achieving concrete with high strength while reducing cement consumption. The nanoindentation technique was used to infer the nanomechanical properties of the active hydration phases in bulk cement paste. Moreover, the interfacial transition zone (ITZ) of lightweight aggregate, normal aggregate, and Kenaf fibers were investigated using nanoindentation and imagine techniques, despite difficulties regarding characterizing this region. Samples were also tested after exposure to high temperature to evaluate the damage mechanics of sustainable concretes. It has been shown that there is a direct correlation between the nature of the nanoscale structure of a cement-based material with its macroscopic properties. This was addressed in two steps in this dissertation: (i) Nanoscale characterization of sustainable cementitious materials to understand the different role of fly ash, slag, lightweight aggregate, and Kenaf fibers on nanoscale (ii) Link the nanoscale mechanical properties to macroscale ones with multiscale modeling. The grid indentation technique originally developed for normal concrete was extended to sustainable concretes with more complex microstructure. The relation between morphology of cement paste materials and submicron mechanical properties, indentation modulus, hardness, and dissipated energy is explained in detail. Extensive experimental and analytical approaches were focused on description of the materials' heterogeneous microstructure as function of their composition and physical phenomenon. Quantitative

  13. Evaluation of Concrete Mixtures for Use in Underwater Repairs

    DTIC Science & Technology

    1988-04-01

    Review ....... . of This Study Scope ••••••••••••••••••• PART II: EXPERIMENTAL PROGRAM Phase I: Concrete Mixture Proportions ....... Phase I...to determine the combination of materials necessary to produce concrete with the desired properties. Significant correlations that exist between...Test Procedures . . . . . . . . . . . . . . ...... Phase II: Concrete Mixture Proportions Phase II: Test Procedures . . . . . . . ..... PART III

  14. Radiation shielding properties of concretes including quiclime (CaO)

    NASA Astrophysics Data System (ADS)

    Özavcı, S.; ćetin, B.

    2017-02-01

    Lime is one of the oldest binder material used for concrete production. In this study, the shielding properties of γ-rays by Quicklime concretes have been investigated for concretes containing different rates of wood ash, küfenki stones, disbudak tree leaf juice and water. Measurements performed using a gamma spectrometer that contains an NaI(Tl) detector and MCA at 662, 1173 and 1332 keV.

  15. Underwater Nondestructive Testing of Concrete: An Evaluation of Techniques.

    DTIC Science & Technology

    1986-02-01

    waterfront facilities, concrete, Schmidt hammer, rebar location, ultrasonic testing 20 ABSTRACT (Co,id irn. r1.0,e id* it necessary and idenlty by...construction material used by the Navy in waterfront structures. It is estimated that more than 40% of Navy piers consist of a concrete deck supported...concrete, pile-supported, waterfront structure, located at the North Island Naval Air Station in Zan Diego. The pier is supported by 791 piles and

  16. Predicting the remaining service life of concrete

    SciTech Connect

    Clifton, J.F.

    1991-11-01

    Nuclear power plants are providing, currently, about 17 percent of the U.S. electricity and many of these plants are approaching their licensed life of 40 years. The U.S. Nuclear Regulatory Commission and the Department of Energy`s Oak Ridge National Laboratory are carrying out a program to develop a methodology for assessing the remaining safe-life of the concrete components and structures in nuclear power plants. This program has the overall objective of identifying potential structural safety issues, as well as acceptance criteria, for use in evaluations of nuclear power plants for continued service. The National Institute of Standards and Technology (NIST) is contributing to this program by identifying and analyzing methods for predicting the remaining life of in-service concrete materials. This report examines the basis for predicting the remaining service lives of concrete materials of nuclear power facilities. Methods for predicting the service life of new and in-service concrete materials are analyzed. These methods include (1) estimates based on experience, (2) comparison of performance, (3) accelerated testing, (4) stochastic methods, and (5) mathematical modeling. New approaches for predicting the remaining service lives of concrete materials are proposed and recommendations for their further development given. Degradation processes are discussed based on considerations of their mechanisms, likelihood of occurrence, manifestations, and detection. They include corrosion, sulfate attack, alkali-aggregate reactions, frost attack, leaching, radiation, salt crystallization, and microbiological attack.

  17. Variability in properties of Salado Mass Concrete

    SciTech Connect

    Wakeley, L.D.; Harrington, P.T.; Hansen, F.D.

    1995-08-01

    Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.

  18. Strain rate effects for spallation of concrete

    NASA Astrophysics Data System (ADS)

    Häussler-Combe, Ulrich; Panteki, Evmorfia; Kühn, Tino

    2015-09-01

    Appropriate triaxial constitutive laws are the key for a realistic simulation of high speed dynamics of concrete. The strain rate effect is still an open issue within this context. In particular the question whether it is a material property - which can be covered by rate dependent stress strain relations - or mainly an effect of inertia is still under discussion. Experimental and theoretical investigations of spallation of concrete specimen in a Hopkinson Bar setup may bring some evidence into this question. For this purpose the paper describes the VERD model, a newly developed constitutive law for concrete based on a damage approach with included strain rate effects [1]. In contrast to other approaches the dynamic strength increase is not directly coupled to strain rate values but related to physical mechanisms like the retarded movement of water in capillary systems and delayed microcracking. The constitutive law is fully triaxial and implemented into explicit finite element codes for the investigation of a wide range of concrete structures exposed to impact and explosions. The current setup models spallation experiments with concrete specimen [2]. The results of such experiments are mainly related to the dynamic tensile strength and the crack energy of concrete which may be derived from, e.g., the velocity of spalled concrete fragments. The experimental results are compared to the VERD model and two further constitutive laws implemented in LS-Dyna. The results indicate that both viscosity and retarded damage are required for a realistic description of the material behaviour of concrete exposed to high strain effects [3].

  19. Evaluation of concrete recycling system efficiency for ready-mix concrete plants.

    PubMed

    Vieira, Luiz de Brito Prado; Figueiredo, Antonio Domingues de

    2016-10-01

    The volume of waste generated annually in concrete plants is quite large and has important environmental and economic consequences. The use of fresh concrete recyclers is an interesting way for the reuse of aggregates and water in new concrete production. This paper presents a study carried out for over one year by one of the largest ready-mix concrete producers in Brazil. This study focused on the evaluation of two recyclers with distinct material separation systems, herein referred to as drum-type and rotary sieve-type equipment. They were evaluated through characterization and monitoring test programs to verify the behaviour of recovered materials (aggregates, water, and slurry). The applicability of the recovered materials (water and aggregates) was also evaluated in the laboratory and at an industrial scale. The results obtained with the two types of recyclers used were equivalent and showed no significant differences. The only exception was in terms of workability. The drum-type recycler generated fewer cases that required increased pumping pressure. The analysis concluded that the use of untreated slurry is unfeasible because of its intense negative effects on the strength and workability of concrete. The reclaimed water, pre-treated to ensure that its density is less than 1.03g/cm(3), can be used on an industrial scale without causing any harm to the concrete. The use of recovered aggregates consequently induces an increase in water demand and cement consumption to ensure the workability conditions of concrete that is proportional to the concrete strength level. Therefore, the viability of their use is restricted to concretes with characteristic strengths lower than 25MPa.

  20. Shuttle Endeavour Mated to 747 SCA Taxi to Runway for Delivery to Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's 747 Shuttle Carrier Aircraft No. 911, with the space shuttle orbiter Endeavour securely mounted atop its fuselage, taxies to the runway to begin the ferry flight from Rockwell's Plant 42 at Palmdale, California, where the orbiter was built, to the Kennedy Space Center, Florida. At Kennedy, the space vehicle was processed and launched on orbital mission STS-49, which landed at NASA's Ames-Dryden Flight Research Facility (later redesignated Dryden Flight Research Center), Edwards, California, 16 May 1992. NASA 911, the second modified 747 that went into service in November 1990, has special support struts atop the fuselage and internal strengthening to accommodate the added weight of the orbiters. Space Shuttles are the main element of America's Space Transportation System and are used for space research and other space applications. The shuttles are the first vehicles capable of being launched into space and returning to Earth on a routine basis. Space Shuttles are used as orbiting laboratories in which scientists and mission specialists conduct a wide variety of scientific experiments. Crews aboard shuttles place satellites in orbit, rendezvous with satellites to carry out repair missions and return them to space, and retrieve satellites and return them to Earth for refurbishment and reuse. Space Shuttles are true aerospace vehicles. They leave Earth and its atmosphere under rocket power provided by three liquid-propellant main engines with two solid-propellant boosters attached plus an external liquid-fuel tank. After their orbital missions, they streak back through the atmosphere and land like airplanes. The returning shuttles, however, land like gliders, without power and on runways. Other rockets can place heavy payloads into orbit, but, they can only be used once. Space Shuttles are designed to be continually reused. When Space Shuttles are used to transport complete scientific laboratories into space, the laboratories remain inside the payload bay

  1. Retention of Lead and Total Suspended Solids in Pervious Concrete

    NASA Astrophysics Data System (ADS)

    Nolin, Spring

    Pervious concrete, an alternative to conventional concrete, is a material with an increased amount of void space that allows water to pass through the concrete versus ponding and/or running off into catchment systems. This study examines the retention capabilities of lead and Total Suspended Solids (TSS) within an entire pervious concrete system and the effects of different fly ash compositions for pervious concrete along with two different types of crushed stones and a soil layer. A complete pervious concrete system consisted of one formulation of pervious concrete along with one type of crushed stone and the soil layer used in the individual trials of TSS removal and lead retention to determine if a complete pervious concrete system would equal the sum of its parts. The retention of lead by the complete pervious concrete system was compared against the individual results from the parts of the complete pervious concrete system. Among the different formulations of pervious concrete, the specimens with a high loss on ignition showed a higher removal rate of lead but not TSS than those with low loss on ignition, yet the difference in the percentage of fly ash did not show an effect on the removal or retention of either lead or TSS. Of the two types of crushed stone tested, the 3/8" crushed stone retained more TSS than the #57 crushed stone. The amount of lead retained by the #57 crushed stone was not significantly different from the 3/8" crushed stone after the crushed stone was flushed. The dirt layer showed a complete removal rate of lead as did the complete pervious concrete system. The sum of the parts of the pervious concrete system indicate that for maximum removal of TSS and lead, a high loss on ignition fly ash pervious concrete cylinder should be used in conjunction with a 3/8" crushed stone layer.

  2. Estimating crack growth in temperature damaged concrete

    NASA Astrophysics Data System (ADS)

    Recalde, Juan Jose

    2009-12-01

    Evaluation of the structural condition of deteriorated concrete infrastructure and evaluation of new sustainable cementitious materials require an understanding of how the material will respond to applied loads and environmental exposures. A fundamental understanding of how microstructural changes in these materials relate to changes in mechanical properties and changes in fluid penetrability is needed. The ability to provide rapid, inexpensive assessment of material characteristics and relevant engineering properties is valuable for decision making and asset management purposes. In this investigation, the effects of changes in dynamic elastic properties with water content and fluid penetrability properties before and after a 300°C exposure were investigated based on estimates of the crack density parameter from dry and saturated cracked media. The experimental and analytical techniques described in this dissertation allow calculation of a value for the crack density parameter using nondestructive determination of wet and dry dynamic shear modulus of relatively thin disks. The techniques were used to compare a conventional concrete mixture to several mixtures with enhanced sustainability characteristics. The three enhanced sustainable materials investigated were a very high fly ash mixture, a magnesium phosphate cement based mortar, and a magnesium phosphate cement based concrete, and were compared to a conventional concrete mixture. The analysis provided both quantitative assessment of changes with high temperature damage and autogenous healing, and estimates of changes in mean crack trace lengths. The results showed that water interaction, deterioration due to damage, and autogenous healing recovery were different for the magnesium phosphate cement based mixtures than the portland cement based concrete mixtures. A strong correlation was found between log-transformed Air Permeability Index, dynamic shear modulus, and crack density parameter. The findings imply

  3. An Exploratory Study of Runway Arrival Procedures: Time Based Arrival and Self-Spacing

    NASA Technical Reports Server (NTRS)

    Houston, Vincent E.; Barmore, Bryan

    2009-01-01

    The ability of a flight crew to deliver their aircraft to its arrival runway on time is important to the overall efficiency of the National Airspace System (NAS). Over the past several years, the NAS has been stressed almost to its limits resulting in problems such as airport congestion, flight delay, and flight cancellation to reach levels that have never been seen before in the NAS. It is predicted that this situation will worsen by the year 2025, due to an anticipated increase in air traffic operations to one-and-a-half to three times its current level. Improved arrival efficiency, in terms of both capacity and environmental impact, is an important part of improving NAS operations. One way to improve the arrival performance of an aircraft is to enable the flight crew to precisely deliver their aircraft to a specified point at either a specified time or specified interval relative to another aircraft. This gives the flight crew more control to make the necessary adjustments to their aircraft s performance with less tactical control from the controller; it may also decrease the controller s workload. Two approaches to precise time navigation have been proposed: Time-Based Arrivals (e.g., required times of arrival) and Self-Spacing. Time-Based Arrivals make use of an aircraft s Flight Management System (FMS) to deliver the aircraft to the runway threshold at a given time. Self-Spacing enables the flight crew to achieve an ATC assigned spacing goals at the runway threshold relative to another aircraft. The Joint Planning and Development Office (JPDO), a multi-agency initiative established to plan and coordinate the development of the Next Generation Air Transportation System (NextGen), has asked for data for both of these concepts to facilitate future research and development. This paper provides a first look at the delivery performance of these two concepts under various initial and environmental conditions in an air traffic simulation environment.

