DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 304 Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 304 Facility is now undergoing closure asmore » defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Code (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 304 Facility, the history of materials and waste managed, and the procedures that will be followed to close the 304 Facility. The 304 Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
303-K Storage Facility closure plan. Revision 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-12-15
Recyclable scrap uranium with zircaloy-2 and copper silicon alloy, uranium-titanium alloy, beryllium/zircaloy-2 alloy, and zircaloy-2 chips and fines were secured in concrete billets (7.5-gallon containers) in the 303-K Storage Facility, located in the 300 Area. The beryllium/zircaloy-2 alloy and zircaloy-2 chips and fines are designated as mixed waste with the characteristic of ignitability. The concretion process reduced the ignitability of the fines and chips for safe storage and shipment. This process has been discontinued and the 303-K Storage Facility is now undergoing closure as defined in the Resource Conservation and Recovery Act (RCRA) of 1976 and the Washington Administrative Codemore » (WAC) Dangerous Waste Regulations, WAC 173-303-040. This closure plan presents a description of the 303-K Storage Facility, the history of materials and waste managed, and the procedures that will be followed to close the 303-K Storage Facility. The 303-K Storage Facility is located within the 300-FF-3 (source) and 300-FF-5 (groundwater) operable units, as designated in the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) (Ecology et al. 1992). Contamination in the operable units 300-FF-3 and 300-FF-5 is scheduled to be addressed through the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) of 1980 remedial action process. Therefore, all soil remedial action at the 304 Facility will be conducted as part of the CERCLA remedial action of operable units 300-FF-3 and 300-FF-5.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-05-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Development of high integrity, maximum durability concrete structures for LLW disposal facilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.P.
1992-01-01
A number of disposal facilities for Low-Level Radioactive Wastes have been planned for the Savannah River Site. Design has been completed for disposal vaults for several waste classifications and construction is nearly complete or well underway on some facilities. Specific design criteria varies somewhat for each waste classification. All disposal units have been designed as below-grade concrete vaults, although the majority will be above ground for many years before being encapsulated with earth at final closure. Some classes of vaults have a minimum required service life of 100 years. All vaults utilize a unique blend of cement, blast furnace slagmore » and pozzolan. The design synthesizes the properties of the concrete mix with carefully planned design details and construction methodologies to (1) eliminate uncontrolled cracking; (2) minimize leakage potential; and (3) maximize durability. The first of these vaults will become operational in 1992. 9 refs.« less
Centrifugal shot blasting. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1999-07-01
At the US Department of Energy (DOE) Fernald Environmental Management Project (FEMP), the Facilities Closure and Demolition Projects Integrated Remedial Design/Remedial Action (RD/RA) work plan calls for the removal of one inch (1 in) depth of concrete surface in areas where contamination with technetium-99 has been identified. This report describes a comparative demonstration between two concrete removal technologies: an innovative system using Centrifugal Shot Blasting (CSB) and a modified baseline technology called a rotary drum planer.
ICPP tank farm closure study. Volume 2: Engineering design files
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-02-01
Volume 2 contains the following topical sections: Tank farm heel flushing/pH adjustment; Grouting experiments for immobilization of tank farm heel; Savannah River high level waste tank 20 closure; Tank farm closure information; Clean closure of tank farm; Remediation issues; Remote demolition techniques; Decision concerning EIS for debris treatment facility; CERCLA/RCRA issues; Area of contamination determination; Containment building of debris treatment facility; Double containment issues; Characterization costs; Packaging and disposal options for the waste resulting from the total removal of the tank farm; Take-off calculations for the total removal of soils and structures at the tank farm; Vessel off-gas systems; Jet-groutedmore » polymer and subsurface walls; Exposure calculations for total removal of tank farm; Recommended instrumentation during retrieval operations; High level waste tank concrete encasement evaluation; Recommended heavy equipment and sizing equipment for total removal activities; Tank buoyancy constraints; Grout and concrete formulas for tank heel solidification; Tank heel pH requirements; Tank cooling water; Evaluation of conservatism of vehicle loading on vaults; Typical vault dimensions and approximately tank and vault void volumes; Radiological concerns for temporary vessel off-gas system; Flushing calculations for tank heels; Grout lift depth analysis; Decontamination solution for waste transfer piping; Grout lift determination for filling tank and vault voids; sprung structure vendor data; Grout flow properties through a 2--4 inch pipe; Tank farm load limitations; NRC low level waste grout; Project data sheet calculations; Dose rates for tank farm closure tasks; Exposure and shielding calculations for grout lines; TFF radionuclide release rates; Documentation of the clean closure of a system with listed waste discharge; and Documentation of the ORNL method of radionuclide concentrations in tanks.« less
E-Area Vault Concrete Material Property And Vault Durability/Degradation Projection Recommendations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phifer, M. A.
2014-03-11
Subsequent to the 2008 E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) (WSRC 2008), two additional E-Area vault concrete property testing programs have been conducted (Dixon and Phifer 2010 and SIMCO 2011a) and two additional E-Area vault concrete durability modeling projections have been made (Langton 2009 and SIMCO 2012). All the information/data from these reports has been evaluated and consolidated herein by the Savannah River National Laboratory (SRNL) at the request of Solid Waste Management (SWM) to produce E-Area vault concrete hydraulic and physical property data and vault durability/degradation projection recommendations that are adequately justified for use within associated Specialmore » Analyses (SAs) and future PA updates. The Low Activity Waste (LAW) and Intermediate Level (IL) Vaults structural degradation predictions produced by Carey 2006 and Peregoy 2006, respectively, which were used as the basis for the 2008 ELLWF PA, remain valid based upon the results of the E-Area vault concrete durability simulations reported by Langton 2009 and those reported by SIMCO 2012. Therefore revised structural degradation predictions are not required so long as the mean thickness of the closure cap overlying the vaults is no greater than that assumed within Carey 2006 and Peregoy 2006. For the LAW Vault structural degradation prediction (Carey 2006), the mean thickness of the overlying closure cap was taken as nine feet. For the IL Vault structural degradation prediction (Peregoy 2006), the mean thickness of the overlying closure cap was taken as eight feet. The mean closure cap thicknesses as described here for both E-Area Vaults will be included as a key input and assumption (I&A) in the next revision to the closure plan for the ELLWF (Phifer et al. 2009). In addition, it has been identified as new input to the PA model to be assessed in the ongoing update to the new PA Information UDQE (Flach 2013). Once the UDQE is approved, the SWM Key I&A database will be updated with this new information.« less
Closure Report for Corrective Action Unit 536: Area 3 Release Site, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 536 is located in Area 3 of the Nevada Test Site. CAU 536 is listed in the Federal Facility Agreement and Consent Order of 1996 as Area 3 Release Site, and comprises a single Corrective Action Site (CAS): {sm_bullet} CAS 03-44-02, Steam Jenny Discharge The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CAS 03-44-02 is clean closure. Closure activities included removing and disposing of total petroleum hydrocarbon (TPH)- and polyaromatic hydrocarbon (PAH)-impacted soil, soil impacted with plutonium (Pu)-239, and concrete pad debris. CAU 536 was closed in accordance with the NDEP-approved CAU 536more » Corrective Action Plan (CAP), with minor deviations as approved by NDEP. The closure activities specified in the CAP were based on the recommendations presented in the CAU 536 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2004). This Closure Report documents CAU 536 closure activities. During closure activities, approximately 1,000 cubic yards (yd3) of hydrocarbon waste in the form of TPH- and PAH-impacted soil and debris, approximately 8 yd3 of Pu-239-impacted soil, and approximately 100 yd3 of concrete debris were generated, managed, and disposed of appropriately. Additionally, a previously uncharacterized, buried drum was excavated, removed, and disposed of as hydrocarbon waste as a best management practice. Waste minimization techniques, such as the utilization of laboratory analysis to characterize and classify waste streams, were employed during the performance of closure« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 559, T-Tunnel Compressor/Blower Pad. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 559 is comprised of one Corrective Action Site (CAS): • 12-25-13, Oil Stained Soil and Concrete The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with use restrictionsmore » for CAU 559.« less
Low cracking concretes for the closure pours and overlays of the Dunlap Creek Bridge : final report.
DOT National Transportation Integrated Search
2017-10-01
Joints, wide cracks, and poor-quality concretes facilitate the intrusion of chlorides, causing corrosion in bridge decks and substructures. In this study, joints were replaced with closure pours (link slabs) consisting of low permeability fiber-reinf...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R. Kruzic
2008-06-01
Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consentmore » Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.« less
Use of fiber reinforced concrete for concrete pavement slab replacement : [summary].
DOT National Transportation Integrated Search
2014-03-01
Replacing cracked concrete in roadways requires : lanes to be closed and traff c disrupted. One way : to reduce road closure time is to reduce concrete : curing time. To accelerate curing time, pavement : engineers mix a very low water-cement ratio w...
A shape memory polymer concrete crack closure system activated by electrical current
NASA Astrophysics Data System (ADS)
Teall, Oliver; Pilegis, Martins; Davies, Robert; Sweeney, John; Jefferson, Tony; Lark, Robert; Gardner, Diane
2018-07-01
The presence of cracks has a negative impact on the durability of concrete by providing paths for corrosive materials to the embedded steel reinforcement. Cracks in concrete can be closed using shape memory polymers (SMP) which produce a compressive stress across the crack faces. This stress has been previously found to enhance the load recovery associated with autogenous self-healing. This paper details the experiments undertaken to incorporate SMP tendons containing polyethylene terephthalate (PET) filaments into reinforced and unreinforced 500 × 100 × 100 mm structural concrete beam samples. These tendons are activated via an electrical supply using a nickel-chrome resistance wire heating system. The set-up, methodology and results of restrained shrinkage stress and crack closure experiments are explained. Crack closure of up to 85% in unreinforced beams and 26%–39% in reinforced beams is measured using crack-mouth opening displacement, microscope and digital image correlation equipment. Conclusions are made as to the effectiveness of the system and its potential for application within industry.
EVALUATION OF THE DURABILITY OF THE STRUCTURAL CONCRETE OF REACTOR BUILDINGS AT SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.; Reigel, M.
2011-02-28
The Department of Energy (DOE) intends to close 100-150 facilities in the DOE complex using an in situ decommissioning (ISD) strategy that calls for grouting the below-grade interior volume of the structure and leaving the above-grade interior open or demolishing it and disposing of it in the slit trenches in E Area. These closures are expected to persist and remain stable for centuries, but there are neither facility-specific monitoring approaches nor studies on the rate of deterioration of the materials used in the original construction or on the ISD components added during closure (caps, sloped roofs, etc). This report willmore » focus on the evaluation of the actual aging/degradation of the materials of construction used in the ISD structures at Savannah River Site (SRS) above grade, specifically P & R reactor buildings. Concrete blocks (six 2 to 5 ton blocks) removed from the outer wall of the P Reactor Building were turned over to SRNL as the first source for concrete cores. Larger cores were received as a result of grouting activities in P and R reactor facilities. The cores were sectioned and evaluated using microscopy, x-ray diffraction (XRD), ion chromatography (IC) and thermal analysis. Scanning electron microscopy shows that the aggregate and cement phases present in the concrete are consistent with the mix design and no degradation mechanisms are evident at the aggregate-cement interfaces. Samples of the cores were digested and analyzed for chloride ingress as well as sulfate attack. The concentrations of chloride and sulfate ions did not exceed the limits of the mix design and there is no indication of any degradation due to these mechanisms. Thermal analysis on samples taken along the longitudinal axis of the cores show that there is a 1 inch carbonation layer (i.e., no portlandite) present in the interior wall of the reactor building and a negligible carbonation layer in the exterior wall. A mixed layer of carbonate and portlandite extends deeper into the interior (2-3 inches) and exterior (1-2 inches) walls. This is more extensive than measured in previous SRS structures. Once the completely carbonated layer reaches the rebar that is approximately 2-3 inches into the concrete wall, the steel is susceptible to corrosion. The growth rate of the carbonated layer was estimated from current observations and previous studies. Based on the estimated carbonation rate, the steel rebar should be protected from carbonation induced corrosion for at least another 100 years. If degradation of these structures is dominated by the carbonation mechanism, the length of time before water intrusion is expected into the process room of P-reactor is estimated to be between 425-675 years.« less
Design of ultra high performance concrete as an overlay in pavements and bridge decks.
DOT National Transportation Integrated Search
2014-08-01
The main objective of this research was to develop ultra-high performance concrete (UHPC) as a reliable, economic, low carbon foot : print and durable concrete overlay material that can offer shorter traffic closures due to faster construction. The U...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, A.
Concrete core samples from C basin were characterized through material testing and analysis to verify the design inputs for structural analysis of the L Basin and to evaluate the type and extent of changes in the material condition of the concrete under extended service for fuel storage. To avoid the impact on operations, core samples were not collected from L area, but rather, several concrete core samples were taken from the C Basin prior to its closure. C basin was selected due to its similar environmental exposure and service history compared to L Basin. The microstructure and chemical composition ofmore » the concrete exposed to the water was profiled from the water surface into the wall to evaluate the impact and extent of exposure. No significant leaching of concrete components was observed. Ingress of carbonation or deleterious species was determined to be insignificant. No evidence of alkali-silica reactions (ASR) was observed. Ettringite was observed to form throughout the structure (in air voids or pores); however, the sulfur content was measured to be consistent with the initial concrete that was used to construct the facility. Similar ettringite trends were observed in the interior segments of the core samples. The compressive strength of the concrete at the mid-wall of the basin was measured, and similar microstructural analysis was conducted on these materials post compression testing. The microstructure was determined to be similar to near-surface segments of the core samples. The average strength was 4148 psi, which is well-above the design strength of 2500 psi. The analyses showed that phase alterations and minor cracking in a microstructure did not affect the design specification for the concrete.« less
Technical Insights for Saltstone PA Maintenance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.; Sarkar, S.; Mahadevan, S.
2011-07-20
The Cementitious Barriers Partnership (CBP) is a collaborative program sponsored by the US DOE Office of Waste Processing. The objective of the CBP is to develop a set of computational tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers and waste forms used in nuclear applications. CBP tools are expected to better characterize and reduce the uncertainties of current methodologies for assessing cementitious barrier performance and increase the consistency and transparency of the assessment process, as the five-year program progresses. In September 2009, entering its second year of funded effort, the CBPmore » sought opportunities to provide near-term tangible support to DOE Performance Assessments (PAs). The Savannah River Saltstone Disposal Facility (SDF) was selected for the initial PA support effort because (1) cementitious waste forms and barriers play a prominent role in the performance of the facility, (2) certain important long-term behaviors of cementitious materials composing the facility are uncertain, (3) review of the SDF PA by external stakeholders is ongoing, and (4) the DOE contractor responsible for the SDF PA is open to receiving technical assistance from the CBP. A review of the current (SRR Closure & Waste Disposal Authority 2009) and prior Saltstone PAs (e.g., Cook et al. 2005) suggested five potential opportunities for improving predictions. The candidate topics considered were (1) concrete degradation from external sulfate attack, (2) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, (3) mechanistic prediction of geochemical conditions, (4) concrete degradation from rebar corrosion due to carbonation, and (5) early age cracking from drying and/or thermal shrinkage. The candidate topics were down-selected considering the feasibility of addressing each issue within approximately six months, and compatibility with existing CBP expertise and already-planned activities. Based on these criteria, the five original topics were down-selected to two: external sulfate attack and mechanistic geochemical prediction. For each of the selected topics, the CBP communicated with the PA analysts and subject matter experts at Savannah River to acquire input data specific to the Saltstone facility and related laboratory experiments. Simulations and analyses were performed for both topics using STADIUM (SIMCO 2008), LeachXS/ORCHESTRA (ECN 2007, Meeussen 2003), and other software tools. These supplemental CBP analyses produced valuable technical insights that can be used to strengthen the Saltstone PA using the ongoing PA maintenance process. This report in part summarizes key information gleaned from more comprehensive documents prepared by Sarkar et al. (2010), Samson (2010), and Sarkar (2010).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2012-02-21
This Closure Report (CR) presents information supporting closure of the 92-Acre Area, which includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' This CR provides documentation supporting the completed corrective actions and confirmation that the closure objectives were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996 [as amended March 2010]). Closure activities began in January 2011 and were completed in January 2012. Closure activities were conducted according to Revision 1 of the Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) for the 92-Acre Area and CAU 111more » (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2010). The following closure activities were performed: (1) Construct an engineered evapotranspiration cover over the boreholes, trenches, and pits in the 92-Acre Area; (2) Install use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; and (3) Establish vegetation on the covers. UR documentation is included as Appendix C of this report. The post-closure plan is presented in detail in Revision 1 of the CADD/CAP for the 92-Acre Area and CAU 111, and the requirements are summarized in Section 5.2 of this document. When the next request for modification of Resource Conservation and Recovery Act Permit NEV HW0101 is submitted to the Nevada Division of Environmental Protection (NDEP), the requirements for post-closure monitoring of the 92-Acre Area will be included. NNSA/NSO requests the following: (1) A Notice of Completion from NDEP to NNSA/NSO for closure of CAU 111; and (2) The transfer of CAU 111 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattlin, E.; Charboneau, S.; Johnston, G.
2007-07-01
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA) and Washington State Hazardous Waste Management Act, RCW 70.105, , have been deactivated and are being actively decommissioned under the provisions of the Hanford Federal Facility Agreement and Consent Order (HFFACO), RCRA and Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) 42 U.S.C. 9601 et seq. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4,more » D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building. The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground piping from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions will address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the Hanford Facility Dangerous Waste Closure Plan, 241-Z Treatment and Storage Tanks. Under the RCRA closure plan, the 241-Z TSD unit is anticipated to undergo clean closure to the performance standards of the State of Washington with respect to dangerous waste contamination from RCRA operations. The TSD unit will be clean closed if physical closure activities identified in the plan achieve clean closure standards for all 241-Z locations. Clean closed 241-Z treatment and storage tanks, equipment and/or structures will remain after RCRA clean closure for future disposition in conjunction with PFP decommissioning activities which are integrated with CERCLA. (authors)« less
A field investigation of concrete patches containing pyrament blended concrete.
DOT National Transportation Integrated Search
1994-01-01
During roadway repairs, state highway officials try to minimize lane closure times. This reduces inconvenience to travelers, reduces traffic control needs, and helps minimize work zone accidents. For rapid repairs, materials that provide high early s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willoughby III, O.H.; Lukes, G.C.
EnergySolutions, LLC operates its Mixed Waste Facility at Clive, Utah under the provisions of its State-issued Part B Permit. The facility accepts waste that contains both hazardous and radioactive contaminants. Utah is an EPA Agreement State and therefore the Utah Division of Solid and Hazardous Waste (DSHW) is authorized to regulate the hazardous waste operations at the facility. The radioactive portion of the waste is regulated by the Utah Division of Radiation Control. 40 CFR 264.142 outlines the facility requirements for Closure Costs. The owner or operator must have a detailed written estimate of the cost of closing the facilitymore » in accordance with the rules. For many years the State of Utah had relied on the facility's estimate of closure costs as the amount that needed to be funded. This amount is reviewed annually and adjusted for inflation and for changes at the facility. In 2004 the agency and the facility requested bids from independent contractors to provide their estimate for closure costs. Three engineering firms bid on the project. The facility funded the project and both the agency and the facility chose one of the firms to provide an independent estimate. The engineering firms met with both parties and toured the facility. They were also provided with the current closure cost line items. Each firm provided an estimated cost for closure of the facility at the point in the facility's active life that would make the closure most expensive. Included with the direct costs were indirect line items such as overhead, profit, mobilization, hazardous working conditions and regulatory oversight. The agency and the facility reviewed the independent estimates and negotiated a final Closure and Post-Closure Cost Estimate for the Mixed Waste Facility. There are several mechanisms allowed under the rules to fund the Closure and Post- Closure Care Funds. EnergySolutions has chosen to fund their costs through the use of an insurance policy. Changing mechanisms from an irrevocable trust to an insurance policy required extensive review by the DSHW and the Utah Attorney General's Office. The duration of the Post-Closure Care Period is generally designated as 30 years under the hazardous waste rules. The Legislature of the State of Utah commissioned a review of the need for Perpetual Care Funds for hazardous waste facilities. This fund would provide funds for maintenance and monitoring of facilities following termination of the Post-Closure Permit. The DSHW has recommended to the legislature that a perpetual care fund be created. The legislature will study the recommendation and take appropriate action. (authors)« less
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... must equal the cost of final closure at the point in the facility's active life when the extent and... at all times over the life of the facility. (3) The closure cost estimate may not incorporate any... facility at the time of partial or final closure. (4) The owner or operator may not incorporate a zero cost...
40 CFR 265.142 - Cost estimate for closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... must equal the cost of final closure at the point in the facility's active life when the extent and... at all times over the life of the facility. (3) The closure cost estimate may not incorporate any... facility at the time of partial or final closure. (4) The owner or operator may not incorporate a zero cost...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
..., reinforced concrete diversion weir on Ruth Creek; (2) a 45-foot-long, 15-foot-wide, 12-foot-high reinforced concrete intake structure adjacent to the weir with a trash rack, fish screen, and closure gate; (3) a 0.1... penstock from the intake structure to the powerhouse; (5) a 60-foot-long, 40-foot-wide reinforced concrete...
DOT National Transportation Integrated Search
2000-08-01
To minimize the lane closure time for construction, Caltrans is exploring the use of fast-setting hydraulic cement concrete (FSHCC). The principal property of the FSHCC is its high early strength gain. This accelerated strength gain would increase th...
DOT National Transportation Integrated Search
2017-01-01
Connections, closure pours, and joints in bridges are often sources of distress because of cracks and openings. Wide separation facilitates the penetration of harmful solutions that can lead to costly repairs. Cracks are caused by volumetric changes ...
Fatigue Assessment for the Failed Bridge Deck Closure Pour at Mile Marker 43 on I-81.
DOT National Transportation Integrated Search
2014-04-01
"Fatigue of reinforcing steel in concrete bridge decks has not been identified as a common failure mode. Generally, the : stress range occurring in reinforcing steel is below the fatigue threshold and infinite fatigue life can be expected. Closure po...
Factors associated with increasing nursing home closures.
Castle, Nicholas G; Engberg, John; Lave, Judith; Fisher, Andrew
2009-06-01
We determine the rate of nursing home closures for 7 years (1999-2005) and examine internal (e.g., quality), organizational (e.g., chain membership), and external (e.g., competition) factors associated with these closures. The names of the closed facilities and dates of closure from state regulators in all 50 states were obtained. This information was linked to the Online Survey, Certification, and Reporting data, which contains information on internal, organizational, and market factors for almost all nursing homes in the United States. One thousand seven hundred and eighty-nine facilities closed over this time period (1999-2005). The average annual rate of closure was about 2 percent of facilities, but the rate of closure was found to be increasing. Nursing homes with higher rates of deficiency citations, hospital-based facilities, chain members, small bed size, and facilities located in markets with high levels of competition were more likely to close. High Medicaid occupancy rates were associated with a high likelihood of closure, especially for facilities with low Medicaid reimbursement rates. As states actively debate about how to redistribute long-term care services/dollars, our findings show that they should be cognizant of the potential these decisions have for facilitating nursing home closures.
1982-10-01
centerline by stanchions. A concrete beam is provided at the ship centerline to transfer unbalanced stanchion loads longitudinally along the shell . The 01...Place Cast-in-Place Concrete Connections -- Connections betw. an precast shell elements are made using cast-in-place concrete closure pours. See Figure...buckling using the column provi sions of the ACI code. For shells , the critical radius to thickness ratio is about 200 for cylindrical shells loaded in
78 FR 20625 - Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-05
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on January 22, 2013...
77 FR 65871 - Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-31
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on August 15, 2012...
78 FR 1206 - Second Extension of Hearing Record Closure Date
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-08
... DEFENSE NUCLEAR FACILITIES SAFETY BOARD Second Extension of Hearing Record Closure Date AGENCY: Defense Nuclear Facilities Safety Board. ACTION: Second extension of hearing record closure date. SUMMARY: The Defense Nuclear Facilities Safety Board (Board) published a document in the Federal Register on...
3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant tomore » the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.« less
3718-F Alkali Metal Treatment and Storage Facility Closure Plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; wastemore » characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure ofmore » each of the following hazardous waste management units regulated under RCRA.« less
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE
NASA Technical Reports Server (NTRS)
1975-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING OF CONCRETE KSC-375C-10036.31 108-KSC-375C-10036.31, P-21426, ARCHIVE-04502 Aerial oblique of Shuttle runway facilities. Pouring concrete on runway. Direction north - altitude 100'.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathews, S.
This document addresses the interim status closure of the HE Open Bum Treatment Facility, as detailed by Title 22, Division 4.5, Chapter 15, Article 7 of the Califonia Code of Regulations (CCR) and by Title 40, Code of Federal Regulations (CFR) Part 265, Subpart G, ``Closure and Post Closure.`` The Closure Plan (Chapter 1) and the Post- Closure Plan (Chapter 2) address the concept of long-term hazard elimination. The Closure Plan provides for capping and grading the HE Open Bum Treatment Facility and revegetating the immediate area in accordance with applicable requirements. The Closure Plan also reflects careful consideration ofmore » site location and topography, geologic and hydrologic factors, climate, cover characteristics, type and amount of wastes, and the potential for contaminant migration. The Post-Closure Plan is designed to allow LLNL to monitor the movement, if any, of pollutants from the treatment area. In addition, quarterly inspections will ensure that all surfaces of the closed facility, including the cover and diversion ditches, remain in good repair, thus precluding the potential for contaminant migration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module explains the difference between closure and post-closure. It lists the types of facilities that are subject to closure/post-closures and defines the difference between partial and final closure. It specifies who submits a closure plan and when a closure plan must be submitted, lists the steps in the process, and states the time frame for submittal. It identifies when and how a closure must be amended. It explains the time frame for notification of closure and the deadlines for beginning and completing closure. It specifies which facilities need contingent post-closure plans and lists and the elements of post-closure andmore » cites the requirements. It specifies the conditions and timing for amending a post-closure plan and states who must certify closure/post-closure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
David Strand
2006-05-01
This Corrective Action Decision Document/Closure Report has been prepared for Corrective Action Unit (CAU) 219, Septic Systems and Injection Wells, in Areas 3, 16, and 23 of the Nevada Test Site, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (1996). Corrective Action Unit 219 is comprised of the following corrective action sites (CASs): (1) 03-11-01, Steam Pipes and Asbestos Tiles; (2) 16-04-01, Septic Tanks (3); (3) 16-04-02, Distribution Box; (4) 16-04-03, Sewer Pipes; (5) 23-20-01, DNA Motor Pool Sewage and Waste System; and (6) 23-20-02, Injection Well. The purpose of this Corrective Action Decision Document/Closure Report ismore » to provide justification and documentation supporting the recommendation for closure of CAU 219 with no further corrective action beyond the application of a use restriction at CASs 16-04-01, 16-04-02, and 16-04-03. To achieve this, corrective action investigation (CAI) activities were performed from June 20 through October 12, 2005, as set forth in the CAU 219 Corrective Action Investigation Plan and Record of Technical Change No. 1. A best management practice was implemented at CASs 16-04-01, 16-04-02, and 16-04-03, and corrective action was performed at CAS 23-20-01 between January and April 2006. In addition, a use restriction will be applied to CASs 16-04-01, 16-04-02, and 16-04-03 to provide additional protection to Nevada Test Site personnel. The purpose of the CAI was to fulfill the following data needs as defined during the data quality objective (DQO) process: (1) Determine whether contaminants of concern (COCs) are present. (2) If COCs are present, determine their nature and extent. (3) Provide sufficient information and data to complete appropriate corrective actions. The CAU 219 dataset from the investigation results was evaluated based on the data quality indicator parameters. This evaluation demonstrated the quality and acceptability of the dataset for use in fulfilling the DQO data needs. Analytes detected during the CAI were evaluated against final action levels (FALs) established in this document. A Tier 2 evaluation was conducted, and a FAL of 185,000 micrograms per kilogram was calculated for chlordane at CASs 16-04-01, 16-04-02, and 16-04-03 based on an occasional use area exposure scenario. This evaluation of chlordane based on the Tier 2 FAL determined that no FALs were exceeded. Therefore, the DQO data needs were met, and it was determined that no corrective action (based on risk to human receptors) is necessary for the site. The following contaminants were determined to be present at concentrations exceeding their corresponding FALs: (1) The surface soil surrounding the main concrete pad at CAS 23-20-01 contained Aroclor-1254, Aroclor-1260, and chlordane above the FALs. This soil, along with the COCs, was subsequently removed at CAS 23-20-01. (2) The sludge in the concrete box of the catch basin at the large concrete pad at CAS 23-20-01 contained lead and benzo(a)pyrene above the FALs. This contamination was limited to the sludge in the concrete box of the catch basin and did not migrate to the subsurface features beneath it. The contaminated and the concrete box of the catch basin were subsequently recovered at CAS 23-20-01.« less
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY
NASA Technical Reports Server (NTRS)
1975-01-01
AERIAL OF SHUTTLE LANDING FACILITY [SLF] POURING CONCRETE ON RUNWAY KSC-375C-10036.32 108-KSC-375C-10036.32, P-21425, ARCHIVE-04501 Aerial oblique of Shuttle Landing Facility. Pouring concrete on runway. Direction North - Altitude 100'.
