Science.gov

Sample records for concrete slab track

  1. Optimization of reinforced concrete slabs

    NASA Technical Reports Server (NTRS)

    Ferritto, J. M.

    1979-01-01

    Reinforced concrete cells composed of concrete slabs and used to limit the effects of accidental explosions during hazardous explosives operations are analyzed. An automated design procedure which considers the dynamic nonlinear behavior of the reinforced concrete of arbitrary geometrical and structural configuration subjected to dynamic pressure loading is discussed. The optimum design of the slab is examined using an interior penalty function. The optimization procedure is presented and the results are discussed and compared with finite element analysis.

  2. Perforation of thin unreinforced concrete slabs

    SciTech Connect

    Cargile, J.D.; Giltrud, M.E.; Luk, V.K.

    1993-10-01

    This report discusses fourteen tests which were conducted to investigate the perforation of thin unreinforced concrete slabs. The 4340-steel projectile used in the test series is 50.8 mm in diameter, 355.6 mm in length, has a mass of 2.34 kg. and an ogive nose with caliber radius head of 3. The slabs, contained within steel culverts, are 1.52 m in diameter and consist of concrete with a nominal unconfined compressive strength of 38.2 MPa and maxima aggregate size of 9.5 mm. Slab thicknesses are 284.4, 254.0, 215.9 and 127.0 mm. Tests were conducted at impact velocities of about 313 m/s on all slab thicknesses and about 379 and 471 m/s on the 254.0-mm-thick slab. All tests were conducted at normal incidence to the slab. All tests were conducted at normal incidence to the slab. Information obtained from the tests used to determine the loading (deceleration) on the projectile during the perforation process, the velocity-displacement of the projectile as it perforated the slab, and the projectile position as damage occurred on the backface of the slab. The test projectile behaved essentially as a rigid body for all of the tests.

  3. 31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    31. VIEW OF CONCRETE SLAB AT WEST ENTRANCE OF WALKWAY. '1944 JOE LANDETA' SCRATCHED INTO FRESH CONCRETE. March 1987 - Verde River Sheep Bridge, Spanning Verde River (Tonto National Forest), Cave Creek, Maricopa County, AZ

  4. 23. Surrender interview site, showing Pemberton Avenue concrete slab road ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. Surrender interview site, showing Pemberton Avenue concrete slab road type with gutter (asphalt construction typical on Union and Confederate Avenues), view to the sw. - Vicksburg National Military Park Roads & Bridges, Vicksburg, Warren County, MS

  5. 2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  6. 9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  7. DETAIL OF NORTH GUARDRAIL AND EXPANSION JOINT IN CONCRETE SLAB, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF NORTH GUARDRAIL AND EXPANSION JOINT IN CONCRETE SLAB, SHOWING DAMAGED SECTION OF GUARDRAIL AND ALUMINUM REPLACEMENT. VIEW TO NORTHWEST. - Hassayampa Bridge, Spanning Hassayampa River at old U.S. Highway 80, Arlington, Maricopa County, AZ

  8. 7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR AT RIGHT, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  9. 11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL BUILDING B AT FAR CENTER RIGHT. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  10. Interior view of groundfloor porch showing exposed concrete floor slab ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior view of ground-floor porch showing exposed concrete floor slab system, facing west. - Albrook Air Force Station, Field Officer's Quarters, West side of Dargue Avenue Circle, Balboa, Former Panama Canal Zone, CZ

  11. 8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER DRAINAGE AREA IN THE DISTANCE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO

  12. 18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. FOURTH FLOOR BLDG. 28, RAISED CONCRETE SLAB FLOOR WITH BLOCKS AND PULLEYS OVERHEAD LOOKING NORTHEAST. - Fafnir Bearing Plant, Bounded on North side by Myrtle Street, on South side by Orange Street, on East side by Booth Street & on West side by Grove Street, New Britain, Hartford County, CT

  13. DETAIL OF THE IMPRESSION IN THE CONCRETE SLAB OF THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF THE IMPRESSION IN THE CONCRETE SLAB OF THE SOUTH END OF THE ABOVE-GROUND PORTION. NOTE STEP DOWN TO THE STEEL PLATE IN BACKGROUND. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  14. DETAIL OF STEEL PLATE SET INTO THE CONCRETE SLAB OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF STEEL PLATE SET INTO THE CONCRETE SLAB OF THE NORTH END OF THE ABOVE-GROUND PORTION. VIEW FACING NORTH - U.S. Naval Base, Pearl Harbor, Ford Island 5-Inch Antiaircraft Battery, Battery Command Center, Ford Island, Pearl City, Honolulu County, HI

  15. Analytical and experimental study of sleeper SAT S 312 in slab track Sateba system

    NASA Astrophysics Data System (ADS)

    Guigou-Carter, C.; Villot, M.; Guillerme, B.; Petit, C.

    2006-06-01

    In this paper, a simple prediction tool based on a two-dimensional model is developed for a slab track system composed of two rails with rail pads, sleepers with sleeper pads, and a concrete base slab. The track and the slab are considered as infinite beams with bending stiffness, loss factor and mass per unit length. The track system is represented by its impedance per unit length of track and the ground by its line input impedance calculated using a two-dimensional elastic half-space ground model based on the wave approach. Damping of each track component is modelled as hysteretic damping and is taken into account by using a complex stiffness. The unsprung mass of the vehicle is considered as a concentrated mass at the excitation point on the rail head. The effect of the dynamic stiffness of the sleeper pads on the vibration isolation is studied in detail, the vibration isolation provided by the track system being quantified by an insertion gain in dB per one-third octave band. The second part of this paper presents an experimental test rig used to measure the dynamic stiffness of the sleeper pads on a full width section of the track (two rails). The experimental set-up is submitted to vertical as well as horizontal static loads (via hydraulic jacks) and an electrodynamic shaker is used for dynamic excitation of the system. The determination of the dynamic stiffness of the sleeper pads is based on the approach called the "direct method". The limitations of the experimental set-up are discussed. The measurement results for one type of sleeper pad are presented.

  16. Degradation and mechanism of the mechanics and durability of reinforced concrete slab in a marine environment

    NASA Astrophysics Data System (ADS)

    Wu, Sheng-xing; Liu, Guan-guo; Bian, Han-bing; Lv, Wei-bo; Jiang, Jian-hua

    2016-04-01

    An experimental research was conducted to determine the corrosion and bearing capacity of a reinforced concrete (RC) slab at different ages in a marine environment. Results show that the development of corrosion-induced cracks on a slab in a marine environment can be divided into three stages according to crack morphology at the bottom of the slab. In the first stage, cracks appear. In the second stage, cracks develop from the edges to the middle of the slab. In the third stage, longitudinal and transverse corrosion-induced cracks coexist. The corrosion ratio of reinforcements nonlinearly increases with the age, and the relationship between the corrosion ratio of the reinforcements and the corrosion-induced crack width of the concrete is established. The flexural capacity of the corroded RC slab nonlinearly decreases with the age, and the model for the bearing capacity factor of the corroded RC slab is established. The mid-span deflection of the corroded RC slab that corresponds to the yield of the reinforcements linearly increases with the increase in corrosion ratio. Finally, the mechanisms of corrosion morphology and the degradation of the mechanical properties of an RC slab in a marine environment are discussed on the basis of the basic theories of steel corrosion in concrete and concrete structure design.

  17. Investigation of compressive membrane action in ultra high performance concrete slab strips

    NASA Astrophysics Data System (ADS)

    Foust, Bradley Wade

    Reinforced concrete slabs are found in very common structural systems in both civilian and military applications. The boundary conditions that support the slab play an important role in the response to a particular load. Specifically, the amount of lateral and rotational restraint dictates how a slab responds to a particular load. Compressive membrane (i.e., in-plane) forces are present in slabs when the boundaries are sufficiently stiff, therefore restricting the slab from both lateral translations and rotations. Advancements have been made to account for the additional capacity due to compressive membrane forces in conventional strength concrete. In today's world, concrete performance is improving because of increasing compressive strengths and additional ductility present in concrete members. As a result of this current improvement, there is an urgent need to investigate compressive membrane theory in ultra-high-performance concrete (UHPC) slabs to better understand their behavior. Existing compressive membrane theory should be revisited to determine if current theory is applicable, or if it is not, what modifications should be made. This study will provide insight into the validity of existing theory that is currently used to predict the ultimate capacity in conventional-strength concrete slabs and attempt to modify the existing equations to account for high-strength concrete materials. A matrix of 14 normal-strength concrete (NSC) and 13 UHPC slabs was tested both statically and dynamically to better understand the behavior of each material set and the effects that boundary conditions have on slab response. The results from these experiments were then compared to response calculations made from existing theory as well as finite element analyses. Valuable data sets on rigidly restrained UHPC slab response were obtained through an experimental research program. The experiments helped to validate the associated numerical analysis that was performed. It was

  18. Analysis and design of on-grade reinforced concrete track support structures

    NASA Technical Reports Server (NTRS)

    Mclean, F. G.; Williams, R. D.; Greening, L. R.

    1972-01-01

    For the improvement of rail service, the Department of Transportation, Federal Rail Administration, is sponsoring a test track on the Atchison, Topeka, and Santa Fe Railway. The test track will contain nine separate rail support structures, including one conventional section for control and three reinforced concrete structures on grade, one slab and two beam sections. The analysis and design of these latter structures was accomplished by means of the finite element method, NASTRAN, and is presented.

  19. Resistance of plain and steel fiber-reinforced concrete slabs against short ogival projectiles impact

    NASA Astrophysics Data System (ADS)

    Mu, ZhongCheng; Zhang, Wei; Pang, PaoJun; Yang, ZhenQi

    2010-03-01

    Due to the enhanced energy absorption characteristics, the steel fiber-reinforced concrete (SFPC) structures gains more and more attention in the civilian and military ballistic protection structures when comparing with the plain concrete (PC) ones. By comparison on the penetration depth, the crater volume on impact face of the target and the debris cloud topography, the resistance of PC and SFPC slabs against projectiles impacting was investigated experimentally in a two-stage light-gas gun. In order to more widespread understand the effect of steel fibers against projectiles impacting, five different types of concrete slabs were done in the range of unconfined compressive strength from ordinary to high. Through the analysis of the test results it was found that the incorporation of steel fibers in the concrete reduced the crater diameter and restrained the initiation and propagation of cracking, but did not have a significant effect on the penetration depth.

  20. Resistance of plain and steel fiber-reinforced concrete slabs against short ogival projectiles impact

    NASA Astrophysics Data System (ADS)

    Mu, Zhongcheng; Zhang, Wei; Pang, Paojun; Yang, Zhenqi

    2009-12-01

    Due to the enhanced energy absorption characteristics, the steel fiber-reinforced concrete (SFPC) structures gains more and more attention in the civilian and military ballistic protection structures when comparing with the plain concrete (PC) ones. By comparison on the penetration depth, the crater volume on impact face of the target and the debris cloud topography, the resistance of PC and SFPC slabs against projectiles impacting was investigated experimentally in a two-stage light-gas gun. In order to more widespread understand the effect of steel fibers against projectiles impacting, five different types of concrete slabs were done in the range of unconfined compressive strength from ordinary to high. Through the analysis of the test results it was found that the incorporation of steel fibers in the concrete reduced the crater diameter and restrained the initiation and propagation of cracking, but did not have a significant effect on the penetration depth.

  1. The dynamic response of slab track constructions and their benefit with respect to conventional ballasted track

    NASA Astrophysics Data System (ADS)

    Bezin, Y.; Farrington, D.; Penny, C.; Temple, B.; Iwnicki, S.

    2010-12-01

    A recently developed Flexible Track System Model integrated with a multibody dynamics software tool was used to simulate the dynamic interaction between a vehicle and two innovative slab track designs, comparing their performance with respect to conventional ballasted track. The design concepts are presented and the modelling assumptions are given. Simulations are then carried out to quantify, for example, the impact of ballasted track degraded state using the case of a hanging sleeper. In comparison, the benefit of the two innovative track designs is highlighted as they prevent this type of localised defect from occurring. The alternative track designs were also shown to be capable of carrying a vehicle safely and with less impact on the system over a localised weakened formation support, by simulating a washout event.

  2. A high speed profiler based slab curvature index for jointed concrete pavement curling and warping analysis

    NASA Astrophysics Data System (ADS)

    Byrum, Christopher Ronald

    One of the biggest gaps of missing knowledge between accurate structural modeling of concrete pavement slab behavior and real pavement behavior is accounting for slab warping (locked-in curvature and moisture gradient effects) and curling (temperature gradient effects). Curling and warping are curvatures that can be present in a PCC slab that can cause corners and edges, or mid panel, of the slab to lift off of the ground resulting in relatively high deflection and stress in the system. The least understood type of curvature in slabs is apparent locked-in curvature, which can become excessive and control the overall behavior of the pavement system. This project is focused on quantifying slab curvatures and the effects of apparent locked-in curvature on the behavior and long-term performance of pavement systems. A high-speed profile analysis technique for detecting the amount of slab curvatures along pavement wheel paths is described. This signal processing technique can detect relatively small curvature variations in high-speed pavement elevation profiles obtained at normal highway operating speeds using special vehicles. A resulting curvature detection algorithm is applied to the Federal Highway Administration (FHWA) Long Term Pavement Performance (LTPP) database high-speed pavement profiles for jointed concrete pavements. The range and nature of slab curvatures detected in the profiles is described. The calculated locked-in curvature at the various pavement sites is compared to LTPP database information to evaluate curvature effects on pavement deterioration rates and the relation between site parameters and locked-in curvature. The significance of slab curvature is shown through statistics and predictive models developed for various pavement distress modes. It is shown that the amount of curvature locked into concrete slabs is one of the strongest factors in the FHWA LTPP data correlated to deterioration of pavements. This study shows that preventing locked

  3. NUMERICAL ANALYSIS OF CRACK AND STRAIN BEHAVIOR OF RC SLAB IN STEEL-CONCRETE COMPOSITE GIRDER UNDER NEGATIVE BENDING

    NASA Astrophysics Data System (ADS)

    Sakaguchi, Junichi; Nakajima, Akinori; Suzuki, Yasuo

    The sophisticated numerical analysis method is required to simulate the strain behavior of the reinforcement and the crack width of the RC slab, although many researches are conducted on the cracking behavior of the RC slab in the composite girder under the negative bending. In this paper, the numerical analysis method is constructed to evaluate the strain behavior of the reinforcement and the crack width of the RC slab in the steel-concrete composite girder subjected to the negative bending. The analysis method using the rigid body spring model takes into account the imperfect composite action between the steel girder and the RC slab, the bond between the reinforcement and the concrete, and the shrinkage of the concrete. As a result, it is confirmed that the analysis method can simulate the crack and the strain behavior of RC slab quantitatively in the steel-concrete composite girder under the negative bending.

  4. Impact resistance of sustainable construction material using light weight oil palm shells reinforced geogrid concrete slab

    NASA Astrophysics Data System (ADS)

    Muda, Z. C.; Malik, G.; Usman, F.; Beddu, S.; Alam, M. A.; Mustapha, K. N.; Birima, A. H.; Zarroq, O. S.; Sidek, L. M.; Rashid, M. A.

    2013-06-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete slab with geogrid reinforcement of 300mm × 300mm size with 20mm, 30mm and 40 mm thick casted with different geogrid orientation and boundary conditions subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance the slab thickness, boundary conditions and geogrid reinforcement orientation. Test results indicate that the used of the geogrid reinforcement increased the impact resistance under service (first) limit crack up to 5.9 times and at ultimate limit crack up to 20.1 times against the control sample (without geogrid). A good linear relationship has been established between first and ultimate crack resistance against the slab thickness. The orientation of the geogrid has minor significant to the crack resistance of the OPS concrete slab. OPS geogrid reinforced slab has a good crack resistance properties that can be utilized as a sustainable impact resistance construction materials.

  5. Numerical Modelling of Reinforced Concrete Slabs under Blast Loads of Close-in Detonations Using the Lagrangian Approach

    NASA Astrophysics Data System (ADS)

    Shuaib, M.; Daoud, O.

    2015-07-01

    This paper includes an investigation for the deformations, including deflections and damage modes, which occur in reinforced concrete (RC) slabs when subjected to blast loads of explosions. The slab considered for the investigation is a one-way square RC slab with the dimensions of 1000 x 1000 x 40 mm, fixed supported at two opposite sides. It was subjected to close-in detonations of three different charge weights for a constant standoff distance. For the study, the slab was analysed using the numerical method by means of nonlinear finite element analysis. The slab was modelled as 3-D structural continuum using LS-DYNA software. For concrete modelling, two constitutive models were selected, namely the KCC and Winfrith concrete models. Blast loads were applied to the slab through the Lagrangian approach, and the blast command available in the software, namely LOAD_BLAST_ENHANCED, was selected for the application. The deflections and damage modes results obtained were compared to those from a previously published experiment. From the study, both the KCC and Winfrith concrete models effectively and satisfactorily estimated the actual slab maximum deflection. For damage modes, the KCC model appeared to be capable to capture satisfactorily the general damage mode including flexural cracks. However, the model could not capture the local shear mode at the middle of slab (spallation) because the Lagrangian approach does not simulate the interaction between the ambient air and the solid slab.

  6. A study of concrete slab damage detection based on the electromechanical impedance method.

    PubMed

    Hu, Xianyan; Zhu, Hongping; Wang, Dansheng

    2014-10-23

    Piezoelectric lead zirconate titanate (PZT) is being gradually applied into practice as a new intelligent material for structural health monitoring. In order to study the damage detection properties of PZT on concrete slabs, simply supported reinforced concrete slabs with piezoelectric patches attached to their surfaces were chosen as the research objects and the Electromechanical Impedance method (EMI) was adopted for research. Five kinds of damage condition were designed to test the impedance values at different frequency bands. Consistent rules are found by calculation and analysis. Both the root mean square deviation (RMSD) and the correlation coefficient deviation (CCD) damage indices are capable of detecting the structural damage. The newly proposed damage index Ry/Rx can also predict the changes well. The numerical and experimental studies verify that the Electromechanical Impedance method can accurately predict changes in the amount of damage in reinforced concrete slabs. The damage index changes regularly with the distance of damages to the sensor. This relationship can be used to determine the damage location. The newly proposed damage index Ry/Rx is accurate in determining the damage location.

  7. AREA FACTOR DETERMINATIONS FOR AN INDUSTRIAL WORKER EXPOSED TO A CONCRETE SLAB END-STATE

    SciTech Connect

    Jannik, T; Patricia Lee, P; Eduardo Farfan, E; Jesse Roach, J

    2007-02-08

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik [1]. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D&D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with (1) the illustrative area factors provided in MARSSIM [2], (2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance [3], and (3) the hot spot criterion for field application provided in the RESRAD User's Manual [4].

  8. A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method

    PubMed Central

    Hu, Xianyan; Zhu, Hongping; Wang, Dansheng

    2014-01-01

    Piezoelectric lead zirconate titanate (PZT) is being gradually applied into practice as a new intelligent material for structural health monitoring. In order to study the damage detection properties of PZT on concrete slabs, simply supported reinforced concrete slabs with piezoelectric patches attached to their surfaces were chosen as the research objects and the Electromechanical Impedance method (EMI) was adopted for research. Five kinds of damage condition were designed to test the impedance values at different frequency bands. Consistent rules are found by calculation and analysis. Both the root mean square deviation (RMSD) and the correlation coefficient deviation (CCD) damage indices are capable of detecting the structural damage. The newly proposed damage index Ry/Rx can also predict the changes well. The numerical and experimental studies verify that the Electromechanical Impedance method can accurately predict changes in the amount of damage in reinforced concrete slabs. The damage index changes regularly with the distance of damages to the sensor. This relationship can be used to determine the damage location. The newly proposed damage index Ry/Rx is accurate in determining the damage location. PMID:25341438

  9. Assessment of design parameters of a slab track railway system from a dynamic viewpoint

    NASA Astrophysics Data System (ADS)

    Steenbergen, M. J. M. M.; Metrikine, A. V.; Esveld, C.

    2007-09-01

    The development of the ballastless slab track, with applications especially on soft soil in combination with loading by high-speed trains, puts several specific engineering demands. One of these is how to provide the required vertical stiffness of the track system. According to the most common approach massive soil improvements are applied. An alternative to this would be to increase the bending stiffness of the slab, e.g. by applying an eccentric reinforcement. Both solutions have consequences for the dynamic track and ground response. In this contribution, the classical model of a beam on elastic half-space subject to a moving load is employed to assess effectiveness of these engineering solutions by analysis of their influence on the generalized dynamic track stiffness. The aim is to minimize the level of slab vibrations, in order to prevent deterioration. The effect of variation of other track properties is also evaluated. It is shown that for high frequencies an increase of the track stiffness is most effective, whereas for low frequencies soil improvement is a better solution. It is further shown that a relatively high track mass generally decreases track vibrations in the relevant frequency domain and that the width of the slab is an important parameter to control the level of track vibrations.

  10. Façade Greening: High-rise apartment building in Milan using pre-stressed concrete slab

    NASA Astrophysics Data System (ADS)

    Sun, Wenning; Li, Mingxin; Han, Yinong; Wang, Moqi; Ansourian, Peter

    2016-08-01

    In this project, one single level of the Façade Greening was designed and modelled using finite element method in Strand7. A static analysis was performed in order to understand the deflection and the stress due to the extra loads imposed by the soil and plants. The results produced by the linear static solver are compared with the strength of the materials and the European limitations. The maximum tension stress which exceeds the tensile strength in concrete is found in the root of the cantilever balcony. An alternative design of the cantilevered balcony with pre-stressed concrete slab is modelled separately for the balcony. Decrease is found in the tension stress and the significant improvement of deflection of the balcony with pre-stressed concrete slab. The dynamic loads such as wind and earthquake did not suggest significant effect on the pre-stressed concrete slab.

  11. Failure mechanisms of concrete slab-soil double-layer structure subjected to underground explosion

    NASA Astrophysics Data System (ADS)

    Tan, Z.; Zhang, W.; Cho, C.; Han, X.

    2014-09-01

    The failure mechanism of a concrete slab-soil double-layer structure subjected to an underground explosion was investigated by experimental and numerical methods in this paper. Two underground explosion depths of 150 and 350 mm were tested. The typical failure modes such as the conoid spall of concrete, the bulge of the concrete slab and the cavity in the soil were obtained experimentally. Numerical simulations of the experiments were performed using a hydrodynamic code to analyze the effects of both the stress wave and the expansion of the blast products. Based on the experimental and numerical results, the effects of explosive depth, blast wave front and expansion of the blast products on the failure modes and failure mechanisms were discussed. The underground explosion process at different explosion depths was also analyzed. The results show that attenuation of the stress wave in the soil is significant. The blast wave front and the expansion of the blast products play different roles at different explosion depths. At the explosion depth of 150 mm, the failure mode is mainly caused by a point load induced by the blast wave front, whereas at the depth of 350 mm a sphere-shaped load resulting from the expansion of the blast products is a key factor for failure.

  12. Effects of shear stirrup details on ultimate capacity and tensile-membrane behavior of reinforced concrete slabs. Final report

    SciTech Connect

    Woodson, S.C.

    1985-08-01

    At the time this study was initiated, civil defense planning in the United States called for the evacuation of nonessential personnel to safe host areas when a nuclear attack is probable, requiring the construction of blasts shelters to protect the keyworkers remaining in the risk areas. The placement of shear stirrups in the one-way reinforced concrete roof slabs of the shelters will contribute significantly to project costs. Ten one-way reinforced concrete slabs were statically and uniformly loaded with water pressure, primarily to investigate the effect of stirrups and stirrup details on the load-response behavior of the slabs. The slabs had clear spans of 24.0 inches, span to effective depth ratios of 12.4, tensile reinforcement of 0.75%, and concrete strengths of approximately 5,000 psi. The test series significantly increased the data base for uniformly loaded one-way slabs. Support rotations between 13.1 and 20.6 degrees were observed. A more ductile behavior was observed in slabs with construction details, implying better concrete confinement due to more confining steel (i.e., closely spaced stirrups, double-leg stirrups, and closely spaced principal reinforcing bars). The parameters investigated did not appear to have a significant effect on ultimate load capacity.

  13. Impact resistance performance of green construction material using light weight oil palm shells reinforced bamboo concrete slab

    NASA Astrophysics Data System (ADS)

    Muda, Z. C.; Usman, F.; Beddu, S.; Alam, M. A.; Thiruchelvam, S.; Sidek, L. M.; Basri, H.; Saadi, S.

    2013-06-01

    This paper investigate the performance of lightweight oil palm shells (OPS) concrete with varied bamboo reinforcement content for the concrete slab of 300mm x 300mm size reinforced with different thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.2 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter for a constant spacing for various slab thickness using 0.45 OPS and 0.6 OPS bamboo reinforced concrete. The increment in bamboo diameter has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Increment in slab thickness of the slab has more effect on the crack resistance as compare to the increment in the diameter of the bamboo reinforcement.

  14. Area Factor Determinations for an Industrial Worker Exposed to a Concrete Slab End-State

    SciTech Connect

    Jannik, G. Timothy; Lee, Patricia L.; Farfan, Eduardo B.; Roach, Jesse L.

    2008-01-15

    The U.S. Department of Energy's (DOE) Savannah River Site (SRS) is decommissioning many of its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs as described in Jannik. These risk-based DCGLs were estimated for an exposure area of 100 m{sup 2}. During deactivation and decommissioning (D and D) operations at SRS, the need for area factors for larger and smaller contaminated areas arose. This paper compares the area factors determined for an industrial worker exposed to a concrete slab end-state for several radionuclides of concern at SRS with 1) the illustrative area factors provided in MARSSIM, 2) the area correction factors provided in the U.S. Environmental Protection Agency's (EPA) Soil Screening Guidance, and 3) the hot spot criterion for field application provided in the RESRAD User's Manual. The purpose of this site-specific assessment is to determine if any of the recommended area factors provided in the guidance documents could be utilized at SRS for field applications of the industrial worker DCGLs. Results show the area factors that were determined for an SRS industrial worker exposed to concrete slab end-states for the common radionuclides provided in the referenced guidance documents. In addition to the SRS site-specific area factors, the following area factors are provided for comparison: - Illustrative examples of outdoor area dose factors (MARSSIM); - Area correction factors as a function of source area (Soil Screening Guidance). Note: the area correction factors were inverted to correspond to a DCGL area factor. - Recommended area correction factors as a function of source area (Soil Screening Guidance); - Ranges for hot spot multiplication factors (RESRAD). As it can be seen

  15. A numerical model for calculating vibration due to a harmonic moving load on a floating-slab track with discontinuous slabs in an underground railway tunnel

    NASA Astrophysics Data System (ADS)

    Hussein, M. F. M.; Hunt, H. E. M.

    2009-03-01

    This paper presents a new method for modelling floating-slab tracks with discontinuous slabs in underground railway tunnels. The track is subjected to a harmonic load moving with a constant velocity. The model consists of two sub-models. The first is an infinite track with periodic double-beam unit formulated as a periodic infinite structure. The second is modelled with a new version of the Pipe-in-Pipe (PiP) model that accounts for a tunnel wall embedded in a half-space. The two sub-models are coupled by writing the force transmitted from the track to the tunnel as a continuous function using Fourier series representation and satisfying the compatibility condition. The displacements at the free surface are calculated for a track with discontinuous slab and compared with those of a track with continuous slab. The results show that the far-field vibration can be significantly increased due to resonance frequencies of slabs for tracks with discontinuous slabs.

  16. 76 FR 18073 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-01

    ... crossties are an acceptable design alternative for use in modern track. Test sections on various railroads... uneconomical. Modern concrete crossties are designed to accept the stresses imposed by irregular rail head... agency's promulgation of concrete crosstie regulations per the mandate of the RSIA. See 75 FR 52490....

  17. A theoretical investigation on influences of slab tracks on vertical dynamic responses of railway viaducts

    NASA Astrophysics Data System (ADS)

    Shi, Li; Cai, Yuanqiang; Wang, Peng; Sun, Honglei

    2016-07-01

    A railway viaduct model consisting of infinite spans of elastically-supported girders carrying a slab track of infinite length is established to investigate the influence of the slabs on the vertical dynamic response of the viaduct, when a moving harmonic point load or a moving sprung wheel is applied. The infinite rail, the discontinuous slabs and girders of identical span lengths are idealized as Euler-Bernoulli beams. The rail fasteners, the cushion layer beneath the slab and the elastic bearings at the girder supports are represented by discretely distributed springs of hysteretic damping. Due to the repetitive nature of the girders, the model can be divided into periodic three-beam units by the span length of the girder, and then solved analytically in the frequency domain using the property of periodic structure. Besides the first natural frequency of the girder with elastic bearings, it is found that the resonance frequency of the slab on the cushion layer has a significant influence on the dynamic response of the track and the girder. Parametric excitations due to the moving wheel periodically passing the discontinuous slabs contribute significantly to the wheel/rail interactions.

  18. Experiment on the concrete slab for floor vibration evaluation of deteriorated building

    NASA Astrophysics Data System (ADS)

    Hong, S. U.; Na, J. H.; Kim, S. H.; Lee, Y. T.

    2014-08-01

    Damages from noise and vibration are increasing every year, and most of which are noises between floors in deteriorated building caused by floor impact sound. In this study, the floor vibration of the deteriorated buildings constructed with the concrete slabs of thickness no more than 150 mm was evaluated by the vibration impact sound. This highly reliable study was conducted to assess floor vibration according with the serviceability evaluation standard of Reiher / Meister and Koch and vibration evaluation standard of ISO and AIJ. Designed pressure for the concrete slab sample of floor vibration assessment was 24MPa, and the sample was manufactured pursuant to KS F 2865 and JIS A 1440-2 with size of 3200 mm × 3200 mm × 140 mm. Tests were conducted twice with accelerometers, and Fast Fourier Transform was performed for comparative analysis by the vibration assessment criteria. The peak displacement from Test 1 was in the range of 0.00869 - 0.02540 mm; the value of peak frequency ranged from 18 to 27 Hz, and the average value was 22Hz. The peak acceleration value from Test 2 was in the range of 0.47 - 1.07 % g; the value of peak frequency was 18.5 - 22.57 Hz, and the average was 21Hz. The vibration was apparently recognizable in most cases according to the Reiher/Meister standard. In case of Koch graph for the damage assessment of the structure, the vibration was at the medium level and causes no damage to the building structure. The measured vibration results did not exceed the damage limit or serviceability limit of building according to the vibration assessment criteria of ISO and residential assessment guidelines provided by Architectural Institute of Japan (AIJ).

  19. 7. Concrete Railing along Buffalo River side of tracks emerging ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Concrete Railing along Buffalo River side of tracks emerging from second level of DL&W train shed. Signal Tower/Boiler Room is just out of sight at right of photo. Skyway shows at extreme left. - Delaware, Lackawanna & Western Railroad, Lackawanna Terminal, Main Street & Buffalo River, Buffalo, Erie County, NY

  20. 75 FR 52490 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-26

    ... alternative for use in modern track. Test sections on various railroads were set up in the 1970s to evaluate... uneconomical. Modern concrete crossties are designed to accept the stresses imposed by irregular rail head... proposes new methodologies for inspection. \\5\\ See 49 CFR 213.335(d). II. Overview of FRA's Railroad...

  1. Displacement monitoring of switch track and its slab on a bridge of high speed railway by FBG

    NASA Astrophysics Data System (ADS)

    Li, Weilai; Li, He; Cheng, Jian; Huang, Xiaomei; Pan, Jianjun; Zhou, Ciming; Yang, Minghong

    2011-05-01

    In a 350km/h high speed railway line, there is a seamless switch with ballastless slabs built on a bridge. 54 Fiber Bragg Grating detecting cells are employed to monitor the displacement of track and slab. The cell is of extending function of measurement range, up to 50mm displacement, and is of good linearity. Protecting methods for cells and fiber are adopted to keep them surviving from the harsh conditions. The results show that in 75 days, the displacement of the track and sleeper slab was 8-9mm, and the displacement is of high correlation with daily environmental temperature change.

  2. 49 CFR 213.234 - Automated inspection of track constructed with concrete crossties.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... concrete crossties. 213.234 Section 213.234 Transportation Other Regulations Relating to Transportation... § 213.234 Automated inspection of track constructed with concrete crossties. Link to an amendment... track inspection required under § 213.233, for Class 3 main track constructed with concrete...

  3. Seismic joint analysis for non-destructive testing of asphalt and concrete slabs

    USGS Publications Warehouse

    Ryden, N.; Park, C.B.

    2005-01-01

    A seismic approach is used to estimate the thickness and elastic stiffness constants of asphalt or concrete slabs. The overall concept of the approach utilizes the robustness of the multichannel seismic method. A multichannel-equivalent data set is compiled from multiple time series recorded from multiple hammer impacts at progressively different offsets from a fixed receiver. This multichannel simulation with one receiver (MSOR) replaces the true multichannel recording in a cost-effective and convenient manner. A recorded data set is first processed to evaluate the shear wave velocity through a wave field transformation, normally used in the multichannel analysis of surface waves (MASW) method, followed by a Lambwave inversion. Then, the same data set is used to evaluate compression wave velocity from a combined processing of the first-arrival picking and a linear regression. Finally, the amplitude spectra of the time series are used to evaluate the thickness by following the concepts utilized in the Impact Echo (IE) method. Due to the powerful signal extraction capabilities ensured by the multichannel processing schemes used, the entire procedure for all three evaluations can be fully automated and results can be obtained directly in the field. A field data set is used to demonstrate the proposed approach.

  4. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  5. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-06-26

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency.

  6. Using Wireless Sensor Networks and Trains as Data Mules to Monitor Slab Track Infrastructures.

    PubMed

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Reyna, Ana; Rubio, Bartolomé

    2015-01-01

    Recently, slab track systems have arisen as a safer and more sustainable option for high speed railway infrastructures, compared to traditional ballasted tracks. Integrating Wireless Sensor Networks within these infrastructures can provide structural health related data that can be used to evaluate their degradation and to not only detect failures but also to predict them. The design of such systems has to deal with a scenario of large areas with inaccessible zones, where neither Internet coverage nor electricity supply is guaranteed. In this paper we propose a monitoring system for slab track systems that measures vibrations and displacements in the track. Collected data is transmitted to passing trains, which are used as data mules to upload the information to a remote control center. On arrival at the station, the data is stored in a database, which is queried by an application in order to detect and predict failures. In this paper, different communication architectures are designed and tested to select the most suitable system meeting such requirements as efficiency, low cost and data accuracy. In addition, to ensure communication between the sensing devices and the train, the communication system must take into account parameters such as train speed, antenna coverage, band and frequency. PMID:26131668

  7. Nonlinear finite element analyses of FRP-reinforced concrete slabs using a new layered composite plate element

    NASA Astrophysics Data System (ADS)

    Zhu, Y.; Zhang, Y. X.

    2010-08-01

    A simple and shear-flexible rectangular composite layered plate element and nonlinear finite element analysis procedures are developed in this paper for nonlinear analysis of fiber reinforced plastic (FRP)-reinforced concrete slabs. The composite layered plate element is constructed based on Mindlin-Reissner plate theory and Timoshenko’s composite beam functions, and transverse shear effects and membrane-bending coupling effects are accounted for. Both geometric nonlinearity and material nonlinearity of the materials, which incorporates tension, compression, tension stiffening and cracking of the concrete, are included in the new model. The developed element and the nonlinear finite element analysis procedures are validated by comparing the computed numerical results of numerical examples with those obtained from experimental investigations and from the commercial finite element analysis package ABAQUS. The element is then employed to investigate the nonlinear structural behavior and the cracking progress of a clamped two-way FRP-reinforced concrete slab. The influences of reinforcement with different materials, ratio and layout in tension or compressive regions on structural behavior of the clamped slabs are investigated by parametric studies.

  8. Temperature and pore pressure distribution in a concrete slab during the microwave decontamination process

    SciTech Connect

    Li, W.; Ebadian, M.A.; White, T.L.; Grubb, R.G.; Foster, D. Jr.

    1994-10-01

    As an application of microwave engineering, the new technology of concrete decontamination and decommissioning using microwave energy has been recently developed. The temperature and pore pressure within the concrete are studied theoretically in this paper. The heat and mass transfer within the porous concrete, coupled with temperature dependent dielectric property are investigated. The effects of microwave frequency (f), microwave power intensity (Q{sub 0,ave}), concrete porosity ({phi}) on the temperature and pore pressure distributions and their variations are fully discussed. The effects of the variation of complex dielectric permittivity ({epsilon}) and presentation of different steel reinforcements are also illustrated.

  9. 49 CFR 213.234 - Automated inspection of track constructed with concrete crossties.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... concrete crossties. 213.234 Section 213.234 Transportation Other Regulations Relating to Transportation... § 213.234 Automated inspection of track constructed with concrete crossties. (a) General. Except for... constructed with concrete crossties over which regularly scheduled passenger service trains operate, and...

  10. 49 CFR 213.234 - Automated inspection of track constructed with concrete crossties.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... concrete crossties. 213.234 Section 213.234 Transportation Other Regulations Relating to Transportation... § 213.234 Automated inspection of track constructed with concrete crossties. (a) General. Except for... constructed with concrete crossties over which regularly scheduled passenger service trains operate, and...

  11. 49 CFR 213.234 - Automated inspection of track constructed with concrete crossties.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... concrete crossties. 213.234 Section 213.234 Transportation Other Regulations Relating to Transportation... § 213.234 Automated inspection of track constructed with concrete crossties. (a) General. Except for... constructed with concrete crossties over which regularly scheduled passenger service trains operate, and...

  12. Random vibration analysis of train-bridge under track irregularities and traveling seismic waves using train-slab track-bridge interaction model

    NASA Astrophysics Data System (ADS)

    Zeng, Zhi-Ping; Zhao, Yan-Gang; Xu, Wen-Tao; Yu, Zhi-Wu; Chen, Ling-Kun; Lou, Ping

    2015-04-01

    The frequent use of bridges in high-speed railway lines greatly increases the probability that trains are running on bridges when earthquakes occur. This paper investigates the random vibrations of a high-speed train traversing a slab track on a continuous girder bridge subjected to track irregularities and traveling seismic waves by the pseudo-excitation method (PEM). To derive the equations of motion of the train-slab track-bridge interaction system, the multibody dynamics and finite element method models are used for the train and the track and bridge, respectively. By assuming track irregularities to be fully coherent random excitations with time lags between different wheels and seismic accelerations to be uniformly modulated, non-stationary random excitations with time lags between different foundations, the random load vectors of the equations of motion are transformed into a series of deterministic pseudo-excitations based on PEM and the wheel-rail contact relationship. A computer code is developed to obtain the time-dependent random responses of the entire system. As a case study, the random vibration characteristics of an ICE-3 high-speed train traversing a seven-span continuous girder bridge simultaneously excited by track irregularities and traveling seismic waves are analyzed. The influence of train speed and seismic wave propagation velocity on the random vibration characteristics of the bridge and train are discussed.

  13. 7. 'Tunnel No 14, Concrete Lining,' Southern Pacific Standard SingleTrack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. 'Tunnel No 14, Concrete Lining,' Southern Pacific Standard Single-Track Tunnel, ca. 1909. Under current numbering, this is now Tunnel 29 (HAER No. CA-205). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  14. Damage assessed by wavelet scale bands and b-value in dynamical tests of a reinforced concrete slab monitored with acoustic emission

    NASA Astrophysics Data System (ADS)

    Zitto, Miguel E.; Piotrkowski, Rosa; Gallego, Antolino; Sagasta, Francisco; Benavent-Climent, Amadeo

    2015-08-01

    The complex Morlet Continuous Wavelet Transform (CWT) was applied to acoustic emission (AE) signals from dynamic tests conducted on a reinforced concrete slab with a shaking table. The steel reinforcement bars did not yield during the tests, but a severe loss of bond between reinforcement bars and surrounding concrete was detected. Comparison of the evolution of the scale position of maximum values of CWT coefficients and the histories of response acceleration obtained in different seismic simulations allowed us to identify the (45-64 kHz) frequency band corresponding to the fracture of concrete. The Cumulative Acoustic Emission Energy (CAE) obtained by reconstructing the AE signals in this scale (frequency) band was compared with the Cumulative Dissipated Energy (CDE) of the tested structure. The CDE is accepted as a good parameter for characterizing the mechanical damage in structures. A reasonably good agreement was found between the normalized histories of CAE and CDE. This made it possible to categorize the cracking of concrete as the main source of damage in the reinforced concrete slab. Conversely, the differences between the CAE and CDE curves observed for high levels of peak acceleration applied to the shaking table can be attributed to the deformation of the steel that formed the columns. The AE coming from the plastic deformation of the steel is not detected by CAE due to the threshold amplitude (45 dB) used in the AE monitoring, but the strain energy dissipated by the steel through plastic deformations is included in the CDE. Further, a study of the evolution of the b-value in the successive seismic simulations revealed that the b-value can capture the inception of severe cracking in the concrete, which the tests described in this study attributed mainly to the loss of bond between reinforcing steel and surrounding concrete.

  15. 76 FR 55819 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-09

    ... concrete crossties. See 76 FR 18,073. FRA received two petitions for reconsideration in response to the... 403(d), of the Rail Safety Improvement Act of 2008 (Pub. L. 110-432, Division A) (RSIA). See 75 FR 52..., FRA delayed the effective date of the final rule until October 1, 2011. See 76 FR 34,890 (June...

  16. 76 FR 34890 - Track Safety Standards; Concrete Crossties

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-15

    ..., 2011. DATES: The effective date for the final rule published April 1, 2011, at 76 FR 18073, effective July 1, 2011, is delayed until October 1, 2011. FOR FURTHER INFORMATION CONTACT: Kenneth Rusk, Staff... constructed with concrete crossties. See 76 FR 18073. The effective date of this final rule was to be July...

  17. Time-to-corrosion of reinforcing steel in concrete slabs. Volume 5. Calcium nitrite admixture or epoxy-coated reinforcing bars as corrosion protection systems. Report for July 1980-December 1982

    SciTech Connect

    Virmani, Y.P.; Clear, K.C.; Pasko, T.J. Jr.

    1983-09-01

    Thirty-one relatively large reinforced concrete slabs were fabricated in 1980 using either non-specification epoxy-coated reinforcing steel or calcium nitrite admixture with black (uncoated) steel. Their performance is compared with uncoated steel in concrete without admixtures. The slabs were placed in two lifts: the bottom lift consisted of a bottom mat of reinforcing steel in chloride-free concrete; and a top lift consisting of the top-mat rebars in concrete contaminated with various quantities of sodium chloride. All the electrical connections between the reinforcing mats were made exterior to the slabs so that the corrosion current flow could be monitored. A worst case type of research design was used by specifying poor quality concrete, nonspecification epoxy-coated rebars, and good electrical coupling between the rebar mats. After curing, the slabs were mounted above ground and exposed to the environment of the Washington, D.C. location. They were periodically subjected to additional chloride exposure while being monitored for about 1 year to determine the corrosion rate. Selected slabs were then demolished to confirm the findings of the nondestructive testing.

  18. An Eye-Tracking Study of Learning from Science Text with Concrete and Abstract Illustrations

    ERIC Educational Resources Information Center

    Mason, Lucia; Pluchino, Patrik; Tornatora, Maria Caterina; Ariasi, Nicola

    2013-01-01

    This study investigated the online process of reading and the offline learning from an illustrated science text. The authors examined the effects of using a concrete or abstract picture to illustrate a text and adopted eye-tracking methodology to trace text and picture processing. They randomly assigned 59 eleventh-grade students to 3 reading…

  19. 6. 'Tunnel No. 6, Concrete Lining,' Southern Pacific Standard SingleTrack ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. 'Tunnel No. 6, Concrete Lining,' Southern Pacific Standard Single-Track Tunnel, ca. 1909. Compare to photos in documentation set for Tunnel 27 (HAER No. CA-203). - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  20. Risk-Based Radionuclide Derived Concentration Guideline Levels For An Industrial Worker Exposed To Concrete-Slab End States At The Savannah River Site

    SciTech Connect

    GERALD, JANNIK

    2005-04-25

    Dose and risk assessments are an integral part of decommissioning activities. Most human health risk assessments are performed for a reasonable maximum exposure to an individual with assumed intake and exposure parameters that depend on the end state of the decommissioning activities and the likely future use of the site. Regardless of how the potentially exposed individual is defined, the subsequent calculated human health risk is not a measurable quantity. To demonstrate compliance with risk-based acceptance or cleanliness criteria, facility-specific risk assessments usually are performed after final-verification sampling and analysis. Alternatively, conservative, a priori, guideline concentrations for residual contaminants can be calculated and rapidly compared to the subsequently measured contaminant concentrations to demonstrate compliance. In response to the request for accelerated cleanup at U.S. Department of Energy facilities, the Savannah River Site (SRS) is decommissioning its excess facilities through removal of the facility structures leaving only the concrete-slab foundations in place. Site-specific, risk-based derived concentration guideline levels (DCGLs) for radionuclides have been determined for a future industrial worker potentially exposed to residual contamination on these concrete slabs. When appropriate, these conservative DCGLs will be used at SRS in lieu of facility-specific risk assessments to further accelerate the decommissioning process. This paper discusses and describes the methods and scenario-specific parameters used to estimate the risk-based DCGLs for the SRS decommissioning end state.

  1. Cracking in Concrete near Joints in Steelconcrete Composite Slab / Zarysowanie Płyty Żelbetowej W Strefie Przywęzłowej Stropu Zespolonego

    NASA Astrophysics Data System (ADS)

    Niedośpiał, Marcin; Knauff, Michał; Barcewicz, Wioleta

    2015-03-01

    In this paper results of the experimental tests of four full-scale composite steel-concrete elements are reported. In the steel-concrete composite elements, a steel beam was connected with a slab cast on profiled sheeting, by shear studs. The end-plates were (the thickness of 8 mm, 10 mm and 12 mm) thinner than in ordinary design. Joints between the column and the beams have been designed as semi-rigid, i.e. the deformations of endplates affect the distribution of forces in the adjacent parts of the slab. The paper presents the theory of cracking in reinforced concrete and steel-concrete composite members (according to the codes), view of crack pattern on the surface of the slabs and a comparison of the tests results and the code calculations. It was observed, that some factors influencing on crack widths are not taken in Eurocode 4 (which is based on Eurocode 2 with taking into account the phenomenon called "tension stiffening"). W artykule przedstawiono wyniki badań czterech elementów zespolonych. Kształtownik stalowy połączony był z betonowym stropem wykonanym na blasze fałdowej. W modelu zastosowano cienkie blachy czołowe (o grubości 8 mm, 10 mm i 12 mm), cieńsze niż zwykle przyjmowane w praktyce projektowej. Połączenie to zaprojektowano jako podatne tzn. takie, w którym odkształcenia blach czołowych mają istotny wpływ na rozkład sił w połączeniu. Przedstawiono normową teorię dotyczącą zarysowania elementów żelbetowych i zespolonych, obraz zarysowania stropu oraz porównano otrzymane wyniki z obliczeniami wykonanymi wg aktualnych norm. Zauważono, iż nie wszystkie czynniki obliczania szerokości rys w konstrukcjach zespolonych są zdefiniowane w normie projektowania konstrukcji zespolonych (która w tej kwestii odwołuje się do normy projektowania konstrukcji żelbetowych z uwzględnieniem zjawiska "tension stiffening").

  2. Investigation of rail irregularity effects on wheel/rail dynamic force in slab track: Comparison of two and three dimensional models

    NASA Astrophysics Data System (ADS)

    Sadeghi, Javad; Khajehdezfuly, Amin; Esmaeili, Morteza; Poorveis, Davood

    2016-07-01

    Rail irregularity is one of the most significant load amplification factors in railway track systems. In this paper, the capability and effectiveness of the two main railway slab tracks modeling techniques in prediction of the influences of rail irregularities on the Wheel/Rail Dynamic Force (WRDF) were investigated. For this purpose, two 2D and 3D numerical models of vehicle/discontinuous slab track interaction were developed. The validation of the numerical models was made by comparing the results of the models with those obtained from comprehensive field tests carried out in this research. The effects of the harmonic and non-harmonic rail irregularities on the WRDF obtained from 3D and 2D models were investigated. The results indicate that the difference between WRDF obtained from 2D and 3D models is negligible when the irregularities on the right and left rails are the same. However, as the difference between irregularities of the right and left rails increases, the results obtained from 2D and 3D models are considerably different. The results indicate that 2D models have limitations in prediction of WRDF; that is, a 3D modeling technique is required to predict WRDF when there is uneven or non-harmonic irregularity with large amplitudes. The size and extent of the influences of rail irregularities on the wheel/rail forces were discussed leading to provide a better understanding of the rail-wheel contact behavior and the required techniques for predicting WRDF.

  3. Biaxial Behavior of Ultra-High Performance Concrete and Untreated UHPC Waffle Slab Bridge Deck Design and Testing

    NASA Astrophysics Data System (ADS)

    D'Alessandro, Kacie Caple

    Ultra-high performance concrete (UHPC) was evaluated as a potential material for future bridge deck designs. Material characterization tests took place to identify potential challenges in mixing, placing, and curing UHPC. Biaxial testing was performed to evaluate behavior of UHPC in combined tension and compression stress states. A UHPC bridge deck was designed to perform similarly to a conventional concrete bridge deck, and a single unit bridge deck section was tested to evaluate the design methods used for untreated UHPC. Material tests identified challenges with placing UHPC. A specified compressive strength was determined for structural design using untreated UHPC, which was identified as a cost-effective alternative to steam treated UHPC. UHPC was tested in biaxial tension-compression stress states. A biaxial test method was developed for UHPC to directly apply tension and compression. The influence of both curing method and fiber orientation were evaluated. The failure envelope developed for untreated UHPC with random fiber orientation was suggested as a conservative estimate for future analysis of UHPC. Digital image correlation was also evaluated as a means to estimate surface strains of UHPC, and recommendations are provided to improve consistency in future tests using DIC methods. A preliminary bridge deck design was completed for untreated UHPC and using established material models. Prestressing steel was used as primary reinforcement in the transverse direction. Preliminary testing was used to evaluate three different placement scenarios, and results showed that fiber settling was a potential placement problem resulting in reduced tensile strength. The UHPC bridge deck was redesigned to incorporate preliminary test results, and two single unit bridge deck sections were tested to evaluate the incorporated design methods for both upside down and right-side up placement techniques. Test results showed that the applied design methods would be conservative

  4. Numerical simulation of tests for the evaluation of the performance of the reinforced concrete slabs strengthening by FRCM

    NASA Astrophysics Data System (ADS)

    Anania, Laura; Badalá, Antonio; D'Agata, Giuseppe

    2016-01-01

    In this work the attention is focused to the numerical simulation of the experimental bending tests carried out on a total of six reinforced concrete r.c. plates the latter aimed to provide a basic understanding of the its performance when strengthened by Fiber Reinforced Cementitius Matrix (FRCM) Composites. Three of those were used as control specimens. The numerical simulation was carried out by LUSAS software. A good correlation between the FE results and data obtained from the test, both in the load-deformation behavior and the failure load was highlighted. This permits to prove that applied strengthening system gives back an enhancement 2.5 times greater in respect of the unreinforced case. A greater energy dissipation ability and a residual load-bearing capacity makes the proposed system very useful in the retrofitting as well as in the case of strengthening of bridge structures. Based on the validation of the FE results in bending, the numerical analysis was also extended to characterize the behavior of this strengthening system in tensile.

  5. Tracking pore-water evolution through clumped isotope analyses of a septarian concretion

    NASA Astrophysics Data System (ADS)

    Miles, B. E.; Loyd, S. J.; Hudson, J.; Dickson, T.; Tripati, A. K.

    2012-12-01

    Septarian concretions have been recognized in many sedimentary units spanning nearly all ages. Although they exhibit a bizarre structure, their widespread occurrence makes septarian concretions more than just simple geologic curiosities. The tapering veins, or "septaria", within these concretions are often filled with complex, relatively late-stage (post-concretion body) isopachous rim and blocky calcite mineral phases, reflecting potentially discrete episodes of successive cementation. Previous studies have used traditional carbonate carbon (δ13C) and oxygen (δ18O) isotope analyses to characterize the diagenetic fluids responsible for vein-filling mineral precipitation. Whereas these studies have provided valuable information concerning mineralization, it is impossible to resolve the individual affects of temperature and pore fluid δ18O on mineral δ18O compositions. Of course as with all diagenetic systems, both temperature and fluid oxygen isotope compositions are integral parameters to quantify in order to characterize carbonate mineral paragenesis. Here, we use the clumped isotope proxy, a paleothermometer that is independent of fluid δ18O values, in order to better constrain the formation environment of a septarian concretion of the Jurassic Ampthill Formation, United Kingdom. This concretion exhibits cements that are typical of many septarian concretions in which distinct vein-filling cementation events can be traced by color differences in carbonate phases. As a result, it is relatively easy to sample subsequent phases along the paragenetic sequence and therefore draw interpretations concerning environmental evolution. The concretion body, isopachous rim and vein-filling calcite exhibit similar clumped isotope temperatures and calculated pore-water δ18O values show a progressive depletion in the respective phases above. The isotopic data along with the crystallographic progression suggest mineral precipitation initially in modified marine fluids with

  6. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction

    NASA Astrophysics Data System (ADS)

    Li, Q.; Xu, Y. L.; Wu, D. J.

    2012-05-01

    Both the vibration of a railway bridge under a moving train and the associated bridge-borne noise are time-varying in nature. The former is commonly predicted in the time domain to take its time-varying and nonlinear properties into account, whereas acoustic computation is generally conducted in the frequency domain to obtain steady responses. This paper presents a general procedure for obtaining various characteristics of concrete bridge-borne low-frequency noise by bridging the gap between time-domain bridge vibration computation and frequency-domain bridge-borne noise simulation. The finite element method (FEM) is first used to solve the transient train-track-bridge dynamic interaction problem, with an emphasis on the local vibration of the bridge. The boundary element method (BEM) is then applied to find the frequency-dependent modal acoustic transfer vectors (MATVs). The time-domain sound pressure is finally obtained with the help of time-frequency transforms. The proposed procedure is applied to a real urban rail transit U-shaped concrete bridge to compute the bridge acceleration and bridge-borne noise, and these results are compared with the field measurement results. Both sets of results show the proposed procedure to be feasible and accurate and the dominant frequencies of concrete bridge-borne noise to range from 32 Hz to 100 Hz.

  7. Cracking behavior of structural slab bridge decks

    NASA Astrophysics Data System (ADS)

    Baah, Prince

    Bridge deck cracking is a common problem throughout the United States, and it affects the durability and service life of concrete bridges. Several departments of transportation (DOTs) in the United States prefer using continuous three-span solid structural slab bridges without stringers over typical four-lane highways. Recent inspections of such bridges in Ohio revealed cracks as wide as 0.125 in. These measured crack widths are more than ten times the maximum limit recommended in ACI 224R-01 for bridge decks exposed to de-icing salts. Measurements using digital image correlation revealed that the cracks widened under truck loading, and in some cases, the cracks did not fully close after unloading. This dissertation includes details of an experimental investigation of the cracking behavior of structural concrete. Prism tests revealed that the concrete with epoxy-coated bars (ECB) develops the first crack at smaller loads, and develops larger crack widths compared to the corresponding specimens with uncoated (black) bars. Slab tests revealed that the slabs with longitudinal ECB developed first crack at smaller loads, exhibited wider cracks and a larger number of cracks, and failed at smaller ultimate loads compared to the corresponding test slabs with black bars. To develop a preventive measure, slabs with basalt and polypropylene fiber reinforced concrete were also included in the test program. These test slabs exhibited higher cracking loads, smaller crack widths, and higher ultimate loads at failure compared to the corresponding slab specimens without fibers. Merely satisfying the reinforcement spacing requirements given in AASHTO or ACI 318-11 is not adequate to limit cracking below the ACI 224R-01 recommended maximum limit, even though all the relevant design requirements are otherwise met. Addition of fiber to concrete without changing any steel reinforcing details is expected to reduce the severity and extent of cracking in reinforced concrete bridge decks.

  8. Slab reformer

    NASA Technical Reports Server (NTRS)

    Spurrier, Francis R. (Inventor); DeZubay, Egon A. (Inventor); Murray, Alexander P. (Inventor); Vidt, Edward J. (Inventor)

    1984-01-01

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  9. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1985-03-12

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  10. Slab reformer

    DOEpatents

    Spurrier, Francis R.; DeZubay, Egon A.; Murray, Alexander P.; Vidt, Edward J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot comubstion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant.

  11. Slab reformer

    DOEpatents

    Spurrier, F.R.; DeZubay, E.A.; Murray, A.P.; Vidt, E.J.

    1984-02-07

    Slab-shaped high efficiency catalytic reformer configurations are disclosed particularly useful for generation of fuels to be used in fuel cell based generation systems. A plurality of structures forming a generally rectangular peripheral envelope are spaced about one another to form annular regions, an interior annular region containing a catalytic bed and being regeneratively heated on one side by a hot combustion gas and on the other side by the gaseous products of the reformation. An integrally mounted combustor is cooled by impingement of incoming oxidant. 14 figs.