  4. Effects of drugs on schedule-controlled running of mice in a circular runway.

    PubMed

    Lehr, E; Morse, W H; Dews, P B

    1985-01-01

    Partially food deprived mice ran in a 1-m circular runway. Every 30 circuits, diluted evaporated milk was delivered. Under control conditions mice averaged 0.18 circuits/s for 1 h. The rate was reduced to 0.11 circuits/s 1 h after gavage of Tylose (cellulose derivative) vehicle. Amphetamine, chlordiazepoxide and pentobarbital increased the rate of responding over some dose range, but chlorpromazine, clozapine, imipramine and morphine caused only decreases in responding at effective dose levels. The results are generally similar to reports of effects of the drugs on responses of much briefer duration occurring at similar rates.

  5. FAA evaluation of UV technology for runway incursion prevention and low-visibility landings

    NASA Astrophysics Data System (ADS)

    Norris, Victor J., Jr.

    2003-09-01

    The Federal Aviation Administration (FAA) is currently evaluating a solar blind ultraviolet (UV) technology, called FogEye, that is being developed by Norris Electro Optical Systems. The technology allows for transmission and reception of low level UV signals that are free of any natural background noise. It also offers favorable atmospheric transmission characteristics. Conclusions of the FAA evaluation thus far are that the technology has considerable merit, and that applications such as preventing runway incursions and use as an Integrity Monitor during low visibility landings should be operationally assessed.

  6. An Overview of the Annual NASA Tire/Runway Friction Workshop and Lessons Learned

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    2005-01-01

    This paper summarizes the organization efforts, objectives, scope, agenda, test procedures and results from eleven years of conducting the NASA Tire/Runway Friction Workshop. The paper will also summarize the lessons learned between 1994 and 2004. A description of the various friction, texture and roughness equipment used during these workshops at NASA Wallops Flight Facility on the eastern shore of Virginia will be provided together with the range of test surfaces available for evaluation. The need for friction measuring equipment calibration centers is discussed and plans for future workshops are identified.

  7. Micromechanical Modeling of Concrete at Early Age

    NASA Astrophysics Data System (ADS)

    Tuleubekov, Kairat

    The focus of this research is a micromechanical characterization of Portland cement concrete at early age (less than 28 days). Concrete's viscoelastic properties change significantly at early age due to solidification of its matrix component. Bazant's solidification theory models concrete as a material solidifying in time. This approach is generalized to a three-dimensional characterization of a composite material with a solidifying matrix and elastic inclusions. An integral constitutive relationship was obtained using a generalized correspondence principle and homogenization techniques for elastic composite materials. In light of this approach, effective creep properties of composite spherical assemblage with an aging matrix are obtained. In addition, the elastic Hashin-Monteiro model is generalized to account for the effect of the interfacial transition zone properties on concrete creep. An effective computational platform was developed to evaluate operator expressions in order to obtain relaxation and creep functions numerically. Through numerical examples, it is shown that triaxial generalization of Bazant's solidification model enables robust and computationally efficient prediction of creep deformations in Portland cement concrete.

  8. Runways at small airports are deteriorating because of deferred maintenance: Action needed by FAA and the Congress

    NASA Astrophysics Data System (ADS)

    1982-09-01

    Runways at many small airports are deteriorating faster than necessary because airport owners--usually local governments--have deferred critical maintenance. The result is damage to the runways' basic structure and a shortened useful life if they are not repaired. Based on GAO's review of 46 airports, studies by others, and the views of FAA officials, deferred maintenance is apparently a longstanding nationwide problem. Lack of funds is cited by airport owners as the primary reason for not performing needed maintenance; however, the Federal Aviation Administration's apathy to bring about satisfactory maintenance is a contributing cause. GAO is recommending actions that FAA can take to help ensure that runways at small airports are properly maintained. The Congress should recognize the airport owners' lack of resources to properly maintain airports when considering future revisions to the Airport Improvement Program.

  9. Runway Incursion Prevention System ADS-B and DGPS Data Link Analysis Dallas-Fort Worth International Airport

    NASA Technical Reports Server (NTRS)

    Timmerman, J.; Jones, Denise R. (Technical Monitor)

    2001-01-01

    A Runway Incursion Prevention System (RIPS) was tested at the Dallas - Ft. Worth International Airport in October 2000. The system integrated airborne and ground components to provide both pilots and controllers with enhanced situational awareness, supplemental guidance cues, a real-time display of traffic information, and warning of runway incursions in order to prevent runway incidents while also improving operational capability. Rockwell Collins provided and supported a prototype Automatic Dependent Surveillance - Broadcast (ADS-B) system using 1090 MHz and a prototype Differential GPS (DGPS) system onboard the NASA Boeing 757 research aircraft. This report describes the Rockwell Collins contributions to the RIPS flight test, summarizes the development process, and analyzes both ADS-B and DGPS data collected during the flight test. In addition, results are report on interoperability tests conducted between the NASA Advanced General Aviation Transport Experiments (AGATE) ADS-B flight test system and the NASA Boeing 757 ADS-B system.

  10. An investigation of an active landing gear system to reduce aircraft vibrations caused by landing impacts and runway excitations

    NASA Astrophysics Data System (ADS)

    Wang, Haitao; Xing, J. T.; Price, W. G.; Li, Weiji

    2008-10-01

    A mathematical model is developed to control aircraft vibrations caused by runway excitation using an active landing gear system. Equations are derived to describe the integrated aircraft-active system. The nonlinear characteristics of the system are modelled and it is actively controlled using a Proportional Integral Derivative (PID) strategy. The performance of this system and its corresponding passive system are compared using numerical simulations. It is demonstrated that the impact loads and the vertical displacement of the aircraft's centre of gravity caused by landing and runway excitations are greatly reduced using the active system, which result in improvements to the performance of the landing gear system, benefits the aircraft's fatigue life, taxiing performance, crew/passenger comfort and reduces requirements on the unevenness of runways.

  11. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  12. Beta Bremsstrahlung dose in concrete shielding

    NASA Astrophysics Data System (ADS)

    Manjunatha, H. C.; Chandrika, B. M.; Rudraswamy, B.; Sankarshan, B. M.

    2012-05-01

    In a nuclear reactor, beta nuclides are released during nuclear reactions. These betas interact with shielding concrete and produces external Bremsstrahlung (EB) radiation. To estimate Bremsstrahlung dose and shield efficiency in concrete, it is essential to know Bremsstrahlung distribution or spectra. The present work formulated a new method to evaluate the EB spectrum and hence Bremsstrahlung dose of beta nuclides (32P, 89Sr, 90Sr-90Y, 90Y, 91Y, 208Tl, 210Bi, 234Pa and 40K) in concrete. The Bremsstrahlung yield of these beta nuclides in concrete is also estimated. The Bremsstrahlung yield in concrete due to 90Sr-90Y is higher than those of other given nuclides. This estimated spectrum is accurate because it is based on more accurate modified atomic number (Zmod) and Seltzer's data, where an electron-electron interaction is also included. Presented data in concrete provide a quick and convenient reference for radiation protection. The present methodology can be used to calculate the Bremsstrahlung dose in nuclear shielding materials. It can be quickly employed to give a first pass dose estimate prior to a more detailed experimental study.

  13. Carbonate concretions: an ideal sedimentary host for microfossils.

    USGS Publications Warehouse

    Blome, C.D.; Albert, N.R.

    1985-01-01

    Enhanced preservation correlates with early diagenetic concretion formation at or near the sediment-water interface and with higher carbonate, organic material, and metallic cation content than in surrounding rocks. Early diagenetic growth is inferred by diverging sedimentary laminations and small-scale sedimentary structures in fossiliferous carbonate concretions. High initial concentration of microorganisms or fecal pellets may commonly be responsible for incipient carbonate-concretion growth. Excellent preservation is demonstrated by radiolarians and palynomorphs extracted from a carbonate concretion from the Middle Jurassic Shelikof Formation, S Alaska.-from Authors

  14. Performance Enhancement of the Automated Concrete Evaluation System (ACES)

    SciTech Connect

    Baumgart,C.W.; Cave,S.P.; Linder,K.E.

    2002-02-14

    The objective of this proposed research is to improve and expand the detection and analysis capabilities of the automated, concrete evaluation (ACE) system. MoDOT and Honeywell jointly developed this system. The focus of this proposed research will be on the following: Coordination of concrete imaging efforts with other states, Validation and testing of the ACE system on a broad range of concrete samples, and Identification and development of software and hardware enhancements. These enhancements will meet the needs of diverse users in the field of concrete materials, construction, and research.

  15. Prestressed concrete for the storage of liquefied gases

    SciTech Connect

    Bruggeling, A.S.G.

    1981-01-01

    Both concrete and prestressing-steel materials retain their strengths at cryogenic temperatures, making them ideal for LNG storage tanks and similar structures. Prestressed concrete lends itself to a wide variety of configurations, from containment dikes to integrated tank systems in which the steel, insulation, and concrete must interact efficiently. Of major importance in building prestressed-concrete storage tanks are the design loads and load factors to be adopted, especially the so-called special loads that depend on the nature and quantity of the product to be stored, the type of installation involved, the siting of the storage facilities, and the tank construction (flexible or rigid).

  16. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  17. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  18. SUSTAINABLE CONCRETE FOR WIND TURBINE FOUNDATIONS.

    SciTech Connect

    BERNDT,M.L.

    2004-06-01

    The use of wind power to generate electricity continues to grow, especially given commitments by various countries throughout the world to ensure that a significant percentage of energy comes from renewable sources. In order to meet such objectives, increasingly larger turbines with higher capacity are being developed. The engineering aspects of larger turbine development tend to focus on design and materials for blades and towers. However, foundations are also a critical component of large wind turbines and represent a significant cost of wind energy projects. Ongoing wind research at BNL is examining two areas: (a) structural response analysis of wind turbine-tower-foundation systems and (b) materials engineering of foundations. This work is investigating the dynamic interactions in wind turbine systems, which in turn assists the wind industry in achieving improved reliability and more cost efficient foundation designs. The results reported herein cover initial studies of concrete mix designs for large wind turbine foundations and how these may be tailored to reduce cost and incorporate sustainability and life cycle concepts. The approach taken was to investigate material substitutions so that the environmental, energy and CO{sub 2}-impact of concrete could be reduced. The use of high volumes of ''waste'' materials in concrete was examined. These materials included fly ash, blast furnace slag and recycled concrete aggregate. In addition, the use of steel fiber reinforcement as a means to improve mechanical properties and potentially reduce the amount of bar reinforcement in concrete foundations was studied. Four basic mixes were considered. These were: (1) conventional mix with no material substitutions, (2) 50% replacement of cement with fly ash, (3) 50% replacement of cement with blast furnace slag and (4) 25% replacement of cement with fly ash and 25% replacement with blast furnace slag. Variations on these mixes included the addition of 1% by volume steel

  19. Microstructural characterization of concrete prepared with recycled aggregates.

    PubMed

    Guedes, Mafalda; Evangelista, Luís; de Brito, Jorge; Ferro, Alberto C

    2013-10-01

    Several authors have reported the workability, mechanical properties, and durability of concrete produced with construction waste replacing the natural aggregate. However, a systematic microstructural characterization of recycled aggregate concrete has not been reported. This work studies the use of fine recycled aggregate to replace fine natural aggregate in the production of concrete and reports the resulting microstructures. The used raw materials were natural aggregate, recycled aggregate obtained from a standard concrete, and Portland cement. The substitution extent was 0, 10, 50, and 100 vol%; hydration was stopped at 9, 24, and 96 h and 28 days. Microscopy was focused on the cement/aggregate interfacial transition zone, enlightening the effect of incorporating recycled aggregate on the formation and morphology of the different concrete hydration products. The results show that concretes with recycled aggregates exhibit typical microstructural features of the transition zone in normal strength concrete. Although overall porosity increases with increasing replacement, the interfacial bond is apparently stronger when recycled aggregates are used. An addition of 10 vol% results in a decrease in porosity at the interface with a corresponding increase of the material hardness. This provides an opportunity for development of increased strength Portland cement concretes using controlled amounts of concrete waste.

  20. An investigation of tendon sheathing filler migration into concrete

    SciTech Connect

    Naus, D.J.; Oland, C.B.

    1998-03-01

    During some of the inspections at nuclear power plants with prestressed concrete containments, it was observed that the containments has experienced leakage of the tendon sheathing filler (i.e., streaks). The objective of this activity was to provide an indication of the extent of tendon sheathing filler leakage into the concrete and its affects on concrete properties. Literature was reviewed and concrete core samples were obtained from the Trojan Nuclear Plant and tested. The literature primarily addressed effects of crude or lubricating oils that are known to cause concrete damage. However, these materials have significantly different characteristics relative to the materials used as tendon sheathing fillers. Examination and testing of the concrete cores indicated that the appearance of tendon sheathing filler on the concrete surface was due to leakage from the conduits and its subsequent migration through cracks that were present. Migration of the tendon sheathing filler was confined to the cracks and there was no perceptible movement into the concrete. Results of compressive strength testing indicated that the concrete quality was consistent in the containment and that the strength had increased over 40% in 25.4 years relative to the average compressive strength at 28-days age.