Life Cycle Cost Analysis of Ready Mix Concrete Plant
NASA Astrophysics Data System (ADS)
Topkar, V. M.; Duggar, A. R.; Kumar, A.; Bonde, P. P.; Girwalkar, R. S.; Gade, S. B.
2013-11-01
India, being a developing nation is experiencing major growth in its infrastructural sector. Concrete is the major component in construction. The requirement of good quality of concrete in large quantities can be fulfilled by ready mix concrete batching and mixing plants. The paper presents a technique of applying the value engineering tool life cycle cost analysis to a ready mix concrete plant. This will help an investor or an organization to take investment decisions regarding a ready mix concrete facility. No economic alternatives are compared in this study. A cost breakdown structure is prepared for the ready mix concrete plant. A market survey has been conducted to collect realistic costs for the ready mix concrete facility. The study establishes the cash flow for the ready mix concrete facility helpful in investment and capital generation related decisions. Transit mixers form an important component of the facility and are included in the calculations. A fleet size for transit mixers has been assumed for this purpose. The life cycle cost has been calculated for the system of the ready mix concrete plant and transit mixers.
Closure Report for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2012-08-15
This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 562, Waste Systems, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 562 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 as amended). CAU 562 consists of the following 13 Corrective Action Sites (CASs), located in Areas 2, 23, and 25 of the Nevadamore » National Security Site: · CAS 02-26-11, Lead Shot · CAS 02-44-02, Paint Spills and French Drain · CAS 02-59-01, Septic System · CAS 02-60-01, Concrete Drain · CAS 02-60-02, French Drain · CAS 02-60-03, Steam Cleaning Drain · CAS 02-60-04, French Drain · CAS 02-60-05, French Drain · CAS 02-60-06, French Drain · CAS 02-60-07, French Drain · CAS 23-60-01, Mud Trap Drain and Outfall · CAS 23-99-06, Grease Trap · CAS 25-60-04, Building 3123 Outfalls Closure activities began in October 2011 and were completed in April 2012. Activities were conducted according to the Corrective Action Plan for CAU 562 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2011). The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste and hazardous waste. Some wastes exceeded land disposal limits and required offsite treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite or offsite landfills. NNSA/NSO requests the following: · A Notice of Completion from the Nevada Division of Environmental Protection to NNSA/NSO for closure of CAU 562 · The transfer of CAU 562 from Appendix III to Appendix IV, Closed Corrective Action Units, of the FFACO« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.
2011-08-31
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less
Israel: Possible Military Strike Against Iran’s Nuclear Facilities
2012-03-27
centrifuge facility and a larger commercial facility located at this site. The commercial facility is reportedly hardened by steel-reinforced concrete , buried...prime minister has had to contemplate. A strike against Iran’s nuclear facilities could lead to regional conflagration , tens of thousands of...high explosives, and can penetrate more than 6 feet of reinforced concrete . The GBU-28 5000-lb class weapon penetrates at least 20 feet of concrete
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
40 CFR 265.310 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Closure and post-closure care. 265.310... DISPOSAL FACILITIES Landfills § 265.310 Closure and post-closure care. (a) At final closure of the landfill... subsoils present. (b) After final closure, the owner or operator must comply with all post-closure...
Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center
2012-02-27
boulders, concrete, steel 30.5 m 100 ft Corrosion Facility 27 Various corrosive environments NA NA Abrasive Mud Course 28 Sand loam 73 x 290 m 240 x...950 ft Fording Basin 30 Concrete 82 m 270 ft Underwater Fording Facility 31 Concrete 96 m 315 ft Amphibian Ramp 31 Bituminous concrete 6 x 15 m...Courses Fording Basin 97 Concrete (L x W) 67 x 25 m 220 x 82 ft Kofa Dust Course 98 Sand, Dust 3.2 km 2.0 mi Cibola Dust Course 99 Sand, Dust 6.3 km 3.9
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...
40 CFR 265.228 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Closure and post-closure care. 265.228... DISPOSAL FACILITIES Surface Impoundments § 265.228 Closure and post-closure care. (a) At closure, the owner... impoundment and provide post-closure care for a landfill under subpart G and § 265.310, including the...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... that on-site disposal capacity will exist at all times over the life of the facility. (3) The closure...) The owner or operator must keep the following at the facility during the operating life of the... PERMIT Financial Requirements § 267.142 Cost estimate for closure. (a) The owner or operator must have at...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... that on-site disposal capacity will exist at all times over the life of the facility. (3) The closure...) The owner or operator must keep the following at the facility during the operating life of the... PERMIT Financial Requirements § 267.142 Cost estimate for closure. (a) The owner or operator must have at...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... the cost of final closure at the point in the facility's active life when the extent and manner of its... costs for on-site disposal if he can demonstrate that on-site disposal capacity will exist at all times over the life of the facility. (3) The closure cost estimate may not incorporate any salvage value that...
Achieving and documenting closure in plant growth facilities
NASA Technical Reports Server (NTRS)
Knott, W. M.; Sager, John C.; Wheeler, Ray
1992-01-01
As NASA proceeds with its effort to develop a Controlled Ecological Life Support System (CELSS) that will provide life support to crews during long duration space missions, it must address the question of facility and system closure. The concept of closure as it pertains to CELSS and engineering specifications, construction problems and monitoring procedures used in the development and operation of a closed plant growth facility for the CELSS program are described. A plant growth facility is one of several modules required for a CELSS. A prototype of this module at Kennedy Space Center is the large (7m tall x 3.5m diameter) Biomass Production Chamber (BPC), the central facility of the CELSS Breadboard Project. The BPC is atmospherically sealed to a leak rate of approximately 5 percent of its total volume per 24 hours. This paper will discuss the requirements for atmospheric closure in the facility, present CO2 and trace gas data from initial tests of the BPC with and without plants, and describe how the chamber was sealed atmospherically. Implications that research conducted in this type of facility will have for the CELSS program are discussed.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2012-01-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on a reinforced concrete specifically designed for this purpose, to predict the service life of the intermediate level radioactive waste disposal facility from data obtained with several techniques. Results obtained with corrosion sensors embedded in a concrete prototype are also included. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
Dry Storage of Research Reactor Spent Nuclear Fuel - 13321
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.
2013-07-01
Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. Themore » initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage requires integration with current facility operations, and selection of equipment that will allow safe operation within the constraints of existing facility conditions. Examples of such constraints that are evaluated and addressed by the dry storage program include limited basin depth, varying fuel lengths up to 4 m, (13 ft), fissile loading limits, canister closure design, post-load drying and closure of the canisters, instrument selection and installation, and movement of the canisters to storage casks. The initial pilot phase restricts the fuels to shorter length fuels that can be loaded to the canister directly underwater; subsequent phases will require use of a shielded transfer system. Removal of the canister from the basin, followed by drying, inerting, closure of the canister, and transfer of the canister to the storage cask are completed with remotely operated equipment and appropriate shielding to reduce personnel radiation exposure. (authors)« less
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
40 CFR 264.1202 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... FACILITIES Hazardous Waste Munitions and Explosives Storage § 264.1202 Closure and post-closure care. (a) At... it remains in service as a munitions or explosives magazine or storage unit. (b) If, after removing...
Light Water Reactor Sustainability Program: Survey of Models for Concrete Degradation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spencer, Benjamin W.; Huang, Hai
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear facilities for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have predictive tools to address concerns related to aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to review and document the main aging mechanismsmore » of concern for concrete structures in nuclear power plants (NPPs) and the models used in simulations of concrete aging and structural response of degraded concrete structures. This is in preparation for future work to develop and apply models for aging processes and response of aged NPP concrete structures in the Grizzly code. To that end, this report also provides recommendations for developing more robust predictive models for aging effects of performance of concrete.« less
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.280 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.280 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Land Treatment § 264.280 Closure and post-closure care. (a) During the closure period the owner or...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2011 CFR
2011-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
40 CFR 264.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2010 CFR
2010-07-01
... days after an unexpected event has occurred which has affected the post-closure plan. An owner or... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Post-closure plan; amendment of plan... FACILITIES Closure and Post-Closure § 264.118 Post-closure plan; amendment of plan. (a) Written Plan. The...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, J.H.; Roy, D.M.; Mann, B.
1995-12-31
This paper describes an integrated approach to developing a predictive computer model for long-term performance of concrete engineered barriers utilized in LLRW and ILRW disposal facilities. The model development concept consists of three major modeling schemes: hydration modeling of the binder phase, pore solution speciation, and transport modeling in the concrete barrier and service environment. Although still in its inception, the model development approach demonstrated that the chemical and physical properties of complex cementitious materials and their interactions with service environments can be described quantitatively. Applying the integrated model development approach to modeling alkali (Na and K) leaching from amore » concrete pad barrier in an above-grade tumulus disposal unit, it is predicted that, in a near-surface land disposal facility where water infiltration through the facility is normally minimal, the alkalis control the pore solution pH of the concrete barriers for much longer than most previous concrete barrier degradation studies assumed. The results also imply that a highly alkaline condition created by the alkali leaching will result in alteration of the soil mineralogy in the vicinity of the disposal facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs aremore » included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2009-07-31
This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are includedmore » as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.« less
Nonlinear fracture of concrete and ceramics
NASA Technical Reports Server (NTRS)
Kobayashi, Albert S.; Du, Jia-Ji; Hawkins, Niel M.; Bradt, Richard C.
1989-01-01
The nonlinear fracture process zones in an impacted unnotched concrete bend specimen, a prenotched ceramic bend specimen, and an unnotched ceramic/ceramic composite bend specimen were estimated through hybrid experimental numerical analysis. Aggregate bridging in concrete, particulate bridging in ceramics, and fiber bridging in ceramic/ceramic composite are modeled by Barenblatt-type cohesive zones which are incorporated into the finite-element models of the bend specimens. Both generation and propagation analyses are used to estimate the distribution of crack closure stresses in the nonlinear fracture process zones. The finite-element models are then used to simulate fracture tests consisting of rapid crack propagation in an impacted concrete bend specimen, and stable crack growth and strain softening in a ceramic and ceramic/ceramic composite bend specimens.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ziehm, Ronny; Pichurin, Sergey Grigorevich
2003-02-27
As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less
Matsumoto, Masatoshi; Ogawa, Takahiko; Kashima, Saori; Takeuchi, Keisuke
2012-07-23
Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity) of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model), and the other that takes into account both the road distance and facility capacity (capacity-distance model). Simulations of closures of rural and urban facilities were then conducted. The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, p<0.001). In the capacity-distance model 36.1% of patients commuted to the facilities which were different from the facilities in the distance model, creating a substantial gap of commuting time between the two models. In the simulation, when five rural public facilitiess were closed, Gini coefficient of commuting times among the patients increased by 16%, indicating a substantial worsening of equity, and the number of patients with commuting times longer than 90 minutes increased by 72 times. In contrast, closure of four urban public facilities with similar capacities did not affect these values. Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using the capacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned.
2012-01-01
Background Frequent and long-term commuting is a requirement for dialysis patients. Accessibility thus affects their quality of lives. In this paper, a new model for accessibility measurement is proposed in which both geographic distance and facility capacity are taken into account. Simulation of closure of rural facilities and that of capacity transfer between urban and rural facilities are conducted to evaluate the impacts of these phenomena on equity of accessibility among dialysis patients. Methods Post code information as of August 2011 of all the 7,374 patients certified by municipalities of Hiroshima prefecture as having first or third grade renal disability were collected. Information on post code and the maximum number of outpatients (capacity) of all the 98 dialysis facilities were also collected. Using geographic information systems, patient commuting times were calculated in two models: one that takes into account road distance (distance model), and the other that takes into account both the road distance and facility capacity (capacity-distance model). Simulations of closures of rural and urban facilities were then conducted. Results The median commuting time among rural patients was more than twice as long as that among urban patients (15 versus 7 minutes, p < 0.001). In the capacity-distance model 36.1% of patients commuted to the facilities which were different from the facilities in the distance model, creating a substantial gap of commuting time between the two models. In the simulation, when five rural public facilitiess were closed, Gini coefficient of commuting times among the patients increased by 16%, indicating a substantial worsening of equity, and the number of patients with commuting times longer than 90 minutes increased by 72 times. In contrast, closure of four urban public facilities with similar capacities did not affect these values. Conclusions Closures of dialysis facilities in rural areas have a substantially larger impact on equity of commuting times among dialysis patients than closures of urban facilities. The accessibility simulations using thecapacity-distance model will provide an analytic framework upon which rational resource distribution policies might be planned. PMID:22824294
Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil-Holterman, Luciana R.
2012-05-07
This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of themore » open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.« less
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post... and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
NASA Astrophysics Data System (ADS)
Teall, Oliver; Pilegis, Martins; Sweeney, John; Gough, Tim; Thompson, Glen; Jefferson, Anthony; Lark, Robert; Gardner, Diane
2017-04-01
The shrinkage force exerted by restrained shape memory polymers (SMPs) can potentially be used to close cracks in structural concrete. This paper describes the physical processing and experimental work undertaken to develop high shrinkage die-drawn polyethylene terephthalate (PET) SMP tendons for use within a crack closure system. The extrusion and die-drawing procedure used to manufacture a series of PET tendon samples is described. The results from a set of restrained shrinkage tests, undertaken at differing activation temperatures, are also presented along with the mechanical properties of the most promising samples. The stress developed within the tendons is found to be related to the activation temperature, the cross-sectional area and to the draw rate used during manufacture. Comparisons with commercially-available PET strip samples used in previous research are made, demonstrating an increase in restrained shrinkage stress by a factor of two for manufactured PET filament samples.
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... the owners and operators of: (1) All hazardous waste disposal facilities; (2) Waste piles and surface... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
TANK 18-F AND 19-F TANK FILL GROUT SCALE UP TEST SUMMARY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stefanko, D.; Langton, C.
2012-01-03
High-level waste (HLW) tanks 18-F and 19-F have been isolated from FTF facilities. To complete operational closure the tanks will be filled with grout for the purpose of: (1) physically stabilizing the tanks, (2) limiting/eliminating vertical pathways to residual waste, (3) entombing waste removal equipment, (4) discouraging future intrusion, and (5) providing an alkaline, chemical reducing environment within the closure boundary to control speciation and solubility of select radionuclides. This report documents the results of a four cubic yard bulk fill scale up test on the grout formulation recommended for filling Tanks 18-F and 19-F. Details of the scale upmore » test are provided in a Test Plan. The work was authorized under a Technical Task Request (TTR), HLE-TTR-2011-008, and was performed according to Task Technical and Quality Assurance Plan (TTQAP), SRNL-RP-2011-00587. The bulk fill scale up test described in this report was intended to demonstrate proportioning, mixing, and transportation, of material produced in a full scale ready mix concrete batch plant. In addition, the material produced for the scale up test was characterized with respect to fresh properties, thermal properties, and compressive strength as a function of curing time.« less
40 CFR 264.197 - Closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.197 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... as hazardous waste, unless § 261.3(d) of this chapter applies. The closure plan, closure activities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2007-02-20
The 241-Z treatment and storage tanks, a hazardous waste Treatment, Storage and Disposal (TSD) unit permitted pursuant to the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and Washington State ''Hazardous Waste Management Act, RCW 70.105'', have been deactivated and are being actively decommissioned. The 241-Z TSD unit managed non-listed radioactive contaminated waste water, containing trace RCRA characteristic constituents. The 241-Z TSD unit consists of below grade tanks (D-4, D-5, D-7, D-8, and an overflow tank) located in a concrete containment vault, sample glovebox GB-2-241-ZA, and associated ancillary piping and equipment. The tank system is located beneath the 241-Z building.more » The 241-Z building is not a portion of the TSD unit. The sample glovebox is housed in the above-grade building. Waste managed at the TSD unit was received via underground mining from Plutonium Finishing Plant (PFP) sources. Tank D-6, located in the D-6 vault cell, is a past-practice tank that was taken out of service in 1972 and has never operated as a portion of the RCRA TSD unit. CERCLA actions address Tank D-6, its containment vault cell, and soil beneath the cell that was potentially contaminated during past-practice operations and any other potential past-practice contamination identified during 241-Z closure, while outside the scope of the ''Hanford Facility Dangerous Waste Closure Plant, 241-Z Treatment and Storage Tanks''.« less
Seismic-Resistant Connections between Precast Concrete Columns and Drilled Shafts
DOT National Transportation Integrated Search
2012-06-01
In most areas of the country traffic is becoming more congested, and delays, more common. Highway construction, and especially construction that requires lane closures, exacerbates the delays, and imposes costs that can be measured in dollars, wasted...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-08
..., provisional guard booths, canopy tents, bike rack, concrete planters and standing canine vehicles. These... standing canine vehicles at vehicle checkpoints at the east and west ends of E Street. A vehicle check...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
40 CFR 265.1202 - Closure and post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., STORAGE, AND DISPOSAL FACILITIES Hazardous Waste Munitions and Explosives Storage § 265.1202 Closure and... as long as it remains in service as a munitions or explosives magazine or storage unit. (b) If, after...
DOE Office of Scientific and Technical Information (OSTI.GOV)
PRIGNANO, A.L.
2003-06-25
This closure plan describes the planned activities and performance standards for closing the Plutonium Finishing Plant (PFP) glovebox HA-20MB that housed an interim status ''Resource Conservation and Recovery Act'' (RCRA) of 1976 treatment unit. This closure plan is certified and submitted to Ecology for incorporation into the Hanford Facility RCRA Permit (HF RCRA Permit) in accordance with Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement; TPA) Milestone M-83-30 requiring submittal of a certified closure plan for ''glovebox HA-20MB'' by July 31, 2003. Glovebox HA-20MB is located within the 231-5Z Building in the 200 West Area of the Hanford Facility.more » Currently glovebox HA-20MB is being used for non-RCRA analytical purposes. The schedule of closure activities under this plan supports completion of TPA Milestone M-83-44 to deactivate and prepare for dismantlement the above grade portions of the 234-5Z and ZA, 243-Z, and 291-Z and 291-Z-1 stack buildings by September 30, 2015. Under this closure plan, glovebox HA-20MB will undergo clean closure to the performance standards of Washington Administrative Code (WAC) 173-303-610 with respect to all dangerous waste contamination from glovebox HA-20MB RCRA operations. Because the intention is to clean close the PFP treatment unit, postclosure activities are not applicable to this closure plan. To clean close the unit, it will be demonstrated that dangerous waste has not been left at levels above the closure performance standard for removal and decontamination. If it is determined that clean closure is not possible or is environmentally impractical, the closure plan will be modified to address required postclosure activities. Because dangerous waste does not include source, special nuclear, and by-product material components of mixed waste, radionuclides are not within the scope of this documentation. Any information on radionuclides is provided only for general knowledge. Clearance form only sent to RHA.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, J.; Glucksberg, N.; Fogg, A.
During the site closure of nuclear facilities where both radionuclides and chemicals are present in environmental media, state and federal regulatory agencies other than the Nuclear Regulatory Commission often have a stake in the regulation of the site closure process. At the Connecticut Yankee Atomic Power Company (CYAPCO) Haddam Neck Plant in Haddam, Connecticut, the site closure process includes both radiological and chemical cleanup which is regulated by two separate divisions within the state and two federal agencies. Each of the regulatory agencies has unique closure criteria which pertain to radionuclides and, consequently, there is overlapping and in some casesmore » disparate regulation of radionuclides. Considerable effort has been expended by CYAPCO to find common ground in meeting the site closure requirements for radionuclides required by each of the agencies. This paper discusses the approaches that have been used by CYAPCO to address radionuclide site closure requirements. Significant lessons learned from these approaches include the demonstration that public health cleanup criteria for most radionuclides of concern at nuclear power generation facilities are protective for chemical toxicity concerns and are protective for ecological receptors and, consequently, performing a baseline ecological risk assessment for radionuclides at power generation facilities is not generally necessary. (authors)« less
4. View of the launch closure. Transporter/erector mounts at center, ...
4. View of the launch closure. Transporter/erector mounts at center, security antenna at left, access building at right. View towards south. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO
Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey
2011-09-30
One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
Corrective Action Unit (CAU) 224 is located in Areas 02, 03, 05, 06, 11, and 23 of the Nevada Test Site, which is situated approximately 65 miles northwest of Las Vegas, Nevada. CAU 224 is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Decon Pad and Septic Systems and is comprised of the following nine Corrective Action Sites (CASs): CAS 02-04-01, Septic Tank (Buried); CAS 03-05-01, Leachfield; CAS 05-04-01, Septic Tanks (4)/Discharge Area; CAS 06-03-01, Sewage Lagoons (3); CAS 06-05-01, Leachfield; CAS 06-17-04, Decon Pad and Wastewater Catch; CAS 06-23-01, Decon Pad Discharge Piping; CASmore » 11-04-01, Sewage Lagoon; and CAS 23-05-02, Leachfield. The Nevada Division of Environmental Protection (NDEP)-approved corrective action alternative for CASs 02-04-01, 03-05-01, 06-03-01, 11-04-01, and 23-05-02 is no further action. As a best management practice, the septic tanks and distribution box were removed from CASs 02-04-01 and 11-04-01 and disposed of as hydrocarbon waste. The NDEP-approved correction action alternative for CASs 05-04-01, 06-05-01, 06-17-04, and 06-23-01 is clean closure. Closure activities for these CASs included removing and disposing of radiologically and pesticide-impacted soil and debris. CAU 224 was closed in accordance with the NDEP-approved CAU 224 Corrective Action Plan (CAP). The closure activities specified in the CAP were based on the recommendations presented in the CAU 224 Corrective Action Decision Document (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, 2005). This Closure Report documents CAU 224 closure activities. During closure activities, approximately 60 cubic yards (yd3) of mixed waste in the form of soil and debris; approximately 70 yd{sup 3} of sanitary waste in the form of soil, liquid from septic tanks, and concrete debris; approximately 10 yd{sup 3} of hazardous waste in the form of pesticide-impacted soil; approximately 0.5 yd{sup 3} of universal waste in the form of fluorescent light bulbs; and approximately 0.5 yd{sup 3} of low-level waste in the form of a radiologically impacted fire hose rack were generated, managed, and disposed of appropriately. Waste minimization techniques, such as the utilization of laboratory analysis and field screening to guide the extent of excavations, were employed during the performance of closure work.« less
NASA Astrophysics Data System (ADS)
Abdel-Jaber, H.; Glisic, B.
2015-02-01
Prestressed structures experience limited tensile stresses in concrete, which limits or completely eliminates the occurrence of cracks. However, in some cases, large tensile stresses can develop during the early age of the concrete due to thermal gradients and shrinkage effects. Such stresses can cause early-age cracks, termed ‘pre-release cracks’, which occur prior to the transfer of the prestressing force. When the prestressing force is applied to the cross-section, it is assumed that partial or full closure of the cracks occurs by virtue of the force transfer through the cracked cross-section. Verification of the closure of the cracks after the application of the prestressing force is important as it can either confirm continued structural integrity or indicate and approximate reduced structural capacity. Structural health monitoring (SHM) can be used for this purpose. This paper researches an SHM method that can be applied to prestressed beam structures to assess the condition of pre-release cracks. The sensor network used in this method consists of parallel long-gauge fiber optic strain sensors embedded in the concrete cross-sections at various locations. The same network is used for damage detection, i.e. detection and characterization of the pre-release cracks, and for monitoring the prestress force transfer. The method is validated on a real structure, a curved continuous girder. Results from the analysis confirm the safety and integrity of the structure. The method and its application are presented in this paper.
2009-12-11
CAPE CANAVERAL, Fla. - Concrete covers the insulation in the walls for the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Concrete is poured over the insulation in the walls for the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
40 CFR 264.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... § 264.145. For owners or operators using the financial test or corporate guarantee, the post-closure... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Cost estimate for post-closure care... FACILITIES Financial Requirements § 264.144 Cost estimate for post-closure care. (a) The owner or operator of...
40 CFR 264.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... § 264.145. For owners or operators using the financial test or corporate guarantee, the post-closure... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Cost estimate for post-closure care... FACILITIES Financial Requirements § 264.144 Cost estimate for post-closure care. (a) The owner or operator of...
40 CFR 264.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... § 264.145. For owners or operators using the financial test or corporate guarantee, the post-closure... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Cost estimate for post-closure care... FACILITIES Financial Requirements § 264.144 Cost estimate for post-closure care. (a) The owner or operator of...
40 CFR 264.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... § 264.145. For owners or operators using the financial test or corporate guarantee, the post-closure... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Cost estimate for post-closure care... FACILITIES Financial Requirements § 264.144 Cost estimate for post-closure care. (a) The owner or operator of...
40 CFR 264.145 - Financial assurance for post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... in accordance with § 264.145(i). (f) Financial test and corporate guarantee for post-closure care. (1... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Financial assurance for post-closure... DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care. The owner...
40 CFR 264.145 - Financial assurance for post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... in accordance with § 264.145(i). (f) Financial test and corporate guarantee for post-closure care. (1... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Financial assurance for post-closure... DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care. The owner...
40 CFR 264.145 - Financial assurance for post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... in accordance with § 264.145(i). (f) Financial test and corporate guarantee for post-closure care. (1... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Financial assurance for post-closure... DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care. The owner...
40 CFR 264.145 - Financial assurance for post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... in accordance with § 264.145(i). (f) Financial test and corporate guarantee for post-closure care. (1... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Financial assurance for post-closure... DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care. The owner...
40 CFR 264.145 - Financial assurance for post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in accordance with § 264.145(i). (f) Financial test and corporate guarantee for post-closure care. (1... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Financial assurance for post-closure... DISPOSAL FACILITIES Financial Requirements § 264.145 Financial assurance for post-closure care. The owner...
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, construction workers survey the last outside wall of the Propellants North Administrative and Maintenance Facility. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
Evaluation of high performance pavement and bridge deck wearing surface repair materials.
DOT National Transportation Integrated Search
2016-08-01
This project provided for a laboratory and field testing of several high performance repair materials for : pavements and concrete bridge decks. The main purpose was to provide ODOT with materials and procedures : to shorten road and bridge closures....
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-23
...-foot-high reinforced concrete intake structure adjacent to the Martin Creek weir with a trash rack... rack, fish screen, and closure gate; (7) an approximately 0.1-acre impoundment created by the Kelley...
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, with the placement of the last outside wall of the Propellants North Administrative and Maintenance Facility, the "barn-raising" of the new "green" facility is complete. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Feo, Giovanni, E-mail: g.defeo@unisa.it; De Gisi, Sabino; Williams, Ian D.
Highlights: ► Effects of closing MSW facilities on perception of odour and pollution studied. ► Residents’ perception of odour nuisance considerably diminished post closure. ► Odour perception showed an association with distance from MSW facilities. ► Media coverage increased knowledge about MSW facilities and how they operate. ► Economic compensation possibly affected residents’ views and concerns. - Abstract: If residents’ perceptions, concerns and attitudes towards waste management facilities are either not well understood or underestimated, people can produce strong opposition that may include protest demonstrations and violent conflicts such as those experienced in the Campania Region of Italy. The aimmore » of this study was to verify the effects of the closure of solid waste treatment and disposal facilities (two landfills and one RDF production plant) on public perception of odour and environmental pollution. The study took place in four villages in Southern Italy. Identical questionnaires were administered to residents during 2003 and after the closure of the facilities occurred in 2008. The residents’ perception of odour nuisance considerably diminished between 2003 and 2009 for the nearest villages, with odour perception showing an association with distance from the facilities. Post closure, residents had difficulty in identifying the type of smell due to the decrease in odour level. During both surveys, older residents reported most concern about the potentially adverse health impacts of long-term exposure to odours from MSW facilities. However, although awareness of MSW facilities and concern about potentially adverse health impacts varied according to the characteristics of residents in 2003, substantial media coverage produced an equalisation effect and increased knowledge about the type of facilities and how they operated. It is possible that residents of the village nearest to the facilities reported lower awareness of and concern about odour and environmental pollution because the municipality received economic compensation for their presence.« less
Engineering study for closure of 209E facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brevick, C.H.; Heys, W.H.; Johnson, E.D.
1997-07-07
This document is an engineering study for evaluating alternatives to determine the most cost effective closure plan for the 209E Facility, Critical Mass Laboratory. This laboratory is located in the 200 East Area of the Hanford Site and contains a Critical Assembly Room and a Mix room were criticality experiments were once performed.
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Arva, E. A.; Schulz, F. M.; Vazquez, D. R.
2013-07-01
The National Atomic Energy Commission of the Argentine Republic is developing a nuclear waste disposal management programme that contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive wastes. The repository is based on the use of multiple, independent and redundant barriers. The major components are made in reinforced concrete so, the durability of these structures is an important aspect for the facility integrity. This work presents an investigation performed on an instrumented reinforced concrete prototype specifically designed for this purpose, to study the behaviour of an intermediate level radioactive waste disposal facility from the rebar corrosion point of view. The information obtained will be used for the final design of the facility in order to guarantee a service life more or equal than the foreseen durability for this type of facilities.