  12. Tracking neural coding of perceptual and semantic features of concrete nouns

    PubMed Central

    Sudre, Gustavo; Pomerleau, Dean; Palatucci, Mark; Wehbe, Leila; Fyshe, Alona; Salmelin, Riitta; Mitchell, Tom

    2015-01-01

    We present a methodological approach employing magnetoencephalography (MEG) and machine learning techniques to investigate the flow of perceptual and semantic information decodable from neural activity in the half second during which the brain comprehends the meaning of a concrete noun. Important information about the cortical location of neural activity related to the representation of nouns in the human brain has been revealed by past studies using fMRI. However, the temporal sequence of processing from sensory input to concept comprehension remains unclear, in part because of the poor time resolution provided by fMRI. In this study, subjects answered 20 questions (e.g. is it alive?) about the properties of 60 different nouns prompted by simultaneous presentation of a pictured item and its written name. Our results show that the neural activity observed with MEG encodes a variety of perceptual and semantic features of stimuli at different times relative to stimulus onset, and in different cortical locations. By decoding these features, our MEG-based classifier was able to reliably distinguish between two different concrete nouns that it had never seen before. The results demonstrate that there are clear differences between the time course of the magnitude of MEG activity and that of decodable semantic information. Perceptual features were decoded from MEG activity earlier in time than semantic features, and features related to animacy, size, and manipulability were decoded consistently across subjects. We also observed that regions commonly associated with semantic processing in the fMRI literature may not show high decoding results in MEG. We believe that this type of approach and the accompanying machine learning methods can form the basis for further modeling of the flow of neural information during language processing and a variety of other cognitive processes. PMID:22565201

  13. Chlorine signal attenuation in concrete.

    PubMed

    Naqvi, A A; Maslehuddin, M; ur-Rehman, Khateeb; Al-Amoudi, O S B

    2015-11-01

    The intensity of prompt gamma-ray was measured at various depths from chlorine-contaminated silica fume (SF) concrete slab concrete specimens using portable neutron generator-based prompt gamma-ray setup. The intensity of 6.11MeV chloride gamma-rays was measured from the chloride contaminated slab at distance of 15.25, 20.25, 25.25, 30.25 and 35.25cm from neutron target in a SF cement concrete slab specimens. Due to attenuation of thermal neutron flux and emitted gamma-ray intensity in SF cement concrete at various depths, the measured intensity of chlorine gamma-rays decreases non-linearly with increasing depth in concrete. A good agreement was noted between the experimental results and the results of Monte Carlo simulation. This study has provided useful experimental data for evaluating the chloride contamination in the SF concrete utilizing gamma-ray attenuation method.

  14. Methodology for Assessing the Probability of Corrosion in Concrete Structures on the Basis of Half-Cell Potential and Concrete Resistivity Measurements

    PubMed Central

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential Ecorr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures. PMID:23766706

  15. Methodology for assessing the probability of corrosion in concrete structures on the basis of half-cell potential and concrete resistivity measurements.

    PubMed

    Sadowski, Lukasz

    2013-01-01

    In recent years, the corrosion of steel reinforcement has become a major problem in the construction industry. Therefore, much attention has been given to developing methods of predicting the service life of reinforced concrete structures. The progress of corrosion cannot be visually assessed until a crack or a delamination appears. The corrosion process can be tracked using several electrochemical techniques. Most commonly the half-cell potential measurement technique is used for this purpose. However, it is generally accepted that it should be supplemented with other techniques. Hence, a methodology for assessing the probability of corrosion in concrete slabs by means of a combination of two methods, that is, the half-cell potential method and the concrete resistivity method, is proposed. An assessment of the probability of corrosion in reinforced concrete structures carried out using the proposed methodology is presented. 200 mm thick 750 mm  ×  750 mm reinforced concrete slab specimens were investigated. Potential E corr and concrete resistivity ρ in each point of the applied grid were measured. The experimental results indicate that the proposed methodology can be successfully used to assess the probability of corrosion in concrete structures.

  16. Instrumentation by accelerometers and distributed optical fiber sensors of a real ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Cailliau, Joël; Gueguen, Ivan; Dumoulin, Jean

    2015-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. Firstly, they are built quickly since the slabs can be cast in place in an automated fashion by a slipform paver. Secondly, with its service life of at least 60 years, they requires little maintenance and hence they offers great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. In the framework of a FUI project (n° 072906053), a new ballastless track structure based on concrete slabs was designed and its thermal-mechanical behavior in fatigue under selected mechanical and thermal conditions was tested on a real scale mockup in our laboratory [1,2]. By applying to the slabs both together mechanical stresses and thermal gradients, finite elements simulation and experimental results show that the weather conditions influence significantly the concrete slabs curvatures and by the way, the contact conditions with the underlaying layers. So it is absolutely necessary to take into account this effect in the design of the ballastless track structures in order to guarantee a long target life of at least of 50 years. After design and experimental tests in laboratory, a real ballastless track structure of 1km was built in France at the beginning of year 2013. This structure has 2 tracks on which several trains circulate every day since the beginning of year 2014. Before the construction, it was decided to monitor this structure to verify that the mechanical behavior is conform to the simulations. One part of the instrumentation is dedicated to monitor quasi-continuously the evolution of the curvature of a concrete slab. For this, 2 accelerometers were fixed on the slab under the track. One was placed on the edge and the other in the middle of the slab. The acquisition of the signals by a

  17. Precast concrete pavements

    NASA Astrophysics Data System (ADS)

    Rollings, R. S.; Chou, Y. T.

    1981-11-01

    This report reviewed published literature on precast concrete pavements and found that precast concrete pavements have had some limited application in airfields, roads, and storage areas. This review of past experience and an analytical study of precast slabs concluded that existing design and construction techniques can be adapted for use with precast concrete pavements, but more work is needed to develop effective and easily constructed load transfer designs for slab joints. Precast concrete does not offer any advantage for conventional pavements due to its high cost and surface roughness, but it may find applications for special problems such as construction in adverse weather, subgrade settlement, temporary pavements that need to be relocated, and military operations.

  18. RADON GENERATION AND TRANSPORT IN AGED CONCRETE

    EPA Science Inventory

    The report gives results of a characterization of radon generation and transport in Florida concretes sampled from 12- to 45-year-old residential slabs. It also compares measurements from old concrete samples to previous measurements on newly poured Florida residential concretes....

  19. 16. 'Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. 'Concrete Bridge Over Salt River, Port Kenyon, Humboldt County, California, A.J. Logan, County Surveyor, H.J. Brunnier, Consulting Engineer, March 7, 1919,' showing detail of floor beam at central pier, half section of cantilever slab at end of bridge, floor beam end panels, slab reinforcing, plan of slab reinforcing, diagram of slab bars, typical floor girder. - Salt River Bridge, Spanning Salt River at Dillon Road, Ferndale, Humboldt County, CA

  20. Requalification analysis of a circular composite slab for seismic load

    SciTech Connect

    Srinivasan, M.G.; Kot, C.A.

    1992-11-01

    The circular roof slab of an existing facility was analyzed to requalify the structure for supporting a significant seismic load that it was not originally designed for. The slab has a clear span of 66 ft and consists of a 48 in thick reinforced concrete member and a steel liner plate. Besides a number of smaller penetrations, the slab contains two significant cutouts: a 9 ft square opening and a 3 ft dia hole. The issues that complicated the analysis of this non-typical structure, i.e., composite action and nonlinear stiffness of reinforced concrete (R. C.) sections, are discussed. It was possible to circumvent the difficulties by making conservative and simplifying assumptions. If codes incorporate guidelines on practical methods for dynamic analysis of R. C. structures, some of the unneeded conservatism could be eliminated in future designs.

  1. How Concrete Is Concrete?

    ERIC Educational Resources Information Center

    Gravemeijer, Koeno

    2011-01-01

    If we want to make something concrete in mathematics education, we are inclined introduce, what we call, "manipulatives", in the form of tactile objects or visual representations. If we want to make something concrete in a everyday-life conversation, we look for an example. In the former, we try to make a concrete model of our own,…

  2. Equations for nonbonded concrete overlays

    NASA Astrophysics Data System (ADS)

    Chou, Y. T.

    1985-09-01

    The nature of the design equations for the nonbonded concrete overlays currently used by the US Army Corps of Engineers was examined and the original source of the equation was also examined. Using simple mechanics, new overlay equations were developed which are suitable for different thicknesses and elastic properties in the overlay and base concrete slabs. The difference in the computed overlay thickness between the new and existing equations is not large when the overlay thickness is equal to or greater than the base slab. The difference can become excessive when the overlay thickness is much less than that of the base slab. The new equations were compared with the finite element computer program for concrete overlays with various combinations of slab thickness, elastic property, and subgrade modulus. The comparisons were very favorable, indicating that the overlay equations developed in this report are analytically correct. It was difficult to judge whether the new equations are superior to the existing equation. This conclusion was expected because for all the seven test sections analyzed, the overlay thicknesses were either equal to or greater than those of the base slabs.

  3. The Role of Subducting Ridges in the Formation of Flat Slabs: Insights from the Peruvian Flat Slab

    NASA Astrophysics Data System (ADS)

    Knezevic Antonijevic, Sanja; Wagner, Lara; Kumar, Abhash; Beck, Susan; Long, Maureen; Zandt, George; Eakin, Caroline M.

    2015-04-01

    Flattening of the subducting plate is often used to explain various geological features removed far from the subducting margins, including basement-cored uplifts, the cessation of arc volcanism, ignimbrite flare-ups, and the formation of high plateaus and ore deposits [Humphreys et al., 2003; Gutscher et al., 2000; Rosenbaum et al., 2005, Kay and Mpodozis, 2001]. Today, flat slab subduction is observed in central Chile and Peru, representing the modern analogues to the immense paleo-flat slab that subducted beneath the North American continent during the Laramide orogeny (80-55 Ma) [English et al., 2003]. However, how flat slabs form and what controls their inboard and along-strike extent is still poorly understood. To better understand modern and paleo-flat slabs, we focus on the Peruvian flat slab, where the Nazca plate starts to bend at ~90 km depth and travels horizontally for several hundred kilometers beneath the South American plate. Earlier studies propose a correlation between the flat slab and the subducting Nazca Ridge that has been migrating to the south over the past 11 ~Ma [Hampel et al., 2004, Gutscher et al., 2003]. Combining 3D shear wave velocity structure and Rayleigh wave phase anisotropy between ~10° and 18° S, we find that the flat slab has the greatest inboard extent along the track of the subducting Nazca Ridge. North of the ridge track, where the flat slab was initially formed, the flat slab starts to sag, tear and re-initiate steep slab subduction, allowing inflow of warm asthenosphere. Based on our new constraints on the geometry of the subducted plate, we find that the subduction of buoyant oceanic features with overthickened oceanic crust plays a vital role in the formation of flat slabs. We further develop a model of temporal evolution of the Peruvian flab slab that forms as a result of the combined effects of the subducting ridge, trench retreat, and suction forces. Once the buoyant ridge subducts to ~90 km depth, it will fail to

  4. Slab Leaf Bowls

    ERIC Educational Resources Information Center

    Suitor, Cheryl

    2012-01-01

    In science class, fourth graders investigate the structure of plants and leaves from trees and how the process of photosynthesis turns sunlight into sugar proteins. In this article, the author fuses art and science for a creative and successful clay slab project in her elementary art classroom. (Contains 1 online resource.)

  5. Shear Resistance between Concrete-Concrete Surfaces

    NASA Astrophysics Data System (ADS)

    Kovačovic, Marek

    2013-12-01

    The application of precast beams and cast-in-situ structural members cast at different times has been typical of bridges and buildings for many years. A load-bearing frame consists of a set of prestressed precast beams supported by columns and diaphragms joined with an additionally cast slab deck. This article is focused on the theoretical and experimental analyses of the shear resistance at an interface. The first part of the paper deals with the state-of-art knowledge of the composite behaviour of concrete-concrete structures and a comparison of the numerical methods introduced in the relevant standards. In the experimental part, a set of specimens with different interface treatments was tested until failure in order to predict the composite behaviour of coupled beams. The experimental part was compared to the numerical analysis performed by means of FEM basis nonlinear software.

  6. 39. VAL, DETAIL OF INTERIOR ROOM OF CONCRETE 'A' FRAME ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    39. VAL, DETAIL OF INTERIOR ROOM OF CONCRETE 'A' FRAME STRUCTURE SHOWING NATURAL ROCK PROTRUDING THROUGH SLAB AT STORAGE ROOM. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  7. Carbon dioxide slab laser

    SciTech Connect

    Tulip, J.

    1988-01-12

    A gas slab laser is described comprising: first and second elongated electrodes each including a planar light reflecting surface disposed so as to form a light guide only in a plane perpendicular to the planar surface and to define a gas discharge gap therebetween; a laser gas disposed in the gap; and means for applying a radio frequency current between the first and second electrodes to establish a laser-exciting discharge in the laser gas.

  8. Studies on Punching Shear Resistance of Two Way Slab Specimens with Partial Replacement of Cement by GGBS with Different Edge Conditions

    NASA Astrophysics Data System (ADS)

    Nemani, Ravi Dakshina Murthy; Rao, M. V. S.; Grandhe, Veera Venkata Satya Naranyana

    2016-09-01

    The present work is an effort to quantify the punching shear load resistance effect on two way simply supported slab specimens with replacement of cement by Ground Granulated Blast Furnace Slag (GGBS) with different edge conditions at various replacement levels and evaluate its efficiency. GGBS replacement has emerged as a major alternative to conventional concrete and has rapidly drawn the concrete industry attention due to its cement savings, cost savings, environmental and socio-economic benefits. The two way slab specimens were subjected to punching shear load by in house fabricated apparatus. The slab specimens were cast using M30 grade concrete with HYSD bars. The cement was partially replaced with GGBS at different percentages i.e., 0 to 30 % at regular intervals of 10 %. The test results indicate that the two way slab specimens with partial replacement of cement by GGBS exhibit high resistance against punching shear when compared with conventional concretes slab specimens.

  9. Effects of edge restraint on slab behavior. Final report

    SciTech Connect

    Guice, L.K.

    1986-02-01

    This study was performed in conjunction with a Federal Emergency Management Agency program to plan, design, and construct keyworker blast shelters which would be used in high-risk areas of the country during and after a nuclear attack. The shelters considered in this study were box-type structures in which damage is much more likely to occur in the roof slab than in the walls or floor. In this part of the program, the effect of edge restraint on slab behavior was investigated. The primary objective was to determine the effects of partial rotational restraint on slab strength, ductility, and mechanism of failure. Sixteen one-way, reinforced concrete plate elements were tested in a reaction structure under uniform static water pressure.

  10. Pentek concrete scabbling system: Baseline report; Summary

    SciTech Connect

    1997-07-31

    The Pentek concrete scabbling system consists of the MOOSE{reg_sign} scabbler, the SQUIRREL{reg_sign}-I and SQUIRREL{reg_sign}-III scabblers, and VAC-PAC. The scabblers are designed to scarify concrete floors and slabs using cross section, tungsten carbide tipped bits. The bits are designed to remove concrete in 3/8 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  11. WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    WORKERS FABRICATE ROOF SLABS FOR MTR BUILDING AT THE CONSTRUCTION SITE. FORMS WERE MADE OF STEEL. AFTER AN INCH OF CONCRETE HAD BEEN POURED IN THE FORM, A MAT OF REINFORCING STEEL WAS PLACED ON IT. THE REMAINDER OF THE FORM WAS FILLED, AND THE CONCRETE WAS VIBRATED, STRUCK, AND TROWELED. GROOVES AT CORNER WILL HAVE 1/4 INCH RODS WELDED INTO THE EYE OF THE STEEL MAT FOR GROUNDING. INL NEGATIVE NO. 578. Unknown Photographer, 9/1/1950 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  12. Workmen and Crawler Crane pouring roof slab and parapet wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Workmen and Crawler Crane pouring roof slab and parapet wall of building - looking northwest. Taken Nov. 15, 1929. 14th Naval District Photo Collection Item No. 7165 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  13. A Comparative Study of Strength of Two-Way Rectangular Slabs with and without Openings

    NASA Astrophysics Data System (ADS)

    Ravindra, M.; Rakesh, V.; Rambabu, K.

    2016-09-01

    The present work uses yield-line theory to find the strength of uniformly loaded rectangular reinforced concrete slabs with and without rectangular openings. Five positions of openings are considered, i.e. the slab centre, the slab corner, the centre of a short side, the centre of a long side and the opening eccentric to the slab centre. All possible admissible yield line patterns are considered for all given configurations of the slab subjected to uniformly distributed load keeping in view the basic principles of yield line theory. The ratios of the corresponding lengths of the sides of the opening and the slab are different and sizes of opening up to 0.4× the length of the slab sides are considered. Symmetric edge conditions like continuous slab, simply supported, two long sides continuous and two short sides continuous are considered for various sizes of openings in order to plot the design charts for isotropic reinforcement coefficients only. Affine transformation is also performed for slab with openings.

  14. Structural Aspects of Railway Truss Bridges Affecting Transverse Shear Forces in Steel-Concrete Composite Decks

    NASA Astrophysics Data System (ADS)

    Siekierski, Wojciech

    2015-03-01

    At the steel-concrete interface, the horizontal shear forces that are transverse to cross beams occur due to joint action of the steel-concrete composite deck and the truss girders. Numerical analysis showed that values of the forces are big in comparison to the longitudinal shear forces. In both cases extreme force values occur near side edges of a slab. The paper studies possibilities of reduction of these shear forces by structural alterations of the following: rigidity of a concrete slab, arrangement of a wind bracing, arrangement of concrete slab expansion joints. An existing railway truss bridge span has been analysed. Numerical analysis shows that it is possible to reduce the values of shear forces transverse to cross beams. It may reach 20% near the side edges of slabs and 23% in the centre of slab width.

  15. Experimental and numerical investigation of slabs on ground subjected to concentrated loads

    NASA Astrophysics Data System (ADS)

    Øverli, Jan

    2014-09-01

    An experimental program is presented where a slab on ground is subjected to concentrated loading at the centre, the edges and at the corners. Analytical solutions for the ultimate load capacity fit well with the results obtained in the tests. The non-linear behaviour of the slab is captured by performing nonlinear finite element analyses. The soil is modelled as a no-tension bedding and a smeared crack approach is employed for the concrete. Through a parametric study, the finite element model has been used to assess the influence of subgrade stiffness and shrinkage. The results indicate that drying shrinkage can cause severe cracking in slabs on grade.

  16. View of Flume Tunnel #5 showing an example of concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of Flume Tunnel #5 showing an example of concrete flume covered with concrete slabs as it enters a tunnel under the road (FS 502). Looking southwest - Childs-Irving Hydroelectric Project, Childs System, Flume Tunnel No. 5, Forest Service Road 708/502, Camp Verde, Yavapai County, AZ

  17. SUB-SLAB PROBE INSTALLATION

    EPA Science Inventory

    Sub-slab sampling has become an integral part of vapor intrusion investigations. It is now recommended in guidance documents developed by EPA and most states. A method for sub-slab probe installation was devised in 2002, presented at conferences through 2005, and finally docume...

  18. Electro-osmotic techniques for removal of chloride from concrete and for emplacement of concrete sealants

    NASA Astrophysics Data System (ADS)

    Jayaprakash, G. P.; Bukovatz, J. E.; Ramamurti, K.; Gilliland, W. J.

    1982-08-01

    Chloride ion from bridge deck concrete can be removed by application of a direct current potential between bridge reinforcing steel (-) and a copper screen (+) conductor on the bridge surface. Soaring prices of all types of energy would make removal of all chloride prohibitatively expensive. The importance of verification of all electrical connections prior to the treatment is emphasized by the demonstration of concrete cracking when the steel was made a positive instead of a negative electrode. Data on effectiveness of calcium nitrite corrosion inhibitor added to the concrete overlay placed on electrotreated concrete is not extensive due to accidental damage to the test slabs.

  19. Dynamics of Mantle Circulation Associated with Slab Window Formation: Insights from 3D Laboratory Models

    NASA Astrophysics Data System (ADS)

    Guillaume, B.; Funiciello, F.; Moroni, M.; Faccenna, C.; Martinod, J.

    2009-12-01

    Slab window can form either by the intersection of a spreading ridge with a subduction zone or because of internal deformation of the slab that leads to its disruption. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. We performed laboratory models of a two-layer linear viscous slab (silicone putty)-upper mantle (glucose syrup) system to quantitatively investigate the pattern of mantle circulation within the slab window (using Feature Tracking image analysis technique) and its influence on the kinematics of the system. Two different geometries have been tested considering a window located (a) at slab edges or (b) within the slab. Kinematic consequences of slab window have been explored to understand the dynamics of the mantle-slab interaction. Configuration (a) implies a reduction of the slab width (W) during subduction and is characterized by toroidal fluxes around the slab edges. The abrupt opening of lateral slab windows produces an acceleration of the trench retreat and subduction velocity, such as 40% for a three-fold width reduction. We interpret this behavior as mostly due to the decrease in the toroidal flow inside subduction windows, scaling with W2. Configuration (b) has been designed to explore the pattern of mantle flow within the window in the case of a laterally constrained subduction system. Slab window, which had a width (Ww) fixed to 15 % of the slab width, opened in the trench-perpendicular direction. It produced the formation of two toroidal mantle cells, centered on the slab midpoint and laterally growing as the slab window enlarged. Particles extruded through the slab window did not mix with particles located in the mantle wedge, the boundary between both reaching distances from the trench up to 3×Ww in the trench-perpendicular direction, and up to 1.5×Ww from the window edge in

  20. [Thermoluminescence Slab Dosimeter].

    PubMed

    Shinsho, Kiyomitsu; Koba, Yusuke; Tamatsu, Satoshi; Sakurai, Noboru; Wakabayashi, Genichiro; Fukuda, Kazusige

    2013-01-01

    In 1953 F. Daniels et al. used the property of thermoluminescence in dosimetry for the first time. Since then, numerous TLD have been developed. 2D TLD was investigated for the first time in 1972 by P Broadhead. However, due to excessive fading, difficulties with handling and the time required for measurements, development stalled. At the current time, the majority of TLD are used in small scale, localized dosimetry with a wide dynamic range and personal dosimeters for exposure management. Urushiyama et. al. have taken advantage of the commoditization of CCD cameras in recent years--making large area, high resolution imaging easier--to introduce and develop a 2D TLD. It is expected that these developments will give rise to a new generation of applications for 2D TL dosimetry. This paper introduces the "TL Slab Dosimeter" developed jointly by Urushiyama et. al. and our team, its measurement system and several typical usage scenarios.

  1. Concrete nondestructive tests conducted in 225-B building

    SciTech Connect

    Vollert, F.R.

    1996-09-19

    In 1982, Construction Technology Laboratories (CTL), Portland Cement Association conducted additional sonic concrete nondestructive testing (NDT) in the Service Gallery on the south process (hot) cell walls and adjacent floor slab, including the locations where significant concrete degradation had been found by the 1981 sonic NDT. In the ceiling slabs, the anchor areas For the monorail hangers, and some visible cracks were sonic NDT inspected. CTL concluded that the hot cell walls have no significant reduction of structural capacity due to concrete degradation. Epoxy injection repairs were recommended by CTL for the damaged anchor areas and through depth cracks in the reinforced concrete ceiling slabs. When completed, the epoxy repairs should be inspected and confirmed with follow on sonic NDT. Lateral bracing for the Monorail system is also recommended to relieve the lateral loads on the hangers.

  2. Failure of underground concrete structures subjected to blast loadings

    NASA Technical Reports Server (NTRS)

    Ross, C. A.; Nash, P. T.; Griner, G. R.

    1979-01-01

    The response and failure of two edges of free reinforced concrete slabs subjected to intermediate blast loadings are examined. The failure of the reinforced concrete structures is defined as a condition where actual separation or fracture of the reinforcing elements has occurred. Approximate theoretical methods using stationary and moving plastic hinge mechanisms with linearly varying and time dependent loadings are developed. Equations developed to predict deflection and failure of reinforced concrete beams are presented and compared with the experimental results.

  3. Thermal insulated building slab

    SciTech Connect

    Hacker, J. H.

    1985-06-25

    A thermally insulated building foundation structure comprising a monolithic poured concrete foundation extending about the perimeter of a building site and having a plurality of elongate straight sides with flat, vertical outside surfaces with lower portions below the surface of the ground and upper portions above the surface of the ground and having flat, horizontal top surfaces, a thermal insulating girdle about the perimeter of the upper portion of the foundation comprised of a plurality of elongate straight horizontal channel sections in end to end relationship and having vertical outside walls defining the outside surface of said upper portion of the foundation, horizontal top walls defining the outer portion of said top surface of the foundation, horizontal bottom walls and upper and lower flanges on inner edges of the top and bottom walls and cores of thermal insulating material filling the channel sections; and a plurality of anchor units spaced about the girdle and having inner deadman portions set in the concrete and outer portions in secure engagement with the flanges of the channel sections.

  4. Delamination detection in reinforced concrete using thermal inertia

    SciTech Connect

    Del Grande, N K; Durbin, P F

    1998-11-30

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks. Key Words: Pulsed Thermal Imaging, Thermal Inertia, Detection Of Concrete Bridgedeck Delaminations

  5. Mantle flow and dynamic topography associated with slab window opening

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-05-01

    A slab window is defined as an 'hole' in the subducting lithosphere. In the classical view, slab windows develop where a spreading ridge intersects a subduction zone. The main consequences of this phenomenon are the modifications of the physical, chemical and thermal conditions in the backarc mantle that in turn affect the tectonic and magmatic evolution of the overriding plate. In this work, we perform dynamically self-consistent mantle-scale laboratory models, to evaluate how the opening of a window in the subducting panel influences the geometry and the kinematics of the slab, the mantle circulation pattern and, finally, the overriding plate dynamic topography. The adopted setup consists in a two-layer linearly viscous system simulating the roll-back of a fixed subducting plate (simulated using silicone putty) into the upper mantle (simulated using glucose syrup). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We find that the geometry and the kinematics of the slab are only minorly affected by the opening of a slab window. On the contrary, slab induced mantle circulation, quantified using Feature Tracking image analysis technique, is strongly modified and produces a peculiar non-isostatic topographic signal on the overriding plate. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compare them to the Patagonian subduction zone finding that anomalous backarc volcanism that developed since middle Miocene could result from the lateral flowage of subslab mantle, and that part of the Patagonian uplift could be dynamically supported.

  6. New Packaging for Amplifier Slabs

    SciTech Connect

    Riley, M.; Thorsness, C.; Suratwala, T.; Steele, R.; Rogowski, G.

    2015-03-18

    The following memo provides a discussion and detailed procedure for a new finished amplifier slab shipping and storage container. The new package is designed to maintain an environment of <5% RH to minimize weathering.

  7. Instrumentation by distributed optical fiber sensors of a new ballastless track structure

    NASA Astrophysics Data System (ADS)

    Chapeleau, Xavier; Cottineau, Louis-Marie; Sedran, Thierry; Gueguen, Ivan; Cailliau, Joël

    2013-04-01

    While relatively expensive to build, ballastless track structures are presently seen as an attractive alternative to conventional ballast. With its service life of at least 60 years, they require little maintenance and hence they offer great availability. Other reasons for using ballastless tracks instead of ballasted tracks are the lack of suitable ballast material and the need of less noise and vibration for high-speed, in particularly. A new ballastless track structure has been designed to be circulated up to 300km/h, with a target life of 100 years. It is an interoperable way on concrete slabs that are cast-in-place and slip formed. This structure has been built and tested at the scale one in our laboratory. Indeed, ten millions cyclic loads were applied at 2.5Hz to evaluate the fatigue behaviour under selected mechanical and thermal conditions. To monitor the thermo-mechanical behavior of this new structure and to verify the numerical simulations used for its design, a lot of sensors have been embedded. In particularly, we have tested an optical fiber as distributed sensors to measure strain distribution in the railway model. This sensor can also be used to detect, localize and monitor cracks in concrete slabs. The optical fiber sensing technique ("Rayleigh technique") used in this experimentation has a centimetric spatial resolution which allows to measure complex strain profiles unlike electrical strain gauges which only give local information. Firstly, optical cables used as sensors have been successfully embedded and attached to the reinforcing steel bars in the structure. We have noted that they are resistant enough to resist concrete pouring and working activities. Secondly, strains measured by conventional strain gauges has confirmed the quality of the strain profiles measurements obtained by optical fiber sensors. Moreover, we have found a good agreement between experimental profiles measurements and those obtained by numerical simulations. Early

  8. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Requirements for lift-slab construction operations. 1926.705 Section 1926.705 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete...

  9. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 8 2010-07-01 2010-07-01 false Requirements for lift-slab construction operations. 1926.705 Section 1926.705 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete...

  10. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 8 2013-07-01 2013-07-01 false Requirements for lift-slab construction operations. 1926.705 Section 1926.705 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete...

  11. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 8 2011-07-01 2011-07-01 false Requirements for lift-slab construction operations. 1926.705 Section 1926.705 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete...

  12. 29 CFR 1926.705 - Requirements for lift-slab construction operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 8 2012-07-01 2012-07-01 false Requirements for lift-slab construction operations. 1926.705 Section 1926.705 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Concrete...

  13. Delamination detection in reinforced concrete using thermal inertia

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Durbin, Philip F.

    1999-02-01

    We investigated the feasibility of thermal inertia mapping for bridge deck inspections. Using pulsed thermal imaging, we heat-stimulated surrogate delaminations in reinforced concrete and asphalt-concrete slabs. Using a dual-band infrared camera system, we measured thermal inertia responses of Styrofoam implants under 5 cm of asphalt, 5 cm of concrete, and 10 cm of asphalt and concrete. We compared thermal maps from solar-heated concrete and asphalt-concrete slabs with thermal inertia maps from flash-heated concrete and asphalt-concrete slabs. Thermal inertia mapping is a tool for visualizing and quantifying subsurface defects. Physically, thermal inertia is a measure of the resistance of the bridge deck to temperature change. Experimentally, it is determined from the inverse slope of the surface temperature versus the inverse square root of time. Mathematically, thermal inertia is the square root of the product of thermal conductivity, density, and heat capacity. Thermal inertia mapping distinguishes delaminated decks which have below-average thermal inertias from normal or shaded decks.

  14. Vertical impedance measurements on concrete bridge decks for assessing susceptibility of reinforcing steel to corrosion

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul D.; Guthrie, W. Spencer; Mazzeo, Brian A.

    2012-08-01

    Corrosion is a pressing problem for aging concrete infrastructure, especially bridge decks. Because of its sensitivity to factors that affect corrosion of reinforcing steel in concrete, resistivity is an important structural health indicator for reinforced concrete structures. In this research, an instrument was developed to measure vertical impedance on concrete bridge decks. Measurements of vertical impedance on slabs prepared in the laboratory, on slabs removed from decommissioned bridge decks, and on an in-service bridge deck in the field demonstrate the utility of the new apparatus.

  15. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.

    PubMed

    Patterson, Bradley M; Davis, Greg B

    2009-02-01

    Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway. PMID:19244997

  16. The Effect of Mortar Grade and Thickness on the Impact Resistance of Ferrocement Slab

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Sulleman, Sorefan; Beddu, Salmia; Thiruchelvam, Sivadass; Ismail, Firas B.; Usman, Fathoni; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Itam, Zarina; Zaroog, O. S.

    2016-03-01

    This paper investigate the effect of the thickness and mesh spacing on the impact of ferrocement for the concrete slab of 300mm × 300mm size reinforced subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at height of 150 mm, 350mm, and 500mm has been used in this research work. The objective of this research is to study the relationship of impact resistance of ferrocement against the mortar grade and slab thickness. There is a good linear correlation between impact resistance of ferrocement against the mortar grade and the thickness of ferrocement slab. The first and ultimate crack impact resistance of mortar grade 43 (for 40 mm thick slab with mesh reinforcement) are 1.60 times and 1.53 times respectively against the mortar grade 17 slab (of same thickness with mesh reinforcement). The first and ultimate crack impact resistance for 40 mm thick slab (mortar grade 43 with mesh reinforcement) are 3.55 times and 4.49 times respectively against the 20 mm thick slab (of same mortar grade with mesh reinforcement).

  17. Mantle flow and dynamic topography associated with slab window opening: Insights from laboratory models

    NASA Astrophysics Data System (ADS)

    Guillaume, Benjamin; Moroni, Monica; Funiciello, Francesca; Martinod, Joseph; Faccenna, Claudio

    2010-12-01

    We present dynamically self-consistent mantle-scale laboratory models that have been conducted to improve our understanding of the influence of slab window opening on subduction dynamics, mantle flow and associated dynamic topography over geological time scales. The adopted setup consists of a two-layer linearly viscous system simulating the subduction of a fixed plate of silicone (lithosphere) under negative buoyancy in a viscous layer of glucose syrup (mantle). Our experimental setting is also characterized by a constant-width rectangular window located at the center of a laterally confined slab, modeling the case of the interaction of a trench-parallel spreading ridge with a wide subduction zone. We found that the opening of a slab window does not produce consistent changes of the geometry and the kinematics of the slab. On the contrary, slab-induced mantle circulation, quantified both in the vertical and horizontal sections using the Feature Tracking image analysis technique, is strongly modified. In particular, rollback subduction and the opening of the slab window generate a complex mantle circulation pattern characterized by the presence of poloidal and toroidal components, with the importance of each evolving according to kinematic stages. Mantle coming from the oceanic domain floods through the slab window, indenting the supra-slab mantle zone and producing its deformation without any mixing between mantle portions. The opening of the slab window and the upwelling of sub-slab mantle produce a regional-scale non-isostatic topographic uplift of the overriding plate that would correspond to values ranging between ca. 1 and 5 km in nature. Assuming that our modeling results can be representative of the natural behavior of subduction zones, we compared them to the tectonics and volcanism of the Patagonian subduction zone. We found that the anomalous backarc volcanism that has been developing since the middle Miocene could result from the lateral flow of sub-slab

  18. Development of a Leave-in-Place Slab Edge Insulating Form System

    SciTech Connect

    Marc Hoeschele; Eric Lee

    2009-08-31

    Concrete slabs represent the primary foundation type in residential buildings in the fast-growing markets throughout the southern and southwestern United States. Nearly 75% of the 2005 U.S. population growth occurred in these southern tier states. Virtually all of these homes have uninsulated slab perimeters that transfer a small, but steady, flow of heat from conditioned space to outdoors during the heating season. It is estimated that new home foundations constructed each year add 0.016 quads annually to U.S. national energy consumption; we project that roughly one quarter of this amount can be attributed to heat loss through the slab edge and the remaining three quarters to deep ground transfers, depending upon climate. With rising concern over national energy use and the impact of greenhouse gas emissions, it is becoming increasingly imperative that all cost-effective efforts to improve building energy efficiency be implemented. Unlike other building envelope components that have experienced efficiency improvements over the years, slab edge heat loss has largely been overlooked. From our vantage point, a marketable slab edge insulation system would offer significant benefits to homeowners, builders, and the society as a whole. Conventional slab forming involves the process of digging foundation trenches and setting forms prior to the concrete pour. Conventional wood form boards (usually 2 x 10's) are supported by vertical stakes on the outer form board surface, and by supporting 'kickers' driven diagonally from the top of the form board into soil outside the trench. Typically, 2 x 10's can be used only twice before they become waste material, contributing to an additional 400 pounds of construction waste per house. Removal of the form boards and stakes also requires a follow-up trip to the jobsite by the concrete subcontractor and handling (storage/disposal) of the used boards. In the rare cases where the slab is insulated (typically custom homes with radiant

  19. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction. PMID:12364804

  20. How mantle slabs drive plate tectonics.

    PubMed

    Conrad, Clinton P; Lithgow-Bertelloni, Carolina

    2002-10-01

    The gravitational pull of subducted slabs is thought to drive the motions of Earth's tectonic plates, but the coupling between slabs and plates is not well established. If a slab is mechanically attached to a subducting plate, it can exert a direct pull on the plate. Alternatively, a detached slab may drive a plate by exciting flow in the mantle that exerts a shear traction on the base of the plate. From the geologic history of subduction, we estimated the relative importance of "pull" versus "suction" for the present-day plates. Observed plate motions are best predicted if slabs in the upper mantle are attached to plates and generate slab pull forces that account for about half of the total driving force on plates. Slabs in the lower mantle are supported by viscous mantle forces and drive plates through slab suction.

  1. Emplacement of the Kodiak batholith and slab-window migration

    USGS Publications Warehouse

    Farris, David W.; Haeussler, P.; Friedman, R.; Paterson, S.R.; Saltus, R.W.; Ayuso, R.

    2006-01-01

    The Kodiak batholith is one of the largest, most elongate intrusive bodies in the forearc Sanak-Baranof plutonic belt located in southern Alaska. This belt is interpreted to have formed during the subduction of an oceanic spreading center and the associated migration of a slab window. Individual plutons of the Kodiak batholith track the location and evolution of the underlying slab window. Six U/Pb zircon ages from the axis of the batholith exhibit a northeastward-decreasing age progression of 59.2 ± 0.2 Ma at the southwest end to 58.4 ± 0.2 Ma at the northeast tip. The trench-parallel rate of age progression is within error of the average slab-window migration rate for the entire Sanak-Baranof belt (~19 cm/yr). Structural relationships, U/Pb ages, and a model of new gravity data indicate that magma from the Kodiak batholith ascended 5-10 km as a northeastward-younging series of 1-8-km-diameter viscoelastic diapirs. Individual plutons ascended by multiple emplacement mechanisms including downward flow, collapse of wall rock, stoping, and diking. Stokes flow xenolith calculations suggest ascent rates of 5-100 m/yr and an effective magmatic viscosity of 107-108 Pa s. Pre-existing structural or lithologic heterogeneities did not dominantly control the location of the main batholith. Instead, its location was determined by migration of the slab window at depth. 

  2. Phase 2 microwave concrete decontamination results

    SciTech Connect

    White, T.L.; Foster, D. Jr.; Wilson, C.T.; Schaich, C.R.

    1995-04-01

    The authors report on the results of the second phase of a four-phase program at Oak Ridge National Laboratory to develop a system to decontaminate concrete using microwave energy. The microwave energy is directed at the concrete surface through the use of an optimized wave guide antenna, or applicator, and this energy rapidly heats the free water present in the interstitial spaces of the concrete matrix. The resulting steam pressure causes the surface to burst in much the same way popcorn pops in a home microwave oven. Each steam explosion removes several square centimeters of concrete surface that are collected by a highly integrated wave guide and vacuum system. The authors call this process the microwave concrete decontamination, or MCD, process. In the first phase of the program the principle of microwaves concrete removal concrete surfaces was demonstrated. In these experiments, concrete slabs were placed on a translator and moved beneath a stationary microwave system. The second phase demonstrated the ability to mobilize the technology to remove the surfaces from concrete floors. Area and volume concrete removal rates of 10.4 cm{sup 2}/s and 4.9 cm{sup 3}/S, respectively, at 18 GHz were demonstrated. These rates are more than double those obtained in Phase 1 of the program. Deeper contamination can be removed by using a longer residence time under the applicator to create multiple explosions in the same area or by taking multiple passes over previously removed areas. Both techniques have been successfully demonstrated. Small test sections of painted and oil-soaked concrete have also been removed in a single pass. Concrete with embedded metal anchors on the surface has also been removed, although with some increased variability of removal depth. Microwave leakage should not pose any operational hazard to personnel, since the observed leakage was much less than the regulatory standard.

  3. Pentek concrete scabbling system: Baseline report

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE{reg_sign}, SQUIRREL{reg_sign}-I, and SQUIRREL{reg_sign}-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation during the human factors assessment focused on two main areas: noise and dust.

  4. Modified creep and shrinkage prediction model B3 for serviceability limit state analysis of composite slabs

    NASA Astrophysics Data System (ADS)

    Gholamhoseini, Alireza

    2016-03-01

    Relatively little research has been reported on the time-dependent in-service behavior of composite concrete slabs with profiled steel decking as permanent formwork and little guidance is available for calculating long-term deflections. The drying shrinkage profile through the thickness of a composite slab is greatly affected by the impermeable steel deck at the slab soffit, and this has only recently been quantified. This paper presents the results of long-term laboratory tests on composite slabs subjected to both drying shrinkage and sustained loads. Based on laboratory measurements, a design model for the shrinkage strain profile through the thickness of a slab is proposed. The design model is based on some modifications to an existing creep and shrinkage prediction model B3. In addition, an analytical model is developed to calculate the time-dependent deflection of composite slabs taking into account the time-dependent effects of creep and shrinkage. The calculated deflections are shown to be in good agreement with the experimental measurements.

  5. Measurement of steel corrosion in concrete by impedance spectroscopy

    NASA Astrophysics Data System (ADS)

    Bartholomew, Paul; Sumsion, Eric; Guthrie, Spencer; Mazzeo, Brian

    2010-10-01

    Steel corrosion is a major problem for aging bridge structures. The steel corrodes as chloride ions migrate to the buried steel. The properties of the corroded steel-concrete interface change due to the corrosion and can be measured by impedance spectroscopy. A new spectrometer was built to measure concrete slabs. A fitting function to the impedance spectra was used to determine relevant parameters correlated with corrosion. Data from the laboratory and the field demonstrate the utility of this technique.

  6. Bacterial concrete

    NASA Astrophysics Data System (ADS)

    Ramakrishnan, Venkataswamy; Ramesh, K. P.; Bang, S. S.

    2001-04-01

    Cracks in concrete are inevitable and are one of the inherent weaknesses of concrete. Water and other salts seep through these cracks, corrosion initiates, and thus reduces the life of concrete. So there was a need to develop an inherent biomaterial, a self-repairing material which can remediate the cracks and fissures in concrete. Bacterial concrete is a material, which can successfully remediate cracks in concrete. This technique is highly desirable because the mineral precipitation induced as a result of microbial activities is pollution free and natural. As the cell wall of bacteria is anionic, metal accumulation (calcite) on the surface of the wall is substantial, thus the entire cell becomes crystalline and they eventually plug the pores and cracks in concrete. This paper discusses the plugging of artificially cracked cement mortar using Bacillus Pasteurii and Sporosarcina bacteria combined with sand as a filling material in artificially made cuts in cement mortar which was cured in urea and CaCl2 medium. The effect on the compressive strength and stiffness of the cement mortar cubes due to the mixing of bacteria is also discussed in this paper. It was found that use of bacteria improves the stiffness and compressive strength of concrete. Scanning electron microscope (SEM) is used to document the role of bacteria in microbiologically induced mineral precipitation. Rod like impressions were found on the face of calcite crystals indicating the presence of bacteria in those places. Energy- dispersive X-ray (EDX) spectra of the microbial precipitation on the surface of the crack indicated the abundance of calcium and the precipitation was inferred to be calcite (CaCO3).

  7. Influence of Elevated Temperatures on Pet-Concrete Properties

    NASA Astrophysics Data System (ADS)

    Albano, C.; Camacho, N.; Hernández, M.; Matheus, A.; Gutiérrez, A.

    2008-08-01

    Lightweight aggregate is an important material in reducing the unit weight of concrete complying with special concrete structures of large high-rise buildings. Besides, the use of recycled PET bottles as lightweight aggregate in concrete is an effective contribution for environment preservation. So, the objective of the present work was to study experimentally the flexural strength of the PET -concrete blends and the thermal degradation of the PET in the concrete, when the blends with 10 and 20% in volume of PET were exposed to different temperatures (200, 400, 600 °C). The flexural strength of concrete-PET exposed to a heat source is strongly dependent on the temperature, water/cement ratio, as well as the content and particle size of PET. However, the activation energy is affected by the temperature, location of the PET particles on the slabs and the water/cement ratio. Higher water content originates thermal and hydrolytic degradation on the PET, while on the concrete, a higher vapor pressure which causes an increase in crack formation. The values of the activation energy are higher on the center of the slabs than on the surface, since concrete is a poor heat conductor.

  8. Modeling the electrokinetic decontamination of concrete

    SciTech Connect

    Harris, M.T.; DePaoli, D.W.; Ally, M.R.

    1997-01-01

    The decontamination of concrete is a major concern in many Department of (DOE) facilities. Numerous techniques (abrasive methods, manual methods, ultrasonics, concrete surface layer removal, chemical extraction methods, etc.) have been used to remove radioactive contamination from the surface of concrete. Recently, processes that are based on electrokinetic phenomena have been developed to decontaminate concrete. Electrokinetic decontamination has been shown to remove from 70 to over 90% of the surface radioactivity. To evaluate and improve the electrokinetic processes, a model has been developed to simulate the transport of ionic radionuclei constituents through the pores of concrete and into the anolyte and catholyte. The model takes into account the adsorption and desorption kinetics of the radionuclei from the pore walls, and ion transport by electro-osmosis, electromigration, and diffusion. A numerical technique, orthogonal collocation, is used to simultaneously solve the governing convective diffusion equations for a porous concrete slab and the current density equation. This paper presents the theoretical framework of the model and the results from the computation of the dynamics of ion transport during electrokinetic treatment of concrete. The simulation results are in good agreement with experimental data.

  9. 80. Laurel Fork Creek Bridge #2. Example of a concrete ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    80. Laurel Fork Creek Bridge #2. Example of a concrete slab bridge with T beams. It was built in 1937 and the wing walls were faced with stone to blend with its surroundings. Looking northeast. - Blue Ridge Parkway, Between Shenandoah National Park & Great Smoky Mountains, Asheville, Buncombe County, NC

  10. Tethyan subducted slabs under India

    NASA Astrophysics Data System (ADS)

    Van der Voo, Rob; Spakman, Wim; Bijwaard, Harmen

    1999-08-01

    Tomographic imaging of the mantle under Tibet, India and the adjacent Indian Ocean reveals several zones of relatively high P-wave velocities at various depths. Under the Hindu Kush region in northeastern Afghanistan and southern Tajikistan, a regional northward-dipping slab is seen in the entire upper 600 km of the mantle and is apparently still attached to the lithosphere of the Indian plate. Under northern Pakistan this same slab shows a roll-over structure with the deeper portion overturned and dipping southward, as can also be seen in the distribution of earthquake hypocenters. Farther east-southeast (e.g., in the vicinity of Nepal), a well-resolved anomaly below 450 km depth is connected to the slab under the Hindu Kush, but seems to be separated from the lithosphere above 350 km. These upper-mantle anomalies are interpreted as the remnants of delaminated sub-continental lithosphere that went down when Greater India continued to converge northward with Asia after ˜45 Ma. The deeper high-velocity anomalies under the Indian sub-continent appear clearly separated from the shallower ones as well as from each other, and are inferred to represent remnants of oceanic lithospheric slabs that have sunk into the lower mantle and were subsequently overridden by the Indian plate. They occur at depths between 1000 and 2300 km and occasionally descend down to the core-mantle boundary. The anomalies form three parallel WNW-ESE striking zones. We interpret the two southern zones as remnants of oceanic lithosphere that was subducted when the Neo-Tethys Ocean closed between India and Tibet in the Cretaceous and earliest Tertiary. The northern deep-mantle zone under northern Afghanistan, the Himalayas and the Lhasa block in southern Tibet may represent the last-subducted remnant of the Paleo-Tethys Ocean, which is thought to have closed before the Hauterivian stage of the Early Cretaceous. The middle zone continues southeastward as a rather straight high-velocity zone towards

  11. Noise reduction in urban LRT networks by combining track based solutions.

    PubMed

    Vogiatzis, Konstantinos; Vanhonacker, Patrick

    2016-10-15

    The overall objective of the Quiet-Track project is to provide step-changing track based noise mitigation and maintenance schemes for railway rolling noise in LRT (Light Rail Transit) networks. WP 4 in particular focuses on the combination of existing track based solutions to yield a global performance of at least 6dB(A). The validation was carried out using a track section in the network of Athens Metro Line 1 with an existing outside concrete slab track (RHEDA track) where high airborne rolling noise was observed. The procedure for the selection of mitigation measures is based on numerical simulations, combining WRNOISE and IMMI software tools for noise prediction with experimental determination of the required track and vehicle parameters (e.g., rail and wheel roughness). The availability of a detailed rolling noise calculation procedure allows for detailed designing of measures and of ranking individual measures. It achieves this by including the modelling of the wheel/rail source intensity and of the noise propagation with the ability to evaluate the effect of modifications at source level (e.g., grinding, rail dampers, wheel dampers, change in resiliency of wheels and/or rail fixation) and of modifications in the propagation path (absorption at the track base, noise barriers, screening). A relevant combination of existing solutions was selected in the function of the simulation results. Three distinct existing solutions were designed in detail aiming at a high rolling noise attenuation and not affecting the normal operation of the metro system: Action 1: implementation of sound absorbing precast elements (panel type) on the track bed, Action 2: implementation of an absorbing noise barrier with a height of 1.10-1.20m above rail level, and Action 3: installation of rail dampers. The selected solutions were implemented on site and the global performance was measured step by step for comparison with simulations.

  12. Noise reduction in urban LRT networks by combining track based solutions.

    PubMed

    Vogiatzis, Konstantinos; Vanhonacker, Patrick

    2016-10-15

    The overall objective of the Quiet-Track project is to provide step-changing track based noise mitigation and maintenance schemes for railway rolling noise in LRT (Light Rail Transit) networks. WP 4 in particular focuses on the combination of existing track based solutions to yield a global performance of at least 6dB(A). The validation was carried out using a track section in the network of Athens Metro Line 1 with an existing outside concrete slab track (RHEDA track) where high airborne rolling noise was observed. The procedure for the selection of mitigation measures is based on numerical simulations, combining WRNOISE and IMMI software tools for noise prediction with experimental determination of the required track and vehicle parameters (e.g., rail and wheel roughness). The availability of a detailed rolling noise calculation procedure allows for detailed designing of measures and of ranking individual measures. It achieves this by including the modelling of the wheel/rail source intensity and of the noise propagation with the ability to evaluate the effect of modifications at source level (e.g., grinding, rail dampers, wheel dampers, change in resiliency of wheels and/or rail fixation) and of modifications in the propagation path (absorption at the track base, noise barriers, screening). A relevant combination of existing solutions was selected in the function of the simulation results. Three distinct existing solutions were designed in detail aiming at a high rolling noise attenuation and not affecting the normal operation of the metro system: Action 1: implementation of sound absorbing precast elements (panel type) on the track bed, Action 2: implementation of an absorbing noise barrier with a height of 1.10-1.20m above rail level, and Action 3: installation of rail dampers. The selected solutions were implemented on site and the global performance was measured step by step for comparison with simulations. PMID:26028336

  13. Slab melting versus slab dehydration in subduction-zone magmatism

    PubMed Central

    Mibe, Kenji; Kawamoto, Tatsuhiko; Matsukage, Kyoko N.; Fei, Yingwei; Ono, Shigeaki

    2011-01-01

    The second critical endpoint in the basalt-H2O system was directly determined by a high-pressure and high-temperature X-ray radiography technique. We found that the second critical endpoint occurs at around 3.4 GPa and 770 °C (corresponding to a depth of approximately 100 km in a subducting slab), which is much shallower than the previously estimated conditions. Our results indicate that the melting temperature of the subducting oceanic crust can no longer be defined beyond this critical condition and that the fluid released from subducting oceanic crust at depths greater than 100 km under volcanic arcs is supercritical fluid rather than aqueous fluid and/or hydrous melts. The position of the second critical endpoint explains why there is a limitation to the slab depth at which adakitic magmas are produced, as well as the origin of across-arc geochemical variations of trace elements in volcanic rocks in subduction zones. PMID:21536910

  14. Installation and verification of high precision mechanics in concrete structures at the example of ALMA antenna interfaces

    NASA Astrophysics Data System (ADS)

    Heinz, Volker; Kraus, Max; Orellana, Eduardo

    2012-09-01

    For the ALMA interferometer at the array operation facility near San Pedro de Atacama at 5.000 meters asl 192 concrete antenna foundations had to be equipped with coupling points for 66 antennas. These antennas will be frequently moved between the foundations and placed on these interfaces without further adjustment. To position the ALMA antennas with the required accuracy, high precision inserts need to be installed in previously casted concrete foundations. Very tight mechanical tolerances have to be applied to civil structures, with standard tolerances of not less than millimeters. This is extremely difficult considering the material (mortar and steel in a concrete slab) to be used and the environmental conditions on site. Special tools had to be designed and an installation and alignment procedure developed, tested and improved. Important was to have a robust process, which allows highest precision installation without major re-machining for approx 600 interface blocks. Installation material, which could cope with the conditions, was specially tested for these requirements. The geometry of the interface and other parameters such as horizontal and vertical stiffness must be verified after the installation. Special metrology tools to measure reliable at micron level at high altitude had been selected. The experience and knowledge acquired will be beneficial for the installation of any opto-mechanical device in civil engineering structures, such as telescope and dome track rails, but also in optical interferometer installations. Metrology requirements and environmental conditions in most of these cases are equally challenging.

  15. Application of headed studs in steel fiber reinforced cementitious composite slab of steel beam-column connection

    NASA Astrophysics Data System (ADS)

    Yao, Cui; Nakashima, Masayoshi

    2012-03-01

    Steel fiber reinforced cementitous composites (SFRCC) is a promising material with high strength in both compression and tension compared with normal concrete. The ductility is also greatly improved because of 6% volume portion of straight steel fibers. A steel beam-column connection with Steel fiber reinforced cementitous composites (SFRCC) slab diaphragms is proposed to overcome the damage caused by the weld. The push-out test results suggested that the application of SFRCC promises larger shear forces transferred through headed studs allocated in a small area in the slab. Finite element models were developed to simulate the behavior of headed studs. The failure mechanism of the grouped arrangement is further discussed based on a series of parametric analysis. In the proposed connection, the SFRCC slab is designed as an exterior diaphragm to transfer the beam flange load to the column face. The headed studs are densely arranged on the beam flange to connect the SFRCC slab diaphragms and steel beams. The seismic performance and failure mechanism of the SFRCC slab diaphragm beam-column connection were investigated based on the cyclic loading test. Beam hinge mechanism was achieved at the end of the SFRCC slab diaphragm by using sufficient studs and appropriate rebars in the SFRCC slab.

  16. Subducting slabs: Jellyfishes in the Earth's mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, Christelle; Braun, Jean; Husson, Laurent; Le Carlier de Veslud, Christian; Thieulot, Cedric; Yamato, Philippe; Grujic, Djordje

    2010-08-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  17. Subducting Slabs: Jellyfishes in the Earth's Mantle

    NASA Astrophysics Data System (ADS)

    Loiselet, C.; Braun, J.; Husson, L.; Le Carlier de Veslud, C.; Thieulot, C.; Yamato, P.; Grujic, D.

    2010-12-01

    The constantly improving resolution of geophysical data, seismic tomography and seismicity in particular, shows that the lithosphere does not subduct as a slab of uniform thickness but is rather thinned in the upper mantle and thickened around the transition zone between the upper and lower mantle. This observation has traditionally been interpreted as evidence for the buckling and piling of slabs at the boundary between the upper and lower mantle, where a strong contrast in viscosity may exist and cause resistance to the penetration of slabs into the lower mantle. The distribution and character of seismicity reveal, however, that slabs undergo vertical extension in the upper mantle and compression near the transition zone. In this paper, we demonstrate that during the subduction process, the shape of low viscosity slabs (1 to 100 times more viscous than the surrounding mantle) evolves toward an inverted plume shape that we coin jellyfish. Results of a 3D numerical model show that the leading tip of slabs deform toward a rounded head skirted by lateral tentacles that emerge from the sides of the jellyfish head. The head is linked to the body of the subducting slab by a thin tail. A complete parametric study reveals that subducting slabs may achieve a variety of shapes, in good agreement with the diversity of natural slab shapes evidenced by seismic tomography. Our work also suggests that the slab to mantle viscosity ratio in the Earth is most likely to be lower than 100. However, the sensitivity of slab shapes to upper and lower mantle viscosities and densities, which remain poorly constrained by independent evidence, precludes any systematic deciphering of the observations.

  18. Methods for ultimate load analysis of concrete containments

    SciTech Connect

    Dunham, R.S.; Rashid, Y.R.; Yuan, K.A.; Lu, Y.M.

    1985-06-01

    The objective of the research project described in this interim report is to develop a qualified methodology for the ultimate load analysis of concrete containment structures. The EPRI-sponsored nonlinear finite element code ABAQUS-EPGEN, which has recently been modified to incorporate a constitutive model for plain concrete and modeling capabilities for reinforced and prestressed concrete containments, is utilized as the structural analysis tool in this development. The ABAQUS-EPGEN concrete modeling and analysis capabilities are first evaluated by comparing measured data with code predictions for full-scale reinforced concrete slab specimens tested under uniaxial and biaxial tension. These specimen tests simulate the behavior of the cylindrical wall of a typical concrete containment structure under internal pressure. The calculated and measured strain comparisons are used to improve the constitutive model and to qualify the code for concrete containment analysis. The second part of this effort deals with the ultimate load analysis of reinforced and prestressed containments to determine bounds on the global overpressure capacities of typical concrete containment structures. The third part of this effort further examines such local effects through a substructural analysis of the liner-concrete interaction at major concrete cracks.

  19. The slab geometry laser. I - Theory

    NASA Technical Reports Server (NTRS)

    Eggleston, J. M.; Kane, T. J.; Kuhn, K.; Byer, R. L.; Unternahrer, J.

    1984-01-01

    Slab geometry solid-state lasers offer significant performance improvements over conventional rod-geometry lasers. A detailed theoretical description of the thermal, stress, and beam-propagation characteristics of a slab laser is presented. The analysis includes consideration of the effects of the zig-zag optical path, which eliminates thermal and stress focusing and reduces residual birefringence.