  1. Environmental Assessment for Extension of Runways at Charleston International Airport and Charleston Air Force Base, Charleston, South Carolina

    DTIC Science & Technology

    2008-09-03

    Facility Criteria (UFC) 3 -260-01, Airfield and Heliport Planning and Design. PROJECT PURPOSE The funding and approval for this project is being sought...TYPE 3 . DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Environmental Assessment for Extension of Runways at Charleston...Extension ofRunway 15/33 from 9,000 feet to 10,500 feet by lengthening the 15 end by 1,500 feet of overrun/displaced threshold. Alternative 3

  2. The feasibility of recycling contaminated concrete

    SciTech Connect

    Ayers, K.W,; Corroon, W.; Parker, F.L.

    1999-07-01

    The changing mission of the Department of Energy along with the aging of many of its facilities has resulted in renewed emphasis on decontaminating and decommissioning surplus structures. Currently DOE is decontaminating some concrete and sending the clean material to C and D disposal facilities. In other instance, DOE is sending contaminated concrete to LLW disposal facilities. This paper examines the economic feasibility of decontaminating the concrete and recycling the rubble as clean aggregate. A probabilistic cost model was used to examine six potential recycling and disposal scenarios. The model predicted potential costs saving across the DOE complex of nearly one billion dollars. The ability of local markets to assimilate the recycled material was estimated for Washington, Idaho, Tennessee, New Mexico, and South Carolina. The relationships between a number of the economic model's variables were examined to develop operating ranges for initial managerial evaluation of recycling.

  3. Electrokinetic Strength Enhancement of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E. (Inventor)

    2016-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  4. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  5. Enhancement of vision systems based on runway detection by image processing techniques

    NASA Astrophysics Data System (ADS)

    Gulec, N.; Sen Koktas, N.

    2012-06-01

    An explicit way of facilitating approach and landing operations of fixed-wing aircraft in degraded visual environments is presenting a coherent image of the designated runway via vision systems and hence increasing the situational awareness of the flight crew. Combined vision systems, in general, aim to provide a clear view of the aircraft exterior to the pilots using information from databases and imaging sensors. This study presents a novel method that consists of image-processing and tracking algorithms, which utilize information from navigation systems and databases along with the images from daylight and infrared cameras, for the recognition and tracking of the designated runway through the approach and landing operation. Video data simulating the straight-in approach of an aircraft from an altitude of 5000 ft down to 100 ft is synthetically generated by a COTS tool. A diverse set of atmospheric conditions such as fog and low light levels are simulated in these videos. Detection and false alarm rates are used as the primary performance metrics. The results are presented in a format where the performance metrics are compared against the altitude of the aircraft. Depending on the visual environment and the source of the video, the performance metrics reach up to 98% for DR and down to 5% for FAR.

  6. The Dynamic Planner: The Sequencer, Scheduler, and Runway Allocator for Air Traffic Control Automation

    NASA Technical Reports Server (NTRS)

    Wong, Gregory L.; Denery, Dallas (Technical Monitor)

    2000-01-01

    The Dynamic Planner (DP) has been designed, implemented, and integrated into the Center-TRACON Automation System (CTAS) to assist Traffic Management Coordinators (TMCs), in real time, with the task of planning and scheduling arrival traffic approximately 35 to 200 nautical miles from the destination airport. The TMC may input to the DP a series of current and future scheduling constraints that reflect the operation and environmental conditions of the airspace. Under these constraints, the DP uses flight plans, track updates, and Estimated Time of Arrival (ETA) predictions to calculate optimal runway assignments and arrival schedules that help ensure an orderly, efficient, and conflict-free flow of traffic into the terminal area. These runway assignments and schedules can be shown directly to controllers or they can be used by other CTAS tools to generate advisories to the controllers. Additionally, the TMC and controllers may override the decisions made by the DP for tactical considerations. The DP will adapt to computations to accommodate these manual inputs.

  7. Runway Wake Vortex, Crosswind, and Visibility Detection with a Scintillometer at Schiphol Airport

    NASA Astrophysics Data System (ADS)

    van Dinther, D.; Hartogensis, O. K.; Holtslag, A. A. M.

    2015-12-01

    We evaluate the performance and investigate the capability of a scintillometer to detect wake vortices, crosswind and visibility near an airport runway. An experiment is carried out at Schiphol airport (Amsterdam, The Netherlands), where an optical scintillometer is positioned alongside a runway. An algorithm is developed to detect wake vortices, and also the strength of the wake vortex, from the variance in the scintillation signal. The algorithm shows promising results in detecting wake vortices and their strengths during the night. During the day, the scintillometer signal is dominated by environmental turbulence and wake vortices are no longer detectable. The crosswind measured by the scintillometer is compared with wind-speed and wind-direction data at the airport. Our results show that, after applying an outlier filter, the scintillometer is able to measure the crosswind over the short time period of 3 s required for aviation applications. The outlier filter does not compromise the capability of the scintillometer to obtain the maximum 3 s crosswind over a 10-min time frame correctly. Finally, a transmission method is used to obtain the visibility from the scintillometer signal, which is then compared with that obtained from a visibility sensor. The scintillometer is able to identify periods of low visibility correctly, although it shows a high amount of scatter around the exact visibility value.

  8. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method.

    PubMed

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-12-07

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs.

  9. Concrete Infill Monitoring in Concrete-Filled FRP Tubes Using a PZT-Based Ultrasonic Time-of-Flight Method

    PubMed Central

    Luo, Mingzhang; Li, Weijie; Hei, Chuang; Song, Gangbing

    2016-01-01

    Concrete-filled fiber-reinforced polymer tubes (CFFTs) have attracted interest for their structural applications in corrosive environments. However, a weak interfacial strength between the fiber-reinforced polymer (FRP) tube and the concrete infill may develop due to concrete shrinkage and inadequate concrete compaction during concrete casting, which will destroy the confinement effect and thereby reduce the load bearing capacity of a CFFT. In this paper, the lead zirconate titanate (PZT)-based ultrasonic time-of-flight (TOF) method was adopted to assess the concrete infill condition of CFFTs. The basic idea of this method is that the velocity of the ultrasonic wave propagation in the FRP material is about half of that in concrete material. Any voids or debonding created along the interface between the FRP tube and the concrete will delay the arrival time between the pairs of PZT transducers. A comparison of the arrival times of the PZT pairs between the intact and the defected CFFT was made to assess the severity of the voids or the debonding. The feasibility of the methodology was analyzed using a finite-difference time-domain-based numerical simulation. Experiments were setup to validate the numerical results, which showed good agreement with the numerical findings. The results showed that the ultrasonic time-of-flight method is able to detect the concrete infill condition of CFFTs. PMID:27941617

  10. Spall Damage of Concrete Structures

    DTIC Science & Technology

    1988-06-01

    likely also strain-rate sensitive . Fiber-reinforced concrete has been extensively studied. Various types of fiber material, including nylon, glass, and...60/40) 0.95 AMATOL (50/50) 0.97 ANFO (9416 Am Nil Fuel oil) 0.82 1-100 Composition A-3 1.09 1.07 5-50 Composition B 1.11 0.98 5-50 Composition C-4 1.37...defines the boundary between threshold spall and medium spall and deflections less than 4.17 percent of the free span. The heavy damage curve defines

  11. Shrinkage deformation of cement foam concrete

    NASA Astrophysics Data System (ADS)

    Kudyakov, A. I.; Steshenko, A. B.

    2015-01-01

    The article presents the results of research of dispersion-reinforced cement foam concrete with chrysotile asbestos fibers. The goal was to study the patterns of influence of chrysotile asbestos fibers on drying shrinkage deformation of cement foam concrete of natural hardening. The chrysotile asbestos fiber contains cylindrical fiber shaped particles with a diameter of 0.55 micron to 8 microns, which are composed of nanostructures of the same form with diameters up to 55 nm and length up to 22 microns. Taking into account the wall thickness, effective reinforcement can be achieved only by microtube foam materials, the so- called carbon nanotubes, the dimensions of which are of power less that the wall pore diameter. The presence of not reinforced foam concrete pores with perforated walls causes a decrease in its strength, decreases the mechanical properties of the investigated material and increases its shrinkage. The microstructure investigation results have shown that introduction of chrysotile asbestos fibers in an amount of 2 % by weight of cement provides the finely porous foam concrete structure with more uniform size closed pores, which are uniformly distributed over the volume. This reduces the shrinkage deformation of foam concrete by 50%.

  12. Permeability of Clay Concretes

    NASA Astrophysics Data System (ADS)

    Solomon, F.; Ekolu, S. O.

    2015-11-01

    This paper presents an investigation on the effect of clay addition on water permeability and air permeability of concretes. Clay concrete mixes consisted of 0 to 40% clay content incorporated as cement replacement. Flow methods using triaxial cells and air permeameters were used for measuring the injected water and air flows under pressure. It was found that the higher the clay content in the mixture, the greater the permeability. At higher water-cement ratios (w/c), the paste matrix is less dense and easily allows water to ingress into concrete. But at high clay contents of 30 to 40% clay, the variation in permeability was significantly diminished among different concrete mixtures. It was confirmed that air permeability results were higher than the corresponding water permeability values when all permeability coefficients were converted to intrinsic permeability values.

  13. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  14. Repair, Evaluation, Maintenance, and Rehabilitation Research Program: Evaluation of Concrete Mixtures for Use in Underwater Repairs.

    DTIC Science & Technology

    1988-04-01

    19. ABSTRACT (Continued). ,&The results of these tests were used to determine the combination of materials necessary to produce concrete with the...19 Phase I: Concrete Mixture Proportions..............................19 Phase I: Test Procedures...20 Phase II: Concrete Mixture Proportions.............................20 Phase II: Test Procedures..........................................21

  15. BRINE STORAGE PIT AND PUMP HOUSE, TRA631. ELEVATIONS. CONCRETE VAULT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    BRINE STORAGE PIT AND PUMP HOUSE, TRA-631. ELEVATIONS. CONCRETE VAULT FOR BRINE PITS. CONCRETE BLOCK BUILDING FOR BRINE PUMPS. CONCRETE PIPE TRENCH. BLAW-KNOX 3150-808-3, 1/1951. INL INDEX NO. 531-0608-00-098-100677. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  16. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  17. 75 FR 37382 - Notice of Antidumping Duty Order: Prestressed Concrete Steel Wire Strand from the People's...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-29

    ... International Trade Administration Notice of Antidumping Duty Order: Prestressed Concrete Steel Wire Strand from... duty order on prestressed concrete steel wire strand (``PC strand'') from the People's Republic of... material injury to a U.S. industry. See Prestressed Concrete Steel Wire Strand from China...

  18. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  19. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable to...

  20. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  1. 40 CFR 443.20 - Applicability; description of the asphalt concrete subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asphalt concrete subcategory. 443.20 Section 443.20 Protection of Environment ENVIRONMENTAL PROTECTION... ROOFING MATERIALS (TARS AND ASPHALT) POINT SOURCE CATEGORY Asphalt Concrete Subcategory § 443.20 Applicability; description of the asphalt concrete subcategory. The provisions of this subpart are applicable...

  2. Laboratory Manual (For Concrete Instruction Course); Instructor's Guide, Pilot Program Edition.

    ERIC Educational Resources Information Center

    Portland Cement Association, Cleveland, OH.

    This laboratory manual, prepared for a 2-year program in junior colleges and technical institutes, is designed to accompany the instructional materials to train persons for employment as technicians in the cement and concrete industries. Included are 16 laboratory assignments for each of the following: (1) Principles of Concrete, (2) Concrete in…

  3. Environmental Monitoring and Performance Evaluation of Roller-Compacted Concrete Pavement: Conley Terminal, Boston, Massachusetts

    DTIC Science & Technology

    1991-12-01

    Roller-compacted concrete (RCC) is a construction material that combines the features of the cement-treated aggregate base, portland cement concrete...PCC) and asphalt pavement technologies. RCC is constructed by placing a zero-slump portland cement concrete mixture by means of a heavy asphalt paver

  4. Self-assembling particle-siloxane coatings for superhydrophobic concrete.

    PubMed

    Flores-Vivian, Ismael; Hejazi, Vahid; Kozhukhova, Marina I; Nosonovsky, Michael; Sobolev, Konstantin

    2013-12-26

    We report here, for the first time in the literature, a method to synthesize hydrophobic and superhydrophobic concrete. Concrete is normally a hydrophilic material, which significantly reduces the durability of concrete structures and pavements. To synthesize water-repellent concrete, hydrophobic emulsions were fabricated and applied on portland cement mortar tiles. The emulsion was enriched with the polymethyl-hydrogen siloxane oil hydrophobic agent as well as metakaolin (MK) or silica fume (SF) to induce the microroughness and polyvinyl alcohol (PVA) fibers to create hierarchical surfaces. Various emulsion types were investigated by using different mixing procedures, and single- and double-layer hydrophobic coatings were applied. The emulsions and coatings were characterized with optical microscope and scanning electron microscope (SEM), and their wetting properties, including the water contact angle (CA) and roll-off angle, were measured. A theoretical model for coated and non-coated concrete, which can be generalized for other types of materials, was developed to predict the effect of surface roughness and composition on the CA. An optimized distance between the aggregates was found where the CA has the highest value. The maximal CA measured was 156° for the specimen with PVA fibers treated with MK based emulsion. Since water penetration is the main factor leading to concrete deterioration, hydrophobic water-repellent concretes have much longer durability then regular concretes and can have a broad range of applications in civil and materials engineering.