100-D Ponds closure plan. Revision 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Petersen, S.W.
1997-09-01
The 100-D Ponds is a Treatment, Storage, and Disposal (TSD) unit on the Hanford Facility that received both dangerous and nonregulated waste. This Closure Plan (Rev. 1) for the 100-D Ponds TSD unit consists of a RCRA Part A Dangerous Waste Permit Application (Rev. 3), a RCRA Closure Plan, and supporting information contained in the appendices to the plan. The closure plan consists of eight chapters containing facility description, process information, waste characteristics, and groundwater monitoring data. There are also chapters containing the closure strategy and performance standards. The strategy for the closure of the 100-D Ponds TSD unit ismore » clean closure. Appendices A and B of the closure plan demonstrate that soil and groundwater beneath 100-D Ponds are below cleanup limits. All dangerous wastes or dangerous waste constituents or residues associated with the operation of the ponds have been removed, therefore, human health and the environment are protected. Discharges to the 100-D Ponds, which are located in the 100-DR-1 operable unit, were discontinued in June 1994. Contaminated sediment was removed from the ponds in August 1996. Subsequent sampling and analysis demonstrated that there is no contamination remaining in the ponds, therefore, this closure plan is a demonstration of clean closure.« less
2009-12-11
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, concrete layers on either side of the high-density foam insulation of the Propellants North Administrative and Maintenance Facility's walls will prevent any transfer of radiant heat between the exterior and interior of the building. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, high-density foam insulation between the concrete layers of the Propellants North Administrative and Maintenance Facility's walls will prevent any transfer of radiant heat between the exterior and interior of the building. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - The 525-foot-tall Vehicle Assembly Building, in the background, is witness to the formation of the Propellants North Administrative and Maintenance Facility, a new "green" building under construction in Launch Complex 39 at NASA's Kennedy Space Center in Florida. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, this crane raised all of the outside walls of the Propellants North Administrative and Maintenance Facility over a period of two days. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, all of the exterior walls of the Propellants North Administrative and Maintenance Facility have been lifted into place. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, construction of the Propellants North Administrative and Maintenance Facility is moving ahead with the placement of all of the outside walls complete. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-08
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the last outside wall of the Propellants North Administrative and Maintenance Facility is lifted into place. Concrete layers on either side of high-density foam insulation in the facility's walls will prevent any transfer of radiant heat between the exterior and interior of the buildings. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
Risk assessment associated to possible concrete degradation of a near surface disposal facility
NASA Astrophysics Data System (ADS)
Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.
2013-07-01
This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.
40 CFR 264.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... facilities by using a trust fund, surety bond, letter of credit, insurance, financial test, or corporate... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Use of a mechanism for financial... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 264.146 Use of a...
Friction evaluation of concrete paver blocks for airport pavement applications
NASA Technical Reports Server (NTRS)
Yager, Thomas J.
1992-01-01
The development and use of concrete paver blocks is reviewed and some general specifications for application of this type of pavement surface at airport facilities are given. Two different shapes of interlocking concrete paver blocks installed in the track surface at NASA Langley's Aircraft Landing Dynamics Facility (ALDF) are described. Preliminary cornering performance results from testing of 40 x 14 radial-belted and bias-ply aircraft tires are reviewed. These tire tests are part of a larger, ongoing joint NASA/FAA/Industry Surface Traction and Radial Tire (START) Program involving several different tire sizes. Both dry and wet surface conditions were evaluated on the two concrete paver block test surfaces and a conventional, nongrooved Portland cement concrete surface. Future test plans involving evaluation of other concrete paver block designs at the ALDF are indicated.
40 CFR 265.146 - Use of a mechanism for financial assurance of both closure and post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Use of a mechanism for financial... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.146 Use of a mechanism for financial assurance of both closure and post-closure care. An owner or operator...
Microbial degradation of isosaccharinic acid at high pH
Bassil, Naji M; Bryan, Nicholas; Lloyd, Jonathan R
2015-01-01
Intermediate-level radioactive waste (ILW), which dominates the radioactive waste inventory in the United Kingdom on a volumetric basis, is proposed to be disposed of via a multibarrier deep geological disposal facility (GDF). ILW is a heterogeneous wasteform that contains substantial amounts of cellulosic material encased in concrete. Upon resaturation of the facility with groundwater, alkali conditions will dominate and will lead to the chemical degradation of cellulose, producing a substantial amount of organic co-contaminants, particularly isosaccharinic acid (ISA). ISA can form soluble complexes with radionuclides, thereby mobilising them and posing a potential threat to the surrounding environment or ‘far field'. Alkaliphilic microorganisms sampled from a legacy lime working site, which is an analogue for an ILW-GDF, were able to degrade ISA and couple this degradation to the reduction of electron acceptors that will dominate as the GDF progresses from an aerobic ‘open phase' through nitrate- and Fe(III)-reducing conditions post closure. Furthermore, pyrosequencing analyses showed that bacterial diversity declined as the reduction potential of the electron acceptor decreased and that more specialised organisms dominated under anaerobic conditions. These results imply that the microbial attenuation of ISA and comparable organic complexants, initially present or formed in situ, may play a role in reducing the mobility of radionuclides from an ILW-GDF, facilitating the reduction of undue pessimism in the long-term performance assessment of such facilities. PMID:25062127
Hurricane risk mitigation - High Pressure Gas Facility
2008-07-29
A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.
Hurricane risk mitigation - High Pressure Gas Facility
NASA Technical Reports Server (NTRS)
2008-01-01
A worker pours concrete as part of a nitrogen risk mitigation project at the High Pressure Gas Facility at Stennis Space Center. The concrete slab will provide the foundation needed to place new pumps at the site and is part of ongoing hurricane-related mitigation work at Stennis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flach, G.P.; Burns, H.H.; Langton, C.
2013-07-01
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy (US DOE) Office of Tank Waste and Nuclear Materials Management. The CBP program has developed a set of integrated tools (based on state-of-the-art models and leaching test methods) that help improve understanding and predictions of the long-term structural, hydraulic and chemical performance of cementitious barriers used in nuclear applications. Tools selected for and developed under this program have been used to evaluate and predict the behavior of cementitious barriers used in near-surface engineered waste disposal systems for periods of performance up tomore » 100 years and longer for operating facilities and longer than 1000 years for waste disposal. The CBP Software Toolbox has produced tangible benefits to the DOE Performance Assessment (PA) community. A review of prior DOE PAs has provided a list of potential opportunities for improving cementitious barrier performance predictions through the use of the CBP software tools. These opportunities include: 1) impact of atmospheric exposure to concrete and grout before closure, such as accelerated slag and Tc-99 oxidation, 2) prediction of changes in K{sub d}/mobility as a function of time that result from changing pH and redox conditions, 3) concrete degradation from rebar corrosion due to carbonation, 4) early age cracking from drying and/or thermal shrinkage and 5) degradation due to sulfate attack. The CBP has already had opportunity to provide near-term, tangible support to ongoing DOE-EM PAs such as the Savannah River Saltstone Disposal Facility (SDF) by providing a sulfate attack analysis that predicts the extent and damage that sulfate ingress will have on the concrete vaults over extended time (i.e., > 1000 years). This analysis is one of the many technical opportunities in cementitious barrier performance that can be addressed by the DOE-EM sponsored CBP software tools. Modification of the existing tools can provide many opportunities to bring defense in depth in prediction of the performance of cementitious barriers over time. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krauss, Mark J.; Birney, Cathleen
2006-04-01
CAS 05-33-01, Kay Blockhouse, consists of an area of approximately 11 acres and includes the Kay Blockhouse, two bum pits with steel frames, one bum pit with a soil berm, two open pits, two steel-lined subsurface pits, one berm with embedded piping, one berm with piping debris, a burn area with a large concrete block with an embedded steel prong, and one open pit with a concrete foundation at the north end. The Kay Blockhouse was constructed in 1951 and was used as an instrumentation bunker for Operation Ranger, a series of five atmospheric nuclear tests. The burn pits andmore » other surface features within the CAS boundary were not part of the nuclear testing. The Kay Blockhouse is constructed of concrete with a wooden entryway door. The details of the construction of the floor are unknown (NNSA/NSO, 2004b). During closure activities, lead- and radiologically impacted soil was removed, and verification samples were collected. Friable asbestos material was removed from the burn pits; the asbestos and steel frames from the bum pits were disposed of at the Area 23 Sanitary Landfill. In addition, the two steel-lined pits were filled with native soil and capped with 1.5 ft of concrete. The bunker was secured by installing security fencing and a gate around the entrance to the bunker. The RMA was reestablished and fenced with T-post and wire-rope fencing (NNSA/NSO, 2006a).« less
300 Area waste acid treatment system closure plan
DOE Office of Scientific and Technical Information (OSTI.GOV)
LUKE, S.N.
1999-05-17
The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (document number DOERL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion includes closure plan documentation submitted for individual, treatment, storage, and/or disposal units undergoing closure, such as the 300 Area Waste Acid Treatment System. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (e.g., the glossary provided in the General Information Portion). Whenever appropriate, 300 Area Waste Acid Treatment System documentation makes cross-reference to themore » General Information Portion, rather than duplicating text. This 300 Area Waste Acid Treatment System Closure Plan (Revision 2) includes a Hanford Facility Dangerous Waste Permit Application, Part A, Form 3. Information provided in this closure plan is current as of April 1999.« less
36 CFR 13.1328 - EGDA closures and restrictions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... otherwise restrict activities in the EGDA to protect public health, safety, or park resources, or to provide for the equitable and orderly use of park facilities. Information on closures and restrictions will be available at the park visitor information center. Violating closures or restrictions is prohibited. ...
36 CFR 13.1328 - EGDA closures and restrictions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... otherwise restrict activities in the EGDA to protect public health, safety, or park resources, or to provide for the equitable and orderly use of park facilities. Information on closures and restrictions will be available at the park visitor information center. Violating closures or restrictions is prohibited. ...
36 CFR 13.1328 - EGDA closures and restrictions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... otherwise restrict activities in the EGDA to protect public health, safety, or park resources, or to provide for the equitable and orderly use of park facilities. Information on closures and restrictions will be available at the park visitor information center. Violating closures or restrictions is prohibited. ...
36 CFR 13.1328 - EGDA closures and restrictions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... otherwise restrict activities in the EGDA to protect public health, safety, or park resources, or to provide for the equitable and orderly use of park facilities. Information on closures and restrictions will be available at the park visitor information center. Violating closures or restrictions is prohibited. ...
Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Management
The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less
DOT National Transportation Integrated Search
2007-01-01
Precast bridge deck panels can be used in place of a cast-in-place concrete deck to reduce bridge closure times for deck replacements or new bridge construction. The panels are prefabricated at a precasting plant providing optimal casting and curing ...
40 CFR 265.143 - Financial assurance for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., except as provided in § 265.143(f), divided by the number of years in the pay-in period. (ii) Subsequent... bills for partial or final closure activities, the Regional Administrator will instruct the trustee to... facility over its remaining operating life. Within 60 days after receiving bills for closure activities...
An evaluation of concrete recycling and reuse practices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakhjiri, K.S.; MacKinney, J.
1997-02-01
Nuclear facilities operated by the Department of Energy (DOE), Department of Defense (DOD), and NRC licensees contain many concrete structures that are contaminated with radioactivity. Dismantling these structures will result in significant quantities of waste materials, both contaminated and uncontaminated. Bartlett estimates the total volume of waste from demolition of concrete structures to be on the order of 4 million cubic meters, but that only 20,000 cubic meters would be contaminated with radioactivity. Other studies suggest that as much as 5% of the concrete in these facilities would be contaminated with radioactivity. While the actual quantity of contaminated material shouldmore » be fixed with greater precision, the fact that so much uncontaminated concrete exists (over 95% of the total 4 million cubic meters) suggests that a program that recycles concrete could produce substantial savings for both government agencies (DOE, DOD) and private companies (NRC licensees). This paper presents a fundamental discussion of (1) various methods of processing concrete, (2) demolition methods, especially those compatible with recycling efforts, and (3) state-of-the-art concrete dismantlement techniques.« less
The quest for performance-related specifications for hydraulic cement concrete.
DOT National Transportation Integrated Search
1982-01-01
This paper reviews some of the problems associated with quality assurance for hydraulic cement concrete and the difficulties of relating the results of quality control and acceptance testing to the performance of the concrete facility. The importance...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2012 CFR
2012-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2010 CFR
2010-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2013 CFR
2013-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
40 CFR 265.144 - Cost estimate for post-closure care.
Code of Federal Regulations, 2014 CFR
2014-07-01
... comply with § 265.145. For owners or operators using the financial test or corporate guarantee, the post... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Cost estimate for post-closure care..., STORAGE, AND DISPOSAL FACILITIES Financial Requirements § 265.144 Cost estimate for post-closure care. (a...
2013-05-01
Cycle Prediction for Equipment and Facilities 33.1 33.1 12 FAR16 Corrosion Prevention of Rebar in Concrete in Critical Facilities Located in Coastal...through 2007. 16 N-F-229 Integrated Concrete Pier Piling Repair and Corrosion Protection System 1.9 1.9 2006 17 FNV01 Corrosion Protection...Protection System 3.4 3.0 2007 21 F07NV03 Corrosion Inhibitor Evaluation for Concrete Repairs 16.8 16.8 22 F07NV04 Satellite Based Remote Monitoring
2009-12-11
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the walls for the Propellants North Administrative and Maintenance Facility get a layer of high-density foam insulation. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, one of the walls of the Propellants North Administrative and Maintenance Facility is lowered into the trench which will support it. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Construction of the walls for the Propellants North Administrative and Maintenance Facility begins in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, workers guide one of the walls of the Propellants North Administrative and Maintenance Facility into place. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the final shape of the Propellants North Administrative and Maintenance Facility becomes apparent as its walls are erected. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, a team of construction workers ensures that the walls of the Propellants North Administrative and Maintenance Facility are installed properly. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, a crane is enlisted to lift the walls of the Propellants North Administrative and Maintenance Facility into position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the Propellants North Administrative and Maintenance Facility begins to take shape as its walls are lifted into position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the Propellants North Administrative and Maintenance Facility begins to take shape as its walls are lifted into position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2009-12-11
CAPE CANAVERAL, Fla. - Insulation is placed in the walls for the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, one of the walls of the Propellants North Administrative and Maintenance Facility glides through the air into position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, a row of walls is erected as the Propellants North Administrative and Maintenance Facility takes shape. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, reminiscent of a barn-raising, the Propellants North Administrative and Maintenance Facility springs into being in a single day as its walls are lifted into position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, steady progress is made by a team of construction workers to erect the walls of the Propellants North Administrative and Maintenance Facility. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, workers lift one of the walls of the Propellants North Administrative and Maintenance Facility into an upright position. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, the first wall of the Propellants North Administrative and Maintenance Facility is lifted into place. In the background is the 525-foot-tall Vehicle Assembly Building. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, man and machine work side by side to position the walls of the Propellants North Administrative and Maintenance Facility. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
2010-01-07
CAPE CANAVERAL, Fla. - In Launch Complex 39 at NASA's Kennedy Space Center in Florida, a worker is seen through an opening left for a doorway in a newly erected wall of the Propellants North Administrative and Maintenance Facility. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. In this approach, the exterior layer of concrete for the wall panels is poured and leveled on the building's footprint. Then, prefabricated, predrilled insulation sheets are arranged on top of the unhardened concrete, and connectors, designed to hold the sandwiched layers of concrete and insulation secure, are inserted through the predrilled holes. Next, the structural wythe is poured. Once cured, these panels are lifted upright to form the building's envelope. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Burmeister
This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 117: Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. This CR complies with the requirements of the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Corrective Action Unit 117 comprises Corrective Action Site (CAS) 26-41-01, Pluto Disassembly Facility, located in Area 26 of the Nevada Test Site. The purpose of this CR is to provide documentation supporting the completed corrective actions and providemore » data confirming that the closure objectives for CAU 117 were met. To achieve this, the following actions were performed: • Review the current site conditions, including the concentration and extent of contamination. • Implement any corrective actions necessary to protect human health and the environment. • Properly dispose of corrective action and investigation wastes. • Document Notice of Completion and closure of CAU 117 issued by the Nevada Division of Environmental Protection. From May 2008 through February 2009, closure activities were performed as set forth in the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 117, Area 26 Pluto Disassembly Facility, Nevada Test Site, Nevada. The purpose of the activities as defined during the data quality objectives process were: • Determine whether contaminants of concern (COCs) are present. • If COCs are present, determine their nature and extent, implement appropriate corrective actions, and properly dispose of wastes. Analytes detected during the closure activities were evaluated against final action levels to determine COCs for CAU 117. Assessment of the data generated from closure activities indicated that the final action levels were exceeded for polychlorinated biphenyls (PCBs) reported as total Aroclor and radium-226. A corrective action was implemented to remove approximately 50 cubic yards of PCB-contaminated soil, approximately 1 cubic foot of radium-226 contaminated soil (and scabbled asphalt), and a high-efficiency particulate air filter that was determined to meet the criteria of a potential source material (PSM). Electrical and lighting components (i.e., PCB-containing ballasts and capacitors) and other materials (e.g., mercury-containing thermostats and switches, lead plugs and bricks) assumed to be PSM were also removed from Building 2201, as practical, without the need for sampling. Because the COC contamination and PSMs have been removed, clean closure of CAS 26-41-01 is recommended, and no use restrictions are required to be placed on this CAU. No further action is necessary because no other contaminants of potential concern were found above preliminary action levels. The physical end state for Building 2201 is expected to be eventual demolition to slab. The DOE, National Nuclear Security Administration Nevada Site Office provides the following recommendations: • Clean closure is the recommended corrective action for CAS 26-41-01 in CAU 117. • A Notice of Completion to the DOE, National Nuclear Security Administration Nevada Site Office is requested from the Nevada Division of Environmental Protection for closure of CAU 117. • Corrective Action Unit 117 should be moved from Appendix III to Appendix IV of the Federal Facility Agreement and Consent Order.« less
Concrete Masonry Designs: Educational Issue.
ERIC Educational Resources Information Center
Hertzberg, Randi, Ed.
2001-01-01
This special journal issue addresses concrete masonry in educational facilities construction. The issue's feature articles are: (1) "It Takes a Village To Construct a Massachusetts Middle School," describing a middle school constructed almost entirely of concrete masonry and modeled after a typical small New England village; (2)…
Structural and seismic analyses of waste facility reinforced concrete storage vaults
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, C.Y.
1995-07-01
Facility 317 of Argonne National Laboratory consists of several reinforced concrete waste storage vaults designed and constructed in the late 1940`s through the early 1960`s. In this paper, structural analyses of these concrete vaults subjected to various natural hazards are described, emphasizing the northwest shallow vault. The natural phenomenon hazards considered include both earthquakes and tornados. Because these vaults are deeply embedded in the soil, the SASSI (System Analysis of Soil-Structure Interaction) code was utilized for the seismic calculations. The ultimate strength method was used to analyze the reinforced concrete structures. In all studies, moment and shear strengths at criticalmore » locations of the storage vaults were evaluated. Results of the structural analyses show that almost all the waste storage vaults meet the code requirements according to ACI 349--85. These vaults also satisfy the performance goal such that confinement of hazardous materials is maintained and functioning of the facility is not interrupted.« less
Landfill closure with dredged materials - desktop analysis.
DOT National Transportation Integrated Search
2014-08-01
This report describes a Rutgers University project for the New Jersey Department of : Transportation (NJDOT) designed to analyze the potential for closure of New Jersey : landfills using dredge material from existing Confined Disposal Facilities (CDF...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Project Integration
2005-09-26
The Hanford Site contains many surplus facilities and waste sites that remain from plutonium production activities. These contaminated facilities and sites must either be stabilized and maintained, or removed, to prevent the escape of potentially hazardous contaminants into the environment and exposure to workers and the public.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phillips, S.J.; Phillips, M.; Etheridge, D.
2012-07-01
Per regulatory agreement and facility closure design, U.S. Department of Energy Hanford Site nuclear fuel cycle structures and materials require in situ isolation in perpetuity and/or interim physicochemical stabilization as a part of final disposal or interim waste removal, respectively. To this end, grout materials are being used to encase facilities structures or are being incorporated within structures containing hazardous and radioactive contaminants. Facilities where grout materials have been recently used for isolation and stabilization include: (1) spent fuel separations, (2) uranium trioxide calcining, (3) reactor fuel storage basin, (4) reactor fuel cooling basin transport rail tanker cars and casks,more » (5) cold vacuum drying and reactor fuel load-out, and (6) plutonium fuel metal finishing. Grout components primarily include: (1) portland cement, (2) fly ash, (3) aggregate, and (4) chemical admixtures. Mix designs for these typically include aggregate and non aggregate slurries and bulk powders. Placement equipment includes: (1) concrete piston line pump or boom pump truck for grout slurry, (2) progressive cavity and shearing vortex pump systems, and (3) extendable boom fork lift for bulk powder dry grout mix. Grout slurries placed within the interior of facilities were typically conveyed utilizing large diameter slick line and the equivalent diameter flexible high pressure concrete conveyance hose. Other facilities requirements dictated use of much smaller diameter flexible grout conveyance hose. Placement required direct operator location within facilities structures in most cases, whereas due to radiological dose concerns, placement has also been completed remotely with significant standoff distances. Grout performance during placement and subsequent to placement often required unique design. For example, grout placed in fuel basin structures to serve as interim stabilization materials required sufficient bearing i.e., unconfined compressive strength, to sustain heavy equipment yet, low breakout force to permit efficient removal by track hoe bucket or equivalent construction equipment. Further, flow of slurries through small orifice geometries of moderate head pressures was another typical design requirement. Phase separation of less than 1 percent was a typical design requirement for slurries. On the order of 30,000 cubic meters of cementitious grout have recently been placed in the above noted U.S. Department of Energy Hanford Site facilities or structures. Each has presented a unique challenge in mix design, equipment, grout injection or placement, and ultimate facility or structure performance. Unconfined compressive and shear strength, flow, density, mass attenuation coefficient, phase separation, air content, wash-out, parameters and others, unique to each facility or structure, dictate the grout mix design for each. Each mix design was tested under laboratory and scaled field conditions as a precursor to field deployment. Further, after injection or placement of each grout formulation, the material was field inspected either by standard laboratory testing protocols, direct physical evaluation, or both. (authors)« less
49 CFR 193.2167 - Covered systems.
Code of Federal Regulations, 2010 CFR
2010-10-01
... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY LIQUEFIED NATURAL GAS FACILITIES... impounding system is prohibited except for concrete wall designed tanks where the concrete wall is an outer...
Experiences with welding multi-assembly sealed baskets at Palisades
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agace, S.; Worrell, S.; Stewart, L.
1995-12-01
Four utilities were using operational canister-based dry storage facilities at year-end, and seven more have contracts to establish similar facilities. Consumers Power`s Palisades Nuclear Power Plant has successfully completed loading its eighth dry storage canister with the Ventilated Storage Cask (VSC) system, under license to Sierra Nuclear Corporation. The VSC has a Multi-Assembly Sealed Basket (MSB) containing 24 specially-selected and aged spent fuel assemblies. MSB closure occurs when two independent lids are welded at the utility. The canister wall and lids are SA-516 Grade 70 carbon steel. This paper discusses the welding system design, closure operations and MSB closure operationsmore » at Palisades.« less
Final closure of a low level waste disposal facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Potier, J.M.
1995-12-31
The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less
Influence of processing factors over concrete strength.
NASA Astrophysics Data System (ADS)
Kara, K. A.; Dolzhenko, A. V.; Zharikov, I. S.
2018-03-01
Construction of facilities of cast in-situ reinforced concrete poses additional requirements to quality of material, peculiarities of the construction process may sometimes lead to appearance of lamination planes and inhomogeneity of concrete, which reduce strength of the material and structure as a whole. Technology compliance while working with cast in-situ concrete has a significant impact onto the concrete strength. Such process factors as concrete curing, vibration and compaction of the concrete mixture, temperature treatment, etc., when they are countered or inadequately followed lead to a significant reduction in concrete strength. Here, the authors experimentally quantitatively determine the loss of strength in in-situ cast concrete structures due to inadequate following of process requirements, in comparison with full compliance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mark Burmeister
2007-09-01
This CR provides documentation and justification for the closure of CAU 118 without further corrective action. This justification is based on process knowledge and the results of the investigative and closure activities conducted in accordance with the CAU 118 SAFER Plan: Streamlined Approach for Environmental Restoration (SAFER) Plan for CAU 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada (NNSA/NSO, 2006). The SAFER Plan provides information relating to site history as well as the scope and planning of the investigation. This CR also provides the analytical and radiological survey data to confirm that the remediation goals were met asmore » specified in the CAU 118 SAFER Plan (NNSA/NSO, 2006). The Nevada Division of Environmental Protection (NDEP) approved the CAU 118 SAFER Plan (Murphy, 2006), which recommends closure in place with use restrictions (URs).« less
Concrete shaver. Innovative technology summary report
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-12-01
The US Department of Energy (DOE) is in the process of decontamination and decommissioning (D and D) for many of its nuclear facilities throughout the United States. These facilities must be dismantled and the demolition waste sized into manageable pieces for handling and disposal. The facilities undergoing D and D are typically chemically and/or radiologically contaminated. To facilitate this work, DOE requires a tool capable of removing the surface of radiologically contaminated concrete floors. Operating requirements for the tool include simple and economical operation, the capability of operating in ambient temperatures from 3 C to 40 C (37 F tomore » 104 F), and the ability to be easily decontaminated. The tool also must be safe for workers. The Marcrist Industries Limited concrete shaver is an electrically driven, self-propelled concrete and coating removal system. This technology consists of a 25-cm (10-in.)-wide diamond impregnated shaving drum powered by an electric motor and contains a vacuum port for dust extraction. The concrete shaver is ideal for use on open, flat, floor areas. The shaver may also be used on slightly curved surfaces. This shaver is self-propelled and produces a smooth, even surface with little vibration. The concrete shaver is an attractive alternative to traditional pneumatic scabbling tools, which were considered the baseline in this demonstration. The use of this tool reduces worker fatigue (compared to the baseline) due to lower vibration. The shaver is more than five times faster than the five-piston pneumatic scabbler at removing contamination from concrete. Because of this increased productivity, the shaver is 50% less costly to operate than baseline technologies. The DOE has successfully demonstrated the concrete shaver for decontaminating floors for free-release surveys prior to demolition work.« less
Economic analysis of recycling contaminated concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stephen, A.; Ayers, K.W.; Boren, J.K.
1997-02-01
Decontamination and Decommissioning activities in the DOE complex generate large volumes of radioactively contaminated and uncontaminated concrete. Currently, this concrete is usually decontaminated, the contaminated waste is disposed of in a LLW facility and the decontaminated concrete is placed in C&D landfills. A number of alternatives to this practice are available including recycling of the concrete. Cost estimates for six alternatives were developed using a spreadsheet model. The results of this analysis show that recycling alternatives are at least as economical as current practice.
40 CFR 265.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...
40 CFR 264.110 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure and Post....115 (which concern closure) apply to the owners and operators of all hazardous waste management...
43 CFR 423.14 - How will Reclamation post and delineate closed areas at the site of the closure?
Code of Federal Regulations, 2010 CFR
2010-10-01
... closed areas at the site of the closure? 423.14 Section 423.14 Public Lands: Interior Regulations... RECLAMATION FACILITIES, LANDS, AND WATERBODIES Areas Open and Closed to Public Use § 423.14 How will Reclamation post and delineate closed areas at the site of the closure? Before or at the time of closing all...
Health physics challenges involved with opening a "seventeen-inch" concrete waste vault.
Sullivan, Patrick T; Pizzulli, Michelle
2005-05-01
This paper describes the various activities involved with opening a sealed legacy "Seventeen-inch" concrete vault and the health physics challenges and solutions employed. As part of a legacy waste stream that was removed from the former Hazardous Waste Management Facility at Brookhaven National Laboratory, the "Seventeen-inch" concrete vault labeled 1-95 was moved to the new Waste Management Facility for ultimate disposal. Because the vault contained 239Pu foils with a total activity in excess of the transuranic waste limits, the foils needed to be removed and repackaged for disposal. Conventional diamond wire saws could not be used because of facility constraints, so this project relied mainly on manual techniques. The planning and engineering controls put in place enabled personnel to open the vault and remove the waste while keeping dose as low as reasonably achievable.
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
40 CFR 264.111 - Closure performance standard.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Section 264.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... eliminates, to the extent necessary to protect human health and the environment, post-closure escape of...
When a hazardous waste management unit stops receiving waste at the end of its active life, it must be cleaned up, closed, monitored, and maintained in accordance with the Resource Conservation and Recovery Ac
Integrated capabilities in heavy vehicles : human factors research needs
DOT National Transportation Integrated Search
2003-10-09
The Full Road Closure method uses facility closure and total traffic diversion, which may be for one direction or bi-directional traffic flow, to accelerate construction and reduce the negative impacts of work zones. With good planning, interagency c...