  20. Slab Houses: Reflections of the Past.

    ERIC Educational Resources Information Center

    Cappetta, Ann

    1990-01-01

    Describes how students, influenced by Victorian architecture, created ceramic slab houses. Students devised a solution to depict the reflective nature of Victorian bay windows. Project incorporates art history, handbuilding, and surface ornamentation. Outlines and illustrates steps involved in making slab houses that can be adapted for use by…

  1. Geopolymer concrete for structural use: Recent findings and limitations

    NASA Astrophysics Data System (ADS)

    Nuruddin, M. F.; Malkawi, A. B.; Fauzi, A.; Mohammed, B. S.; Almattarneh, H. M.

    2016-06-01

    Geopolymer binders offer a possible solution for several problems that facing the current cement industry. These binders exhibit similar or better engineering properties compared to cement and can utilize several types of waste materials. This paper presents the recent research progress regarding the structural behaviour of reinforced geopolymer concrete members including beams, columns and slabs. The reported results showed that the structural behaviour of the reinforced geopolymer concrete members is similar to the known behaviour of the ordinary reinforced concrete members. In addition, the currently available standards have been conservatively used for analysis and designing of reinforced geopolymer concrete structures. On the other hand, the main hurdles facing the spread of geopolymer concrete was the absence of standards and the concerns about the long-term properties. Other issues included the safety, cost and liability.

  2. Fracture of solid state laser slabs

    SciTech Connect

    Marion, J.E.

    1986-07-01

    Fracture due to thermal stress limits the power output potential of modern, high average power slab lasers. Here the criteria for slab fracture and the nature of the surface flaws which constitute the strength-controlling defects are reviewed. Specific fracture data for gadolinium scandium gallium garnet and LHG-5 phosphate glass with different surface finishes are evaluated in the context of assigning appropriate slab operating parameters using Wiebull statistics. These examples illustrate both the danger of design using brittle components without adequate fracture testing, and the inadequacy of design methods which use a fixed safety factor, for this class of materials. Further consideration reveals that operation of slab lasers in contact with an aqueous coolant may lead to strength degradation with time. Finally, the evolution of the failure process in which a characteristic midplane crack forms is outlined, and the pertinent parameters for avoiding slab fracture are identified.

  3. Slab stagnation and detachment under northeast China

    NASA Astrophysics Data System (ADS)

    Honda, Satoru

    2016-03-01

    Results of tomography models around the Japanese Islands show the existence of a gap between the horizontally lying (stagnant) slab extending under northeastern China and the fast seismic velocity anomaly in the lower mantle. A simple conversion from the fast velocity anomaly to the low-temperature anomaly shows a similar feature. This feature appears to be inconsistent with the results of numerical simulations on the interaction between the slab and phase transitions with temperature-dependent viscosity. Such numerical models predict a continuous slab throughout the mantle. I extend previous analyses of the tomography model and model calculations to infer the origins of the gap beneath northeastern China. Results of numerical simulations that take the geologic history of the subduction zone into account suggest two possible origins for the gap: (1) the opening of the Japan Sea led to a breaking off of the otherwise continuous subducting slab, or (2) the western edge of the stagnant slab is the previous subducted ridge, which was the plate boundary between the extinct Izanagi and the Pacific plates. Origin (2) suggesting the present horizontally lying slab has accumulated since the ridge subduction, is preferable for explaining the present length of the horizontally lying slab in the upper mantle. Numerical models of origin (1) predict a stagnant slab in the upper mantle that is too short, and a narrow or non-existent gap. Preferred models require rather stronger flow resistance of the 660-km phase change than expected from current estimates of the phase transition property. Future detailed estimates of the amount of the subducted Izanagi plate and the present stagnant slab would be useful to constrain models. A systematic along-arc variation of the slab morphology from the northeast Japan to Kurile arcs is also recognized, and its understanding may constrain the 3D mantle flow there.

  4. Turbulence in the cylindrical slab

    SciTech Connect

    Gentle, K. W.; Rowan, W. L.; Williams, C. B.; Brookman, M. W.

    2014-09-15

    The cylindrical slab was the first and simplest model of intrinsically unstable microturbulence. The Helimak is an experimental realization of this model. Although finite, it is sufficiently large to escape boundary effects, with dimensionless parameters similar to those of a tokamak edge or scrape off layer. The essential drive is interchange-like, a pressure gradient with unfavorable magnetic curvature, leading to a non-linearly saturated state of large-amplitude turbulence, Δn{sub rms}/n ∼ 0.5. The nonlinear processes governing this saturation are unique, unlike any of those posited for the much weaker turbulence typical of confined plasma, e.g., in a tokamak. Neither linear stability theory, quasi-linear theory, zonal flows, nor flow shear stabilization is consistent with the observations. The mechanisms determining the non-linearly saturated state constitute an important challenge to our understanding of strongly nonlinear systems.

  5. Tracking dynamic team activity

    SciTech Connect

    Tambe, M.

    1996-12-31

    AI researchers are striving to build complex multi-agent worlds with intended applications ranging from the RoboCup robotic soccer tournaments, to interactive virtual theatre, to large-scale real-world battlefield simulations. Agent tracking - monitoring other agent`s actions and inferring their higher-level goals and intentions - is a central requirement in such worlds. While previous work has mostly focused on tracking individual agents, this paper goes beyond by focusing on agent teams. Team tracking poses the challenge of tracking a team`s joint goals and plans. Dynamic, real-time environments add to the challenge, as ambiguities have to be resolved in real-time. The central hypothesis underlying the present work is that an explicit team-oriented perspective enables effective team tracking. This hypothesis is instantiated using the model tracing technology employed in tracking individual agents. Thus, to track team activities, team models are put to service. Team models are a concrete application of the joint intentions framework and enable an agent to track team activities, regardless of the agent`s being a collaborative participant or a non-participant in the team. To facilitate real-time ambiguity resolution with team models: (i) aspects of tracking are cast as constraint satisfaction problems to exploit constraint propagation techniques; and (ii) a cost minimality criterion is applied to constrain tracking search. Empirical results from two separate tasks in real-world, dynamic environments one collaborative and one competitive - are provided.

  6. 4. AN IMAGE, LOOKING NORTH WEST, OF THE TRACK, BALLAST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. AN IMAGE, LOOKING NORTH WEST, OF THE TRACK, BALLAST AND CONCRETE BALUSTRADES, SHOWING HOW THE BRIDGE WAS DESIGNED TO TAKE TWO SETS OF TRACK. - Vandalia Railroad Bridge, Spanning U.S. Route 40, Indianapolis, Marion County, IN

  7. Sausage oscillations of coronal plasma slabs

    NASA Astrophysics Data System (ADS)

    Hornsey, C.; Nakariakov, V. M.; Fludra, A.

    2014-07-01

    Context. Sausage oscillations are observed in plasma non-uniformities of the solar corona as axisymmetric perturbations of the non-uniformity. Often, these non-uniformities can be modelled as field-aligned slabs of the density enhancement. Aims: We perform parametric studies of sausage oscillations of plasma slabs, aiming to determine the dependence of the oscillation period on its parameters, and the onset of leaky and trapped regimes of the oscillations. Methods: Slabs with smooth transverse profiles of the density of a zero-beta plasma are perturbed by an impulsive localised perturbation of the sausage symmetry. In particular, the slab can contain an infinitely thin current sheet in its centre. The initial value problem is then solved numerically. The numerical results are subject to spectral analysis. The results are compared with analytical solutions for a slab with a step-function profile and also with sausage oscillations of a plasma cylinder. Results: We established that sausage oscillations in slabs generally have the same properties as in plasma cylinders. In the trapped regime, the sausage oscillation period increases with the increase in the longitudinal wavelength. In the leaky regime, the dependence of the period on the wavelength experiences saturation, and the period becomes independent of the wavelength in the long-wavelength limit. In the leaky regime the period is always longer than in the trapped regime. The sausage oscillation period in a slab is always longer than in a cylinder with the same transverse profile. In slabs with steeper transverse profiles, sausage oscillations have longer periods. The leaky regime occurs at shorter wavelengths in slabs with smoother profiles.

  8. Constraints of subducted slab geometries on trench migration and subduction velocities: flat slabs and slab curtains in the mantle under Asia

    NASA Astrophysics Data System (ADS)

    Wu, J. E.; Suppe, J.; Renqi, L.; Lin, C.; Kanda, R. V.

    2013-12-01

    The past locations, shapes and polarity of subduction trenches provide first-order constraints for plate tectonic reconstructions. Analogue and numerical models of subduction zones suggest that relative subducting (Vs) and overriding (Vor) plate velocities may strongly influence final subducted slab geometries. Here we have mapped the 3D geometries of subducted slabs in the upper and lower mantle of Asia from global seismic tomography. We have incorporated these slabs into plate tectonic models, which allows us to infer the subducting and overriding plate velocities. We describe two distinct slab geometry styles, ';flat slabs' and ';slab curtains', and show their implications for paleo-trench positions and subduction geometries in plate tectonic reconstructions. When compared to analogue and numerical models, the mapped slab styles show similarities to modeled slabs that occupy very different locations within Vs:Vor parameter space. ';Flat slabs' include large swaths of sub-horizontal slabs in the lower mantle that underlie the well-known northward paths of India and Australia from Eastern Gondwana, viewed in a moving hotspot reference. At India the flat slabs account for a significant proportion of the predicted lost Ceno-Tethys Ocean since ~100 Ma, whereas at Australia they record the existence of a major 8000km by 2500-3000km ocean that existed at ~43 Ma between East Asia, the Pacific and Australia. Plate reconstructions incorporating the slab constraints imply these flat slab geometries were generated when continent overran oceanic lithosphere to produce rapid trench retreat, or in other words, when subducting and overriding velocities were equal (i.e. Vs ~ Vor). ';Slab curtains' include subvertical Pacific slabs near the Izu-Bonin and Marianas trenches that extend from the surface down to 1500 km in the lower mantle and are 400 to 500 km thick. Reconstructed slab lengths were assessed from tomographic volumes calculated at serial cross-sections. The ';slab

  9. Sensitivity enhancement in photonic crystal slab biosensors.

    PubMed

    El Beheiry, Mohamed; Liu, Victor; Fan, Shanhui; Levi, Ofer

    2010-10-25

    Refractive index sensitivity of guided resonances in photonic crystal slabs is analyzed. We show that modal properties of guided resonances strongly affect spectral sensitivity and quality factors, resulting in substantial enhancement of refractive index sensitivity. A three-fold spectral sensitivity enhancement is demonstrated for suspended slab designs, in contrast to designs with a slab resting over a substrate. Spectral sensitivity values are additionally shown to be unaffected by quality factor reductions, which are common to fabricated photonic crystal nano-structures. Finally, we determine that proper selection of photonic crystal slab design parameters permits biosensing of a wide range of analytes, including proteins, antigens, and cells. These photonic crystals are compatible with large-area biosensor designs, permitting direct access to externally incident optical beams in a microfluidic device.

  10. Crust rheology, slab detachment and topography

    NASA Astrophysics Data System (ADS)

    Duretz, T.; Gerya, T. V.

    2012-04-01

    The collision between continents following the closure of an ocean can lead to the subduction of continental crust. The introduction of buoyant crust within subduction zones triggers the development of extensional stresses in slabs which eventually result in their detachment. The dynamic consequences of slab detachment affects the development of topography, the exhumation of high-pressure rocks and the geodynamic evolution of collision zones. We employ two-dimensional thermo-mechanical modelling in order to study the importance of crustal rheology on the evolution of spontaneous subduction-collision systems and the occurrence of slab detachment. The modelling results indicate that varying the rheological structure of the crust can results in a broad range of collisional evolutions involving slab detachment, delamination (associated to slab rollback), or the combination of both mechanisms. By enhancing mechanical coupling at the Moho, a strong crust leads to the deep subduction of the crust (180 km). These collisions are subjected to slab detachment and subsequent coherent exhumation of the crust accommodated by eduction (inversion of subduction sense) and thrusting. In these conditions, slab detachment promotes the development of a high (> 4.5 km) and narrow (< 200 km) topographic plateau located in the vicinity of the suture. A contrasting style of collision is obtained by employing a weak crustal rheology. The weak mechanical coupling at the Moho promotes the widespread delamination of the lithosphere, preventing slab detachment to occur. Further shortening leads to buckling and thickening of the crust resulting in the development of topographic bulging on the lower plate. Collisions involving rheologically layered crust are characterised by a decoupling level at mid-crustal depths. These initial condition favours the delamination of the upper crust as well as the deep subduction of the lower crust. These collisions are thus successively affected by delamination

  11. Photocatalytic, highly hydrophilic porcelain stoneware slabs

    NASA Astrophysics Data System (ADS)

    Raimondo, M.; Guarini, G.; Zanelli, C.; Marani, F.; Fossa, L.; Dondi, M.

    2011-10-01

    Photocatalytic, highly hydrophilic industrial porcelain stoneware large slabs were realized by deposition of nanostructured TiO2 coatings. Different surface finishing and experimental conditions were considered in order to assess the industrial feasibility. Photocatalytic and wetting behaviour of functionalized slabs mainly depends on surface phase composition in terms of anatase/rutile ratio, this involving - as a key issue - the deposition of TiO2 on industrially sintered products with an additional annealing step to strengthen coatings' performances and durability.

  12. General view of concrete foundation rail for Pintle Crane at ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    General view of concrete foundation rail for Pintle Crane at marine railway, completed. 14th Naval District Photo Collection Item No. 4640 - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  13. Repetitively pulsed Nd-glass slab lasers

    NASA Astrophysics Data System (ADS)

    Denker, B. I.; Kir'ianov, A. V.; Maliutin, A. A.; Kertesz, I.; Kroo, N.

    1989-09-01

    The possibility of obtaining high laser output energies at 1.32 micron using thin LiNdLa phosphate glass slabs with a high Nd(3+) concentration is discussed. Comparison data for 1.054 micron are also given. In the experiments, 3 x 14 x 125-mm slabs were prepared from LiNdLa phosphate glass with Nd concentration 1.2 x 10 to the 21st/cu cm. The uncoated slab facets were tested in a silver-coated quartz tube reflector pumped by 450-microsec flash-lamp pulses. The light passing through the slab returns to it after reflection from the tube surface. Most of the radiation falls on the wider side of the slab at large angles of incidence, thus maximizing its path inside the slab. The 150-mm laser resonator was formed by two flat mirrors. At 1.32 microns an output mirror of reflectivity r = 95 percent was used (with r less than 10 percent at 1.054 micron), while at 1.054 micron, r(output) = 50 percent was chosen. The pump-energy dependence of the output energy was measured.

  14. Damage assessment of two-way bending RC slabs subjected to blast loadings.

    PubMed

    Jia, Haokai; Yu, Ling; Wu, Guiying

    2014-01-01

    Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion.

  15. Damage Assessment of Two-Way Bending RC Slabs Subjected to Blast Loadings

    PubMed Central

    Jia, Haokai; Wu, Guiying

    2014-01-01

    Terrorist attacks on vulnerable structures and their individual structural members may cause considerable damage and loss of life. However, the research work on response and damage analysis of single structural components, for example, a slab to blast loadings, is limited in the literature and this is necessary for assessing its vulnerability. This study investigates the blast response and damage assessment of a two-way bending reinforced concrete (RC) slab subjected to blast loadings. Numerical modeling and analysis are carried out using the commercial finite element code LS-DYNA 971. A damage assessment criterion for the two-way bending RC slab is defined based on the original and residual uniformly distributed load-carrying capacity. Parametric studies are carried out to investigate the effects of explosive weight and explosive position on the damage mode of the two-way RC slab. Some design parameters, such as the boundary conditions and the negative reinforcement steel bar length, are also discussed. The illustrated results show that the proposed criterion can apply to all failure modes. The damage assessment results are more accurate than the ones due to the conventional deformation criterion. PMID:25121134

  16. Three-dimensional necking during viscous slab detachment

    NASA Astrophysics Data System (ADS)

    Tscharner, M.; Schmalholz, S. M.; Duretz, T.

    2014-06-01

    We study the three-dimensional (3-D) deformation during detachment of a lithospheric slab with simple numerical models using the finite element method. An initially vertical layer of power law viscous fluid mimics the slab and is surrounded by a linear or power law viscous fluid representing asthenospheric mantle. We quantify the impact of slab size and shape (symmetric/asymmetric) on slab detachment and identify two processes that control the lateral (i.e., along-trench) slab deformation: (1) the horizontal deflection of the lateral, vertical slab sides (> 100 km with velocities up to 16 mm/yr) and (2) the propagation of localized thinning (necking) inside the slab (with velocities >9 cm/yr). The lateral propagation velocity is approximately constant during slab detachment. Larger slabs (here wider than approximately 300 km) detach with rates similar to those predicted by 2-D models, whereas smaller slabs detach slower. Implications for geodynamic processes and interpretations of seismic tomography are discussed.

  17. Was there a Laramide "flat slab"?

    NASA Astrophysics Data System (ADS)

    Jones, C. H.

    2014-12-01

    Slab-continent interactions drive most non-collisional orogenies; this has led us to usually anticipate that temporal changes or spatial variations in orogenic style are related to changes in the slab, most especially in the slab's dip. This is most dramatically evident for orogenies in the foreland, well away from the trench, such as the Laramide orogeny. However, the physical means of connecting slab geometry to crustal deformation remain obscure. Dickinson and Snyder (1978) and Bird (1984) laid out a conceptually elegant means of creating foreland deformation from shear between a slab and overriding continental lithosphere, but such strong shear removed all of the continental lithosphere in the western U.S. when included in a numerical simulation of flat slab subduction (Bird, 1988), a removal in conflict with observations of volcanic rocks and xenoliths in many locations. Relying on an increase in edge normal stresses results, for the Laramide, in requiring the little-deformed Colorado Plateau to either be unusually strong or to have risen rapidly enough and high enough to balance edge stresses with body forces. Early deformation in the Plateau rules out unusual strength, and the accumulation and preservation of Late Cretaceous near-sea level sedimentary rocks makes profound uplift unlikely (though not impossible). Relying on comparisons with the Sierras Pampeanas is also fraught with problems: the Sierras are not separated from the Andean fold-and-thrust belt by several hundred kilometers of little-deformed crust, nor were they buried under kilometers of marine muds as were large parts of the Laramide foreland. We have instead suggested that some unusual interactions of an obliquely subducting plate with a thick Archean continental root might provide a better explanation than a truly flat slab (Jones et al., 2011). From this, and given that several flat-slab segments today are not associated with foreland orogenesis and noting that direct evidence for truly

  18. Blast impact behaviour of concrete with different fibre reinforcement

    NASA Astrophysics Data System (ADS)

    Drdlová, Martina; Čechmánek, René; Řídký, Radek

    2015-09-01

    The paper summarizes the results of the development of special concrete intended for the explosion resistance applications, with the emphasis on minimal secondary fragments formation at the explosion. The fine-grained concrete matrix has been reinforced by various types of short dispersed fibers (metallic, mineral and polymer) of different sizes and by their combination and the effect of the fibre reinforcement on the physico-mechanical properties and blast resistance was observed. The concrete prism specimens have been subjected to the determination of mechanical parameters (compressive and flexural strength at quasi-static load). The blast tests were conducted on the slab specimens prepared from selected mixtures. The material characteristics and explosion test data have been used for numerical investigation, which defined the optimal wall composition and dimensions of the concrete element which should resist the explosion defined by type, size, weight and placement of the blast. In the next step the test elements resistance was verified by real explosion test.

  19. Refractory concretes

    DOEpatents

    Holcombe, Jr., Cressie E.

    1979-01-01

    Novel concrete compositions comprise particles of aggregate material embedded in a cement matrix, said cement matrix produced by contacting an oxide selected from the group of Y.sub.2 O.sub.3, La.sub.2 O.sub.3, Nd.sub.2 O.sub.3, Sm.sub.2 O.sub.3, Eu.sub.2 O.sub.3 and Gd.sub.2 O.sub.3 with an aqueous solution of a salt selected from the group of NH.sub.4 NO.sub.3, NH.sub.4 Cl, YCl.sub.3 and Mg(NO.sub.3).sub.2 to form a fluid mixture; and allowing the fluid mixture to harden.

  20. Test of LOX compatibility for asphalt and concrete runway materials

    NASA Technical Reports Server (NTRS)

    Moyers, C. V.; Bryan, C. J.; Lockhart, B. J.

    1973-01-01

    A literature survey and a telephone canvass of producers and users of LOX is reported which yielded one report of an accident resulting from a LOX spill on asphalt, one discussion of hazardous conditions, and an unreferenced mention of an incident. Laboratory tests using standard LOX impact apparatus yielded reactions with both old and new alphalt, but none with concrete. In the final test, using a larger sample of asphalt, the reaction caused extensive damage to equipment. Initial field experiments using 2-meter square asphalt slabs covered with LOX, conducted during rainy weather, achieved no reaction with plummets, and limited reaction with a blasting cap as a reaction initiator. In a final plummet-initiated test on a dry slab, a violent reaction, which appeared to have propagated over the entire slab surface, destroyed the plummet fixture and threw fragments as far as 48 meters.

  1. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  2. History vs. snapshot: how slab morphology relates to slab age evolution

    NASA Astrophysics Data System (ADS)

    Garel, Fanny; Goes, Saskia; Davies, Rhodri; Davies, Huw; Lallemand, Serge; Kramer, Stephan; Wilson, Cian

    2016-04-01

    The age of the subducting plate at the trench ("slab age") spans a wide range, from less than 10 Myr in Central and South America to 150 Myr in the Marianas. The morphology of subducting slab in the upper mantle is also very variable, from slabs stagnating at the top of the lower mantle to slabs penetrating well beyond 1000 km depth. People have looked rather unsucessfully for correlations between slab morphology and subduction parameters, including age at the trench, on the basic assumption that old (thick) plates are likely to generate a large slab pull force that would influence slab dip. Thermo-mechanical models reveal complex feedbacks between temperature, strain rate and rheology, and are able to reproduce the evolution of plate ages as a function of time, subducting plate velocity and trench velocity. In particular, we show how initially young subducting plates can rapidly age at the surface because of a slow sinking velocity. As a consequence, different slab morphologies can exhibit similar ages at the trench provided that subduction history is different. We illustrate how models provide insights into Earth subduction zones for which we have to consider their history (evolution of trench velocity, relative plate ages at time of initiation) in order to unravel their present-day geometry.

  3. Cracking assessment in concrete structures by distributed optical fiber

    NASA Astrophysics Data System (ADS)

    Rodríguez, Gerardo; Casas, Joan R.; Villaba, Sergi

    2015-03-01

    In this paper, a method to obtain crack initiation, location and width in concrete structures subjected to bending and instrumented with an optical backscattered reflectometer (OBR) system is proposed. Continuous strain data with high spatial resolution and accuracy are the main advantages of the OBR system. These characteristics make this structural health monitoring technique a useful tool in early damage detection in important structural problems. In the specific case of reinforced concrete structures, which exhibit cracks even in-service loading, the possibility to obtain strain data with high spatial resolution is a main issue. In this way, this information is of paramount importance concerning the durability and long performance and management of concrete structures. The proposed method is based on the results of a test up to failure carried out on a reinforced concrete slab. Using test data and different crack modeling criteria in concrete structures, simple nonlinear finite element models were elaborated to validate its use in the localization and appraisal of the crack width in the testing slab.

  4. Humectant use in the cathodic protection of reinforced concrete

    SciTech Connect

    Holcomb, G.R.; Covino, B.S. Jr.; Russell, J.H.; Bullard, S.J.; Cramer, S.D.; Collins, W.K.; Bennett, J.E.; H.M. Laylor

    2000-03-01

    The use of humectants to improve the thermal-sprayed zinc anode performance during the cathodic protection (CP) of reinforced concrete is examined. A humectant is a hygroscopic material. It is applied onto the surface of the zinc anode to keep the concrete-anode interface moist and a good conductor. The thermodynamics of humectants are discussed. Laboratory results are presented on the effects of using LiBr and LiNO{sub 3} as humectants in galvanic (GCP) and impressed current (ICCP) systems, in high and low relative humidities, and on new and previously electrochemically aged CP systems. LiNO{sub 3} and LiBr promoted more effective CP performance. Both improved the performance of aged slabs, suggesting that application of humectants onto existing CP systems would be of benefit. Microscopy showed that humectant-treated slabs develop the same cement-reaction zone-zinc anode structures as untreated slabs. Microscopy of LiBr-treated slabs revealed that the highest concentration of bromide was in the reaction zone. In GCP tests, LiBr was more effective than LiNO{sub 3}. In accelerated ICCP tests, LiNO{sub 3} was more effective than LiBr. It was surmised that bromide could be oxidized in the high-voltage accelerated ICCP tests. At the lower impressed currents of most installed ICCP systems, LiBr may perform as well as or better than LiNO{sub 3}.

  5. Humectant use in the cathodic protection of reinforced concrete

    SciTech Connect

    Holcomb, Gordon R.; Covino, Bernard S., Jr.; Russell, James H.; Bullard, Sophie J.; Cramer, Stephen D.; Collins, W.K.; Bennett, J.E.; Laylor, H.M.

    2000-11-01

    Use of humectants to improve the thermal-sprayed zinc anode performance during the cathodic protection (CP) of reinforced concrete was examined. A humectant is a hygroscopic material. It is applied onto the surface of the zinc anode to keep the concrete-anode interface moist and a good conductor. The thermodynamics of humectants are discussed. Laboratory results are presented on the effects of using lithium bromide (LiBr) and lithium nitrate (LiNO{sub 3}) as humectants in galvanic cathodic protection (GCP) and impressed current cathodic protection (ICCP) systems, in high and low relative humidities, and on new and previously electrochemically aged CP systems. LiNO{sub 3} and LiBr promoted more effective CP performance. Both improved the performance of aged slabs, suggesting that application of humectants onto existing CP systems would be of benefit. Microscopy showed that humectant-treated slabs develop the same cement-reaction zone, zinc anode structures as untreated slabs. Microscopy of LiBr-treated slabs revealed that the highest concentration of bromide was in the reaction zone. In GCP tests, LiBr was more effective than LiNO{sub 3}. In accelerated ICCP tests, LiNO{sub 3} was more effective than LiBr. It was surmised that bromide could be oxidized in the high-voltage accelerated ICCP tests. At the lower impressed currents of most installed ICCP systems, LiBr may perform as well as or better than LiNO{sub 3}.

  6. Capillary Break Beneath a Slab: Polyethylene Sheeting over Aggregate; Southwestern Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-07-01

    This document provides content for three areas of the Building America Solution Center. First, "Insulating Closed Crawlspace Walls and Band Joist Area" describes how to install rigid foam insulation on the interior perimeter walls and band joist area in closed crawlspace foundations of homes. Second, "Removing Construction Debris from Flexible Ducts" describes how to clean flexible ducts after construction or major renovation of a home to remove debris resulting from building materials, particularly airborne dust and particulates. Third, images, CAD drawings, and a case study illustrate right and wrong ways to apply polyethylene sheeting over aggregate. Similarly, a CAD drawing is included that illustrates the use of a concrete slab over polyethylene.

  7. Slab tears and intermediate-depth seismicity

    USGS Publications Warehouse

    Meighan, Hallie E.; Ten Brink, Uri; Pulliam, Jay

    2013-01-01

    Active tectonic regions where plate boundaries transition from subduction to strike slip can take several forms, such as triple junctions, acute, and obtuse corners. Well-documented slab tears that are associated with high rates of intermediate-depth seismicity are considered here: Gibraltar arc, the southern and northern ends of the Lesser Antilles arc, and the northern end of Tonga trench. Seismicity at each of these locations occurs, at times, in the form of swarms or clusters, and various authors have proposed that each marks an active locus of tear propagation. The swarms and clusters start at the top of the slab below the asthenospheric wedge and extend 30–60 km vertically downward within the slab. We propose that these swarms and clusters are generated by fluid-related embrittlement of mantle rocks. Focal mechanisms of these swarms generally fit the shear motion that is thought to be associated with the tearing process.

  8. How to measure slab-off and reverse slab prism in spectacle lenses.

    PubMed

    Christoff, Alexander; Guyton, David L

    2007-08-01

    It is well known that new spectacle lenses for the correction of anisometropia can induce diplopia with reading. The difference in the powers of the lenses induces a net prismatic effect that can cause double vision through off-center areas of the lenses. This is particularly bothersome when patients try to read, often noting vertical double vision in attempted downgaze, especially through multifocal add segments. This induced prismatic effect can be compensated at one level of downgaze by the use of slab-off or reverse slab prism. Typically the slab-off correction is ground into the stronger minus, or weaker plus lens. Reverse slab is ground into the weaker minus, or stronger plus, lens. Unfortunately, determining the amount of slab-off prism already incorporated into spectacle lenses is nonintuitive and inconvenient. This usually requires the use of a lens clock, which is not widely accessible to many ophthalmology practices. A simple technique, described in the past but poorly known, is illustrated here for quickly measuring slab-off and reverse slab prism prescription lenses in the clinic with a common manual lens meter.

  9. Using emissivity-corrected thermal maps to locate deep structural defects in concrete bridge decks

    SciTech Connect

    Del Grande, N.K.; Durbin, P.F.

    1995-04-05

    Dual-band infrared (DBIR) thermal imaging is a promising, non-contact, nondestructive evaluation tool to evaluate the amount of deteriorated concrete on asphalt-covered bridge decks. We conducted proof-of-principle demonstrations to characterize defects in concrete structures which could be detected with DBIR thermal imaging. We constructed two identical concrete slabs with synthetic delaminations, e.g., 1/8-in. thick styrofoam squares, implanted just above the 2-in.-deep steel reinforcement bars. We covered one of the slabs with a 2-in. layer of asphalt. We mounted the DBIR cameras on a tower platform, to simulate the optics needed to conduct bridge-deck inspections from a moving vehicle. We detected 4-in. implants embedded in concrete and 9-in. implants embedded in asphalt-covered concrete. The midday (above-ambient) and predawn (below-ambient) delamination-site temperatures correlated with the implant sizes. Using DBIR image ratios, we enhanced thermal-contrast and removed emissivity-noise, e.g., from concrete compositional variations and clutter. Using the LLNL/VIEW code, we removed the asphalt thermal-gradient mask, to depict the 4-in. deep, 9-in. square, concrete implant size. We plan to image bridge deck defects, from a moving vehicle, for accurate estimations of the amount of deteriorated concrete impairing the deck integrity. Potential longterm benefits are affordable and reliable rehabilitation for asphalt-covered decks.

  10. Using emissivity-corrected thermal maps to locate deep structural defects in concrete bridge decks

    NASA Astrophysics Data System (ADS)

    DelGrande, Nancy; Durbin, Philip F.

    1995-05-01

    Dual-band infrared (DBIR) thermal imaging is a promising, noncontact, nondestructive evaluation tool to evaluate the amount of deteriorated concrete on asphalt-covered bridge decks. We conducted proof-of-principle demonstrations to characterize defects in concrete structures which could be detected with DBIR thermal imaging. We constructed two identical concrete slabs with synthetic delaminations, e.g., 1.8-in. thick styrofoam squares, implanted just above the 2-in. deep steel reinforcement bars. We covered one of the slabs with a 2-in. layer of asphalt. We mounted the DBIR cameras on a tower platform, to simulate the optics needed to conduct bridge-deck inspections from a moving vehicle. We detected 4-in. implants embedded in concrete and 9-in. implants embedded in asphalt-cevered concrete. The midday (above ambient) and predawn (below ambient) delamination-site temperatures correlated with the implant sizes. Using DBIR image ratios, we enhanced thermal-constrast and removed emissivity-noise, e.g., from concrete compositional variations and clutter. Using the LLNL/VIEW code, we removed the asphalt thermal-gradient mask to depict the 4-in. deep, 9- in. square, concrete implant site. We plan to image bridge deck defects from a moving vehicle for accurate estimations of the amount of deteriorated concrete impairing the deck integrity. Potential longterm benefits are affordable and reliable rehabilitation for asphalt-covered decks.

  11. Crushed cement concrete substitution for construction aggregates; a materials flow analysis

    USGS Publications Warehouse

    Kelly, Thomas

    1998-01-01

    An analysis of the substitution of crushed cement concrete for natural construction aggregates is performed by using a materials flow diagram that tracks all material flows into and out of the cement concrete portion of the products made with cement concrete: highways, roads, and buildings. Crushed cement concrete is only one of the materials flowing into these products, and the amount of crushed cement concrete substituted influences the amount of other materials in the flow. Factors such as availability and transportation costs, as well as physical properties, that can affect stability and finishability, influence whether crushed cement concrete or construction aggregates should be used or predominate for a particular end use.

  12. Evaluation of innovative concepts relating to prestressed concrete pavements, volume 5

    NASA Astrophysics Data System (ADS)

    Ciolko, A. T.; Nussbaum, P. J.

    1983-06-01

    This report presents an evaluation of three methods for post-tensioning concrete pavements without embedded steel tendons. All methods permit joint movement while maintaining slab pre-stress at the pavement joint. One method consists of thin-wall hydraulically presurized bellows as stressing elements. The second uses a pnuematically charged rubber bladder. The third method makes use of stacked Belleville springs.

  13. Slab flattening, dynamic topography and normal faulting in the Cordillera Blanca region (northern Peru)

    NASA Astrophysics Data System (ADS)

    Margirier, A.; Robert, X.; Laurence, A.; Gautheron, C.; Bernet, M.; Simon-Labric, T.; Hall, S. R.

    2015-12-01

    Processes driving surface uplift in the Andes are still debated and the role of subduction processes as slab flattening on surface uplift and relief building in the Andes is not well understood. Some of the highest Andean summits, the Cordillera Blanca (6768 m) and the Cordillera Negra (5187 m), are located above a present flat subduction zone (3-15°S), in northern Peru. In this area, both the geometry and timing of the flattening of the slab are well constrained (Gutscher et al., 1999; Rosenbaum et al., 2005). This region is thus a perfect target to explore the effect of slab flattening on the Andean topography and uplift. We obtained new apatite (U-Th)/He and fission-track ages from three vertical profiles located in the Cordillera Blanca and the Cordillera Negra. Time-temperature paths obtained from inverse modeling of the thermochronological data indicates a Middle Miocene cooling for both Cordillera Negra profiles. We interpret it as regional exhumation in the Cordillera Occidental starting in Middle Miocene, synchronous with the onset of the subduction of the Nazca ridge (Rosenbaum et al., 2005). We propose that the Nazca ridge subduction at 15 Ma and onset of slab flattening in northern Peru drove regional positive dynamic topography and thus enhanced exhumation in the Cordillera Occidental. This study provides new evidence of the impact subduction processes and associated dynamic topography on paleogeography and surface uplift in the Andes.

  14. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one. PMID:11838241

  15. A Simple Vertical Slab Gel Electrophoresis Apparatus.

    ERIC Educational Resources Information Center

    Carter, J. B.; And Others

    1983-01-01

    Describes an inexpensive, easily constructed, and safe vertical slab gel kit used routinely for sodium dodecyl sulphate-polyacrylamide gel electrophoresis research and student experiments. Five kits are run from a single transformer. Because toxic solutions are used, students are given plastic gloves and closely supervised during laboratory…

  16. Slab Ice Characterization on Martian Richardson Crater

    NASA Astrophysics Data System (ADS)

    Schmidt, F.; Andrieu, F.; Douté, S.

    2016-09-01

    We compare two models: granular and slab in order to study the ice properties in the Richardson crater using spectroscopy. Thanks to radiative transfer modeling, we determine compactness of CO2 ice, grain size, and abundances of water ice and dust.

  17. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  18. A two- and three-dimensional numerical modelling benchmark of slab detachment

    NASA Astrophysics Data System (ADS)

    Thieulot, Cedric; Glerum, Anne; Hillebrand, Bram; Schmalholz, Stefan; Spakman, Wim; Torsvik, Trond

    2014-05-01

    Subduction is likely to be the most studied phenomenon in Numerical Geodynamics. Over the past 20 years, hundreds of publications have focused on its various aspects (influence of the rheology and thermal state of the plates, slab-mantle coupling, roll-back, mantle wedge evolution, buoyancy changes due to phase change, ...) and results were obtained with a variety of codes. Slab detachment has recently received some attention (e.g. Duretz, 2012) but remains a field worth exploring due to its profound influence on dynamic topography, mantle flow and subsequent stress state of the plates, and is believed to have occured in the Zagros, Carpathians and beneath eastern Anatolia, to name only a few regions. Following the work of Schmalholz (2011), we propose a two- and three-dimensional numerical benchmark of slab detachment. The geometry is simple: a power-law T-shaped plate including an already subducted slab overlies the mantle whose viscosity is either linear or power-law. Boundary conditions are free-slip on the top and the bottom of the domain, and no-slip on the sides. When the system evolves in time, the slab stretches out vertically and shows buoyancy-driven necking, until it finally detaches. The benchmark is subdivided into several sub-experiments with gradually increase in complexity (free surface, coupling of the rheology with temperature, ...). An array of objective measurements is recorded throughout the simulation such as the width of the necked slab over time and the exact time of detachment. The experiments will be run in two-dimensions and repeated in three-dimensional, the latter case being designed so as to allow both poloidal and toroidal flow. We show results obtained with a multitude of Finite Element and Finite Difference codes, using either compositional fields, level sets or tracers to track the compositions. A good agreement is found for most of the measurements in the two-dimensional case, and preliminary three-dimensional measurements will

  19. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1992-01-01

    Feasibility of using concrete for lunar base construction was discussed recently without relevant data for the effects of vacuum on concrete. Our experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the Moon are provided in this paper, along with specific conclusions from the existing database.

  20. Lunar concrete for construction

    NASA Technical Reports Server (NTRS)

    Cullingford, Hatice S.; Keller, M. Dean

    1988-01-01

    Feasibility of using concrete for lunar-base construction has been discussed recently without relevant data for the effects of vacuum on concrete. Experimental studies performed earlier at Los Alamos have shown that concrete is stable in vacuum with no deterioration of its quality as measured by the compressive strength. Various considerations of using concrete successfully on the moon are provided in this paper along with specific conclusions from the existing data base.

  1. Mantle Response to a Slab Gap and Three-dimensional Slab Interaction in Central America

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; Fischer, K. M.

    2013-12-01

    Seismically constrained global slab geometries suggest the Middle America-South American subduction system contains a gap on the order of 500 km separating the east-dipping Cocos and Nazca slabs at depth (Gudmundsson and Sambridge, 1998; Syracuse and Abers, 2006; Hayes et al., 2012). The location of the gap correlates with tectonic features impinging on the Pacific side of the Middle America trench, in particular the incoming young buoyant oceanic lithosphere and oceanic ridges associated with the Galapagos hotspot and Cocos-Nazca spreading center (Protti et al., 1994; Mann et al., 2007; Muller et al., 2008). Moreover, geochemical studies focusing on the arc chemistry in the Central American volcanic front argue for a slab window of some kind in this region (Johnston and Thorkelson, 1997; Abratis and Worner, 2001; Hoernle et al., 2008). We use high-resolution, three-dimensional (3D) geodynamic modeling of the Middle America-South American subduction system to investigate the role of the incoming young oceanic lithosphere and a gap between the Cocos and Nazca slabs in controlling mantle flow velocity and geochemical signatures beneath Central America. The geodynamic models are geographically referenced with the geometry and thermal structure for the overriding and subducting plates based on geological and geophysical observables and constructed with the multi-plate subduction generator code, SlabGenerator (Jadamec and Billen, 2010; Jadamec et al., 2012; Jadamec and Billen, 2012). The viscous flow simulations are solved using the mantle convection finite-element code, CitcomCU (Zhong, 2006), modified by Jadamec and Billen (2010) to take into account the experimentally derived flow law for olivine and allow for variable 3D plate interface geometries and magnitudes of inter-plate coupling. The 3D numerical models indicate the gap between the Cocos and Nazca slabs serves as a conduit for Pacific-Cocos mantle to pass into the Caribbean, with toroidal flow around the

  2. Concrete radiation shielding

    SciTech Connect

    Kaplan, M.F.

    1989-01-01

    This book presents an introduction to the aspects of nuclear physics relevant to concrete technology. It covers a variety of materials that may be used to produce concrete for radiation shielding. Details of the physical, mechanical, and nuclear properties of these concretes are provided, and their applications in nuclear waste storage, shelter design, and reactor shielding are described. Radiation shield design considerations are addressed.

  3. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work. PMID:26164853

  4. Organic compounds in concrete from demolition works.

    PubMed

    Van Praagh, M; Modin, H; Trygg, J

    2015-11-01

    This study aims to verify the effect of physically removing the outer surface of contaminated concrete on total contents and on potential mobility of pollutants by means of leaching tests. Reclaimed concrete from 3 industrial sites in Sweden were included: A tar impregnated military storage, a military tar track-depot, as well as concrete constructions used for disposing of pesticide production surplus and residues. Solid materials and leachates from batch and column leaching tests were analysed for metals, Cl, F, SO4, DOC and contents of suspected organic compounds (polycyclic aromatic hydrocarbons, PAH, and pesticides/substances for pesticide production such as phenoxy acids, chlorophenols and chlorocresols, respectively). In case of PAH contaminated concrete, results indicate that removing 1 or 5 mm of the surface lead to total concentrations below the Swedish guidelines for recycling of aggregates and soil in groundwork constructions. 3 out of 4 concrete samples contaminated with pesticides fulfilled Swedish guidelines for contaminated soil. Results from batch and column leaching tests indicated, however, that concentrations above environmental quality standards for certain PAH and phenoxy acids, respectively, might occur at site when the crushed concrete is recycled in groundwork constructions. As leaching tests engaged in the study deviated from leaching test standards with a limited number of samples, the potential impact of the leaching tests' equipment on measured PAH and pesticide leachate concentrations has to be evaluated in future work.

  5. Three-Dimensional Dynamic Analyses of Track-Embankment-Ground System Subjected to High Speed Train Loads

    PubMed Central

    2014-01-01

    A three-dimensional finite element model was developed to investigate dynamic response of track-embankment-ground system subjected to moving loads caused by high speed trains. The track-embankment-ground systems such as the sleepers, the ballast, the embankment, and the ground are represented by 8-noded solid elements. The infinite elements are used to represent the infinite boundary condition to absorb vibration waves induced by the passing of train load at the boundary. The loads were applied on the rails directly to simulate the real moving loads of trains. The effects of train speed on dynamic response of the system are considered. The effect of material parameters, especially the modulus changes of ballast and embankment, is taken into account to demonstrate the effectiveness of strengthening the ballast, embankment, and ground for mitigating system vibration in detail. The numerical results show that the model is reliable for predicting the amplitude of vibrations produced in the track-embankment-ground system by high-speed trains. Stiffening of fill under the embankment can reduce the vibration level, on the other hand, it can be realized by installing a concrete slab under the embankment. The influence of axle load on the vibration of the system is obviously lower than that of train speed. PMID:24723838

  6. Dual-band infrared imaging for concrete bridge deck inspection

    SciTech Connect

    Durbin, P.; Del Grande, N.

    1994-02-01

    Dual-band infrared (DBIR) imaging methods and unique image-correction algorithms used successfully for underground and obscured object imaging and detection (of buried mines, archaeological structures, geothermal aquifers and airframe defects) are adapted for inspection of concrete highways and bridge decks to provide early warnings of subsurface defects. To this end, we prepared small concrete test slabs with defects (embedded plastic layers). We used selective DBIR (3--5 {mu}m and 8--12 {mu}m) image ratios to depict the defect sites and remove the effects of surface clutter. We distinguish true temperature-difference signals (at surrogate delamination sites) from emissivity noise (at sites with oil stains, sand, gravel, metal parts and roughness differences) towards improved concrete bridge deck inspections.

  7. Slab edge insulating form system and methods

    DOEpatents

    Lee, Brain E.; Barsun, Stephan K.; Bourne, Richard C.; Hoeschele, Marc A.; Springer, David A.

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  8. Inherited weaknesses control deformation in the flat slab region of Central Argentina

    NASA Astrophysics Data System (ADS)

    Stevens, A.; Carrapa, B.; Larrovere, M.; Aciar, R. H.

    2015-12-01

    The Sierras Pampeanas region of west-central Argentina has long been considered a geologic type-area for flat-slab induced thick-skinned deformation. Frictional coupling between the horizontal subducting plate and South American lithosphere from ~12 Ma to the present provides an obvious causal mechanism for the basement block uplifts that characterize this region. New low temperature thermochronometry data show basement rocks from the central Sierras Pampeanas (~ longitude 66 ̊ W) including Sierras Cadena de Paiman, Velasco and Mazan retain a cooling history of Paleozoic - Mesozoic tectonics events. Results from this study indicate that less than 2 km of basement has been exhumed since at least the Mesozoic. These trends recorded by both apatite fission track (AFT) and apatite helium (AHe) thermochronometry suggest that recent Mio-Pliocene thick-skinned deformation associated with flat-slab subduction follow inherited zones of weakness from Paleozoic terrane sutures and shear zones and Mesozoic rifting. If a Cenozoic foreland basin exisited in this region, its thickness was minimal and was controlled by paleotopography. Pre-Cenozoic cooling ages in these ranges that now reach as high as 4 km imply significant exhumation of basement rocks before the advent of flat slab subduction in the mid-late Miocene. It also suggests that thick-skinned deformation associated with flat slab subduction may at least be facilitated by inherited crustal-scale weaknesses. At the most, pre-existing zones of weakness may be required in regions of thick-skinned deformation. Although flat-slab subduction plays an important role in the exhumation of the Sierras Pampeanas, it is likely not the sole mechanism responsible for thick-skinned deformation in this region. This insight sheds light on the interpretation of modern and ancient regions of thick-skinned deformation in Cordilleran systems.

  9. Subduction zone earthquakes and stress in slabs

    NASA Technical Reports Server (NTRS)

    Vassiliou, M. S.; Hager, B. H.

    1988-01-01

    Simple viscous fluid models of subducting slabs are used to explain observations of the distribution of earthquakes as a function of depth and the orientation of stress axes of deep (greater than 300 km) and intermediate (70-300 km) earthquakes. Results suggest the following features in the distribution of earthquakes with depth: (1) an exponential decrease from shallow depths down to 250 to 300 km, (2) a minimum near 250 to 300 km, and (3) a deep peak below 300 km. Many shallow subducting slabs show only the first characteristic, while deeper extending regions tend to show all three features, with the deep peak varying in position and intensity. These data, combined with the results on the stress orientations of various-depth earthquakes, are consistent with the existence of a barrier of some sort at 670-km depth and a uniform viscosity mantle above this barrier.

  10. Radiation characteristics of tapered slab waveguides

    NASA Astrophysics Data System (ADS)

    Scheggi, A. M.; Falciai, R.; Brenci, M.

    1983-01-01

    The application of ray optics to the evaluation of near- and far-field radiation patterns of a slab waveguide taper is discussed, noting the importance of calculating the power that can be extracted from the core at the end of the waveguide related to the near-field configurations. A multimode, tapered slab waveguide with a homogeneous core and unlimited cladding is considered. It is pointed out that as the ray proceeds on its zigzag path down the taper, its propagation angle increases from reflection to reflection and eventually surpasses the limit angle of total reflection. To obtain an overall idea of the range of ray angles accepted at the smaller end of the taper, the Williamson (1952) method is used; this makes it possible, through a simple geometrical construction, to trace the ray in a linear cone. It is found that the ray-tracing technique can constitute an adequate tool in the analysis and design of tapered multimode waveguides.

  11. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  12. The effect of subducting slabs in global shear wave tomography

    NASA Astrophysics Data System (ADS)

    Lu, Chang; Grand, Stephen P.

    2016-05-01

    Subducting slabs create strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversions using a global synthetic shear wave traveltime data set for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method was applied to predict the traveltime anomalies produced by the 3-D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw traveltime anomalies to check how well the slabs can be imaged in global tomography without the effect of earthquake mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 88 per cent. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation largely removes slab signal and significantly degrades the imaging of subducting slabs-potentially reducing the recovery of mass anomalies in slab regions to only 41 per cent. We tested two source relocation procedures-an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitudes of artefact structures in the lower mantle caused by the incorrect imaging of slabs (up to ˜0.5 per cent S velocity anomalies) are comparable to some large-scale lower-mantle heterogeneities seen in global tomography studies. Based on our inversion tests, we suggest including a-priori subducting slabs in the

  13. Implementing slab solar water heating system

    NASA Astrophysics Data System (ADS)

    Raveendran, S. K.; Shen, C. Q.

    2015-08-01

    Water heating contributes a significant part of energy consumption in typical household. One of the most employed technologies today that helps in reducing the energy consumption of water heating would be conventional solar water heating system. However, this system is expensive and less affordable by most family. The main objective of this project is to design and implement an alternative type of solar water heating system that utilize only passive solar energy which is known as slab solar water heating system. Slab solar water heating system is a system that heat up cold water using the solar radiance from the sun. The unique part of this system is that it does not require any form of electricity in order to operate. Solar radiance is converted into heat energy through convection method and cold water will be heated up by using conduction method [1]. The design of this system is governed by the criteria of low implementation cost and energy saving. Selection of material in the construction of a slab solar water heating system is important as it will directly affect the efficiency and performance of the system. A prototype has been built to realize the idea and it had been proven that this system was able to provide sufficient hot water supply for typical household usage at any given time.

  14. Convection in Slab and Spheroidal Geometries

    NASA Technical Reports Server (NTRS)

    Porter, David H.; Woodward, Paul R.; Jacobs, Michael L.

    2000-01-01

    Three-dimensional numerical simulations of compressible turbulent thermally driven convection, in both slab and spheroidal geometries, are reviewed and analyzed in terms of velocity spectra and mixing-length theory. The same ideal gas model is used in both geometries, and resulting flows are compared. The piecewise-parabolic method (PPM), with either thermal conductivity or photospheric boundary conditions, is used to solve the fluid equations of motion. Fluid motions in both geometries exhibit a Kolmogorov-like k(sup -5/3) range in their velocity spectra. The longest wavelength modes are energetically dominant in both geometries, typically leading to one convection cell dominating the flow. In spheroidal geometry, a dipolar flow dominates the largest scale convective motions. Downflows are intensely turbulent and up drafts are relatively laminar in both geometries. In slab geometry, correlations between temperature and velocity fluctuations, which lead to the enthalpy flux, are fairly independent of depth. In spheroidal geometry this same correlation increases linearly with radius over the inner 70 percent by radius, in which the local pressure scale heights are a sizable fraction of the radius. The effects from the impenetrable boundary conditions in the slab geometry models are confused with the effects from non-local convection. In spheroidal geometry nonlocal effects, due to coherent plumes, are seen as far as several pressure scale heights from the lower boundary and are clearly distinguishable from boundary effects.

  15. Fast Waves in Smooth Coronal Slab

    NASA Astrophysics Data System (ADS)

    Lopin, I.; Nagorny, I.

    2015-03-01

    This work investigates the effect of transverse density structuring in coronal slab-like waveguides on the properties of fast waves. We generalized previous results obtained for the exponential and Epstein profiles to the case of an arbitrary transverse density distribution. The criteria are given to determine the possible (trapped or leaky) wave regime, depending on the type of density profile function. In particular, there are plasma slabs with transverse density structuring that support pure trapped fast waves for all wavelengths. Their phase speed is nearly equal to the external Alfvén speed for the typical parameters of coronal loops. Our findings are obtained on the basis of Kneser’s oscillation theorem. To confirm the results, we analytically solved the wave equation evaluated at the cutoff point and the original wave equation for particular cases of transverse density distribution. We also used the WKB method and obtained approximate solutions of the wave equation at the cutoff point for an arbitrary transverse density profile. The analytic results were supplemented by numerical solutions of the obtained dispersion relations. The observed high-quality quasi-periodic pulsations of flaring loops are interpreted in terms of the trapped fundamental fast-sausage mode in a slab-like coronal waveguide.

  16. A two- and three-dimensional numerical comparison study of slab detachment

    NASA Astrophysics Data System (ADS)

    Thieulot, Cedric; Buiter, Susanne; Brune, Sascha; Davies, Rhodri; Duretz, Thibault; Gerbault, Muriel; Glerum, Anne; Quinteros, Javier; Schmalholz, Stefan; Spakman, Wim

    2015-04-01

    Subduction is likely to be the most studied phenomenon in Numerical Geodynamics. Over the past 20 years, hundreds of publications have focused on its various aspects (influence of the rheology and thermal state of the plates, slab-mantle coupling, roll-back, mantle wedge evolution, buoyancy changes due to phase change, ...) and results were obtained with a variety of codes. Slab detachment has recently received some attention but remains a field worth exploring due to its profound influence on dynamic topography, mantle flow and subsequent stress state of the plates, and is believed to have occured in the Zagros, Carpathians and beneath eastern Anatolia, to name only a few regions. Following the work of Schmalholz (2011), we propose a two- and three-dimensional numerical benchmark of slab detachment. The geometry is simple: a power-law T-shaped plate including an already subducted slab overlies the mantle whose viscosity is either linear or power-law. Boundary conditions are free-slip on the top and the bottom of the domain, and no-slip on the sides. When the system evolves in time, the slab stretches out vertically and shows buoyancy-driven necking, until it finally detaches. The benchmark is subdivided into several sub-experiments with gradually increase in complexity (free surface, coupling of the rheology with temperature, ...). An array of objective measurements is recorded throughout the simulation such as the width of the necked slab over time and the exact time of detachment. The experiments will be run in two-dimensions and repeated in three-dimensional, the latter case being designed so as to allow both poloidal and toroidal flow. We show results obtained with a multitude of Finite Element and Finite Difference codes, using either compositional fields, level sets or tracers to track the compositions. A good agreement is found for most of the measurements in the two-dimensional case, and preliminary three-dimensional measurements will be shown. Schmalholz

  17. Lunar concrete: Prospects and challenges

    NASA Astrophysics Data System (ADS)

    Khitab, Anwar; Anwar, Waqas; Mehmood, Imran; Kazmi, Syed Minhaj Saleem; Munir, Muhammad Junaid

    2016-02-01

    The possibility of using concrete as a construction material at the Moon surface is considered. Dissimilarities between the Earth and the Moon and their possible effects on concrete are also emphasized. Availability of constituent materials for concrete at lunar surface is addressed. An emphasis is given to two types of materials, namely, hydraulic concrete and sulfur concrete. Hydraulic concrete necessitates the use of water and sulfur concrete makes use of molten sulfur in lieu of cement and water.

  18. Impact Resistance Behaviour of Light Weight Rice Husk Concrete with Bamboo Reinforcement

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Beddu, Salmia; Syamsir, Agusril; Sigar Ating, Joshua; Liyana Mohd Kamal, Nur; Nasharuddin Mustapha, Kamal; Thiruchelvam, Sivadass; Usman, Fathoni; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of lightweight rice husk concrete (LWRHC) with varied bamboo reinforcement content for the concrete slab of 300mm × 300mm size reinforced with varied slab thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.236 kg drop at 0.65 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the amount of bamboo reinforcement and slab thickness. A linear relationship has been established between first and ultimate crack resistance against bamboo diameters and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the bamboo reinforcement diameter and slab thickness. 5% RH content exhibit better first and ultimate crack resistance up to 1.80 times and up to 1.72 times respectively against 10% RH content.

  19. Viscous Dissipation and Criticality of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ -h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  20. Viscous Dissipation and Criticality of Subducting Slabs

    NASA Astrophysics Data System (ADS)

    Riedel, Mike; Karato, Shun; Yuen, Dave

    2016-04-01

    Rheology of subducting lithosphere appears to be complicated. In the shallow part, deformation is largely accomodated by brittle failure, whereas at greater depth, at higher confining pressures, ductile creep is expected to control slab strength. The amount of viscous dissipation ΔQ during subduction at greater depth, as constrained by experimental rock mechanics, can be estimated on the basis of a simple bending moment equation [1,2] 2ɛ˙0(z) ∫ +h/2 2 M (z) = h ṡ ‑h/2 4μ(y,z)y dy , (1) for a complex multi-phase rheology in the mantle transition zone, including the effects of a metastable phase transition as well as the pressure, temperature, grain-size and stress dependency of the relevant creep mechanisms; μ is here the effective viscosity and ɛ˙0(z) is a (reference) strain rate. Numerical analysis shows that the maximum bending moment, Mcrit, that can be sustained by a slab is of the order of 1019 Nm per m according to Mcrit˜=σp ∗h2/4, where σp is the Peierl's stress limit of slab materials and h is the slab thickness. Near Mcrit, the amount of viscous dissipation grows strongly as a consequence of a lattice instability of mantle minerals (dislocation glide in olivine), suggesting that thermo-mechanical instabilities become prone to occur at places where a critical shear-heating rate is exceeded, see figure. This implies that the lithosphere behaves in such cases like a perfectly plastic solid [3]. Recently available detailed data related to deep seismicity [4,5] seems to provide support to our conclusion. It shows, e.g., that thermal shear instabilities, and not transformational faulting, is likely the dominating mechanism for deep-focus earthquakes at the bottom of the transition zone, in accordance with this suggested "deep criticality" model. These new findings are therefore briefly outlined and possible implications are discussed. References [1] Riedel, M. R., Karato, S., Yuen, D. A. Criticality of Subducting Slabs. University of Minnesota

  1. Tectonic controls on earthquake size distribution and seismicity rate: slab buoyancy and slab bending

    NASA Astrophysics Data System (ADS)

    Nishikawa, T.; Ide, S.