  5. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  6. Recycle Runway

    ERIC Educational Resources Information Center

    Stephens, Pam

    2009-01-01

    Nancy Judd has been called a folk artist, an outsider artist, and a designer--all characterizations that she tends to shirk. Perhaps if labels are needed, environmental artist educator is more appropriate. Judd lives and works in Santa Fe, New Mexico. She dedicates much of her time to creating art that raises public awareness of environmental…

  7. Biodeterioration of concrete piling in the Arabian Gulf

    SciTech Connect

    Jadkowski, T.K.; Wiltsie, E.A.

    1985-03-01

    Concrete is one of the most widely used materials in marine construction because of its characteristic durability in sea environments. Recent inspection of concrete piles installed in the Arabian Gulf has revealed that concrete with high content of calcareous aggregate is susceptible to biodeterioration. Marine rock borers and sponges, which are common in areas where the seabed is composed of limestone rock, have been identified as the marine species responsible for the biodeterioration. Boring organisms pose a significant threat to concrete pile structural integrity. Boreholes deteriorate concrete and expose outer pile reinforcement to seawater. This paper describes the causes and magnitude of biodeterioration of piles installed in the Arabian Gulf and presents design parameters and material specifications for the selected preventive repair system.

  8. Analysis of concrete containment structures under severe accident loading conditions

    SciTech Connect

    Porter, V.L.

    1993-12-31

    One of the areas of current interest in the nuclear power industry is the response of containment buildings to internal pressures that may exceed design pressure levels. Evaluating the response of structures under these conditions requires computing beyond design load to the ultimate load of the containment. For concrete containments, this requirement means computing through severe concrete cracking and into the regime of wide-spread plastic rebar and/or tendon response. In this regime of material response, an implicit code can have trouble converging. This paper describes some of the author`s experiences with Version 5.2 of ABAQUS Standard and the ABAQUS concrete model in computing the axisymmetric response of a prestressed concrete containment to ultimate global structural failure under high internal pressures. The effects of varying the tension stiffening parameter in the concrete material model and variations of the parameters for the CONTROLS option are discussed.

  9. Construction Productivity Advancement Research (CPAR) Program. Improved Materials and Processes for Sealing and Resealing Joints in Portland Cement Concrete Pavements: Laboratory Study

    DTIC Science & Technology

    1993-05-01

    However, the Superseal 1614A Plant 1 sample did meet the FS SS-S-1514A test requirements when exposed to the longer heating periods of 3.0, 4.5, and 6.0...low of 5 min of Superseal 1614A, Plant 2. Results for all materials decreased with longer heating periods . Thus, areas sealed with these materials can

  10. Techno-economic performance evaluation of direct steam generation solar tower plants with thermal energy storage systems based on high-temperature concrete and encapsulated phase change materials

    NASA Astrophysics Data System (ADS)

    Guédez, R.; Arnaudo, M.; Topel, M.; Zanino, R.; Hassar, Z.; Laumert, B.

    2016-05-01

    Nowadays, direct steam generation concentrated solar tower plants suffer from the absence of a cost-effective thermal energy storage integration. In this study, the prefeasibility of a combined sensible and latent thermal energy storage configuration has been performed from thermodynamic and economic standpoints as a potential storage option. The main advantage of such concept with respect to only sensible or only latent choices is related to the possibility to minimize the thermal losses during system charge and discharge processes by reducing the temperature and pressure drops occurring all along the heat transfer process. Thermodynamic models, heat transfer models, plant integration and control strategies for both a pressurized tank filled with sphere-encapsulated salts and high temperature concrete storage blocks were developed within KTH in-house tool DYESOPT for power plant performance modeling. Once implemented, cross-validated and integrated the new storage model in an existing DYESOPT power plant layout, a sensitivity analysis with regards of storage, solar field and power block sizes was performed to determine the potential impact of integrating the proposed concept. Even for a storage cost figure of 50 USD/kWh, it was found that the integration of the proposed storage configuration can enhance the performance of the power plants by augmenting its availability and reducing its levelized cost of electricity. As expected, it was also found that the benefits are greater for the cases of smaller power block sizes. Specifically, for a power block of 80 MWe a reduction in levelized electricity costs of 8% was estimated together with an increase in capacity factor by 30%, whereas for a power block of 126 MWe the benefits found were a 1.5% cost reduction and 16% availability increase.

  11. Environmental evaluation of green concretes versus conventional concrete by means of LCA.

    PubMed

    Turk, Janez; Cotič, Zvonko; Mladenovič, Ana; Šajna, Aljoša

    2015-11-01

    A number of green concrete mixes having similar basic properties were evaluated from the environmental point of view by means of the Life Cycle Assessment method, and compared with a corresponding conventional concrete mix. The investigated green concrete mixes were prepared from three different types of industrial by-products, i.e. (1) foundry sand, and (2) steel slag, both of which were used as manufactured aggregates, and (3) fly ash, which was used as a mineral admixture. Some green concrete mixes were also prepared from a recycled aggregate, which was obtained from reinforced concrete waste. In some of the green concrete mixes the recycled aggregate was used in combination with the above-mentioned types of manufactured aggregate and fly ash. All of these materials are able, to some extent, to replace natural aggregate or Portland cement in concrete mixes, thus providing an environmental benefit from the point of view of the saving of natural resources. Taking into account consequential modelling, the credit related to the avoidance of the need to dispose of the waste materials is considered as a benefit. In case of the recycling of waste concrete into aggregate, credit is attributed to the recovery of scrap iron from the steel reinforcement. In the case of the use of steel slag, credit is attributed to the recovery of metals, which are extracted from the slag before being used as an alternative material. The disadvantage of using alternative materials and recycled aggregates can sometimes be their relatively long delivery distance. For this reason, a transport sensitivity analysis was carried out. The results indicate that the use of the discussed alternative and recycled materials is beneficial in the concrete production industry. Preference is given to the fly ash and foundry sand scenarios, and especially to those scenarios which are based on the combined use of recycled aggregate with these two alternative materials. It was found that longer delivery

  12. Concrete. Course in Carpentry. Workbook and Tests.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Bureau of Publications.

    This workbook is one of a series of individually bound units of instruction for carpentry apprenticeship classes in a four-year apprenticeship program. It consists of two sections--the workbook section and a test section. The workbook section provides instructional materials on 10 topics: introduction to cement and concrete, specifications for…

  13. Expansion of flight simulator capability for study and solution of aircraft directional control problems on runways, appendixes

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. A.

    1978-01-01

    The models used to implement the DC-9-10 aircraft simulation for the Runway Direction Control study are presented. The study was done on the Douglas Aircraft six-degree-of-freedom motion simulator. Documentation of the models was in algebraic form, to the extent possible. Effort was directed toward presenting what was actually done rather than general forms.

  14. Experiment Description and Results for Arrival Operations Using Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR)

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Murdoch, Jennifer L.; Swieringa, Kurt A.; Barmore, Bryan E.; Capron, William R.; Hubbs, Clay E.; Shay, Richard F.; Abbott, Terence S.

    2013-01-01

    The predicted increase in the number of commercial aircraft operations creates a need for improved operational efficiency. Two areas believed to offer increases in aircraft efficiency are optimized profile descents and dependent parallel runway operations. Using Flight deck Interval Management (FIM) software and procedures during these operations, flight crews can achieve by the runway threshold an interval assigned by air traffic control (ATC) behind the preceding aircraft that maximizes runway throughput while minimizing additional fuel consumption and pilot workload. This document describes an experiment where 24 pilots flew arrivals into the Dallas Fort-Worth terminal environment using one of three simulators at NASA?s Langley Research Center. Results indicate that pilots delivered their aircraft to the runway threshold within +/- 3.5 seconds of their assigned time interval, and reported low workload levels. In general, pilots found the FIM concept, procedures, speeds, and interface acceptable. Analysis of the time error and FIM speed changes as a function of arrival stream position suggest the spacing algorithm generates stable behavior while in the presence of continuous (wind) or impulse (offset) error. Concerns reported included multiple speed changes within a short time period, and an airspeed increase followed shortly by an airspeed decrease.

  15. Motivational effects of methamphetamine as measured by the runway method using priming stimulation of intracranial self-stimulation behavior.

    PubMed

    Sagara, Hidenori; Kitamura, Yoshihisa; Sendo, Toshiaki; Araki, Hiroaki; Gomita, Yutaka

    2008-04-01

    Priming stimulation is known to promote the motivational effects of intracranial self-stimulation (ICSS) behavior. The runway method using priming stimulation can experimentally distinguish the reward and motivational effects of ICSS behavior. In this study, we examined the motivational effect of a drug as determined by the runway method using priming stimulation of ICSS behavior. Electrodes were implanted chronically into the medial forebrain bundle (MFB) of the rats. A lever for stimulation of the MFB was set on the opposite side of the start box in the apparatus. The rats were trained to obtain a reward stimulation (50-200 muA, 0.2 ms, 60 Hz) of the MFB by pressing the goal lever, and then priming stimulation of the MFB was applied. After priming stimulation, rats were placed in the start box of the runway apparatus and the time taken by the rat to press the lever was recorded. Priming stimulation frequency was significantly correlated with running speed (r=0.897, p<0.05). Methamphetamine (1, 3 mg/kg) induced an increase in running speed (F(3, 20)=16.257, p<0.01), and was further increased with increase in priming stimulation frequency. In addition, methamphetamine significantly enhanced the motivational effect. These results suggest that the runway method using priming stimulation of ICSS behavior may be an effective way to evaluate the enhancing effect of a drug on motivation.

  16. Normal and refractory concretes for LMFBR applications. Volume 2. Evaluation of concretes for LMFBR applications. Final report

    SciTech Connect

    Bazant, Z.P.; Chern, J.C.; Abrams, M.S.; Gillen, M.P.

    1982-06-01

    The extensive literature on the properties and behavior at elevated temperature of portland cement concrete and various refractory concretes was reviewed to collect in concise form the physical and chemical properties of castable refractory concretes and of conventional portland cement concretes at elevated temperature. This survey, together with an extensive bibliography of source documents, is presented in Volume 1. A comparison was made of these properties, the relative advantages of the various concretes was evaluated for possible liquid metal fast breeder reactor applications, and a selection was made of several materials of interest for such applications. Volume 2 concludes with a summary of additional knowledge needed to support such uses of these materials together with recommendations on research to provide that knowledge.

  17. Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability.

    PubMed

    Wang, Jianyun; Ersan, Yusuf Cagatay; Boon, Nico; De Belie, Nele

    2016-04-01

    The beneficial effect of microbially induced carbonate precipitation on building materials has been gradually disclosed in the last decade. After the first applications of on historical stones, promising results were obtained with the respect of improved durability. An extensive study then followed on the application of this environmentally friendly and compatible material on a currently widely used construction material, concrete. This review is focused on the discussion of the impact of the two main applications, bacterial surface treatment and bacteria based crack repair, on concrete durability. Special attention was paid to the choice of suitable bacteria and the metabolic pathway aiming at their functionality in concrete environment. Interactions between bacterial cells and cementitious matrix were also elaborated. Furthermore, recommendations to improve the effectiveness of bacterial treatment are provided. Limitations of current studies, updated applications and future application perspectives are shortly outlined.

  18. Dynamic Impact Analyses and Tests of Concrete Overpacks - 13638

    SciTech Connect

    Lee, Sanghoon; Cho, Sang-Soon; Kim, Ki-Young; Jeon, Je-Eon; Seo, Ki-Seog

    2013-07-01

    Concrete cask is an option for spent nuclear fuel interim storage which is prevailingly used in US. A concrete cask usually consists of metallic canister which confines the spent nuclear fuel and concrete overpack. When the overpack undergoes a severe missile impact which might be caused by a tornado or an aircraft crash, it should sustain acceptable level of structural integrity so that its radiation shielding capability and the retrievability of canister are maintained. Missile impact against a concrete overpack involves two damage modes, local damage and global damage. Local damage of concrete is usually evaluated by empirical formulas while the global damage is evaluated by finite element analysis. In many cases, those two damage modes are evaluated separately. In this research, a series of numerical simulations are performed using finite element analysis to evaluate the global damage of concrete overpack as well as its local damage under high speed missile impact. We consider two types of concrete overpack, one with steel in-cased concrete without reinforcement and the other with partially-confined reinforced concrete. The numerical simulation results are compared with test results and it is shown that appropriate modeling of material failure is crucial in this analysis and the results are highly dependent on the choice of failure parameters. (authors)

  19. Prediction of creep of polymer concrete

    SciTech Connect

    Khristova, Yu.; Aniskevich, K.

    1995-11-01

    We studied the applicability of the phenomenological approach to the prediction of long-time creep of polymer concrete consisting of polyester binder with diabase filler and diabase aggregate. We discovered that the principles of temperature-time analogy, of moisture-time analogy, and of temperature-moisture-time analogy are applicable to the description of the diagrams of short-time creep and to the prediction of long-time creep of polymer concrete at different temperatures and constant moisture content of the material.