Mera, M; Pereira, L; Mera, M; Pereira, L; Meilán, E; Moral, F Del; Teijeiro, A; Salgado, M; Andrade, B; Gomez, F; Fuentes-Vázquez, V; Caruncho, J; Medina, A
2012-06-01
The most common material for shielding is concrete, which can be made using various materials of different densities as aggregates. New techniques in radiotherapy, as IMRT and VMAT, require more monitor units and it is important to develop specifically designed shielding materials. Arraela S.L. has developed new concrete (CONTEK®-RFH2), which is made from an arid with a high percentage in iron (> 60%), and using the suitable sieve size, enables optimum compaction of the material and a high mass density, about 4.1-4.2 g/cm 3 . Moreover, aluminate cement, used as base, gives high resistance to high temperatures what makes this product be structurally resistant to temperatures up to 1200 ° C. The measurements were made in a LINAC Elekta SL18 to energies 6MV and 15 MV with a field size of 10×10 cm 2 for concrete samples in the form of tile 25cm×25cm with variable thickness. The linear attenuation coefficient, μm, was determined for each energy by fitting the data to Eq. 1, where Xxm is the exposure in air behind a thickness xm of the material, and X0 is the exposure in the absence of shielding. These results are compared with the ordinary concrete (2.35 g cm-3) for 6MV and 15MV energies (Ref. NCRP Report No.151). Results are tabulated in Table1. Results of attenuation are compared with ordinary concrete in Fig. 1. The new concrete CONTEK®-RFH2 increases photon attenuation and reduces the size of a shielded wall. A very high percentage in iron and a suitablesieve size approximately double the density of ordinary concrete. High mass attenuation coefficient makes this concrete an extremely desirable material for use in radiation facilities as shielding material for photon beam, and for upgrading facilities designed for less energy or less workload. © 2012 American Association of Physicists in Medicine.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the wheel bay to stow Atlantis’ landing gear in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility finish Hurricane preparations on the payload bay doors of Atlantis. Preparing for the expected impact of Hurricane Frances on Saturday, workers also powered down the Space Shuttle orbiters, and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare the orbiter Atlantis and related equipment for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to stow the landing gear on the orbiter Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ payload bay doors are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, workers prepare to close the payload bay doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility prepare to close the nose wheel doors on Atlantis in preparation for the expected impact of Hurricane Frances on Saturday. Preparations at KSC include powering down the Space Shuttle orbiters, closing their payload bay doors and stowing their landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, the payload bay doors on Atlantis are being closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, a worker checks out part of Atlantis after payload bay doors were closed in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-08-31
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, Atlantis’ wheels are raised into their wheel bays in preparation for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, and closing their payload bay doors. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility cover up areas of Atlantis with plastic, preparing for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK ...
23. CONSTRUCTION PROGRESS VIEW LOOKING TOWARD EAST SHOWING CONCRETE BLOCK CONSTRUCTION. INEEL PHOTO NUMBER NRTS-59-4305. - Idaho National Engineering Laboratory, Old Waste Calcining Facility, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conroy, Kevin W.; Vandergaast, Gerald
2012-07-01
The Port Granby Project (the Project) is located near the north shore of Lake Ontario in the Municipality of Clarington, Ontario, Canada. The Project consists of relocating approximately 450,000 m{sup 3} of historic Low-Level Radioactive Waste (LLRW) and contaminated soil from the existing Port Granby Waste Management Facility (WMF) to a proposed Long-Term Waste Management Facility (LTWMF) located adjacent to the WMF. The LTWMF will include an engineered waste containment facility, a Wastewater Treatment Plant (WTP), and other ancillary facilities. A series of bench- and pilot-scale test programs have been conducted to identify preferred treatment processes to be incorporated intomore » the WTP to treat wastewater generated during the construction, closure and post-closure periods at the WMF/LTWMF. (authors)« less
Xu, Jing; Wang, Xianzhi; Wang, Binbin
2018-04-01
Urea hydrolysis has already been considered as the most effective pathway for microbially induced CaCO 3 precipitation (MICP). The present work first studied the combination of several key factors including initial pH, temperature, and dosage of urea, which contribute to the biochemical process of MICP. Under an amiable condition of pH and temperature, the dosage of urea has a significant impact on the rate of urea degradation and CaCO 3 precipitation. A bacteria-based self-healing system was developed by loading healing agents on ceramsite carriers. The self-healing efficiency was evaluated by visual inspection on crack closure, compressive strength regain, and capillary water absorption. A preferable healing effectiveness was obtained when the bacteria and organic nutrients were co-immobilized in carriers. Image analysis showed that cracks up to 273 μm could be healed with a crack closure ratio of 86% in 28 days. The compressive strength regain increased 24% and the water absorption coefficient decreased 27% compared to the reference. The findings indicated a promising application of ureolysis-based MICP in restoring the mechanical properties and enhancing the durability of concrete.
2010-02-01
deteriorated – Rebar corrosion – Spalling concrete Repair Options • Patching • Polymeric composite wraps • Pre-fabricated composite shell with CP Objective... Corrosion Potential Monitoring for Polymer Composite Wrapping and Galvanic CP System for Reinforced Concrete Marine Piles David Bailey, Richard...Command DoD Corrosion Problem • Piers and wharves – Critical facilities – $14.5M maintenance costs – Reinforced concrete piles • Aged and
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, S.; Chang, J.; Amin, S.
1981-01-01
Teste were conducted to determine the moisture retention for the 0.5 wt% borated concrete under three curing conditions. The three curing conditions are (1) curing at 100% relative humidity for a 28-day period at 21/degree/C, (2) curing at 100% relative humidity for a 7-day period, then at air-dry 50% relative humidity for the remaining 28-day curing period at 21/degree/C, and (3) curing at 100% relative humidity for a period of 7 days and then curing at air-dry 20% relative humidity for the remaining curing period at 21/degree/C. The concrete shielding curves are presented for several mositure contents. The results shouldmore » be helpful to assist the design of a cost effective concrete shield for fusion facilities.« less
“Modular Biospheres” New testbed platforms for public environmental education and research
NASA Astrophysics Data System (ADS)
Nelson, M.; Dempster, W. F.; Allen, J. P.
This paper will review the potential of a relatively new type of testbed platform for environmental education and research because of the unique advantages resulting from their material closure and separation from the outside environment. These facilities which we term "modular biospheres", have emerged from research centered on space life support research but offer a wider range of application. Examples of this type of facility include the Bios-3 facility in Russia, the Japanese CEEF (Closed Ecological Experiment Facility), the NASA Kennedy Space Center Breadboard facility, the Biosphere 2 Test Module and the Laboratory Biosphere. Modular biosphere facilities offer unique research and public real-time science education opportunities. Ecosystem behavior can be studied since initial state conditions can be precisely specified and tracked over different ranges of time. With material closure (apart from very small air exchange rate which can be determined), biogeochemical cycles between soil and soil microorganisms, water, plants, and atmosphere can be studied in detail. Such studies offer a major advance from studies conducted with phytotrons which because of their small size, limit the number of organisms to a very small number, and which crucially do not have a high degree of atmospheric, water and overall material closure. Modular biospheres take advantage of the unique properties of closure, as representing a distinct system "metabolism" and therefore are essentially a "mini-world". Though relatively large in comparison with most phytotrons and ecological microcosms, which are now standard research and educational tools, modular biospheres are small enough that they can be economically reconfigured to reflect a changing research agenda. Some design elements include lighting via electric lights and/or sunlight, hydroponic or soil substrate for plants, opaque or glazed structures, and variable volume chambers or other methods to handle atmospheric pressure differences between the facility and the outside environment.
Federal Facilities (Executive Offices) Sector (NAICS 921110)
Find EPA regulatory information for federal facilities (NAICS 92), including information on base closures and transfers, hazardous waste, military munitions, perchorlate, environmentally preferable purchasing and comprehensive procurement guidelines
The role of a detailed aqueous phase source release model in the LANL area G performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vold, E.L.; Shuman, R.; Hollis, D.K.
1995-12-31
A preliminary draft of the Performance Assessment for the Los Alamos National Laboratory (LANL) low-level radioactive waste disposal facility at Area G is currently being completed as required by Department of Energy orders. A detailed review of the inventory data base records and the existing models for source release led to the development of a new modeling capability to describe the liquid phase transport from the waste package volumes. Nuclide quantities are sorted down to four waste package release categories for modeling: rapid release, soil, concrete/sludge, and corrosion. Geochemistry for the waste packages was evaluated in terms of the equilibriummore » coefficients, Kds, and elemental solubility limits, Csl, interpolated from the literature. Percolation calculations for the base case closure cover show a highly skewed distribution with an average of 4 mm/yr percolation from the disposal unit bottom. The waste release model is based on a compartment representation of the package efflux, and depends on package size, percolation rate or Darcy flux, retardation coefficient, and moisture content.« less
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2011 CFR
2011-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2014 CFR
2014-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
40 CFR 271.12 - Requirements for hazardous waste management facilities.
Code of Federal Regulations, 2012 CFR
2012-07-01
... and 266. These standards shall include: (a) Technical standards for tanks, containers, waste piles...-closure monitoring and maintenance; (e) Groundwater monitoring; (f) Security to prevent unauthorized access to the facility; (g) Facility personnel training; (h) Inspections, monitoring, recordkeeping, and...
2014-09-01
to house the newly formed 498th Nuclear Systems Wing. This facility will be a two-story, steel-framed structure with reinforced concrete foundation ...occurs at depths of 200 to 400 feet below ground surface . The perched aquifer is a result of infiltration of water from both man-made and natural origins...as a Sensitive Compartmented Information Facility with reinforced concrete foundation , floors, and reinforced masonry walls. The construction
75 FR 22165 - Request for Certification of Compliance-Rural Industrialization Loan and Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-27
...-fit an existing manufacturing facility to produce autoclaved aerated concrete (AAC) ``green'' building materials. The NAICS industry code for this enterprise is: 327331 Concrete Block and Brick Manufacturing...
Bradley, Paul M; Barber, Larry B; Clark, Jimmy M; Duris, Joseph W; Foreman, William T; Furlong, Edward T; Givens, Carrie E; Hubbard, Laura E; Hutchinson, Kasey J; Journey, Celeste A; Keefe, Steffanie H; Kolpin, Dana W
2016-10-15
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem. Published by Elsevier B.V.
Bradley, Paul M.; Barber, Larry B.; Clark, Jimmy M.; Duris, Joseph W.; Foreman, William T.; Furlong, Edward T.; Givens, Carrie E.; Hubbard, Laura E.; Hutchinson, Kasey J.; Journey, Celeste A.; Keefe, Steffanie H.; Kolpin, Dana W.
2016-01-01
Pharmaceutical contamination of contiguous groundwater is a substantial concern in wastewater-impacted streams, due to ubiquity in effluent, high aqueous mobility, designed bioactivity, and to effluent-driven hydraulic gradients. Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insights into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The USGS conducted a combined pre/post-closure groundwater assessment adjacent to an effluent-impacted reach of Fourmile Creek, Ankeny, Iowa, USA. Higher surface-water concentrations, consistent surface-water to groundwater concentration gradients, and sustained groundwater detections tens of meters from the stream bank demonstrated the importance of WWTF effluent as the source of groundwater pharmaceuticals as well as the persistence of these contaminants under effluent-driven, pre-closure conditions. The number of analytes (110 total) detected in surface water decreased from 69 prior to closure down to 8 in the first post-closure sampling event approximately 30 d later, with a corresponding 2 order of magnitude decrease in the cumulative concentration of detected analytes. Post-closure cumulative concentrations of detected analytes were approximately 5 times higher in proximal groundwater than in surface water. About 40% of the 21 contaminants detected in a downstream groundwater transect immediately before WWTF closure exhibited rapid attenuation with estimated half-lives on the order of a few days; however, a comparable number exhibited no consistent attenuation during the year-long post-closure assessment. The results demonstrate the potential for effluent-impacted shallow groundwater systems to accumulate pharmaceutical contaminants and serve as long-term residual sources, further increasing the risk of adverse ecological effects in groundwater and the near-stream ecosystem.
Credit PSR. This image depicts the southwest and southeast facades ...
Credit PSR. This image depicts the southwest and southeast facades as seen when looking north. The concrete block lean-to in the foreground is the facility control room. Between this room and the X-ray room is a four foot thick concrete wall (which can be seen as a "step" between the lowest and highest roof planes) intended as X-ray shielding for operators. The X-ray chamber faces away from the JPL Edwards Facility toward a fenced desert area - Jet Propulsion Laboratory Edwards Facility, Radiographic Inspection Building, Edwards Air Force Base, Boron, Kern County, CA
Code of Federal Regulations, 2010 CFR
2010-07-01
... must be written in English and in any other language predominant in the area surrounding the facility...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2010 CFR
2010-07-01
... must be written in English and in any other language predominant in the area surrounding the facility...) for discussion of security requirements at disposal facilities during the post-closure care period...
10 CFR 61.62 - Funding for disposal site closure and stabilization.
Code of Federal Regulations, 2013 CFR
2013-01-01
... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...
10 CFR 61.62 - Funding for disposal site closure and stabilization.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...
10 CFR 61.62 - Funding for disposal site closure and stabilization.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...
10 CFR 61.62 - Funding for disposal site closure and stabilization.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...
10 CFR 61.62 - Funding for disposal site closure and stabilization.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Section 61.62 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Financial Assurances § 61.62 Funding for disposal site closure and stabilization. (a) The... and stabilization, including: (1) Decontamination or dismantlement of land disposal facility...
Pomaro, B; Salomoni, V A; Gramegna, F; Prete, G; Majorana, C E
2011-10-30
Concrete is commonly used as a biological shield against nuclear radiation. As long as, in the design of nuclear facilities, its load carrying capacity is required together with its shielding properties, changes in the mechanical properties due to nuclear radiation are of particular significance and may have to be taken into account in such circumstances. The study presented here allows for reaching first evidences on the behavior of concrete when exposed to nuclear radiation in order to evaluate the consequent effect on the mechanical field, by means of a proper definition of the radiation damage, strictly connected with the strength properties of the building material. Experimental evidences on the decay of the mechanical modulus of concrete have allowed for implementing the required damage law within a 3D F.E. research code which accounts for the coupling among moisture, heat transfer and the mechanical field in concrete treated as a fully coupled porous medium. The development of the damage front in a concrete shielding wall is analyzed under neutron radiation and results within the wall thickness are reported for long-term radiation spans and several concrete mixtures in order to discuss the resulting shielding properties. Copyright © 2011 Elsevier B.V. All rights reserved.
2004-09-01
KENNEDY SPACE CENTER, FLA. - Workers in the Orbiter Processing Facility unwrap plastic for use in covering equipment as part of preparations for the expected impact of Hurricane Frances on Saturday. Other preparations at KSC include powering down the Space Shuttle orbiters, closing the payload bay doors and stowing the landing gear. Workers are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2011-02-24
This addendum to the Closure Report for Corrective Action Unit 113: Area 25, Reactor Maintenance, Assembly, and Disassembly Facility, Building 3110, Nevada Test Site, Nevada, DOE/NV--891-VOL I-Rev. 1, dated July 2003, provides details of demolition, waste disposal, and use restriction (UR) modification for Corrective Action Unit 113, Area 25 R-MAD Facility. Demolition was completed on July 15, 2010, when the last of the building debris was disposed. Final field activities were concluded on August 30, 2010, after all equipment was demobilized and UR signs were posted. This work was funded by the American Recovery and Reinvestment Act.
Modified electrical survey for effective leakage detection at concrete hydraulic facilities
NASA Astrophysics Data System (ADS)
Lee, Bomi; Oh, Seokhoon
2018-02-01
Three original electrode arrays for the effective leakage detection of concrete hydraulic facilities through electrical resistivity surveys are proposed: 'cross-potential', 'direct-potential' and modified tomography-like arrays. The main differences with respect to the commonly used arrays are that the current line-sources are separated from potential pole lines and floated upon the water. The potential pole lines are located directly next to the facility in order to obtain intuitive data and useful interpretations of the internal conditions of the hydraulic facility. This modified configuration of the array clearly displays the horizontal variation of the electrical field around the damaged zones of the concrete hydraulic facility, and any anomalous regions that might be found between potential poles placed across the facilities. In order to facilitate the interpretation of these modified electrical surveys, a new and creative way of presenting the measurements is also proposed and an inversion approach is provided for the modified tomography-like array. A numerical modeling and two field tests were performed to verify these new arrays and interpretation methods. The cross and direct potential array implied an ability to detect small variations of the potential field near the measurement poles. The proposed array showed the overall potential distribution across the hydraulic facility which may be used to assist in the search of trouble zones within the structure, in combination with the traditional electrical resistivity array.
26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID ...
26. DETAIL OF CONCRETE PIPE SUPPORTS LEADING TO NEW LIQUID HYDROGEN TANK FARM; VIEW TO WEST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
NPDES Permit for Super Concrete Ready-Mix Corp. (Aggregate Industries)
Under National Pollutant Discharge Elimination System permit number DC0000175, Super Concrete Ready-Mix Corporation is authorized to discharge from a facility to receiving waters named unnamed tributary to Northwest Branch of the Anacostia River.
11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW ...
11. REINFORCED CONCRETE SLAB ROOF FROM THE SOUTHERN EDGE, VIEW TOWARDS NORTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS ...
13. REINFORCED CONCRETE SLAB ROOF FROM SOUTHWESTERN EDGE, VIEW TOWARDS NORTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS ...
12. REINFORCED CONCRETE SLAB ROOF FROM NORTHEASTERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW ...
11. REINFORCED CONCRETE SLAB ROOF, GUARD RAIL AT CENTER, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW ...
2. FLAME DEFLECTOR FROM THE REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...
12. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTH. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS ...
9. FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS ...
9. REINFORCED CONCRETE SLAB ROOF FROM NORTHEAST EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW ...
13. REINFORCED CONCRETE SLAB ROOF FROM THE NORTHERN EDGE, VIEW TOWARDS SOUTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS ...
10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW ...
3. SOUTH FLAME DEFLECTOR FROM THE REINFORCED CONCRETE ROOF, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Forterra Concrete Products, Inc.
The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St
29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...
29. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO SOUTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND ...
28. GENERAL VIEW OF ELECTRICAL EQUIPMENT PROTECTED BY CONCRETE AND EARTH BLAST BERM; VIEW TO NORTHEAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
40 CFR 264.113 - Closure; time allowed for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
....113 Section 264.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... the final volume of hazardous wastes, or the final volume of non-hazardous wastes if the owner or...
Underwater Facilities and Inspections and Assessments at Naval Air Station, Pensacola, Florida.
1983-01-01
hairline crack at 4-43 pile cap (vertical face) bent 34 27 Pier, 303 - Spalled concrete and exposed rebar 4-44 in pile cap bent 38 28 Pier 303 - Typical...of steel sheet pile 4-53 3’ below concrete encasement at station 83+25 37 Pier 303 - Exposed rebar and spall in concrete 4-54 encasement at station 83... corrosion and concrete deterioration due to exposure to the elements. 3.3 Inspection Equipment The following equipment was employed by diving engineers
Improved specifications for hydraulic cement concrete : final report.
DOT National Transportation Integrated Search
1983-01-01
This is the final report of a study of the application of statistical concepts to specifications for hydraulic cement concrete as used in highway facilities. It reviews the general problems associated with the application of statistical techniques to...
24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW ...
24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW LIQUID HYDROGEN TANK FARM; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Permeable Pavement Research - Edison, New Jersey
This presentation provides the background and summary of results collected at the permeable pavement parking lot monitored at the EPA facility in Edison, NJ. This parking lot is surfaced with permeable interlocking concrete pavers (PICP), pervious concrete, and porous asphalt. ...
Finite Element Evaluation of Pervious Concrete Pavement for Roadway Shoulders
DOT National Transportation Integrated Search
2011-10-01
Stormwater quantity control is an important issue that needs to be addressed in roadway and ancillary transportation facility design. : Pervious concrete has provided an effective solution for storm runoff for parking lots, sidewalks, bike trails, an...
40 CFR 265.112 - Closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND.... By May 19, 1981, or by six months after the effective date of the rule that first subjects a facility... description of other activities necessary during the partial and final closure periods to ensure that all...
4. Inside perimeter fence, view towards east and launch closure, ...
4. Inside perimeter fence, view towards east and launch closure, sensor EMP antenna left center - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD
2003-08-01
laminate . The thickness of this unit ranges from 10 to more than 250 feet in the Westover ARB area. A glacial till layer of poorly sorted gravel, sand...trucks, concrete trucks, and flatbed trucks. The backhoe would be used with a percussion chisel as well as a lift bucket. Estimates were also...36.00 3.80 83.40 9.00 5.20 Concrete Truck 5 8 2 1.80 0.19 4.17 0.45 0.26 Emissions (lbs) 144.00 15.20 333.60 36.00 20.80 Flatbed Truck 10 8 1
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, modules and equipment are being covered in plastic in preparation for the expected impact of Hurricane Frances on Saturday. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
Hanford immobilized low-activity tank waste performance assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mann, F.M.
1998-03-26
The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less
11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL ...
11. REINFORCED CONCRETE SLAB ROOF, FLAME DEFLECTOR AT RIGHT, CONTROL BUILDING B AT FAR CENTER RIGHT. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-4, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR ...
7. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, FLAME DEFLECTOR AT RIGHT, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP ...
8. REINFORCED CONCRETE SLAB ROOF FROM NORTHWEST EDGE, ACCESS RAMP IN FOREGROUND, VIEW TOWARDS SOUTHEAST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
7. DETAIL AT SOUTHEAST 'CORNER' SHOWING CONCRETE FILLED BAGS USED ...
7. DETAIL AT SOUTHEAST 'CORNER' SHOWING CONCRETE FILLED BAGS USED AS EXPLOSION BARRIER TO BLOCKHOUSE TUNNEL ENTRANCE; VIEW TO NORTH. - Cape Canaveral Air Station, Launch Complex 17, Facility 28401, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL
Comparison of RCRA SWMU Corrective Action and CERCLA Remedial Action
1991-09-30
4. TITLE AND SUBTITLE 5 . FUNDING NUMBERS Comparison of RCRA SWMU Corrective Action and CERCLA Remedial Action 6. AUTHOR(S) Sam Capps Rupe, Major -1...Interim Status for TSD Facilities .................... 19 5 . Closure and Postclosure Requirements for TSD Facilities ........... 25 D. State Role... 65 1. RCRA Facility Assessment . ............................... 65 2. RCRA Facility Investigation . .............................. 66 3
Bradley, Paul M.; Journey, Celeste A.; Clark, Jimmy M.
2016-01-01
Wastewater treatment facility (WWTF) closures are rare environmental remediation events; offering unique insight into contaminant persistence, long-term wastewater impacts, and ecosystem recovery processes. The U.S. Geological Survey assessed the fate of select endocrine disrupting chemicals (EDC) in surface water and streambed sediment one year before and one year after closure of a long-term WWTF located within the Spirit Creek watershed at Fort Gordon, Georgia. Sample sites included a WWTF-effluent control located upstream from the outfall, three downstream effluent-impacted sites located between the outfall and Spirit Lake, and one downstream from the lake's outfall. Prior to closure, the 2.2-km stream segment downstream from the WWTF outfall was characterized by EDC concentrations significantly higher (α = 0.05) than at the control site; indicating substantial downstream transport and limited in-stream attenuation of EDC, including pharmaceuticals, estrogens, alkylphenol ethoxylate (APE) metabolites, and organophosphate flame retardants (OPFR). Wastewater-derived pharmaceutical, APE metabolites, and OPFR compounds were also detected in the outflow of Spirit Lake, indicating the potential for EDC transport to aquatic ecosystems downstream of Fort Gordon under effluent discharge conditions. After the WWTF closure, no significant differences in concentrations or numbers of detected EDC compounds were observed between control and downstream locations. The results indicated EDC pseudo-persistence under preclosure, continuous supply conditions, with rapid attenuation following WWTF closure. Low concentrations of EDC at the control site throughout the study and comparable concentrations in downstream locations after WWTF closure indicated additional, continuing, upstream contaminant sources within the Spirit Creek watershed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flora, Mary; Adams, Angelia; Pope, Robert
2013-07-01
The Savannah River Site (SRS) is an 802 square-kilometer United States Department of Energy (US DOE) nuclear facility located along the Savannah River near Aiken, South Carolina, managed and operated by Savannah River Nuclear Solutions. Construction of SRS began in the early 1950's to enhance the nation's nuclear weapons capability. Nuclear weapons material production began in the early 1950's, eventually utilizing five production reactors constructed to support the national defense mission. Past operations have resulted in releases of hazardous constituents and substances to soil and groundwater, resulting in 515 waste sites with contamination exceeding regulatory thresholds. More than 1,000 facilitiesmore » were constructed onsite with approximately 300 of them considered radiological, nuclear or industrial in nature. In 2003, SRS entered into a Memorandum of Agreement with its regulators to accelerate the cleanup using an Area Completion strategy. The strategy was designed to focus cleanup efforts on the 14 large industrial areas of the site to realize efficiencies of scale in the characterization, assessment, and remediation activities. This strategy focuses on addressing the contaminated surface units and the vadose zone and addressing groundwater plumes subsequently. This approach streamlines characterization and remediation efforts as well as the required regulatory documentation, while enhancing the ability to make large-scale cleanup decisions. In February 2009, Congress approved the American Reinvestment and Recovery Act (ARRA) to create jobs and promote economic recovery. At SRS, ARRA funding was established in part to accelerate the completion of environmental remediation and facility deactivation and decommissioning (D and D). By late 2012, SRS achieved 85 percent footprint reduction utilizing ARRA funding by accelerating and coupling waste unit remediation with D and D of remnant facilities. Facility D and D activities were sequenced and permitted with waste unit remediation activities to streamline regulatory approval and execution. Achieving footprint reduction fulfills the Government's responsibility to address legacy contamination; allows earlier completion of legally enforceable compliance agreement milestones; and enables future potential reuse of DOE resources, including land and infrastructure for other missions. Over the last 3.5 years significant achievements were met that contributed to footprint reduction, including the closure of 41 waste units (including 20 miles of radiologically contaminated stream) and decommissioning of 30 facilities (including the precedent setting in situ closure of two former production reactors, the first in the DOE Complex). Other notable achievements included the removal of over 39,750 cubic meters of debris and 68,810 cubic meters of contaminated soils, including 9175 cubic meters of lead-contaminated soil from a former site small arms testing range and treatment of 1,262 cubic meters of tritium-laden soils and concrete using a thermal treatment system. (authors)« less
Bohn, Gregory A; Gass, Kimberly
2014-10-01
The purpose of this study was to describe the rate of closure observed in venous leg ulcers during treatment with ovine collagen extracellular matrix dressings and compression. Fourteen patients with 23 wounds were retrospectively evaluated with respect to healing rates, time to closure, and weekly facility charge fees.
43 CFR 423.13 - How will Reclamation establish periodic and regular closures?
Code of Federal Regulations, 2010 CFR
2010-10-01
... FACILITIES, LANDS, AND WATERBODIES Areas Open and Closed to Public Use § 423.13 How will Reclamation... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false How will Reclamation establish periodic and regular closures? 423.13 Section 423.13 Public Lands: Interior Regulations Relating to Public...
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: (i) Changes in operating plans or facility design affect the post-closure plan, or (ii) Events which... operation, or no later than 60 days after an unexpected event has occurred which has affected the post... operation, or no more than 60 days after an unexpected event has occurred which has affected the post...
40 CFR 265.118 - Post-closure plan; amendment of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: (i) Changes in operating plans or facility design affect the post-closure plan, or (ii) Events which... operation, or no later than 60 days after an unexpected event has occurred which has affected the post... operation, or no more than 60 days after an unexpected event has occurred which has affected the post...
Forterra Concrete Products, Inc. - Clean Water Act Public Notice
The EPA is providing notice of a proposed Administrative Penalty Assessment against Forterra Concrete Products, Inc., a business located at 511 E. John Carpenter Freeway, Irving, TX, 75062, for alleged violations at its facility located at 23600 W. 40th St
8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER ...
8. WEST FLAME DEFLECTOR FROM REINFORCED CONCRETE SLAB ROOF, FORMER DRAINAGE AREA IN THE DISTANCE, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Credit BG. Southeast and northeast facades of concrete block structure ...
Credit BG. Southeast and northeast facades of concrete block structure built in the late 1960s. It is now used to store miscellaneous equipment - Edwards Air Force Base, North Base, Liquid Oxygen Storage Facility, Second Street, Boron, Kern County, CA
10. REINFORCED CONCRETE SLAB ROOF FROM THE WESTERN EDGE, ACCESS ...
10. REINFORCED CONCRETE SLAB ROOF FROM THE WESTERN EDGE, ACCESS RAMPS AT LEFT AND RIGHT, VIEW TOWARDS EAST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-2, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS ...
10. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEASTERN EDGE, ACCESS RAMPS AT LEFT AND RIGHT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, Captive Test Stand D-1, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Reconsolidated Salt as a Geotechnical Barrier
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Francis D.; Gadbury, Casey
Salt as a geologic medium has several attributes favorable to long-term isolation of waste placed in mined openings. Salt formations are largely impermeable and induced fractures heal as stress returns to equilibrium. Permanent isolation also depends upon the ability to construct geotechnical barriers that achieve nearly the same high-performance characteristics attributed to the native salt formation. Salt repository seal concepts often include elements of reconstituted granular salt. As a specific case in point, the Waste Isolation Pilot Plant recently received regulatory approval to change the disposal panel closure design from an engineered barrier constructed of a salt-based concrete to onemore » that employs simple run-of-mine salt and temporary bulkheads for isolation from ventilation. The Waste Isolation Pilot Plant is a radioactive waste disposal repository for defense-related transuranic elements mined from the Permian evaporite salt beds in southeast New Mexico. Its approved shaft seal design incorporates barrier components comprising salt-based concrete, bentonite, and substantial depths of crushed salt compacted to enhance reconsolidation. This paper will focus on crushed salt behavior when applied as drift closures to isolate disposal rooms during operations. Scientific aspects of salt reconsolidation have been studied extensively. The technical basis for geotechnical barrier performance has been strengthened by recent experimental findings and analogue comparisons. The panel closure change was accompanied by recognition that granular salt will return to a physical state similar to the halite surrounding it. Use of run-of-mine salt ensures physical and chemical compatibility with the repository environment and simplifies ongoing disposal operations. Our current knowledge and expected outcome of research can be assimilated with lessons learned to put forward designs and operational concepts for the next generation of salt repositories. Mined salt repositories have the potential to isolate permanently vast inventories of radioactive and hazardous wastes.« less
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the Multi-Purpose Logistics Module Donatello in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the U.S. Node 2 in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, workers cover with plastic the Multi-Purpose Logistics Module Raffaello in preparation for the expected impact of Hurricane Frances on Saturday. Other modules and equipment are being covered as well. Workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, modules wrapped in plastic line one wall. The modules and equipment are being covered in preparation for the expected impact of Hurricane Frances on Saturday. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
This asset includes information related to Cleanups at Federal Facilities. Information is provided about contaminated federal facility sites in specific communities, with access to technical fact sheets and tools and resources to help government agencies and their contractors fulfill cleanup obligations. EPA's federal facility information is easily accessible to ensure effective stakeholder involvement and accountability at federal facilities.Multiple federal statutes establish requirements for EPA and other federal agencies to protect health and the human environment through cleanups at Federal Facilities, including the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) of 1980, which was amended by the Superfund Amendments and Reauthorization Act (SARA) in 1986; the Defense Authorization Amendments and Base Realignment and Closure Acts (BRAC) of 1998 and the Defense Base Closure and Realignment Act of 1990; and the Resource Conservation and Recovery Act (RCRA), as amended by the Hazardous and Solid Waste Amendments of 1984 (HS WA) including Subtitle C (hazardous waste), Subtitle D (solid waste), Subtitle I (underground storage tanks), and Subtitle J (Medical Waste Tracking Act of 1988).
6. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, CONNECTING TUNNEL ...
6. REINFORCED CONCRETE SLAB ROOF FROM SOUTHEAST EDGE, CONNECTING TUNNEL VISIBLE AT CENTER RIGHT AND FAR RIGHT, VIEW TOWARDS NORTHWEST. - Glenn L. Martin Company, Titan Missile Test Facilities, CaptiveTest Stand D-3, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
18 CFR 1304.205 - Other water-use facilities.
Code of Federal Regulations, 2014 CFR
2014-04-01
... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...
18 CFR 1304.205 - Other water-use facilities.
Code of Federal Regulations, 2013 CFR
2013-04-01
... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...
18 CFR 1304.205 - Other water-use facilities.
Code of Federal Regulations, 2012 CFR
2012-04-01
... concrete boat launching ramp with associated driveway may be located within the access corridor... concrete is allowable; asphalt is not permitted. (b) Tables or benches for cleaning fish are permitted on... adjacent structures during winter drawdown. (h) Closed loop heat exchanges for residential heat pump...
Cryogenic vertical test facility for the SRF cavities at BNL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Than, R.; Liaw, CJ; Porqueddu, R.
2011-03-28
A vertical test facility has been constructed to test SRF cavities and can be utilized for other applications. The liquid helium volume for the large vertical dewar is approximate 2.1m tall by 1m diameter with a clearance inner diameter of 0.95m after the inner cold magnetic shield installed. For radiation enclosure, the test dewar is located inside a concrete block structure. The structure is above ground, accessible from the top, and equipped with a retractable concrete roof. A second radiation concrete facility, with ground level access via a labyrinth, is also available for testing smaller cavities in 2 smaller dewars.more » The cryogenic transfer lines installation between the large vertical test dewar and the cryo plant's sub components is currently near completion. Controls and instrumentations wiring are also nearing completion. The Vertical Test Facility will allow onsite testing of SRF cavities with a maximum overall envelope of 0.9 m diameter and 2.1 m height in the large dewar and smaller SRF cavities and assemblies with a maximum overall envelope of 0.66 m diameter and 1.6 m height.« less
NASA Astrophysics Data System (ADS)
Winkel, B. V.
1995-03-01
The purpose of this report is to document the Multi-Function Waste Tank Facility (MWTF) Project position on the concrete mechanical properties needed to perform design/analysis calculations for the MWTF secondary concrete structure. This report provides a position on MWTF concrete properties for the Title 1 and Title 2 calculations. The scope of the report is limited to mechanical properties and does not include the thermophysical properties of concrete needed to perform heat transfer calculations. In the 1970's, a comprehensive series of tests were performed at Construction Technology Laboratories (CTL) on two different Hanford concrete mix designs. Statistical correlations of the CTL data were later generated by Pacific Northwest Laboratories (PNL). These test results and property correlations have been utilized in various design/analysis efforts of Hanford waste tanks. However, due to changes in the concrete design mix and the lower range of MWTF operating temperatures, plus uncertainties in the CTL data and PNL correlations, it was prudent to evaluate the CTL data base and PNL correlations, relative to the MWTF application, and develop a defendable position. The CTL test program for Hanford concrete involved two different mix designs: a 3 kip/sq in mix and a 4.5 kip/sq in mix. The proposed 28-day design strength for the MWTF tanks is 5 kip/sq in. In addition to this design strength difference, there are also differences between the CTL and MWTF mix design details. Also of interest, are the appropriate application of the MWTF concrete properties in performing calculations demonstrating ACI Code compliance. Mix design details and ACI Code issues are addressed in Sections 3.0 and 5.0, respectively. The CTL test program and PNL data correlations focused on a temperature range of 250 to 450 F. The temperature range of interest for the MWTF tank concrete application is 70 to 200 F.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
..., closures and coils, from graphic arts operations, from the provision of sampling and testing facilities... Provision of Sampling and Revised 03/21/01....... 05/31/01 Testing Facilities. AVAQMD 1168 Adhesive and... District (1) Rule 205, ``Provision of Sampling and Testing Facilities,'' revised on March 21, 2001...
Library Facility Siting and Location Handbook. The Greenwood Library Management Collection.
ERIC Educational Resources Information Center
Koontz, Christine M.
This handbook is a guide to the complex process of library facility siting and location. It includes relevant research and professionals' siting experiences, as well as actual case studies of closures, openings, mergers, and relocations of library facilities. While the bulk of the volume provides practical information, the work also presents an…
SPERTI Reactor Pit Building (PER605) under construction. Poured concrete foundation ...
SPERT-I Reactor Pit Building (PER-605) under construction. Poured concrete foundation will enclosure a "Pit" into which the reactor vessel will be placed. Steel framework has been erected. To left of view is instrument cell (PER-606), constructed of concrete block. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1000 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Hanford facility dangerous waste permit application, general information portion. Revision 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonnichsen, J.C.
1997-08-21
For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less
Al-Affan, I A M; Hugtenburg, R P; Bari, D S; Al-Saleh, W M; Piliero, M; Evans, S; Al-Hasan, M; Al-Zughul, B; Al-Kharouf, S; Ghaith, A
2015-02-01
This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by the FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose. © 2015 American Association of Physicists in Medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Affan, I. A. M., E-mail: info@medphys-environment.co.uk; Hugtenburg, R. P.; Piliero, M.
Purpose: This study explores the possibility of using lead to cover part of the radiation therapy facility maze walls in order to absorb low energy photons and reduce the total dose at the maze entrance of radiation therapy rooms. Methods: Experiments and Monte Carlo simulations were utilized to establish the possibility of using high-Z materials to cover the concrete walls of the maze in order to reduce the dose of the scattered photons at the maze entrance. The dose of the backscattered photons from a concrete wall was measured for various scattering angles. The dose was also calculated by themore » FLUKA and EGSnrc Monte Carlo codes. The FLUKA code was also used to simulate an existing radiotherapy room to study the effect of multiple scattering when adding lead to cover the concrete walls of the maze. Monoenergetic photons were used to represent the main components of the x ray spectrum up to 10 MV. Results: It was observed that when the concrete wall was covered with just 2 mm of lead, the measured dose rate at all backscattering angles was reduced by 20% for photons of energy comparable to Co-60 emissions and 70% for Cs-137 emissions. The simulations with FLUKA and EGS showed that the reduction in the dose was potentially even higher when lead was added. One explanation for the reduction is the increased absorption of backscattered photons due to the photoelectric interaction in lead. The results also showed that adding 2 mm lead to the concrete walls and floor of the maze reduced the dose at the maze entrance by up to 90%. Conclusions: This novel proposal of covering part or the entire maze walls with a few millimeters of lead would have a direct implication for the design of radiation therapy facilities and would assist in upgrading the design of some mazes, especially those in facilities with limited space where the maze length cannot be extended to sufficiently reduce the dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael Kruzic
2007-09-01
Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolitionmore » (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.« less
Team Update on North American Proton Facilities for Radiation Testing
NASA Technical Reports Server (NTRS)
LaBel, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven;
2016-01-01
In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.
Overview of ORNL/NRC programs addressing durability of concrete structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naus, D.J.; Oland, C.B.
1994-06-01
The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.
DOT National Transportation Integrated Search
2013-05-01
University of New Hampshire Stormwater Center (UNHSC) completed a two year field verification study of a permeable interlocking concrete pavement (PICP) stormwater management system. The purpose of this study was to evaluate the cold climate function...
PBF (PER620) interior, basement level. Concrete wall shows outline of ...
PBF (PER-620) interior, basement level. Concrete wall shows outline of reactor basin. Sign says, "Flashing Light - Reactor On - Evacuate Area." Date: May 2004. INEEL negative no. HD-41-5-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Representational Translation with Concrete Models in Organic Chemistry
ERIC Educational Resources Information Center
Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike
2012-01-01
In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…
Evaluation of Modern Navies’ Damage Control and Firefighting Training using Simulator Platforms
2011-09-01
Figure 18 below is a two-story concrete structure including holes in bulkheads, ruptured pipelines, and almost all situations that can cause flooding...the four simulators address Class A, B, and C fires. The first one—the “Basic Firefighting Trainer”—is a single-story concrete structure with four...Figure 19—is a three-story concrete structure that houses berthing facilities, engine rooms, storage compartments and electrical and engine room mock
2009-12-11
CAPE CANAVERAL, Fla. - Concrete is poured into the trenches that will provide the foundation for the walls of the Propellants North Administrative and Maintenance Facility in Launch Complex 39 at NASA's Kennedy Space Center in Florida. A tilt-up construction method is being used to erect a THERMOMASS concrete wall insulation system for the facility's walls. The facility will have a two-story administrative building to house managers, mechanics and technicians who fuel spacecraft at Kennedy adjacent to an 1,800-square-foot single-story shop to store cryogenic fuel transfer equipment. The new facility will feature high-efficiency roofs and walls, “Cool Dry Quiet” air conditioning with energy recovery technology, efficient lighting, and other sustainable features. The facility is striving to qualify for the U.S. Green Building Council’s Leadership in Energy and Environmental Design, or LEED, Platinum certification. If successful, Propellants North will be the first Kennedy facility to achieve this highest of LEED ratings after it is completed in the summer of 2010. The facility was designed for NASA by Jones Edmunds and Associates. Photo credit: NASA/Jim Grossmann
NASA Astrophysics Data System (ADS)
Ardiyati, Tanti; Rozali, Bang; Kasmudin
2018-02-01
An analysis of radiation penetration through the U-shaped joints of cast concrete shielding in BATAN’s multipurpose gamma irradiator has been carried out. The analysis has been performed by calculating the radiation penetration through the U-shaped joints of the concrete shielding using MCNP computer code. The U-shaped joints were a new design in massive concrete construction in Indonesia and, in its actual application, it is joined by a bonding agent. In the MCNP simulation model, eight detectors were located close to the observed irradiation room walls of the concrete shielding. The simulation results indicated that the radiation levels outside the concrete shielding was less than the permissible limit of 2.5 μSv/h so that the workers could safely access electrical room, control room, water treatment facility and outside irradiation room. The radiation penetration decreased as the density of material increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelbutovskiy, Alexander; Cheremisin, Peter; Egorov, Alexander
2013-07-01
This report summarizes the data, including the cost parameters of the former iodine production facilities decommissioning project in Turkmenistan. Before the closure, these facilities were producing the iodine from the underground mineral water by the methods of charcoal adsorption. Balkanabat iodine and Khazar chemical plants' sites remediation, transportation and disposal campaigns main results could be seen. The rehabilitated area covers 47.5 thousand square meters. The remediation equipment main characteristics, technical solutions and rehabilitation operations performed are indicated also. The report shows the types of the waste shipping containers, the quantity and nature of the logistics operations. The project waste turnovermore » is about 2 million ton-kilometers. The problems encountered during the remediation of the Khazar chemical plant site are discussed: undetected waste quantities that were discovered during the operational activities required the additional volume of the disposal facility. The additional repository wall superstructure was designed and erected to accommodate this additional waste. There are data on the volume and characteristics of the NORM waste disposed: 60.4 thousand cu.m. of NORM with total activity 1 439 x 10{sup 9} Bq (38.89 Ci) were disposed at all. This report summarizes the project implementation results, from 2009 to 15.02.2012 (the date of the repository closure and its placement under the controlled supervision), including monitoring results within a year after the repository closure. (authors)« less
NASA Astrophysics Data System (ADS)
Kate, Gunavant K.; Thakare, Sunil B., Dr.
2017-08-01
Concrete is the most widely used building material in the construction of infrastructures such as buildings, bridges, highways, dams, and many other facilities. This paper reports the development, the basic idea, the main properties of high strength-high volume fly ash with application in concrete associated with the development and implementation of Sustainable Properties of High Volume Fly Ash Concrete (HVFAC) Mixtures and Early Age Shrinkage and mechanical properties of concrete for 7,28,56 and 90days. Another alternative to make environment-friendly concrete is the development of high strength-high-volume fly ash concrete which is an synthesized from materials of geological origin or by-product materials such as fly ash which is rich in silicon and aluminum. In this paper 6 concrete mixtures were produced to evaluate the effect of key parameters on the mechanical properties of concrete and its behavior. The study key parameters are; binder material content, cement replacement ratios, and the steel fibers used to High Volume Fly Ash mixtures for increasing performance of concrete.
Performance Assessment Program for the Savannah River Site Liquid Waste Facilities - 13610
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberger, Kent H.
2013-07-01
The Liquid Waste facilities at the U.S. Department of Energy's (DOE) Savannah River Site (SRS) are operated by Liquid Waste Operations contractor Savannah River Remediation LLC (SRR). A separate Performance Assessment (PA) is prepared to support disposal operations at the Saltstone Disposal Facility and closure evaluations for the two liquid waste tank farm facilities at SRS, F-Tank Farm and H-Tank Farm. A PA provides the technical basis and results to be used in subsequent documents to demonstrate compliance with the pertinent requirements identified in operations and closure regulatory guidance. The Saltstone Disposal Facility is subject to a State of Southmore » Carolina industrial solid waste landfill permit and the tank farms are subject to a state industrial waste water permit. The three Liquid Waste facilities are also subject to a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Due to the regulatory structure, a PA is a key technical document reviewed by the DOE, the State of South Carolina and the EPA. As the waste material disposed of in the Saltstone Disposal Facility and the residual material in the closed tank farms is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005, the U.S. Nuclear Regulatory Commission (NRC) is also a reviewing agency for the PAs. Pursuant to the Act, the NRC also has a continuing role to monitor disposal actions to assess compliance with stated performance objectives. The Liquid Waste PA program at SRS represents a continual process over the life of the disposal and closure operations. When the need for a PA or PA revision is identified, the first step is to develop a conceptual model to best represent the facility conditions. The conceptual model will include physical dimensions of the closed system, both the engineered and natural system, and modeling input parameters associated with the modeled features, both initial values (at the time of facility closure) and degradation rates/values. During the development of the PA, evaluations are conducted to reflect not only the results associated with the best available information at the time but also to evaluate potential uncertainties and sensitivities associated with the modeled system. While the PA will reflect the modeled system results from the best available information, it will also identify areas for future work to reduce overall PA uncertainties moving forward. DOE requires a PA Maintenance Program such that work continues to reduce model uncertainties, thus bolstering confidence in PA results that support regulatory decisions. This maintenance work may include new Research and Development activities or modeling as informed by previous PA results and other new information that becomes available. As new information becomes available, it is evaluated against previous PAs and appropriate actions are taken to ensure continued confidence in the regulatory decisions. Therefore, the PA program is a continual process that is not just the development of a PA but seeks to incorporate new information to reduce overall model uncertainty and provide continuing confidence in regulatory decisions. (author)« less
Technical Review of Retrieval and Closure Plans for the INEEL INTEC Tank Farm Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bamberger, Judith A; Burks, Barry L; Quigley, Keith D
2001-09-28
The purpose of this report is to document the conclusions of a technical review of retrieval and closure plans for the Idaho National Energy and Environmental Laboratory (INEEL) Idaho Nuclear Technology and Engineering Center (INTEC) Tank Farm Facility. In addition to reviewing retrieval and closure plans for these tanks, the review process served as an information exchange mechanism so that staff in the INEEL High Level Waste (HLW) Program could become more familiar with retrieval and closure approaches that have been completed or are planned for underground storage tanks at the Oak Ridge National Laboratory (ORNL) and Hanford sites. Thismore » review focused not only on evaluation of the technical feasibility and appropriateness of the approach selected by INEEL but also on technology gaps that could be addressed through utilization of technologies or performance data available at other DOE sites and in the private sector. The reviewers, Judith Bamberger of Pacific Northwest National Laboratory (PNNL) and Dr. Barry Burks of The Providence Group Applied Technology, have extensive experience in the development and application of tank waste retrieval technologies for nuclear waste remediation.« less
Geospatial Thinking of Information Professionals
ERIC Educational Resources Information Center
Bishop, Bradley Wade; Johnston, Melissa P.
2013-01-01
Geospatial thinking skills inform a host of library decisions including planning and managing facilities, analyzing service area populations, facility site location, library outlet and service point closures, as well as assisting users with their own geospatial needs. Geospatial thinking includes spatial cognition, spatial reasoning, and knowledge…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langton, C.
Concrete containment structures and cement-based fills and waste forms are used at the Savannah River Site to enhance the performance of shallow land disposal systems designed for containment of low-level radioactive waste. Understanding and measuring transport through cracked concrete is important for describing the initial condition of radioactive waste containment structures at the Savannah River Site (SRS) and for predicting performance of these structures over time. This report transmits the results of a literature review on transport through cracked concrete which was performed by Professor Jason Weiss, Purdue University per SRR0000678 (RFP-RQ00001029-WY). This review complements the NRC-sponsored literature review andmore » assessment of factors relevant to performance of grouted systems for radioactive waste disposal. This review was performed by The Center for Nuclear Waste Regulatory Analyses, San Antonio, TX, and The University of Aberdeen, Aberdeen Scotland and was focused on tank closure. The objective of the literature review on transport through cracked concrete was to identify information in the open literature which can be applied to SRS transport models for cementitious containment structures, fills, and waste forms. In addition, the literature review was intended to: (1) Provide a framework for describing and classifying cracks in containment structures and cementitious materials used in radioactive waste disposal, (2) Document the state of knowledge and research related to transport through cracks in concrete for various exposure conditions, (3) Provide information or methodology for answering several specific questions related to cracking and transport in concrete, and (4) Provide information that can be used to design experiments on transport through cracked samples and actual structures.« less
Geopolymer concretes: a green construction technology rising from the ash
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allouche, E.
2009-07-01
Researchers at Louisiana Tech University have embarked on a multi-year research initiative to develop applications for inorganic polymer concrete, or geopolymer concrete, in the area of civil construction, and to bring solve of these applications to market. One objective was to produce a spray-on coating for use in the harsh environment of wastewater conveyance and treatment facilities. Another project is to establish relationships between fly ash composition and particle size distribution and the mechanical attributes and workability of the resulting geopolymer concrete. A third project is to develop a 'smart' geopolymer concrete whose response to a given electric current canmore » be correlated to the stress level to which the structure is subjected. 1 fig., 6 photos.« less
1985-06-21
mild steel, unpainted mild steel, and porous (i.e., concrete and unglazed porcelain ) test coupons contaminated with agent to a hot-gas composition near...unpainted *’ mild steel, painted stainless steel, concrete, and unglazed porcelain * coupons contaminated with HD, GB, or VX. The detectable limit for the Sub...similar decontamination efficiency was observable in the concrete and unglazed porcelain tests for an initial dose level of 1.8 mg agent/g of material
Plans for crash-tested wood bridge railings for concrete decks
Michael A. Ritter; Ronald K. Faller; Barry T. Rosson; Paula D. Hilbrich Lee; Sheila Rimal Duwadi
1998-01-01
As part of a continuing cooperative research between the Midwest Roadside Safety Facility (MwRSF); the USDA Forest Service, Forest Products Laboratory (FPL); and the Federal Highway Administration (FHWA), several crashworthy wood bridge railings and approach railing transitions have been adapted for use on concrete bridge decks. These railings meet testing and...
Verification testing of the Terre Hill Concrete Products Terre Kleen™ 09 was conducted on a 1.27 acre portion of the City of Harrisburg, Pennsylvania Department of Public Works facility. The Terre Kleen™ devices combines primary and secondary chambers, baffles, a screen, and incl...
SPERTI Terminal Building (PER604). Concrete foundation is at grade. Steel ...
SPERT-I Terminal Building (PER-604). Concrete foundation is at grade. Steel frame has been erected, and some siding has been affixed. Photographer: R.G. Larsen. Date: April 22, 1955. INEEL negative no. 55-1003 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
PBF Reactor Building (PER620). Camera faces southeast. Concrete placement will ...
PBF Reactor Building (PER-620). Camera faces southeast. Concrete placement will leave opening for neutron camera to be installed later. Note vertical piping within rebar. Photographer: John Capek. Date: July 6, 1967. INEEL negative no. 67-3514 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Fracture Mechanics Modelling of an In Situ Concrete Spalling Experiment
NASA Astrophysics Data System (ADS)
Siren, Topias; Uotinen, Lauri; Rinne, Mikael; Shen, Baotang
2015-07-01
During the operation of nuclear waste disposal facilities, some sprayed concrete reinforced underground spaces will be in use for approximately 100 years. During this time of use, the local stress regime will be altered by the radioactive decay heat. The change in the stress state will impose high demands on sprayed concrete, as it may suffer stress damage or lose its adhesion to the rock surface. It is also unclear what kind of support pressure the sprayed concrete layer will apply to the rock. To investigate this, an in situ experiment is planned in the ONKALO underground rock characterization facility at Olkiluoto, Finland. A vertical experimental hole will be concreted, and the surrounding rock mass will be instrumented with heat sources, in order to simulate an increase in the surrounding stress field. The experiment is instrumented with an acoustic emission system for the observation of rock failure and temperature, as well as strain gauges to observe the thermo-mechanical interactive behaviour of the concrete and rock at several levels, in both rock and concrete. A thermo-mechanical fracture mechanics study is necessary for the prediction of the damage before the experiment, in order to plan the experiment and instrumentation, and for generating a proper prediction/outcome study due to the special nature of the in situ experiment. The prediction of acoustic emission patterns is made by Fracod 2D and the model later compared to the actual observed acoustic emissions. The fracture mechanics model will be compared to a COMSOL Multiphysics 3D model to study the geometrical effects along the hole axis.
Properties of concrete blocks prepared with low grade recycled aggregates.
Poon, Chi-Sun; Kou, Shi-cong; Wan, Hui-wen; Etxeberria, Miren
2009-08-01
Low grade recycled aggregates obtained from a construction waste sorting facility were tested to assess the feasibility of using these in the production of concrete blocks. The characteristics of the sorted construction waste are significantly different from that of crushed concrete rubbles that are mostly derived from demolition waste streams. This is due to the presence of higher percentages of non-concrete components (e.g. >10% soil, brick, tiles etc.) in the sorted construction waste. In the study reported in this paper, three series of concrete block mixtures were prepared by using the low grade recycled aggregates to replace (i) natural coarse granite (10mm), and (ii) 0, 25, 50, 75 and 100% replacement levels of crushed stone fine (crushed natural granite <5mm) in the concrete blocks. Test results on properties such as density, compressive strength, transverse strength and drying shrinkage as well as strength reduction after exposure to 800 degrees C are presented below. The results show that the soil content in the recycled fine aggregate was an important factor in affecting the properties of the blocks produced and the mechanical strength deceased with increasing low grade recycled fine aggregate content. But the higher soil content in the recycled aggregates reduced the reduction of compressive strength of the blocks after exposure to high temperature due probably to the formation of a new crystalline phase. The results show that the low grade recycled aggregates obtained from the construction waste sorting facility has potential to be used as aggregates for making non-structural pre-cast concrete blocks.
2004-09-01
KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, a worker wraps equipment in plastic in preparation for the expected impact of Hurricane Frances on Saturday. The various modules in the SSPF, such as the Japanese Experiment Module, U.S. Node 2 and Multi-Purpose Logistics Modules, are being covered as well. KSC workers also have powered down the Space Shuttle orbiters, closed their payload bay doors and stowed the landing gear. They are also taking precautions against flooding by moving spacecraft hardware off the ground and sandbagging facilities. The SSPF can withstand sustained winds of 110 mph and wind gusts up to 132 mph. The Orbiter Processing Facility is constructed of concrete and steel and was designed to withstand winds of 105 mph. The Vehicle Assembly Building is constructed of concrete and steel and was designed to withstand winds of 125 mph. Other payload and flight hardware support facilities can endure winds of 110 mph. Launch pads and the Payload Hazardous Servicing Facility can withstand 125-mph winds.
Credit PSR. This view shows the east and north facades ...
Credit PSR. This view shows the east and north facades of the storage facility as seen when looking south southwest. This fireproof all-metal structure was rated for a maximum of 50,000 pounds (22,730 Kg) of class 1.4 materials and four personnel. The concrete catch basin at left was designed to retain any spilled chemicals, preventing them from contaminating the soil. Spills were collected from the building and apron via a concrete lined gutter - Jet Propulsion Laboratory Edwards Facility, Solid Fuel Storage Building, Edwards Air Force Base, Boron, Kern County, CA
Manukovsky, N S; Kovalev, V S; Somova, L A; Gurevich, Yu L; Sadovsky, M G
2005-01-01
Bioregenerative life support systems (BLSS) with different coefficients of closure are considered. The 66.2% coefficient of closure achieved in "BIOS-3" facility experiments has been taken as a base value. The increase in coefficient of closure up to 72.6-93.0% is planned due to use of soil-like substrate (SLS) and concentrating of urine. Food values were estimated both in a base variant ("BIOS-3"), and with increases in the coefficient of closure. It is shown that food requirements will be more fully satisfied by internal crop production with an increase in the coefficient of closure of the BLSS. Changes of massflow rates on an 'input-output' and inside BLSS are considered. Equations of synthesis and degradation of organic substances in BLSS were examined using a stoichiometric model. The paper shows that at incomplete closure of BLSS containing SLS there is a problem of nitrogen balancing. To compensate for the removal of nitrogen from the system in urine and feces, it is necessary to introduce food and a nitrogen-containing additive. c2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Howell-Taylor, Melania; Hall, Macy G; Brownlee Iii, William J; Taylor, Mary
2008-09-01
Acute infection of surgical incision sites often requires specialized wound care in preparation for surgical closure. Optimal therapy for preparing such wounds for a secondary closure procedure remains uncertain. The authors report wound outcomes after administering acoustic pressure wound therapy in conjunction with negative pressure wound therapy with reticulated open-cell foam dressing changes to assist with bacteria removal from open, infected surgical-incision sites in preparation for secondary surgical closure in three patients. Before incorporating acoustic pressure wound therapy at the authors' facility, the average negative pressure wound therapy with reticulated open-cell foam dressing course prior to secondary surgical closure was 30 days; with its addition, two of three patients underwent successful surgical closure with no postoperative complications after 21 and 14 days, respectively; one patient succumbed to nonwound-related complications before wound closure. Larger, prospective studies are needed to evaluate combining negative pressure wound therapy with reticulated open-cell foam dressing and acoustic pressure wound therapy for infected, acute post surgery wounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Washington, Aaron L.; Narrows, William; Christian, Jonathan H.