    2014-12-01

    There are clear variations in maximum earthquake magnitude among Earth's subduction zones. These variations have been studied extensively and attributed to differences in tectonic properties in subduction zones, such as relative plate velocity and subducting plate age [Ruff and Kanamori, 1980]. In addition to maximum earthquake magnitude, the seismicity of medium to large earthquakes also differs among subduction zones, such as the b-value (i.e., the slope of the earthquake size distribution) and the frequency of seismic events. However, the casual relationship between the seismicity of medium to large earthquakes and subduction zone tectonics has been unclear. Here we divide Earth's subduction zones into over 100 study regions following Ide [2013] and estimate b-values and the background seismicity rate—the frequency of seismic events excluding aftershocks—for subduction zones worldwide using the maximum likelihood method [Utsu, 1965; Aki, 1965] and the epidemic type aftershock sequence (ETAS) model [Ogata, 1988]. We demonstrate that the b-value varies as a function of subducting plate age and trench depth, and that the background seismicity rate is related to the degree of slab bending at the trench. Large earthquakes tend to occur relatively frequently (lower b-values) in shallower subduction zones with younger slabs, and more earthquakes occur in subduction zones with deeper trench and steeper dip angle. These results suggest that slab buoyancy, which depends on subducting plate age, controls the earthquake size distribution, and that intra-slab faults due to slab bending, which increase with the steepness of the slab dip angle, have influence on the frequency of seismic events, because they produce heterogeneity in plate coupling and efficiently inject fluid to elevate pore fluid pressure on the plate interface. This study reveals tectonic factors that control earthquake size distribution and seismicity rate, and these relationships between seismicity and

  2. A Two-Dimensional Photonic Crystal Slab Mirror with Silicon on Insulator for Wavelength 1.3 μm

    NASA Astrophysics Data System (ADS)

    Tang, Hai-Xia; Zuo, Yu-Hua; Yu, Jin-Zhong; Wang, Qi-Ming

    2006-10-01

    A concrete two-dimensional photonic crystal slab with triangular lattice used as a mirror for the light at wavelength 1.3 μm with a silicon-on-insulator (SOI) substrate is designed by the three-dimensional plane wave expansion method. For TE-like modes, the bandgap in the Γ-K direction is from 1087 nm to 1559 nm. The central wavelength in the bandgap is about 1.3 μm, hence the incident light at wavelength 1.3 μm will be strongly reflected. Experimentally, such a photonic crystal slab is fabricated on an SOI substrate by the combination of EBL and ICP etching. The measurement of its transmission characteristics shows the bandgap edge in a longer wavelength is about 1540 nm. The little discrepancy between the experimental data and the theoretical values is mainly due to the size discrepancy of the fabricated air holes.

  3. Friction evaluation of concrete paver blocks for airport pavement applications

    NASA Technical Reports Server (NTRS)

    Yager, Thomas J.

    1992-01-01

    The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.

  4. Fly ash sulfur concrete

    SciTech Connect

    Head, W.J.; Liao, M.

    1981-05-01

    Two waste products, flyash and elemental sulfur, can be combined with a modifying agent to produce a potentially useful construction material, flyash sulfur concrete. Manufacturing processes and characteristics of this concrete are described. Compared with a conventional crushed stone aggregate, flyash sulfur concrete is a viable highway pavement base course material. The material's strength characteristics are analyzed. (1 diagram, 4 graphs, 2 photos, 9 references, 5 tables)

  5. Roadmap 2030: The U.S. Concrete Industry Technology Roadmap

    SciTech Connect

    none,

    2002-12-01

    Roadmap 2030: The U.S. Concrete Industry Technology Roadmap tracks the eight goals published in the American Concrete Institute Strategic Development Council's Vision 2030: A Vision for the U.S. Concrete Industry. Roadmap 2030 highlights existing state-of-the-art technologies and emerging scientific advances that promise high potential for innovation, and predicts future technological needs. It defines enabling research opportunities and proposes areas where governmental-industrial-academic partnerships can accelerate the pace of development. Roadmap 2030 is a living document designed to continually address technical, institutional, and market changes.

  6. Epoxy injection repairs to concrete in 225-B Building

    SciTech Connect

    Vollert, F.R.

    1996-09-19

    In 1982, the damaged anchor areas (67 total) in the Operating Gallery and cold manipulator shop ceiling reinforced concrete slabs were epoxy injection repaired by Construction Technology Laboratories (CTL), Portland Cement Association. The through depth vertical cracks (10 total) in the ceiling slabs in the galleries and manipulator shops were sealed and structurally repaired using epoxy injection procedures. The details of the epoxy reRair are reported. Sonic nondestructive (NDT) testing before and after the epoxy injection repairs were made by CTL to confirm that the repairs are structurally effective. CTL recommended to expedite the installation of lateral bracing for the manipulator monorail in order to avoid re-darnage to the repaired anchor areas.

  7. Analysis of concrete targets with different kinds of reinforcements subjected to blast loading

    NASA Astrophysics Data System (ADS)

    Oña, M.; Morales-Alonso, G.; Gálvez, F.; Sánchez-Gálvez, V.; Cendón, D.

    2016-05-01

    In this paper we describe an experimental campaign carried out to study and analyse the behaviour of concrete slabs when subjected to blast loading. Four different types of concrete have been tested: normal strength concrete with steel rebar, normal strength concrete with steel rebar retrofitted with Kevlar coating, steel fibre reinforced concrete (SFRC) and polypropylene fibre reinforced concrete (PFRC). The major asset of the experimental setup used is that it allows to subject up to four specimens to the same blast load what, besides being cost effective, makes possible to have a measure of the experimental scatter. The results of SFRC and PFRC concretes have been analysed by using a previously developed material model for the numerical simulation of concrete elements subjected to blast. The experimental campaign and preliminary results of this numerical analysis show how the high strain rates, in spite of improving the mechanical properties of these kinds of fibre reinforced concretes, lead to an embrittlement of the material, which may be dangerous from the point of view of the structural behaviour.

  8. Epoxy coating and other protective measures for reinforceing steel embedded in concrete subjected to a chloride laden environment

    NASA Astrophysics Data System (ADS)

    Kondratova, Irina

    1999-11-01

    Corrosion of steel reinforcement is the most significant factor in the deterioration of reinforced concrete structures. Corrosion of reinforcing steel in marine structures and bridges is initiated mainly by chloride contamination. When steel starts to corrode, the cross section of the reinforcing bar becomes smaller, also the volume of corrosion products exerts a pressure on the concrete resulting in spalling of the concrete cover and directly exposing the steel to the corrosive agents, thus accelerating the corrosion process and further reducing the load carrying capacity of the concrete member. Although there are corrosion protective measures available to the concrete producer such as use of protective coatings on steel surface and use of corrosion inhibitors, a very limited amount of information exists on the comparative behavior of these common corrosion protection strategies in cracked concrete, especially in cracked high performance concrete (HPC). The relative effectiveness of different protection methods for steel reinforcement such as the use of new types of epoxy-coated reinforcement, galvanized reinforcement, and corrosion inhibitors was investigated in concrete with water-to-cement ratios of 0.60 and 0.40 and 0.25. Concrete slabs were uncracked and had preformed transverse cracks. The effect of water-to-cement ratio and crack widths on the rate of corrosion in precracked reinforced concrete slabs also was investigated. Testing was performed in the laboratory and in the field. It was found that cracked HPC concrete alone or with addition of corrosion inhibitors cannot provide sufficient corrosion protection for uncoated steel reinforcement in a chloride-laden environment and that additional protection to the reinforcing steel in the form of epoxy coating is necessary to provide long-term service life of the concrete structure.

  9. 24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. REAR ELEVATION, HULETT ORE UNLOADERS. TRACKS CARRYING THE FRONT END AND REAR LEGS OF THE HULETT UNLOADERS ARE LAID ON THE DOCK AND REAR WALLS, RESPECTIVELY; BOTH WALLS ARE MADE OF REINFORCED CONCRETE SUPPORTED ON CONCRETE PILES. - Pennsylvania Railway Ore Dock, Lake Erie at Whiskey Island, approximately 1.5 miles west of Public Square, Cleveland, Cuyahoga County, OH

  10. Effect of Subducting Slabs in Global Shear Wave Tomography

    NASA Astrophysics Data System (ADS)

    Lu, C.; Grand, S. P.

    2015-12-01

    Subducting slabs represent strong short wavelength seismic anomalies in the upper mantle where much of Earth's seismicity is located. As such, they have the potential to bias longer wavelength seismic tomography models. To evaluate the effect of subducting slabs in global tomography, we performed a series of inversion tests using a global synthetic shear wave travel time dataset for a theoretical slab model based on predicted thermal anomalies within slabs. The spectral element method (SEM) was applied to predict the travel time anomalies produced by the 3D slab model for paths corresponding to our current data used in actual tomography models. Inversion tests have been conducted first using the raw travel time anomalies to check how well the slabs can be imaged in global tomography without the effect of mislocation. Our results indicate that most of the slabs can be identified in the inversion result but with smoothed and reduced amplitude. The recovery of the total mass anomaly in slab regions is about 84%. We then performed another inversion test to investigate the effect of mislocation caused by subducting slabs. We found that source mislocation significantly degrades the imaging of subducting slabs - potentially reducimg the recovery of mass anomalies in slab regions to only 39%. We tested two source relocation procedures - an iterative relocation inversion and joint relocation inversion. Both methods partially recover the true source locations and improve the inversion results, but the joint inversion method worked significantly better than the iterative method. In all of our inversion tests, the amplitude of artifact structures in the lower mantle caused by the incorrect imaging of slabs (up to ~0.5% S velocity anomalies) are comparable to large scale lower mantle heterogeneities seen in global tomography studies.

  11. Mechanisms of deep slab hydration: numerical modeling and implications

    NASA Astrophysics Data System (ADS)

    Faccenda, M.; Gerya, T.; Burlini, L.

    2009-12-01

    Water is a fundamental component of the Earth, affecting its internal structures and dynamics. Sea-water enters the subduction factory via slab hydration that occurs mainly at the trench and is subsequently released in the upper mantle wedge because of slab warming and de-hydration. In the last decades, the scientific research has focused mainly on geophysical processes related to the de-hydration of the slab. However, not much is known on how and to which extent the subducting oceanic plate get hydrated. In order to investigate hydration of the slab, we performed 2D numerical models of a spontaneously bending oceanic plate using I2ELVIS code that account for visco-elasto-plastic rheologies and where fluid flow is regulated by Darci’s law. At the outer rise, bending-related slab faulting occurs, providing a pathway for water percolation in the slab. Faults generally deep trenchward, but antithetic faults are also common. Downward deep fluid flow establishes during brittle extensional deformation at the trench outer rise producing strong variation of the tectonic pressure and causing sub-hydrostatic or even negative pressure gradients along bending related normal faults through which fluids are pumped. The results of the numerical experiment indicate that water can be transported down and stored in the bending area via serpentinization of the normal faults. Deep slab hydration has important implications for the rheological structure, seismicity and seismic anisotropy of the upper mantle because: 1) more water can be stored in the slab producing more enhanced weakening of the mantle wedge, 2) intermediate and deep intra-slab earthquakes can be triggered by slab de-hydration, 3) DHMS phases, able to bring fluids down to the transition zone and lower mantle, could form in the cold core of the slab, 4) the slab could acquire a strong anisotropic fabric responsible for the anisotropic patterns observed at subduction zones.

  12. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, Joseph W.; Carrano, Anthony V.; Davidson, James C.; Koo, Jackson C.

    1998-01-01

    A hybrid slab-microchannel gel electrophoresis system. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate.

  13. Photonic crystal slab quantum cascade detector

    NASA Astrophysics Data System (ADS)

    Reininger, Peter; Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-01

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  14. Numerical quadrature for slab geometry transport algorithms

    SciTech Connect

    Hennart, J.P.; Valle, E. del

    1995-12-31

    In recent papers, a generalized nodal finite element formalism has been presented for virtually all known linear finite difference approximations to the discrete ordinates equations in slab geometry. For a particular angular directions {mu}, the neutron flux {Phi} is approximated by a piecewise function Oh, which over each space interval can be polynomial or quasipolynomial. Here we shall restrict ourselves to the polynomial case. Over each space interval, {Phi} is a polynomial of degree k, interpolating parameters given by in the continuous and discontinuous cases, respectively. The angular flux at the left and right ends and the k`th Legendre moment of {Phi} over the cell considered are represented as.

  15. Automated inspection of hot steel slabs

    DOEpatents

    Martin, Ronald J.

    1985-01-01

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes.

  16. Automated inspection of hot steel slabs

    DOEpatents

    Martin, R.J.

    1985-12-24

    The disclosure relates to a real time digital image enhancement system for performing the image enhancement segmentation processing required for a real time automated system for detecting and classifying surface imperfections in hot steel slabs. The system provides for simultaneous execution of edge detection processing and intensity threshold processing in parallel on the same image data produced by a sensor device such as a scanning camera. The results of each process are utilized to validate the results of the other process and a resulting image is generated that contains only corresponding segmentation that is produced by both processes. 5 figs.

  17. Photonic crystal slab quantum cascade detector

    SciTech Connect

    Reininger, Peter Schwarz, Benedikt; Harrer, Andreas; Zederbauer, Tobias; Detz, Hermann; Maxwell Andrews, Aaron; Gansch, Roman; Schrenk, Werner; Strasser, Gottfried

    2013-12-09

    In this Letter, we demonstrate the design, fabrication, and characterization of a photonic crystal slab quantum cascade detector (PCS-QCD). By employing a specifically designed resonant cavity, the performance of the photodetector is improved in three distinct ways. The PCS makes the QCD sensitive to surface normal incident light. It resonantly enhances the photon lifetime inside the active zone, thus increasing the photocurrent significantly. And, the construction form of the device inherently decreases the noise. Finally, we compare the characteristics of the PCS-QCD to a PCS - quantum well infrared photodetector and outline the advantages for certain fields of applications.

  18. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  19. MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MULTIPLE SETS OF TWIN SLABS ON THE RUN OUT. THE RUN OUT INCLUDES THE TRAVELING TORCH WHICH CUTS SLABS TO DESIRED LENGTH, AN IDENTIFICATION SYSTEM TO INDICATE HEAT NUMBER AND TRACE IDENTITY OF EVERY SLAB, AND A DEBURRING DEVICE TO SMOOTH SLABS. AT LEFT OF ROLLS IS THE DUMMY BAR. DUMMY BAR IS INSERTED UP THROUGH CONTAINMENT SECTION INTO MOLD PRIOR TO START OF CAST. WHEN STEEL IS INTRODUCED INTO MOLD IT CONNECTS WITH BAR AS CAST BEGINS, AT RUN OUT DUMMY BAR DISCONNECTS AND IS STORED - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  20. Thermally induced birefringence in Nd:YAG slab lasers

    SciTech Connect

    Ostermeyer, Martin; Mudge, Damien; Veitch, Peter J.; Munch, Jesper

    2006-07-20

    We study thermally induced birefringence in crystalline Nd:YAG zigzag slab lasers and the associated depolarization losses. The optimum crystallographic orientation of the zigzag slab within the Nd:YAG boule and photoelastic effects in crystalline Nd:YAG slabs are briefly discussed. The depolarization is evaluated using the temperature and stress distributions, calculated using a finite element model, for realistically pumped and cooled slabs of finite dimensions. Jones matrices are then used to calculate the depolarization of the zigzag laser mode. We compare the predictions with measurements of depolarization, and suggest useful criteria for the design of the gain media for such lasers.

  1. Pyrometer method for measuring slab temperature in a reheat furnace

    SciTech Connect

    Rudzki, E.M.; Jackson, R.W.; Martocci, A.P.

    1984-02-21

    A method and apparatus to measure the temperature of a slab in a reheat furnace with increased accuracy using either a single or dual pyrometer system through use of a multiplicity of temperature correction functions involving temperatures of slab and wall, distance between a pyrometer and the slab at which it is aimed, a ratio of air and fuel supplying the furnace heat and radiation interferences. The functions are chosen by a micro-processor in the system dependent on temperature differentials, emissivity setting of the pyrometer, target distance between pyrometer and slab, and air and fuel flow rates existing and fluctuating in the system.

  2. Sub-slab vs. Near-slab Soil Vapor Profiles at a Chlorinated Solvent Site (1)

    EPA Science Inventory

    A critical issue in assessing the vapor intrusion pathway is the distribution and migration of VOCs from the subsurface source to the near surface environment. Of particular importance is the influence of a slab. Therefore, EPA/ORD is funding a research program with the primary...

  3. Influence of weak layer heterogeneity and slab properties on slab tensile failure propensity and avalanche release area

    NASA Astrophysics Data System (ADS)

    Gaume, J.; Chambon, G.; Eckert, N.; Naaim, M.; Schweizer, J.

    2015-04-01

    Dry-snow slab avalanches are generally caused by a sequence of fracture processes, including failure initiation in a weak snow layer underlying a cohesive slab followed by crack propagation within the weak layer (WL) and tensile fracture through the slab. During past decades, theoretical and experimental work has gradually increased our knowledge of the fracture process in snow. However, our limited understanding of crack propagation and fracture arrest propensity prevents the evaluation of avalanche release sizes and thus impedes hazard assessment. To address this issue, slab tensile failure propensity is examined using a mechanically based statistical model of the slab-WL system based on the finite element method. This model accounts for WL heterogeneity, stress redistribution by slab elasticity and possible tensile failure of the slab. Two types of avalanche release are distinguished in the simulations: (1) full-slope release if the heterogeneity is not sufficient to stop crack propagation and trigger a tensile failure within the slab; (2) partial-slope release if fracture arrest and slab tensile failure occur due to the WL heterogeneity. The probability of these two release types is presented as a function of the characteristics of WL heterogeneity and the slab. One of the main outcomes is that, for realistic values of the parameters, the tensile failure propensity is mainly influenced by slab properties. Hard and thick snow slabs are more prone to wide-scale crack propagation and thus lead to larger avalanches (full-slope release). In this case, the avalanche size is mainly influenced by topographical and morphological features such as rocks, trees, slope curvature and the spatial variability of the snow depth as often claimed in the literature.

  4. Plate deformation at depth under northern California: Slab gap or stretched slab?

    USGS Publications Warehouse

    ten Brink, U.S.; Shimizu, N.; Molzer, P.C.

    1999-01-01

    Plate kinematic interpretations for northern California predict a gap in the underlying subducted slab caused by the northward migration of the Pacific-North America-Juan de Fuca triple junction. However, large-scale decompression melting and asthenospheric upwelling to the base of the overlying plate within the postulated gap are not supported by geophysical and geochemical observations. We suggest a model for the interaction between the three plates which is compatible with the observations. In this 'slab stretch' model the Juan de Fuca plate under coastal northern California deforms by stretching and thinning to fill the geometrical gap formed in the wake of the northward migrating Mendocino triple junction. The stretching is in response to boundary forces acting on the plate. The thinning results in an elevated geothermal gradient, which may be roughly equivalent to a 4 Ma oceanic lithosphere, still much cooler than that inferred by the slab gap model. We show that reequilibration of this geothermal gradient under 20-30 km thick overlying plate can explain the minor Neogene volcanic activity, its chemical composition, and the heat flow. In contrast to northern California, geochemical and geophysical consequences of a 'true' slab gap can be observed in the California Inner Continental Borderland offshore Los Angeles, where local asthenospheric upwelling probably took place during the Miocene as a result of horizontal extension and rotation of the overlying plate. The elevated heat flow in central California can be explained by thermal reequilibration of the stalled Monterey microplate under the Coast Ranges, rather than by a slab gap or viscous shear heating in the mantle.

  5. Impact-echo and impulse response stress-wave methods: advantages and limitations for the evaluation of highway pavement concrete overlays

    NASA Astrophysics Data System (ADS)

    Davis, Allen G.; Hertlein, Bernhard H.; Lim, Malcolm K.; Michols, Kevin

    1996-11-01

    Concrete overlays with thickness ranging between 25 mm and 300 mm are frequently used to restore and strengthen existing concrete pavements and bridge approach slabs. Differences in the strengths and elastic moduli of the overlay and the substrate, as well as the cleanliness and roughness of the interface between the two layers affect the medium and long term performance of these structures. Debonding at the interface, excessive tensile stresses at the base of the overlay and delamination within the upper layer are commonly occurring problems. If these defects are not detected and corrected in god time, the deterioration of the overlay under the action of heavy axle loads is rapid and becomes expensive to fix. Nondestructive methods are required to identify the budding problems of the type described above, by surveying overlay systems quickly and economically. Stress wave methods for flaw detection in concrete structures and foundations have shown great promise in recent years. The Impact-Echo test has been applied successfully to many diverse concrete material problems. The Impulse Response test is proven in the detection of flaws in deep concrete foundations, as well as the location of poor support conditions beneath and delaminations within concrete slabs on grade. This paper presents a case study where both methods were used to examine a stepped concrete overlay on approach slabs to bridge decks on a heavily trafficked interstate highway. The two test methods are briefly described, and a comparison is drawn emphasizing the advantages and disadvantages of both techniques.

  6. ORNL Soils Remediation and Slabs Removal - The Bridge from D and D to Redevelopment - 12342

    SciTech Connect

    Travaglini, Mike; Halsey, Pat; Conger, Malinda; Schneider, Ken

    2012-07-01

    The landscape of the Oak Ridge National Laboratory (ORNL) has dramatically changed over the past 2 years with demolition of aging facilities in the Central Campus. Removal of these infrastructure legacies was possible due to an influx of DOE-Environmental Management funding through the American Recovery and Reinvestment Act of 2009 (ARRA). Facility D and D traditionally removes everything down to the building slab, and the Soils and Sediments Program is responsible for slabs, below-grade footers and sub-grade structures, abandoned waste utilities, and soils contaminated above certain risk levels that must be removed before the site can be considered for redevelopment. DOE-EM has used a combination of base and ARRA funding to facilitate the clean-up process in ORNL's 2000 Area. Demolition of 13 buildings in the area was funded by the ARRA. Characterization of the remaining slabs, underground pipelines and soils was funded by DOE-EM base funding. Additional ARRA funding was provided for the removal of the slabs, pipelines and contaminated soils. Removal work is in progress and consists of removing and disposing of approximately 7,650 cubic meters (m{sup 3}) of concrete, 2,000 m{sup 3} of debris, and 400 m{sup 3} of contaminated soil. Immediately adjacent to the 2000 Area is the Oak Ridge Science and Technology Park and the modernized ORNL western campus. The Science and Technology Park is the only private sector business and technology park located within the footprint of a national laboratory. The completion of this work will not only greatly reduce the risk to the ORNL campus occupants but also allow this much sought after space to be available for redevelopment and site reuse efforts at ORNL. Demolition of aging facilities enabled by injection of ARRA funding has significantly altered the landscape at ORNL while reducing risk to laboratory personnel and operations and providing valuable central campus land parcels for redevelopment to expand and enhance the

  7. MODELNG RADON ENTRY INTO FLORIDA HOUSES WITH CONCRETE SLABS AND CONCRETE-BLOCK STEM WALLS, FLORIDA RADON RESEARCH PROGRAM

    EPA Science Inventory

    The report discusses results of modeling radon entry into a typical Florida house whose interior is slightly depressurized. he model predicts that the total radon entry rate is relatively low unless the soil or backfill permeability or radium content is high. ost of the factors c...

  8. Seeing lumps, sticks, and slabs in silhouettes.

    PubMed

    Willats, J

    1992-01-01

    Marr has suggested that we see three-dimensional (3-D) shapes in silhouettes because we make the implicit assumption that the viewed shapes are generalized cones. One difficulty with this suggestion is that it cannot deal with silhouettes of irregular 3-D shapes like clouds and trees; another is that it only applies to generalized cones with a relatively high length:width ratio. An alternative explanation, suggested by evidence from cross-cultural studies of language, from children's early speech, and from children's early drawings, is that the scene primitives actually used by humans are not generalized cones but 'lumps', 'sticks', and 'slabs', that is, primitives whose only shape properties are their relative extensions in 3-D space. In this paper it is proposed that the implicit assumption we make in interpreting silhouettes is that the extendedness of the silhouette reflects the extendedness of the viewed shape, so that a round region is seen as a lump and a long region is seen as a stick; and that such views seem "natural" because they are the views most likely to be encountered in normal environments. This account is more general than that of Marr because it explains how we interpret silhouettes of all kinds of 3-D shapes, even very irregular ones. Unlike Marr's account, it also deals with flat shapes like slabs and discs, and shows why it is difficult to see these shapes in silhouettes.

  9. Subduction in eastern Indonesia: how many slabs?

    NASA Astrophysics Data System (ADS)

    Milsom, John

    2001-08-01

    Seismicity associated with arc-continent collision in eastern Indonesia testifies to past north-directed subduction of Indian Ocean lithosphere beneath the Banda Sea. The complex patterns of deep seismicity have been cited as evidence for simultaneous south-directed subduction at the northern margin of the sea but this interpretation has not been universally accepted. Recently available recomputations of hypocentre locations have provided increased resolution of eastern Indonesian Wadati-Benioff Zones (WBZs). Shallow to intermediate depth seismic activity around the Banda Arc appears to support models involving subduction of two separate and distinct lithospheric slabs, but between 150 and 500 km the WBZ has a continuous 'shoehorn' shape. This shape confirms the presence of subducted lithosphere beneath Seram, in the north, as well as beneath Timor, in the south, is incompatible with independent subduction of two unconnected plates and implies rapid eastwards retreat of the subduction trace across a now vanished northern spur of the Indian Ocean. This 'roll-back' is unlikely to have been driven by local gravitational forces alone and may have been sustained by injection behind the Banda slab of asthenospheric material escaping from the Molucca Sea arc-arc collision.

  10. Radiative transfer model for contaminated rough slabs.

    PubMed

    Andrieu, François; Douté, Sylvain; Schmidt, Frédéric; Schmitt, Bernard

    2015-11-01

    We present a semi-analytical model to simulate the bidirectional reflectance distribution function (BRDF) of a rough slab layer containing impurities. This model has been optimized for fast computation in order to analyze massive hyperspectral data by a Bayesian approach. We designed it for planetary surface ice studies but it could be used for other purposes. It estimates the bidirectional reflectance of a rough slab of material containing inclusions, overlaying an optically thick media (semi-infinite media or stratified media, for instance granular material). The inclusions are assumed to be close to spherical and constituted of any type of material other than the ice matrix. It can be any other type of ice, mineral, or even bubbles defined by their optical constants. We assume a low roughness and we consider the geometrical optics conditions. This model is thus applicable for inclusions larger than the considered wavelength. The scattering on the inclusions is assumed to be isotropic. This model has a fast computation implementation and thus is suitable for high-resolution hyperspectral data analysis. PMID:26560577

  11. Antifouling marine concrete

    NASA Astrophysics Data System (ADS)

    Mathews, C. W.

    1980-03-01

    Various toxic agents were investigated for their ability to prevent the attachment and growth of marine fouling organisms on concrete. Three methods of incorporating antifoulants into concrete were also studied. Porous aggregate was impregnated with creosote and bis-(tri-n-butyltin) oxide (TBTO) and then used in making the concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, Calif. and Key Biscayne, Fla. Efficacy of toxicants was determined by periodically weighing the specimens and the fouling organisms that became attached. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture demonstrated the best antifouling performance of those specimens exposed for more than 1 year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties but have been exposed for a shorter time. Also, the strength of concrete prepared using the toxicants was acceptable and the corrosion rate of reinforcing rods did not increase. The concentration of organotin compounds was essentially unchanged in a concrete specimen exposed 6-1/2 years in seawater.

  12. Philippine Sea and East Asian plate tectonics since 52 Ma constrained by new subducted slab reconstruction methods

    NASA Astrophysics Data System (ADS)

    Wu, Jonny; Suppe, John; Lu, Renqi; Kanda, Ravi

    2016-06-01

    We reconstructed Philippine Sea and East Asian plate tectonics since 52 Ma from 28 slabs mapped in 3-D from global tomography, with a subducted area of ~25% of present-day global oceanic lithosphere. Slab constraints include subducted parts of existing Pacific, Indian, and Philippine Sea oceans, plus wholly subducted proto-South China Sea and newly discovered "East Asian Sea." Mapped slabs were unfolded and restored to the Earth surface using three methodologies and input to globally consistent plate reconstructions. Important constraints include the following: (1) the Ryukyu slab is ~1000 km N-S, too short to account for ~20° Philippine Sea northward motion from paleolatitudes; (2) the Marianas-Pacific subduction zone was at its present location (±200 km) since 48 ± 10 Ma based on a >1000 km deep slab wall; (3) the 8000 × 2500 km East Asian Sea existed between the Pacific and Indian Oceans at 52 Ma based on lower mantle flat slabs; (4) the Caroline back-arc basin moved with the Pacific, based on the overlapping, coeval Caroline hot spot track. These new constraints allow two classes of Philippine Sea plate models, which we compared to paleomagnetic and geologic data. Our preferred model involves Philippine Sea nucleation above the Manus plume (0°/150°E) near the Pacific-East Asian Sea plate boundary. Large Philippine Sea westward motion and post-40 Ma maximum 80° clockwise rotation accompanied late Eocene-Oligocene collision with the Caroline/Pacific plate. The Philippine Sea moved northward post-25 Ma over the northern East Asian Sea, forming a northern Philippine Sea arc that collided with the SW Japan-Ryukyu margin in the Miocene (~20-14 Ma).

  13. Nuclear track records in the Abee enstatite chondrite

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1983-01-01

    A determination of preatmospheric mass and a delineation of cosmic ray exposure history are made, through the study of nuclear track records in 14 samples taken from different locations of an Abee enstatite chondrite cut slab. Measured track densities in different samples range from 10,000 to 1,000,000/sq cm. Excess tracks of fissiogenic origin were found near the grain edges and across cleavage planes in eight enstatite grains out of the 300 analyzed. The track data rule out preirradiation of any of the analyzed samples with shielding of less than a few tens of cm. The isotrack density contours on the plane of the slab imply an asymmetric ablation of the Abee chondrite during its atmospheric transit. A sphere of about 30 cm radius approximates the preatmospheric shape and size of the Abee meteorite, which underwent a 70% mass loss during ablation.

  14. Concrete sample point: 304 Concretion Facility

    SciTech Connect

    Rollison, M.D.

    1995-03-10

    This report contains information concerning the analysis of concretes for volatile organic compounds. Included are the raw data for these analysis and the quality control data, the standards data, and all of the accompanying chains-of-custody records and requests for special analysis.

  15. Scattering of electromagnetic waves from a turbulent plasma slab.

    NASA Technical Reports Server (NTRS)

    Liu, C. H.

    1972-01-01

    Scattering of electromagnetic waves from a turbulent plasma slab is studied. Part of the effects of the multiple scattering is taken into account. The reflection coefficient is found to be increased and its variation with respect to the slab thickness is smoothed out by the random scattering.

  16. 42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    42. PRESSING A SLAB OF CLAY ONTO A MOSAIC MOLD. THE MOLD, WHICH HAS A RAISED DESIGN, LEAVES AND OUTLINE IN THE SLAB, THE PIECES THUS DEFINED, ARE THEN CUT APART TO BE FIRED SEPARATELY AND REASSEMBLED. - Moravian Pottery & Tile Works, Southwest side of State Route 313 (Swamp Road), Northwest of East Court Street, Doylestown, Bucks County, PA

  17. Advanced parameter retrievals for metamaterial slabs using an inhomogeneous model

    NASA Astrophysics Data System (ADS)

    Li Hou, Ling; Chin, Jessie Yao; Yang, Xin Mi; Lin, Xian Qi; Liu, Ruopeng; Xu, Fu Yong; Cui, Tie Jun

    2008-03-01

    The S-parameter retrieval has proved to be an efficient approach to obtain electromagnetic parameters of metamaterials from reflection and transmission coefficients, where a slab of metamaterial with finite thickness is regarded as a homogeneous medium slab with the same thickness [D. R. Smith and S. Schultz, Phys. Rev. B 65, 195104 (2002)]. However, metamaterial structures composed of subwavelength unit cells are different from homogeneous materials, and the conventional retrieval method is, under certain circumstances, not accurate enough. In this paper, we propose an advanced parameter retrieval method for metamaterial slabs using an inhomogeneous model. Due to the coupling effects of unit cells in a metamaterial slab, the roles of edge and inner cells in the slab are different. Hence, the corresponding equivalent medium parameters are different, which results in the inhomogeneous property of the metamaterial slab. We propose the retrievals of medium parameters for edge and inner cells from S parameters by considering two- and three-cell metamaterial slabs, respectively. Then we set up an inhomogeneous three-layer model for arbitrary metamaterial slabs, which is much more accurate than the conventional homogeneous model. Numerical simulations verify the above conclusions.

  18. Thermal-sprayed zinc anodes for cathodic protection of steel-reinforced concrete bridges

    SciTech Connect

    Bullard, Sophie J.; Covino, Bernard S., Jr.; Cramer, Stephen D.; McGill, Galen E.

    1996-01-01

    Thermal-sprayed zinc anodes are being used in Oregon in impressed current cathodic protection (ICCP) systems for reinforced concrete bridges. The U.S. Department of Energy, Albany Research Center, is collaborating with the Oregon Department of Transportation (ODOT) to evaluate the long-term performance and service life of these anodes. Laboratory studies were conducted on concrete slabs coated with 0.5 mm (20 mil) thick, thermal-sprayed zinc anodes. The slabs were electrochemically aged at an accelerated rate using an anode current density of 0.032 A/m2 (3mA/ft2). Half the slabs were preheated before thermal-spraying with zinc; the other half were unheated. Electrochemical aging resulted in the formation at the zinc-concrete interface of a thin, low pH zone (relative to cement paste) consisting primarily of ZnO and Zn(OH)2, and in a second zone of calcium and zinc aluminates and silicates formed by secondary mineralization. Both zones contained elevated concentrations of sulfate and chloride ions. The original bond strength of the zinc coating decreased due to the loss of mechanical bond to the concrete with the initial passage of electrical charge (aging). Additional charge led to an increase in bond strength to a maximum as the result of secondary mineralization of zinc dissolution products with the cement paste. Further charge led to a decrease in bond strength and ultimately coating disbondment as the interfacial reaction zones continued to thicken. This occurred at an effective service life of 27 years at the 0.0022 A/m2 (0.2 mA/ft2) current density typically used by ODOT in ICCP systems for coastal bridges. Zinc coating failure under tensile stress was primarily cohesive within the thickening reaction zones at the zinc-concrete interface. There was no difference between the bond strength of zinc coatings on preheated and unheated concrete surfaces after long service times.

  19. A Numerical Analysis of the Resistance and Stiffness of the Timber and Concrete Composite Beam

    NASA Astrophysics Data System (ADS)

    Szumigała, Ewa; Szumigała, Maciej; Polus, Łukasz

    2015-03-01

    The article presents the results of a numerical analysis of the load capacity and stiffness of the composite timber and concrete beam. Timber and concrete structures are relatively new, they have not been thoroughly tested and they are rarely used because of technological constraints. One of the obstacles to using them is difficulty with finding a method which would allow successful cooperation between concrete and timber, which has been proposed by the authors of the present article. The modern idea of sustainable construction design requires the use of new more environmentally-friendly solutions. Wood as an ecological material is easily accessible, less energy-consuming, and under certain conditions more corrosion-resistant than steel. The analysis presented in the article showed that cooperation between a wooden beam and a concrete slab on profiled steel sheeting is possible. The analysed composite beam has a greater load capacity and stiffness than the wooden beam.

  20. Flat slab deformation caused by interplate suction force

    NASA Astrophysics Data System (ADS)

    Ma, Yiran; Clayton, Robert W.

    2015-09-01

    We image the structure at the southern end of the Peruvian flat subduction zone, using receiver function and surface wave methods. The Nazca slab subducts to ~100 km depth and then remains flat for ~300 km distance before it resumes the dipping subduction. The flat slab closely follows the topography of the continental Moho above, indicating a strong suction force between the slab and the overriding plate. A high-velocity mantle wedge exists above the initial half of the flat slab, and the velocity resumes to normal values before the slab steepens again, indicating the resumption of dehydration and ecologitization. Two prominent midcrust structures are revealed in the 70 km thick crust under the Central Andes: molten rocks beneath the Western Cordillera and the underthrusting Brazilian Shield beneath the Eastern Cordillera.

  1. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.L.; SenGupta, A.K.; Yachmenev, V.

    1996-12-31

    ELECTROSORB Electrokinetic Extraction Technology, developed by ISOTRON Corp., offers a cost-effective approach to treating contaminated concrete. Heavy metals/radionuclides trapped in concrete can be extracted using this process if they are chemically solubilized; solubilizers used are citric acid alone and a mixture of citric and nitric acids. A DC electric field is applied across the contaminated concrete to electrokinetically transport the solubilized contaminants from the concrete pores to a collector on the concrete surface. The collector is an extraction pad laid on the surface. The pad provides confinement for a planar electrode and solubilizer solution; it is operated under a vacuum to hold the pad against the concrete surface. Operation requires little attendance, reducing the workers` health hazards. The process incorporates a mechanism for recycling the solubilizer solution. A field demonstration of the process took place in Building 21 of DOE`s Mound facility in Miamisburg, OH, over 12 days in June 1996. The thorium species present in this building`s concrete floors included ThO{sub 2} and thorium oxalate. The nitric acid was found to facilitate Th extraction.

  2. Performance of Waterless Concrete

    NASA Technical Reports Server (NTRS)

    Toutanji, Houssam; Evans, Steve; Grugel, Richard N.

    2010-01-01

    The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.

  3. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as the their capability to prevent or inhibit the attachment of marine fouling organisms to concrete. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6 1/2 years in seawater.

  4. Antifouling marine concrete

    SciTech Connect

    Vind, H P; Mathews, C W

    1980-07-01

    Various toxic agents were evaluated as to their capability to prevent or inhibit the attachment of marine fouling organisms to concrete for OTEC plants. Creosote and bis-(tri-n-butyltin) oxide (TBTO) were impregnated into porous aggregate which was used in making concrete. Cuprous oxide, triphenyltin hydroxide (TPTH), and 2-2-bis-(p-methoxyphenyl)-1,1,1-trichloroethane (methoxychlor) were used as dry additives. Two proprietary formulations were applied as coatings on untreated concrete. Test specimens were exposed at Port Hueneme, CA, and Key Biscayne, FL. The efficacy of toxicants was determined by periodically weighing the adhering fouling organisms. Concrete prepared with an aggregate impregnated with a TBTO/creosote mixture has demonstrated the best antifouling performance of those specimens exposed for more than one year. The two proprietary coatings and the concrete containing methoxychlor, TPTH, and cuprous oxide as dry additives have exhibited good antifouling properties, but they have been exposed for a shorter time. The strength of concrete containing the toxicants was acceptable, and the toxicants did not increase the corrosion rate of reinforcing rods. Organotin compounds were essentially unchanged in concrete specimens exposed 6-1/2 years in seawater.

  5. Biodecontamination of concrete

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-12-31

    A novel technology for biologically decontaminating concrete is being jointly developed by scientists at the Idaho National Engineering Laboratory (INEL) and British Nuclear Fuels plc (BNFL). The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of concrete. Most radionuclide contamination of concrete is fixed in the outer few mm of the concrete surface. By capturing and controlling this natural process, a biological method of removing the surface of concrete to depths up to several mm is being developed. Three types of bacteria are known to be important in MID of concrete: nitrifying bacteria that produce nitric acid, sulfur oxidizing bacteria that produce sulfuric acid, and certain heterotrophic bacteria that produce organic acids. An investigation of natural environments demonstrated with scanning electron microscopy the presence of bacteria on concrete surfaces of a variety of structures, such as bridges and dams, where corrosion is evident. Enumeration of sulfur oxidizing and nitrifying bacteria revealed their presence and activity on structures to varying degrees in different environments. Under ideal conditions, Thiobacillus thiooxidans, a sulfur oxidizing bacteria, attached to and colonized the surface of concrete specimens. Over 1mm depth of material from a 10 cm x 10 cm square surface was removed in 68 days in the Thiobacillus treated specimen compared to a sterile control. Laboratory and field demonstrations are currently being conducted using experimental chambers designed to be mounted directly to concrete surfaces where radionuclide contamination exists. Data is being obtained in order to determine actual rates of surface removal and limitations to the system. This information will be used to develop a full scale decontamination technology.

  6. Evaluation of Concrete Consolidation: DSS-35 Antenna Reinforced Concrete Pedestal, Canberra Deep Space Communications Complex, Australia

    NASA Astrophysics Data System (ADS)

    Saldua, B. P.; Dodge, E. C.; Kolf, P. R.; Olson, C. A.

    2016-02-01

    Antenna structures for the Deep Space Network track spacecraft that are millions of miles away. Therefore, these structures have tight specifications for translation, rotation, and differential settlement. This article presents several nondestructive test methods that were used to evaluate, locate, and repair imperfections in the reinforced concrete pedestal that supports the DSS-35 antenna structure. These methods include: (1) impulse response (IR), (2) ultrasonic shear-wave tomography (MIRA), and (3) ground-penetrating radar (GPR).

  7. Lithosphere-Mantle Interactions Associated with Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Gerault, M.; Becker, T. W.; Husson, L.; Humphreys, E.

    2014-12-01

    Episodes of flat-slab subduction along the western margin of the Americas may have lead to the formation of intra-continental basins and seas, as well as mountain belts and continental plateaux. Here, we explore some of the consequences of a flat slab morphology, linking dynamic topography and stress patterns in continents to slab and mantle dynamics. Using a 2-D cylindrical code, we develop general models and apply them to the North and South America plates. The results are primarily controlled by the coupling along the slab-continent interface (due to geometry and viscosity), the viscosity of the mantle wedge, and the buoyancy of the subducted lithosphere. All models predict broad subsidence, large deviatoric stresses, and horizontal compression above the tip of the flat slab and the deep slab hinge. In models where the slab lays horizontally for hundreds of kilometers, overriding plate compression focuses on both ends of the flat segment, where normal-dip subduction exerts a direct downward pull. In between, a broad low-stress region gets uplifted proportionally to the amount of coupling between the slab and the continent. Anomalously buoyant seafloor enhances this effect but is not required. The downward bending of the flat slab extremities causes its upper part to undergo extension and the lower part to compress. These results have potential for explaining the existence of relatively undeformed, uplifted regions surrounded by mountain belts, such as in the western U.S. and parts of the Andes. Adequately modeling topography and stress in the unusual setting of southwestern Mexico requires a low-viscosity subduction interface and mantle wedge. Our results are only partially controlled by the buoyancy of the subducting plate, suggesting that the viscosity and the morphology of the slab are important, and that the often-used low resolution and "Stokeslet" models may be missing substantial effects.

  8. Hybrid slab-microchannel gel electrophoresis system

    DOEpatents

    Balch, J.W.; Carrano, A.V.; Davidson, J.C.; Koo, J.C.

    1998-05-05

    A hybrid slab-microchannel gel electrophoresis system is described. The hybrid system permits the fabrication of isolated microchannels for biomolecule separations without imposing the constraint of a totally sealed system. The hybrid system is reusable and ultimately much simpler and less costly to manufacture than a closed channel plate system. The hybrid system incorporates a microslab portion of the separation medium above the microchannels, thus at least substantially reducing the possibility of non-uniform field distribution and breakdown due to uncontrollable leakage. A microslab of the sieving matrix is built into the system by using plastic spacer materials and is used to uniformly couple the top plate with the bottom microchannel plate. 4 figs.

  9. All-polymer photonic crystal slab sensor.

    PubMed

    Hermannsson, Pétur G; Sørensen, Kristian T; Vannahme, Christoph; Smith, Cameron L C; Klein, Jan J; Russew, Maria-Melanie; Grützner, Gabi; Kristensen, Anders

    2015-06-29

    An all-polymer photonic crystal slab sensor is presented, and shown to exhibit narrow resonant reflection with a FWHM of less than 1 nm and a sensitivity of 31 nm/RIU when sensing media with refractive indices around that of water. This results in a detection limit of 4.5 × 10(-6) RIU when measured in conjunction with a spectrometer of 12 pm/pixel resolution. The device is a two-layer structure, composed of a low refractive index polymer with a periodically modulated surface height, covered with a smooth upper-surface high refractive index inorganic-organic hybrid polymer modified with ZrO2based nanoparticles. Furthermore, it is fabricated using inexpensive vacuum-less techniques involving only UV nanoreplication and polymer spin-casting, and is thus well suited for single-use biological and refractive index sensing applications. PMID:26191664

  10. Laser applications in machining slab materials

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoping

    1990-10-01

    Since the invention of the laser back in 1960, laser technology has been extensively applied in many fields of science and technology. These has been a history of nearly two decades of using lasers as an energy source in machining materials, such as cutting, welding, ruling and boring, among other operations. With the development of flexible automation in production, the advantages of laser machining have has grown more and more obvious. The combination of laser technology and computer science further promotes the enhancement and upgrading of laser machining and related equipment. At present, many countries are building high quality laser equipment for machining slab materials, such as the Coherent and Spectra Physics corporations in the United States, the Trumpf Corporation in West Germany, the Amada Corporation in Japan, and the Bystronic Corporation in Switzerland, among other companies.

  11. Electrokenitic Corrosion Treatment of Concrete

    NASA Technical Reports Server (NTRS)

    Cardenas, Henry E (Inventor)

    2015-01-01

    A method and apparatus for strengthening cementitious concrete by placing a nanoparticle carrier liquid in contact with a first surface of a concrete section and inducing a current across the concrete section at sufficient magnitude and for sufficient time that nanoparticles in the nanoparticle carrier liquid migrate through a significant depth of the concrete section.

  12. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    SciTech Connect

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M.; Hurd, Randy C.; Truscott, Tadd T.; Guthrie, W. Spencer

    2014-02-18

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  13. Numerical simulations and experimental measurements of steel and ice impacts on concrete for acoustic interrogation of delaminations in bridge decks

    NASA Astrophysics Data System (ADS)

    Mazzeo, Brian A.; Patil, Anjali N.; Klis, Jeffrey M.; Hurd, Randy C.; Truscott, Tadd T.; Guthrie, W. Spencer

    2014-02-01

    Delaminations in bridge decks typically result from corrosion of the top mat of reinforcing steel, which leads to a localized separation of the concrete cover from the underlying concrete. Because delaminations cannot be detected using visual inspection, rapid, large-area interrogation methods are desired to characterize bridge decks without disruption to traffic, without the subjectivity inherent in existing methods, and with increased inspector safety. To this end, disposable impactors such as water droplets or ice chips can be dropped using automatic dispensers onto concrete surfaces to excite mechanical vibrations while acoustic responses can be recorded using air-coupled microphones. In this work, numerical simulations are used to characterize the flexural response of a model concrete bridge deck subject to both steel and ice impactors, and the results are compared with similar experiments performed in the laboratory on a partially delaminated concrete bridge deck slab. The simulations offer greater understanding of the kinetics of impacts and the responses of materials.

  14. Corrosion-resistant sulfur concretes

    NASA Astrophysics Data System (ADS)

    McBee, W. C.; Sullivan, T. A.; Jong, B. W.

    1983-04-01

    Sulfur concretes have been developed by the Bureau of Mines as construction materials with physical and mechanical properties that suit them for use in acid and salt corrosive environments where conventional concretes fail. Mixture design methods were established for preparing sulfur concretes using different types of aggregates and recently developed mixed-modified sulfur cements. Bench-scale testing of the sulfur concretes has shown their potential value. Corrosion resistance, strength, and durability of sulfur concrete are superior to those of conventional materials. Field in situ evaluation tests of the sulfur concretes as replacement for conventional concrete materials are in progress in corrosive areas of 24 commercial chemical, fertilizer, and metallurgical plants.

  15. Locomotive Crane placing concrete on trestle at coal dock (Pier ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Locomotive Crane placing concrete on trestle at coal dock (Pier 01) - looking southeast. Taken Jan 4, 1924. 14th Naval District Photo Collection Item No. 4872-B - U.S. Naval Base, Pearl Harbor, Exterior Cranes, Waterfront Crane Track System, Pearl City, Honolulu County, HI

  16. Strengthening lightweight concrete

    NASA Technical Reports Server (NTRS)

    Auskern, A.

    1972-01-01

    Polymer absorption by lightweight concretes to improve bonding between cement and aggregate and to increase strength of cement is discussed. Compressive strength of treated cement is compared with strength of untreated product. Process for producing polymers is described.

  17. Transport processes in partially saturate concrete: Testing and liquid properties

    NASA Astrophysics Data System (ADS)

    Villani, Chiara

    properties and pore structure information as inputs. Concrete exposed to deicing salts resulted to have a reduced gas transport due to the higher degree of saturation (DOS). The higher DOS is believed to contribute to the premature deterioration observed in concrete pavements exposed to deicing salts. Moisture diffusion and moisture profiles in concrete are known to directly relate with the stresses generated during shrinkage and creep mechanisms. The alteration due to the presence of shrinkage reducing admixtures on drying was also investigated in this work. Liquid properties were used to predict the diffusion coefficient in presence of SRA. Moisture profiles obtained using Fick's second law for diffusion were compared to relative humidity profiles measured on concrete slabs. Results confirm that a qualitative prediction of drying in concrete elements is realistic when using this type of approach.

  18. 78 FR 76402 - Notice of Proposed Buy America Waiver for the Pad and Rubber Boot of a Concrete Block for a Low...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ... complete Privacy Act Statement in the Federal Register published April 11, 2000 (65 FR 19477), or you may... Concrete Block for a Low Vibration Track System AGENCY: Federal Transit Administration, DOT. ACTION: Notice... Buy America waiver for the pad and rubber boot of a concrete block for its Low Vibration Track...

  19. Non-traditional shape GFRP rebars for concrete reinforcement

    NASA Astrophysics Data System (ADS)

    Claure, Guillermo G.

    existing provisions and standards allowing for a consistent universal norm for all GFRP rebars were reached. This dissertation also presents an evaluation of the structural behavior of reinforced concrete (RC) beams and slabs using the new type of GFRP rebar consisting of a non-traditional hollow-core shape compared to "traditional" solid round rebars with equivalent cross-sectional areas within the framework of two studies, respectively. To validate the design assumptions following ACI 440.1R design guidelines, two conditions were investigated: under-reinforced (failure controlled by rupture of GFRP rebar); and, over-reinforced (failure controlled by crushing of concrete). For comparison, a cyclic three-point bending load test matrix was developed: for beams, 3 under-reinforced and 3 over-reinforced with hollow-core and solid GFRP rebars, respectively, making a total of 12 RC specimens; for slabs, 3 under-reinforced and 3 over-reinforced with hollow-core and 2 types of solid GFRP rebars, respectively, making a total of 18 RC slabs. The studies on GFRP RC beams and slabs concluded that the hollow-core GFRP rebars were as effective as their solid counterpart and ACI 440.1R design guidelines were applicable to predict their performance. It was shown that final design may be controlled by the permissible deflections as governing parameter for elements under service conditions. Also, a final study with a test matrix containing six extra specimens was generated for post-fire residual strength evaluation of fire-exposed GFRP RC slabs along with temperature gradient in the slabs and dynamic mechanical analysis (DMA) investigation on GFRP samples extracted from the fire-exposed slabs. In this study, the ability of GFRP RC slabs to retain structural integrity during a standards fire exposure as well as determining the residual structural capacity were investigated. The residual strength evaluation of the fire-exposed slabs showed a range of results varying between +/- 10%, of the

  20. Performance of "Waterless Concrete"

    NASA Technical Reports Server (NTRS)

    Toutanji, H. A.; Grugel, R. N.

    2009-01-01

    Waterless concrete consists of molten elementary sulfur and aggregate. The aggregates in a lunar environment will be lunar rocks and soil. Sulfur is present on the Moon in Troilite soil (FeS) and, by oxidation of the soil, iron and sulfur can be produced. Sulfur concrete specimens were cycled between liquid nitrogen (approx.]91 C) and room temperature (^21 C) to simulate exposure to a lunar environment. Cycled and control specimens were subsequently tested in compression at room temperatures (^21 C) and ^-101 C. Test results showed that due to temperature cycling, the compressive strength of cycled specimens was 20% of those non-cycled. This reduction in strength can be attributed to the large differences in thermal coefficients of expansion of the materials constituting the concrete which promoted cracking. Similar sulfur concrete mixtures were strengthened with short and long glass fibres. The lunar regolith simulant was melted in a 25 cc Pt- Rh crucible in a Sybron Thermoline high temperature MoSi2 furnace at melting temperatures of 1450 to 1600 C for times of 30 min to i hour. Glass fibres and small rods were pulled from the melt. The glass fibres were used to reinforce sulfur concrete plated to improve the flexural strength of the sulfur concrete. Beams strengthened with glass fibres showed to exhibit an increase in the flexural strength by as much as 45%.

  1. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable. PMID:22938320

  2. Impact Resistance Behaviour of Banana Fiber Reinforced Slabs

    NASA Astrophysics Data System (ADS)

    Che Muda, Zakaria; Syamsir, Agusril; Nasharuddin Mustapha, Kamal; Rifdy Samsudin, Muhamad; Thiruchelvam, Sivadass; Usman, Fathoni; Beddu, Salmia; Liyana Mohd Kamal, Nur; Ashraful Alam, Md; Birima, Ahmed H.; Zaroog, O. S.

    2016-03-01

    This paper investigate the performance of banana fibre reinforced slabs 300mm × 300mm size with varied thickness subjected to low impact projectile test. A self-fabricated drop-weight impact test rig with a steel ball weight of 1.25 kg drop at 1 m height has been used in this research work. The main variables for the study is to find the relationship of the impact resistance against the BF contents and slab thickness. A linear relationship has been established between first and ultimate crack resistance against BF contents and slab thickness by the experiment. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the BF contents for a constant spacing for various banana fibre reinforced slab thickness. The increment in BF content has more effect on the first crack resistance than the ultimate crack resistance. The linear relationship has also been established between the service (first) crack and ultimate crack resistance against the various slab thickness. Overall 1.5% BF content with slab thickness of 40 mm exhibit better first and ultimate crack resistance up to 16 times and up to 17 times respectively against control slab (without BF)

  3. Seismic constraints on the morphology of deep slabs

    NASA Astrophysics Data System (ADS)

    Fischer, Karen M.; Jordan, Thomas H.; Creager, Kenneth C.

    1988-05-01

    Residual sphere images from deep earthquakes not only detect the presence of slab-associated velocity anomalies but also lend insight into the flow and deformation of lithosphere subducted into the lower mantle. We have compared travel times from deep events in the Kuril and Mariana arcs with the seismic velocity anomalies implied by kinematical models that thicken the slab perpendicular to its plane by reducing the vertical velocity of the flow with depth. We assume that the details of the deformation (whether the slab buckles, imbricates, fragments, etc.) are averaged out along the ray paths, and hence our models constrain the scale, not the mode, of slab thickening. The deep event travel times are best fit by undeformed models, but the ability of the residual sphere method to resolve slab thickness is limited by ray bending effects. Although the Mariana times are consistent with advective thickening factors of 5 or more, factors larger than 3 are ruled out by the Kuril data. For all models examined, the data require that slab material extends to depths of 900-1000 km. Global tomographic models and regional studies which delineate high-velocity anomalies in the lower mantle beneath zones of Cenozoic subduction are consistent with our results, as is recent work on pulse distortion by slab gradients. Comparison of observed and predicted rates of seismic moment release suggests that if substantial advective thickening does occur, it is largely aseismic.

  4. A modularized pulse forming line using glass-ceramic slabs.

    PubMed

    Wang, Songsong; Shu, Ting; Yang, Hanwu

    2012-08-01

    In our lab, a kind of glass-ceramic slab has been chosen to study the issues of applying solid-state dielectrics to pulse forming lines (PFLs). Limited by the manufacture of the glass-ceramic bulk with large sizes, a single ceramic slab is hard to store sufficient power for the PFL. Therefore, a modularized PFL design concept is proposed in this paper. We regard a single ceramic slab as a module to form each single Blumlein PFL. We connect ceramic slabs in series to enlarge pulse width, and stack the ceramic Blumlein PFLs in parallel to increase the output voltage amplitude. Testing results of a single Blumlein PFL indicate that one ceramic slab contributes about 11 ns to the total pulse width which has a linear relation to the number of the ceramic slabs. We have developed a prototype facility of the 2-stage stacked Blumlein PFL with a length of 2 ceramic slabs. The PFL is dc charged up to 5 kV, and the output voltage pulse of 10 kV, 22 ns is measured across an 8 Ω load. Simulation and experiment results in good agreement demonstrate that the modularized design is reasonable.