  20. Decentralized aircraft landing scheduling at single runway non-controlled airports

    NASA Astrophysics Data System (ADS)

    Ding, Yuanyuan

    The existing air transportation system is approaching a bottleneck because its dominant hub-and-spoke model results in a concentration of a large percentage of the air traffic at a few hub airports. Advanced technologies are greatly needed to enhance the transportation capabilities of the small airports in the U.S.A., and distribute the high volume of air traffic at the hub airports to those small airports, which are mostly non-controlled airports. Currently, two major focus areas of research are being pursued to achieve this objective. One focus concentrates on the development of tools to improve operations in the current Air Traffic Management system. A more long-term research effort focuses on the development of decentralized Air Traffic Management techniques. This dissertation takes the latter approach and seeks to analyze the degree of decentralization for scheduling aircraft landings in the dynamic operational environment at single runway non-controlled airports. Moreover, it explores the feasibility and capability of scheduling aircraft landings within uninterrupted free-flight environment in which there is no existence of Air Traffic Control (ATC). First, it addresses the approach of developing static optimization algorithms for scheduling aircraft landings and, thus, analyzes the capability of automated aircraft landing scheduling at single runway non-controlled airports. Then, it provides detailed description of the implementation of a distributed Air Traffic Management (ATM) system that achieves decentralized aircraft landing scheduling with acceptable performance whereas a solution to the distributed coordination issues is presented. Finally real-time Monte Carlo flight simulations of multi-aircraft landing scenarios are conducted to evaluate the static and dynamic performance of the aircraft landing scheduling algorithms and operation concepts introduced. Results presented in the dissertation demonstrate that decentralized aircraft landing scheduling

  1. Real-time terminal area trajectory planning for runway independent aircraft

    NASA Astrophysics Data System (ADS)

    Xue, Min

    The increasing demand for commercial air transportation results in delays due to traffic queues that form bottlenecks along final approach and departure corridors. In urban areas, it is often infeasible to build new runways, and regardless of automation upgrades traffic must remain separated to avoid the wakes of previous aircraft. Vertical or short takeoff and landing aircraft as Runway Independent Aircraft (RIA) can increase passenger throughput at major urban airports via the use of vertiports or stub runways. The concept of simultaneous non-interfering (SNI) operations has been proposed to reduce traffic delays by creating approach and departure corridors that do not intersect existing fixed-wing routes. However, SNI trajectories open new routes that may overfly noise-sensitive areas, and RIA may generate more noise than traditional jet aircraft, particularly on approach. In this dissertation, we develop efficient SNI noise abatement procedures applicable to RIA. First, we introduce a methodology based on modified approximated cell-decomposition and Dijkstra's search algorithm to optimize longitudinal plane (2-D) RIA trajectories over a cost function that minimizes noise, time, and fuel use. Then, we extend the trajectory optimization model to 3-D with a k-ary tree as the discrete search space. We incorporate geography information system (GIS) data, specifically population, into our objective function, and focus on a practical case study: the design of SNI RIA approach procedures to Baltimore-Washington International airport. Because solutions were represented as trim state sequences, we incorporated smooth transition between segments to enable more realistic cost estimates. Due to the significant computational complexity, we investigated alternative more efficient optimization techniques applicable to our nonlinear, non-convex, heavily constrained, and discontinuous objective function. Comparing genetic algorithm (GA) and adaptive simulated annealing (ASA

  2. Use of waste ash from palm oil industry in concrete.

    PubMed

    Tangchirapat, Weerachart; Saeting, Tirasit; Jaturapitakkul, Chai; Kiattikomol, Kraiwood; Siripanichgorn, Anek

    2007-01-01

    Palm oil fuel ash (POFA), a by-product from the palm oil industry, is disposed of as waste in landfills. In this study, POFA was utilized as a pozzolan in concrete. The original size POFA (termed OP) was ground until the median particle sizes were 15.9 microm (termed MP) and 7.4 microm (termed SP). Portland cement Type I was replaced by OP, MP, and SP of 10%, 20%, 30%, and 40% by weight of binder. The properties of concrete, such as setting time, compressive strength, and expansion due to magnesium sulfate attack were investigated. The results revealed that the use of POFA in concretes caused delay in both initial and final setting times, depending on the fineness and degree of replacement of POFA. The compressive strength of concrete containing OP was much lower than that of Portland cement Type I concrete. Thus, OP is not suitable to be used as a pozzolanic material in concrete. However, the replacement of Portland cement Type I by 10% of MP and 20% of SP gave the compressive strengths of concrete at 90 days higher than that of concrete made from Portland cement Type I. After being immersed in 5% of magnesium sulfate solution for 364 days, the concrete bar mixed with 30% of SP had the same expansion level as that of the concrete bar made from Portland cement Type V. The above results suggest that ground POFA is an excellent pozzolanic material and can be used as a cement replacement in concrete. It is recommended that the optimum replacement levels of Portland cement Type I by MP and SP are 20% and 30%, respectively.

  3. Evaluation of conductive concrete for anti-static flooring applications

    NASA Astrophysics Data System (ADS)

    Yehia, Sherif; Qaddoumi, Nasser; Hassan, Mohamed; Swaked, Bassam

    2015-04-01

    Static electricity, exchange of electrons, and retention of charge between any two materials due to contact and separation are affected by the condition of the materials being nonconductive or insulated from ground. Several work environments, such as electronics industry, hospitals, offices, and computer rooms all require electro-static discharge (ESD) mitigation. Carpet Tile, Carpet Broadloom, Vinyl Tile, Vinyl sheet, Epoxy and Rubber are examples of existing flooring systems in the market. However, each system has its advantages and limitations. Conductive concrete is a relatively new material technology developed to achieve high electrical conductivity and high mechanical strength. The conductive concrete material can be an economical alternative for these ESD flooring systems. In this paper, the effectiveness of conductive concrete as an anti-static flooring system was evaluated. The initial results indicated that the proposed conductive concrete flooring and ground system met the acceptance criteria stated by ASTM F150.

  4. PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PRECAST CONCRETE WALL PANELS ARE LIFTED INTO PLACE ON MTR STEEL FRAME STRUCTURE. INL NEGATIVE NO. 1330. Unknown Photographer, 1/1951 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  5. Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate.

    PubMed

    Erdem, Savaş; Blankson, Marva Angela

    2014-01-15

    The overall objective of this research project was to investigate the feasibility of incorporating 100% recycled aggregates, either waste precast concrete or waste asphalt planning, as replacements for virgin aggregates in structural concrete and to determine the mechanical and environmental performance of concrete containing these aggregates. Four different types of concrete mixtures were designed with the same total water cement ratio (w/c=0.74) either by using natural aggregate as reference or by totally replacing the natural aggregate with recycled material. Ground granulated blast furnace slag (GGBS) was used as a mineral addition (35%) in all mixtures. The test results showed that it is possible to obtain satisfactory performance for strength characteristics of concrete containing recycled aggregates, if these aggregates are sourced from old precast concrete. However, from the perspective of the mechanical properties, the test results indicated that concrete with RAP aggregate cannot be used for structural applications. In terms of leaching, the results also showed that the environmental behaviour of the recycled aggregate concrete is similar to that of the natural aggregate concrete.

  6. Use of recycled fine aggregate in concretes with durable requirements.

    PubMed

    Zega, Claudio Javier; Di Maio, Angel Antonio

    2011-11-01

    The use of construction waste materials as aggregates for concrete production is highly attractive compared to the use of non-renewable natural resources, promoting environmental protection and allowing the development of a new raw material. Several countries have recommendations for the use of recycled coarse aggregate in structural concrete, whereas the use of the fine fraction is limited because it may produce significant changes in some properties of concrete. However, during the last decade the use of recycled fine aggregates (RFA) has achieved a great international interest, mainly because of economic implications related to the shortage of natural sands suitable for the production of concrete, besides to allow an integral use of this type of waste. In this study, the durable behaviour of structural concretes made with different percentage of RFA (0%, 20%, and 30%) is evaluated. Different properties related to the durability of concretes such as absorption, sorptivity, water penetration under pressure, and carbonation are determined. In addition, the results of compressive strength, static modulus of elasticity and drying shrinkage are presented. The obtained results indicate that the recycled concretes have a suitable resistant and durable behaviour, according to the limits indicated by different international codes for structural concrete.

  7. Some engineering properties of heavy concrete added silica fume

    SciTech Connect

    Akkaş, Ayşe; Başyiğit, Celalettin; Esen, Serap

    2013-12-16

    Many different types of building materials have been used in building construction for years. Heavy concretes can be used as a building material for critical building as it can contain a mixture of many heavy elements. The barite itself for radiation shielding can be used and also in concrete to produce the workable concrete with a maximum density and adequate structural strength. In this study, some engineering properties like compressive strength, elasticity modules and flexure strength of heavy concretes’ added Silica fume have been investigated.

  8. Concrete Property and Radionuclide Migration Tests

    SciTech Connect

    Wellman, Dawn M.; Mattigod, Shas V.; Powers, Laura; Parker, Kent E.; Clayton, Libby N.; Wood, Marcus I.

    2008-10-01

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the DOE Complex. Part of theses services includes safe disposal of LLW and MLLW at the Hanford Low-Level Waste Burial Grounds (LLBG) in accordance with the requirements listed in DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, a Performance Assessment (PA) analyses were completed and approved. DOE Order 435.1 also requires that continuing data collection be conducted to enhance confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are relied upon to satisfy the performance objectives identified in the Order. One critical assumption is that concrete will frequently be used as waste form or container material to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Data was collected to (1) quantify radionuclide migration through concrete materials similar to those used to encapsulate waste in the LLBG, (2) measure the properties of the concrete materials, especially those likely to influence radionuclide migration, and (3) quantify the stability of U-bearing solid phases of limited solubility in concrete.

  9. A study of the coupling relationship between concrete surface temperature and concrete surface emissivity in natural conditions.

    PubMed

    Tang, Lin-Ling; Chen, Xiao-Ling; Wang, Jia-Ning; Zhao, Hong-Mei; Huang, Qi-Ting

    2014-07-01

    Land surface emissivity (LSE) has already been recognized as a crucial parameter for the determination of land surface temperature (LST). There is an ill-posed problem for the retrieval of LST and LSE. And laboratory-based emissivity is measured in natural constant conditions, which is limited in the application in thermal remote sensing. To solve the above problems, the coupling of LST and LSE is explored to eliminate temperature effects and improve the accuracy of LES. And then, the estimation accuracy of LST from passive remote sensing images will be improved. For different land surface materials, the coupling of land surface emissivity and land surface temperature is various. This paper focuses on studying concrete surface that is one of the typical man-made materials in urban. First the experiments of measuring concrete surface emissivity and concrete surface temperature in natural conditions are arranged reasonably and the suitable data are selected under ideal atmosphere conductions. Then to improve the determination accuracy of concrete surface emissivity, the algorithm worked on the computer of Fourier Transform Infrared Spectroradiometer (FTIR) has been improved by the most adapted temperature and emissivity separation algorithm. Finally the coupling of concrete surface temperature and concrete surface emissivity is analyzed and the coupling model of concrete surface temperature and concrete surface emissivity is established. The results show that there is a highest correlation coefficient between the second derivative of emissivity spectra and concrete surface temperature, and the correlation coefficient is -0.925 1. The best coupling model is the stepwise regression model, whose determination coefficient (R2) is 0.886. The determination coefficient (R2) is 0.905 and the root mean squares error (RMSE) is 0.292 1 in the validation of the model. The coupling model of concrete surface temperature and concrete surface emissivity under natural conditions

  10. Compression Strength of Sulfur Concrete Subjected to Extreme Cold

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2008-01-01

    Sulfur concrete cubes were cycled between liquid nitrogen and room temperature to simulate extreme exposure conditions. Subsequent compression testing showed the strength of cycled samples to be roughly five times less than those non-cycled. Fracture surface examination showed de-bonding of the sulfur from the aggregate material in the cycled samples but not in those non-cycled. The large discrepancy found, between the samples is attributed to the relative thermal properties of the materials constituting the concrete.

  11. Evaluation of Parameters Affecting Thermal Stresses in Mass Concrete

    DTIC Science & Technology

    1991-01-01

    ABAQUS , a finite-element program capable of performing complete incremental construction analyses of complex mass concrete structures during and...following construction. ’The report describes a user-defined aging creep material model, UMAT, used with ABAQUS to account for the changes in concrete...model to evolve the onset and effects of cracking. In addition to material aging, ABAQUS includes the (Continued) 14. SUBJECT TERMS 15. NUMBER OF PAGES

  12. On the necessity of a new standard for the acoustic emission characterization of concrete and reinforced concrete structures

    SciTech Connect

    Nesvijski, E.G.

    1999-07-01

    The acoustic emission (AE) method, though rather difficult in application and interpretation of results, has a great potential for characterization of stress, bearing properties, fatigue, and fracture of materials, The existing NDT standards that employ AE cover only a limited number of materials and structures. Direct compilation of these standards for materials with distinctive properties is difficult and sometimes impossible. For instance, concrete is a living material and AE can be registered immediately after preparation of cement or concrete mix, then during setting, and later during curing. AE in hard concrete can be registered due to initiation and growth of cracks under different kinds of physical factors. Classification of the signatures for different stages of concrete life and service is given. Some new models of the quantitative AE analysis are presented in this work.

  13. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  14. Advanced Numerical Model for Irradiated Concrete

    SciTech Connect

    Giorla, Alain B.