During Decommissioning and Demolition (D&D) activities at SRS, it is important that the building be screened for radionuclides and heavy metals to ensure that the proper safety and disposal metrics are in place. A major source of contamination at DOE facilities is the accumulation of mercury contamination, from nuclear material processing and Liquid Waste System (LWS). This buildup of mercury could possibly cause harm to any demolition crew or the environment should this material be released. The current standard method is to take core samples in various places in the facility and use X-ray fluorescence (XRF) to detect the contamination.more » This standard method comes with a high financial value due to the security levels of these sample facilities with unknown contamination levels. Here in we propose the use of portable XRF units to detect for this contamination on-site. To validate this method, the instrument has to be calibrated to detect the heavy metal contamination, be both precise with the known elemental concentrations and consistent with its actual results of a sample concrete and pristine contaminant, and be able to detect changes in the sample concrete’s composition. After receiving the various concrete samples with their compositions found by a XRF wave-dispersive method, the calibration factor’s linear regressions were adjusted to give the baseline concentration of the concrete with no contamination. Samples of both concrete and concrete/flyash were evaluated; their standard deviations revealed that the measurements were consistent with the known composition. Finally, the samples were contaminated with different concentrations of sodium tungsten dihydrate, allowed to air dry, and measured. When the contaminated samples were analyzed, the heavy metal contamination was seen within the spectrum of the instrument, but there was not a trend of quantification based on the concentration of the solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Public Laws designated more than 100 Department of Army facilities for closure and realignment. As a result, it became necessary to expedite the environmental investigation and cleanup process, as necessary, prior to the release and reuse of Army Base Realignment and Closure (BRAC) property. The BRAC environmental restoration program was established in 1989 with the first round (BRAC 88) of base closures and continued with subsequent rounds (BRAC 91, BRAC 93, etc.). As a result of the BRAC program, Fort Holabird Crime Records Center has been investigated to determine its environmental condition.
OBLIQUE OF NORTHEAST END WITH FACILITY 252 PORTION OF BUILDING ...
OBLIQUE OF NORTHEAST END WITH FACILITY 252 PORTION OF BUILDING (FIRST-FLOOR CONCRETE PORTION) IN FOREGROUND. - U.S. Naval Base, Pearl Harbor, Combat Intelligence Center, Makalapa Drive in Makalapa Administration Area, Pearl City, Honolulu County, HI
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovaird, Chase C.; Jansik, Danielle P.; Wellman, Dawn M.
2011-09-30
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. The information present in the report provides data that (1) measures the effect of concrete wasteform properties likely to influence radionuclide migration; and (2) quantifies the rate of carbonation of concrete materials in a simulated vadose zone repository.« less
Fujibuchi, Toshioh; Nohtomi, Akihiro; Baba, Shingo; Sasaki, Masayuki; Komiya, Isao; Umedzu, Yoshiyuki; Honda, Hiroshi
2015-01-01
Compact medical cyclotrons have been set up to generate the nuclides necessary for positron emission tomography. In accelerator facilities, neutrons activate the concrete used to construct the vault room; this activation increases with the use of an accelerator. The activation causes a substantial radioactive waste management problem when facilities are decommissioned. In the present study, several concrete cores from the walls, ceiling and floor of a compact medical cyclotron vault room were samples 2 years after the termination of operations, and the radioactivity concentrations of radionuclides were estimated. Cylindrical concrete cores 5 cm in diameter and 10 cm in length were bored from the concrete wall, ceiling and floor. Core boring was performed at 18 points. The gamma-ray spectrum of each sample was measured using a high-purity germanium detector. The degree of activation of the concrete in the cyclotron vault room was analyzed, and the range and tendency toward activation in the vault room were examined. (60)Co and (152)Eu were identified by gamma-ray spectrometry of the concrete samples. (152)Eu and (60)Co are produced principally from the stable isotopes of europium and cobalt by neutron capture reactions. The radioactivity concentration did not vary much between the surface of the concrete and at a depth of 10 cm. Although the radioactivity concentration near the target was higher than the clearance level for radioactive waste indicated in IAEA RS-G-1.7, the mean radioactivity concentration in the walls and floor was lower than the clearance level. The radioactivity concentration of the inner concrete wall of the medical cyclotron vault room was not uniform. The areas exceeding the clearance level were in the vicinity of the target, but most of the building did not exceed the clearance levels.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Security. 265.14 Section 265.14... Facility Standards § 265.14 Security. (a) The owner or operator must prevent the unknowing entry, and...) for discussion of security requirements at disposal facilities during the post-closure care period...
Engineering Challenges for Closed Ecological System facilities
NASA Astrophysics Data System (ADS)
Dempster, William; Nelson, Mark; Allen, John P.
2012-07-01
Engineering challenges for closed ecological systems include methods of achieving closure for structures of different materials, and developing methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is developing means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differentials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
ERIC Educational Resources Information Center
LYMAN, ROBERT J.
THE USE OF PRESTRESSED CONCRETE IS EMPHASIZED IN THE AREAS OF SCHOOL PLANNING, DESIGN, AND CONSTRUCTION. THE PLANNING SECTION INCLUDES--(1) ROLES OF ACTIVE PARTIES AND RELATED ORGANIZATIONS, (2) PROCEDURES, AND (3) CONCEPTUAL DATA FOR SITE AND BUILDING. THE DESIGN SECTION CONTAINS--(1) DEVELOPMENT OF CONSTRUCTION SYSTEMS, (2) INTEGRATION OF…
Research reactor decommissioning experience - concrete removal and disposal -
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manning, Mark R.; Gardner, Frederick W.
1990-07-01
Removal and disposal of neutron activated concrete from biological shields is the most significant operational task associated with research reactor decommissioning. During the period of 1985 thru 1989 Chem-Nuclear Systems, Inc. was the prime contractor for complete dismantlement and decommissioning of the Northrop TRIGA Mark F, the Virginia Tech Argonaut, and the Michigan State University TRIGA Mark I Reactor Facilities. This paper discusses operational requirements, methods employed, and results of the concrete removal, packaging, transport and disposal operations for these (3) research reactor decommissioning projects. Methods employed for each are compared. Disposal of concrete above and below regulatory release limitsmore » for unrestricted use are discussed. This study concludes that activated reactor biological shield concrete can be safely removed and buried under current regulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
HOPKINS, A.M.
2005-02-23
The Plutonium Finishing Plant (PFP) and associated processing facilities are located in the 200 area of the Hanford Site in Eastern Washington. This area is part of what is now called the Central Plateau. In order to achieve closure of the contaminated facilities and waste sites at Hanford on the Central Plateau (CP), a geographic re-districting of the area into zones has been proposed in the recently published Plan for Central Plateau Closure. One of the 22 zones proposed in the Central Plateau encompasses the PFP and ancillary facilities. Approximately eighty six buildings are included in the PFP Zone. Thismore » paper addresses the approach for the closure of the PFP Zone within the Central Plateau. The PFP complex of buildings forms the bulk of the structures in the PFP Zone. For closure of the above-grade portion of structures within the PFP complex, the approach is to remove them to a state called ''slab-on-grade'' per the criteria contained in PFP End Point Criteria document and as documented in action memoranda. For below-grade portions of the structures (such as below-grade rooms, pipe trenches and underground ducts), the approach is to remove as much residual contamination as practicable and to fill the void spaces with clean fill material such as sand, grout, or controlled density fill. This approach will be modified as planning for the waste sites progresses to ensure that the actions of the PFP decommissioning projects do not negatively impact future planned actions under the CERCLA. Cribs, settling tanks, septic tanks and other miscellaneous below-grade void spaces will either be cleaned to the extent practicable and filled or will be covered with an environmental barrier as determined by further studies and CERCLA decision documents. Currently, between two and five environmental barriers are proposed to be placed over waste sites and remaining building slabs in the PFP Zone.« less
42 CFR 488.303 - State plan requirement.
Code of Federal Regulations, 2012 CFR
2012-10-01
... recognition, incentive payments, or both, nursing facilities that provide the highest quality care to Medicaid...) Transfer of residents. (5) Closure of the facility and transfer of residents. (6) State monitoring. (e... remedies that are in addition to those specified in paragraph (d) or (e) of this section, or alternative to...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-02
... construction, operation, and maintenance of a wind energy facility up to 160 megawatt (MW). The EIS will... Reservation. The proposed facility is anticipated to be comprised of between 53 and 106 wind turbines with a... of wind turbine). The facility would include: turbines anchored to concrete foundations approximately...
Monitoring of pre-release cracks in prestressed concrete using fiber optic sensors
NASA Astrophysics Data System (ADS)
Abdel-Jaber, Hiba; Glisic, Branko
2015-04-01
Prestressed concrete experiences low to no tensile stresses, which results in limiting the occurrence of cracks in prestressed concrete structures. However, the nature of construction of these structures requires the concrete not to be subjected to the compressive force from the prestressing tendons until after it has gained sufficient compressive strength. Although the structure is not subjected to any dead or live load during this period, it is influenced by shrinkage and thermal variations. Thus, the concrete can experience tensile stresses before the required compressive strength has been attained, which can result in the occurrence of "pre-release" cracks. Such cracks are visually closed after the transfer of the prestressing force. However, structural capacity and behavior can be impacted if cracks are not sufficiently closed. This paper researches a method for the verification of the status of pre-release cracks after transfer of the prestressing force, and it is oriented towards achievement of Level IV Structural Health Monitoring (SHM). The method relies on measurements from parallel long-gauge fiber optic sensors embedded in the concrete prior to pouring. The same sensor network is used for the detection and characterization of cracks, as well as the monitoring of the prestressing force transfer and the determination of the extent of closure of pre-release cracks. This paper outlines the researched method and presents its application to a real-life structure, the southeast leg of Streicker Bridge on the Princeton University campus. The application structure is a curved continuous girder that was constructed in 2009. Its deck experienced four pre-release cracks that were closed beyond the critical limits based on the results of this study.
NASA Technical Reports Server (NTRS)
Poggio, A. J.; Burke, G. L.; Pennock, S. T.
1995-01-01
This report describes the experimental and analytical efforts performed to determine the constitutive parameters of a reinforced concrete pad on which an aircraft (the NASA Boeing 757) was parked while its internal electromagnetic environment was measured. This concrete pad is part of the Large Electromagnetic System-Level Illuminator (LESLI) test facility at the Phillips Laboratory, Kirtland Air Force Base, New Mexico. The relative dielectric constant, conductivity, index of refraction, and reflection coefficient have been determined over the frequency range of 0 to 300 MHz and are presented.
2010-12-01
balloon and ATV winch system (right). 9 Figure 2-4. Scissor lift (left) and instrumentation on the scissor lift (right). 10 Figure 2-5. Concrete burn...indoor facility (#1376), bunkers, a gravel/sand detonation area for open detonation tests (~330 ft × 165 ft, ~100 m ×50 m) and a concrete burn pad... Concrete burn pad with six reusable sheet steel pans showing a burn of 100 lb (45.5 kg) of M1 propellant. 2.2.3.2 Open Detonation Based on several pre
Performance of Waterless Concrete
NASA Technical Reports Server (NTRS)
Toutanji, Houssam; Evans, Steve; Grugel, Richard N.
2010-01-01
The development of permanent lunar bases is constrained by performance of construction materials and availability of in-situ resources. Concrete seems a suitable construction material for the lunar environment, but water, one of its major components, is an extremely scarce resource on the Moon. This study explores an alternative to hydraulic concrete by replacing the binding mix of concrete (cement and water) with sulfur. Sulfur is a volatile element on the lunar surface that can be extracted from lunar soils by heating. Sulfur concrete mixes were prepared to investigate the effect of extreme environmental conditions on the properties of sulfur concrete. A hypervelocity impact test was conducted, having as its target a 5-cm cubic sample of sulfur concrete. This item consisted of JSC-1 lunar regolith simulant (65%) and sulfur (35%). The sample was placed in the MSFC Impact Test Facility s Micro Light Gas Gun target chamber, and was struck by a 1-mm diameter (1.4e-03 g) aluminum projectile at 5.85 km/s. In addition, HZTERN code, provided by NASA was used to study the effectiveness of sulfur concrete when subjected to space radiation.
PREPARATION OF U-PLANT FOR FINAL DEMOLITION AND DISPOSAL - 12109E
DOE Office of Scientific and Technical Information (OSTI.GOV)
FARABEE OA; HERZOG B; CAMERON C
2012-02-16
The U-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The U-Plant facility is identified as the 221-U Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (3 ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (3) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial site. Finally, {approx}19,000 m3 ({approx}25,000 yd3) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste. The interim condition of the facility is 'cold and dark'. Upon availability of funding the structure will have contamination fixative applied to all contaminated surfaces and may be explosively demolished, with the remaining structure buried under an engineered barrier.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Patrick
2013-11-01
This Corrective Action Decision Document/Closure Report presents information supporting the closure of Corrective Action Unit (CAU) 570: Area 9 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada. This complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. The purpose of the CADD/CR is to provide justification and documentation supporting the recommendation that no further corrective action is needed.
Credit BG. View looks southwest (236°) across concrete foundations towards ...
Credit BG. View looks southwest (236°) across concrete foundations towards Building 4402 (Hangar No. 2). Building 4412 (Liquid Oxygen Repair Facility) and Building 4444 (Communications Building) appear in center background. Trees in view are locusts (Robinia pseudoacacia L.) - Edwards Air Force Base, North Base, Old Firehouse T-41, South end of A Street, Boron, Kern County, CA
Columbus Closure Project Released without Radiological Restrictions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, G.
2007-07-01
The Columbus Closure Project (CCP), a historic radiological research complex, was cleaned up for future use without radiological restriction in 2006. The CCP research and development site contributed to national defense, nuclear fuel fabrication, and the development of safe nuclear reactors in the United States until 1988 when research activities were concluded for site decommissioning. In November of 2003, the Ohio Field Office of the U.S. Department of Energy contracted ECC/E2 Closure Services, LLC (Closure Services) to complete the removal of radioactive contamination from of a 1955 era nuclear sciences area consisting of a large hot cell facility, research reactormore » building and underground piping. The project known as the Columbus Closure Project (CCP) was completed in 27 months and brought to a close 16 years of D and D in Columbus, Ohio. This paper examines the project innovations and challenges presented during the Columbus Closure Project. The examination of the CCP includes the project regulatory environment, the CS safety program, accelerated clean up innovation, project execution strategies and management of project waste issues and the regulatory approach to site release 'without radiological restrictions'. (authors)« less
von Renteln, Daniel; Schmidt, Arthur; Vassiliou, Melina C; Gieselmann, Maria; Caca, Karel
2009-10-01
Secure endoscopic closure of transgastric natural orifice transluminal endoscopic surgery (NOTES) access is of paramount importance. The over-the-scope clip (OTSC) system has previously been shown to be effective for NOTES gastrotomy closure. To compare OTSC gastrotomy closure with surgical closure. Randomized, controlled animal study. Animal facility laboratory. Thirty-six female domestic pigs. Gastrotomies were created by using a needle-knife and an 18-mm balloon. The animals were subsequently randomized to either open surgical repair with interrupted sutures or endoscopic repair with 12-mm OTSCs. In addition, pressurized leak tests were performed in ex vivo specimens of 18-mm scalpel incisions closed with suture (n = 14) and of intact stomachs (n = 10). The mean time for endoscopic closure was 9.8 minutes (range 3-22, SD 5.5). No complications occurred during either type of gastrotomy closure. At necropsy, examination of all OTSC and surgical closures demonstrated complete sealing of gastrotomy sites without evidence of injury to adjacent organs. Pressurized leak tests showed a mean burst pressure of 83 mm Hg (range 30-140, SD 27) for OTSC closures and 67 mm Hg (range 30-130, SD 27.7) for surgical sutures. Ex vivo hand-sewn sutures of 18-mm gastrotomies (n = 14) exhibited a mean burst pressure of 65 mm Hg (range 20-140, SD 31) and intact ex vivo stomachs (n = 10) had a mean burst pressure of 126 mm Hg (range 90-170, SD 28). The burst pressure of ex vivo intact stomachs was significantly higher compared with OTSC closures (P < .01), in vivo surgical closures (P < .01), and ex vivo hand-sewn closures (P < .01). There was a trend toward higher burst pressures in the OTSC closures compared with surgical closures (P = .063) and ex vivo hand-sewn closures (P = .094). In vivo surgical closures demonstrated similar burst pressures compared with ex vivo hand-sewn closures (P = .848). Nonsurvival setting. Endoscopic closure by using the OTSC system is comparable to surgical closure in a nonsurvival porcine model. This technique is easy to perform and is suitable for NOTES gastrotomy closure.
40 CFR 270.290 - What general types of information must I keep at my facility?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and power outages, (5) Prevent undue exposure of personnel to hazardous waste (for example, requiring.... (n) [Reserved] (o) The most recent closure cost estimate for your facility prepared under 40 CFR 267... land uses (residential, commercial, agricultural, recreational). (5) A wind rose (i.e., prevailing wind...
40 CFR 270.290 - What general types of information must I keep at my facility?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and power outages, (5) Prevent undue exposure of personnel to hazardous waste (for example, requiring.... (n) [Reserved] (o) The most recent closure cost estimate for your facility prepared under 40 CFR 267... land uses (residential, commercial, agricultural, recreational). (5) A wind rose (i.e., prevailing wind...
Power Burst Facility (PBF), PER620, contextual and oblique view. Camera ...
Power Burst Facility (PBF), PER-620, contextual and oblique view. Camera facing northwest. South and east facade. The 1980 west-wing expansion is left of center bay. Concrete structure at right is PER-730. Date: March 2004. INEEL negative no. HD-41-2-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Iliopoulou, E.; Bamidis, P.; Brugger, M.; Froeschl, R.; Infantino, A.; Kajimoto, T.; Nakao, N.; Roesler, S.; Sanami, T.; Siountas, A.
2018-03-01
The CERN High Energy AcceleRator Mixed field facility (CHARM) is located in the CERN Proton Synchrotron (PS) East Experimental Area. The facility receives a pulsed proton beam from the CERN PS with a beam momentum of 24 GeV/c with 5 ṡ1011 protons per pulse with a pulse length of 350 ms and with a maximum average beam intensity of 6.7 ṡ1010 p/s that then impacts on the CHARM target. The shielding of the CHARM facility also includes the CERN Shielding Benchmark Facility (CSBF) situated laterally above the target. This facility consists of 80 cm of cast iron and 360 cm of concrete with barite concrete in some places. Activation samples of bismuth and aluminium were placed in the CSBF and in the CHARM access corridor in July 2015. Monte Carlo simulations with the FLUKA code have been performed to estimate the specific production yields for these samples. The results estimated by FLUKA Monte Carlo simulations are compared to activation measurements of these samples. The comparison between FLUKA simulations and the measured values from γ-spectrometry gives an agreement better than a factor of 2.
Local suppression of collectivity in the N=80 isotones at the Z=58 subshell closure
NASA Astrophysics Data System (ADS)
Bauer, C.; Rainovski, G.; Pietralla, N.; Bianco, D.; Blazhev, A.; Bloch, T.; Bönig, S.; Damyanova, A.; Danchev, M.; Gladnishki, K. A.; Kröll, T.; Leske, J.; Lo Iudice, N.; Möller, T.; Moschner, K.; Pakarinen, J.; Reiter, P.; Scheck, M.; Seidlitz, M.; Siebeck, B.; Stahl, C.; Stegmann, R.; Stora, T.; Stoyanov, Ch.; Tarpanov, D.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; Werner, V.; De Witte, H.
2013-08-01
Background: Recent data on N=80 isotones have suggested that the proton π(1g7/2) subshell closure at Z=58 has an impact on the properties of low-lying collective states.Purpose: Knowledge of the B(E2;21+→01+) value of 140Nd is needed in order to test this conjecture.Method: The unstable, neutron-rich nucleus 140Nd was investigated via projectile Coulomb excitation at the REX-ISOLDE facility with the MINIBALL spectrometer.Results: The B(E2) value of 33(2) W.u. expands the N=80 systematics beyond the Z=58 subshell closure.Conclusions: The measurement demonstrates that the reduced collectivity of 138Ce is a local effect possibly due to the Z=58 subshell closure and requests refined theoretical calculations. The latter predict a smoothly increasing trend.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The objectives of the closure assessment were to determine the extent of contaminated soil adjacent to the USTs requiring excavation, to provide documentation of soil and groundwater conditions following excavation, and to document closure activities in accordance with applicable VADEQ regulations. During closure activities, ASI provided technical support to the Base to ensure that the UST removal contractor (E K, Inc.) hereinafter referred to as the Contractor was in compliance with the technical requirements (as specified in the Plans and Specifications for Removal of Abandoned Underground Storage Tanks, Virginia Air National Guard, Richmond International Airport, Sandston, VA., dated July 1991more » and revised April 1992, and Addendum Numbers 1 through 7) of the contract. ASI was also responsible for collecting soil and/or groundwater closure samples from the excavations, and providing off-site fixed based laboratory analysis to verify clean conditions within the excavations.« less
Closure of the R Reactor Disassembly Basin at the SRS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Austin, W.E.
The Facilities Disposition Division (FDD) at the Savannah River Site is engaged in planning the deactivation/closure of three of the site's five reactor disassembly basins. Activities are currently underway at R-Reactor Disassembly Basin and will continue with the P and C disassembly basins. The basins still contain the cooling and shielding water that was present when operations ceased. Low concentrations of radionuclides are present, with tritium, Cs-137, and Sr-90 being the major contributors. Although there is no evidence that any of the basins have leaked, the 50-year-old facilities will eventually contaminate the surrounding groundwaters. The FDD is pursuing a pro-activemore » solution to close the basins in-place and prevent a release to the groundwater. In-situ ion exchange is currently underway at the R-Reactor Disassembly Basin to reduce the Cs and Sr concentrations to levels that would allow release of the treated water to previously used on-site cooling ponds or to prevent ground water impact. The closure will be accomplished under CERCLA.« less
Criticality assessment of LLRWDF closure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarrack, A.G.; Weber, J.H.; Woody, N.D.
1992-10-06
During the operation of the Low Level Radioactive Waste Disposal Facility (LLRWDF), large amounts (greater than 100 kg) of enriched uranium (EU) were buried. This EU came primarily from the closing and decontamination of the Naval Fuels Facility in the time period from 1987--1989. Waste Management Operations (WMO) procedures were used to keep the EU boxes separated to prevent possible criticality during normal operation. Closure of the LLRWDF is currently being planned, and waste stabilization by Dynamic Compaction (DC) is proposed. Dynamic compaction will crush the containers in the LLRWDF and result in changes in their geometry. Research of themore » LLRWDF operations and record keeping practices have shown that the EU contents of trenches are known, but details of the arrangement of the contents cannot be proven. Reviews of the trench contents, combined with analysis of potential critical configurations, revealed that some portions of the LLRWDF can be expected to be free of criticality concerns while other sections have credible probabilities for the assembly of a critical mass, even in the uncompacted configuration. This will have an impact on the closure options and which trenches can be compacted.« less
von Renteln, Daniel; Rudolph, Hans-Ulrich; Schmidt, Arthur; Vassiliou, Melina C; Caca, Karel
2010-01-01
Duodenal perforations during diagnostic upper endoscopy are rare; however, when therapeutic techniques are performed, the reported incidence is as great as 2.8%. Surgical repair is usually mandated, but it is associated with significant morbidity and mortality. To compare closure of duodenal perforations by using an over-the-scope clip (OTSC) with a surgical closure. Randomized, controlled animal study. Animal facility laboratory. Domestic pigs (24 females). Large (10-mm) duodenal perforations were created by using an endoscopic needle-knife. The animals were randomly assigned to either open surgical repair (n=12) or endoscopic closure by using the OTSC system (n=12). Pressurized leak tests were performed during necropsy. One major bleed occurred because of a liver injury during creation of the duodenotomy. Mean time for endoscopic closure was 5 minutes (range, 3-8 min; SD +/- 2). No complications occurred during any of the closure procedures. At necropsy, all OTSC and surgical closures demonstrated complete sealing of duodenotomy sites. Pressurized leak tests demonstrated a mean burst pressure of 166 mm Hg (range, 80-260; SD +/- 65) for OTSC closures and 143 mm Hg (range, 30-300, SD +/- 83) for surgical sutures. Ex vivo intact duodenal specimens exhibited a mean burst pressure of 247 mm Hg (range, 200-300; SD +/- 35), which was significantly higher compared with in vivo OTSC and surgical closures (P < .01). There were no significant differences between burst pressures of OTSC and surgical closures (P = .461). Nonsurvival setting. Endoscopic closure of duodenal perforations by using the OTSC system is comparable with surgical closure in a nonsurvival porcine model. This technique is easy to perform and seems suitable for repairing duodenal perforations. 2010 American Society for Gastrointestinal Endoscopy. Published by Mosby, Inc. All rights reserved.
Final Environmental Assessment for Aircraft Maintenance Operations Center
2014-06-01
short-term emissions during construction of new facilities, demolition of existing buildings, and removal of existing asphalt /concrete. There would...Repair: The existing asphalt road accessing Building 1934 would be repaired in June 2014. It is anticipated that this project would qualify for a CatEx...removal of existing asphalt /concrete. Minimal ambient air impacts from localized short-term emissions that would quickly dissipate away from the
Performance Assessment of Refractory Concrete Used on the Space Shuttle's Launch Pad
NASA Technical Reports Server (NTRS)
Trejo, David; Calle, Luz Marina; Halman, Ceki
2005-01-01
The John F. Kennedy Space Center (KSC) maintains several facilities for launching space vehicles. During recent launches it has been observed that the refractory concrete materials that protect the steel-framed flame duct are breaking away from this base structure and are being projected at high velocities. There is significant concern that these projected pieces can strike the launch complex or space vehicle during the launch, jeopardizing the safety of the mission. A qualification program is in place to evaluate the performance of different refractory concretes and data from these tests have been used to assess the performance of the refractory concretes. However, there is significant variation in the test results, possibly making the existing qualification test program unreliable. This paper will evaluate data from past qualification tests, identify potential key performance indicators for the launch complex, and will recommend a new qualification test program that can be used to better qualify refractory concrete.
ERIC Educational Resources Information Center
Bhaumik, S.; Watson, J. M.; Devapriam, J.; Raju, L. B.; Tin, N. N.; Kiani, R.; Talbott, L.; Parker, R.; Moore, L.; Majumdar, S. K.; Ganghadaran, S. K.; Dixon, K.; Gupta, A. Das; Barrett, M.; Tyrer, F.