  5. A Simple Demonstration of Concrete Structural Health Monitoring Framework

    SciTech Connect

    Mahadevan, Sankaran; Agarwal, Vivek; Cai, Guowei; Nath, Paromita; Bao, Yanqing; Bru Brea, Jose Maria; Koester, David; Adams, Douglas; Kosson, David

    2015-03-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This ongoing research project is seeking to develop a probabilistic framework for health diagnosis and prognosis of aging concrete structures in a nuclear power plant subjected to physical, chemical, environment, and mechanical degradation. The proposed framework consists of four elements—damage modeling, monitoring, data analytics, and uncertainty quantification. This report describes a proof-of-concept example on a small concrete slab subjected to a freeze-thaw experiment that explores techniques in each of the four elements of the framework and their integration. An experimental set-up at Vanderbilt University’s Laboratory for Systems Integrity and Reliability is used to research effective combination of full-field techniques that include infrared thermography, digital image correlation, and ultrasonic measurement. The measured data are linked to the probabilistic framework: the thermography, digital image correlation data, and ultrasonic measurement data are used for Bayesian calibration of model parameters, for diagnosis of damage, and for prognosis of future damage. The proof-of-concept demonstration presented in this report highlights the significance of each element of the framework and their integration.

  6. More economical but equally effective internally sealed concrete

    NASA Astrophysics Data System (ADS)

    White, R. M.; Taylor, M. A.; Haxo, H. E., Jr.

    1981-12-01

    Wax beads of several lower melting, lower cost wax blends can seal concrete as effectively as the paraffin-montan wax beads currently used in internally sealed concrete bridge decks, without affecting other important properties of the concrete. Savings of 5% to 25% in raw material costs can be expected to lower the cost of wax beads by approximately 5% to 20%. Since the minimum temperature required for melting the wax beads is about 25 F (14 C) lower than for the current beads, the cost of heating a bridge deck to achieve effective sealing should be reduced by approximately 15%. Beads of two formulations: 10% montan wax, 15% firbark wax, 75% paraffin 140/142 (FMP), and 5% stearic acid, 20% hydrogenated tallow, 75% paraffin 150/152 (STP), were produced in pilot plant quantities and were evaluated on two field tests. Damage to the beads during extended mixing of the concrete was suspected to be one of the causes of low strength and poor resistance to scaling of the test slabs in the first test. Some blocking of the lower melting beads at temperatures between 100 and 110 F (38 and 43 C) occurred during production in hot weather or storage for long times in warm locations. Coating the beads with 10% cement restored them to a free-flowing condition.

  7. An Unsteady Dual Porosity Representation Of Concrete Rubble Disposal

    SciTech Connect

    Flach, G

    2006-03-29

    Decontamination and decommissioning at the Savannah River Site have produced on-site disposals of low-level solid radioactive waste in the form of concrete rubble. In the case of a former tritium extraction facility, building demolition produced a significant volume of rubble embedded with tritium. The contaminated debris comprises a heterogeneous mixture of sizes, shapes, and internal tritium distributions. The rubble was disposed in long, shallow, unlined, earthen trenches, that were subsequently backfilled with excavated soil and exposed to normal infiltration. To forecast tritium flux to the water table, an unsteady dual porosity model was developed to describe vadose zone leaching and transport. Tritium was assumed to be released through unsteady, one-dimensional, molecular diffusion within concrete, while advective and diffusive transport occur in the surrounding backfill. Rubble size and shape variations were characterized through a combination of physical measurement and photographic image analysis. For simplicity, the characterization data were reduced to an approximately equivalent distribution of one-dimensional slab thicknesses for representation in the dual porosity formulation. Each size classification was simulated separately, and individual flux results were then blended in proportion to the thickness distribution to produce a composite flux. The fractional flux from concrete rubble was predicted to be roughly 40% of that from tritium-contaminated soil. The lower flux is a result of slower release to soil pore water, and a reduced effective trench conductivity from the presence of impervious concrete.

  8. Pentek concrete scabbling system: Baseline report; Greenbook (chapter)

    SciTech Connect

    1997-07-31

    The Pentek scabbling technology was tested at Florida International University (FIU) and is being evaluated as a baseline technology. This report evaluates it for safety and health issues. It is a commercially available technology and has been used for various projects at locations throughout the country. The Pentek concrete scabbling system consisted of the MOOSE, SQUIRREL-I, and SQUIRREL-III scabblers. The scabblers are designed to scarify concrete floors and slabs using cross-section, tungsten carbide tipped bits. The bits are designed to remove concrete in 318 inch increments. The bits are either 9-tooth or demolition type. The scabblers are used with a vacuum system designed to collect and filter the concrete dust and contamination that is removed from the surface. The safety and health evaluation conducted during the testing demonstration focused on two main areas of exposure: dust and noise. Dust exposure was minimal, but noise exposure was significant. Further testing for each of these exposures is recommended. Because of the outdoor environment where the testing demonstration took place, results may be inaccurate. It is feasible that the dust and noise levels will be higher in an enclosed operating environment. Other areas of concern were arm-hand vibration, whole-body vibration, ergonomics, heat stress, tripping hazards, electrical hazards, machine guarding, and lockout/tagout.

  9. Investigation of Mechanical Properties of Steel Fibre- Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Ryabchikov, A.; Tamme, V.; Laurson, M.

    2015-11-01

    Steel fibre-reinforced concrete (SFRC) is widely used in the structural elements of buildings: industrial floors, slabs, walls, foundation, etc. When a load is applied to a fibre- reinforced composite consisting of a low-modulus matrix reinforced with high-strength, high- modulus fibres, the plastic flow of the matrix under stress transfers the load to the fibre; this results in high-strength, high-modulus material which determines the stiffness and stress of the composite. In this study the equivalent flexural strength, equivalent flexural ratio Re,3 and the compressing strength of SFRC are investigated. Notched test specimens with five different dosages of steel fibres (20, 25, 30, 35, 40 kg/m3) were prepared using industrial concrete. Determination of flexural tension strength was carried out according to the EU norm EVS-EN 14651:2005+A1:2007. The equivalent flexural strength and subsequent equivalent flexural ratio Re,3 of SFRC with a dosage of 20, 25, 30, 35 kg/m3 similar to their average values and with a dosage of 40 kg/m3 were 31% higher than their average values. The compressive strength of the steel fibre-reinforced concrete was slightly higher compared to plain concrete, except specimens with the dosage of 40 kg/m3 where the increase was 30%.

  10. Beyond Tracking.

    ERIC Educational Resources Information Center

    Bates, Percy; And Others

    1992-01-01

    On the surface, educational tracking may seem like a useful tool for allowing students to work at their own pace, and to avoid discouraging competition, but abuses of the tracking idea have arisen through biased placement practices that have denied equal access to education for minority students. The articles in this issue explore a number of…

  11. Derailing Tracking.

    ERIC Educational Resources Information Center

    Black, Susan

    1993-01-01

    Reviews recent research on student achievement, self-concept, and curriculum and instruction showing the ineffectiveness of tracking and ability grouping. Certain court rulings show that tracking violates the equal protection clause of the Fourteenth Amendment. Innovative alternatives include cooperative learning, mastery learning, peer tutoring,…

  12. May eclogite dehydration cause slab fracturation ?

    NASA Astrophysics Data System (ADS)

    Loury, Chloé; Lanari, Pierre; Rolland, Yann; Guillot, Stéphane; Ganino, Clément

    2015-04-01

    Petrological and geophysical evidences strongly indicate that fluids releases play a fundamental role in subduction zones as in subduction-related seismicity and arc magmatism. It is thus important to assess quantitatively their origin and to try to quantify the amount of such fluids. In HP metamorphism, it is well known that pressure-dependent dehydration reactions occur during the prograde path. Many geophysical models show that the variations in slab physical properties along depth could be linked to these fluid occurrences. However it remains tricky to test such models on natural sample, as it is difficult to assess or model the water content evolution in HP metamorphic rocks. This difficulty is bound to the fact that these rocks are generally heterogeneous, with zoned minerals and preservation of different paragenesis reflecting changing P-T conditions. To decipher the P-T-X(H2O) path of such heterogeneous rocks the concept of local effective bulk (LEB) composition is essential. Here we show how standardized X-ray maps can be used to constrain the scale of the equilibration volume of a garnet porphyroblast and to measure its composition. The composition of this equilibrium volume may be seen as the proportion of the rock likely to react at a given time to reach a thermodynamic equilibrium with the growing garnet. The studied sample is an eclogite coming from the carboniferous South-Tianshan suture (Central Asia) (Loury et al. in press). Compositional maps of a garnet and its surrounding matrix were obtained from standardized X-ray maps processed with the program XMapTools (Lanari et al, 2014). The initial equilibration volume was modeled using LEB compositions combined together with Gibbs free energy minimization. P-T sections were calculated for the next stages of garnet growth taking into account the fractionation of the composition at each stage of garnet growth. The modeled P-T-X(H2O) path indicates that the rock progressively dehydrates during the

  13. Analysis of railway track vibration

    NASA Astrophysics Data System (ADS)

    Ono, K.; Yamada, M.

    1989-04-01

    Analytical formulae are developed for estimating the amplitudes of the vibrations generated in railway tracks by wheels and rail discontinuities or by unevennesses on their surfaces. Rails are assumed to be supported elastically on concrete sleepers by resilient rail-pads inserted between them. The elasticities and the masses of track materials and those of the roadbed are also taken into consideration. It is shown that after an impulse is applied to the track, not only is a vibration with a comparatively low natural frequency generated, but also traveling waves with higher frequencies, and the latter propagate lengthwise along the track or downwards into the roadbed. With the assumption that the power spectral density of the unevennesses on the rail surface is in proportion to the third power of the wavelength, or to (wavenumber) -3, the amplitudes of the vibrations in railway tracks supported by rail-pads and roadbeds with various magnitudes of elastic constants are analyzed and the values for each one-third octave band are estimated. The velocity of the vibration takes on a maximum value for the band with a center frequency of 63 Hz, which corresponds to the resonant frequency of the system composed of the wheel and the track. As the frequency increases beyond this value, the velocity of the vibration takes on a second maximum value at a frequency of about 1000 Hz. These estimates are compared with the data obtained from field measurements and reasonably good correlations are found between them.

  14. Thermal Removal of Tritium from Concrete and Soil to Reduce Groundwater Impacts - 13197

    SciTech Connect

    Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

    2013-07-01

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg. C (1,500 deg. F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg. C (212 deg. F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total

  15. Thermal Removal Of Tritium From Concrete And Soil To Reduce Groundwater Impacts

    SciTech Connect

    Jackson, Dennis G.; Blount, Gerald C.; Wells, Leslie H.; Cardoso-Neto, Joao E.; Kmetz, Thomas F.; Reed, Misty L.

    2012-12-04

    Legacy heavy-water moderator operations at the Savannah River Site (SRS) have resulted in the contamination of equipment pads, building slabs, and surrounding soil with tritium. At the time of discovery the tritium had impacted the shallow (< 3-m) groundwater at the facility. While tritium was present in the groundwater, characterization efforts determined that a significant source remained in a concrete slab at the surface and within the associated vadose zone soils. To prevent continued long-term impacts to the shallow groundwater a CERCLA non-time critical removal action for these source materials was conducted to reduce the leaching of tritium from the vadose zone soils and concrete slabs. In order to minimize transportation and disposal costs, an on-site thermal treatment process was designed, tested, and implemented. The on-site treatment consisted of thermal detritiation of the concrete rubble and soil. During this process concrete rubble was heated to a temperature of 815 deg C (1,500 deg F) resulting in the dehydration and removal of water bound tritium. During heating, tritium contaminated soil was used to provide thermal insulation during which it's temperature exceeded 100 deg C (212 deg F), causing drying and removal of tritium. The thermal treatment process volatiles the water bound tritium and releases it to the atmosphere. The released tritium was considered insignificant based upon Clean Air Act Compliance Package (CAP88) analysis and did not exceed exposure thresholds. A treatability study evaluated the effectiveness of this thermal configuration and viability as a decontamination method for tritium in concrete and soil materials. Post treatment sampling confirmed the effectiveness at reducing tritium to acceptable waste site specific levels. With American Recovery and Reinvestment Act (ARRA) funding three additional treatment cells were assembled utilizing commercial heating equipment and common construction materials. This provided a total of

  16. Lower mantle seismic scatterers below the subducting Tonga slab: Evidence for slab entrainment of transition zone materials

    NASA Astrophysics Data System (ADS)

    Kaneshima, Satoshi

    2013-09-01

    We show evidence that materials with significantly different elastic properties are juxtaposed in the lower mantle immediately below the subducting Tonga slab (depths ⩽1000 km), like the anomalies preferentially located beneath the lower mantle slabs at other Pacific subduction zones (Kaneshima, 2009). Array analyses of wave form data of short period seismic networks at western United States and Japan for deep earthquakes at the Tonga slab reveal S-to-P scatterers with a size less than the wavelengths (˜10 km). The scatterers are located mostly outside of the slab by several tens of kilometers. Assuming a locally planar interface for the geometry of the scatterers, the amplitudes and polarities of the S-to-P waves are modeled to constrain the properties of the scatterers. We find that the scatterers are steeply dipping, the Vs increases oceanward across the interface, and the Vs contrasts are at least comparable to that associated with the post-spinel transformation (⩾6%). It is unclear at this stage what these subslab scatterers represent, so we discuss about three mechanisms which seem plausible from mantle dynamics viewpoints: (1) they may represent basaltic rocks which were emplaced by partial melting immediately beneath the former oceanic lithosphere-asthenosphere boundary (LAB) before the slab started subducting; (2) alternatively the elastic anomalies of the scatterers may be caused by localized presence of dehydrated water; or (3) the scatterers may correspond to a sharp boundary between fine-grained isotropic rocks in the immediate vicinity of the slab and coarse grained anisotropic rocks more distant from the slab. The presence of pronounced and localized elastic anomalies preferentially beneath the slabs in the shallow lower mantle, whatever its mechanism is, implies that a geophysically observable amount of transition zone material is entrained by the subducting slabs into the lower mantle.

  17. Three-dimensional numerical models of flat slab subduction and the Denali fault driving deformation in south-central Alaska

    NASA Astrophysics Data System (ADS)

    Jadamec, Margarete A.; Billen, Magali I.; Roeske, Sarah M.

    2013-08-01

    Early theories of plate tectonics assumed plates were rigid with deformation limited to within a few tens of kilometers of the plate boundary. However, observations indicate most continental plates defy such rigid behavior with deformation extending over 1000 kilometers inboard. We construct three-dimensional (3D) numerical models of the boundary between the Pacific and North American plates in Alaska to investigate the relative controls of flat slab subduction, continental scale faulting, and a non-linear rheology on deformation in the overriding plate. The models incorporate a realistic slab shape based on seismicity and seismic tomography and a variable thermal structure for both the subducting and overriding plates based on geologic and geophysical observables. The inclusion of the Denali fault in the models allows for the portion of south-central Alaska between the Denali fault and the trench to partially decouple from the rest of North America, forming an independently moving region that correlates to what has been described from geologic and geodetic studies as the Wrangell block. The motion of the Wrangell block tracks the motion of the flat slab in the subsurface indicating the subducting plate is driving the motion of the Wrangell block. Models using a composite (Newtonian and non-Newtonian) viscosity predict compressional motion along the northern bend in the Denali fault, consistent with thermochronologic data that show significant late Neogene exhumation in the central Alaska Range, including at Mt. McKinley, the tallest mountain in North America. These 3D numerical models of the Pacific-North American margin in Alaska show the subducting slab is the main driver of overriding plate deformation in south-central Alaska and combined with the Denali fault can reproduce several first order tectonic features of the region including the motion of the Wrangell block, uplift in the central Alaska Range, subsidence in the Cook Inlet-Susitna Basins, and upwelling

  18. Hybrid Heat Capacity - Moving Slab Laser Concept

    SciTech Connect

    Stappaerts, E A

    2002-04-01

    A hybrid configuration of a heat capacity laser (HCL) and a moving slab laser (MSL) has been studied. Multiple volumes of solid-state laser material are sequentially diode-pumped and their energy extracted. When a volume reaches a maximum temperature after a ''sub-magazine depth'', it is moved out of the pumping region into a cooling region, and a new volume is introduced. The total magazine depth equals the submagazine depth times the number of volumes. The design parameters are chosen to provide high duty factor operation, resulting in effective use of the diode arrays. The concept significantly reduces diode array cost over conventional heat capacity lasers, and it is considered enabling for many potential applications. A conceptual design study of the hybrid configuration has been carried out. Three concepts were evaluated using CAD tools. The concepts are described and their relative merits discussed. Because of reduced disk size and diode cost, the hybrid concept may allow scaling to average powers on the order of 0.5 MW/module.

  19. Rotational flow in tapered slab rocket motors

    NASA Astrophysics Data System (ADS)

    Saad, Tony; Sams, Oliver C.; Majdalani, Joseph

    2006-10-01

    Internal flow modeling is a requisite for obtaining critical parameters in the design and fabrication of modern solid rocket motors. In this work, the analytical formulation of internal flows particular to motors with tapered sidewalls is pursued. The analysis employs the vorticity-streamfunction approach to treat this problem assuming steady, incompressible, inviscid, and nonreactive flow conditions. The resulting solution is rotational following the analyses presented by Culick for a cylindrical motor. In an extension to Culick's work, Clayton has recently managed to incorporate the effect of tapered walls. Here, an approach similar to that of Clayton is applied to a slab motor in which the chamber is modeled as a rectangular channel with tapered sidewalls. The solutions are shown to be reducible, at leading order, to Taylor's inviscid profile in a porous channel. The analysis also captures the generation of vorticity at the surface of the propellant and its transport along the streamlines. It is from the axial pressure gradient that the proper form of the vorticity is ascertained. Regular perturbations are then used to solve the vorticity equation that prescribes the mean flow motion. Subsequently, numerical simulations via a finite volume solver are carried out to gain further confidence in the analytical approximations. In illustrating the effects of the taper on flow conditions, comparisons of total pressure and velocity profiles in tapered and nontapered chambers are entertained. Finally, a comparison with the axisymmetric flow analog is presented.

  20. Magnetoelectric sensor excitations in hexaferrite slabs

    NASA Astrophysics Data System (ADS)

    Zare, Saba; Izadkhah, Hessam; Somu, Sivasubramanian; Vittoria, Carmine

    2015-06-01

    We developed techniques for H- and E-field sensors utilizing single phase magnetoelectric (ME) hexaferrite slabs in the frequency range of 100 Hz to 10 MHz. Novel circuit designs incorporating both spiral and solenoid coils and single and multi-capacitor banks were developed to probe the physics and properties of ME hexaferrites and explore ME effects for sensor detections. Fundamental measurements of the anisotropic tensor elements of the magneto-electric coupling parameter were performed using these novel techniques. In addition, for H-field sensing experiments we measured sensitivity of about 3000 Vm-1/G using solenoid coils and 8000 Vm-1/G using spiral coils. For E-field, sensing the sensitivity was 10-4 G/Vm-1 and using single capacitor detector. Sensitivity for multi-capacitor detectors was measured to be in the order of 10-3 G/Vm-1 and frequency dependent exhibiting a maximum value at ˜1 MHz. Tunability of 0.1%-90% was achieved for tunable inductor applications using both single and multi-capacitors excitation. We believe that significant (˜106) improvements in sensitivity and tunability are feasible with simple modifications of the fabrication process.

  1. Rover tracks

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Tracks made by the Sojourner rover are visible in this image, taken by one of the cameras aboard Sojourner on Sol 3. The tracks represent the rover maneuvering towards the rock dubbed 'Barnacle Bill.' The rover, having exited the lander via the rear ramp, first traveled towards the right portion of the image, and then moved forward towards the left where Barnacle Bill sits. The fact that the rover was making defined tracks indicates that the soil is made up of particles on a micron scale.

    Mars Pathfinder was developed and managed by the Jet Propulsion Laboratory (JPL) for the National Aeronautics and Space Administration.

  2. Segmented Hellenic slab rollback driving Aegean deformation and seismicity

    NASA Astrophysics Data System (ADS)

    Sachpazi, M.; Laigle, M.; Charalampakis, M.; Diaz, J.; Kissling, E.; Gesret, A.; Becel, A.; Flueh, E.; Miles, P.; Hirn, A.

    2016-01-01

    The NE dipping slab of the Hellenic subduction is imaged in unprecedented detail using teleseismic receiver function analysis on a dense 2-D seismic array. Mapping of slab geometry for over 300 km along strike and down to 100 km depth reveals a segmentation into dipping panels by along-dip faults. Resolved intermediate-depth seismicity commonly attributed to dehydration embrittlement is shown to be clustered along these faults. Large earthquakes occurrence within the upper and lower plate and at the interplate megathrust boundary show a striking correlation with the slab faults suggesting high mechanical coupling between the two plates. Our results imply that the general slab rollback occurs here in a differential piecewise manner imposing its specific stress and deformation pattern onto the overriding Aegean plate.

  3. Radiative Transfer Model for Translucent Slab Ice on Mars

    NASA Astrophysics Data System (ADS)

    Andrieu, F.; Schmidt, F.; Douté, S.; Schmitt, B.; Brissaud, O.

    2016-09-01

    We developed a radiative transfer model that simulates in VIS/NIR the bidirectional reflectance of a contaminated slab layer of ice overlaying a granular medium, under geometrical optics conditions to study martian ices.

  4. Waveform effects of a metastable olivine tongue in subducting slabs

    NASA Technical Reports Server (NTRS)

    Vidale, John E.; Williams, Quentin; Houston, Heidi

    1991-01-01

    Velocity models of subducting slabs with a kinetically-depressed olivine to beta- and gamma-spinel transition are constructed, and the effect that such structures would have on teleseismic P waveforms are examined using a full-wave finite-difference method. These 2D calculations yielded waveforms at a range of distances in the downdip direction. The slab models included a wedge-shaped, low-velocity metastable olivine tongue (MOTO) to a depth of 670 km, as well as a plausible thermal anomaly; one model further included a 10-km-thick fast layer on the surface of the slab. The principal effect of MOTO is to produce grazing reflections at wide angles off the phase boundary, generating a secondary arrival 0 to 4 seconds after the initial arrival depending on the take-off angle. The amplitude and timing of this feature vary with the lateral location of the seismic source within the slab cross-section.

  5. Benchmark study for total enery electrons in thick slabs

    NASA Technical Reports Server (NTRS)

    Jun, I.

    2002-01-01

    The total energy deposition profiles when highenergy electrons impinge on a thick slab of elemental aluminum, copper, and tungsten have been computed using representative Monte Carlo codes (NOVICE, TIGER, MCNP), and compared in this paper.

  6. Analytical and Numerical Solution for a Solidifying Liquid Alloy Slab

    NASA Technical Reports Server (NTRS)

    Antar, B. N.

    1983-01-01

    Numerical and analytical solutions are presented for the temperature and concentration distributions during the solidification of a binary liquid alloy slab. The slab is taken to be of a finite depth but infinite in the horizontal direction. The solidification process is started by withdrawing a fixed amount of heat from the lower surface of the slab. The upper surface of the slab is subjected to both radiation and convective conditions. The solution gives the concentration and temperature profiles and the interface position as a function of time. Due to the smallness of the mass diffusion coefficient in the solid, the numerical solution method breaks down whenever the ratio of the diffusivities in the solid and the liquid falls below a certain value. An analytical method is developed which gives accurate solution for any value of the diffusivity ratio.

  7. 9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. STONE SLAB CULVERT UNDER CARRIAGE ROAD AT HORSESHOE CURVE NEAR GIANT SLIDE TRAIL MARKER ON AROUND-THE-MOUNTAIN LOOP. - Rockefeller Carriage Roads, Mount Desert Island, Bar Harbor, Hancock County, ME

  8. OVERVIEW LOOKING SOUTH OF CONTAINMENT SYSTEM (TOP), SLAB CASTING MACHINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    OVERVIEW LOOKING SOUTH OF CONTAINMENT SYSTEM (TOP), SLAB CASTING MACHINE AND RUN OUT WITH TRAVELING TORCH. MACHINE IS CASTING IN TWIN MOLD. - U.S. Steel, Fairfield Works, Continuous Caster, Fairfield, Jefferson County, AL

  9. 27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. VAL, DETAIL OF LAUNCHER SLAB AND LAUNCHER RAIL WITH 7 INCH DIAMETER HOLE FOR SUPPORT CARRIAGE LOCKING PIN. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  10. 34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    34. VAL, DETAIL OF STAIRS ON COUNTERWEIGHT SLAB WITH COUNTERWEIGHT CAR RAILS ON RIGHT AND PERSONNEL CAR RAILS ON LEFT. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  11. 5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VAL LAUNCHER BRIDGE OVER LAUNCHER SLAB TAKEN FROM RESERVOIR LOOKING NORTH. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  12. 49. DETAIL VIEW OF SLOPE PREPARATION FOR VARIABLEANGLE LAUNCHER SLAB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    49. DETAIL VIEW OF SLOPE PREPARATION FOR VARIABLE-ANGLE LAUNCHER SLAB LOOKING NORTH, November 6, 1946. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  13. 8. VAL COUNTERWEIGHT CAR ON COUNTERWEIGHT SLAB AND CAMERA TOWER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VAL COUNTERWEIGHT CAR ON COUNTERWEIGHT SLAB AND CAMERA TOWER TAKEN FROM RESERVOIR LOOKING SOUTHWEST. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  14. Casimir effect for two lossy dispersive dielectric slabs

    NASA Astrophysics Data System (ADS)

    Matloob, R.; Keshavarz, A.; Sedighi, D.

    1999-11-01

    The electromagnetic field is quantized using the Green's-function method for the geometry of a Fabry-Perot cavity, made up of two identical lossy dispersive slabs of finite thickness. The dielectric functions of the slabs are assumed to be an arbitrary complex function of frequency obeying causality requirements. The attractive Casimir force between the two slabs is calculated by the help of the latter field operators, via evaluating the difference between the vacuum pressures on both sides of each slab. Special attention is paid to the limiting case of the Casimir effect for two conducting plates. The Lorentz model of the dielectric function is used to demonstrate the variation of the force in terms of plasma frequency. The Casimir force expression is also related to the imaginary part of the response function. The latter expression is used to introduce the repulsive Casimir force between two conducting plates located inside a Fabry-Perot cavity.

  15. An enhanced HOWFARLESS option for DOSXYZnrc simulations of slab geometries

    SciTech Connect

    Babcock, Kerry; Cranmer-Sargison, Gavin; Sidhu, Narinder

    2008-09-15

    The Monte Carlo code DOSXYZnrc is a valuable instrument for calculating absorbed dose within a three-dimensional Cartesian geometry. DOSXYZnrc includes several variance reduction techniques used to increase the efficiency of the Monte Carlo calculation. One such technique is HOWFARLESS which is used to increase the efficiency of beam commissioning calculations in homogeneous phantoms. The authors present an enhanced version of HOWFARLESS which extends the application to include phantoms inhomogeneous in one dimension. When the enhanced HOWFARLESS was used, efficiency increases as high as 14 times were observed without any loss in dose accuracy. The efficiency gains of an enhanced HOWFARLESS simulation was found to be dependent on both slab geometry and slab density. As the number of two-dimensional voxel layers per slab increases, so does the efficiency gain. Also, as the mass density of a slab is decreased, the efficiency gains increase.

  16. Along-strike slab segmentation under Greece from a 500 km long teleseismic receiver-function swath profile : control on large earthquakes, upper plate motion, and surface morphology

    NASA Astrophysics Data System (ADS)

    Sachpazi, M.; Laigle, M.; Diaz, J.; Gesret, A.; Charalampakis, M.; Kissling, E. H.; Hirn, A.

    2010-12-01

    Observations from teleseismic converted waves recorded at 100 sites in Greece from Crete to North Aegean in a 500 km swath along the slab strike during the EU project “Thales was right” allow imaging its top in 3D. Multiscale analysis brings high-resolution to interface imaging at depth which resolved for the first time a thin, oceanic, crust for the slab under southern Greece. This first indication of its large negative buoyancy suggests its roll-back and is consistent with the upper plate trenchward motion with the highest velocities there, as shown by GPS. With respect to up to now subduction zone surveys with receivers deployed along the presumed dip to get a cross-section of the downgoing slab, our swath was instead perpendicular, that is along strike. This was in order to track down lateral changes in slab attitude along the subduction zone, that is a possible segmentation. The expected subduction strike at shallow depth, as approximated by a line from SW of Crete to W of the Ionian Islands is about N 135°E. Instead, the slab top is found along an almost N-S line at several places, at 60-70 km depth. However the slab depth contours deviate from it in-between. Their broad correspondance with the Aegean coastline or extensional domain suggests a possible control on surface morphology, and on upper plate deformation as mirrored in the topography of its crust-mantle boundary. Indeed, this first image recovered with such a high lateral resolution reveals that several slab segments can be defined dipping N 60°E, that is with a N 160 °E strike, and that these are juxtaposed through domains of strong localized variations along-strike that suggest warping or tearing of the slab. Apart their strong bearing on geodynamic reconstructions, and the continental/oceanic nature of the slab fragments, these 3D images reach the high-resolution for their discussion with respect to major earthquakes. The attitude of the slab, the dip of its upper part and its buoyancy

  17. High frequency seismic waves and slab structures beneath Italy

    NASA Astrophysics Data System (ADS)

    Sun, Daoyuan; Miller, Meghan S.; Piana Agostinetti, Nicola; Asimow, Paul D.; Li, Dunzhu

    2014-04-01

    Tomographic images indicate a complicated subducted slab structure beneath the central Mediterranean where gaps in fast velocity anomalies in the upper mantle are interpreted as slab tears. The detailed shape and location of these tears are important for kinematic reconstructions and understanding the evolution of the subduction system. However, tomographic images, which are produced by smoothed, damped inversions, will underestimate the sharpness of the structures. Here, we use the records from the Italian National Seismic Network (IV) to study the detailed slab structure. The waveform records for stations in Calabria show large amplitude, high frequency (f>5 Hz) late arrivals with long coda after a relatively low-frequency onset for both P and S waves. In contrast, the stations in the southern and central Apennines lack such high frequency arrivals, which correlate spatially with the central Apennines slab window inferred from tomography and receiver function studies. Thus, studying the high frequency arrivals provides an effective way to investigate the structure of slab and detect possible slab tears. The observed high frequency arrivals in the southern Italy are the strongest for events from 300 km depth and greater whose hypocenters are located within the slab inferred from fast P-wave velocity perturbations. This characteristic behavior agrees with previous studies from other tectonic regions, suggesting the high frequency energy is generated by small scale heterogeneities within the slab which act as scatterers. Furthermore, using a 2-D finite difference (FD) code, we calculate synthetic seismograms to search for the scale, shape and velocity perturbations of the heterogeneities that may explain features observed in the data. Our preferred model of the slab heterogeneities beneath the Tyrrhenian Sea has laminar structure parallel to the slab dip and can be described by a von Kármán function with a down-dip correlation length of 10 km and 0.5 km in

  18. The fundamental constants of orthotropic affine plate/slab equations

    NASA Technical Reports Server (NTRS)

    Brunelle, E. J.

    1984-01-01

    The global constants associated with orthotropic slab/plate equations are discussed, and the rotational behavior of the modulus/compliance components associated with orthotropic slabs/plates are addressed. It is concluded that one cluster constant is less than or equal to unity for all physically possible materials. Rotationally anomalous behavior is found in two materials, and a simple inequality which can be used to identify regular or anomalous behavior is presented and discussed in detail.

  19. 26. Evening view of concrete mixing plant, concrete placement tower, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. Evening view of concrete mixing plant, concrete placement tower, cableway tower, power line and derrick. Photographer unknown, 1927. Source: MWD. - Waddell Dam, On Agua Fria River, 35 miles northwest of Phoenix, Phoenix, Maricopa County, AZ

  20. 10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. CONCRETE BRIDGE, REINFORCED BEAM TYPE ON CONCRETE, SOUTH CAROLINA STATE HIGHWAY DEPARTMENT, COLUMBIA, SOUTH CAROLINA (photocopy of drawing) - Salkehatchie Bridge, State Route No. 64 spanning Salkehatchie River, Barnwell, Barnwell County, SC

  1. Are the Regional Variations in Central American Arc Lavas due to Differing Basaltic vs. Peridotitic Slab Fluxing Sources ?

    NASA Astrophysics Data System (ADS)

    Rüpke, L. H.; Morgan, J. P.; Hort, M.

    2001-12-01

    Arc magmas at subduction zones show systematic along-arc trends in melt chemistry that are well described, but poorly understood. For example, along the Central American arc between Nicaragua and Costa Rica, over the distance of a few hundred kilometers there is a progressive change in the Ba/La ratios of the arc lavas from high-end to near low-end global values. The mantle wedge melts to produce these lavas; melting is triggered by the upward flux of hydrous fluids from the subducting slab which are released from its crustal and mantle portions at different P-T conditions. Here, we investigate arc melting with a new, self-consistent, chemo-thermo-dynamical model for mantle flow, melting, and fluid release. Since the relevant water-releasing reactions consume latent heat, for internal consistency we include these cooling effects within the temperature solution. Tracer particles advect to track the changing slab chemistry. What happens depends highly upon the initial slab petrology. Both the crustal thickness and the amount of chemically bound water in the downgoing slab are likely to vary significantly between different subduction zones, as do the processes that hydrate the slab. The basaltic oceanic crust hydrates at mid-ocean ridges as it forms. The underlying mantle, if hydrated (serpentinized), can potentially store even more chemically bound water than the crust. To hydrate mantle rocks, however, water must flow through the already hydrated, low permeability crust. When the lithosphere faults at the outer rise, these new cracks cross through the crust into the mantle, providing a path for seawater to penetrate into and serpentinize it. Since the depth-interval and intensity of fluid release from hydrated basalts and hydrated peridotites vary as a function of the initial slab petrology, the trigger mechanism for melting, fluid fluxing from the slab, will also vary. When the primary source of the released fluids changes from hydrated basalt to hydrated

  2. Characterizing Seismic Anisotropy across the Peruvian Flat-Slab Subduction Zone: Implications for the Dynamics of Flat-Slabs

    NASA Astrophysics Data System (ADS)

    Eakin, Caroline; Long, Maureen; Beck, Susan; Wagner, Lara; Tavera, Hernando

    2014-05-01

    Although 10% of subduction zones worldwide today exhibit shallow or flat subduction, we are yet to fully understand how and why these slabs go flat. An excellent study location for such a problem is in Peru, where the largest region of flat-subduction currently exists, extending ~1500 km in length (from 3 °S to 15 °S) and ~300 km in width. Across this region we investigate the pattern of seismic anisotropy, an indicator for past and/or ongoing deformation in the upper mantle. To achieve this we conduct shear wave splitting analyzes at 40 broadband stations from the PULSE project (PerU Lithosphere and Slab Experiment). These stations were deployed for 2+ years across the southern half of the Peruvian flat-slab region. We present detailed shear wave splitting results for both teleseismic events (such as SKS, SKKS, PKS, sSKS) that sample the upper mantle column beneath the stations as well as direct S from local events that constrain anisotropy in the upper portion of the subduction zone. We analyze the variability of our results with respect to initial polarizations, ray paths, and frequency content as well as spatial variability between stations as the underlying slab morphology changes. Teleseismic results show predominately NW-SE fast polarizations (trench oblique to sub-parallel) over the flat-slab region east of Lima. These results are consistent with observations of more complex multi-layered anisotropy beneath a nearby permanent station (NNA) that suggests a trench-perpendicular fast direction in the lowest layer in the sub-slab mantle. Further south, towards the transition to steeper subduction, the splitting pattern becomes increasingly dominated by null measurements. Over to the east however, beyond Cuzco, where the mantle wedge might begin to play a role, we record fast polarizations quasi-parallel to the local slab contours. Local S results indicate the presence of weak (delay times typically less than 0.5 seconds) and heterogeneous supra-slab

  3. Scaling of Electron Thermal Conductivity during the Transition between Slab and Mixed Slab-Toroidal ETG Mode

    NASA Astrophysics Data System (ADS)

    Sokolov, Vladimir; Balbaky, Abed; Sen, Amiya K.

    2015-11-01

    Transition from the slab to the toroidal branch of the electron temperature gradient (ETG) mode has been successfully achieved in a basic experiment in Columbia Linear Machine CLM. We found a modest increase in saturated ETG potential fluctuations (~ 2 ×) and a substantial increase in the power density of individual mode peaks (~ 4 - 5 ×) with increased levels of curvature. We have obtained a set of experimental scalings for electron thermal conductivity χ⊥e as a function of the inverse radius of curvature Rc-1 for different fluctuation levels of the initial slab ETG mode. We found that thermal conductivity for pure slab modes is larger than it is for mixed slab-toroidal ETG modes with the same level of mode fluctuation. This effective reduction in diffusive transport can be partly explained by the flute nature of the toroidal ETG mode. This research was supported by the Department of Electrical Engineering of Columbia University.

  4. Heat transfer components at the surface of burning thick PMMA slabs

    NASA Astrophysics Data System (ADS)

    Mindykowski, P.; Pizzo, Y.; Rigollet, L.; Lallemand, C.; Kaiss, A.; Boulet, P.; Porterie, B.

    2012-11-01

    Mass pyrolysis rate is the key parameter to predict fire behavior. It is generally deduced from the energy balance at the surface of the solid material. However, due to lack of knowledge, existing pyrolysis models use simplifying assumptions neglecting all or part of in-depth losses into the solid material or the net radiation at its surface. In order to improve the accuracy of pyrolysis models, experiments are conducted to quantitatively evaluate the heat transfer components at the surface of burning thick clear poly-methyl-methacrylate (PMMA) slabs at steady state. The contributions of each transfer mode including radiation and convection from the flame, surface re-radiation, and in-depth losses, to total heat flux are determined from two series of experiments. Pure pyrolysis (non-flaming) cone calorimeter experiments are first carried out to evaluate in-depth losses in horizontally-oriented slabs exposed to an incident heat flux below that of ignition. A specific procedure based on video processing is used to track the position of the PMMA regressing surface with time. The second series of experiments consist in burning vertically-oriented slabs from 2.5 cm to 20 cm in height, 10 cm in width and 3 cm in thickness. It is found that only a small part of flame radiation is transmitted through the virgin solid, most in-depth radiation being absorbed by the bubble surface, which in turn strongly emits radiation inward. An excellent agreement is obtained between the local mass loss rate deduced from the energy balance and literature data.

  5. Slab entrainment and surge dynamics of the 2015 Valleé de la Sionne avalanches

    NASA Astrophysics Data System (ADS)

    Köhler, Anselm; McElwaine, Jim; Sovilla, Betty

    2016-04-01

    On 3 February 2015 five avalanches were artificially released at the Valleé de la Sionne test site in the west of Switzerland. The dense parts of the avalanches were tracked by the GEODAR Mark 2 radar system at 111 Hz framerate with 0.75 m down slope resolution. The data show that these avalanche contain several internal surges and that the avalanche front is repeatedly overtaken by some of these surges. We show that these surges exist on different scale. While the major surges originates from secondary triggered slab releases and occur all over the avalanche. The minor surges are only found in the energetic part of a well developed powder snow avalanche. The mass of the major surges can be as huge as the initial released mass, this has a dramatic effect on the mass distribution inside the avalanche and effects the front velocity and run out. Furthermore, the secondary released snow slabs are an important entrainment mechanism and up to 50 percent of the mass entered the avalanche via slab entrainment. We analyse the dynamics of the leading edge and the minor surges in more detail using a simple one dimensional model with frictional resistance and quadratic velocity dependent drag. These models fit the data well for the start and middle of avalanche but cannot capture the slowing and overtaking of the minor surge. We find much higher friction coefficients to describe the surging. We propose that this data can only be explained by changes in the snow surface. These effects are not included in current models yet, but the data presented here will enable the development and verification of such models.

  6. Electrokinetic decontamination of concrete

    SciTech Connect

    Lomasney, H.

    1995-10-01

    The U.S. Department of Energy has assigned a priority to the advancement of technology for decontaminating concrete surfaces which have become contaminated with radionuclides, heavy metals, and toxic organics. This agency is responsible for decontamination and decommissioning of thousands of buildings. Electrokinetic extraction is one of the several innovative technologies which emerged in response to this initiative. This technique utilizes an electropotential gradient and the subsequent electrical transport mechanism to cause the controlled movement of ionics species, whereby the contaminants exit the recesses deep within the concrete. This report discusses the technology and use at the Oak Ridge k-25 plant.

  7. Standing sausage modes in curved coronal slabs

    NASA Astrophysics Data System (ADS)

    Pascoe, D. J.; Nakariakov, V. M.

    2016-09-01

    Context. Magnetohydrodynamic waveguides such as dense coronal loops can support standing modes. The ratios of the periods of oscillations for different longitudinal harmonics depend on the dispersive nature of the waveguide and so may be used as a seismological tool to determine coronal parameters. Aims: We extend models of standing sausage modes in low β coronal loops to include the effects of loop curvature. The behaviour of standing sausage modes in this geometry is used to explain the properties of observed oscillations that cannot be accounted for using straight loop models. Methods: We perform 2D numerical simulations of an oscillating coronal loop, modelled as a dense slab embedded in a potential magnetic field. The loop is field-aligned and so experiences expansion with height in addition to being curved. Standing sausage modes are excited by compressive perturbations of the loop and their properties are studied. Results: The spatial profiles of standing sausage modes are found to be modified by the expanding loop geometry typical for flaring loops and modelled by a potential magnetic field in our simulations. Longitudinal harmonics of order n > 1 have anti-nodes that are shifted towards the loop apex and the amplitude of anti-nodes near the loop apex is smaller than those near the loop footpoints. Conclusions: We find that the observation of standing sausage modes by the Nobeyama Radioheliograph in a flaring coronal loop on 12 January 2000 is consistent with interpretation in terms of the global mode (n = 1) and third harmonic (n = 3). This interpretation accounts for the period ratio and spatial structure of the observed oscillations.

  8. Heidrun concrete TLP: Update

    SciTech Connect

    Munkejord, T.

    1995-10-01

    This paper gives a summary of the Heidrun substructure including tethers and foundations. The focus will although be on the concrete substructure. The Heidrun Field is located in 345 m water depth in the northern part of the Haltenbanken area, approximately 100N miles from the west coast of mid-Norway. The field is developed by means of a concrete Tension Leg Platform (TLP) by Conoco Norway Inc. The TLP will be moored by 16 steel tethers, arranged in groups of four per corner, which secure the substructure (hull) to the concrete foundations. A general view of the TLP is shown. The Heidrun TLP will be the northern most located platform in the North Sea when installed at Haltenbanken in 1995. Norwegian Contractors a.s (NC) is undertaking the Engineering, Procurement, Construction and Installation (EPCI) contract for the Heidrun TLP substructure. This comprises the complete delivery of the hull with two module support beams (MSB), including all mechanical outfitting. Furthermore, NC will perform all marine operations related to the substructure. For the concrete foundations NC has performed the detailed engineering work and has been responsible for the two to field and installation of the foundations.

  9. High temperature polymer concrete

    DOEpatents

    Fontana, J.J.; Reams, W.

    1984-05-29

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system.

  10. Electroosmotic decontamination of concrete

    SciTech Connect

    Bostick, W.D.; Bush, S.A.; Marsh, G.C.; Henson, H.M.; Box, W.D.; Morgan, I.L.

    1993-03-01

    A method is described for the electroosmotic decontamination of concrete surfaces, in which an electrical field is used to induce migration of ionic contaminants from porous concrete into an electrolyte solution that may be disposed of as a low-level liquid radioactive waste (LLRW); alternately, the contaminants from the solution can be sorbed onto anion exchange media in order to prevent contaminant buildup in the solution and to minimize the amount of LLRW generated. We have confirmed the removal of uranium (and infer the removal of {sup 99}Tc) from previously contaminated concrete surfaces. In a typical experimental configuration, a stainless steel mesh is placed in an electrolyte solution contained within a diked cell to serve as the negative electrode (cathode) and contaminant collection medium, respectively, and an existing metal penetration (e.g., piping, conduit, or rebar reinforcement within the concrete surface) serves as the positive electrode (anode) to complete the cell. Typically we have achieved 70 to >90% reductions in surface activity by applying <400 V and <1 A for 1--3 h (energy consumption of 0.4--12 kWh/ft{sup 2}).

  11. Modeling the thin-slab continuous-casting mold

    SciTech Connect

    O'Connor, T.G. . Applied Superconductivity Group); Dantzig, J.A. . Dept. of Mechanical and Industrial Engineering)

    1994-06-01

    A three-dimensional mathematical model has been developed to compute the thermomechanical state in the mold of thin-slab continuous casters. The thin-slab mold differs from those used in conventional slab casters in that the upper portion of the broad side walls defines a funnel-shaped chamber which allows the nozzle to be submerged into the liquid metal. The chamber converges with distance down the mold, reducing to the rectangular cross section of the finished casting near the mold exit. The new mold, along with casting speeds up to 6 m/min, allows slabs to be cast 50--60 mm thick, compared with 150 to 350 mm in conventional continuous slab casting. However, the mold shape and high casting speed lead to higher mold temperatures and shorter mold life than are found in conventional slab casters. In this article, the author develop mathematical models of the process to determine the role of various process parameters in determining the mold life. Finite-element analysis is used to determine the temperatures in the mold and cast slab, and these data are then used in an elastic-viscoplastic analysis to investigate the deformation of the mold wall in service. Cyclic inelastic strains up to 1.75 pct are found in a region below the meniscus along the funnel edge. These large strains result from the combination of locally high temperatures coupled with geometric restraint of the mold. The deformation leads to short mold life because of thermal fatigue cracking of the mold. The computed locations and time to failure of the mold in fatigue agree very well with observations of the appearance of mold surface cracks in an operating caster. The models are also used to develop an improved mold design.

  12. Modeling the thin-slab continuous-casting mold

    NASA Astrophysics Data System (ADS)

    Oconnor, Thomas G.; Dantzig, Jonathan A.

    1994-06-01

    A three-dimensional mathematical model has been developed to compute the thermomechanical state in the mold of thin-slab continuous casters. The thin-slab mold differs from those used in conventional slab casters in that the upper portion of the broad side walls defines a funnel-shaped chamber which allows the nozzle to be submerged into the liquid metal. The chamber converges with distance down the mold, reducing to the rectangular cross section of the finished casting near the mold exit. The new mold, along with casting speeds up to 6 m/min, allows slabs to be cast 50 60 mm thick, compared with 150 to 350 mm in conventional continuous slab casting. However, the mold shape and high casting speed lead to higher mold temperatures and shorter mold life than are found in conventional slab casters. In this article, we develop mathematical models of the process to determine the role of various process parameters in determining the mold life. Finite-element analysis is used to determine the temperatures in the mold and cast slab, and these data are then used in an elastic-viscoplastic analysis to investigate the deformation of the mold wall in service. Cyclic inelastic strains up to 1.75 Pct are found in a region below the meniscus along the funnel edge. These large strains result from the combination of locally high temperatures coupled with geometric restraint of the mold. The deformation leads to short mold life because of thermal fatigue cracking of the mold. The computed locations and time to failure of the mold in fatigue agree very well with observations of the appearance of mold surface cracks in an operating caster. The models are also used to develop an improved mold design.

  13. Can slabs melt beneath forearcs in hot subduction zones?

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Maury, R.; Gregoire, M.

    2015-12-01

    At subduction zones, thermal modeling predict that the shallow part of the downgoing oceanic crust (< 80 - 100 km depth to the slab) is usually too cold to cross the water-rich solidus and melts beneath the forearc. Yet, the occasional occurrence of adakites, commonly considered as slab melts, in the forearc region challenges our understanding of the shallow subduction processes. Adakites are unusual felsic rocks commonly associated with asthenospheric slab window opening or fast subduction of young (< 25 Ma) oceanic plate that enable slab melting at shallow depths; but their genesis has remained controversial. Here, we present a new approach that provides new constraints on adakite petrogenesis in hot subduction zones (the Philippines) and above an asthenospheric window (Baja California, Mexico). We use amphibole compositions to estimate the magma storage depths and the composition of the parental melts to test the hypothesis that adakites are pristine slab melts. We find that adakites from Baja California and Philippines formed by two distinct petrogenetic scenarios. In Baja California, hydrous mantle melts mixed/mingled with high-pressure (HP) adakite-type, slab melts within a lower crustal (~30 km depth) magma storage region before stalling into the upper arc crust (~7-15 km depth). In contrast, in the Philippines, primitive mantle melts stalled and crystallized within lower and upper crustal magma storage regions to produce silica-rich melts with an adakitic signature. Thereby, slab melting is not required to produce an adakitic geochemical fingerprint in hot subduction zones. However, our results also suggest that the downgoing crust potentially melted beneath Baja California.

  14. Modeling the surface photovoltage of silicon slabs with varying thickness.

    PubMed

    Vazhappilly, Tijo; Kilin, Dmitri S; Micha, David A

    2015-04-10

    The variation with thickness of the energy band gap and photovoltage at the surface of a thin semiconductor film are of great interest in connection with their surface electronic structure and optical properties. In this work, the change of a surface photovoltage (SPV) with the number of layers of a crystalline silicon slab is extracted from models based on their atomic structure. Electronic properties of photoexcited slabs are investigated using generalized gradient and hybrid density functionals, and plane wave basis sets. Si(1 1 1) surfaces have been terminated by hydrogen atoms to compensate for dangling bonds and have been described by large supercells with periodic boundary conditions. Calculations of the SPV of the Si slabs have been done in terms of the reduced density matrix of the photoactive electrons including dissipative effects due to their interaction with medium phonons and excitons. Surface photovoltages have been calculated for model Si slabs with 4-12, and 16 layers, to determine convergence trends versus slab thickness. Band gaps and the inverse of the SPVs have been found to scale nearly linearly with the inverse thickness of the slab, while the electronic density of states increases quadratically with thickness. Our calculations show the same trends as experimental values indicating band gap reduction and absorption enhancement for Si films of increasing thickness. Simple arguments on confined electronic structures have been used to explain the main effects of changes with slab thickness. A procedure involving shifted electron excitation energies is described to improve results from generalized gradient functionals so they can be in better agreement with the more accurate but also more computer intensive values from screened exchange hybrid functionals.

  15. Continental collision and slab break-off: A comparison of 3-D numerical models with observations

    NASA Astrophysics Data System (ADS)

    van Hunen, Jeroen; Allen, Mark B.

    2011-02-01

    Conditions and dynamics of subduction-collision and subsequent 3-D slab break-off and slab tear propagation are quantified, for the first time, using fully dynamic numerical models. Model results indicate that collision after the subduction of old, strong subducting oceanic slab leads to slab break-off at 20-25 Myr after the onset of continental collision, and subsequently a slab tear migrates more or less horizontally through the slab with a propagation speed of 100-150 mm/yr. In contrast, young, weak oceanic slabs show the first break-off already 10 Myr after continental collision, and can experience tear migration rates up to 800 mm/yr. Slab strength plays a more important role in the timing of slab break-off and the speed of a propagating slab tear than (negative) slab buoyancy does. Slab break-off is viable even for slabs that are supported by the viscosity jump and phase change between the upper and lower mantle. The density of the oceanic slab and the subducting continental block is important for the amount of continental subduction and the depth of slab break-off. A 40-km thick continental crust can be buried to depths greater than 200 km, although this maximum depth is significantly less for younger or very weak slabs, or thicker continental crust. Slab break-off typically starts at a depth of 300 km, mostly independent of mantle rheology, but, like continental crustal burial, can be shallower for young or buoyant plates. Our 3-D models illustrate how, due to the difference in necking in 2-D and 3-D, break-off has an intrinsic small preference to start as a slab window within the slab's interior, rather than as a slab tear at the slab edge. However, any significant asymmetry in the collision setting, e.g. earlier collision at one end of the subduction zone, would override this, and leads to slab tearing starting near one edge of the slab. These results put important new constraints on the dynamics of the collision and subsequent slab break-off for modern

  16. Effects of Crustal Densification in Warm Slabs on In-slab Earthquakes and Episodic Tremors and Slips

    NASA Astrophysics Data System (ADS)

    Wang, K.

    2003-12-01

    During subduction, dehydration may facilitate earthquake rupture in both the slab crust and slab mantle. The up to 15% rock densification that accompanies the metabasalt-eclogite transformation is expected to have several mechanical consequences. In warm slabs such as Cascadia and Nankai, this transformation and mantle serpentine breakdown begin at rather shallow depths (30 - 50 km). The pervasively hydrated upper crust transforms to eclogite under equilibrium conditions, but the transformation of the anhydrous parts of the lower crust is kinetically delayed to greater depths. Therefore, densification begins in a thin layer along the top of the slab. Volume reduction gives rise to an equivalent stretching force in the thin layer in all slab-parallel directions, activating existing faults and developing new fractures. Analogous to a weak layer sandwiched between, and bonded to, two strong layers under stretching, fracture spacing in the weak layer scales with the layer thickness. The theory predicts that the densified thin layer must be ~{!0~}shattered~{!1~}. The shattered upper crust may have numerous small earthquakes but does not favor large ruptures. In contrast, the much more uniform lower crust and mantle can host larger ruptures, although seismic ruptures occur only in the limited hydrated parts. This explains the observation that relatively few earthquakes deeper inside the slab tend to have larger magnitudes than those just below the slab surface. For example, three recent damaging events (1999 Oaxaca, Mexico; 2001 Geiyo, Nankai; 2001 Nisqually, Cascadia) in warm slabs all occurred in the lower crust or mantle. The densification is generally a steady state process: An increasingly thinner slab moves into an increasingly thinner subduction "slot" continuously, with the downdip width of transition from normal to thinned crust scaling linearly with the subduction rate. However, at the fracture scale, the process is highly nonlinear, and there must be small

  17. Tomographic imaging of the effects of Peruvian flat slab subduction on the Nazca slab and surrounding mantle under central and southern Peru

    NASA Astrophysics Data System (ADS)

    Scire, A. C.; Zandt, G.; Beck, S. L.; Bishop, B.; Biryol, C. B.; Wagner, L. S.; Long, M. D.; Minaya, E.; Tavera, H.

    2014-12-01

    The modern central Peruvian Andes are dominated by a laterally extensive region of flat slab subduction. The Peruvian flat slab extends for ~1500 km along the strike of the Andes, correlating with the subduction of the Nazca Ridge in the south and the theorized Inca Plateau in the north. We have used data from the CAUGHT and PULSE experiments for finite frequency teleseismic P- and S-wave tomography to image the Nazca slab in the upper mantle below 95 km depth under central Peru between 10°S and 18°S as well as the surrounding mantle. Since the slab inboard of the subducting Nazca Ridge is mostly aseismic, our results provide important constraints on the geometry of the subducting Nazca slab in this region. Our images of the Nazca slab suggest that steepening of the slab inboard of the subducting Nazca Ridge locally occurs ~100 km further inland than was indicated in previous studies. The region where we have imaged the steepening of the Nazca slab inboard of the Nazca Ridge correlates with the location of the Fitzcarrald Arch, a long wavelength upper plate topographic feature which has been suggested to be a consequence of ridge subduction. When the slab steepens inboard of the flat slab region, it does so at a very steep (~70°) angle. The transition from the Peruvian flat slab to the more normally dipping slab south of 16°S below Bolivia is characterized by an abrupt bending of the slab anomaly in the mantle in response to the shift from flat to normal subduction. The slab anomaly appears to be intact south of the Nazca Ridge with no evidence for tearing of the slab in response to the abrupt change in slab dip. A potential tear in the slab is inferred from an observed offset in the slab anomaly north of the Nazca Ridge extending subparallel to the ridge axis between 130 and 300 km depth. A high amplitude (-5-6%) slow S-wave velocity anomaly is observed below the projection of the Nazca Ridge. This anomaly appears to be laterally confined to the mantle

  18. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    PubMed

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  19. Runoff of pyrethroid insecticides from concrete surfaces following simulated and natural rainfalls.

    PubMed

    Jiang, Weiying; Haver, Darren; Rust, Michael; Gan, Jay

    2012-03-01

    Intensive residential use of insecticides has resulted in their ubiquitous presence as contaminants in urban surface streams. For pest eradication, urban hard surfaces such as concrete are often directly treated with pesticides, and wind/water can also carry pesticides onto hard surfaces from surrounding areas. This study expanded on previous bench-scale studies by considering pesticide runoff caused by irrigation under dry weather conditions and rain during the wet season, and evaluated the effects of pesticide residence time on concrete, single versus recurring precipitations, precipitation intensity, and concrete surface conditions, on pesticide transferability to runoff water. Runoff from concrete 1 d after pesticide treatment contained high levels of bifenthrin (82 μg/L) and permethrin (5143 μg/L for cis and 5518 μg/L for trans), indicating the importance of preventing water contact on concrete after pesticide treatments. Although the runoff transferability quickly decreased as the pesticide residence time on concrete increased, detectable residues were still found in runoff water after 3 months (89 d) exposure to hot and dry summer conditions. ANOVA analysis showed that precipitation intensities and concrete surface conditions (i.e., acid wash, silicone seal, stamping, and addition of microsilica) did not significantly affect the pesticide transferability to runoff. For concrete slabs subjected to natural rainfalls during the winter wet season, pesticide levels in the runoff decreased as the time interval between pesticide application and the rain event increased. However, bifenthrin and permethrin were still detected at 0.15-0.17 and 0.75-1.15 μg/L in the rain runoff after 7 months (221 d) from the initial treatment. In addition, pesticide concentrations showed no decrease between the two rainfall events, suggesting that concrete surfaces contaminated by pesticides may act as a reservoir for pesticide residues, leading to sustained urban runoff

  20. Fossil slabs attached to unsubducted fragments of the Farallon plate

    PubMed Central

    Wang, Yun; Forsyth, Donald W.; Rau, Christina J.; Carriero, Nina; Schmandt, Brandon; Gaherty, James B.; Savage, Brian

    2013-01-01

    As the Pacific–Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My. PMID:23509274

  1. Fossil slabs attached to unsubducted fragments of the Farallon plate.

    PubMed

    Wang, Yun; Forsyth, Donald W; Rau, Christina J; Carriero, Nina; Schmandt, Brandon; Gaherty, James B; Savage, Brian

    2013-04-01

    As the Pacific-Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My.