    2015-03-01

    In this report, we establish a numerical model for concrete exposed to irradiation to address these three critical points. The model accounts for creep in the cement paste and its coupling with damage, temperature and relative humidity. The shift in failure mode with the loading rate is also properly represented. The numerical model for creep has been validated and calibrated against different experiments in the literature [Wittmann, 1970, Le Roy, 1995]. Results from a simplified model are shown to showcase the ability of numerical homogenization to simulate irradiation effects in concrete. In future works, the complete model will be applied to the analysis of the irradiation experiments of Elleuch et al. [1972] and Kelly et al. [1969]. This requires a careful examination of the experimental environmental conditions as in both cases certain critical information are missing, including the relative humidity history. A sensitivity analysis will be conducted to provide lower and upper bounds of the concrete expansion under irradiation, and check if the scatter in the simulated results matches the one found in experiments. The numerical and experimental results will be compared in terms of expansion and loss of mechanical stiffness and strength. Both effects should be captured accordingly by the model to validate it. Once the model has been validated on these two experiments, it can be applied to simulate concrete from nuclear power plants. To do so, the materials used in these concrete must be as well characterized as possible. The main parameters required are the mechanical properties of each constituent in the concrete (aggregates, cement paste), namely the elastic modulus, the creep properties, the tensile and compressive strength, the thermal expansion coefficient, and the drying shrinkage. These can be either measured experimentally, estimated from the initial composition in the case of cement paste, or back-calculated from mechanical tests on concrete. If some

  15. Air to air view of Endeavour, OV-105, atop SCA approaches Ellington runway

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Air to air view of Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, approaches touchdown for a brief stopover at Ellington Field, near JSC. Visible below the spacecraft/aircraft combination are the NASA T-38 flight line, NASA aircraft hangars and facilities, and a runway. OV-105 rolled out at Rockwell's Palmdale facility on 04-25-91 to once more bring to four the total of NASA Shuttles available for flight assignment. The spacecraft and aircraft-tandem left Houston later on this day headed for another stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a T-38 aircraft by Sheri J. Dunnette of JSC's Image Science Division (ISD).

  16. Aerial view of Endeavour, OV-105, parked on Ellington Field runway

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This aerial view looks down on Endeavour, Orbiter Vehicle (OV) 105, atop a Shuttle Carrier Aircraft (SCA) NASA 911, a modified Boeing 747, parked on an Ellington Field runway. The tail cone added to OV-105 to enhance the aerodynamics of the spacecraft/aircraft transport system is clearly visible. Ground transportation vehicles (cars, trucks) and a crowd surround OV-105 and NASA 911. Ceremonies were held during OV-105's brief stopover at Ellington Field, near JSC. The new space vehicle, sans SCA, was rolled out of Rockwell's Palmdale facility on 04-25-91. This again brings the total of NASA Shuttles available for flight assignment to four. The spacecraft and aircraft-tandem left Houston later on this day headed for a stop in Mississippi before landing in Florida on 05-07-91. This photograph was taken from a NASA T-38 aircraft by Sheri J. Dunnette of JSC's Image Sciences Division (ISD).

  17. Detection of obstacles on runway using Ego-Motion compensation and tracking of significant features

    NASA Technical Reports Server (NTRS)

    Kasturi, Rangachar (Principal Investigator); Camps, Octavia (Principal Investigator); Gandhi, Tarak; Devadiga, Sadashiva

    1996-01-01

    This report describes a method for obstacle detection on a runway for autonomous navigation and landing of an aircraft. Detection is done in the presence of extraneous features such as tiremarks. Suitable features are extracted from the image and warping using approximately known camera and plane parameters is performed in order to compensate ego-motion as far as possible. Residual disparity after warping is estimated using an optical flow algorithm. Features are tracked from frame to frame so as to obtain more reliable estimates of their motion. Corrections are made to motion parameters with the residual disparities using a robust method, and features having large residual disparities are signaled as obstacles. Sensitivity analysis of the procedure is also studied. Nelson's optical flow constraint is proposed to separate moving obstacles from stationary ones. A Bayesian framework is used at every stage so that the confidence in the estimates can be determined.

  18. Lunar cement and lunar concrete

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1991-01-01

    Results of a study to investigate methods of producing cements from lunar materials are presented. A chemical process and a differential volatilization process to enrich lime content in selected lunar materials were identified. One new cement made from lime and anorthite developed compressive strengths of 39 Mpa (5500 psi) for 1 inch paste cubes. The second, a hypothetical composition based on differential volatilization of basalt, formed a mineral glass which was activated with an alkaline additive. The 1 inch paste cubes, cured at 100C and 100 percent humidity, developed compressive strengths in excess of 49 Mpa (7100 psi). Also discussed are tests made with Apollo 16 lunar soil and an ongoing investigation of a proposed dry mix/steam injection procedure for casting concrete on the Moon.

  19. Use of Data Comm by Flight Crew to Conduct Interval Management Operations to Parallel Dependent Runways

    NASA Technical Reports Server (NTRS)

    Baxley, Brian T.; Hubbs, Clay; Shay, Rick; Karanian, James

    2011-01-01

    The Interval Management (IM) concept is being developed as a method to maintain or increase high traffic density airport arrival throughput while allowing aircraft to conduct near idle thrust descents. The Interval Management with Spacing to Parallel Dependent Runways (IMSPiDR1) experiment at NASA Langley Research Center used 24 commercial pilots to examine IM procedures to conduct parallel dependent runway arrival operations while maintaining safe but efficient intervals behind the preceding aircraft. The use of IM procedures during these operations requires a lengthy and complex clearance from Air Traffic Control (ATC) to the participating aircraft, thereby making the use of Controller Pilot Data Link Communications (CPDLC) highly desirable as the communication method. The use of CPDLC reduces the need for voice transmissions between controllers and flight crew, and enables automated transfer of IM clearance elements into flight management systems or other aircraft avionics. The result is reduced crew workload and an increase in the efficiency of crew procedures. This paper focuses on the subset of data collected related to the use of CPDLC for IM operations into a busy airport. Overall, the experiment and results were very successful, with the mean time under 43 seconds for the flight crew to load the clearance into the IM spacing tool, review the calculated speed, and respond to ATC. An overall mean rating of Moderately Agree was given when the crews were asked if the use of CPDLC was operationally acceptable as simulated in this experiment. Approximately half of the flight crew reported the use of CPDLC below 10,000 for IM operations was unacceptable, with 83% reporting below 5000 was unacceptable. Also described are proposed modifications to the IM operations that may reduce CPDLC Respond time to less than 30 seconds and should significantly reduce the complexity of crew procedures, as well as follow-on research issues for operational use of CPDLC during IM

  20. Binary Effect of Fly Ash and Palm Oil Fuel Ash on Heat of Hydration Aerated Concrete

    PubMed Central

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern. PMID:24696646

  1. Binary effect of fly ash and palm oil fuel ash on heat of hydration aerated concrete.

    PubMed

    Mehmannavaz, Taha; Ismail, Mohammad; Radin Sumadi, Salihuddin; Rafique Bhutta, Muhammad Aamer; Samadi, Mostafa; Sajjadi, Seyed Mahdi

    2014-01-01

    The binary effect of pulverized fuel ash (PFA) and palm oil fuel ash (POFA) on heat of hydration of aerated concrete was studied. Three aerated concrete mixes were prepared, namely, concrete containing 100% ordinary Portland cement (control sample or Type I), binary concrete made from 50% POFA (Type II), and ternary concrete containing 30% POFA and 20% PFA (Type III). It is found that the temperature increases due to heat of hydration through all the concrete specimens especially in the control sample. However, the total temperature rises caused by the heat of hydration through both of the new binary and ternary concrete were significantly lower than the control sample. The obtained results reveal that the replacement of Portland cement with binary and ternary materials is beneficial, particularly for mass concrete where thermal cracking due to extreme heat rise is of great concern.

  2. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  3. An Exploratory Compressive Strength Of Concrete Containing Modified Artificial Polyethylene Aggregate (MAPEA)

    NASA Astrophysics Data System (ADS)

    Hadipramana, J.; Mokhatar, S. N.; Samad, A. A. A.; Hakim, N. F. A.

    2016-11-01

    Concrete is widely used in the world as building and construction material. However, the constituent materials used in concrete are high cost when associated with the global economic recession. This exploratory aspires to have an alternative source of replacing natural aggregate with plastic wastes. An investigation of the Modified Artificial Polyethylene Aggregate (MAPEA) as natural aggregate replacement in concrete through an experimental work was conducted in this study. The MAPEA was created to improve the bonding ability of Artificial Polyethylene Aggregate (APEA) with the cement paste. The concrete was mixed with 3%, 6%, 9%, and 12% of APEA and MAPEA for 14 and 28 curing days, respectively. Furthermore, the compressive strength test was conducted to find out the optimum composition of MAPEA in concrete and compared to the APEA concrete. Besides, this study observed the influence and behaviour of MAPEA in concrete. Therefore, the Scanning Electron Microscopy was applied to observe the microstructure of MAPEA and APEA concrete. The results showed the use of high composition of an artificial aggregate resulted inferior strength on the concrete and 3% MAPEA in the concrete mix was highest compressive strength than other content. The modification of APEA (MAPEA) concrete increased its strength due to its surface roughness. However, the interfacial zone cracking was still found and decreased the strength of MAPEA concrete especially when it was age 28 days.

  4. Modelling of elastoplastic damage in concrete due to desiccation shrinkage

    NASA Astrophysics Data System (ADS)

    Bourgeois, F.; Burlion, N.; Shao, J. F.

    2002-07-01

    We present a numerical modelling of elastoplastic damage due to drying shrinkage of concrete in the framework of mechanics of partially saturated porous media. An elastoplastic model coupled with isotropic damage is first formulated. Two plastic flow mechanisms are involved, controlled by applied stress and suction, respectively. A general concept of net effective stress is used in take into account effects of capillary pressure and material damage on stress-controlled plastic deformation. Damage evolution depends both on elastic and plastic strains. The model's parameters are determined or chosen from relevant experimental data. Comparisons between numerical simulations and experimental data are presented to show the capacity of model to reproduce mains features of concrete behaviour under mechanical loading and during drying shrinkage of concrete. An example of application concerning drying of a concrete wall is finally presented. The results obtained allow to show potential capacity of proposed model for numerical modelling of complex coupling processes in concrete structures.

  5. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  6. Response of structural concrete elements to severe impulsive loads

    NASA Astrophysics Data System (ADS)

    Krauthammer, T.; Shanaa, H. M.; Assadi, A.

    1994-10-01

    The behavior and response of structural concrete elements under severe short duration dynamic loads was investigated numerically. The analytical approach utilized the Timoshenko beam theory for the analysis of reinforced concrete beams and one-way slabs. Nonlinear material models were used to derive the flexural and shear resistances, and the differential equations of the Timoshenko beam theory were solved numerically by applying the finite difference technique. A simplified approach was developed for estimating the strain rate in structural concrete members, and the corresponding strain rate effects on the strength of the steel and concrete were incorporated into the analysis. Detailed failure criteria were established for predicting the collapse of structural concrete members. Five cases subjected to localized impact loads and eleven cases subjected to distributed explosive loads were analyzed, and the results were compared to experimental data obtained by other investigators.

  7. Performance of Straight Steel Fibres Reinforced Alkali Activated Concrete

    NASA Astrophysics Data System (ADS)

    Faris, Meor Ahmad; Bakri Abdullah, Mohd Mustafa Al; Nizar Ismail, Khairul; Muniandy, Ratnasamy; Putra Jaya, Ramadhansyah

    2016-06-01

    This paper focus on the performance of alkali activated concrete produced by using fly ash activated by sodium silicate and sodium hydroxide solutions. These alkali activated concrete were reinforced with straight steel fibres with different weight percentage starting from 0 % up to 5 %. Chemical composition of raw material in the production alkali activated concrete which is fly ash was first identified by using X-ray fluorescence. Results reveal there have an effect of straight steel fibres inclusion to the alkali activated concrete. Highest compressive strength of alkali activated concrete which is 67.72 MPa was obtained when 3 % of straight fibres were added. As well as flexural strength, highest flexural strength which is 6.78 MPa was obtained at 3 % of straight steel fibres inclusions.

  8. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  9. Evaluation of Sustainability of Multistory Reinforced Concrete Structure

    NASA Astrophysics Data System (ADS)

    Al-Tamimi, A. K.; Ibrahim, A.; Al-Sughaiyer, N.

    Three different types of concrete mixes of design strengths 100 MPa, 50 MPa, and 50 MPa lightweight were designed, produced, and analyzed in the effort to quantify their effects on sustainability and economics. An overall comparison taking into consideration the structural, environmental, and economical effectiveness was conducted to find the most beneficial and reliable material to be used in sustainable structures. Different concrete types were used in the design of typical multi story buildings of the same loadings and dimensions. The only input variables in this research are the different mixes of concrete. By fixing the applied loadings and the buildings' dimensions, the three different materials were studied in terms of their effects on the structural design of members, carbon footprint and sustainability, and economics. High strength concrete using microsilica was concluded to be the most effective material to be used in construction with the best effects on sustainability and economics.

  10. GPR measurements of attenuation in concrete

    SciTech Connect

    Eisenmann, David Margetan, Frank J. Pavel, Brittney

    2015-03-31

    Ground-penetrating radar (GPR) signals from concrete structures are affected by several phenomenon, including: (1) transmission and reflection coefficients at interfaces; (2) the radiation patterns of the antenna(s) being used; and (3) the material properties of concrete and any embedded objects. In this paper we investigate different schemes for determining the electromagnetic (EM) attenuation of concrete from measured signals obtained using commercially-available GPR equipment. We adapt procedures commonly used in ultrasonic inspections where one compares the relative strengths of two or more signals having different travel paths through the material of interest. After correcting for beam spread (i.e., diffraction), interface phenomena, and equipment amplification settings, any remaining signal differences are assumed to be due to attenuation thus allowing the attenuation coefficient (say, in dB of loss per inch of travel) to be estimated. We begin with a brief overview of our approach, and then discuss how diffraction corrections were determined for our two 1.6 GHz GPR antennas. We then present results of attenuation measurements for two types of concrete using both pulse/echo and pitch/catch measurement setups.