2009-01-01
Background: Aggressive challenging behaviour is common in adults with intellectual disability (ID) in long-term care facilities. The government's commitment to the closure of all facilities in England has led to concerns over how to manage this behaviour in the community. The aim of this study was to assess changes in aggressive challenging…
DOE Office of Scientific and Technical Information (OSTI.GOV)
SM Narbutovskih
2000-03-31
Pacific Northwest National Laboratory conducted a first determination groundwater quality assessment at the Hanford Site. This work was performed for the US Department of Energy, Richland Operations Office, in accordance with the Federal Facility Compliance Agreement during the time period 1996--1998. The purpose of the assessment was to determine if waste from the Single-Shell Tank (SST) Waste Management Area (WMA) B-BX-BY had entered the groundwater at levels above the drinking water standards (DWS). The resulting assessment report documented evidence demonstrating that waste from the WMA has, most likely, impacted groundwater quality. Based on 40 CFR 265.93 [d] paragraph (7), themore » owner-operator must continue to make the minimum required determinations of contaminant level and of rate/extent of migrations on a quarterly basis until final facility closure. These continued determinations are required because the groundwater quality assessment was implemented prior to final closure of the facility.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
BECHTEL NEVADA
This Closure Report (CR) documents the closure activities for Corrective Action Unit (CAU) 165, Area 25 and 26 Dry Well and Washdown Areas, according to the Federal Facility Agreement and Consent Order (FFACO) of 1996. CAU 165 consists of 8 Corrective Action Sites (CASs) located in Areas 25 and 26 of the Nevada Test Site (NTS). The NTS is located approximately 105 kilometers (65 miles) northwest of Las Vegas, nevada. Site closure activities were performed according to the Nevada Division of Environmental Protection (NDEP)-approved Corrective Action Plan (CAP) for CAU 165. CAU 165 consists of the following CASs: (1) CASmore » 25-07-06, Train Decontamination Area; (2) CAS 25-07-07, Vehicle Washdown; (3) CAS 25-20-01, Lab Drain Dry Well; (4) CAS 25-47-01, Reservoir and French Drain; (5) CAS 25-51-02, Drywell; (6) CAS 25-59-01, Septic System; (7) CAS 26-07-01, Vehicle Washdown Station; and (8) CAS 26-59-01, Septic System. CAU 165, Area 25 and 26 Dry Well and Washdown Areas, consists of eight CASs located in Areas 25 and 26 of the NTS. The approved closure alternatives included No Further Action, Clean Closure, and Closure in Place with Administrative Controls.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klein, Thomas; Patterson, Russell; Camphouse, Chris
There are two primary regulatory requirements for Panel Closures at the Waste Isolation Pilot Plant (WIPP), the nation's only deep geologic repository for defense related Transuranic (TRU) and Mixed TRU waste. The Federal requirement is through 40 CFR 191 and 194, promulgated by the U.S. Environmental Protection Agency (EPA). The state requirement is regulated through the authority of the Secretary of the New Mexico Environment Department (NMED) under the New Mexico Hazardous Waste Act (HWA), New Mexico Statutes Annotated (NMSA) 1978, chap. 74-4-1 through 74-4-14, in accordance with the New Mexico Hazardous Waste Management Regulations (HWMR), 20.4.1 New Mexico Annotatedmore » Code (NMAC). The state regulations are implemented for the operational period of waste emplacement plus 30 years whereas the federal requirements are implemented from the operational period through 10,000 years. The 10,000 year federal requirement is related to the adequate representation of the panel closures in determining long-term performance of the repository. In Condition 1 of the Final Certification Rulemaking for 40 CFR Part 194, the EPA required a specific design for the panel closure system. The U.S. Department of Energy (DOE) Carlsbad Field Office (CBFO) has requested, through the Planned Change Request (PCR) process, that the EPA modify Condition 1 via its rulemaking process. The DOE has also requested, through the Permit Modification Request (PMR) process, that the NMED modify the approved panel closure system specified in Permit Attachment G1. The WIPP facility is carved out of a bedded salt formation 655 meters below the surface of southeast New Mexico. Condition 1 of the Final Certification Rulemaking specifies that the waste panels be closed using Option D which is a combination of a Salado mass concrete (SMC) monolith and an isolation/explosion block wall. The Option D design was also accepted as the panel closure of choice by the NMED. After twelve years of waste handling operations and a greater understanding of the waste and the behavior of the underground salt formation, the DOE has established a revised panel closure design. This revised design meets both the short-term NMED Permit requirements for the operational period, and also the Federal requirements for long-term repository performance. This new design is simpler, easier to construct and has less of an adverse impact on waste disposal operations than the originally approved Option D design. The Panel Closure Redesign is based on: (1) the results of in-situ constructability testing performed to determine run-of-mine salt reconsolidation parameters and how the characteristics of the bedded salt formation affect these parameters and, (2) the results of air flow analysis of the new design to determine that the limit for the migration of Volatile Organic Compounds (VOCs) will be met at the compliance point. Waste panel closures comprise a repository feature that has been represented in WIPP performance assessment (PA) since the original Compliance Certification Application of 1996. Panel closures are included in WIPP PA models principally because they are a part of the disposal system, not because they play a substantive role in inhibiting the release of radionuclides to the outside environment. The 1998 rulemaking that certified WIPP to receive transuranic waste placed conditions on the panel closure design to be implemented in the repository. The revised panel closure design, termed the Run-of-Mine (ROM) Panel Closure System (ROMPCS), is comprised of 30.48 meters of ROM salt with barriers at each end. The ROM salt is generated from ongoing mining operations at the WIPP and may be compacted and/or moistened as it is emplaced in a panel entry. The barriers consist of bulkheads, similar to those currently used in the panels as room closures. A WIPP performance assessment has been completed that incorporates the ROMPCS design into the representation of the repository, and compares repository performance to that achieved with the approved Option D design. Several key physical processes and rock mechanics principles are incorporated into the performance assessment. First, creep closure of the salt rock surrounding a panel entry results in consolidation of the ROM salt emplaced in the entry. Eventually, the ROM salt comprising the ROMPCS will approach a condition similar to intact salt. As the ROM salt reaches higher fractional densities during consolidation, back stress will be imposed on the surrounding rock mass leading to eventual healing of the disturbed rock zone above and below the panel closure. Healing of the disturbed rock zone above and below the ROMPCS reduces the porosity and permeability in those areas. Analysis of the new design demonstrates that: (1) the WIPP continues to meet regulatory compliance requirements when the ROMPCS design is implemented instead of Option D, and (2) there is no impact on the short-term effectiveness of the panel closure to limit the concentration of VOCs at the WIPP site boundary to a fraction of the health-based exposure limits (HBLs) during the operational period. (authors)« less
Sampling and monitoring for closure
McLemore, V.T.; Russell, C.C.; Smith, K.S.
2004-01-01
The Metals Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS) addresses technical drainage-quality issues related to metal mining and related metallurgical operations, for future and active mines, as well as, for historical mines and mining districts. One of the first projects of ADTI-MMS is to develop a handbook describing the best sampling, monitoring, predicting, mitigating, and modeling of drainage from metal mines, pit lakes and related metallurgical facilities based upon current scientific and engineering practices. One of the important aspects of planning a new mine in today's regulatory environment is the philosophy of designing a new or existing mine or expansion of operations for ultimate closure. The holistic philosophy taken in the ADTI-MMS handbook maintains that sampling and monitoring programs should be designed to take into account all aspects of the mine-life cycle. Data required for the closure of the operation are obtained throughout the mine-life cycle, from exploration through post-closure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cabble, Kevin J.; Boehlecke, Robert F.
This Closure Report (CR) presents information supporting the closure of Corrective Action Unit (CAU) 415: Project 57 No. 1 Plutonium Dispersion, which is located on Range 4808A of the Nevada Test and Training Range (NTTR). This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; U.S. Department of Energy (DOE), Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. CAU 415 comprises one corrective action site (CAS): NAFR-23-02, Pu Contaminated Soil. The purpose of this CR is to provide justification and documentation supporting the recommendationmore » that no further corrective action is needed for CAU 415 based on the implementation of the corrective action of Closure in Place.« less
Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete
López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge
2016-01-01
This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors’ knowledge, there have not been any upscaled applications of concrete with MRA and low cement content. PMID:28787892
Upscaling the Use of Mixed Recycled Aggregates in Non-Structural Low Cement Concrete.
López-Uceda, Antonio; Ayuso, Jesús; Jiménez, José Ramón; Agrela, Francisco; Barbudo, Auxiliadora; De Brito, Jorge
2016-02-02
This research aims to produce non-structural concrete with mixed recycled aggregates (MRA) in upscaled applications with low-cement content. Four slabs were executed with concrete made with different ratios of coarse MRA (0%, 20%, 40% and 100%), using the mix design, the mixing procedures and the facilities from a nearby concrete production plant. The analysis of the long-term compressive and splitting tensile strengths in concrete cores, extracted from the slabs, allowed the highlighting of the long-term high strength development potential of MRA incorporation. The study of cast specimens produced in situ under the same conditions as the slabs showed, firstly, that the use of MRA has a great influence on the properties related to durability, secondly, that the loss of compressive strength for total MRA incorporation relative to control concrete increases proportionally with the class strength, and, thirdly, that the mechanical properties (including Schmidt hammer results) from the concrete slabs showed no significant differences relative to the control concrete for coarse aggregates replacements up to 40%. Therefore, this upscaled experimental study supports the application of concrete with 100% coarse MRA incorporation and low cement content in non-structural civil works such as bike lanes, gutters, ground slabs, leveling surfaces, and subgrades for foundations. To the best of the authors' knowledge, there have not been any upscaled applications of concrete with MRA and low cement content.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glucksberg, Nadia; Peters, Jay
The Conceptual Site Model (CSM) is a powerful tool for understanding the link between contamination sources, cleanup objectives, and ultimate site reuse. The CSM describes the site setting, geology, hydrogeology, potential sources, release mechanisms and migration pathways of contaminants. The CSM is needed to understand the extent of contamination and how receptors may be exposed to both radiological and chemical constituents. A key component of the CSM that is often overlooked concerns how the regulatory requirements drive remediation and how each has to be integrated into the CSM to ensure that all stakeholder requirements are understood and addressed. This papermore » describes how the use of the CSM helped reach closure and reuse at two facilities in Connecticut that are pursuing termination of their Nuclear Regulatory Commission (NRC) license. The two facilities are the Combustion Engineering Site, located in Windsor, Connecticut, (CE Windsor Site) and the Connecticut Yankee Atomic Power Company, located in Haddam Neck, Connecticut (CYAPCO). The closure of each of these facilities is regulated by four agencies: - Nuclear Regulatory Commission (NRC) - which requires cleanup levels for radionuclides to be protective of public health; - US Environmental Protection Agency (USEPA) - which requires cleanup levels for chemicals to be protective of public health and the environment; - Connecticut Department of Environmental Protection (CTDEP) Bureau of Air Management, Radiation Division - which requires cleanup levels for radionuclides to be protective of public health; and - Connecticut Department of Environmental Protection (CTDEP) Bureau of Water Protection and Land Reuse - which requires cleanup levels for chemicals to be protective of public health and the environment. Some of the radionuclides at the CE Windsor Site are also regulated under the Formerly Utilized Site Remedial Action Program (FUSRAP) under the Army Corps of Engineers. The remainder of this paper presents the similarities and differences between the CSMs for these two sites and how each site used the CSM to reach closure. Although each of these site have unique histories and physical features, the CSM approach was used to understand the geology, hydrogeology, migration and exposure pathways, and regulatory requirements to successfully characterize and plan closure of the sites. A summary of how these attributes affected site closure is provided.« less
NASA Astrophysics Data System (ADS)
Duffó, G. S.; Farina, S. B.; Arva, E. A.; Giordano, C. M.; Lafont, C. J.
2006-11-01
The Argentine Atomic Energy Commission (CNEA) is responsible of the development of a management nuclear waste disposal programme. This programme contemplates the design and construction of a facility for the final disposal of intermediate-level radioactive waste. The proposed concept is the near-surface monolithic repository similar to those in operation in El Cabril, Spain. The design of this type of repository is based on the use of multiple, independent and redundant barriers. Since the vault and cover are major components of the engineered barriers, the durability of these concrete structures is an important aspect for the facilities integrity. This work presents a laboratory and field investigation performed for the last 6 years on reinforced concrete specimens, in order to predict the service life of the intermediate level radioactive waste disposal vaults from data obtained from electrochemical techniques. On the other hand, the development of sensors that allow on-line measurements of rebar corrosion potential and corrosion current density; incoming oxygen flow that reaches the metal surface; concrete electrical resistivity and chloride concentration is shown. Those sensors, properly embedded in a new full scale vault (nowadays in construction), will allow the monitoring of the corrosion process of the steel rebars embedded in thestructure.
RIVER CORRIDOR BUILDINGS 324 & 327 CLEANUP
DOE Office of Scientific and Technical Information (OSTI.GOV)
BAZZELL, K.D.; SMITH, B.A.
2006-02-09
A major challenge in the recently awarded River Corridor Closure (RCC) Contract at the U.S. Department of Energy's (DOE) Hanford Site is decontaminating and demolishing (D&D) facilities in the 300 Area. Located along the banks of the Columbia River about one mile north of Richland, Washington, the 2.5 km{sup 2} (1 mi{sup 2})300 Area comprises only a small part of the 1517 km{sup 2} (586 mi{sup 2}) Hanford Site. However, with more than 300 facilities ranging from clean to highly contaminated, D&D of those facilities represents a major challenge for Washington Closure Hanford (WCH), which manages the new RCC Projectmore » for DOE's Richland Operations Office (RL). A complicating factor for this work is the continued use of nearly a dozen facilities by the DOE's Pacific Northwest National Laboratory (PNNL). Most of the buildings will not be released to WCH until at least 2009--four years into the seven-year, $1.9 billion RCC Contract. The challenge will be to deactivate, decommission, decontaminate and demolish (D4) highly contaminated buildings, such as 324 and 327, without interrupting PNNL's operations in adjacent facilities. This paper focuses on the challenges associated with the D4 of the 324 Building and the 327 Building.« less
DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lobdell, D.; Geimer, R.; Larsen, P.
2003-02-27
The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best managemore » lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Anderson, K.D.
2006-07-01
Nuclear facility decontamination, dismantlement, and demolition activities provide a myriad of challenges along the path to reaching a safe, effective, and compliant decommissioning. Among the challenges faced during decommissioning, is the constant management and technical effort to eliminate, mitigate, or minimize the potential of risks of radiation exposures and other hazards to the worker, the surrounding community, and the environment. Management strategies to eliminate, mitigate, or minimize risks include incorporating strong safety and As Low As Reasonably Achievable (ALARA) principles into an integrated work planning process. Technical and operational strategies may include utilizing predictive risk analysis tools to establish contaminationmore » limits for demolition and using remote handling equipment to reduce occupational and radiation exposures to workers. ECC and E2 Closure Services, LLC (Closure Services) have effectively utilized these management and technical tools to eliminate, mitigate, and reduce radiation exposures under contract to the U.S. Department of Energy (DOE) for the decontamination and decommissioning Columbus Closure Project (CCP). In particular, Closure Services achieved significant dose reduction during the dismantling, decontamination, and demolition activities for Building JN-1. Management strategies during the interior dismantlement, decontamination, and demolition of the facility demanded an integrated work planning processes that involved project disciplines. Integrated planning processes identified multiple opportunities to incorporate the use of remote handling equipment during the interior dismantling and demolition activities within areas of high radiation. Technical strategies employed predictive risk analysis tools to set upper bounding contamination limits, allowed for the radiological demolition of the building without exceeding administrative dose limits to the worker, general public, and the environment. Adhering to management and technical strategies during the dismantlement, decontamination, and demolition of Building JN-1 enabled Closure Services to achieve strong ALARA performance, maintain absolute compliance under the regulatory requirements and meeting licensing conditions for decommissioning. (authors)« less
NASA Astrophysics Data System (ADS)
L'Hostis, Valérie; Foct, François; Féron, Damien
2006-11-01
The reinforced concrete is widely used in the construction of nuclear power plants, of nuclear facilities and structures for long-term storage and the disposal of radioactive waste. Indeed this kind of material is used for many purposes, including support, containment, and environmental protection for different types of facilities: e.g. surface structures, shallow subsurface vaults and deep underground repositories. These structures are required to besafe and reliable in challenging and varying environments for periods of time that can potentially range up to several hundred years. During their operational life, these structures will in all likelihood be subjected to a number of environmental stresses or ageing factors that may adversely affect their performance and result in shortened service lives. The detection and assessment of the magnitude as well as the rate of occurrence of any environmental factor-related degradation are key factors in maintaining the capability of these structures to meet their operational requirements. As the knowledge base for modern concretes, such as would be used in fuel cycle-related facilities, is relatively new (i.e. about, 100 years versus the required 200 to 500 or more years), additional inputs are required in several areas to ensure that these structures will continue to meet their design requirements throughout their operational life. Within this context, the international Workshop entitled "NUCPERF 2006, Corrosion and Long Term Performance of Concrete in NPP and Waste Facilities" (EFC Event 284) was held at Cadarache (France), on 27-30 March 2006. Its purpose was to bring together scientists and engineers from various countries that are developing nuclear power generation and/or waste disposal programmes. A special focus has been made on the discussion on R& D progress with regard to concrete degradation and corrosion of steel reinforcements in order to reach a consensus on R& D needs to further develop cooperative programmes. The sessions of the workshop covered the following areas, from fundamental aspects to technically relevant industrial applications: - Present and Future Expectations on regulations, design codes and R& D programmes; - Experimental Studies mainly focused on corrosion of embedded steels and its mechanical consequences, reactive agents transport and chemical degradation of concrete; - Phenomenological Modelling of the different mechanisms involved in reinforced concrete degradation (corrosion, transport, mechanics, etc.); - Service Life Models focused on the assessment of reinforced concrete structures and life cycle analysis; - Feedback Experience use of field experiences and archaeological artefacts for the phenomenological understanding and modelling; - Monitoring and Repair on-site corrosion evaluation, repairing techniques performance... The organisation and the success of this Workshop have been made possible thanks to CEA (Commissariat à l'Énergie Atomique) and EDF (Électricité de France) which co-organised this event. It was co-sponsored by EFC/WP4 (European Federation of Corrosion, Nuclear corrosion working party) and OECD/NEA (Nuclear Energy Agency) which the editors want to warmly thank for their active scientific and practical contributions. The editors would also like to thank the authors who presented papers of outstanding scientific content and who responded enthusiastically to the discussions and questions raised during the Workshop, the programme committee, who had to make the tricky selection of the presented papers, and finally the reviewers of the papers presented in this special issue. This Workshop was a forum to exchange state-of-the-art knowledge on corrosion and long-term performance of concrete in nuclear power plants and waste facilities. The editors hope that the scientific results gathered in these proceedings will be useful to scientists and engineers in the field of reinforced concrete materials for nuclear applications. Valérie L'Hostis, François Foct and Damien Féron Editors of this Special Issue
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, Thomas Martin; Celik, Cihangir; Dunn, Michael E
In October 2010, a series of benchmark experiments were conducted at the French Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA) Valduc SILENE facility. These experiments were a joint effort between the United States Department of Energy Nuclear Criticality Safety Program and the CEA. The purpose of these experiments was to create three benchmarks for the verification and validation of radiation transport codes and evaluated nuclear data used in the analysis of criticality accident alarm systems. This series of experiments consisted of three single-pulsed experiments with the SILENE reactor. For the first experiment, the reactor was bare (unshielded), whereasmore » in the second and third experiments, it was shielded by lead and polyethylene, respectively. The polyethylene shield of the third experiment had a cadmium liner on its internal and external surfaces, which vertically was located near the fuel region of SILENE. During each experiment, several neutron activation foils and thermoluminescent dosimeters (TLDs) were placed around the reactor. Nearly half of the foils and TLDs had additional high-density magnetite concrete, high-density barite concrete, standard concrete, and/or BoroBond shields. CEA Saclay provided all the concrete, and the US Y-12 National Security Complex provided the BoroBond. Measurement data from the experiments were published at the 2011 International Conference on Nuclear Criticality (ICNC 2011) and the 2013 Nuclear Criticality Safety Division (NCSD 2013) topical meeting. Preliminary computational results for the first experiment were presented in the ICNC 2011 paper, which showed poor agreement between the computational results and the measured values of the foils shielded by concrete. Recently the hydrogen content, boron content, and density of these concrete shields were further investigated within the constraints of the previously available data. New computational results for the first experiment are now available that show much better agreement with the measured values.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2014-01-31
This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): CAU 90, Area 2 Bitcutter Containment; CAU 91, Area 3 U-3fi Injection Well; CAU 92, Area 6 Decon Pond Facility; CAU 110, Area 3 WMD U-3ax/bl Crater; CAU 111, Area 5 WMD Retired Mixed Waste Pits; and, CAU 112, Area 23 Hazardous Waste Trenches.
Roadway into Facility 314 showing the roadway cut through the ...
Roadway into Facility 314 showing the roadway cut through the slope formed by leveling the area for the CDAA, note the concrete curb on the right side of the roadway, view facing west - U.S. Naval Base, Pearl Harbor, Naval Radio Station, AF/FRD-10 Circularly Disposed Antenna Array, Wahiawa, Honolulu County, HI
Credit PSR. This view shows the south and east facades ...
Credit PSR. This view shows the south and east facades of this concrete block facility as seen when looking northwest (320°). Note the outdoor emergency shower; the roof has lightning rods installed at corners - Jet Propulsion Laboratory Edwards Facility, Oxidizer Weigh & Storage Building, Edwards Air Force Base, Boron, Kern County, CA
Safety Oversight of Decommissioning Activities at DOE Nuclear Sites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zull, Lawrence M.; Yeniscavich, William
2008-01-15
The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive materialmore » contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carter, E.E.; Welty, B.D.
Molten wax shows considerable promise as a fixative and dust control agent in demolition of radioactively contaminated facilities. Sticky molten wax, modified with special surfactants and wetting agents, is capable of not only coating materials but also penetrating into friable or dusty materials and making them incapable of becoming airborne during demolition. Wax also shows significant promise for stabilization of waste residuals that may be contained in buildings undergoing demolition. Some of the building materials that have been tested to date include concrete, wood, sheet rock, fiber insulation, lime, rock, and paper. Protective clothing, clay, sand, sulfur, and bentonite claymore » have been tested as surrogates for certain waste materials that may be encountered during building demolition. The paper describes several potential applications of molten wax for dust control in demolition of radioactive contaminated facilities. As a case-study, this paper describes a research test performed for a pipeline closure project being completed by the Idaho Cleanup Project at the Idaho National Laboratory. The project plans to excavate and remove a section of buried Duriron drain piping containing highly radioactive and friable and 'flighty' waste residuals. A full-scale pipeline mockup containing simulated waste was buried in sand to simulate the direct buried subsurface condition of the subject piping. The pipeline was pre-heated by drawing hot air through the line with a HEPA vacuum blower unit. Molten wax was pumped into the line and allowed to cool. The line was then broken apart in various places to evaluate the permeation performance of the wax. The wax fully permeated all the surrogate materials rendering them non-friable with a consistency similar to modeling clay. Based on the performance during the mockup, it is anticipated that the wax will be highly effective in controlling the spread of radiological contamination during pipe demolition activities. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 477, N-Tunnel Muckpile. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Corrective Action Unit 477 is comprised of one Corrective Action Site (CAS): • 12-06-03, Muckpile The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure with no further action, by placing use restrictions on CAUmore » 477.« less
Closure Report for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2010-02-28
Corrective Action Unit (CAU) 563 is identified in the Federal Facility Agreement and Consent Order (FFACO) as “Septic Systems” and consists of the following four Corrective Action Sites (CASs), located in Areas 3 and 12 of the Nevada Test Site: · CAS 03-04-02, Area 3 Subdock Septic Tank · CAS 03-59-05, Area 3 Subdock Cesspool · CAS 12-59-01, Drilling/Welding Shop Septic Tanks · CAS 12-60-01, Drilling/Welding Shop Outfalls Closure activities were conducted from September to November 2009 in accordance with the FFACO (1996, as amended February 2008) and the Corrective Action Plan for CAU 563. The corrective action alternatives includedmore » No Further Action and Clean Closure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farnham, Irene
This Closure Report (CR) has been prepared for Corrective Action Unit (CAU) 98, Frenchman Flat, Nevada National Security Site (NNSS), Nevada. The Frenchman Flat CAU was the site of 10 underground nuclear tests, some of which have impacted groundwater near the tests. This work was performed as part of the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/NFO) Underground Test Area (UGTA) Activity in accordance with the Federal Facility Agreement and Consent Order (FFACO). This CR describes the selected corrective action to be implemented during closure to protect human health and the environment from the impactedmore » groundwater« less
2011-07-01
11,674 sq ft C-130 maintenance hangar with reinforced concrete footings, a foundation and footing slab, a structural steel frame, insulated metal...regional farming output significantly; however, it could potentially have a detrimental effect to the lessee. Environmental Justice – There are no...Facility – Construct a pre-engineered one story steel framed structure including the necessary concrete foundations to support the building. SOF
Federal Agency Hazardous Waste Compliance Docket
List of the Federal Agency Hazardous Waste Compliance Docket Facilities comprised of four lists: National Priorities List (NPL), Non-National Priorities List, Base Realignment and Closure Act (BRAC), and Resource Conservation and Recovery Act (RCRA).
77 FR 58769 - Facility License Notifications and Submissions
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-24
... closures with a duration of less than 180 days. List of Subjects 25 CFR Part 502 Gambling, Indians--lands. 25 CFR Part 559 Gambling, Indians--lands, Indians--tribal government, Notification and submission...
36 CFR 13.50 - Closure procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... management considerations necessary to ensure that the activity or area is being managed in a manner... available for inspection at the park visitor center. Notice will also be posted near or within the facility...
NASA Astrophysics Data System (ADS)
de Beer, F. C.; Radebe, M. J.; Schillinger, B.; Nshimirimana, R.; Ramushu, M. A.; Modise, T.
A common denominator of all neutron radiography (NRAD) facilities worldwide is that the perimeter of the experimental chamber of the facility is a radiation shielding structure which,in some cases, also includes flight tube and filter chamber structures. These chambers are normally both located on the beam port floor outside the biological shielding of the neutron source. The main function of the NRAD-shielding structure isto maintain a radiological safe working environment in the entire beam hall according to standards set by individual national radiological safety regulations. In addition, the shielding's integrity and capability should not allow, during NRAD operations, an increase in radiation levels in the beam port hall and thus negatively affectadjacent scientific facilities (e.g. neutron diffraction facilities).As a bonus, the shielding for the NRAD facility should also prevent radiation scattering towards the detector plane and doing so, thus increase thecapability of obtaining better quantitative results. This paper addresses Monte Carlo neutron-particletransport simulations to theoretically optimize the shielding capabilities of the biological barrierfor the SANRAD facility at the SAFARI-1 nuclear research reactor in South Africa. The experimental process to develop the shielding, based on the principles of the ANTARES facility, is described. After casting, the homogeneity distribution of these concrete mix materials is found to be near perfect and first order experimental radiation shielding characteristicsthrough film badge (TLD) exposure show acceptable values and trends in neutron- and gamma-ray attenuation.
Radionuclide Retention in Concrete Wasteforms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wellman, Dawn M.; Jansik, Danielle P.; Golovich, Elizabeth C.
2012-09-24
Assessing long-term performance of Category 3 waste cement grouts for radionuclide encasement requires knowledge of the radionuclide-cement interactions and mechanisms of retention (i.e., sorption or precipitation); the mechanism of contaminant release; the significance of contaminant release pathways; how wasteform performance is affected by the full range of environmental conditions within the disposal facility; the process of wasteform aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of wasteform aging on chemical, physical, and radiological properties; and the associated impact on contaminant release. This knowledge will enable accurate predictionmore » of radionuclide fate when the wasteforms come in contact with groundwater. Data collected throughout the course of this work will be used to quantify the efficacy of concrete wasteforms, similar to those used in the disposal of LLW and MLLW, for the immobilization of key radionuclides (i.e., uranium, technetium, and iodine). Data collected will also be used to quantify the physical and chemical properties of the concrete affecting radionuclide retention.« less
Modeling of transport phenomena in concrete porous media.
Plecas, Ilija
2014-02-01
Two fundamental concerns must be addressed when attempting to isolate low-level waste in a disposal facility on land. The first concern is isolating the waste from water, or hydrologic isolation. The second is preventing movement of the radionuclides out of the disposal facility, or radionuclide migration. Particularly, we have investigated here the latter modified scenario. To assess the safety for disposal of radioactive waste-concrete composition, the leakage of 60Co from a waste composite into a surrounding fluid has been studied. Leakage tests were carried out by the original method, developed at the Vinča Institute. Transport phenomena involved in the leaching of a radioactive material from a cement composite matrix are investigated using three methods based on theoretical equations. These are: the diffusion equation for a plane source: an equation for diffusion coupled to a first-order equation, and an empirical method employing a polynomial equation. The results presented in this paper are from a 25-y mortar and concrete testing project that will influence the design choices for radioactive waste packaging for a future Serbian radioactive waste disposal center.
Effect of Waterproofing Admixtures on the Flexural Strength and Corrosion Resistance of Concrete
NASA Astrophysics Data System (ADS)
Geetha, A.; Perumal, P.
2012-02-01
This paper deals about the flexural strength and corrosion behaviour of concrete using waterproofing admixtures. The effect of waterproofing admixtures on the corrosion behaviour of RCC specimen has been studied by conducting accelerated corrosion test. To identify the effect of corrosion in pull out strength, corrosion process was induced by means of accelerated corrosion procedure. To accelerate the reinforcement corrosion, direct electric current was impressed on the rebar embedded in the specimen using a DC power supply system that has a facility to adjust voltage. The addition of waterproofing admixtures also shows the improvement in the flexural strength of concrete has been studied by conducting flexural strength tests on the concrete prism specimen of size 100 × 100 × 500 mm with and without admixtures for various dosages and various curing periods of 7 and 28 days. The results showed that the presence of waterproofing admixtures always improves the corrosion resistance and thus increases the strength of concrete due to the hydrophobic action of waterproofing admixtures.
NASA Technical Reports Server (NTRS)
2004-01-01
Reinforced concrete structures such as bridges, parking decks, and balconies are designed to have a service life of over 50 years. All too often, however, many structures fall short of this goal, requiring expensive repairs and protection work earlier than anticipated. The corrosion of reinforced steel within the concrete infrastructure is a major cause for this premature deterioration. Such corrosion is a particularly dangerous problem for the facilities at NASA s Kennedy Space Center. Located near the Atlantic Ocean in Florida, Kennedy is based in one of the most corrosive-prone areas in the world. In order to protect its launch support structures, highways, pipelines, and other steel-reinforced concrete structures, Kennedy engineers developed the Galvanic Liquid Applied Coating System. The system utilizes an inorganic coating material that slows or stops the corrosion of reinforced steel members inside concrete structures. Early tests determined that the coating meets the criteria of the National Association of Corrosion Engineers for complete protection of steel rebar embedded in concrete. Testing is being continued at the Kennedy's Materials Science Beach Corrosion Test Site.
NASA Astrophysics Data System (ADS)
Radebe, M. J.; Korochinsky, S.; Strydom, W. J.; De Beer, F. C.