  2. Systematic variation in the depths of slabs beneath arc volcanoes

    USGS Publications Warehouse

    England, P.; Engdahl, R.; Thatcher, W.

    2004-01-01

    The depths to the tops of the zones of intermediate-depth seismicity beneath arc volcanoes are determined using the hypocentral locations of Engdahl et al. These depths are constant, to within a few kilometres, within individual arc segments, but differ by tens of kilometres from one arc segment to another. The range in depths is from 65 km to 130 km, inconsistent with the common belief that the volcanoes directly overlie the places where the slabs reach a critical depth that is roughly constant for all arcs. The depth to the top of the intermediate-depth seismicity beneath volcanoes correlates neither with age of the descending ocean floor nor with the thermal parameter of the slab. This depth does, however, exhibit an inverse correlation with the descent speed of the subducting plate, which is the controlling factor both for the thermal structure of the wedge of mantle above the slab and for the temperature at the top of the slab. We interpret this result as indicating that the location of arc volcanoes is controlled by a process that depends critically upon the temperature at the top of the slab, or in the wedge of mantle, immediately below the volcanic arc.

  3. Fossil slabs attached to unsubducted fragments of the Farallon plate.

    PubMed

    Wang, Yun; Forsyth, Donald W; Rau, Christina J; Carriero, Nina; Schmandt, Brandon; Gaherty, James B; Savage, Brian

    2013-04-01

    As the Pacific-Farallon spreading center approached North America, the Farallon plate fragmented into a number of small plates. Some of the microplate fragments ceased subducting before the spreading center reached the trench. Most tectonic models have assumed that the subducting oceanic slab detached from these microplates close to the trench, but recent seismic tomography studies have revealed a high-velocity anomaly beneath Baja California that appears to be a fossil slab still attached to the Guadalupe and Magdalena microplates. Here, using surface wave tomography, we establish the lateral extent of this fossil slab and show that it is correlated with the distribution of high-Mg andesites thought to derive from partial melting of the subducted oceanic crust. We also reinterpret the high seismic velocity anomaly beneath the southern central valley of California as another fossil slab extending to a depth of 200 km or more that is attached to the former Monterey microplate. The existence of these fossil slabs may force a reexamination of models of the tectonic evolution of western North America over the last 30 My. PMID:23509274

  4. Optical distortions in end-pumped zigzag slab lasers.

    PubMed

    Tang, Bing; Zhou, Tangjian; Wang, Dan; Li, Mi

    2015-04-01

    Ray tracing is performed to investigate the optical distortions in the end-pumped, zigzag slab. Optical path differences caused by temperature, slab deformation, and stress birefringence are calculated under uniform pumping; the results show a steep edge in the width dimension and a thermal lens with an effective focal length as short as several meters in the thickness dimension. Dependence of depolarization on total internal reflection phase retardance as well as the slab's cut angle is studied by the Jones matrix technique; results show that although at the pumping power of 10 kW, the mean depolarization of the 2.5  mm×30  mm×150.2  mm Nd:YAG slab is generally below 3%, and it increases rapidly with pumping power. Besides, for the 0°- or 60°-cut slab, an optimal phase retardance range of 5° to 13° exists, in which the depolarization loss can be lower than 0.5%. Finally, experiments on temperature and depolarization measurements verify the numerical results. PMID:25967178

  5. Cenozoic Plume-Slab Interaction Beneath the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Obrebski, M. J.; Allen, R. M.; Hung, S.; Pollitz, F. F.

    2009-12-01

    Here we present new images of the structure beneath the Pacific Northwest obtained by inverting both compressional and shear teleseismic body waves and using finite-frequency sensitivity kernels. The models use all available seismic data from the Earthscope Transportable Array, regional seismic networks and two Flexible Array experiments (Mendocino and FACES experiments) deployed on the west coast. By picking P, S and SKS arrivals manually and estimating station-to-station relative arrival times through cross correlation of the waveforms, we select only the highest quality data. East from the Juan de Fuca slab and north from the Mendocino Triple Junction, the mantle structure is dominated by high velocity blocks that are likely to be fragments of the Farallon slab. In the middle of the slab fragments, both our compressional (DNA09-P) and shear (DNA09-S) velocity models show a continuous low velocity anomaly that extends from the Yellowstone Caldera down into the lower mantle. We interpret this feature as a deep-seated mantle plume. The striking contrast between the slab-dominated mantle north from the MTJ and the continuous deep-seated Yellowstone mantle plume suggests the plume disrupted the Farallon slab during its ascent to the surface.

  6. TESTING AND ANALYSIS OF CAP CONCRETE STRESS AND STRAIN DUE TO SHRINKAGE, CREEP, AND EXPANSION FINAL REPORT

    SciTech Connect

    Guerrero, H.; Restivo, M.

    2011-08-01

    In-situ decommissioning of Reactors P- and R- at the Savannah River Site will require filling the reactor vessels with a special concrete based on materials such as magnesium phosphate, calcium aluminate or silica fume. Then the reactor vessels will be overlain with an 8 ft. thick layer of Ordinary Portland Cement (OPC) steel reinforced concrete, called the 'Cap Concrete'. The integrity of this protective layer must be assured to last for a sufficiently long period of time to avoid ingress of water into the reactor vessel and possible movement of radioactive contamination into the environment. During drying of this Cap Concrete however, shrinkage strains are set up in the concrete as a result of diffusion and evaporation of water from the top surface. This shrinkage varies with depth in the poured slab due to a non-uniform moisture distribution. This differential shrinkage results in restraint of the upper layers with larger shrinkage by lower layers with lesser displacements. Tensile stresses can develop at the surface from the strain gradients in the bulk slab, which can lead to surface cracking. Further, a mechanism called creep occurs during the curing period or early age produces strains under the action of restraining forces. To investigate the potential for surface cracking, an experimental and analytical program was started under TTQAP SRNL-RP-2009-01184. Slab sections made of Cap Concrete mixture were instrumented with embedded strain gages and relative humidity sensors and tested under controlled environmental conditions of 23 C and relative humidities (RH) of 40% and 80% over a period of 50 days. Calculation methods were also developed for predictions of stress development in the full-scale concrete placement over the reactor vessels. These methods were evaluated by simulating conditions for the test specimens and the calculation results compared to the experimental data. A closely similar test with strain gages was performed by Kim and Lee for a

  7. Performance of Zinc Anodes for Cathodic Protection of Reinforced Concrete Bridges

    SciTech Connect

    Covino, Bernard S. Jr.; Cramer, Stephen D.; Bullard, Sophie J.; Holcomb, Gordon R.; Russell, James H.; Collins, W. Keith; Laylor, Martin H.; Cryer, Curtis B.

    2002-03-01

    Operation of thermal spray zinc (Zn) anodes for cathodic protection (CP) of reinforced concrete structures was investigated in laboratory and field studies conducted by the Albany Research Center (ARC) in collaboration with the Oregon Department of Transportation. The purposes of the research presented in this report were: evaluate the need for preheating concrete to improve the adhesion of the anode; estimate the service life of thermal spray Zn CP anodes; determine the optimum thickness for Zn CP anodes; characterize the anode-concrete interfacial chemistry; and correlate field and laboratory results. Laboratory studies involved accelerated electrochemical aging of thermal sprayed Zn anodes on concrete slabs, some of which were periodically wetted while others were unwetted. Concrete used in the slabs contained either 1.2 or 3 kg NaCl /m3 (2 or 5 lbs NaCl /yd3) as part of the concrete mix design. The Zn anodes were applied to the slabs using the twin wire arc-spray technique. Half of the slabs were preheated to 120-160 C (250-320 F) to improve the initial Zn anode bond strength and the other half were not. Accelerated aging was done at a current density of 0.032 A/m2 (3 mA/ft2), 15 times that used on Oregon DOT Coastal bridges, i.e, . 0.0022 A/m2 (0.2 mA/ft2) Cores from the Cape Creek Bridge (OR), the Richmond San Rafael Bridge (CA), and the East Camino Underpass (CA) were used to study the anode-concrete interfacial chemistry, to relate the chemistry to electrochemical age at the time of sampling, and to compare the chemistry of the field anodes to the chemistry of anodes from the laboratory studies. Cores from a CALTRANS study of a silane sealant used prior to the application of the Zn anodes and cores with galvanized rebar from the Longbird Bridge (Bermuda) were also studied. Aged laboratory and field anodes were characterized by measuring some or all of the following parameters: thickness, bond strength, anode-concrete interfacial chemistry, bulk chemistry

  8. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  9. Role of Hydrogen in stagnant slabs and big mantle wedge

    NASA Astrophysics Data System (ADS)

    Ohtani, E.; Zhao, D.

    2008-12-01

    Recent seismic tomography data imply that subducting slabs are stagnant at some regions such as beneath Japan and Northeast China [1, 2]. The stagnant slab can have an important effect on the overlying transition zone and upper mantle. A big mantle wedge (BMW) model has been proposed by Zhao [2], in which the stagnant slab in the transition zone could play an essential role in the intra-plate volcanic activities overlying the slab. Water released by the stagnant slab could be important for such igneous activities, such as Mt. Changbai in Northeast China. In cold subducting slabs, several hydrous minerals together with nominally anhydrous minerals accommodate OH and transport water into the transition zone [3]. The effect of dehydration of the stagnant slab has been analyzed by Richard et al. [4]. They argued that warming of the stagnant slab due to heat conduction could play an important role for the slab dehydration, and local oversaturation could be achieved due to decrease of the water solubility in minerals with temperature, and fluid can be formed in the overlying transition zone. We determined the hydrogen diffusion in wadsleyite and ringwoodite under the transition zone conditions in order to clarify the deep processes of the stagnant slabs, and found that diffusion rates of hydrogen are comparable with that of olivine [5]. We also determined the dihedral angle of aqueous fluid between wadsleyite grains and majorite grains under the transition zone conditions. The dihedral angles are very small, around 20-40 degrees, indicating that the oversaturated fluids can move rapidly by the percolation mechanism in the transition zone. The fluids moved to the top of the 410 km discontinuity can generate heavy hydrous melts due to a larger depression of the wet solidus at the base of the upper mantle [6]. Gravitationally stable hydrous melts can be formed at the base of the upper mantle, which is consistent with seismological observations of the low velocity beneath

  10. Abrupt tectonics and rapid slab detachment with grain damage.

    PubMed

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-02-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound.

  11. Dynamic triggering of deep earthquakes within a fossil slab

    NASA Astrophysics Data System (ADS)

    Cai, Chen; Wiens, Douglas A.

    2016-09-01

    The 9 November 2009 Mw 7.3 Fiji deep earthquake is the largest event in a region west of the Tonga slab defined by scattered seismicity and velocity anomalies. The main shock rupture was compact, but the aftershocks were distributed along a linear feature at distances of up to 126 km. The aftershocks and some background seismicity define a sharp northern boundary to the zone of outboard earthquakes, extending westward toward the Vitiaz deep earthquake cluster. The northern earthquake lineament is geometrically similar to tectonic reconstructions of the relict Vitiaz subduction zone at 8-10 Ma, suggesting the earthquakes are occurring in the final portion of the slab subducted at the now inactive Vitiaz trench. A Coulomb stress change calculation suggests many of the aftershocks were dynamically triggered. We propose that fossil slabs contain material that is too warm for earthquake nucleation but may be near the critical stress susceptible to dynamic triggering.

  12. Abrupt tectonics and rapid slab detachment with grain damage

    PubMed Central

    Bercovici, David; Schubert, Gerald; Ricard, Yanick

    2015-01-01

    A simple model for necking and detachment of subducting slabs is developed to include the coupling between grain-sensitive rheology and grain-size evolution with damage. Necking is triggered by thickened buoyant crust entrained into a subduction zone, in which case grain damage accelerates necking and allows for relatively rapid slab detachment, i.e., within 1 My, depending on the size of the crustal plug. Thick continental crustal plugs can cause rapid necking while smaller plugs characteristic of ocean plateaux cause slower necking; oceanic lithosphere with normal or slightly thickened crust subducts without necking. The model potentially explains how large plateaux or continental crust drawn into subduction zones can cause slab loss and rapid changes in plate motion and/or induce abrupt continental rebound. PMID:25605890

  13. Systematic effects induced by a flat isotropic dielectric slab.

    PubMed

    Macculi, Claudio; Zannoni, Mario; Peverini, Oscar Antonio; Carretti, Ettore; Tascone, Riccardo; Cortiglioni, Stefano

    2006-07-20

    The instrumental polarization induced by a flat isotropic dielectric slab in microwave frequencies is discussed. We find that, in spite of its isotropic nature, such a dielectric can produce spurious polarization either by transmitting incoming anisotropic diffuse radiation or emitting when it is thermally inhomogeneous. We present evaluations of instrumental polarization generated by materials usually adopted in radio astronomy, by using the Mueller matrix formalism. As an application, results for different slabs in front of a 32 GHz receiver are discussed. Such results are based on measurements of their complex dielectric constants. We evaluate that a 0.33 cm thick Teflon slab introduces negligible spurious polarization (<2.6 x 10(-5) in transmission and <6 x 10(-7) in emission), even minimizing the leakage (<10(-8) from Q to U Stokes parameters, and vice versa) and the depolarization (approximately 1.3 x 10(-3)).

  14. Slab detachment of subducted Indo-Australian plate beneath Sunda arc, Indonesia

    NASA Astrophysics Data System (ADS)

    Kundu, Bhaskar; Gahalaut, V. K.

    2011-04-01

    Necking, tearing, slab detachment and subsequently slab loss complicate the subduction zone processes and slab architecture. Based on evidences which include patterns of seismicity, seismic tomography and geochemistry of arc volcanoes, we have identified a horizontal slab tear in the subducted Indo-Australian slab beneath the Sunda arc. It strongly reflects on trench migration, and causes along-strike variations in vertical motion and geochemically distinct subduction-related arc magmatism. We also propose a model for the geodynamic evolution of slab detachment.

  15. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseny, Jonathan A.; Arp, Larry D.; Lindbergh, Charles

    1992-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar base subjected to 1-atm internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design (1) during construction, (2) under pressurization, and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the airtightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the Moon.

  16. Concrete lunar base investigation

    NASA Technical Reports Server (NTRS)

    Lin, T. D.; Senseney, Jonathan A.; Arp, Larry Dean; Lindbergh, Charles

    1989-01-01

    This paper presents results of structural analyses and a preliminary design of a precast, prestressed concrete lunar based subjected to one atmosphere internal pressure. The proposed infrastructure measures 120 ft in diameter and 72 ft in height, providing 33,000 sq ft of work area for scientific and industrial operations. Three loading conditions were considered in the design: (1) during construction; (2) under pressurization; and (3) during an air-leak scenario. A floating foundation, capable of rigid body rotation and translation as the lunar soil beneath it yields, was developed to support the infrastructure and to ensure the air-tightness of the system. Results reveal that it is feasible to use precast, prestressed concrete for construction of large lunar bases on the moon.

  17. Waveform modeling the deep slab beneath northernmost Nevada

    NASA Astrophysics Data System (ADS)

    Helmberger, D. V.; Sun, D.

    2011-12-01

    The interactions between subducted slab and transition zone are crucial issues in dynamic modeling. Previous mantle convection studies have shown that various viscosity structures can result in various slab shape, width, and edge sharpness. Recent tomographic images based on USArray data reveals strong multi-scale heterogeneous upper mantle beneath western US. Among those features, a slab-like fast anomaly extends from 300 to 600 km depth below Nevada and western Utah, which was suggested as a segmented chunk of the Farallon slab. But we still missing key information about the details of this structure and whether this structure flatten outs in the transition zone, where various tomographic models display inconsistent images. The study of multipathing and waveform broadening around sharp features have been proved a efficient way to study such features. Here, we use both P and S waveform data from High Lava Plains seismic experiments and USArray to produce a detailed image. If we amplify the Schmandt and Humphreys [2010] 's S-wave tomography model by 1.5, we can produce excellent travel-time fits. But the waveform distortions are not as strong as those observed in data for events coming from the southeast, which suggest a much sharper anomaly. The waveform broadening features are not observed for events arriving from northwestern. By fitting the SH waveform data, we suggest that this slab-like structure dips ~35° to the southeast, extending to a depth near 660 km with a velocity increase of about 5 per cent. To generate corresponding P model, we adapt the SH wave model and scale the model using a suite of R (=dlnVs/dlnVp) values. We find that synthetics from the model with R ≈ 2 can fit the observed data, which confirms the segmented slab interpretation of this high velocity anomaly.

  18. Concrete containment aging study

    SciTech Connect

    Pachner, J.; Tai, T.M.; Naus, D.

    1994-04-01

    In 1989, IAEA initiated a pilot study on the management of aging of nuclear power plant components. The Phase I and II studies of concrete containment are discussed. With the data base, plant owners will be able to review and enhance their existing programs. IAEA will analyze data provided by participating plants and the report is scheduled to be released by late 1994 (final report release mid-1995).

  19. Laser ablation of concrete.

    SciTech Connect

    Savina, M.

    1998-10-05

    Laser ablation is effective both as an analytical tool and as a means of removing surface coatings. The elemental composition of surfaces can be determined by either mass spectrometry or atomic emission spectroscopy of the atomized effluent. Paint can be removed from aircraft without damage to the underlying aluminum substrate, and environmentally damaged buildings and sculptures can be restored by ablating away deposited grime. A recent application of laser ablation is the removal of radioactive contaminants from the surface and near-surface regions of concrete. We present the results of ablation tests on concrete samples using a high power pulsed Nd:YAG laser with fiber optic beam delivery. The laser-surface interaction was studied on various model systems consisting of Type I Portland cement with varying amounts of either fine silica or sand in an effort to understand the effect of substrate composition on ablation rates and mechanisms. A sample of non-contaminated concrete from a nuclear power plant was also studied. In addition, cement and concrete samples were doped with non-radioactive isotopes of elements representative of cooling waterspills, such as cesium and strontium, and analyzed by laser-resorption mass spectrometry to determine the contamination pathways. These samples were also ablated at high power to determine the efficiency with which surface contaminants are removed and captured. The results show that the neat cement matrix melts and vaporizes when little or no sand or aggregate is present. Surface flows of liquid material are readily apparent on the ablated surface and the captured aerosol takes the form of glassy beads up to a few tens of microns in diameter. The presence of sand and aggregate particles causes the material to disaggregate on ablation, with intact particles on the millimeter size scale leaving the surface. Laser resorption mass spectrometric analysis showed that cesium and potassium have similar chemical environments in the

  20. Expansion of a cold non-neutral plasma slab

    SciTech Connect

    Karimov, A. R.; Yu, M. Y.; Stenflo, L.

    2014-12-15

    Expansion of the ion and electron fronts of a cold non-neutral plasma slab with a quasi-neutral core bounded by layers containing only ions is investigated analytically and exact solutions are obtained. It is found that on average, the plasma expansion time scales linearly with the initial inverse ion plasma frequency as well as the degree of charge imbalance, and no expansion occurs if the cold plasma slab is stationary and overall neutral. However, in both cases, there can exist prominent oscillations on the electron front.

  1. Seismic Behaviour of Masonry Vault-Slab Structures

    SciTech Connect

    Chesi, Claudio; Butti, Ferdinando; Ferrari, Marco

    2008-07-08

    Spandrel walls typically play a structural role in masonry buildings, transferring load from a slab to the supporting vault. Some indications are given in the literature on the behaviour of spandrels under the effect of vertical loads, but little attention is given to the effect coming from lateral forces acting on the building. An opportunity to investigate this problem has come from the need of analyzing a monumental building which was damaged by the Nov. 24, 2004 Val Sabbia earthquake in the north of Italy. The finite element model set up for the analysis of the vault-spandrel-slab system is presented and the structural role resulting for the spandrels is discussed.

  2. Investigating the Farallon Slab with Probabilistic Traveltime Tomography

    NASA Astrophysics Data System (ADS)

    Burdick, S.; Lekic, V.

    2015-12-01

    Subduction of the Farallon Plate beneath North America played a key role in its tectonic development. Seismic constraints on the subducted remnants of the Farallon slab provide evidence needed to better understand the polarity and timing of subduction, the structure of the plate, and its relation to tectonic events like the uplift of the Rocky Mountains. Over the course of its deployment, the USArray Transportable Array (TA) has offered ideal data coverage for investigating the Farallon and related slabs in the upper mantle using seismic tomography and converted wave imaging. With its arrival in the east, data from the TA provides the crossing paths necessary to image the upper reaches of the oldest parts of the plate at mid-mantle depths. We perform a global tomographic inversion using the latest P-wave traveltime picks from TA combined with global catalogue data. While the new velocity model resolves upper mantle slab structure at unprecedented detail in the east, a quantitative grasp of model uncertainty is needed to reliably relate velocity variations to the thermal and mechanical properties of the slabs. In order to quantify the uncertainty of our tomographic model, we employ Transdimensional Hierarchical Bayesian (THB) inversion. THB tomography uses Markov chain Monte Carlo to create an ensemble of velocity models that can be analyzed to statistically infer the best-fit velocities, their uncertainties, and tradeoffs. We present and discuss various representations of uncertainty quantified by THB tomography—error bars, model covariance, multimodal distributions of velocity values—and demonstrate its importance for furthering our understanding of the slab fragments beneath North America. We illustrate how we are able to distinguish between spurious slab fragments from those required by the data. By examining bimodal velocity distributions, we put error bars on the spatial extent of the slabs that can then be analyzed using thermal diffusion modeling. By

  3. Links between fluid circulation, temperature, and metamorphism in subducting slabs

    USGS Publications Warehouse

    Spinelli, G.A.; Wang, K.

    2009-01-01

    The location and timing of metamorphic reactions in subducting lithosph??re are influenced by thermal effects of fluid circulation in the ocean crust aquifer. Fluid circulation in subducting crust extracts heat from the Nankai subduction zone, causing the crust to pass through cooler metamorphic faci??s than if no fluid circulation occurs. This fluid circulation shifts the basalt-to-eclogite transition and the associated slab dehydration 14 km deeper (35 km farther landward) than would be predicted with no fluid flow. For most subduction zones, hydrothermal cooling of the subducting slab will delay eclogitization relative to estimates made without considering fluid circulation. Copyright 2009 by the American Geophysical Union.

  4. Slab Driven Mantle Deformation and Plate-Mantle Decoupling

    NASA Astrophysics Data System (ADS)

    Jadamec, M. A.; MacDougall, J.; Fischer, K. M.

    2015-12-01

    Observations of shear wave splitting derived from local sources in subduction zones suggest viscous flow in the mantle wedge is commonly non-parallel to both the subducting plate velocity vector and the motion of the overriding plate. However, far from the subduction zone trench, observations indicate the fast axis of shear wave splitting tends to align with the velocity vector of the surface plates. Similarly, previous 3D geodynamic models show the slab can drive local decoupling of the mantle and surface plates, in both direction and speed. This suggests that there is some distance from the trench over which there is significant decoupling of the mantle flow from surface plate motion, and that this decoupling zone then decays with continued distance from the trench, resulting in far-field plate-mantle coupling. Here we present results from geodynamic models of subduction coupled with calculations of olivine fabric deformation and synthetic splitting to 1) examine the influence of slab strength, slab dip, and non-Newtonian viscosity on the deformation fabric in the mantle wedge and subslab mantle and 2) quantify the spatial extent and intensity of this slab driven decoupling zone. We compare the deformation fabric in a 2D corner flow solution with varying dip to that of a 2D free subduction model with varying initial dip and slab strength. The results show that using an experimentally derived flow law to define viscosity (both diffusion creep and dislocation creep deformation mechanisms) has a first order effect on the viscosity structure and flow velocity in the upper mantle. The free subduction models using the composite viscosity formulation produce a zone of subduction induced mantle weakening that results in reduced viscous support of the slab and lateral variability in coupling of the mantle to the base of the surface plates. The maximum yield stress, which places an upper bound on the slab strength, can also have a significant impact on the viscosity

  5. Investigation of factors influencing chloride extraction efficiency during electrochemical chloride extraction from reinforcing concrete

    NASA Astrophysics Data System (ADS)

    Sharp, Stephen R.

    2005-11-01

    Electrochemical chloride extraction (ECE) is an accelerated bridge restoration method similar to cathodic protection, but operates at higher current densities and utilizes a temporary installation. Both techniques prolong the life of a bridge by reducing the corrosion rate of the reinforcing bar when properly applied. ECE achieves this by moving chlorides away from the reinforcement and out of the concrete while simultaneously increasing the alkalinity of the electrolyte near the reinforcing steel. Despite the proven success, significant use of ECE has not resulted in part due to an incomplete understanding in the following areas: (1) An estimation of the additional service life that can be expected following treatment when the treated member is again subjected to chlorides; (2) The cause of the decrease in current flow and, therefore, chloride removal rate during treatment; (3) Influence of water-to-cement (w/c) ratio and cover depth on the time required for treatment. This dissertation covers the research that is connected to the last two areas listed above. To begin examining these issues, plain carbon steel reinforcing bars (rebar) were embedded in portland cement concrete slabs of varying water-to-cement (w/c) ratios and cover depths, and then exposed to chlorides. A fraction of these slabs had sodium chloride added as an admixture, with all of the slabs subjected to cyclical ponding with a saturated solution of sodium chloride. ECE was then used to remove the chlorides from these slabs while making electrical measurements in the different layers between the rebar (cathode) and the titanium mat (anode) to follow the progress of the ECE process. During this study, it was revealed that the resistance of the outer concrete surface layer increases during ECE, inevitably restricting current flow, while the resistance of the underlying concrete decreases or remains constant. During ECE treatment, a white residue formed on the surface of the concrete. Analyses of the

  6. Slab fluid release: localized in space and time

    NASA Astrophysics Data System (ADS)

    John, T.; Gussone, N. C.; Podladchikov, Y. Y.

    2012-12-01

    As subducting oceanic plates descend into the Earth's mantle, increasing pressures and temperatures lead to the progressive destabilization of hydrous mineral phases and the release of H2O-rich fluids. Some fraction of these fluids ascend into the overlying mantle wedge, inducing partial melting, and their "chemical freight" is thought to contribute to the distinctive chemical signature of the resulting arc magmas. Field evidences suggest that channelized fluid flow may be the dominant mechanism for intra-slab fluid flow. Along their pathways within slabs, these fluids can trigger mineral reactions and produce chemical changes in rocks with which they interact. However, the spatial and temporal scales of this fluid flow remain largely unknown. We employed the Ca and Li isotope systems on a fossil high-pressure fluid pathway and its associated reaction halo (Chinese Tianshan), formed at ~70 km depth during subduction of a coherent oceanic slab, allowing us to constrain the fluid flux, fluid source and the duration of the fluid-rock interaction. In the reaction halo, the degree of eclogitization along with Ca concentration increases towards the vein. A high fluid flux is required to obtain the observed Ca increase and changes in δ44/40Ca. The Ca isotope composition indicate mixing of two distinct Ca sources, the wall-rock blueschist and an external fluid source, the latter of which is enriched in heavy Ca isotopes. The relatively high δ44/40Ca (>1.3‰) of the infiltrating fluid is suggestive of partially hydrated slab mantle as the fluid source. Alternatively, Ca derived from MORB, (0.7 to 0.9‰) and AOC (0.6 to 1.0‰) might evolve towards heavier Ca isotope values while it is ascending through the slab and reacting with wall-rocks and forming carbonates, which are usually associated with the flow structures. This is because calcium carbonate precipitation preferentially removes light Ca from the fluid while the residual fluid will get heavier proportional to

  7. Magnetic Launch Assist Experimental Track

    NASA Technical Reports Server (NTRS)

    1999-01-01

    In this photograph, a futuristic spacecraft model sits atop a carrier on the Magnetic Launch Assist System, formerly known as the Magnetic Levitation (MagLev) System, experimental track at the Marshall Space Flight Center (MSFC). Engineers at MSFC have developed and tested Magnetic Launch Assist technologies that would use magnetic fields to levitate and accelerate a vehicle along a track at very high speeds. Similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway, a Magnetic Launch Assist system would electromagnetically drive a space vehicle along the track. A full-scale, operational track would be about 1.5-miles long and capable of accelerating a vehicle to 600 mph in 9.5 seconds. This track is an advanced linear induction motor. Induction motors are common in fans, power drills, and sewing machines. Instead of spinning in a circular motion to turn a shaft or gears, a linear induction motor produces thrust in a straight line. Mounted on concrete pedestals, the track is 100-feet long, about 2-feet wide, and about 1.5-feet high. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  8. Concrete Durability in Harsh Environmental Conditions Exposed to Freeze Thaw Cycles

    NASA Astrophysics Data System (ADS)

    Hamze, Youssef

    Under line Pathology of Materials; one of the environmental causes of damage effects on concrete is freeze thaw cycles, which deteriorate the concrete exposed to water in cold weather. An example of old concrete is a dam project that was built in Canada, in the early 1909-1913. This project was reconstructed in 1932, 1934 and 1972, and required renovation due to the ice abrasion with the freeze/thaw cycles. Before completing any renovation, it is required to analyze the structural stability and the concrete failures of this dam. An investigation was conducted to determine the quality of the concrete in the Piers and in the Bridge Deck Slab. It was also required to determine the basic materials' properties that constitute this project. This will improve the analysis of its stability [10]. Core samples were examined and used as test samples, for the Alkali-Silica reactivity test samples, as well as the compressive strength test, the Chloride Ion test, and the freeze thaw testing which was performed on two sets of 12 concrete core samples that were taken from different locations in the project. These locations are the representations of the age of the concrete. Thus, the age difference between the samples' two sets is four decades. Testing was performed on prisms cut from cores. ASTM C-666 procedure (A) was applied using an automatic test system [6]. It was suggested that a plan for renovation of this project should be performed after the analysis is undertaken to assess the conditions estimating the remaining life of the concrete in this project [15].

  9. Yield Line Evaluation Methodology for Reinforced Concrete Structures

    1998-12-30

    Yield line theory is an analytical technique that can be used to determine the ultimate bending capacity of flat reinforced concrete plates subject to distributed and concentrated loadings. Alternately, yield line theory, combined with rotation limits can be used to determine the energy absorption capacity of plates subject to impulsive and impact loadings. Typical components analyzed by yield line theory are basemats, floor and roof slabs subject to vertical loads along with walls subject tomore » out of plane loadings. One limitation of yield line theory is that it is computationally difficult to evaluate some mechanisms. This problem is aggravated by the complex geometry and reinforcing layouts commonly found in practice. The program has the capability to either evaluate a single user defined mechanism or to iterate over a range of mechanisms to determine the minimum ultimate capacity. The program is verified by comparison to a series of yield line mechanisms with known solutions.« less

  10. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-07-14

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure.

  11. A Monitoring Method Based on FBG for Concrete Corrosion Cracking

    PubMed Central

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  12. A Monitoring Method Based on FBG for Concrete Corrosion Cracking.

    PubMed

    Mao, Jianghong; Xu, Fangyuan; Gao, Qian; Liu, Shenglin; Jin, Weiliang; Xu, Yidong

    2016-01-01

    Corrosion cracking of reinforced concrete caused by chloride salt is one of the main determinants of structure durability. Monitoring the entire process of concrete corrosion cracking is critical for assessing the remaining life of the structure and determining if maintenance is needed. Fiber Bragg Grating (FBG) sensing technology is extensively developed in photoelectric monitoring technology and has been used on many projects. FBG can detect the quasi-distribution of strain and temperature under corrosive environments, and thus it is suitable for monitoring reinforced concrete cracking. According to the mechanical principle that corrosion expansion is responsible for the reinforced concrete cracking, a package design of reinforced concrete cracking sensors based on FBG was proposed and investigated in this study. The corresponding relationship between the grating wavelength and strain was calibrated by an equal strength beam test. The effectiveness of the proposed method was verified by an electrically accelerated corrosion experiment. The fiber grating sensing technology was able to track the corrosion expansion and corrosion cracking in real time and provided data to inform decision-making for the maintenance and management of the engineering structure. PMID:27428972

  13. Prolong the life of concrete

    SciTech Connect

    Ilaria, J.E.

    1995-07-01

    The most widely used construction materials are concrete and related cement-based products, such as common building block. The excellent reputation of concrete as a durable material of construction has been questioned i modern times. The expanded use of Portland cement concrete, the increase in corrosive environments, and lack of understanding of the composition of concrete all indicate a need for methods to increase life expectancy. Chemical and mechanical factors can shorten service life. Understanding these properties will lead to the proper application of protective coatings.

  14. Microwave NDE for Reinforced Concrete

    NASA Astrophysics Data System (ADS)

    Arunachalam, Kavitha; Melapudi, Vikram R.; Rothwell, Edward J.; Udpa, Lalita; Udpa, Satish S.

    2006-03-01

    Nondestructive assessment of the integrity of civil structures is of paramount importance for ensuring safety. In concrete imaging, radiography, ground penetrating radar and infrared thermography are some of the widely used techniques for health monitoring. Other emerging technologies that are gaining impetus for detecting and locating flaws in steel reinforcement bar include radioactive computed tomography, microwave holography, microwave and acoustic tomography. Of all the emerging techniques, microwave NDT is a promising imaging modality largely due to their ability to penetrate thick concrete structures, contrast between steel rebar and concrete and their non-radioactive nature. This paper investigates the feasibility of a far field microwave NDE technique for reinforced concrete structures.

  15. RAW COPPER SLABS USED IN CASTING OPERATIONS AT BUFFALO PLANT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    RAW COPPER SLABS USED IN CASTING OPERATIONS AT BUFFALO PLANT OF AMERICAN BRASS COMPANY. MATERIALS STORAGE FOR THE CAST SHOP NOW OCCUPIES A PORTION OF THE ORIGINAL BRASS MILL BUILT BY THE BUFFALO COPPER AND BRASS ROLLING MILL IN 1906-07 AND EXPANDED IN 1911. - American Brass Foundry, 70 Sayre Street, Buffalo, Erie County, NY

  16. Topological optical Bloch oscillations in a deformed slab waveguide.

    PubMed

    Longhi, Stefano

    2007-09-15

    Spatial Bloch oscillations of light waves of purely topological origin are theoretically shown to exist in weakly deformed slab waveguides. As the optical rays trapped in the deformed waveguide can roll freely, wave diffraction is strongly affected by the topology of the deformed surface, which can be tailored to simulate the effect of a tilted periodic refractive index.

  17. 6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. NO. 2 CONTINUOUS SLAB REHEATING FURNACE OF THE 160' PLATE MILL. FURNACE SHOWING DURING DEMOLITION. C HOOK USED TO CHANGE ROLLS IS VISIBLE IN FRONT OF FURNACE. - U.S. Steel Homestead Works, 160" Plate Mill, Along Monongahela River, Homestead, Allegheny County, PA

  18. 52. SLABBING AND BLOOMING MILLS AND FOUNDRY (IN FOREGROUND), AS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    52. SLABBING AND BLOOMING MILLS AND FOUNDRY (IN FOREGROUND), AS SEEN FROM THE CLARK AVENUE BRIDGE. AT RIGHT, REAR, IS THE BASIC OXYGEN FURNACE. VIEW LOOKING NORTH. - Corrigan, McKinney Steel Company, 3100 East Forty-fifth Street, Cleveland, Cuyahoga County, OH

  19. Subduction of the Indian Lithospheric Slab Beneath Tibet

    NASA Astrophysics Data System (ADS)

    Zhou, H.; Murphy, M. A.

    2001-12-01

    In order to characterize the dynamics of continent-continent collisions, it is essential to define its present geometry and physical state. We report the results of a seismic tomography study of the Tibet-Himalayan collision zone, using a global data set, which indicates that the Indian lithospheric slab has been subducted subhorizontally beneath nearly the entire Tibetan plateau to depths of 165-260 km. Tibetan velocity structure is low in the crust and high in mantle lithosphere at depths between 75-120 km. An asthenospheric layer overlies the subducted Indian slab at depths between 120-165 km beneath the Tibetan plateau. There is a large low-velocity anomaly north of the Indus-Yalu suture zone between 85ºE and 93ºE that extends from the crust down to at least 310 km depth beneath the plateau. This low-velocity anomaly is indicative of mantle upwelling through a weakened zone of the subducted slab. The extent to which India has subducted beneath Tibet, as revealed by these seismic images, is comparable to estimates of crustal shortening across the Himalaya. Moreover, we hypothesize that the buoyancy due to heating of the subducted Indian slab and the existence of the asthenospheric layer contribute to the elevation and flatness of the Tibetan plateau.

  20. Photonic-crystal slab for terahertz-wave technology platform

    NASA Astrophysics Data System (ADS)

    Fujita, Masayuki

    2016-03-01

    Photonic crystals manipulate photons in a manner analogous to solid-state crystals, and are composed of a dielectric material with a periodic refractive index distribution. In particular, two-dimensional photonic-crystal slabs with high index contrasts (semiconductor/air) are promising for practical applications, owing to the strong optical confinement in simple, thin planar structures. This paper presents the recent progress on a silicon photonic-crystal slab as a technology platform in the terahertz-wave region, which is located between the radio and light wave regions (0.1-10 THz). Extremely low-loss (<0.1 dB/cm) terahertz waveguides based on the photonic-bandgap effect as well as dynamic control and modulation of a terahertz-wave transmission in a photonic-crystal slab by the effective interaction between photoexcited carriers and the terahertz-wave trapping due to the photonic band-edge effect are demonstrated. Terahertz photonic-crystal slabs hold the potential for developing ultralow-loss, compact terahertz components and integrated devices used in applications including wireless communication, spectroscopic sensing, and imaging.

  1. Tensor-guided fitting of subduction slab depths

    USGS Publications Warehouse

    Bazargani, Farhad; Hayes, Gavin P.

    2013-01-01

    Geophysical measurements are often acquired at scattered locations in space. Therefore, interpolating or fitting the sparsely sampled data as a uniform function of space (a procedure commonly known as gridding) is a ubiquitous problem in geophysics. Most gridding methods require a model of spatial correlation for data. This spatial correlation model can often be inferred from some sort of secondary information, which may also be sparsely sampled in space. In this paper, we present a new method to model the geometry of a subducting slab in which we use a data‐fitting approach to address the problem. Earthquakes and active‐source seismic surveys provide estimates of depths of subducting slabs but only at scattered locations. In addition to estimates of depths from earthquake locations, focal mechanisms of subduction zone earthquakes also provide estimates of the strikes of the subducting slab on which they occur. We use these spatially sparse strike samples and the Earth’s curved surface geometry to infer a model for spatial correlation that guides a blended neighbor interpolation of slab depths. We then modify the interpolation method to account for the uncertainties associated with the depth estimates.

  2. 62. SUPPORT CARRIAGE ASSEMBLY AT BASE OF VAL LAUNCHING SLAB ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    62. SUPPORT CARRIAGE ASSEMBLY AT BASE OF VAL LAUNCHING SLAB AFTER TRANSFER FROM BARGE IN FOREGROUND, February, 11, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  3. 30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    30. VAL LOOKING DOWN THE LAUNCHER SLAB STAIRS AT THE PROJECTILE LOADING CAR AND LOADING PLATFORM ADJACENT TO THE PROJECTILE LOADING DECK AND LAUNCHER BRIDGE. - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  4. 63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW LOOKING DOWN VAL LAUNCHING SLAB SHOWING DRIVE GEARS, CABLES, LAUNCHER RAILS, PROJECTILE CAR AND SUPPORT CARRIAGE, April 8, 1948. (Original photograph in possession of Dave Willis, San Diego, California.) - Variable Angle Launcher Complex, Variable Angle Launcher, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA

  5. Enhancement of polarizabilities of cylinders with cylinder-slab resonances

    PubMed Central

    Xiao, Meng; Huang, Xueqin; Liu, H.; Chan, C. T.

    2015-01-01

    If an object is very small in size compared with the wavelength of light, it does not scatter light efficiently. It is hence difficult to detect a very small object with light. We show using analytic theory as well as full wave numerical calculation that the effective polarizability of a small cylinder can be greatly enhanced by coupling it with a superlens type metamaterial slab. This kind of enhancement is not due to the individual resonance effect of the metamaterial slab, nor due to that of the object, but is caused by a collective resonant mode between the cylinder and the slab. We show that this type of particle-slab resonance which makes a small two-dimensional object much “brighter” is actually closely related to the reverse effect known in the literature as “cloaking by anomalous resonance” which can make a small cylinder undetectable. We also show that the enhancement of polarizability can lead to strongly enhanced electromagnetic forces that can be attractive or repulsive, depending on the material properties of the cylinder. PMID:25641391

  6. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  7. 11. VIEW OF PLACING STEEL FOR POURING OF FIRST SLABS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. VIEW OF PLACING STEEL FOR POURING OF FIRST SLABS OF SPILLWAY CHUTE FROM VICINITY OF WESTERN SIDE OF SPILLWAY APRON, FACING SOUTH. September 1928 - Cushman No. 1 Hydroelectric Power Plant, Spillway, North Fork of Skokomish River, 5 miles West of Hood Canal, Hoodsport, Mason County, WA

  8. Flood tracking chart, Amite River basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence; McCallum, Brian E.; Brazelton, Sebastian R.

    1996-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  9. Flood tracking chart, Amite River Basin, Louisiana

    USGS Publications Warehouse

    Callender, Lawrence E.; McCallum, Brian E.; Brazelton, Sebastian R.; Anderson, Mary L.; Ensminger, Paul A.

    1998-01-01

    The Amite River Basin flood tracking chart is designed to assist emergency response officials and the local public in making informed decisions about the safety of life and property during floods along the Amite and Comite Rivers and Bayou Manchac in southeastern Louisiana. This chart is similar in concept to the charts used to track hurricanes; the user can record the latest river stage information at selected gaging stations and the latest flood crest predictions. The latest stage data can be compared to historical flood peaks as well as to the slab or pier elevation of a threatened property. The chart also discusses how to acquire the latest river stage data from the Internet and a recorded voice message.

  10. Slab melting and magma formation beneath the southern Cascade arc

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.; Rasmussen, D. J.; Weis, D.

    2016-07-01

    The processes that drive magma formation beneath the Cascade arc and other warm-slab subduction zones have been debated because young oceanic crust is predicted to largely dehydrate beneath the forearc during subduction. In addition, geochemical variability along strike in the Cascades has led to contrasting interpretations about the role of volatiles in magma generation. Here, we focus on the Lassen segment of the Cascade arc, where previous work has demonstrated across-arc geochemical variations related to subduction enrichment, and H-isotope data suggest that H2O in basaltic magmas is derived from the final breakdown of chlorite in the mantle portion of the slab. We use naturally glassy, olivine-hosted melt inclusions (MI) from the tephra deposits of eight primitive (MgO > 7 wt%) basaltic cinder cones to quantify the pre-eruptive volatile contents of mantle-derived melts in this region. The melt inclusions have B concentrations and isotope ratios that are similar to mid-ocean ridge basalt (MORB), suggesting extensive dehydration of the downgoing plate prior to reaching sub-arc depths and little input of slab-derived B into the mantle wedge. However, correlations of volatile and trace element ratios (H2O/Ce, Cl/Nb, Sr/Nd) in the melt inclusions demonstrate that geochemical variability is the result of variable addition of a hydrous subduction component to the mantle wedge. Furthermore, correlations between subduction component tracers and radiogenic isotope ratios show that the subduction component has less radiogenic Sr and Pb than the Lassen sub-arc mantle, which can be explained by melting of subducted Gorda MORB beneath the arc. Agreement between pMELTS melting models and melt inclusion volatile, major, and trace element data suggests that hydrous slab melt addition to the mantle wedge can produce the range in primitive compositions erupted in the Lassen region. Our results provide further evidence that chlorite-derived fluids from the mantle portion of the

  11. Equilibrium Slab Models of Lyman-Alpha Clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    We model the L(sub y(alpha)) clouds as slabs of hydrogen with an ionizing extragalactic radiation field incident from both sides. In general, the equilibrium configuration of a slab at redshift z approx. less than 5 is determined by a balance of the gas pressure, gravity (including the effects of a dark matter halo), and the pressure exerted by the inter-galactic medium, P(sub ext). These models have been used to make predictions of the number of slabs as a function of the neutral hydrogen column density, N(sub H). A break in the curve is predicted at the transition between regimes where gravity and pressure are the dominant confining forces, with a less rapid decrease at larger N(sub H). The transition from optically thin to optically thick slabs leads to a gap in the distribution, whose location is governed largely by the spectrum of ionizing radiation. There are certain parallels between lines of sight through the outer HI disk of spiral galaxy with increasing radius, and the progression from damped, to Lyman limit, to forest clouds. We discuss briefly the possibility that at least some of the observed low z forest clouds may be a separate population, associated with galaxies, as suggested by the observations of Bahcall et al. This population could dominate the forest at present if the dark matter attached to galaxies should lead to gravity confinement for this disk population, while the isolated clouds remain pressure confined. The formalism developed in this paper will allow a more detailed study. We also discuss a more general parameter study of the equilibrium configuration of slabs, including mock gravity and L(sub y(alpha)) photon trapping.

  12. Assimilating lithosphere and slab history in 4-D Earth models

    NASA Astrophysics Data System (ADS)

    Bower, Dan J.; Gurnis, Michael; Flament, Nicolas

    2015-01-01

    We develop methods to incorporate paleogeographical constraints into numerical models of mantle convection. Through the solution of the convection equations, the models honor geophysical and geological data near the surface while predicting mantle flow and structure at depth and associated surface deformation. The methods consist of four constraints determined a priori from a plate history model: (1) plate velocities, (2) thermal structure of the lithosphere, (3) thermal structure of slabs in the upper mantle, and (4) velocity of slabs in the upper mantle. These constraints are implemented as temporally- and spatially-dependent conditions that are blended with the solution of the convection equations at each time step. We construct Earth-like regional models with oceanic and continental lithosphere, trench migration, oblique subduction, and asymmetric subduction to test the robustness of the methods by computing the temperature, velocity, and buoyancy flux of the lithosphere and slab. Full sphere convection models demonstrate how the methods can determine the flow associated with specific tectonic environments (e.g., back-arc basins, intraoceanic subduction zones) to address geological questions and compare with independent data, both at present-day and in the geological past (e.g., seismology, residual topography, stratigraphy). Using global models with paleogeographical constraints we demonstrate (1) subduction initiation at the Izu-Bonin-Mariana convergent margin and flat slab subduction beneath North America, (2) enhanced correlation of model slabs and fast anomalies in seismic tomography beneath North and South America, and (3) comparable amplitude of dynamic and residual topography in addition to improved spatial correlation of dynamic and residual topography lows.

  13. Slab melting and magma generation beneath the southern Cascade Arc

    NASA Astrophysics Data System (ADS)

    Walowski, K. J.; Wallace, P. J.; Clynne, M. A.

    2014-12-01

    Magma formation in subduction zones is interpreted to be caused by flux melting of the mantle wedge by fluids derived from dehydration of the downgoing oceanic lithosphere. In the Cascade Arc and other hot-slab subduction zones, however, most dehydration reactions occur beneath the forearc, necessitating a closer investigation of magma generation processes in this setting. Recent work combining 2-D steady state thermal models and the hydrogen isotope composition of olivine-hosted melt inclusions from the Lassen segment of the Cascades (Walowski et al., 2014; in review) has shown that partial melting of the subducted basaltic crust may be a key part of the subduction component in hot arcs. In this model, fluids from the slab interior (hydrated upper mantle) rise through the slab and cause flux-melting of the already dehydrated MORB volcanics in the upper oceanic crust. In the Shasta and Lassen segments of the southern Cascades, support for this interpretation comes from primitive magmas that have MORB-like Sr isotope compositions that correlate with subduction component tracers (H2O/Ce, Sr/P) (Grove et al. 2002, Borg et al. 2002). In addition, mass balance calculations of the composition of subduction components show ratios of trace elements to H2O that are at the high end of the global arc array (Ruscitto et al. 2012), consistent with the role of a slab-derived melt. Melting of the subducted basaltic crust should contribute a hydrous dacitic or rhyolitic melt (e.g. Jego and Dasgupta, 2013) to the mantle wedge rather than an H2O-rich aqueous fluid. We are using pHMELTS and pMELTS to model the reaction of hydrous slab melts with mantle peridotite as the melts rise through the inverted thermal gradient in the mantle wedge. The results of the modeling will be useful for understanding magma generation processes in arcs that are associated with subduction of relatively young oceanic lithosphere.

  14. Concrete Mixing Methods and Concrete Mixers: State of the Art.

    PubMed

    Ferraris, C F

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined.

  15. Concrete Mixing Methods and Concrete Mixers: State of the Art

    PubMed Central

    Ferraris, Chiara F.

    2001-01-01

    As for all materials, the performance of concrete is determined by its microstructure. Its microstructure is determined by its composition, its curing conditions, and also by the mixing method and mixer conditions used to process the concrete. This paper gives an overview of the various types of mixing methods and concrete mixers commercially available used by the concrete industry. There are two main types of mixers used: batch mixers and continuous mixers. Batch mixers are the most common. To determine the mixing method best suited for a specific application, factors to be considered include: location of the construction site (distance from the batching plant), the amount of concrete needed, the construction schedule (volume of concrete needed per hour), and the cost. Ultimately, the quality of the concrete produced determines its performance after placement. An important measure of the quality is the homogeneity of the material after mixing. This paper will review mixing methods in regards to the quality of the concrete produced. Some procedures used to determine the effectiveness of the mixing will be examined. PMID:27500029

  16. Corrosion control of steel-reinforced concrete

    NASA Astrophysics Data System (ADS)

    Chung, D. D. L.

    2000-10-01

    The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic protection.

  17. Peeling behavior and spalling resistance of CFRP sheets bonded to bent concrete surfaces

    NASA Astrophysics Data System (ADS)

    Yuan, Hong; Li, Faping

    2010-05-01

    In this paper, the peeling behavior and the spalling resistance effect of carbon fiber reinforced polymer (CFRP) sheets externally bonded to bent concrete surfaces are firstly investigated experimentally. Twenty one curved specimens and seven plane specimens are studied in the paper, in which curved specimens with bonded CFRP sheets can simulate the concrete spalling in tunnel, culvert, arch bridge etc., whereas plane specimens with bonded CFRP sheets can simulate the concrete spalling in beam bridge, slab bridge and pedestrian bridge. Three kinds of curved specimens with different radii of curvature are chosen by referring to practical tunnel structures, and plane specimens are used for comparison with curved ones. A peeling load is applied on the FRP sheet by loading a circular steel tube placed into the central notch of beam to debond CFRP sheets from the bent concrete surface, meanwhile full-range load-deflection curves are recorded by a MTS 831.10 Elastomer Test System. Based on the experimental results, a theoretical analysis is also conducted for the specimens. Both theoretical and experimental results show that only two material parameters, the interfacial fracture energy of CFRP-concrete interface and the tensile stiffness of CFRP sheets, are needed for describing the interfacial spalling behavior. It is found that the radius of curvature has remarkable influence on peeling load-deflection curves. The test methods and test results given in the paper are helpful and available for reference to the designer of tunnel strengthening.

  18. Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers

    NASA Astrophysics Data System (ADS)

    Kaewunruen, S.; Ishida, T.; Remennikov, AM

    2016-09-01

    By nature, ballast interacts with railway concrete sleepers in order to provide bearing support to track system. Most train-track dynamic models do not consider the degradation of ballast over time. In fact, the ballast degradation causes differential settlement and impact forces acting on partial and unsupported tracks. Furthermore, localised ballast breakages underneath railseat increase the likelihood of centrebound cracks in concrete sleepers due to the unbalanced support under sleepers. This paper presents a dynamic finite element model of a standard-gauge concrete sleeper in a track system, taking into account the tensionless nature of ballast support. The finite element model was calibrated using static and dynamic responses in the past. In this paper, the effects of centre-bound ballast support on the impact behaviours of sleepers are highlighted. In addition, it is the first to demonstrate the dynamic effects of sleeper length on the dynamic design deficiency in concrete sleepers. The outcome of this study will benefit the rail maintenance criteria of track resurfacing in order to restore ballast profile and appropriate sleeper/ballast interaction.

  19. Boulder Track

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-408, 1 July 2003

    If a boulder rolls down a slope on an uninhabited planet, does it make a sound? While we do not know the sound made by a boulder rolling down a slope in the martian region of Gordii Dorsum, we do know that it made an impression. This full-resolution Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a series of depressions made on a dust-mantled slope as a boulder rolled down it, sometime in the recent past. The boulder track is located just right of center in this picture. The boulder sits at the end of the track. This picture was acquired in May 2003; it is located near 11.2oN, 147.8oW. North is toward the lower left, sunlight illuminates the scene from the right. The picture covers an area only 810 meters (about 886 yards) across.

  20. Investigation into the optimal hydrologic design of porous concrete sites using mathematical modeling

    NASA Astrophysics Data System (ADS)

    Syrrakou, C.; Fitch, J.; Eliassen, T.; Ahearn, W.; Pinder, G. F.

    2011-12-01

    Increase in the amount of paved areas as a result of urbanization in modern societies has lead to the need of stormwater best management practices (BMPs). In that direction, porous pavement has been used successfully in regions of warm climate and application in regions of colder climate is an object of ongoing research with encouraging results to date. The significant cost and effort that accompanies the maintenance of porous pavement facilities calls for a design tool that can be used prior construction to facilitate the design process and also post production to evaluate the site's overall performance. Such a tool is a mathematical model which takes into account the different physical processes that can occur in a porous concrete system including recharge from rainfall, runoff from surrounding conventionally paved areas, vertical flow, storage and finally infiltration into the subsurface. In this research a three-dimensional saturated-unsaturated flow and transport model is modified to account for flow through the porous concrete slab and also evaporation. Runoff is accounted by means of a two-dimensional surface flow model which calculates the infiltration into the perimeter porous concrete area. The mathematical model is used to simulate a porous concrete site which operates as a public parking lot facility in Randolph, Vermont. The subgrade soil in the area of interest consists mainly of dense till deposits typically found in New England. Such deposits can result in small infiltration rates. The specific site is unique not only in terms of the underlying geology but also the heavy instrumentation not usually observed in similar sites. The instrumentation includes a number of groundwater wells which are being monitored continuously through a pressure transducer system, temperature probes installed inside the porous concrete and a detailed underdrain system located in the porous concrete's sub-base accumulating infiltrated water. Laboratory research is also

  1. Biodecontamination of radionuclide contaminated concrete

    SciTech Connect

    Hamilton, M.A.; Rogers, R.D.; Benson, J.

    1996-10-01

    Within the nuclear industry, there are literally hundreds of square miles of radionuclide contaminated concrete surfaces. A novel technology for biologically decontaminating concrete is being developed. The technology exploits a naturally occurring phenomenon referred to as microbially influenced degradation (MID) in which bacteria produce acids that dissolve the cement matrix of the concrete. Accelerated testing in laboratory conditions was conducted. The bacteria Thiobacillus thiooxidans, supplied from a continuous flow bioreactor, was applied to an exposed concrete surface. A control chamber exposing concrete to sterile media was operated under the same conditions. One hundred percent of surrogate cobalt contamination was recovered from the Thiobacillus treated concrete and 1 mm thickness of concrete material was removed in 60 days. Prototype chambers that can be mounted directly to concrete surfaces have been designed to allow control of environmental conditions to promote MID after inoculation of the surface with bacteria. Studies to determine optimum source and quantity of reduced sulfur, bacterial species or consortia best suited for rapid MID, and methods of application and delivery of bacteria and nutrients will be discussed.

  2. Concrete Masonry Designs: Educational Issue.

    ERIC Educational Resources Information Center

    Hertzberg, Randi, Ed.

    2001-01-01

    This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2) "Lessons Learned,"…

  3. The Concrete and Pavement Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    The modern world is characterized by the extensive use of concrete and asphalt pavement. Periodically, these materials are replaced and the old materials disposed of. In this challenge, students will be asked to develop ways to reuse the old materials. It is important for students to understand how concrete and asphalt are made and applied, as…

  4. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  5. Technology Solutions Case Study: Insulating Concrete Forms

    SciTech Connect

    none,

    2012-10-01

    This Pacific Northwest National Laboratory project investigated insulating concrete forms—rigid foam, hollow walls that are filled with concrete for highly insulated, hurricane-resistant construction.

  6. Design of SC walls and slabs for impulsive loading

    SciTech Connect

    Varma, Amit H.

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical investigations of the performance of SC walls subjected to far-field blast loads.

  7. Enhanced output of soft X-ray lasers using double slab targets

    SciTech Connect

    Moreno, J.C.; Nilsen, J.; Chandler, E.

    1994-06-01

    Double slab neon-like niobium soft x-ray laser experiments have been performed using the Nova laser. The two slabs have their front surfaces facing in opposite directions with either a 300 {mu}m planar separation between them. Separate laser beams irradiate each slab with an intensity on target of 1.3 {times} 10{sup 14} W/cm{sup 2}. Best coupling was observed using a 300 {mu}m separation. The angular divergence of the laser is measured for single slab and double slab configurations. Comparisons to numerical models are discussed.

  8. Slab pull, mantle convection, and Pangaean assembly and dispersal

    NASA Astrophysics Data System (ADS)

    Collins, W. J.