  11. Sulfur "Concrete" for Lunar Applications - Sublimation Concerns

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Toutanji, Houssam

    2006-01-01

    Melting sulfur and mixing it with an aggregate to form "concrete" is commercially well established and constitutes a material that is particularly well-suited for use in corrosive environments. Discovery of the mineral troilite (FeS) on the moon poses the question of extracting the sulfur for use as a lunar construction material. This would be an attractive alternative to conventional concrete as it does not require water. However, the viability of sulfur concrete in a lunar environment, which is characterized by lack of an atmosphere and extreme temperatures, is not well understood. Here it is assumed that the lunar ore can be mined, refined, and the raw sulfur melded with appropriate lunar regolith to form, for example, bricks. This study evaluates pure sulfur and two sets of small sulfur concrete samples that have been prepared using JSC-1 lunar stimulant and SiO2 powder as aggregate additions. Each set was subjected to extended periods in a vacuum environment to evaluate sublimation issues. Results from these experiments are presented and discussed within the context of the lunar environment.

  12. Self Healing Concrete: A Biological Approach

    NASA Astrophysics Data System (ADS)

    Jonkers, Henk M.

    Concrete can be considered as a kind of artificial rock with properties more or less similar to certain natural rocks. As it is strong, durable, and relatively cheap, concrete is, since almost two centuries, the most used construction material worldwide, which can easily be recognized as it has changed the physiognomy of rural areas. However, due to the heterogeneity of the composition of its principle components, cement, water, and a variety of aggregates, the properties of the final product can widely vary. The structural designer therefore must previously establish which properties are important for a specific application and must choose the correct composition of the concrete ingredients in order to ensure that the final product applies to the previously set standards. Concrete is typically characterized by a high-compressive strength, but unfortunately also by a rather low-tensile strength. However, through the application of steel or other material reinforcements, the latter can be compensated for as such reinforcements can take over tensile forces.

  13. Investigation of modified asphalt concrete

    NASA Astrophysics Data System (ADS)

    Zimich, Vita

    2016-01-01

    Currently the problem of improving the asphalt quality is very urgent. It is used primarily as topcoats exposed to the greatest relative to the other layers of the road, dynamic load - impact and shear. The number of cars on the road, the speed of their movement, as well as the traffic intensity increase day by day. We have to upgrade motor roads, which entails a huge cost. World experience shows that the issue is urgent not only in Russia, but also in many countries in Europe, USA and Asia. Thus, the subject of research is the resistance of asphalt concrete to water and its influence on the strength of the material at different temperatures, and resistance of pavement to deformation. It is appropriate to search for new modifiers for asphaltic binder and mineral additives for asphalt mix to form in complex the skeleton of the future asphalt concrete, resistant to atmospheric condensation, soil characteristics of the road construction area, as well as the growing road transport load. The important task of the work is searching special modifying additives for bitumen binder and asphalt mixture as a whole, which will improve the quality of highways, increasing the period between repairs. The methods described in the normative-technical documentation were used for the research. The conducted research allowed reducing the frequency of road maintenance for 7 years, increasing it from 17 to 25 years.

  14. Response of a PGNAA setup for pozzolan-based cement concrete specimens.

    PubMed

    Naqvi, A A; Garwan, M A; Maslehuddin, M; Nagadi, M M; Al-Amoudi, O S B; Raashid, M

    2010-01-01

    Pozzolanic materials are added to Portland cement concrete to increase its durability, particularly corrosion-resistance. In this study the elemental composition of a pozzolanic cement concrete was measured non-destructively utilizing an accelerator-based Prompt Gamma Ray Neutron Activation Analysis (PGNAA) setup. The optimum size of the pozzolanic cement concrete specimen was obtained through Monte Carlo simulations. The simulation results were experimentally verified through the gamma-ray yield measurement from the pozzolanic cement concrete specimens as a function of their radii. The concentration of the pozzolanic material in the cement concrete specimens was evaluated by measuring gamma-ray yield for calcium and iron from pozzolanic cement concrete specimens containing 5-80 wt% pozzolan. A good agreement was noted between the experimental values and the Monte Carlo simulation results, indicating an excellent response of the KFUPM accelerator-based PGNAA setup for pozzolan based concrete.

  15. Evaluation of X-ray spectra transmitted by different concrete compositions

    NASA Astrophysics Data System (ADS)

    Costa, P. R.; Vieira, D. V.; Naccache, V. K.; Ferreira, K. R.; Priszkulnik, S.

    2015-11-01

    Additional shielding material must frequently be incorporated to medical facilities in order to comply with radiation protection requirements when using radiation sources. Typical materials for shielding walls, floor and ceiling are the lead, concrete and barite. In the present work, a group of four concrete compositions was evaluated by using broad beam transmission curves and transmitted spectra in the range of X-ray energies used for diagnostic imaging. The studied concretes were classified as ordinary concrete (Type C), concrete with addition of hematite (Types H1 and H2) and concrete with addition of steel grit (Type S). Concrete with steel grit shows be more efficient as shielding material of the three heavy types concrete studied. The two mixes of concrete and hematite are practically equivalent from the radioprotection point of view. However, the granulation difference between them might be important to other fields, as shielding is not the only function of concrete in the building structure. Although they are not as efficient as concrete with steel grit, they may be a shielding option in a facility with low shielding requirement.

  16. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  17. [Characteristic of Particulate Emissions from Concrete Batching in Beijing].

    PubMed

    Xue, Yi-feng; Zhou, Zhen; Zhong, Lian-hong; Yan, Jing; Qu, Song; Huang, Yu-hu; Tian, He- zhong; Pan, Tao

    2016-01-15

    With the economic development and population growth in Beijing, there is a strong need for construction and housing, which leads to the increase of the construction areas. Meanwhile, as a local provided material, the production of concrete has been raised. In the process of concrete production by concrete batching, there are numerous particulates emitted, which have large effect on the atmospheric environment, however, systematic study about the tempo-spatial characteristics of pollutant emission from concrete batching is still rare. In this study, we estimated the emission of particulates from concrete batching from 1991 to 2012 using emission factor method, analyzed the tempo-spatial characteristics of pollutant emission, established the uncertainty range by adopting Monte-Carlo method, and predicted the future emission in 2020 based on the relative environmental and economical policies. The results showed that: (1) the emissions of particulates from concrete batching showed a trend of "first increase and then decrease", reaching the maximum in 2005, and then decreased due to stricter emission standard and enhanced environmental management. (2) according to spatial distribution, the emission of particulates from concrete batch mainly concentrated in the urban area with more human activities, and the area between the fifth ring and the sixth ring contributed the most. (3) through scenarios analysis, for further reducing the emission from concrete batching in 2020, more stricter standard for green production as well as powerful supervision is needed.

  18. Precast Concrete Pavements

    DTIC Science & Technology

    1981-11-01

    Gorsuch 1962, Kruse 1966, Jacoby 1967, and Hargett 1970). The final slab design used in construction is shown in Figure 2. These slabs were 6 ft wide, 24...Experiment Station, CE, Vicksburg, Miss. Gorsuch , R. F. 1962. "Preliminary Investigation of Precast Prestressed Concrete Pavements," MS Thesis, South Dakota

  19. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  20. Concrete Block Pavements

    DTIC Science & Technology

    1983-03-01

    1967, Cedergren 1974, Federal Highway .’,U .. V,47 -’":: 37 Administration 1980). Block pavements have essentially the same prob- lems with moisture...Vicksburg, Miss. Cedergren , H. R. 1974. Drainage of Highway and Airfield Pavements, John Wiley and Sons, New VOk. I Cement and Concrete Association

  1. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  2. Micromechanics of Concrete.

    DTIC Science & Technology

    1988-01-25

    reflects the dispersion of the coarse aggregates on the mesoscale. Specifically, the experimental measure- ments indicate ( Mindess and Young 1981, Zaitsev...Mecanique des Materiaux Solides, Dunod, Paris. Mindess , S. and J. Young (1981), Concrete, Prentice-Hall Inc., Englewood Cliffs, NJ. Mura, T. (1982

  3. TRANSPORT THROUGH CRACKED CONCRETE: LITERATURE REVIEW

    SciTech Connect

    Langton, C.

    2012-05-11

    Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review and assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.

  4. Posttest Analysis of a Laboratory-Cast Monolith of Salt-Saturated Concrete.

    DTIC Science & Technology

    1986-09-01

    SATURATED CONCRETE Introduction I. This report describes a study of a concrete monolith cast as a laboratory simulation of field tests of concrete for use...tion (WES) for research on cement-based materials for plugging and sealing man-made openings in the rock. 3. In July 1985, several short concrete ... Concrete ," Federal Highway Administration Report No. FHWA-RD-77-85, except that a 0.5-g sample was used. Manganese levels were determined by 4,.".atomic

  5. Multiscale Constitutive Modeling of Asphalt Concrete

    NASA Astrophysics Data System (ADS)

    Underwood, Benjamin Shane

    Multiscale modeling of asphalt concrete has become a popular technique for gaining improved insight into the physical mechanisms that affect the material's behavior and ultimately its performance. This type of modeling considers asphalt concrete, not as a homogeneous mass, but rather as an assemblage of materials at different characteristic length scales. For proper modeling these characteristic scales should be functionally definable and should have known properties. Thus far, research in this area has not focused significant attention on functionally defining what the characteristic scales within asphalt concrete should be. Instead, many have made assumptions on the characteristic scales and even the characteristic behaviors of these scales with little to no support. This research addresses these shortcomings by directly evaluating the microstructure of the material and uses these results to create materials of different characteristic length scales as they exist within the asphalt concrete mixture. The objectives of this work are to; 1) develop mechanistic models for the linear viscoelastic (LVE) and damage behaviors in asphalt concrete at different length scales and 2) develop a mechanistic, mechanistic/empirical, or phenomenological formulation to link the different length scales into a model capable of predicting the effects of microstructural changes on the linear viscoelastic behaviors of asphalt concrete mixture, e.g., a microstructure association model for asphalt concrete mixture. Through the microstructural study it is found that asphalt concrete mixture can be considered as a build-up of three different phases; asphalt mastic, fine aggregate matrix (FAM), and finally the coarse aggregate particles. The asphalt mastic is found to exist as a homogenous material throughout the mixture and FAM, and the filler content within this material is consistent with the volumetric averaged concentration, which can be calculated from the job mix formula. It is also

  6. An analysis of flight data from aircraft landings with and without the aid of a painted diamond on the same runway

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Ashworth, G. R.

    1978-01-01

    The usefulness of a painted diamond on a runway as a visual aid to perform safe landings of aircraft was studied. Flight data on glideslope intercepts, flight path elevation angles, and touchdown distances were collected and analyzed. It is concluded that an appropriately painted diamond on a runway has the potential of providing glideslope information for the light weight class of general aviation aircraft. This conclusion holds irrespective of the differences in landing techniques used by the pilots.

  7. Promoting the use of crumb rubber concrete in developing countries.

    PubMed

    Batayneh, Malek K; Marie, Iqbal; Asi, Ibrahim

    2008-11-01

    The use of accumulated waste materials in third world countries is still in its early phases. It will take courage for contractors and others in the construction industry to recycle selected types of waste materials in the concrete mixes. This paper addresses the recycling of rubber tires accumulated every year in Jordan to be used in concrete mixes. The main objectives of this research were to provide more scientific evidence to support the use of legislation or incentive-based schemes to promote the reuse of accumulated waste tires. This research focused on using crumb tires as a replacement for a percentage of the local fine aggregates used in the concrete mixes in Jordan. Different concrete specimens were prepared and tested in terms of uniaxial compression and splitting tension. The main variable in the mixture was the volumetric percentage of crumb tires used in the mix. The test results showed that even though the compressive strength is reduced when using the crumb tires, it can meet the strength requirements of light weight concrete. In addition, test results and observations indicated that the addition of crumb rubber to the mix has a limited effect toward reducing the workability of the mixtures. The mechanical test results demonstrated that the tested specimens of the crumb rubber concrete remained relatively intact after failure compared to the conventional concrete specimens. It is also concluded that modified concrete would contribute to the disposal of the non-decaying scrap tires, since the amount being accumulated in third world countries is creating a challenge for proper disposal. Thus, obliging authorities to invest in facilitating the use of waste tires in concrete, a fundamental material to the booming construction industry in theses countries, serves two purposes.

  8. An evaluation of concrete recycling and reuse practices

    SciTech Connect

    Nakhjiri, K.S.; MacKinney, J.

    1997-02-01

    Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material should be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.

  9. Constitutive Modelling of Concrete and Rocks Under Multiaxial Compressive Loadings,

    DTIC Science & Technology

    1986-09-04

    constitutive model for geologic materials such as concrete...determine the material constants associated with the proposed constitutive model . The model is then verified by back-predicting the stress-strain curves... constitutive model based on the theory of plas- ticity. Although such a model can be used for a wide range of materials , in this dissertation its

  10. Production of Lunar Concrete Using Molten Sulfur

    NASA Technical Reports Server (NTRS)

    Omar, Husam A.