    2003-01-01

    Two global-scale mantle convection cells presently exist on Earth, centred on upwelling zones in the South Pacific Ocean and northeast Africa: one cell (Panthalassan) contains only oceanic plates, the other (Pangaean) contains all the continental plates. They have remained fixed relative to one another for >400 Ma. A transverse (Rheic-Tethyian) subduction system splits the Pangaean cell. Poloidal plate motion in the oceanic cell reflects circumferential pull of Panthalassan slabs, but toroidal flow in the Pangaean cell, reflected by vortex-type motion of continents toward the Altaids of central-east Asia throughout the Phanerozoic, has resulted from the competing slab-pull forces of both cells. The combined slab-pull effects from both cells also controlled Pangaean assembly and dispersal. Assembly occurred during Palaeozoic clockwise toroidal motion in the Pangaean cell, when Gondwana was pulled into Pangaea by the NE-trending Rheic subduction zone, forming the Appalachian-Variscide-Altaid chain. Pangaean dispersal occurred when the Rheic trench re-aligned in the Jurassic to form the NW-trending Tethyside subduction system, which pulled east Gondwanan fragments in the opposite direction to form the Cimmerian-Himalayan-Alpine chain. This re-alignment also generated a new set of (Indian) mid-ocean ridge systems which dissected east Gondwana and facilitated breakup. 100-200-Myr-long Phanerozoic Wilson cycles reflect rifting and northerly migration of Gondwanan fragments across the Pangaean cell into the Rheic-Tethyian trench. Pangaean dispersal was amplified by retreat of the Panthalassan slab away from Europe and Africa, which generated mantle counterflow currents capable of pulling the Americas westward to create the Atlantic Ocean. Thermal blanketing beneath Pangaea and related hotspot activity were part of a complex feedback mechanism that established the breakup pattern, but slab retreat is considered to have been the main driving force. The size and longevity of

  9. The Puzzle of Septarian Concretions

    NASA Astrophysics Data System (ADS)

    John, C. M.; Dale, A.; Mozley, P.; Smalley, P. C.; Muggeridge, A. H.

    2014-12-01

    Carbonate concretions in clastic rocks and their septarian fracture fills act as 'time capsules', capturing the signatures of chemical and biological processes during diagenesis. However, many aspects of the formation of concretions and septarian fractures remain poorly understood, for although concretions occur in clastic rocks throughout the geological record, they are rarely documented in recent shallow-burial environments. Consequently, the depth and temperature at which concretion-forming processes occur are often poorly constrained. Carbonate clumped isotopes have recently been applied successfully to concretions and fracture fills that begin to unravel the conditions for the formation of concretions and septarian fractures. Here, we present carbonate clumped isotope results of fracture fills from eight different concretions from various locations, including multiple phases of fill in 4 concretions. Our results suggest that they precipitated over a range of temperatures (22°C - 85°C) from d18Oporewater values between -12‰ to 3‰ and within different d13Ccarbonate zones. The majority of fills precipitated at lower (<50°C) temperatures, although the fluids were not always meteoric. For 3 concretions containing fractures with multiple phases, the d18Oporewater becomes progressively heavier with each later phase and increasing temperature. The one exception to this is in the Barton Clay Formation (UK) where the fractures must have been continuously filled during exhumation as the latest cement phase is the coolest with a d18Oporewater more 18O-depleted than the earliest phase. Therefore, concretion growth must usually initiate early on (<~1 km burial), and subsequent fracturing is also usually early. However, the fracture infilling can occur over a range of depths and can record the diagenetic history of a formation. We gratefully acknowledge a BP and EPSRC Case Studentship for funding this project, and the Natural History Museum London for providing

  10. Nuclear Power Plant Concrete Structures

    SciTech Connect

    Basu, Prabir; Labbe, Pierre; Naus, Dan

    2013-01-01

    A nuclear power plant (NPP) involves complex engineering structures that are significant items of the structures, systems and components (SSC) important to the safe and reliable operation of the NPP. Concrete is the commonly used civil engineering construction material in the nuclear industry because of a number of advantageous properties. The NPP concrete structures underwent a great degree of evolution, since the commissioning of first NPP in early 1960. The increasing concern with time related to safety of the public and environment, and degradation of concrete structures due to ageing related phenomena are the driving forces for such evolution. The concrete technology underwent rapid development with the advent of chemical admixtures of plasticizer/super plasticizer category as well as viscosity modifiers and mineral admixtures like fly ash and silica fume. Application of high performance concrete (HPC) developed with chemical and mineral admixtures has been witnessed in the construction of NPP structures. Along with the beneficial effect, the use of admixtures in concrete has posed a number of challenges as well in design and construction. This along with the prospect of continuing operation beyond design life, especially after 60 years, the impact of extreme natural events ( as in the case of Fukushima NPP accident) and human induced events (e.g. commercial aircraft crash like the event of September 11th 2001) has led to further development in the area of NPP concrete structures. The present paper aims at providing an account of evolution of NPP concrete structures in last two decades by summarizing the development in the areas of concrete technology, design methodology and construction techniques, maintenance and ageing management of concrete structures.

  11. 3. NORTH ELEVATION OF THE HOT BAY, SHOWING RAILROAD TRACKS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. NORTH ELEVATION OF THE HOT BAY, SHOWING RAILROAD TRACKS LEADING TO THE MASSIVE STEEL-LINED CONCRETE ENTRANCE DOOR. PART OF THE INTRICATE HVAC SYSTEM IS WEST (RIGHT) OF THE DOOR. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  12. Mantle-slab interaction and redox mechanism of diamond formation.

    PubMed

    Palyanov, Yuri N; Bataleva, Yuliya V; Sokol, Alexander G; Borzdov, Yuri M; Kupriyanov, Igor N; Reutsky, Vadim N; Sobolev, Nikolai V

    2013-12-17

    Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle-slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle-slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated. This melt acts as both the carbon source and crystallization medium for diamond, whereas at reduced conditions, diamond crystallizes only from the Fe-C melt. The redox mechanism revealed in this study is used to explain the contrasting heterogeneity of natural diamonds, as seen in the composition of inclusions, carbon isotopic composition, and nitrogen impurity content. PMID:24297876

  13. Equilibrium slab models of Lyman-alpha clouds

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Salpeter, Edwin E.; Hogan, Craig J.

    1993-01-01

    Solutions for the equilibrium configuration of a slab with ionizing radiation incident equally from both sides are explored. Radiation effects (photoionization, Ly-alpha photon trapping, and mock gravity) as well as external pressure and self gravity (with and without dark matter) are included. The general formalism is applied to structure growth on small scales at very high z due to mock gravity on dust. Emphasis is placed on the application of slab models at z of less than 5, particularly those that may correspond to Ly-alpha forest, Lyman limit, and damped Ly-alpha systems. The regime with a dominant outward force contributed by trapping of Ly-alpha photons is discussed. General expressions are given for the equilibrium, including dark matter, assuming various relationships between the density of the dark matter halo and the total gas column density.

  14. Microwave and THz sensing using slab-pair-based metamaterials

    SciTech Connect

    Kenanakis, G.; Shen, Nianhai; Mavidis, Ch.; Katsarakis, N.; Kafesaki, M.; Soukoulis, Costas M.; Economou, E.N.

    2012-10-15

    In this work the sensing capability of an artificial magnetic metamaterial based on pairs of metal slabs is demonstrated, both theoretically and experimentally, in the microwave regime. The demonstration is based on transmission measurements and simulations monitoring the shift of the magnetic resonance frequency as one changes a thin dielectric layer placed between the slabs of the pairs. Strong dependence of the magnetic resonance frequency on both the permittivity and the thickness of the dielectric layer under detection was observed. The sensitivity to the dielectrics′ permittivity (ε) is larger for dielectrics of low ε values, which makes the approach suitable for sensing organic materials also in the THz regime. The capability of our approach for THz sensing is also demonstrated through simulations.

  15. Non-Fourier heat conduction in an exponentially graded slab

    NASA Astrophysics Data System (ADS)

    Raveshi, M. R.

    2016-03-01

    The present article investigates one-dimensional non-Fourier heat conduction in a functionally graded material by using the differential transformation method. The studied geometry is a finite functionally graded slab, which is initially at a uniform temperature and suddenly experiences a temperature rise at one side, while the other side is kept insulated. A general non-Fourier heat transfer equation related to the functionally graded slab is derived. The problem is solved in the Laplace domain analytically, and the final results in the time domain are obtained by using numerical inversion of the Laplace transform. The obtained results are compared with the exact solution to verify the accuracy of the proposed method, which shows excellent agreement.

  16. Mantle–slab interaction and redox mechanism of diamond formation

    PubMed Central

    Palyanov, Yuri N.; Bataleva, Yuliya V.; Sokol, Alexander G.; Borzdov, Yuri M.; Kupriyanov, Igor N.; Reutsky, Vadim N.; Sobolev, Nikolai V.

    2013-01-01

    Subduction tectonics imposes an important role in the evolution of the interior of the Earth and its global carbon cycle; however, the mechanism of the mantle–slab interaction remains unclear. Here, we demonstrate the results of high-pressure redox-gradient experiments on the interactions between Mg-Ca-carbonate and metallic iron, modeling the processes at the mantle–slab boundary; thereby, we present mechanisms of diamond formation both ahead of and behind the redox front. It is determined that, at oxidized conditions, a low-temperature Ca-rich carbonate melt is generated. This melt acts as both the carbon source and crystallization medium for diamond, whereas at reduced conditions, diamond crystallizes only from the Fe-C melt. The redox mechanism revealed in this study is used to explain the contrasting heterogeneity of natural diamonds, as seen in the composition of inclusions, carbon isotopic composition, and nitrogen impurity content. PMID:24297876

  17. Nonlocal microscopic theory of quantum friction between parallel metallic slabs

    SciTech Connect

    Despoja, Vito

    2011-05-15

    We present a new derivation of the friction force between two metallic slabs moving with constant relative parallel velocity, based on T=0 quantum-field theory formalism. By including a fully nonlocal description of dynamically screened electron fluctuations in the slab, and avoiding the usual matching-condition procedure, we generalize previous expressions for the friction force, to which our results reduce in the local limit. Analyzing the friction force calculated in the two local models and in the nonlocal theory, we show that for physically relevant velocities local theories using the plasmon and Drude models of dielectric response are inappropriate to describe friction, which is due to excitation of low-energy electron-hole pairs, which are properly included in nonlocal theory. We also show that inclusion of dissipation in the nonlocal electronic response has negligible influence on friction.

  18. Scattering by dielectric circular cylinders in a dielectric slab.

    PubMed

    Frezza, Fabrizio; Pajewski, Lara; Ponti, Cristina; Schettini, Giuseppe

    2010-04-01

    An analytical-numerical technique for the solution of the plane-wave scattering problem by a set of dielectric cylinders embedded in a dielectric slab is presented. Scattered fields are expressed by means of expansions into cylindrical functions, and the concept of plane-wave spectrum of a cylindrical function is employed to define reflection and transmission through the planar interfaces. Multiple reflection phenomena due to the presence of a layered geometry are taken into account. Solutions can be obtained for both TM and TE polarizations and for near- and far-field regions. The numerical approach is described and the method is validated by comparison with examples given in the literature, with very good agreement. Results are presented for the scattering by a finite grid of three cylinders embedded in a slab.

  19. Negotiating Multicollinearity with Spike-and-Slab Priors.

    PubMed

    Ročková, Veronika; George, Edward I

    2014-08-01

    In multiple regression under the normal linear model, the presence of multicollinearity is well known to lead to unreliable and unstable maximum likelihood estimates. This can be particularly troublesome for the problem of variable selection where it becomes more difficult to distinguish between subset models. Here we show how adding a spike-and-slab prior mitigates this difficulty by filtering the likelihood surface into a posterior distribution that allocates the relevant likelihood information to each of the subset model modes. For identification of promising high posterior models in this setting, we consider three EM algorithms, the fast closed form EMVS version of Rockova and George (2014) and two new versions designed for variants of the spike-and-slab formulation. For a multimodal posterior under multicollinearity, we compare the regions of convergence of these three algorithms. Deterministic annealing versions of the EMVS algorithm are seen to substantially mitigate this multimodality. A single simple running example is used for illustration throughout.

  20. Slab2 - Providing updated subduction zone geometries and modeling tools to the community

    NASA Astrophysics Data System (ADS)

    Hayes, G. P.; Hearne, M. G.; Portner, D. E.; Borjas, C.; Moore, G.; Flamme, H.

    2015-12-01

    The U.S. Geological Survey database of global subduction zone geometries (Slab1.0) combines a variety of geophysical data sets (earthquake hypocenters, moment tensors, active source seismic survey images of the shallow subduction zone, bathymetry, trench locations, and sediment thickness information) to image the shape of subducting slabs in three dimensions, at approximately 85% of the world's convergent margins. The database is used extensively for a variety of purposes, from earthquake source imaging, to magnetotelluric modeling. Gaps in Slab1.0 exist where input data are sparse and/or where slabs are geometrically complex (and difficult to image with an automated approach). Slab1.0 also does not include information on the uncertainty in the modeled geometrical parameters, or the input data used to image them, and provides no means to reproduce the models it described. Currently underway, Slab2 will update and replace Slab1.0 by: (1) extending modeled slab geometries to all global subduction zones; (2) incorporating regional data sets that may describe slab geometry in finer detail than do previously used teleseismic data; (3) providing information on the uncertainties in each modeled slab surface; (4) modifying our modeling approach to a fully-three dimensional data interpolation, rather than following the 2-D to 3-D steps of Slab1.0; (5) migrating the slab modeling code base to a more universally distributable language, Python; and (6) providing the code base and input data we use to create our models, such that the community can both reproduce the slab geometries, and add their own data sets to ours to further improve upon those models in the future. In this presentation we describe our vision for Slab2, and the first results of this modeling process.

  1. Density Structures of Oceanic Slabs and Surrounding Mantle Around the 660 km Discontinuity: Implications for the Fate of Old and Young Slabs

    NASA Astrophysics Data System (ADS)

    Ganguly, J.; Saxena, S. K.; Freed, A. M.

    2007-05-01

    We calculated density variations as a function of temperature around the 660 km deep seismic discontinuity in the Earth's mantle in different types of compositional units associated with a subducting slab and the ambient mantle. The calculations are based on computational thermodynamic approach of minimization of Gibbs free energy at a specified P-T condition, subject to the bulk compositional constraints of the system, that simultaneously yield stable mineral assemblage, mineral compositions and modal abundances. These results are converted to density profiles using appropriate data for physical properties and equations of state that are applicable to high P-T conditions. In addition, we also calculated thermal structures of several slabs, with the extremes being given by Tonga (140 Myr at trench, vertical velocity: 14 cm/yr; average dip: 60 degrees) and Peru (41 Myr, 4.4 cm/yr, 35 degrees). A slab was assumed to be lithologically stratified with a top basaltic crust, followed downwards by residual harzburgite and slightly depleted pyrolite. The surrounding mantle is taken to be undepleted pyrolite. Integration of the results of thermal and density calculations show that that all components of the Tonga slab are heavier than both ambient and thermally perturbed adjacent mantle, which has been cooled due to contact with the slab. Thus, old slabs with thermal minimum below 750 C, as in Tonga, should easily penetrate into the lower mantle unless resisted by slab roll back and/or a viscosity jump at the top of the lower mantle. In contrast, the harzburgite layer in warmer slabs, such as Peru, Marianas and Izu-Bonin, is slightly lighter than ambient mantle, causing near neutral or marginally negative net buoyancy of the slab. In this case, other factors, such as rollback and slab dip angle, may explain why some slabs in the northwest Pacific appear to penetrate into the lower mantle while others do not. In Peru-type warm slabs, buoyancy of the harzburgite layer may

  2. Slab detachment under the Eastern Alps seen by seismic anisotropy

    PubMed Central

    Qorbani, Ehsan; Bianchi, Irene; Bokelmann, Götz

    2015-01-01

    We analyze seismic anisotropy for the Eastern Alpine region by inspecting shear-wave splitting from SKS and SKKS phases. The Eastern Alpine region is characterized by a breakdown of the clear mountain-chain-parallel fast orientation pattern that has been previously documented for the Western Alps and for the western part of the Eastern Alps. The main interest of this paper is a more detailed analysis of the anisotropic character of the Eastern Alps, and the transition to the Carpathian–Pannonian region. SK(K)S splitting measurements reveal a rather remarkable lateral change in the anisotropy pattern from the west to the east of the Eastern Alps with a transition area at about 12°E. We also model the backazimuthal variation of the measurements by a vertical change of anisotropy. We find that the eastern part of the study area is characterized by the presence of two layers of anisotropy, where the deeper layer has characteristics similar to those of the Central Alps, in particular SW–NE fast orientations of anisotropic axes. We attribute the deeper layer to a detached slab from the European plate. Comparison with tomographic studies of the area indicates that the detached slab might possibly connect with the lithosphere that is still in place to the west of our study area, and may also connect with the slab graveyard to the East, at the depth of the upper mantle transition zone. On the other hand, the upper layer has NW–SE fast orientations coinciding with a low-velocity layer which is found above a more-or-less eastward dipping high-velocity body. The anisotropy of the upper layer shows large-scale NW–SE fast orientation, which is consistent with the presence of asthenospheric flow above the detached slab foundering into the deeper mantle. PMID:25843968

  3. Slab pull and the seismotectonics of subducting lithosphere.

    USGS Publications Warehouse

    Spence, W.

    1987-01-01

    This synthesis links many seismic and tectonic processes at subduction zones, including great subduction earthquakes, to the sinking of subducted plate. Earthquake data and tectonic modeling for subduction zones indicate that the slab pull force is much larger than the ridge push force. Interactions between the forces that drive and resist plate motions cause spatially and temporally localized stress that lead to characteristic earthquake activity, providing details on how subduction occurs.-from Author

  4. Project B: Improved Liquid Steel Feed For Slab Casters

    SciTech Connect

    Brent S. Isaacson; Mike Slepian; Thomas Richter

    1998-10-01

    This report describes the completion of the development of an electromagnetic valve to control liquid steel flow for improved liquid steel feeding for slab casters. Achievements result from a joint research effort between Westinghouse Science and Technology Center, North American Refractories and U.S. Steel. This effort is part of the American Iron and Steel Institute's (AISI) Advanced Process Control Program, a collaboration between the U.S. Department of Energy (DOE) and fifteen North American steel makers.

  5. Block-slider model for ductile instabilities in subducting slabs

    NASA Astrophysics Data System (ADS)

    Riedel, M. R.

    2003-04-01

    It has been suggested that the occurence of ductile (or plastic) instabilities in the deeper portion of subducting slabs is the dominating mechanism for the generation of intermediate-depth and deep-focus earthquakes. Heat generated during viscous deformation provides a positive feedback to creep and eventually faulting under high pressure. Recent detailed receiver function images of the structure of the Japan subduction zone seem to provide support for this notion. First, there is no indication of an existing metastable olivine wedge. Second, the intermediate-depth seismicity seems to be located in the strong and colder portions of the downgoing slab, about 30 km below the oceanic Moho. This suggests that instead of dehydration or phase transformation triggered events, ductile faulting is its predominating cause. In a recent paper, we have discussed the necessary conditions for ductile instabilities to develop in the bended subducting mantle lithosphere, based on the available experimental data on viscous creep of olivine resp. spinel (*). The present paper aims at a numerical study of the time evolution of a nucleated instability. For this purpose, we develop a cellular block-slider model for ductile instabilities in the mantle lithosphere, in analogy to the frequently used and highly successful block-slider models for brittle fracture of the crust. The block-slider approach is numerically much less demanding than solutions based on the corresponding, thermal-mechanically coupled continuum equations. Furthermore, it allows a straightforward inclusion of possible non-equilibrium effects associated with mineral phase transformations in a subducting slab (kinetic overshoot, grainsize reduction). The obtained numerical results are compared with seismological observation. It is shown, e.g., that the existence of metastable olivine in the deeper portion of a slab (below 500 km) is not a necessary condition for the generation of deep-focus earthquakes. (*) S. Karato, M

  6. Oscillation modes and transmission into a Fibonacci slab

    NASA Astrophysics Data System (ADS)

    Castro-Arce, Lamberto; Molinar-Tabares, Martin; Campos-Garcia, Julio; Figueroa-Navarro, Carlos; Isasi-Siqueiros, Leonardo; Manzanares-Martinez, Betsabe

    In our contribution we developed a study on the behavior of the transmission modes and a Pt / Zn slab of a Fibonacci array of longitudinal and transverse acoustic waves. We have worked with arrangements from n = 1 to10 and has managed to find the energy bands and transmission, filling factor 0.4 observing the appearance of Pseudo-Gaps in the evolution of the study when the arrangement Fibonacci increases. We acknowledge the support of SNI CONACYT.

  7. Sorptivity of fly ash concretes

    SciTech Connect

    Gopalan, M.K.

    1996-08-01

    A factorial experiment was designed to measure the sorptivity of cement and fly ash concretes in order to compare the durability of fly ash concrete against the cement concrete. Sorptivity measurements based on the capillary movement of water was made on three grades of cement concrete and six grades of fly ash mixes. The effect of curing was also studied by treating the samples in two curving conditions. A functional relationship of sorptivity against the strength, curing condition and fly ash content has been presented. The results were useful to analyze the factors influencing the durability of cement and fly ash concretes and to explain why some of the previously reported findings were contradictory. Curing conditions have been found to be the most important factor that affected the durability properties of fly ash concrete. When proper curing was provided, a mix with 40% fly ash was found to reduce the sorptivity by 37%. Under inadequate curing the sorptivity was found to increase by 60%. The influence of curing on cement concrete was found to be of much less importance.

  8. Significance of coplanar macrocells to corrosion in concrete-embedded steel

    SciTech Connect

    Rodriguez, P.; Ramirez, E.; Feliu, S.; Gonzalez, J.A.; Lopez, W.

    1999-03-01

    The influence of microcells and galvanic macrocells on the corrosion kinetics of concrete-embedded steel was investigated experimentally. Nine stainless steel/carbon steel coplanar macrocouples in cathodic-to-anodic ratios of 0.02 to 50 were cast in concrete slabs made from cement, sand, and water in a 1:3:0:5 proportion plus 2% calcium chloride (CaCl{sub 2}) per cement weight. Corrosion potential (E{sub corr}), galvanic current (i{sub g}), polarization resistance (R{sub p}), and impedance measurements from 100 kHz to 0.01 Hz were made for the two metals, coupled and uncoupled. i{sub g} data provided by a zero resistance ammeter led to potentially underestimated corrosion rates for anodic areas, whereas R{sub p} measurements provided fairly reliable corrosion rates. Macrocells polarized anodic areas very slightly at points where an anodic and a cathodic process took place simultaneously.

  9. Design and application of a small size SAFT imaging system for concrete structure.

    PubMed

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  10. Design and application of a small size SAFT imaging system for concrete structure

    NASA Astrophysics Data System (ADS)

    Shao, Zhixue; Shi, Lihua; Shao, Zhe; Cai, Jian

    2011-07-01

    A method of ultrasonic imaging detection is presented for quick non-destructive testing (NDT) of concrete structures using synthesized aperture focusing technology (SAFT). A low cost ultrasonic sensor array consisting of 12 market available low frequency ultrasonic transducers is designed and manufactured. A channel compensation method is proposed to improve the consistency of different transducers. The controlling devices for array scan as well as the virtual instrument for SAFT imaging are designed. In the coarse scan mode with the scan step of 50 mm, the system can quickly give an image display of a cross section of 600 mm (L) × 300 mm (D) by one measurement. In the refined scan model, the system can reduce the scan step and give an image display of the same cross section by moving the sensor array several times. Experiments on staircase specimen, concrete slab with embedded target, and building floor with underground pipe line all verify the efficiency of the proposed method.

  11. Performance of corrosion inhibiting admixtures for structural concrete -- assessment methods and predictive modeling

    SciTech Connect

    Yunovich, M.; Thompson, N.G.

    1998-12-31

    During the past fifteen years corrosion inhibiting admixtures (CIAs) have become increasingly popular for protection of reinforced components of highway bridges and other structures from damage induced by chlorides. However, there remains considerable debate about the benefits of CIAs in concrete. A variety of testing methods to assess the performance of CIA have been reported in the literature, ranging from tests in simulated pore solutions to long-term exposures of concrete slabs. The paper reviews the published techniques and recommends the methods which would make up a comprehensive CIA effectiveness testing program. The results of this set of tests would provide the data which can be used to rank the presently commercially available CIA and future candidate formulations utilizing a proposed predictive model. The model is based on relatively short-term laboratory testing and considers several phases of a service life of a structure (corrosion initiation, corrosion propagation without damage, and damage to the structure).

  12. Water-Moderated and -Reflected Slabs of Uranium Oxyfluoride

    SciTech Connect

    Margaret A. Marshall; John D. Bess; J. Blair Briggs; Clinton Gross

    2010-09-01

    A series of ten experiments were conducted at the Oak Ridge National Laboratory Critical Experiment Facility in December 1955, and January 1956, in an attempt to determine critical conditions for a slab of aqueous uranium oxyfluoride (UO2F2). These experiments were recorded in an Oak Ridge Critical Experiments Logbook and results were published in a journal of the American Nuclear Society, Nuclear Science and Engineering, by J. K. Fox, L. W. Gilley, and J. H. Marable (Reference 1). The purpose of these experiments was to obtain the minimum critical thickness of an effectively infinite slab of UO2F2 solution by extrapolation of experimental data. To do this the slab thickness was varied and critical solution and water-reflector heights were measured using two different fuel solutions. Of the ten conducted experiments eight of the experiments reached critical conditions but the results of only six of the experiments were published in Reference 1. All ten experiments were evaluated from which five critical configurations were judged as acceptable criticality safety benchmarks. The total uncertainty in the acceptable benchmarks is between 0.25 and 0.33 % ?k/keff. UO2F2 fuel is also evaluated in HEU-SOL-THERM-043, HEU-SOL-THERM-011, and HEU-SOL-THERM-012, but these those evaluation reports are for large reflected and unreflected spheres. Aluminum cylinders of UO2F2 are evaluated in HEU-SOL-THERM-050.

  13. Time domain evolution of diffuse fields in heterogeneous slabs

    NASA Astrophysics Data System (ADS)

    Turner, Joseph A.

    2005-09-01

    Fundamental studies of elastic wave scattering in heterogeneous media are applicable for problems at several length scales from ultrasonic to seismic waves. The intermediate scattering regime that lies between the single scattering and the diffusion limits is perhaps the least understood. Experiments of elastic wave scattering through a heterogeneous slab have been studied in the time domain using diffusion theory to fit the data. However, numerical solutions of the elastic wave radiative transfer equation (RTE) in the steady state have shown that the conditions for validity of the diffusion limit are only satisfied in the interior of the slab, many mean free paths away from the boundaries. Thus, an examination of the time domain multiple scattering in heterogeneous slabs is important to this class of experiments. The spatial distribution, temporal evolution, and partitioning of the diffuse longitudinal and shear energies are studied as a function of direction and frequency for several types of microstructure including polycrystalline metals and two-phase media using numerical solutions of the RTE. Finally, the ability of a diffusion-type solution to fit RTE solutions is also discussed with applications to inversion of experimental results. [Work supported by DOE.

  14. Ionospheric slab thickness in middle and low latitudes

    SciTech Connect

    Davies, K.; Liu, X.M. )

    1991-08-01

    The equivalent slab thickness of the ionosphere at 15 stations in middle and low latitudes was studied to determine its dependence on solar cycle and location. The data were grouped by season. The following are the major conclusions. There appears to be little or no geographical, or geomagnetic, dependence. The slab thickness varies approximately linearly with the 12-month smoothed values of the 10.7-cm solar radio flux. In middle latitudes the winter midnight thickness is essentially independent of the flux, whereas in summer and equinox the midnight thickness increases with increase of solar flux. The noon thickness increases with increase of solar flux in all seasons. The zero-order Fourier coeffficients for the diurnal curves at all 15 stations were expressed as linear functions of the 10.7-cm flux. The higher harmonic coefficients showed no appreciable dependence on solar flux. The pronounced predawn increase in slab thickness is caused by low values of the maximum electron density, not by increase of total electron content. 10 refs.

  15. Electromagnetic and ultrasonic investigations on a roman marble slab

    NASA Astrophysics Data System (ADS)

    Capizzi, Patrizia; Cosentino, Pietro L.

    2010-05-01

    The archaeological Museum of Rome (Museo delle Terme di Diocleziano) asked our group about the physical consistency of a marble slab (II - III century AD) that has recently fallen down during the transportation for an exhibition. In fact, due to insurance conflict, it was necessary to control the new fractures due to the recent accident and distinguish them from the ancient ones. The sculptured slab (today's size is 1280 x 70 x 9 cm), cut at the ends for a re-use as an inscription in the rear face, was restored (assemblage of different broken parts and cleaning) in contemporary times. We used different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate internal coupling pins, GPR (2000 MHz) and Ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the unknown internal ones. For every methodology used the quality of the acquired data was relatively high. They have been processed and compared to give a set of information useful for the bureaucratic problems of the Museum. Later on, the data have been processed in depth, for studying how to improve the data processing and for extracting all the information contained in the whole set of experimental data. Finally, the results of such a study in depth are exposed in detail.

  16. System for loading slab-gel holders for electrophoresis separation

    DOEpatents

    Anderson, Norman G.; Anderson, Norman L.

    1979-01-01

    A slab-gel loading system includes a prismatic chamber for filling a plurality of slab-gel holders simultaneously. Each slab-gel holder comprises a pair of spaced apart plates defining an intermediate volume for gel containment. The holders are vertically positioned in the chamber with their major surfaces parallel to the chamber end walls. A liquid inlet is provided at the corner between the bottom and a side wall of the chamber for distributing a polymerizable monomer solution or a coagulable colloidal solution into each of the holders. The chamber is rotatably supported so that filling can begin with the corner having the liquid inlet directed downwardly such that the solution is gently funneled upwardly, without mixing, along the diverging side and bottom surfaces. As filling proceeds, the chamber is gradually rotated to position the bottom wall in a horizontal mode. The liquid filling means includes a plastic envelope with a septum dividing it into two compartments for intermixing two solutions of different density and thereby providing a liquid flow having a density gradient. The resulting gels have a density gradient between opposite edges for subsequent use in electrophoresis separations.

  17. High Performance Slab-on-Grade Foundation Insulation Retrofits

    SciTech Connect

    Goldberg, Louise F.; Mosiman, Garrett E.

    2015-09-01

    ?A more accurate assessment of SOG foundation insulation energy savings than traditionally possible is now feasible. This has been enabled by advances in whole building energy simulation with 3-dimensional foundation modelling integration at each time step together with an experimental measurement of the site energy savings of SOG foundation insulation. Ten SOG insulation strategies were evaluated on a test building to identify an optimum retrofit insulation strategy in a zone 6 climate (Minneapolis, MN). The optimum insulation strategy in terms of energy savings and cost effectiveness consisted of two components: (a) R-20 XPS insulation above grade, and, (b) R-20 insulation at grade (comprising an outer layer of R-10 insulation and an interior layer of R-12 poured polyurethane insulation) tapering to R-10 XPS insulation at half the below-grade wall height (the lower half of the stem wall was uninsulated). The optimum insulation strategy was applied to single and multi-family residential buildings in climate zone 4 - 7. The highest site energy savings of 5% was realized for a single family home in Duluth, MN, and the lowest savings of 1.4 % for a 4-unit townhouse in Richmond, VA. SOG foundation insulation retrofit simple paybacks ranged from 18 to 47 years. There are other benefits of SOG foundation insulation resulting from the increase in the slab surface temperatures. These include increased occupant thermal comfort, and a decrease in slab surface condensation particularly around the slab perimeter.

  18. Ionospheric slab thickness and its seasonal variations observed by GPS

    NASA Astrophysics Data System (ADS)

    Jin, Shuanggen; Cho, Jung-Ho; Park, Jung-Uk

    2007-11-01

    The ionospheric slab thickness, the ratio of the total electron content (TEC) to the F2-layer peak electron density (NmF2), is closely related to the shape of the ionospheric electron density profile Ne (h) and the TEC. Therefore, the ionospheric slab thickness is a significant parameter representative of the ionosphere. In this paper, the continuous GPS observations in South Korea are firstly used to study the equivalent slab thickness (EST) and its seasonal variability. The averaged diurnal medians of December January February (DJF), March April May (MAM), June July August (JJA) and September October November (SON) in 2003 have been considered to represent the winter, spring, summer and autumn seasons, respectively. The results show that the systematic diurnal changes of TEC, NmF2 and EST significantly appeared in each season and the higher values of TEC and NmF2 are observed during the equinoxes (semiannual anomaly) as well as in the mid-daytime of each season. The EST is significantly smaller in winter than in summer, but with a consistent variation pattern. During 14 16 LT in daytime, the larger EST values are observed in spring and autumn, while the smaller ones are in summer and winter. The peaks of EST diurnal variation are around 10 18 LT which are probably caused by the action of the thermospheric wind and the plasmapheric flow into the F2-region.

  19. Prediction of temperature distribution in the hot rolling of slabs

    NASA Astrophysics Data System (ADS)

    Serajzadeh, S.; Karimi Taheri, A.; Mucciardi, F.

    2002-03-01

    In the process of continuous hot slab rolling, it is vital to know the temperature distribution within the slab along the length of the rolling mill because temperature is the dominant parameter controlling the kinetics of metallurgical transformations and the flow stress of the rolled metal. In other words, the microstructural changes, the mechanical properties as well as the final dimensions of the product and roll-force depend on the temperature distribution within the metal being rolled. In this paper, a mathematical model based on the finite element method is utilized to predict the temperature distribution and microstructural changes during the continuous hot slab rolling process. The effects of various parameters such as the heat of deformation, the work-roll temperature, the rolling speed, and the heat transfer coefficient between the work-roll and the metal are all taken into account in the analyses. To verify the validity of the model and the generated computer code, a comparison is carried out between the theoretical and plant-recorded results.

  20. Electromagnetic and ultrasonic investigations on a Roman marble slab

    NASA Astrophysics Data System (ADS)

    Capizzi, P.; Cosentino, P. L.

    2011-09-01

    The archaeological museum of Rome asked our group about the physical consistency of a marble slab (second to third century AD) that recently fell during its travel as part of an exhibition. We decided to use different methodologies to investigate the slab: namely a pacometer (Protovale Elcometer) to individuate the internal coupling pins, and ground-penetrating radar (GPR) (2000 MHz) and ultrasonic (55 kHz) tomographic high-density surveys to investigate the internal extension of all the visible fractures and to search for the hidden ones. For the ultrasonic data, tests were carried out to optimize the inversion parameters, in particular the cell dimensions. Surely, the choice of cell size for the inversion process must take into account the size of the acquisition grid and the ray number acquired. We proposed to calculate a minimum Fresnel's radius using the sampling frequency instead of that of the probes. For every methodology used, the quality of the acquired data was relatively high. This was then processed and compared to provide information that was useful for some of the insurance problems of the museum. Later on, the data was processed in depth to see how to improve the data processing and interpretation. Finally, the results of this in-depth study were exposed in detail. Ultrasonic and GPR tomographies show a strong correlation, and in particular, the inhomogeneous areas are located in correspondence to the slab injuries.

  1. Application Improvements of Slab-Coupled Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Chadderdon, Spencer Lee

    This dissertation explores techniques for improving slab-coupled optical fiber sensor (SCOS) technology for use in specific applications and sensing configurations. SCOS are advantageous for their small size and all-dielectric composition which permit non-intrusive measurement of electric fields within compact environments; however, their small size also limits their sensitivity. This work performs a thorough analysis of the factors contributing to the performance of SCOS and demonstrates methods which improve SCOS, while maintaining its small dimensions and high level of directional sensitivity. These improvements include increasing the sensitivity by 9x, improving the frequency response to include sub 300 kHz frequencies, and developing a method to tune the resonances. The analysis shows that the best material for the slab waveguide is an electro-optic polymer because of its low RF permittivity combined with high electro-optic coefficient. Additional improvements are based on changing the crystal orientation to a transverse configuration, which enhances the sensitivity due to a combined increase in the effective electro-optic coefficient and electric field penetration into the slab. The transverse SCOS configuration not only improves the overall sensitivity but increases the directional sensitivity of the SCOS. Lithium niobate and electro-optic polymer are both experimentally shown to exhibit minimal frequency dependent sensitivity making them suitable for broad frequency applications. Simultaneous interrogation of multiple SCOS with a single tunable laser is achieved by tuning the resonant wavelengths of KTP SCOS so their resonances overlap.

  2. On the Right Track.

    ERIC Educational Resources Information Center

    Bieber, Ed

    1983-01-01

    Suggests thinking of "tracks" as clues and using them as the focus of outdoor activities in the urban environment. Provides 24 examples of possible track activities, including: seeds on the ground (track of a nearby tree), litter (track of a litterbug), and peeling paint (track of weathering forces). (JN)

  3. Track Construction Manual.

    ERIC Educational Resources Information Center

    Banke, Ron; Di Gennaro, Guy; Ediger, Rick; Garner, Lanny; Hersom, Steve; Miller, Jack; Nemeth, Ron; Petrucelli, Jim; Sierks, Donna; Smith, Don; Swank, Kevin; West, Kevin

    This book establishes guidelines for the construction and maintenance of tracks by providing information for building new tracks or upgrading existing tracks. Subjects covered include running track planning and construction, physical layout, available surfaces, and maintenance. General track requirements and construction specifications are…

  4. Terahertz spectroscopy of concrete for evaluating the critical hydration level

    NASA Astrophysics Data System (ADS)

    Dash, Jyotirmayee; Ray, Shaumik; Nallappan, Kathirvel; Sasmal, Saptarshi; Pesala, Bala

    2014-03-01

    Concrete, a mixture of cement, coarse aggregate, sand and filler material (if any), is widely used in the construction industry. Cement, mainly composed of Tricalcium Silicate (C3S) and Dicalcium Silicate (C2S) reacts readily with water, a process known as hydration. The hydration process forms a solid material known as hardened cement paste which is mainly composed of Calcium Silicate Hydrate (C-S-H), Calcium Hydroxide and Calcium Carbonate. To quantify the critical hydration level, an accurate and fast technique is highly desired. However, in conventional XRD technique, the peaks of the constituents of anhydrated and hydrated cement cannot be resolved properly, where as Mid-infrared (MIR) spectroscopy has low penetration depth and hence cannot be used to determine the hydration level of thicker concrete samples easily. Further, MIR spectroscopy cannot be used to effectively track the formation of Calcium Hydroxide, a key by-product during the hydration process. This paper describes a promising approach to quantify the hydration dynamics of cement using Terahertz (THz) spectroscopy. This technique has been employed to track the time dependent reaction mechanism of the key constituents of cement that react with water and form the products in the hydrated cement, viz., C-S-H, Calcium Hydroxide and Calcium Carbonate. This study helps in providing an improved understanding on the hydration kinetics of cement and also to optimise the physio-mechanical characteristics of concrete.

  5. Reinforced concrete structures loaded by snow avalanches : numerical and experimental approaches.

    NASA Astrophysics Data System (ADS)

    Ousset, I.; Bertrand, D.; Brun, M.; Limam, A.; Naaim, M.

    2012-04-01

    Today, due to the extension of occupied areas in mountainous regions, new strategies for risk mitigation have to be developed. In the framework of risk analysis, these latter have to take into account not only the natural hazard description but also the physical vulnerability of the exposed structures. From a civil engineering point of view, the dynamic behavior of column or portico was widely investigated especially in the case of reinforced concrete and steel. However, it is not the case of reinforced concrete walls for which only the in-plan dynamic behavior (shear behavior) has been studied in detail in the field of earthquake engineering. Therefore, the aim of this project is to study the behavior of reinforced concrete civil engineering structures submitted to out-of-plan dynamic loadings coming from snow avalanche interaction. Numerical simulations in 2D or 3D by the finite element method (FEM) are presented. The approach allows solving mechanical problems in dynamic condition involving none linearities (especially none linear materials). Thus, the structure mechanical response can be explored in controlled conditions. First, a reinforced concrete wall with a L-like shape is considered. The structure is supposed to represent a French defense structure dedicated to protect people against snow avalanches. Experimental pushover tests have been performed on a physical model. The experimental tests consisted to apply a uniform distribution of pressure until the total collapse of the wall. A 2D numerical model has been developed to simulate the mechanical response of the structure under quasi-static loading. Numerical simulations have been compared to experimental datas and results gave a better understanding of the failure mode of the wall. Moreover, the influence of several parameters (geometry and the mechanical properties) is also presented. Secondly, punching shear experimental tests have also been carried out. Reinforced concrete slabs simply supported have

  6. A small-scale study of magneto-rheological track vibration isolation system

    NASA Astrophysics Data System (ADS)

    Li, Rui; Mu, Wenjun; Zhang, Luyang; Wang, Xiaojie

    2016-04-01

    A magneto-rheological bearing (MRB) is proposed to improve the vibration isolation performance of a floating slab track system. However, it's difficult to carry out the test for the full-scale track vibration isolation system in the laboratory. In this paper, the research is based on scale analysis of the floating slab track system, from the point view of the dimensionless of the dynamic characteristics of physical quantity, to establish a small scale test bench system for the MRBs. A small scale MRB with squeeze mode using magneto-rheological grease is designed and its performance is tested. The major parameters of a small scale test bench are obtained according to the similarity theory. The force transmissibility ratio and the relative acceleration transmissibility ratio are selected as evaluation index of system similarity. Dynamics of these two similarity systems are calculated by MATLAB experiment. Simulation results show that the dynamics of the prototype and scale models have good similarity. Further, a test bench is built according to the small-scale model parameter analysis. The experiment shows that the bench testing results are consistency with that of theoretical model in evaluating the vibration force and acceleration. Therefore, the small-scale study of magneto-rheological track vibration isolation system based on similarity theory reveals the isolation performance of a real slab track prototype system.

  7. Detecting lower-mantle slabs beneath Asia and the Aleutians

    NASA Astrophysics Data System (ADS)

    Schumacher, L.; Thomas, C.

    2016-06-01

    To investigate the descend of subducted slabs we search for and analyse seismic arrivals that reflected off the surface of the slab. In order to distinguish between such arrivals and other seismic phases, we search for waves that reach a seismic array with a backazimuth deviating from the theoretical backazimuth of the earthquake. Source-receiver combinations are chosen in a way that their great circle paths do not intersect the slab region, hence the direct arrivals can serve as reference. We focus on the North and Northwest Pacific region by using earthquakes from Japan, the Philippines and the Hindu Kush area recorded at North American networks (e.g. USArray, Alaska and Canada). Using seismic array techniques for analysing the data and record information on slowness, backazimuth and traveltime of the observed out-of-plane arrivals we use these measurements to trace the wave back through a 1-D velocity model to its scattering/reflection location. We find a number of out-of-plane reflections. Assuming only single scattering, most out-of-plane signals have to travel as P-to-P phases and only a few as S-to-P phases, due to the length of the seismograms we processed. The located reflection points present a view of the 3-D structures within the mantle. In the upper mantle and the transition zone they correlate well with the edges of fast velocity regions in tomographic images. We also find reflection points in the mid- and lower mantle and their locations generally agree with fast velocities mapped by seismic tomography models suggesting that in the subduction regions we map, slabs enter the lower mantle. To validate our approach, we calculate and process synthetic seismograms for 3-D wave field propagation through a model containing a slab-like heterogeneity. We show, that depending on the source-receiver geometry relative to the reflection plane, it is indeed possible to observe and back-trace out-of-plane signals.

  8. Opening and closing slab windows in congested subduction zones

    NASA Astrophysics Data System (ADS)

    Moresi, Louis

    2013-04-01

    Subduction zones often try to swallow buoyant material which is embedded in the oceanic lithosphere: plume material or hotspot residues, oceanic plateaux, and fragments of continental material. This often results in the formation of a slab window and it has been shown (Mason et al, 2010; Betts et al, 2012) that this window strongly influences the subsequent evolution of the slab and the advance/retreat rate of the trench. The buoyant material typically pushes the trench into a local state of advance, and the creation of the slab window allows the rest of the trench to retreat as the mantle behind the slab flows in through the window. This situation is inherently unstable: if the buoyancy anomaly is finite in size, then the retreating trench will soon move behind the anomaly and juxtapose negatively buoyant oceanic lithosphere with active subduction. This creates the potential to close the slab window and, in doing so, transfer the buoyant material to the over-riding plate. Models show that this closure of the window initially occurs through a lateral rollback process followed by a catastrophic re-initiation of subduction behind the colliding buoyant anomaly. This rollback leaves a characteristic, tightly rolled remnant in the mantle and significant rotation in the over-riding plate and the newly-docked block. The over-riding plate is thrown into extension perpendicular to the original orientation of the trench. This same situation applies at the late-stages of a closing ocean due to the passive margin geometry and the presence of debris collected from the closing ocean floor and it seems likely that these models can also be applied to the complicated geometry of subduction in such environments. Mason, W. G.; Moresi, L.; Betts, P. G. & Miller, M. S. Three-dimensional numerical models of the influence of a buoyant oceanic plateau on subduction zones Tectonophysics, 2010, 483, 71-79 P. Betts, W. Mason, L. Moresi, The influence of mantle plumes on subduction zone

  9. Design of energy efficient building with radiant slab cooling

    NASA Astrophysics Data System (ADS)

    Tian, Zhen

    2007-12-01

    Air-conditioning comprises a substantial fraction of commercial building energy use because of compressor-driven refrigeration and fan-driven air circulation. Core regions of large buildings require year-round cooling due to heat gains from people, lights and equipment. Negative environmental impacts include CO2 emissions from electric generation and leakage of ozone-depleting refrigerants. Some argue that radiant cooling simultaneously improves building efficiency and occupant thermal comfort, and that current thermal comfort models fail to reflect occupant experience with radiant thermal control systems. There is little field evidence to test these claims. The University of Calgary's Information and Communications Technology (ICT) Building, is a pioneering radiant slab cooling installation in North America. Thermal comfort and energy performance were evaluated. Measurements included: (1) heating and cooling energy use, (2) electrical energy use for lighting and equipment, and (3) indoor temperatures. Accuracy of a whole building energy simulation model was evaluated with these data. Simulation was then used to compare the radiant slab design with a conventional (variable air volume) system. The radiant system energy performance was found to be poorer mainly due to: (1) simultaneous cooling by the slab and heating by other systems, (2) omission of low-exergy (e.g., groundwater) cooling possible with the high cooling water temperatures possible with radiant slabs and (3) excessive solar gain and conductive heat loss due to the wall and fenestration design. Occupant thermal comfort was evaluated through questionnaires and concurrent measurement of workstation comfort parameters. Analysis of 116 sets of data from 82 occupants showed that occupant assessment was consistent with estimates based on current thermal comfort models. The main thermal comfort improvements were reductions in (1) local discomfort from draft and (2) vertical air temperature stratification. The

  10. Modelling and simulation of concrete leaching under outdoor exposure conditions.

    PubMed

    Schiopu, Nicoleta; Tiruta-Barna, Ligia; Jayr, Emmanuel; Méhu, Jacques; Moszkowicz, Pierre

    2009-02-15

    Recently, a demand regarding the assessment of release of dangerous substances from construction products was raised by European Commission which has issued the Mandate M/366 addressed to CEN. This action is in relation with the Essential Requirement No. 3 "Hygiene, Health and Environment" of the Construction Products Directive (89/106/EC). The potential hazard for environment and health may arise in different life cycle stages of a construction product. During the service life stage, the release of substances due to contact with the rain water is the main potential hazard source, as a consequence of the leaching phenomenon. The objective of this paper is to present the development of a coupled chemical-transport model for the case of a concrete based construction product, i.e. concrete paving slabs, exposed to rain water under outdoor exposure conditions. The development of the model is based on an iterative process of comparing the experimental results with the simulated results up to an acceptable fit. The experiments were conducted at laboratory scale (equilibrium and dynamic leaching tests) and field scale. The product was exposed for one year in two types of leaching scenarios under outdoor conditions, "runoff" and "stagnation", and the element release was monitored. The model was calibrated using the experimental data obtained at laboratory scale and validated against measured field data, by taking into account the specific rain water balance and the atmospheric CO2 uptake as input parameters. The numerical tool used in order to model and simulate the leaching behaviour was PHREEQC, coupled with the Lawrence Livermore National Laboratory (LLNL) thermodynamic data base. The simulation results are satisfying and the paper demonstrates the feasibility of the modelling approach for the leaching behaviour assessment of concrete type construction materials. PMID:19118868

  11. Testing of concrete by laser ablation

    DOEpatents

    Flesher, D.J.; Becker, D.L.; Beem, W.L.; Berry, T.C.; Cannon, N.S.

    1997-01-07

    A method is disclosed for testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed. 1 fig.

  12. Testing of concrete by laser ablation

    DOEpatents

    Flesher, Dann J.; Becker, David L.; Beem, William L.; Berry, Tommy C.; Cannon, N. Scott

    1997-01-01

    A method of testing concrete in a structure in situ, by: directing a succession of pulses of laser radiation at a point on the structure so that each pulse effects removal of a quantity of concrete and transfers energy to the concrete; detecting a characteristic of energy which has been transferred to the concrete; determining, separately from the detecting step, the total quantity of concrete removed by the succession of pulses; and calculating a property of the concrete on the basis of the detected energy characteristic and the determined total quantity of concrete removed.

  13. Tomographic imaging of the Cascadia subduction zone: Constraints on the Juan de Fuca slab

    NASA Astrophysics Data System (ADS)

    Chen, Chuanxu; Zhao, Dapeng; Wu, Shiguo

    2015-04-01

    We used 40,343 P-wave arrival times from 1883 local earthquakes and 105,455 P-wave arrivals from 6361 teleseismic events to study the detailed structure of the Cascadia subduction zone. We conducted tomographic inversions using a starting velocity model which includes the high-velocity subducting Juan de Fuca slab as a priori information. A number of such slab-constrained inversions are conducted by changing the slab thickness and the velocity contrast between the slab and the surrounding mantle. Our optimal 3-D velocity model fits the data much better than that determined by an inversion with a 1-D homogeneous starting model. Our results show that the subducting Juan de Fuca slab has a thickness of 30-50 km and a P-wave velocity of 1-3% higher than that of the surrounding mantle. Beneath the northern and southern parts of the Cascadia, P-wave velocity is lower in the slab and along the slab interface, which may reflect a more hydrated slab and more active slab dehydration there. The lateral velocity variations may indicate different degrees of slab dehydration and forearc mantle serpentinization. The segmentation in episodic tremor and slip (ETS) is also spatially coincident with the velocity heterogeneities, indicating that the ETS occurrence and recurrence interval are controlled by fluid activity in and around the mantle wedge corner.

  14. Effects of fertilizer and pesticides on concrete

    SciTech Connect

    Broder, M.F.; Nguyen, D.T.; Harner, A.L.

    1994-12-31

    Concrete is the most common material of construction for secondary containment of fertilizers and pesticides because of its relative low cost and structural properties. Concrete, however, is porous to some products it is designed to contain and is subject to corrosion. In this paper, concrete deterioration mechanisms and corrosion resistant concrete formulation are discussed, as well as exposure tests of various concrete mixes to some common liquid fertilizers and herbicides.

  15. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1990-03-13

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  16. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, J.J.; Elling, D.; Reams, W.

    1988-05-26

    A sprayable electrically conductive polymer concrete coating for vertical and overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt% calcined coke breeze, 40 wt% vinyl ester resin with 3.5 wt% modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag. 4 tabs.

  17. Electrically conductive polymer concrete coatings

    DOEpatents

    Fontana, Jack J.; Elling, David; Reams, Walter

    1990-01-01

    A sprayable electrically conductive polymer concrete coating for vertical d overhead applications is described. The coating is permeable yet has low electrical resistivity (<10 ohm-cm), good bond strength to concrete substrates, and good weatherability. A preferred formulation contains about 60 wt % calcined coke breeze, 40 wt % vinyl ester with 3.5 wt % modified bentonite clay. Such formulations apply evenly and provide enough rigidity for vertical or overhead structures so there is no drip or sag.

  18. Global Subducting Slab Entrainment of Oceanic Asthenosphere: Re-examination of Sub-Slab Shear-Wave Splitting Patterns

    NASA Astrophysics Data System (ADS)

    Song, T.; Liu, L.; Kawakatsu, H.

    2011-12-01

    Oceanic asthenosphere is characterized as a low seismic velocity, low viscosity, and strongly anisotropic channel separating from the oceanic lithosphere through a sharp shear wave velocity contrast. It has been a great challenge to reconcile all these observations and ultimately illuminate the fate of oceanic asthenosphere near convergent plate margins. Sub-slab shear wave splitting patterns are particularly useful to address the fate of oceanic asthenosphere since they are directly linked to deformation induced by the mantle flow beneath the subducting slab. To address slab entrainment of oceanic asthenosphere through shear wave splitting, it is important to recognize that oceanic asthenosphere is characterized by azimuthal anisotropy (1-3%) as well as strong P wave and S wave radial anisotropy (3-7%) for horizontally travelling P wave (VPH > VPV) and S wave (VSH > VSV), making it effectively an orthorhombic medium. Here we show that entrained asthenosphere predicts sub-slab SKS splitting pattern, where the fast splitting direction changes from predominantly trench-normal under shallow subduction zones to predominantly trench-parallel under relatively steep subduction zones. This result can be recognized by the 90 degrees shift in the polarization of the fast wave at about 20 degrees incident angle, where VSH equals to VSV forming a classical point singularity (Crampin, 1991). The thickness of the entrained asthenosphere is estimated to be on the order of 100 km, which predicts SKS splitting time varying from 0.5 seconds to 2 seconds. After briefly discussing improvement of the millefeuille model (Kawakatsu et al. 2009) of the asthenosphere upon this new constraint and long wave Backus averaging of orthorhombic solid and melt, we will illustrate that, in the range of observed trench migration speed, dynamic models of 2-D mantle convection with temperature-dependent viscosity do support thick subducting slab entrainment of asthenosphere under ranges of

  19. Protective coatings for concrete

    SciTech Connect

    NAGY, KATHRYN L.; CYGAN, RANDALL T.; BRINKER, C. JEFFREY; SELLINGER, ALAN

    2000-05-01

    The new two-layer protective coating developed for monuments constructed of limestone or marble was applied to highway cement and to tobermorite, a component of cement, and tested in batch dissolution tests. The goal was to determine the suitability of the protective coating in retarding the weathering rate of concrete construction. The two-layer coating consists of an inner layer of aminoethylaminopropylsilane (AEAPS) applied as a 25% solution in methanol and an outer layer of A2** sol-gel. In previous work, this product when applied to calcite powders, had resulted in a lowering of the rate of dissolution by a factor of ten and was shown through molecular modeling to bind strongly to the calcite surface, but not too strongly so as to accelerate dissolution. Batch dissolution tests at 22 C of coated and uncoated tobermorite (1.1 nm phase) and powdered cement from Gibson Blvd. in Albuquerque indicated that the coating exhibits some protective behavior, at least on short time scales. However, the data suggest that the outer layer of sol-gel dissolves in the high-pH environment of the closed system of cement plus water. Calculated binding configuration and energy of AEAPS to the tobermorite surface suggests that AEAPS is well-suited as the inner layer binder for protecting tobermorite.

  20. Becoming Reactive by Concretization

    NASA Technical Reports Server (NTRS)

    Prieditis, Armand; Janakiraman, Bhaskar

    1992-01-01

    One way to build a reactive system is to construct an action table indexed by the current situation or stimulus. The action table describes what course of action to pursue for each situation or stimulus. This paper describes an incremental approach to constructing the action table through achieving goals with a hierarchical search system. These hierarchies are generated with transformations called concretizations, which add constraints to a problem and which can reduce the search space. The basic idea is that an action for a state is looked up in the action table and executed whenever the action table has an entry for that state; otherwise, a path is found to the nearest (cost-wise in a graph with costweighted arcs) state that has a mappring from a state in the next highest hierarchy. For each state along the solution path, the successor state in the path is cached in the action table entry for that state. Without caching, the hierarchical search system can logarithmically reduce search. When the table is complete the system no longer searches: it simply reacts by proceeding to the state listed in the table for each state. Since the cached information is specific only to the nearest state in the next highest hierarchy and not the goal, inter-goal transfer of reactivity is possible. To illustrate our approach, we show how an implemented hierarchical search system can completely reactive.

  1. Transition from slab stagnation to penetration beneath the northwestern Pacific and South America (Invited)

    NASA Astrophysics Data System (ADS)

    Fukao, Y.; Obayashi, M.

    2010-12-01

    Subducting slabs tend to once deflect horizontally in the transition zone as stagnant slabs and then to penetrate into the lower mantle across the 660-km discontinuity. Here we present the detailed tomographic images of transition from stagnant-slab mode to penetrating-slab mode, based on the global ISC travel time data to which regional network data and long-term array observation data including ocean bottom data are added. The targets are the subducted slabs beneath South America and the northwestern Pacific. In South America the transition occurs across the northeastward extension of the sharp bend of the Peru-Chili trench. The slab to the south of this extension is stagnant above the 660, and to the north it plunges into the lower mantle across the 660. The transition is sharp as if the originally flat slab in the northern part was rotated into the present configuration by hinge faulting along the extension. We suspect that this hinge faulting either triggered the northward propagation of or truncated the southward propagation of the plunging motion of the slab into the lower mantle. Along the Kurile arc, the slab is flattened above the 660 in the southwest, penetrating in the northeast, with a transitional feature in between. In southern Kurile the flattened part has a deepest bottom near the junction with the dipping part. Such an along-arc change of slab configuration is indicative of a process of transition from stagnant-slab mode to penetrating-slab mode: the flattened part and dipping part of the slab begin to sink into the lower mantle at their junction so that the horizontal part is progressively dragged to and is eventually united to the dipping part as a penetrating slab. Along the Izu-Bonin-Mariana (IBM) arc, the slab is flattened above the 660 in the north (Izu-Bonin) and is penetrating the 660 in the south (Mariana) leaving the horizontal part in the transition zone. In the Izu-Bonin the flattened part has a deepest bottom near the junction with

  2. A Systematic Study on the Formation of South American Flat-Slab Subduction

    NASA Astrophysics Data System (ADS)

    Hu, J.; Liu, L.

    2015-12-01

    The South American subduction zone is characterized by its along-strike variation from flat to steeply dipping slabs. Both formation mechanisms and geometry of flat slabs in South America remain unclear. To evaluate the relative contribution of different mechanisms to flat slab formation, we simulate the post-100 Ma subduction history below South America using 3-D geodynamic models by progressively incorporating key tectonic features including seafloor ages, buoyant oceanic crusts, thickened oceanic plateaus (i.e. the Inca plateau, Nazca Ridge and Juan Fernandez Ridge), continental cratons, as well as deformable trench profiles according to recent geological reconstructions. With a uniform seafloor age of 30 Ma (i.e., the spatial average of the Nazca Plate since 20 Ma), we get steep (>30°, measured at 200 km depth) subduction everywhere except at 25°S -35°S, where the slab dip is affected by earlier subduction at depth. With the actual reconstructed seafloor ages, the slab dip angle is systematically reduced with an average of ~25°; the long-wavelength lateral variation of slab dip angle that resembles the observation results from the spatial variation of slab buoyancy and strength. The addition of a uniformly thick overriding plate, with enhanced dynamic suction in the mantle wedge, further reduces the slab dip angle (<23°) along the entire trench, where the young slab portions are affected more than the old one. Realization of the 3D geometry of cratonic roots enhances along-trench variation of suction force, which results in an additional reduction of slab dip (<20°), especially next to the cratons. While dynamic suction from the overriding plate reduces the long-wavelength slab dip angle, subducting oceanic plateau and aseismic ridges lead to more localized flat-slabs (as low as 15°) as observed. The subduction of aseismic ridges also generates tears within the flat slabs, due to the accumulation of strain at the down-dip end of the ridge. These slab

  3. Too much slab waving in South America? Wet plumes as an alternative to flat slab steepening as the cause of back arc large volcanic provinces

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Burd, A. I.

    2013-12-01

    A widely held view is that the Nazca Slab under western S. America acts like a tattered flag waving in the wind: It is segmented and the dip angle of segments flap up and down with time. There are presently two flat segments - one under Peru and the other, the "Pampean" flat slab (centered around 31S) under central Chile and Argentina. Both are correlated with subduction of buoyant crust of oceanic aseismic ridges, complete cessation of Andean arc volcanism and very thick crust. It has been argued that the waxing and waning of flat subduction is responsible for much of the time variations in tectonics and volcanism up to 800 km east of the S. American coast for at least 100 MA. For instance, the back arc Payenia igneous plateau (35-38S) and the Somuncura igneous plateau (40.5-43S) are both thought to follow from the steepening of flat slabs at about 2 and 27 MA. Each flat slab existed for more than 5 MA. However, the case for the existence of these flat slabs rests heavily on volcanism with "arc signature" hundreds of km east of the modern volcanic arc at a time when an asthenospheric wedge would be in its final stages of being squeezed out of the space between the slab and the lithosphere. Arc signature can be summarized as the geochemical consequence of mantle melting in the presence of water. If there is a source of water in the mantle other than a shallow slab, the strongest argument for a flat slab dissolves. We have found two electrically conductive plumes rising from below 350 km near the top of the Mantle Transition Zone (MTZ). One passes through a window in the Pampean flat slab but does not penetrate the lithosphere. The other rises under Payenia. The maximum resistivity at the core of these plumes is less than 10 Ohm-m. Partial melt can explain such low resistivity, but will not be buoyant and rise from below 350 km. We propose that the low resistivity is more likely due to water and that we are seeing "wet plumes" that have been proposed to explain

  4. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

    PubMed

    Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L

    2010-07-16

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat. PMID:20647465

  5. Cenozoic tectonics of western North America controlled by evolving width of Farallon slab.

    PubMed

    Schellart, W P; Stegman, D R; Farrington, R J; Freeman, J; Moresi, L

    2010-07-16

    Subduction of oceanic lithosphere occurs through two modes: subducting plate motion and trench migration. Using a global subduction zone data set and three-dimensional numerical subduction models, we show that slab width (W) controls these modes and the partitioning of subduction between them. Subducting plate velocity scales with W(2/3), whereas trench velocity scales with 1/W. These findings explain the Cenozoic slowdown of the Farallon plate and the decrease in subduction partitioning by its decreasing slab width. The change from Sevier-Laramide orogenesis to Basin and Range extension in North America is also explained by slab width; shortening occurred during wide-slab subduction and overriding-plate-driven trench retreat, whereas extension occurred during intermediate to narrow-slab subduction and slab-driven trench retreat.

  6. Slab optical waveguides in Er3 +-doped tellurite glass by N+ ion implantation at 1.5 MeV

    NASA Astrophysics Data System (ADS)

    Berneschi, Simone; Brenci, Massimo; Nunzi Conti, Gualtiero; Pelli, Stefano; Bettinelli, Marco; Speghini, Adolfo; Bányász, Istvan; Fried, Miklós; Khanh, Nguyen Q.; Lohner, Tivadar; Petrik, Péter; Watterich, Andrea; Zolnai, Zsolt

    2011-07-01

    Slab optical waveguides were fabricated in tung-sten-tellurite glass doped with Er3 + ions by means of nitrogen ion implantation at 1.5 MeV. A wide range of ion doses (from 5.1012 to 8.1016 ions/cm2) was used. Optical characterization, performed by dark-line spectroscopy, revealed that the waveguides were of optical barrier type: the implanted layer exhibited a decrease of the refractive index with respect to the virgin bulk glass, while the region comprised between the sample surface and the end of the ion track acted as an optical guiding structure. It was also demonstrated that a post-implantation annealing process, performed at various temperatures on the samples implanted at higher doses, contributes to the reduction of the barrier region.

  7. Slab Deformation in the Mantle Transition Zone: The Effect of Plate Age and Strength Evolution

    NASA Astrophysics Data System (ADS)

    Goes, S. D. B.; Garel, F.; Davies, R.; Davies, J. H.; Kramer, S. C.; Wilson, C. R.

    2014-12-01

    The deformation encountered by subducted tectonic plates at the base of the upper mantle influences Earth's thermal, chemical, and tectonic evolution. Yet the mechanisms responsible for the wide range of imaged slab morphologies, either stagnating in the transition zone or penetrating into the lower mantle, remain debated. We use 2-D thermo-mechanical models of a two-plate subduction system, modeled with the finite-element, adaptive-mesh code Fluidity. We implement a temperature- and stress-dependent rheology, and viscosity increases 30-fold from upper to lower mantle. Trench position evolves freely in response to plate dynamics. Such an approach self-consistently captures feedbacks between temperature, density, flow, strength and deformation. Our results indicate that key controls on subduction dynamics and slab morphology are: (i) the evolution of slab strength; and (ii) the slab's ability to induce trench motion. We build a regime diagram that distinguishes four subduction styles: (1) a "vertical folding" mode with stationary trench; (2) young slabs that are "horizontally deflected" along the 660-km deep viscosity jump ; (3) an inclined slab morphology, resulting from strong trench retreat (old slabs and thinner overriding plates); and (4) a two-stage mode, displaying bent (rolled-over) slabs at the end of upper-mantle descent, that subsequently unbend and achieve inclined morphologies, with late trench retreat (strong overriding plates). We find that the interplay between trench motion and slab deformation at depth dictates the subduction style, both being controlled by slab strength. We show that all seismically observed slab morphologies in the transition zone can arise just by changing the subducting-plate ages. However, to understand present-day slab morphologies, we have to analyse subduction history rather than just current age at the trench.

  8. Arc Interrupted: The birth, life, and death of the Peruvian flat slab

    NASA Astrophysics Data System (ADS)

    Wagner, Lara; Knezevic Antonijevic, Sanja; Kumar, Abhash; Beck, Susan; Long, Maureen; Zandt, George; Tavera, Hernando; Minaya, Estela

    2016-04-01

    The Peruvian flat slab is a unique natural laboratory for investigating the temporal evolution of flat slab subduction and its associated thermal, tectonic, and seismic implications. This is because the flat slab has been hypothesized to have first formed further north (at approximately the latitude of Lima, Peru), but broadened to the south over the past 11 Ma. This means that areas further to the north represent an older, more evolved flat slab setting, whereas the southernmost edge of the modern flat slab reflects conditions experienced by a newly formed flat slab. Here we present findings from a suite of recent temporary broadband seismic deployments that spanned this entire region. Results from intermediate depth earthquake locations, surface wave tomography (ballistic and ambient Rayleigh wave), and Rayleigh wave anisotropy all indicate that the flat slab did indeed first form further to the north and broadened to the south, along with the southward migration of the Nazca ridge. Subsequently, a trench-parallel tear developed in the older portions of the flat slab north of the ridge, resulting in a resumption of normal subduction geometry where once a flat slab had existed. This tear allows for an interchange of mantle material from beneath the slab to the south to above the slab to the north. This mantle flow has significant thermal implications, both beneath the flat slab and in the lower continental crust located above the relatively newly formed tear. Our results provide unique constraints on the thermal and tectonic evolution of this unusual subduction geometry that may help us to understand better subduction zone processes everywhere.

  9. Surface waves on a grounded dielectric slab covered by a resistive sheet

    NASA Technical Reports Server (NTRS)

    Shively, David

    1993-01-01

    This paper examines surface wave propagation in a grounded dielectric slab covered with a resistive sheet. Transcendental equations are derived for each polarization and are solved using iterative techniques. Attention and phase velocity are shown for a representative geometry. The results are applicable to both a grounded slab covered with a resistive sheet and an ungrounded slab covered on each side with a resistive sheet.

  10. The dynamics of double slab subduction from numerical and semi-analytic models

    NASA Astrophysics Data System (ADS)

    Holt, A.; Royden, L.; Becker, T. W.

    2015-12-01

    Regional interactions between multiple subducting slabs have been proposed to explain enigmatic slab kinematics in a number of subduction zones, a pertinent example being the rapid pre-collisional plate convergence of India and Eurasia. However, dynamically consistent 3-D numerical models of double subduction have yet to be explored, and so the physics of such double slab systems remain poorly understood. Here we build on the comparison of a fully numerical finite element model (CitcomCU) and a time-dependent semi-analytic subduction models (FAST) presented for single subduction systems (Royden et. al., 2015 AGU Fall Abstract) to explore how subducting slab kinematics, particularly trench and plate motions, can be affected by the presence of an additional slab, with all of the possible slab dip direction permutations. A second subducting slab gives rise to a more complex dynamic pressure and mantle flow fields, and an additional slab pull force that is transmitted across the subduction zone interface. While the general relationships among plate velocity, trench velocity, asthenospheric pressure drop, and plate coupling modes are similar to those observed for the single slab case, we find that multiple subducting slabs can interact with each other and indeed induce slab kinematics that deviate significantly from those observed for the equivalent single slab models. References Jagoutz, O., Royden, L. H., Holt, A. F. & Becker, T. W., 2015, Nature Geo., 8, 10.1038/NGEO2418. Moresi, L. N. & Gurnis, M., 1996, Earth Planet. Sci. Lett., 138, 15-28. Royden, L. H. & Husson, L., 2006, Geophys. J. Int. 167, 881-905. Zhong, S., 2006, J. Geophys. Res., 111, doi: 10.1029/2005JB003972.

  11. Geometry of the Farallon Slab Revealed by Joint Interpretation of Wavefield Imaging and Tomography Results from the Earthscope Transportable Array

    NASA Astrophysics Data System (ADS)

    Pavlis, G. L.; Wang, Y.

    2015-12-01

    A significant number of P and S wave tomography models have been produced in the past decade using various subsets of data from the Earthscope USArray and different inversion algorithms. We focus here on published tomography results that span large portions of the final footprint of the USArray. We use 3D visualization techniques to search for common features in different tomography models. We also compare tomography results to features seen in our current generation wavefield images. Recent innovations of our plane wave migration method have yielded what is arguably the highest resolution image ever produced of the mantle in the vicinity of the transition zone. The new results reveal a rich collection of coherent, dipping structures seen throughout the upper mantle and transition zone. These dipping interfaces are judged significant according to a coherence metric. We treat these surfaces as strain markers to assess proposed models for geometry of the 3D geometry of the Farallon Slab under North America. We find the following geologic interpretations are well supported by independent results: 1. The old Farallon under eastern North America and below the base of transition zone is universally seen as a high velocity anomaly. 2. All results support a simple, 3D kinematic model of the updip limit of the Farallon slab window that follows a track from Cape Mendocino, across Nevada, and northern Arizona and New Mexico. 3. All models show a strong low-velocity mantle under the southwestern U.S. 4. A low-velocity features is universally seen related to the Yellowstone-Snake River system. Shorter wavelength features observed in different tomography models are inconsistent showing that the theme of this session is very important to understand what features are in current results are real. Isopach maps of the thickness of the transition show a systematic difference in transition zone thickness in the western and eastern US. The transition zone thickens in the eastern US in

  12. Slab dehydration recorded in subducted serpentine sea-mount

    NASA Astrophysics Data System (ADS)

    Okamoto, K.; Fukumura, S.; Ishimori, C.; Jung, H.

    2014-12-01

    It has been considered that there is a correlation between the double seismic zones and metamorphic dehydration reaction in deep slab. The lower seismic plane of the double seismic zone is considered to be located on the 600 oC isotherm in the subducting lithosphere. Antigorite terminal reaction is highly temperature sensitive around 600 oC. Therefore it has been proposed that the oceanic lithosphere was hydrated forming serpentine prior to subduction, then serpentine was decomposed to release fluid causing dehydration embrittlement in the slab. In order to unravel relation between dehydration and seismic deformation, we have investigated dehydration process of natural metamorphic rocks recording very cold geothermal history in the crust and lithosphere in the slab. Metamorphic olivine after antigorite has been described in Italian Alps and also from the Mt. Shiraga, Japan [1]. However, the olivine was formed with talc and fluid by antigorite breakdown reaction in pressures lower than 1.5 GPa. Spinifex olivine with opx in the Cerro del Almirez [2], is the product at pressures (P > 1.5 GPa) relevant to the lower seismic plane beneath Northeast Japan. It clearly indicates the presence of large amount of water facilitate crystallization of elongated olivine with opx. It is also supported by LPO pattern of olivines determined by EBSD. Fine-grained olivine-rich samples shows that Type-C fabric pattern is dominant, suggesting deformation under water-rich condition [3]. With metamorphic olivines, chlorite was also recrystallized, suggesting that water would be transported farther down to deep. The estimated dehydration reaction has a negative P-T slope at pressures higher than 1.5 GPa. The reaction is volume reducing reaction and the olivine-opx spinifex texture was formed under volume reducing reaction. In the warm slab beneath SW Japan, the reaction has a positive slope in P-T space and forms olivine+talc+fluid. From microstrucral and petrological analysis of the

  13. Wave propagation through a random medium - The random slab problem

    NASA Technical Reports Server (NTRS)

    Acquista, C.

    1978-01-01

    The first-order smoothing approximation yields integral equations for the mean and the two-point correlation function of a wave in a random medium. A method is presented for the approximate solution of these equations that combines features of the eiconal approximation and of the Born expansion. This method is applied to the problem of reflection and transmission of a plane wave by a slab of a random medium. Both the mean wave and the covariance are calculated to determine the reflected and transmitted amplitudes and intensities.

  14. Diffraction and electron energy loss to plasmons in silicon slabs

    NASA Astrophysics Data System (ADS)

    Levine, Zachary H.

    2008-03-01

    Dynamical diffraction patterns were calculated for 25nm slabs of silicon with [001], [111], and [110] faces for a 120keV electron beam. The calculation used the mixed dynamical form factor in the dielectric formulation. Dielectric matrices with wave vector and frequency dependence were calculated within the local density approximation using the random phase approximation. The energy losses, 10-25eV , span the plasmon peak. Near the zone axes, the results show the preservation of elastic contrast and both excess and deficit Kikuchi lines.

  15. Stability of Alfven oscillations in a plane plasma slab

    SciTech Connect

    Patudin, V.M.; Sagalakov, A.M.

    1983-05-01

    The stability of the natural Alfven oscillations of a plane slab of a collisional, slightly nonequilibrium plasma in a uniform magnetic field is studied. An effective numerical method, a special version of the differential sweepout method, is proposed. A calculation procedure has been developed. The small-oscillation spectrum is analyzed for parabolic plasma density profiles, and neutral curves are plotted. The growth rates and critical parameters are determined. At a high plasma conductivity, both strongly and weakly localized perturbations near the axis can go unstable. For a density profile with an inflection point, weakly damped oscillations are observed near the inflection point. These oscillations can also be excited by an ion beam.

  16. Radiative flux emitted by a burning PMMA slab

    NASA Astrophysics Data System (ADS)

    Parent, G.; Acem, Z.; Collin, A.; Berfroi, R.; Boulet, P.; Pizzo, Y.; Mindykowski, P.; Kaiss, A.; Porterie, B.

    2012-11-01

    The degradation of a PMMA sample has been studied based on experimental results obtained for the radiation emission by a burning slab. Observations of the infrared emission perpendicular to the plate, in the range where the optically thin flame is weakly emitting, indicate a plate temperature close to 680 K which is an indication on the surface temperature during the degradation process. Observations from the side allow a flame characterization without the plate emission superimposition. This is a promising way for evaluating data regarding the flame characteristics: temperature, gaz concentration and soot volumetric fraction.

  17. Surface polaritons of a metal-insulator-metal curved slab

    NASA Astrophysics Data System (ADS)

    Moradi, Afshin

    2016-09-01

    The properties of s- and p-polarized surface polariton modes propagating circumferentially around a portion of a cylindrical metal-insulator-metal structure are studied, theoretically. By using the Maxwell equations in conjunction with the Drude model for the dielectric function of the metals and applying the appropriate boundary conditions, the dispersion relations of surface waves for two types of modes, are derived and numerically solved. The effects of the slab curvature and insulator thickness on the propagation of electromagnetic modes are investigated. The differences of the s- and p-polarized surface modes are also shown.

  18. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    NASA Astrophysics Data System (ADS)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  19. Free subduction dynamics of a thermo-mechanical slab with non-linear rheology

    NASA Astrophysics Data System (ADS)

    Holt, A. F.; Becker, T. W.; Buffett, B. A.

    2012-12-01

    We investigate the dynamic controls on single plate subduction in a visco-plastic rheology using a 2D set up of the finite element code, CitcomCU. In contrast to previous studies, which focus largely on compositional slabs (e.g. Enns et al., 2005), we focus on thermal slabs (i.e. include effects of thermal diffusion). We analyse slabs that develop from plates both with uniform initial thicknesses and half-space cooling plates with thicknesses that vary with sqrt(x). A pseudo-plastic rheology facilitates the decoupling of the slab from the free slip upper surface. It is found that thermal slabs have lower strain rates in the bending region, due to the cooling upper boundary temperature condition, and so lower yield stresses are required to decouple thermal slabs than compositional slabs. As in previous work, it is found that stronger, thicker slabs promote trench advance (after the initial advancing phase). Both boundary conditions (basal and side) and incorporating a plate with half-space cooling thickness variations are shown to have a significant effect on slab dynamics, particularly on the maximum amount of trench retreat. Subsequently, models with non-Newtonian, stress-dependent rheologies are compared to Newtonian models with equivalent slab-mantle viscosity contrasts. Models with power law exponents of both 3, corresponding to dislocation creep, and a large exponent of 14, corresponding to near-pure plasticity (see Buffett and Becker, 2012), are analysed. It is found that, particularly for the n=14 case, the inclusion of a stress dependent rheology dramatically reduces the timescales of both trench migration and slab descent, while modifying slab morphology to a much lesser degree. Using a temperature threshold to confine the non-Newtonian rheology to within the slab prevents weakening in the surrounding mantle and so increases the subduction timescales to values that lie between the equivalent Newtonian and non-Newtonian (non-confined) timescales. While all

  20. Abnormal seismological and magmatic processes controlled by the tearing South American flat slabs

    NASA Astrophysics Data System (ADS)

    Hu, Jiashun; Liu, Lijun

    2016-09-01

    The influence of flat slab subduction on the formation of intra-slab earthquakes, volcanic activities and mantle seismic velocity anomalies remains unclear. We attempt to better understand these processes by simulating the two flat slabs in Peru and Chile using data-orientated geodynamic models. Our results successfully reproduce the observed flat slabs as mainly due to two subducting aseismic ridges. In contrast to the traditional view of flat-slab subduction, we find that these slabs are internally torn, as is due to the 3D nature of the subducting buoyancy features. This broken slab configuration, confirmed by regional tomography, naturally explains the abnormal distribution of and stress regimes associated with the intermediate-depth earthquakes. We further show that the slab tearing process could also better explain the formation of adakitic and ore-forming magmatism, the evolution of the magmatic arc, and the enigmatic mantle seismic structures beneath these regions. We propose that slab tearing may represent a common result of buoyancy feature subduction and that the resulting mantle processes could affect the long-term geodynamic evolution of continents.

  1. Analysis of surface wave propagation in a grounded dielectric slab covered by a resistive sheet

    NASA Technical Reports Server (NTRS)

    Shively, David G.

    1992-01-01

    Both parallel and perpendicular polarized surface waves are known to propagate on lossless and lossy grounded dielectric slabs. Surface wave propagation on a grounded dielectric slab covered with a resistive sheet is considered. Both parallel and perpendicular polarizations are examined. Transcendental equations are derived for each polarization and are solved using iterative techniques. Attenuation and phase velocity are shown for representative geometries. The results are applicable to both a grounded slab with a resistive sheet and an ungrounded slab covered on each side with a resistive sheet.

  2. Meteorological variables to aid forecasting deep slab avalanches on persistent weak layers

    USGS Publications Warehouse

    Marienthal, Alex; Hendrikx, Jordy; Birkeland, Karl; Irvine, Kathryn M.

    2015-01-01

    Deep slab avalanches are particularly challenging to forecast. These avalanches are difficult to trigger, yet when they release they tend to propagate far and can result in large and destructive avalanches. We utilized a 44-year record of avalanche control and meteorological data from Bridger Bowl ski area in southwest Montana to test the usefulness of meteorological variables for predicting seasons and days with deep slab avalanches. We defined deep slab avalanches as those that failed on persistent weak layers deeper than 0.9 m, and that occurred after February 1st. Previous studies often used meteorological variables from days prior to avalanches, but we also considered meteorological variables over the early months of the season. We used classification trees and random forests for our analyses. Our results showed seasons with either dry or wet deep slabs on persistent weak layers typically had less precipitation from November through January than seasons without deep slabs on persistent weak layers. Days with deep slab avalanches on persistent weak layers often had warmer minimum 24-hour air temperatures, and more precipitation over the prior seven days, than days without deep slabs on persistent weak layers. Days with deep wet slab avalanches on persistent weak layers were typically preceded by three days of above freezing air temperatures. Seasonal and daily meteorological variables were found useful to aid forecasting dry and wet deep slab avalanches on persistent weak layers, and should be used in combination with continuous observation of the snowpack and avalanche activity.

  3. Leaky unstable modes and electromagnetic radiation amplification by an anisotropic plasma slab

    SciTech Connect

    Vagin, K. Yu. Uryupin, S. A.

    2015-09-15

    The interaction between electromagnetic radiation and a photoionized plasma slab with an anisotropic electron velocity distribution is studied. It is shown that the fields of leaky modes are amplified due to the development of aperiodic instability in the slab, which leads to an increase in both the reflected and transmitted fields. The transmitted field can significantly increase only if the slab thickness does not exceed the ratio of the speed of light to the electron plasma frequency, whereas there is no upper bound on the slab thickness for the reflected signal to be amplified.

  4. High energy efficient solid state laser sources. [slab geometry laser sources

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1983-01-01

    Slab glass performance studies demonstate 18 J of output at 2 Hz with 2.3% wall plug efficiency. The goal is to achieve 10 J per pulse at 10 Hz and 3% wall plug efficiency during the next annual period. The slab concept was extended to Nd:YAG and to Nd:GGG. To date over 80 W of CW output power at 2% efficiency was generated in slab Nd:YAG. A multiplexed slab Nd:YAG pre-amplifier was invented and a Nd:YAG oscillator was demonstrated with 100kHz linewidth for eventual use in wind velocity measurements.

  5. Structured mass density slab as a waveguide of fast magnetoacoustic waves

    NASA Astrophysics Data System (ADS)

    Jelínek, P.; Karlický, M.

    Coronal loops are waveguides for magnetohydrodynamic (MHD) waves. These loops are expected to be structured. Therefore, in the present paper, we numerically studied the propagation of the fast MHD waves in the structured density slab (composed from a broad density slab with one axisymmetric narrow sub-slab superposed), and analysed the wave signals. Then, this structured slab was divided into its components, i.e., to simple broad and narrow slabs and the same analysis was made. We compared results of both these cases. For the calculations we adopted a two-dimensional (2D) magnetohydrodynamic (MHD) model, in which we solved a full set of ideal time-dependent MHD equations using the FLASH code, applying the adaptive mesh refinement (AMR) method. To initiate the fast sausage magnetoacoustic waves, we used axisymmetric Gaussian velocity perturbation. Wave signals were detected in different locations along the slab and as a diagnostic tool of these waves, the wavelet analysis method has been used. We found that for the structured density slab with sufficiently sharp boundaries, i.e., for good quality waveguides (without an energy leakage), the guided waves in the structured slab behave similarly as in its separated (simple slab) components.

  6. Displacement-based seismic design of flat slab-shear wall buildings

    NASA Astrophysics Data System (ADS)

    Sen, Subhajit; Singh, Yogendra

    2016-06-01

    Flat slab system is becoming widely popular for multistory buildings due to its several advantages. However, the performance of flat slab buildings under earthquake loading is unsatisfactory due to their vulnerability to punching shear failure. Several national design codes provide guidelines for designing flat slab system under gravity load only. Nevertheless, flat slab buildings are also being constructed in high seismicity regions. In this paper, performance of flat slab buildings of various heights, designed for gravity load alone according to code, is evaluated under earthquake loading as per ASCE/SEI 41 methodology. Continuity of slab bottom reinforcement through column cage improves the performance of flat slab buildings to some extent, but it is observed that these flat slab systems are not adequate in high seismicity areas and need additional primary lateral load resisting systems such as shear walls. A displacement-based method is proposed to proportion shear walls as primary lateral load resisting elements to ensure satisfactory performance. The methodology is validated using design examples of flat slab buildings with various heights.

  7. Optical pulling force on a particle near the surface of a dielectric slab waveguide

    NASA Astrophysics Data System (ADS)

    Paul, Nayan Kumar; Kemp, Brandon A.

    2016-01-01

    Optical forces on a Rayleigh particle near the surface of a dielectric slab waveguide are considered. A light wave of the lowest-order TE0 mode is used to excite the particle. The transverse and longitudinal forces acting on the particle are studied. The particle is always trapped near the surface of the slab, where the electric field intensity is high. The particle can be pushed away from or pulled toward the light source along the surface of the slab by tuning the frequency around a switching frequency. This phenomenon switches between scattering and gradient forces near the switching frequency of the dielectric slab waveguide.

  8. Calculation and comparison of thermal effect in laser diode pumped slab lasers with different pumping structures

    NASA Astrophysics Data System (ADS)

    Huang, Feng; Jiang, Nan; Wang, Yuefeng; Dong, Wei; Niu, Yanxiong

    2008-03-01

    Laser diode (LD) pumped slab laser, as an important high average power solid-state laser, is a promising laser source in military and industrial fields. The different laser diode pumping structures lead to different thermal effect in the slab gain medium. The thermal and stress analysis of slab laser with different pumping structure are performed by finite element analysis (FEA) with the software program ANSYS. The calculation results show that the face pumped and cooled laser results in a near one-dimension temperature distribution and eliminates thermal stress induced depolarization. But the structure is low pump efficiency due to the small thickness of slabs and the requirement to cool and pump through the same faces. End-pumped slab laser is high pump efficiency and excellent mode match, but its pumping arrangement is fairly complicated. The edge-pumped face-cooling slab laser's pump efficiency is better than face-pumping, and its pumping structure is simpler than end-pumped laser, but the tensile stress on surfaces may initiate failure of the gain medium so it is important to design so that the stress is well below the stress fracture limit. The comparison of the thermal effects with different pumping structure shows that, the edge-pumped slab laser has engineering advantages in high power slab laser's application. Furthermore, the end-pumped slab laser tends to get the best beam quality, so it is fit for the application which has a special requirement on laser beam quality.

  9. Solar tracking system

    DOEpatents

    Okandan, Murat; Nielson, Gregory N.

    2016-07-12

    Solar tracking systems, as well as methods of using such solar tracking systems, are disclosed. More particularly, embodiments of the solar tracking systems include lateral supports horizontally positioned between uprights to support photovoltaic modules. The lateral supports may be raised and lowered along the uprights or translated to cause the photovoltaic modules to track the moving sun.

  10. Excitation of ground vibration due to the passage of trains over a track with trackbed irregularities and a varying support stiffness

    NASA Astrophysics Data System (ADS)

    Auersch, Lutz

    2015-01-01

    Train-induced ground vibration can be excited by wheel and track irregularities and by two kinds of irregularities of the soil, by geometric irregularities or by the spatially varying soil stiffness. For both types of irregularities, the effective track irregularity on top of the track is calculated in wavenumber domain and with wavenumber integrals. For a general multi-beam track model, the wavenumber integrals are solved numerically. The irregularities of the soil are filtered by the track when transferred from the bottom to the top of the track. The high-wavenumber irregularities are strongly reduced due to the bending stiffness of the track and the compliance of the support. In addition, soft track elements reduce directly the stiffness variation of the support. Therefore, the mitigation effect of elastic track elements for these excitation components seems to be important. For under-sleeper pads and slab tracks, calculation and measurements are presented including additional excitation components and the dynamic vehicle-track interaction, and the relevance of the excitation mechanisms is discussed based on the dynamic forces which are acting on the ground. Due to the restricted amplitudes, the parametric excitation by the stiffness variation seems to be less important than the geometric irregularities. The calculations yield the correct trends of the measurements and many details of the measured ballast, slab, and under-sleeper-pad tracks.

  11. Steam injection system for lunar concrete

    NASA Astrophysics Data System (ADS)

    Pakulski, Dennis M.; Knox, Kenneth J.

    Results of lunar concrete research into steam hydration of concrete currently under way at the USAF Academy by the Department of Civil Engineering are presented. The use of Design of Experiments methodologies to quantify the effects input factors to a process have on the measured responses of the process is demonstrated. The feasibility of hydrating high alumina cement concrete (mortar) using steam injection is shown; the process yields compressible strengths comparable to Portland cement concrete cast with water. The concrete strength is increased with increasing steam exposure (to a point) and with increased density of the dry cement aggregate mixture. Cure time seems to have little effect on the concrete strength.

  12. Nanogranular origin of concrete creep.

    PubMed

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-06-30

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium-silicate-hydrates (C-S-H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C-S-H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C-S-H forms: low density, high density, ultra-high density. We demonstrate that the creep rate ( approximately 1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years.

  13. Nanogranular origin of concrete creep

    PubMed Central

    Vandamme, Matthieu; Ulm, Franz-Josef

    2009-01-01

    Concrete, the solid that forms at room temperature from mixing Portland cement with water, sand, and aggregates, suffers from time-dependent deformation under load. This creep occurs at a rate that deteriorates the durability and truncates the lifespan of concrete structures. However, despite decades of research, the origin of concrete creep remains unknown. Here, we measure the in situ creep behavior of calcium–silicate–hydrates (C–S–H), the nano-meter sized particles that form the fundamental building block of Portland cement concrete. We show that C–S–H exhibits a logarithmic creep that depends only on the packing of 3 structurally distinct but compositionally similar C–S–H forms: low density, high density, ultra-high density. We demonstrate that the creep rate (≈1/t) is likely due to the rearrangement of nanoscale particles around limit packing densities following the free-volume dynamics theory of granular physics. These findings could lead to a new basis for nanoengineering concrete materials and structures with minimal creep rates monitored by packing density distributions of nanoscale particles, and predicted by nanoscale creep measurements in some minute time, which are as exact as macroscopic creep tests carried out over years. PMID:19541652

  14. 27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. DIVERSION STRUCTURE WITH CONCRETE SIDEWALLS AND CONCRETE CHANNEL BEYOND, A SHORT DISTANCE WEST OF D STREET ABOUT ONE-QUARTER MILE SOUTH OF 9TH AVENUE (SECTION 26). - Highline Canal, Sand Creek Lateral, Beginning at intersection of Peoria Street & Highline Canal in Arapahoe County (City of Aurora), Sand Creek lateral Extends 15 miles Northerly through Araphoe County, City & County of Denver, & Adams County to its end point, approximately 1/4 mile Southest of intersectioin of D Street & Ninth Avenue in Adams County (Rocky Mountain Arsenal, Commerce City Vicinity), Commerce City, Adams County, CO

  15. Ray tracing calculations of the output from germanium slab lasers

    SciTech Connect

    Plowes, J. A.; Holden, P. B.; Pert, G. J.; Healy, S. B.; Kingston, A. E.; Roberts, E.

    1995-05-01

    A 3D Raytracing code is used, as a post processor, to simulate experimental observables, such as divergences, deflected angle, and output intensity, from a 1 1/2 D fluid code. The latter self consistently treats the plasma expansion with the atomic physics of the Ne-like ion. The results presented relate to two separate experiments. First, an experiment carried out at R. A. L. where Ge slab targets, of varying lengths, were irradiated at driving laser intensities in the range 0.8{yields}2.3x10{sup 13} W cm{sup -2}. Results presented here are for the 236 A line and good agreement is found with experiment. Also presented, are simulations which relate to an experiment carried out at Osaka University, where a 4 cm Ge slab target, with a curvature from 0 to 20 mrad, along the lasing axis, was irradiated. General agreement with experiment is obtained. Tightening in the output beam, with increasing curvature, can clearly be seen.

  16. Trench migration, net rotation and slab mantle coupling

    NASA Astrophysics Data System (ADS)

    Funiciello, F.; Faccenna, C.; Heuret, A.; Lallemand, S.; Di Giuseppe, E.; Becker, T. W.

    2008-07-01

    Laboratory models have been conducted to improve our understanding of the role that the resistance of the slab to bending and its coupling to the ambient mantle play in subduction dynamics over geological time scales. Our models are set up with a viscous plate of silicone (lithosphere) subducting under negative buoyancy in a viscous layer of glucose syrup (mantle). For our study, the lithosphere/upper mantle viscosity contrast has been systematically varied, from ~ 10 to ~ 10 5 in order to explore the parameter space between weak and strong slab dynamics. We found that subduction is characterized by a retreating mode for viscosity ratios > 10 4, by the coexistence of a retreating mode and an advancing mode for viscosity ratios between ~ 10 4 and ~ 10 2, and quasi-stationary, Rayleigh-Taylor like behaviour for ratios < 10 2. By combining our experimental results and kinematic data from current subduction zones in four reference frames which differ in the amount of net rotation, we infer that a lithosphere/upper mantle viscosity contrast of 150-500 is necessary to obtain realistic trench/subducting plate velocity ratios as well as the variability of subduction styles observed in nature.

  17. TrackEye tracking algorithm characterization

    NASA Astrophysics Data System (ADS)

    Valley, Michael T.; Shields, Robert W.; Reed, Jack M.

    2004-10-01

    TrackEye is a film digitization and target tracking system that offers the potential for quantitatively measuring the dynamic state variables (e.g., absolute and relative position, orientation, linear and angular velocity/acceleration, spin rate, trajectory, angle of attack, etc.) for moving objects using captured single or dual view image sequences. At the heart of the system is a set of tracking algorithms that automatically find and quantify the location of user selected image details such as natural test article features or passive fiducials that have been applied to cooperative test articles. This image position data is converted into real world coordinates and rates with user specified information such as the image scale and frame rate. Though tracking methods such as correlation algorithms are typically robust by nature, the accuracy and suitability of each TrackEye tracking algorithm is in general unknown even under good imaging conditions. The challenges of optimal algorithm selection and algorithm performance/measurement uncertainty are even more significant for long range tracking of high-speed targets where temporally varying atmospheric effects degrade the imagery. This paper will present the preliminary results from a controlled test sequence used to characterize the performance of the TrackEye tracking algorithm suite.

  18. The role of ridges in the formation and longevity of flat slabs.

    PubMed

    Antonijevic, Sanja Knezevic; Wagner, Lara S; Kumar, Abhash; Beck, Susan L; Long, Maureen D; Zandt, George; Tavera, Hernando; Condori, Cristobal

    2015-08-13

    Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks ('thick-skinned' deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon. For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80-55 million years ago). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction. PMID:26268192

  19. Two-way interaction between plume and slab: The Hainan-Manila example

    NASA Astrophysics Data System (ADS)

    Mériaux, Catherine; Duarte, João; Schellart, Wouter

    2015-04-01

    Three-dimensional upper-mantle laboratory models consisting of a compositional plume that is initiated underneath an entirely dynamically driven dense plate fixed at the surface along its trailing edge exhibit a two-way interaction between plume and slab. The slab influence on the plume is driven by the induced mantle flow generated by the plate motion, which includes a sinking and a retreating phase. Slab/Plume buoyancy flux ratios ranged between 7 and 18. In all models, the plume is being swept away from the slab during its rise, and once it has reached the surface, its head spreads towards the trench as a gravity current while its conduit keeps being deflected away. The plume influence on the slab is seen later, when the slab in its retreat gets closer to the plume. The plume buoyancy spreading under the slab then weakens the subduction rate. The degree to which the subduction rate is lessened is conditioned by the level of asymmetry, which the slab may develop along its free edge during its impact at the bottom surface. A lasting symmetric plate causes maximum disturbance of the plume to the slab retreat rate, while plate asymmetry alleviates the plume influence as the plume buoyancy is no longer trapped underneath the plate in its centreline but can escape sideways. Our laboratory model configuration applies to the Hainan plume and Manila subduction system. The geophysical and seismic observations showing the existence of a NW-SE tilting plume-like mantle low-velocity structure in the crust and in the mantle beneath the north Hainan Island-Leizhou Peninsula basalt province are explained by slab rollback induced toroidal mantle flow from the Manila subduction zone. On the basis of our models, it can be foreseen that the Hainan plume is to spread out under the Manila slab towards the mantle wedge in the future, which could lessen the Manila subduction rate.

  20. The role of ridges in the formation and longevity of flat slabs

    NASA Astrophysics Data System (ADS)

    Antonijevic, Sanja Knezevic; Wagner, Lara S.; Kumar, Abhash; Beck, Susan L.; Long, Maureen D.; Zandt, George; Tavera, Hernando; Condori, Cristobal

    2015-08-01

    Flat-slab subduction occurs when the descending plate becomes horizontal at some depth before resuming its descent into the mantle. It is often proposed as a mechanism for the uplifting of deep crustal rocks (`thick-skinned' deformation) far from plate boundaries, and for causing unusual patterns of volcanism, as far back as the Proterozoic eon. For example, the formation of the expansive Rocky Mountains and the subsequent voluminous volcanism across much of the western USA has been attributed to a broad region of flat-slab subduction beneath North America that occurred during the Laramide orogeny (80-55 million years ago). Here we study the largest modern flat slab, located in Peru, to better understand the processes controlling the formation and extent of flat slabs. We present new data that indicate that the subducting Nazca Ridge is necessary for the development and continued support of the horizontal plate at a depth of about 90 kilometres. By combining constraints from Rayleigh wave phase velocities with improved earthquake locations, we find that the flat slab is shallowest along the ridge, while to the northwest of the ridge, the slab is sagging, tearing, and re-initiating normal subduction. On the basis of our observations, we propose a conceptual model for the temporal evolution of the Peruvian flat slab in which the flat slab forms because of the combined effects of trench retreat along the Peruvian plate boundary, suction, and ridge subduction. We find that while the ridge is necessary but not sufficient for the formation of the flat slab, its removal is sufficient for the flat slab to fail. This provides new constraints on our understanding of the processes controlling the beginning and end of the Laramide orogeny and other putative episodes of flat-slab subduction.

  1. Rheologic Controls on the Dynamic Evolution of Slabs in the Upper Mantle

    NASA Astrophysics Data System (ADS)

    Billen, M.; Hirth, G.

    2004-12-01

    Subduction of tectonic plates is characterized by long-lived subduction zones, asymmetric subduction and slab dip angles of 25--80o in the upper mantle. Several mechanisms proposed to explain the variation in observed dip include large-scale mantle flow, trench roll-back, and interaction of the slab with the transition zone. Previous dynamic models of subduction that include only Newtonian viscosity and moderately strong slabs generally fail to predict subduction angles less than 60--90o at shallow depths (100--300 km). We find that the observed characteristics of subduction are reproduced by viscous flow models, in which the rheologic structure is consistent with experimentally determined flow laws for Newtonian and non-Newtonian visco-plastic deformation of olivine. The properties of the models required to match the observed characteristics of slabs are: non-Newtonian viscosity in the mantle producing a weak mantle wedge (1018--1019~Pa s), a stiff slab interior (1025~Pa s) limited by a plastic yield criterion and a weak plate boundary shear zone (1020--1021~Pa s). The shallow slab dip reaches a minimum of 25--30o for high convergence rates and a stiff slab, without trench roll-back or relative motion of the entire lithosphere with respect to the mantle, suggesting these other mechanisms are not the primary controls on slab geometry. The deep slab dip (350--650 km) decreases as the slab penetrates the stiffer (x10), Newtonian viscosity lower mantle, eventually stabilizing the upper mantle slab geometry.

  2. Sled tracking system

    NASA Astrophysics Data System (ADS)

    Downey, George A., Jr.; Fountain, Hubert W.; Riding, Thomas J.; Eggleston, James; Hopkins, Michael; Adams, Billy

    1991-08-01

    The Sled Tracking System (STS) represents the successful merger of several technologies, including IR and visual sensors, real-time image processing, and real-time data processing and control. STS was developed to solve the dynamics of tracking seat ejection and vehicle tests at the Air Force's High Speed Test Track Facility at Holloman AFB, New Mexico. The system has the ability to track vehicles at transverse speeds exceeding Mach 1, while ignoring momentary loss of track due to background clutter. STS can discriminate among up to four seats sequentially ejected from a single vehicle and track only the event of interest. The system also maintains the track point of interest in the primary sensor's field-of-view while tracking an offset aim point and transitions from a transverse trajectory to a vertical trajectory while maintaining track through seat-mannequin separation and chute deployment. This paper discusses the hardware and software architectures implemented to solve these problems.

  3. Can we track holes?

    PubMed Central

    Horowitz, Todd S.; Kuzmova, Yoana

    2011-01-01

    The evidence is mixed as to whether the visual system treats objects and holes differently. We used a multiple object tracking task to test the hypothesis that figural objects are easier to track than holes. Observers tracked four of eight items (holes or objects). We used an adaptive algorithm to estimate the speed allowing 75% tracking accuracy. In Experiments 1–5, the distinction between holes and figures was accomplished by pictorial cues, while red-cyan anaglyphs were used to provide the illusion of depth in Experiment 6. We variously used Gaussian pixel noise, photographic scenes, or synthetic textures as backgrounds. Tracking was more difficult when a complex background was visible, as opposed to a blank background. Tracking was easier when disks carried fixed, unique markings. When these factors were controlled for, tracking holes was no more difficult than tracking figures, suggesting that they are equivalent stimuli for tracking purposes. PMID:21334361

  4. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments

    NASA Astrophysics Data System (ADS)

    MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.

    2014-05-01

    Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc

  5. Carbonation and its effects in reinforced concrete

    SciTech Connect

    Broomfield, J.P.

    2000-01-01

    Carbonation is the result of interaction of carbon dioxide (CO{sub 2}) gas in the atmosphere with the alkaline hydroxides in the concrete. CO{sub 2} diffuses through the concrete and rate of movement of the carbonation front roughly follows Fick's law of diffusion. Carbonation depth can be measured by exposing fresh concrete and spraying it with phenolphthalein indicator solution. An example of the test on a reinforced concrete mullion is given.

  6. Criticality Experiments with Mixed Plutonium and Uranium Nitrate Solution at a Plutonium Fraction of 0.4 in Slab and Cylindrical Geometry

    SciTech Connect

    Lloyd, RC

    1988-04-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.4. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylinqrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 105 to 436 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 0.4 for all experiments.

  7. Criticality experiments with mixed plutonium and uranium nitrate solution at a plutonium fraction of 0.5 in slab and cylindrical geometry

    SciTech Connect

    Lloyd, R.C.

    1986-12-01

    A series of critical experiments was completed with mixed plutonium-uranium solutions having Pu/(Pu + U) ratios of approximately 0.5. These experiments were a part of the Criticality Data Development Program between the United States Department of Energy (USDOE), and the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. A complete description of, and data from, the experiments are included in this report. The experiments were performed with mixed plutonium-uranium solutions in cylindrical and slab geometries and included measurements with a water reflector, a concrete reflector, and without an added reflector. The concentration was varied from 112 to 332 g (Pu + U)/liter. The ratio of plutonium to total heavy metal (plutonium plus uranium) was 52% for all experiments.

  8. Two-Pass, Diode-Pumped Nd:YAG Slab Laser Head

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry

    1992-01-01

    Neodymium/yttrium aluminum garnet (Nd:YAG) ring-laser head designed for compactness, simplicity, and increased efficiency for side pumping by diode lasers. Laser head includes two linear arrays of diode lasers, two fused-silica collimating rods, and Nd:YAG slab. Slab mounted on finned copper block, providing good thermal dissipation.

  9. Convective instability rising out of the underbelly of stagnant slabs in the Mantle Transition Zone

    NASA Astrophysics Data System (ADS)

    Ballmer, Maxim D.; Motoki, Matthew H.

    2016-04-01

    The study of volcanism can further our understanding of Earth's mantle processes and composition. Continental intraplate volcanism commonly occurs above subducted slabs that stagnate in the Mantle Transition Zone (MTZ), such as in Europe, eastern China, and western North America. Here, we use two-dimensional numerical models to explore the evolution of stagnant slabs in the MTZ and their potential to sustain mantle upwellings that can support volcanism. We find [1] that weak slabs may go convectively unstable within tens of Myr. Upwellings rise out of the relatively warm underbelly of the slab, are entrained by ambient-mantle flow and reach the base of the lithosphere. The first and most vigorous upwellings rise adjacent to lateral heterogeneity within the slab. Ultimately, convective instability also acts to separate the compositional components of the slab, harzburgite and eclogite, from each other with harzburgite rising into the upper mantle and eclogite sinking toward the base of the MTZ, and potentially into the lower mantle. Such a physical filtering process may sustain a long-term compositional stratification across the mantle [2]. [1] Motoki, M. H. and M. D. Ballmer (2015): Convective instability of Stagnant Slabs in the Mantle Transition Zone, Geochem. Geophys. Geosys., doi:10.1002/2014GC005608. [2] Ballmer, M. D., N. C. Schmerr, T. Nakagawa, and J. Ritsema (2015): Compositional mantle layering revealed by slab stagnation at ~1,000 km depth, Science Advances, doi:10.1126/sciadv.1500815

  10. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity

    USGS Publications Warehouse

    McCrory, Patricia A.; Blair, J. Luke; Waldhause, Felix; Oppenheimer, David H.

    2012-01-01

    A new model of the subducted Juan de Fuca plate beneath western North America allows first-order correlations between the occurrence of Wadati-Benioff zone earthquakes and slab geometry, temperature, and hydration state. The geo-referenced 3D model, constructed from weighted control points, integrates depth information from earthquake locations and regional seismic velocity studies. We use the model to separate earthquakes that occur in the Cascadia forearc from those that occur within the underlying Juan de Fuca plate and thereby reveal previously obscured details regarding the spatial distribution of earthquakes. Seismicity within the slab is most prevalent where the slab is warped beneath northwestern California and western Washington suggesting that slab flexure, in addition to expected metamorphic dehydration processes, promotes earthquake occurrence within the subducted oceanic plate. Earthquake patterns beneath western Vancouver Island are consistent with slab dehydration processes. Conversely, the lack of slab earthquakes beneath western Oregon is consistent with an anhydrous slab. Double-differenced relocated seismicity resolves a double seismic zone within the slab beneath northwestern California that strongly constrains the location of the plate interface and delineates a cluster of seismicity 10 km above the surface that includes the 1992 M7.1 Mendocino earthquake. We infer that this earthquake ruptured a surface within the Cascadia accretionary margin above the Juan de Fuca plate. We further speculate that this earthquake is associated with a detached fragment of former Farallon plate. Other subsurface tectonic elements within the forearc may have the potential to generate similar damaging earthquakes.

  11. ENGINEERING DESIGN CRITERIA FOR SUB-SLAB DEPRESSURIZATION SYSTEMS IN LOW-PERMEABILTY SOLIDS

    EPA Science Inventory

    The report describes the development of engineering design criteria for the successful design, installation, and operation of sub-slab depressurization systems, based on radon (Rn) mitigation experience on 14 slab-on-grade houses in South Central Florida. The Florida houses are c...

  12. The study of the transition regime between slab and mixed slab-toroidal electron temperature gradient modes in a basic experiment

    NASA Astrophysics Data System (ADS)

    Balbaky, Abed; Sokolov, Vladimir; Sen, Amiya K.

    2015-05-01

    Electron temperature gradient (ETG) modes are suspected sources of anomalous electron thermal transport in magnetically confined plasmas as in tokamaks. Prior work in the Columbia Linear Machine (CLM) has been able to produce and identify slab ETG modes in a slab geometry [Wei et al., Phys. Plasmas 17, 042108 (2010)]. Now by modifying CLM to introduce curvature to the confining axial magnetic field, we have excited mixed slab-toroidal modes. Linear theory predicts a transition between slab and toroidal ETG modes when /k ∥ R c k y ρ ˜ 1 [J. Kim and W. Horton, Phys. Fluids B 3, 1167 (1991)]. We observe changes in the mode amplitude for levels of curvature Rc - 1 ≪ /k ∥ , s l a b k ⊥ ρ , which may be explained by reductions in k ∥ in the transition from slab to mixed slab-toroidal modes, as also predicted by theory. We present mode amplitude scaling as a function of magnetic field curvature. Over the range of curvature available in CLM experimentally we find a modest increase in saturated ETG potential fluctuations (˜1.5×), and a substantial increase in the power density of individual mode peaks (˜4-5×).

  13. To Track or Not to Track?

    ERIC Educational Resources Information Center

    Hesson, Heather

    2010-01-01

    Background: This paper was written for a graduate level action research course at Muskingum University, located in New Concord, OH. Purpose: The purpose of this research was to determine which method of instruction best serves ALL high school students. Is it more advantageous to track ("ability group") students or not to track students in high…

  14. Overriding plate thickness control on subducting slab curvature

    NASA Astrophysics Data System (ADS)

    Holt, A.; Buffett, B. A.; Becker, T. W.

    2014-12-01

    The curvature of subducting lithosphere controls deformation due to bending at the trench, which results in a force that dissipates gravitational potential energy and may affect seismic coupling. We use 2-D, thermo-mechanical subduction models to explore the dependence of the radius of curvature on the thickness of the subducting and overriding plates for models with both viscous and effectively plastic lithospheric rheologies. Such a plastic rheology has been shown to reproduce the bending stresses/moment computed using a kinematic strain rate description and a laboratory derived composite rheology. Laboratory and numerical models show that the bending geometry of subducting slabs with a viscous rheology is strongly dependent on slab thickness; thicker plates have a larger radius of curvature. However, the curvature of subducting plates on Earth, illuminated by the distribution of earthquake hypocenters, shows little to no dependence on the plate thickness or age. Such an observation is instead compatible with plates that have a plastic rheology. Indeed, our numerical models show that the radius of curvature of viscous plates has a stronger dependence on subducting plate thickness than in equivalent plastic models. In viscous plates, the bending moment produces a torque, which balances the torque exerted by buoyancy. However, for the plastic plate case the bending moment saturates at a maximum value and so cannot balance the gravitational torque. The saturation of bending moment means that, (a) the radius of curvature of the bending region is not constrained by this torque balance, and, (b) other forces are required to balance the gravitational torque. We explore the role that the overriding plate could play in controlling the subducting plate curvature in plastic plate models where the bending stresses have saturated. For such plates, we find that increasing the thickness of the overriding plate causes the radius of curvature to increase. The same correlation is

  15. Decarbonation and carbonation processes in the slab and mantle wedge - insights from thermomechanical modeling

    NASA Astrophysics Data System (ADS)

    Gonzalez, C. M.; Gorczyk, W.; Connolly, J. A.; Gerya, T.; Hobbs, B. E.; Ord, A.

    2013-12-01

    Subduction zones offer one of the most geologically active and complex systems to investigate. They initiate a process in which crustal sediments are recycled, mantle heterogeneities arise, and mantle wedge refertilization occurs via slab derived volatiles and magma generation. Slab derived volatiles, consisting primarily of H2O - CO2 fluids, are especially critical in subduction evolution as they rheologically weaken the mantle wedge, decrease solidus temperatures, and rock-fluid interactions result in metasomatism. While the effects of H2O in these processes have been well studied in the past decades, CO2's role remains open for much scientific study. This is partly attributed to the sensitivity of decarbonation to the thermal gradient of the subduction zone, bulk compositions (sediments, basalts, peridotites) and redox state of the mantle. Here we show benchmarking results of a subduction scenario that implements carbonation-decarbonation reactions into a fully coupled petrological-thermomechanical numerical modeling code. We resolve stable mineralogy and extract rock properties via Perple_X at a resolution of 5°C and 25 MPa. The numerical technique employed is a characteristics-based marker-in-cell technique with conservative finite-differences that includes visco-elastic-plastic rheologies (I2ELVIS). The devolatilized fluids are tracked via markers that are either generated or consumed based on P-T conditions. The fluids are also allowed to freely advect within the velocity field. The hosts for CO2 in this system are computed via GLOSS average sediments (H2O: 7.29 wt% & CO2: 3.01 wt%), metabasalts ( H2O: 2.63 & CO2: 2.90 wt%), and ophicarbonates (H2O: 1.98 wt% & CO2: 5.00 wt%). Our results demonstrate the feasibility of applying this decarbonation-carbonation numerical method to a range of geodynamic scenarios that simulate the removal of CO2 from the subducting slab. Such applicable scenarios include sediment diapirism into the convecting wedge and better

  16. Molecular Survey of Concrete Biofilm Microbial Communities

    EPA Science Inventory

    Although several studies have shown that bacteria can deteriorate concrete structures, there is very little information on the composition of concrete microbial communities. To this end, we studied different microbial communities associated with concrete biofilms using 16S rRNA g...

  17. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  18. 9 CFR 91.26 - Concrete flooring.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Concrete flooring. 91.26 Section 91.26... LIVESTOCK FOR EXPORTATION Inspection of Vessels and Accommodations § 91.26 Concrete flooring. (a) Pens aboard an ocean vessel shall have a 3 inch concrete pavement, proportioned and mixed to give 2000...

  19. Lightweight concrete with enhanced neutron shielding

    DOEpatents

    Brindza, Paul Daniel; Metzger, Bert Clayton

    2016-09-13

    A lightweight concrete containing polyethylene terephthalate in an amount of 20% by total volume. The concrete is enriched with hydrogen and is therefore highly effective at thermalizing neutrons. The concrete can be used independently or as a component of an advanced neutron radiation shielding system.

  20. Evaluation of ilmenite serpentine concrete and ordinary concrete as nuclear reactor shielding

    NASA Astrophysics Data System (ADS)

    Abulfaraj, Waleed H.; Kamal, Salah M.

    1994-07-01

    The present study involves adapting a formal decision methodology to the selection of alternative nuclear reactor concretes shielding. Multiattribute utility theory is selected to accommodate decision makers' preferences. Multiattribute utility theory (MAU) is here employed to evaluate two appropriate nuclear reactor shielding concretes in terms of effectiveness to determine the optimal choice in order to meet the radiation protection regulations. These concretes are Ordinary concrete (O.C.) and Ilmenite Serpentile concrete (I.S.C.). These are normal weight concrete and heavy heat resistive concrete, respectively. The effectiveness objective of the nuclear reactor shielding is defined and structured into definite attributes and subattributes to evaluate the best alternative. Factors affecting the decision are dose received by reactor's workers, the material properties as well as cost of concrete shield. A computer program is employed to assist in performing utility analysis. Based upon data, the result shows the superiority of Ordinary concrete over Ilmenite Serpentine concrete.