    1993-01-01

    The United States has made a commitment to go back to the moon to stay in the early part of the next century. In order to achieve this objective it became evident to NASA that a Lunar Outpost will be needed to house scientists and astronauts who will be living on the moon for extended periods of time. A study has been undertaken by the authors and supported by NASA to study the feasibility of using lunar regolith with different binders such as molten sulfur, epoxy or hydraulic cement as a construction material for different lunar structures. The basic premise of this study is that it will be more logical and cost effective to manufacture lunar construction materials utilizing indigenous resources rather than transporting needed materials from earth. Lunar concrete (made from Hydraulic Cement and lunar soil) has been studied and suggested as the construction material of choice for some of the lunar projects. Unfortunately, its hydration requires water which is going to be a precious commodity on the moon. Therefore this study explores the feasibility of using binders other than hydraulic cement such as sulfur or epoxy with lunar regolith as a construction material. This report describes findings of this study which deals specifically with using molten sulfur as a binder for Lunar concrete. It describes laboratory experiments in which the sulfur to lunar soil simulant ratios by weight were varied to study the minimum amount of sulfur required to produce a particular strength. The compressive and tensile strengths of these mixes were evaluated. Metal and fiber glass fibers were added to some of the mixes to study their effects on the compressive and tensile strengths. This report also describes experiments where the sulfur is melted and mixed with the lunar regolith in a specially designed vacuum chamber. The properties of the produced concrete were compared to those of concrete produced under normal pressure.

  11. Immobilization of iodine in concrete

    DOEpatents

    Clark, Walter E.; Thompson, Clarence T.

    1977-04-12

    A method for immobilizing fission product radioactive iodine recovered from irradiated nuclear fuel comprises combining material comprising water, Portland cement and about 3-20 wt. % iodine as Ba(IO.sub.3).sub.2 to provide a fluid mixture and allowing the fluid mixture to harden, said Ba(IO.sub.3).sub.2 comprising said radioactive iodine. An article for solid waste disposal comprises concrete prepared by this method. BACKGROUND OF THE INVENTION This invention was made in the course of, or under a contract with the Energy Research and Development Administration. It relates in general to reactor waste solidification and more specifically to the immobilization of fission product radioactive iodine recovered from irradiated nuclear fuel for underground storage.

  12. Moisture and salt monitoring in concrete by evanescent field dielectrometry

    NASA Astrophysics Data System (ADS)

    Riminesi, C.; Marie-Victoire, E.; Bouichou, M.; Olmi, R.

    2017-01-01

    Monitoring the water content and detecting the presence of soluble salts in concrete is a key issue for its maintenance. Evanescent field dielectrometry, originally developed for the diagnostics of frescoes and mural paintings, is proposed as a tool for monitoring the decay of cement-based materials. A measuring system, based on a scalar network analyzer and a resonant probe, has been realized and tested on concrete samples taken from historical buildings in France or purposely developed in the laboratory. Measurements on water-saturated and oven-dry samples provide the basis for calibrating the instrument for on site monitoring of concrete historical buildings, sculptures and cement-based artifacts.

  13. Leaching assessment of concrete made of recycled coarse aggregate: physical and environmental characterisation of aggregates and hardened concrete.

    PubMed

    Galvín, A P; Agrela, F; Ayuso, J; Beltrán, M G; Barbudo, A

    2014-09-01

    Each year, millions of tonnes of waste are generated worldwide, partially through the construction and demolition of buildings. Recycling the resulting waste could reduce the amount of materials that need to be manufactured. Accordingly, the present work has analysed the potential reuse of construction waste in concrete manufacturing by replacing the natural aggregate with recycled concrete coarse aggregate. However, incorporating alternative materials in concrete manufacturing may increase the pollutant potential of the product, presenting an environmental risk via ground water contamination. The present work has tested two types of concrete batches that were manufactured with different replacement percentages. The experimental procedure analyses not only the effect of the portion of recycled aggregate on the physical properties of concrete but also on the leaching behaviour as indicative of the contamination degree. Thus, parameters such as slump, density, porosity and absorption of hardened concrete, were studied. Leaching behaviour was evaluated based on the availability test performed to three aggregates (raw materials of the concrete batches) and on the diffusion test performed to all concrete. From an environmental point of view, the question of whether the cumulative amount of heavy metals that are released by diffusion reaches the availability threshold was answered. The analysis of concentration levels allowed the establishment of different groups of metals according to the observed behaviour, the analysis of the role of pH and the identification of the main release mechanisms. Finally, through a statistical analysis, physical parameters and diffusion data were interrelated. It allowed estimating the relevance of porosity, density and absorption of hardened concrete on diffusion release of the metals in study.

  14. Effect of silica fume addition on the PGNAA measurement of chlorine in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; Garwan, M A; Nagadi, M M; Al-Amoudi, O S B; Raashid, M; Khateeb-ur-Rehman

    2010-03-01

    Pozzolanic materials, such as fly ash (FA), silica fume (SF), and blast furnace slag (BFS) are added to Portland cement in concrete to prevent reinforcement steel corrosion in concrete. Further preventive measure against reinforcement steel corrosion require monitoring of chloride salts concentration in concrete using non-destructive techniques, such as the prompt gamma-ray neutron activation analysis (PGNAA) technique. Due to interferences between gamma-rays from chlorine and calcium in PGNAA technique, detection limit of chlorine in concrete strongly depends upon calcium concentration in concrete. SF mainly contains silica and its addition to cement concrete reduces overall concentration of calcium in concrete. This may result in an improvement in detection limit of chlorine in SF-based concrete in PGNAA studies. Particularly for chlorine detection using 6.11 and 6.62 MeV prompt gamma-rays that strongly interfere with 6.42 MeV prompt gamma-rays from calcium. In this study, SF was added to Portland cement to prevent concrete reinforcement steel from corrosion. The chlorine concentration in SF cement concrete specimens containing 0.2-3.0 wt% chlorine was measured through yield of 1.16, 1.95, 6.11, 6.62, 7.41, 7.79, and 8.58 MeV chlorine gamma-rays using PGNAA technique. An excellent agreement was noted between the experimental yield of the prompt gamma-rays and the gamma-ray yield calculated through the Monte Carlo simulations. Further the minimum detectable concentration (MDC) of chlorine in SF cement concrete was calculated and compared with the MDC values of chlorine in plain concrete and concrete mixed with fly ash cement. The MDC of chlorine in SF-based concrete through 6.11 MeV, and 6.62 MeV chlorine gamma-rays was found to be improved as compared to those in plain concrete and concrete mixed with fly ash cement.

  15. Indices of extinction-induced "depression" after operant learning using a runway vs. a cued free-reward delivery schedule.

    PubMed

    Topic, Bianca; Kröger, Inga; Vildirasova, Petya G; Huston, Joseph P

    2012-11-01

    Loss of reward is one of the etiological factors leading to affective disorders, such as major depression. We have proposed several variants of an animal model of depression based on extinction of reinforced behavior of rats. A number of behaviors emitted during extinction trials were found to be attenuated by antidepressant treatment and, thus, qualified as indices of extinction-induced "despair". These include increases in immobility in the Morris water maze and withdrawal from the former source of reward as well as biting behavior in operant chambers. Here, we assess the effects of reward omission on behaviors after learning of (a) a cued free-reward delivery in an operant chamber and (b) food-reinforced runway behavior. Sixty adult male Wistar rats were either trained to receive food reinforcement every 90 s (s) after a 5s lasting cue light (FI 90), or to traverse an alley to gain food reward. Daily drug treatment with either the selective serotonin reuptake inhibitor citalopram or the tricyclic antidepressant imipramine (each 10mg/kg) or vehicle was begun either 25 days (operant chamber) or 3 days (runway) prior to extinction. The antidepressants suppressed rearing behavior in both paradigms specifically during the extinction trials, which indicates this measure as a useful marker of depression-related behavior, possibly indicating vertical withdrawal. In the operant chamber, only marginal effects on operant learning responses during extinction were found. In the runway, the operant learned responses run time and distance to the goal, as well as total distance moved, grooming and quiescence were also influenced by the antidepressants, providing a potential set of markers for extinction-induced "depression" in the runway. Both paradigms differ substantially with respect to the anticipation of reward, behaviors that are learned and that accompany extinction. Accordingly, antidepressant treatment influenced different sets of behaviors in these two learning tasks.

  16. Potential polymer concrete heat exchanger tubes for corrosive environments

    SciTech Connect

    Fontana, J.J.; Reams, W.; Cheng, H.C.

    1986-11-01

    It has long been known that carbon steel exposed to some geothermal brines is aggressively attacked, and large corrosion allowances must be made in the design of piping used in such environments. In addition, scaling of the pipes reduces the flow through within a short period of time. Several high temperature polymer concretes have been developed which can be used as non-corrosive liner materials. In addition, polymer concretes with high thermal conductivities have been developed which may be used as heat exchanger tubes for geothermal brines. Studies have indicated that polymer concretes will not scale as rapidly as carbon steel does, thus making them attractive alternatives for heat exchanger tubes. Thin walled, thermally conductive polymer concrete tubes have been made that can withstand pressures >4.1 MPa at 150/sup 0/C without leaking. Continuing studies are being made to characterize these materials and evaluate them for heat exchanger applications.

  17. Nondestructive test methods for evaluating durability of concrete highway structures: experience of Ontario Ministry of Transportation

    NASA Astrophysics Data System (ADS)

    Ip, Alan; Berszakiewicz, Beata; Pianca, Frank

    1998-03-01

    There is an urgent need for fast, reliable, non-destructive test methods to measure permeability and resistivity of concrete in the field, in order to assess the performance of concrete structures and confirm the benefits of the use of new materials. The application of high performance concrete for rehabilitation of corrosion-damaged highway structures and for new bridge construction has increased in Ontario over the past few years. High performance concrete, containing supplementary cementing materials such as silica fume, typically has lower permeability and higher electrical resistivity than conventional concrete. Since 1993, the R&D staff of the Ontario Ministry of Transportation (MTO) has been evaluating various non-destructive in-situ techniques to measure the permeability and resistivity of concrete. This paper describes two methods used by MTO to measure the permeability of concrete: surface water absorption and air permeability techniques; and presents the methods used to measure the concrete electrical resistivity, chloride movement in the concrete, and corrosion activity of the embedded steel. Many of the tests were performed on both the conventional and high performance concrete. Some of these techniques can be potentially used as quality assurance tools for assessing the quality, performance and durability of concrete in the field.

  18. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    SciTech Connect

    Turick, C; Berry, C.

    2012-10-15

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in this field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial

  19. Radon emanation fractions from concretes containing fly ash and metakaolin.

    PubMed

    Taylor-Lange, Sarah C; Juenger, Maria C G; Siegel, Jeffrey A

    2014-01-01

    Radon ((222)Rn) and progenies emanate from soil and building components and can create an indoor air quality hazard. In this study, nine concrete constituents, including the supplementary cementitious materials (SCMs) fly ash and metakaolin, were used to create eleven different concrete mixtures. We investigated the effect of constituent radium specific activity, radon effective activity and emanation fraction on the concrete emanation fraction and the radon exhalation rate. Given the serious health effects associated with radionuclide exposure, experimental results were coupled with Monte Carlo simulations to demonstrate predictive differences in the indoor radon concentration due to concrete mixture design. The results from this study show that, on average, fly ash constituents possessed radium specific activities ranging from 100 Bq/kg to 200 Bq/kg and emanation fractions ranging from 1.1% to 2.5%. The lowest emitting concrete mixture containing fly ash resulted in a 3.4% reduction in the concrete emanation fraction, owing to the relatively low emanation that exists when fly ash is part of concrete. On average, the metakaolin constituents contained radium specific activities ranging from 67 Bq/kg to 600 Bq/kg and emanation fractions ranging from 8.4% to 15.5%, and changed the total concrete emanation fraction by roughly ±5% relative to control samples. The results from this study suggest that SCMs can reduce indoor radon exposure from concrete, contingent upon SCM radionucleotide content and emanation fraction. Lastly, the experimental results provide SCM-specific concrete emanation fractions for indoor radon exposure modeling.

  20. Electromechanical imitator of antilock braking modes of wheels with pneumatic tire and its application for the runways friction coefficient measurement

    NASA Astrophysics Data System (ADS)

    Putov, A. V.; Kopichev, M. M.; Ignatiev, K. V.; Putov, V. V.; Stotckaia, A. D.

    2017-01-01

    In this paper it is considered a discussion of the technique that realizes a brand new method of runway friction coefficient measurement based upon the proposed principle of measuring wheel braking control for the imitation of antilock braking modes that are close to the real braking modes of the aircraft chassis while landing that are realized by the aircraft anti-skid systems. Also here is the description of the model of towed measuring device that realizes a new technique of runway friction coefficient measuring, based upon the measuring wheel braking control principle. For increasing the repeatability accuracy of electromechanical braking imitation system the sideslip (brake) adaptive control system is proposed. Based upon the Burkhard model and additive random processes several mathematical models were created that describes the friction coefficient arrangement along the airstrip with different qualitative adjectives. Computer models of friction coefficient measuring were designed and first in the world the research of correlation between the friction coefficient measuring results and shape variations, intensity and cycle frequency of the measuring wheel antilock braking modes. The sketch engineering documentation was designed and prototype of the latest generation measuring device is ready to use. The measuring device was tested on the autonomous electromechanical examination laboratory treadmill bench. The experiments approved effectiveness of method of imitation the antilock braking modes for solving the problem of correlation of the runway friction coefficient measuring.