The purpose of this study was to measure the effective neutron shielding characteristics of the new shielding material designed and manufactured to be used for the construction of the new SANRAD facility at Necsa, South Africa, through Au foil activation as well as MCNP simulations. The shielding capability of the high density shielding material was investigated in the worst case region (the neutron beam axis) of the experimental chamber for two operational modes. The everyday operational mode includes the 15 cm thick poly crystalline Bismuth filter at room temperature (assumed) to filter gamma-rays and some neutron spectrum energies. The second mode, dynamic imaging, will be conducted without the Bi-filter. The objective was achieved through a foil activation measurement at the current SANRAD facility and MCNP calculations. Several Au foilswere imbedded at different thicknesses(two at each position) of shielding material up to 80 cm thick to track the attenuation of the neutron beam over distance within the shielding material. The neutron flux and subsequently the associated dose rates were calculated from the activation levels of the Au foils. The concrete shielding material was found to provide adequate shielding for all energies of neutrons emerging from beam port no-2 of the SAFARI-1 research reactorwithin a thickness of 40 cm of concrete.
NASA Astrophysics Data System (ADS)
Yao, Ya; Zhang, Xiaowen; Li, Mi; Yang, Rong; Jiang, Tianjiao; Lv, Junwen
2016-10-01
Concrete has a proven ability to attenuate gamma rays and neutrons without compromising structural property; therefore, it is widely used as the primary shielding material in many nuclear facilities. Recently, there is a tendency toward using various additives to enhance the shielding properties of these concrete mixtures. However, most of these additives being used either pose hygiene hazards or require special handling processes. It would be ideal if environmentally friendly additives were available for use. The bismuth oxide (Bi2O3) additive shows promise in various shielding applications due to its proven radiation attenuation ability and environmentally friendly nature. To the best of our knowledge, however, Bi2O3 has never been used in concrete mixtures. Therefore, for this research, we fabricated the Bi2O3-based concrete mixtures by adding Bi2O3 powder in the ordinary concrete mixture. Concrete mixtures with lead oxide (PbO) additives were used for comparison. Radiation shielding parameters like the linear attenuation coefficients (LAC) of all these concrete mixtures showing the effects of the Bi2O3 additions are presented. The mechanical performances of concrete mixtures incorporated with Bi2O3 additive were also investigated. It suggested that the concrete mixture containing 25% Bi2O3 powder (B5 in this study) provided the best shielding capacity and mechanical performance among other mixes. It has a significant potential for application as a structural concrete where radiological protection capability is required.
10 CFR 960.5-2-8 - Surface characteristics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Closure § 960.5-2-8 Surface characteristics. (a) Qualifying condition. The site shall be located such that... could lead to the flooding of surface or underground facilities by the occupancy and modification of...
Estimating the Life Expectancy of Facilities
1974-04-01
Expectancy 1’ Facilitie,." The applicable requirement code is QCR L.01.005. Mr. Frauik Beck is the OCEI Technical Monitor. ’The stud , ast% conducted under...59,327 1934 concrete HTS Spanish Tile 223 72410 3.390 1893 Rock Brick Asphalt 2406 74050 4,035 1956 Concrete Mascnry Composition *Abbrevimions: ASBSH...1tructure B. PipesI . Corro~ion A. FloorJoists 2. Scale I. Cracks C. Stoker---Coal Burner2. Deterioration I. Wear 3. Excessive deflection 4. Insect and
Vanderbilt University Gamma Irradiation of Nano-modified Concrete (2017 Milestone Report)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deichert, Geoffrey G.; Linton, Kory D.; Terrani, Kurt A.
This document outlines the irradiation of concrete specimens in the Gamma Irradiation Facility in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL). Two gamma irradiation runs were performed in July of 2017 on 18 reference mortar bar specimens, 26 reference cement paste bar specimens, and 28 reference cement paste tab specimens to determine the dose and temperature response of the specimens in the gamma irradiation environment. Specimens from the first two gamma irradiations were surveyed and released to Vanderbilt University. The temperature and dose information obtained informs the test parameters of the final two gamma irradiationsmore » of nano-modified concrete planned for FY 2018.« less
Preliminary technical data summary No. 3 for the Defense Waste Processing Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landon, L.F.
1980-05-01
This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
This Corrective Action Decision Document (CADD)/Closure Report (CR) was prepared by the Defense Threat Reduction Agency (DTRA) for Corrective Action Unit (CAU) 478, Area 12 T-Tunnel Ponds. This CADD/CR is consistent with the requirements of the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 478 is comprised of one corrective action site (CAS): • 12-23-01, Ponds (5) RAD Area The purpose of this CADD/CR is to provide justification and documentation supporting the recommendation for closure in place with usemore » restrictions for CAU 478.« less
40 CFR 267.112 - What procedures must I follow?
Code of Federal Regulations, 2011 CFR
2011-07-01
.... (1) Events leading to a change in the closure plan, and therefore requiring a modification, may include: (i) A change in the operating plan or facility design; (ii) A change in the expected year of...
Risch, Martin R.
1999-01-01
As part of the U.S. Department of Defense Base Realignment and Closure process, the former Fort Benjamin Harrison in Marion County, Indiana (called 'Fort Harrison' in this fact sheet), was placed on the Base Closure List in 1991. Property disposal and reuse activities began when Fort Harrison was decommissioned in 1995; work continues through 1999. Fort Harrison was located on approximately 2,500 acres about 10 miles northeast of downtown Indianapolis, Ind., in the City of Lawrence (fig. 1). Since 1903, the installation served as a major training facility that at times included schools, a hospital, and Army Finance and Soldier Support Centers. In 1996, the Army leased 1,700 acres of woodland and recreational facilities to the Indiana Department of Natural Resources as Fort Harrison State Park. Another 550 acres became privately owned for industrial, commercial, and residential purposes.
Bat Surveys of Retired Facilitiies Scheduled for Demolition by Washington Closure Hanford
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gano, K. A.; Lucas, J. G.; Lindsey, C. T.
2011-06-30
This project was conducted to evaluate buildings and facilities remaining in the Washington Closure Hanford (WCH) deactivation, decontamination, decommissioning, and demolition schedule for bat roost sites. The project began in spring of 2009 and was concluded in spring of 2011. A total of 196 buildings and facilities were evaluated for the presence of bat roosting sites. The schedule for the project was prioritized to accommodate the demolition schedule. As the surveys were completed, the results were provided to the project managers to facilitate planning and project completion. The surveys took place in the 300 Area, 400 Area, 100-H, 100-D, 100-N,more » and 100-B/C Area. This report is the culmination of all the bat surveys and summarizes the findings by area and includes recommended mitigation actions where bat roosts were found.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1996-07-01
The module addresses financial assurance standards explaining first mechanisms and then the extent of coverage required. It describes the applicability of financial assurance for closure and post-closure and identifies necessary factors for calculating cost estimates. It explains allowable mechanisms for financial assurance, including which mechanisms can be used together and under what conditions. It explains how financial assurance works when a company owns several facilities or when a company is owned by one or more larger companies. It presents the financial assurance requirements for accident liability coverage. It identifies who is subject to sudden versus nonsudden liability provisions and citesmore » applicable definitions. It specifies the amount of liability coverage required for single and multiple facilities. It lists allowable mechanisms and combinations of mechanisms that can be used to satisfy financial assurance liability requirements.« less
Monitoring of Concrete Structures Using Ofdr Technique
NASA Astrophysics Data System (ADS)
Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.
2011-06-01
Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as bridges, dikes, nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μstrain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades in a concrete aggressive environment and to ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Tests were carried out by embedding various sensing cables into plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument; meanwhile, mechanical solicitations were imposed to the concrete element. Preliminary experiments are very promising since measurements performed with distributed sensing system are comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.
Fiber reinforced concrete: An advanced technology for LL/ML radwaste conditioning and disposal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tchemitcheff, E.; Verdier, A.
Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirementsmore » relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Compagnie Generale des Eaux.« less
The use of nanomodified concrete in construction of high-rise buildings
NASA Astrophysics Data System (ADS)
Prokhorov, Sergei
2018-03-01
Construction is one of the leading economy sectors. Currently, concrete is the basis of most of the structural elements, without which it is impossible to imagine the construction of a single building or facility. Their strength, reinforcement and the period of concrete lifetime are determined at the design stage, taking into account long-term operation. However, in real life, the number of impacts that affects the structural strength is pretty high. In some cases, they are random and do not have standardized values. This is especially true in the construction and exploitation of high-rise buildings and structures. Unlike the multi-storey buildings, they experience significant loads already at the stage of erection, as they support load-lifting mechanisms, formwork systems, workers, etc. The purpose of the presented article is to develop a methodology for estimating the internal fatigue of concrete structures based on changes in their electrical conductivity.
LPT. Shield test facility assembly and test building (TAN646), south ...
LPT. Shield test facility assembly and test building (TAN-646), south end of EBOR helium wing. Camera facing north. Monorail protrudes from upper-level door. Rust marks on concrete wall are from stack. Metal shed is post-1970 addition. INEEL negative no. HD-40-8-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Mitaroff, A; Cern, M Silari
2002-01-01
A reference facility for the calibration and intercomparison of active and passive detectors in broad neutron fields has been available at CERN since 1992. A positively charged hadron beam (a mixture of protons and pions) with momentum of 120 GeV/c hits a copper target, 50 cm thick and 7 cm in diameter. The secondary particles produced in the interaction traverse a shield, at 90 degrees with respect to the direction of the incoming beam. made of either 80 to 160 cm of concrete or 40 cm of iron. Behind the iron shield, the resulting neutron spectrum has a maximum at about 1 MeV, with an additional high-energy component. Behind the 80 cm concrete shield, the neutron spectrum has a second pronounced maximum at about 70 MeV and resembles the high-energy component of the radiation field created by cosmic rays at commercial flight altitudes. This paper describes the facility, reports on the latest neutron spectral measurements, gives an overview of the most important experiments performed by the various collaborating institutions over recent years and briefly addresses the possible application of the facility to measurements related to the space programme.
Self-protected nitrate reducing culture for intrinsic repair of concrete cracks.
Erşan, Yusuf Ç; Gruyaert, Elke; Louis, Ghislain; Lors, Christine; De Belie, Nele; Boon, Nico
2015-01-01
Attentive monitoring and regular repair of concrete cracks are necessary to avoid further durability problems. As an alternative to current maintenance methods, intrinsic repair systems which enable self-healing of cracks have been investigated. Exploiting microbial induced CaCO3 precipitation (MICP) using (protected) axenic cultures is one of the proposed methods. Yet, only a few of the suggested healing agents were economically feasible for in situ application. This study presents a [Formula: see text] reducing self-protected enrichment culture as a self-healing additive for concrete. Concrete admixtures Ca(NO3)2 and Ca(HCOO)2 were used as nutrients. The enrichment culture, grown as granules (0.5-2 mm) consisting of 70% biomass and 30% inorganic salts were added into mortar without any additional protection. Upon 28 days curing, mortar specimens were subjected to direct tensile load and multiple cracks (0.1-0.6 mm) were achieved. Cracked specimens were immersed in water for 28 days and effective crack closure up to 0.5 mm crack width was achieved through calcite precipitation. Microbial activity during crack healing was monitored through weekly NOx analysis which revealed that 92 ± 2% of the available [Formula: see text] was consumed. Another set of specimens were cracked after 6 months curing, thus the effect of curing time on healing efficiency was investigated, and mineral formation at the inner crack surfaces was observed, resulting in 70% less capillary water absorption compared to healed control specimens. In conclusion, enriched mixed denitrifying cultures structured in self-protecting granules are very promising strategies to enhance microbial self-healing.
Self-protected nitrate reducing culture for intrinsic repair of concrete cracks
Erşan, Yusuf Ç.; Gruyaert, Elke; Louis, Ghislain; Lors, Christine; De Belie, Nele; Boon, Nico
2015-01-01
Attentive monitoring and regular repair of concrete cracks are necessary to avoid further durability problems. As an alternative to current maintenance methods, intrinsic repair systems which enable self-healing of cracks have been investigated. Exploiting microbial induced CaCO3 precipitation (MICP) using (protected) axenic cultures is one of the proposed methods. Yet, only a few of the suggested healing agents were economically feasible for in situ application. This study presents a NO3− reducing self-protected enrichment culture as a self-healing additive for concrete. Concrete admixtures Ca(NO3)2 and Ca(HCOO)2 were used as nutrients. The enrichment culture, grown as granules (0.5–2 mm) consisting of 70% biomass and 30% inorganic salts were added into mortar without any additional protection. Upon 28 days curing, mortar specimens were subjected to direct tensile load and multiple cracks (0.1–0.6 mm) were achieved. Cracked specimens were immersed in water for 28 days and effective crack closure up to 0.5 mm crack width was achieved through calcite precipitation. Microbial activity during crack healing was monitored through weekly NOx analysis which revealed that 92 ± 2% of the available NO3− was consumed. Another set of specimens were cracked after 6 months curing, thus the effect of curing time on healing efficiency was investigated, and mineral formation at the inner crack surfaces was observed, resulting in 70% less capillary water absorption compared to healed control specimens. In conclusion, enriched mixed denitrifying cultures structured in self-protecting granules are very promising strategies to enhance microbial self-healing. PMID:26583015
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
The main landing gear (MLG) of Discovery, Orbiter Vehicle (OV) 103, rides along concrete runway 22 at Edwards Air Force Base (EAFB), California, bringing mission STS-31 to an end. The nose landing gear (NLG) is suspended above the runway prior to touchdown and wheel stop which occurred at 6:51:00 am (Pacific Daylight Time (PDT)). View shows OV-103's starboard side and deployed rudder/speedbrake. EAFB facilities are seen in the distance.
Credit PSR. View looks north northeast (20°) at the concrete ...
Credit PSR. View looks north northeast (20°) at the concrete pad which forms the top of the sump pump facility. In the background stand Building 4303 (Air Compressor Building), Building 4307 (Supply and Equipment Warehouse) at left, Building 4305 (Unicon Portable Hangar) at center, and Building 4306 (Boiler House) at right. Sign marking Building 4302 was made from a disused road sign from somewhere on Edwards AFB - Edwards Air Force Base, North Base, Sump Pump, East of Second Street, Boron, Kern County, CA
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2011-08-31
This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information andmore » process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.« less
NASA Astrophysics Data System (ADS)
Dempster, William; Allen, John P.
Closed systems are desirable for a number of purposes: space life support systems where precious life-supporting resources need to be kept inside; biospheric systems; where global ecological pro-cesses can be studied in great detail and testbeds where research topics requiring isolation from the outside (e.g. genetically modified organisms; radioisotopes) can be studied in isolation from the outside environment and where their ecological interactions and fluxes can be studied. But to achieve and maintain closure raises both engineering and ecological challenges. Engineering challenges include methods of achieving closure for structures of different materials, and devel-oping methods of allowing energy (for heating and cooling) and information transfer through the materially closed structure. Methods of calculating degree of closure include measuring degradation rates of inert trace gases introduced into the system. An allied problem is devel-oping means of locating where leaks are located so that they may be repaired and degree of closure maintained. Once closure is achieved, methods of dealing with the pressure differen-tials between inside and outside are needed: from inflatable structures which might adjust to the pressure difference to variable volume chambers attached to the life systems component. These issues are illustrated through the engineering employed at Biosphere 2, the Biosphere 2 Test Module and the Laboratory Biosphere and a discussion of methods used by other closed ecological system facility engineers. Ecological challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro-and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogue to natural biomes and ecosys-tems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils.
The basics of animal biosafety and biocontainment training.
Pritt, Stacy; Hankenson, F Claire; Wagner, Ted; Tate, Mallory
2007-06-01
The threat of biocontamination in an animal facility is best subdued by training. 'Training' is an ambiguous designation that may not be adequately appreciated in all animal facilities. The authors set down concrete training topics and provide practical advice on incorporating the basic principles of facility biosafety training--as well as the precautions and procedures that employees must know in case of accident or emergency--into various training models. They also discuss the current biosafety publications and guidelines and their relationship to biosafety training.
40 CFR 264.603 - Post-closure care.
Code of Federal Regulations, 2011 CFR
2011-07-01
....603 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... treatment or storage unit has contaminated soils or ground water that cannot be completely removed or...
Code of Federal Regulations, 2011 CFR
2011-04-01
... ASSISTANT SECRETARY FOR COMMUNITY PLANNING AND DEVELOPMENT, DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT COMMUNITY FACILITIES REVITALIZING BASE CLOSURE COMMUNITIES AND COMMUNITY ASSISTANCE-COMMUNITY REDEVELOPMENT... Response, Compensation, and Liability Act (42 U.S.C. 9601 et seq.). Communities in the vicinity of the...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Hai; Spencer, Benjamin W.; Cai, Guowei
Concrete is widely used in the construction of nuclear facilities because of its structural strength and its ability to shield radiation. The use of concrete in nuclear power plants for containment and shielding of radiation and radioactive materials has made its performance crucial for the safe operation of the facility. As such, when life extension is considered for nuclear power plants, it is critical to have accurate and reliable predictive tools to address concerns related to various aging processes of concrete structures and the capacity of structures subjected to age-related degradation. The goal of this report is to document themore » progress of the development and implementation of a fully coupled thermo-hydro-mechanical-chemical model in GRIZZLY code with the ultimate goal to reliably simulate and predict long-term performance and response of aged NPP concrete structures subjected to a number of aging mechanisms including external chemical attacks and volume-changing chemical reactions within concrete structures induced by alkali-silica reactions and long-term exposure to irradiation. Based on a number of survey reports of concrete aging mechanisms relevant to nuclear power plants and recommendations from researchers in concrete community, we’ve implemented three modules during FY15 in GRIZZLY code, (1) multi-species reactive diffusion model within cement materials; (2) coupled moisture and heat transfer model in concrete; and (3) anisotropic, stress-dependent, alkali-silica reaction induced swelling model. The multi-species reactive diffusion model was implemented with the objective to model aging of concrete structures subjected to aggressive external chemical attacks (e.g., chloride attack, sulfate attack, etc.). It considers multiple processes relevant to external chemical attacks such as diffusion of ions in aqueous phase within pore spaces, equilibrium chemical speciation reactions and kinetic mineral dissolution/precipitation. The moisture/heat transfer module was implemented to simulate long-term spatial and temporal evolutions of the moisture and temperature fields within concrete structures at both room and elevated temperatures. The ASR swelling model implemented in GRIZZLY code can simulate anisotropic expansions of ASR gel under either uniaxial, biaxial and triaxial stress states, and can be run simultaneously with the moisture/heat transfer model and coupled with various elastic/inelastic solid mechanics models that were implemented in GRIZZLY code previously. This report provides detailed descriptions of the governing equations, constitutive equations and numerical algorithms of the three modules implemented in GRIZZLY during FY15, simulation results of example problems and model validation results by comparing simulations with available experimental data reported in the literature. The close match between the experiments and simulations clearly demonstrate the potential of GRIZZLY code for reliable evaluation and prediction of long-term performance and response of aged concrete structures in nuclear power plants.« less
9 CFR 3.3 - Sheltered housing facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... attending veterinarian. Dry bedding, solid resting boards, or other methods of conserving body heat must be... wire, wood, metal, or concrete; and (iii) All walls, boxes, houses, dens, and other surfaces in contact...
9 CFR 3.3 - Sheltered housing facilities.
Code of Federal Regulations, 2013 CFR
2013-01-01
... attending veterinarian. Dry bedding, solid resting boards, or other methods of conserving body heat must be... wire, wood, metal, or concrete; and (iii) All walls, boxes, houses, dens, and other surfaces in contact...
9 CFR 3.3 - Sheltered housing facilities.
Code of Federal Regulations, 2014 CFR
2014-01-01
... attending veterinarian. Dry bedding, solid resting boards, or other methods of conserving body heat must be... wire, wood, metal, or concrete; and (iii) All walls, boxes, houses, dens, and other surfaces in contact...
Structural fabrication quality as a factor of industrial facilities safety
NASA Astrophysics Data System (ADS)
Tishkov, E. V.; Kardaev, E. M.; Stolbova, S. Yu; Shishova, O. S.
2018-04-01
In the conditions of industrial facilities high wear degree, it is very important to ensure the possibility of their safe operation in order to avoid various kinds of accidents and catastrophes. As practice shows, industrial plant collapses can occur suddenly under normal operating conditions. Usually, such accidents can take place at different stages of structures life cycle. One of the reasons for this is the initially low quality of reinforced concrete structures fabrication. The article considers the factors contributing to the collapse of reinforced concrete structures of water purification tanks located on the territory of the Omsk Region. The main surveys results on tank structures after collapse with the use of ultrasonic and physical methods of investigation are presented. On the basis of the obtained data analysis, it was found that the main cause of the accidents was the insufficient load-bearing capacity of typical reinforced concrete structures, caused by defects in their fabrication in the factory conditions because of exceeding the standard displacement from the design position of the working reinforcement. Recommendations are given on the identification of defective structures and the prevention of similar accidents when operating similar tanks at manufacturing plants constructed from standard designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maeda, Koji; Sasaki, S.; Kumai, M.
Due to the massive earthquake and tsunami on March 11, 2011, and the following severe accident at the Fukushima Daiichi Nuclear Power Plant, concrete surfaces within the reactor buildings were exposed to radioactive liquid and vapor phase contaminants. In order to clarify the situation of this contamination in the reactor buildings of Units 1, 2 and 3, selected samples were transported to the Fuels Monitoring Facility in the Oarai Engineering Center of JAEA where they were subjected to analyses to determine the surface radionuclide concentrations and to characterize the radionuclide distributions in the samples. In particular, penetration of radiocesium inmore » the surface coatings layer and sub-surface concrete was evaluated. The analysis results indicate that the situation of contamination in the building of Unit 2 was different from others, and the protective surface coatings on the concrete floors provided significant protection against radionuclide penetration. The localized penetration of contamination in the concrete floors was found to be confined within a millimeter of the surface of the coating layer of some millimeters. (authors)« less
Applications of fiber reinforced concrete containers in France and in Slovakia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verdier, A.; Delgrande, J.; Remias, V.
Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by COGEMA culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber reinforced concrete containers satisfy all French safetymore » requirements relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber reinforced concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Campaign Generale des Eaux. This technology is being transferred to Slovenske Elektrarne (Slovak Power Plant) to intern the waste produced by Bohunice and Mochovce power plants in cubical fiber reinforced concrete containers.« less
Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash
NASA Astrophysics Data System (ADS)
Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari
In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are developed and calculated. Main criteria for estimating the maximum leakage rate for the lid metallic seal system are no loss of the pre-stress of the lid bolts, no appearance of the plastic region between the metal seal flanges, and no large relative deformation of the lid seals. Finally, in both cases, the low leakage rate for the metal cask lid closure system under the impulsive loads due to aircraft engine crash will be proved thoroughly.
LPT. Shield test facility (TAN645 and 646). Elevations show three ...
LPT. Shield test facility (TAN-645 and -646). Elevations show three types of siding: Asbestos cement, pumice block, concrete. Ralph M. Parsons 1229-17 ANP/GE-6-6445-A-3. April 1957. Approved by INEEL Classification Office for public release. INEEL index code no. 037-06445/0646-00-693-107349 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
ADVANCED HEAT TRANSFER TEST FACILITY, TRA666A. ELEVATIONS. ROOF FRAMING PLAN. ...
ADVANCED HEAT TRANSFER TEST FACILITY, TRA-666A. ELEVATIONS. ROOF FRAMING PLAN. CONCRETE BLOCK SIDING. SLOPED ROOF. ROLL-UP DOOR. AIR INTAKE ENCLOSURE ON NORTH SIDE. F.C. TORKELSON 842-MTR-666-A5, 8/1966. INL INDEX NO. 531-0666-00-851-152258, REV. 2. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
1985-06-17
Increase in Foreign Investment in 1984 (TEMPO, 3 May 85) HO SWEDEN Austerity Measures Fail To Address Economy’s Real Problems (Editorial; DAGENS...from the European Investment Bank and is expected to continue to have borrowing facilities available there. Prime Minister Jonathan Motzfeldt has...the said credit facility is being kept open, but that there are no concrete borrowing plans. If an investment project turns up, the profitability 17
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-20
..., closures and coils and from graphic arts operations and the provision of sampling and testing facilities...; SDCAPCD Rule 67.16, Metal Container, Graphic Arts Operations; MBUAPCD Rule 205, Provision of Sampling and...
10 CFR 960.5-2-5 - Environmental quality.
Code of Federal Regulations, 2010 CFR
2010-01-01
... REPOSITORY Preclosure Guidelines Environment, Socioeconomics, and Transportation § 960.5-2-5 Environmental... repository siting, construction, operation, closure, and decommissioning, and projected environmental impacts... of the repository or its support facilities on, a component of the National Park System, the National...
Making a Comeback in the New Century.
ERIC Educational Resources Information Center
Sturgeon, Julie
2001-01-01
Reveals how Ohio's Central State University avoided state closure with a bold mission to rebuild both the academic programs and the facilities. What the new century holds for maintenance, software, card systems, contract services, and security and online purchasing are discussed. (GR)
CLOSURE OF A DIOXIN INCINERATION FACILITY
The U.S. Environmental Protection Agency Mobile Incineration System, whihc was operated at the Denney Farm site in southwestern Miissouri between October 1985 and June 1989, treated almost six million kilograms of dioxin-contaminated wastes from eight area sites. At the conclusi...
Transition and closeout of the Fernald Closure Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bilson, H.E.; Terry, T.; Reising, J.
The U.S. Department of Energy (DOE) and Fluor Fernald have completed the majority of the cleanup of the Fernald Site. The over 1,000 acre complex for processing uranium has been demolished and soil contamination has been remediated. With acres of wetlands and prairies replacing the buildings and waste pits. At the end of the project the focus shifted to developing demonstrating the completion of the project and the contract, as well as ensuring a smooth transition of the facility from the DOE's Environmental Management (EM) Program to the DOE's Legacy Management (LM) Program. Working with the DOE, each portion ofmore » the closure contract was examined for specific closure definition. From this negotiation effort the Comprehensive Exit and Transition Plan (CE/T Plan) was written. The CE/T Plan is intended to assist DOE in the analysis that the site is ready for transfer into long-term stewardship (LTS) (also referred to as legacy management) and that Fluor Fernald, Inc. has satisfactorily completed the closure contract statement of work elements. Following the Lessons Learned from the closure of the Rocky Flats Site, the DOE's Legacy Management Program created a matrix of Transition Elements required to ensure adequate information was in place to allow the new prime contractor to perform the Legacy Management scope of work. The transition plan included over 1,000 elements broken down into functional areas and relied on specific Fernald Responsibility Transition Packages (RTPs) for detailed transition actions. The template for Closure and Transition Planning used at the Fernald Site was developed using the best Lessons Learned from across the DOE Complex. The template could be used for other sites, and lessons learned from this closure and transition will be appropriate for all closure projects. (authors)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. B. Campbell
2002-09-01
The Area 12 Fleet Operations Steam Cleaning Effluent site is located in the southeastern portion of the Area 12 Camp at the Nevada Test Site. This site is identified in the Federal Facility Agreement and Consent Order (1996) as Corrective Action Site (CAS) 12-19-01 and is the only CAS assigned to Corrective Action Unit (CAU) 339. Post-closure sampling and inspection of the site were completed on March 27, 2002. Post-closure monitoring activities were scheduled biennially (every two years) in the Post-Closure Monitoring Plan provided in the Closure Report for CAU 339: Area 12 Fleet Operations Steam Cleaning Effluent, Nevada Testmore » Site (U.S. Department of Energy, Nevada Operations Office [DOEN], 1997). A baseline for the site was established by sampling in 1997. Based on the recommendations from the 1999 post-closure monitoring report (DOE/NV, 1999), samples were collected in 2000, earlier than originally proposed, because the 1999 sample results did not provide the expected decrease in total petroleum hydrocarbon (TPH) concentrations at the site. Sampling results from 2000 (DOE/NV, 2000) and 2001 (DOE/NV, 2001) revealed favorable conditions for natural degradation at the CAU 339 site, but because of differing sample methods and heterogeneity of the soil, data results from 2000 and later were not directly correlated with previous results. Post-closure monitoring activities for 2002 consisted of the following: (1) Soil sample collection from three undisturbed plots (Plots A, B, and C, Figure 2). (2) Sample analysis for TPH as oil and bio-characterization parameters (Comparative Enumeration Assay [CEA] and Standard Nutrient Panel [SNP]). (3) Site inspection to evaluate the condition of the fencing and signs. (4) Preparation and submittal of the Post-Closure Monitoring Report.« less
This data layer provides access to Resource Conservation and Recovery Act (RCRA) Base Realignment and Closure (BRAC) sites as part of the CIMC web service. The Resource Conservation and Recovery Act, among other things, helps ensure that wastes are managed in an environmentally sound manner so as to protect human health and the environment from the potential hazards of waste disposal.In particular RCRA tightly regulates all hazardous waste from cradle to grave. In general, all generators, transporters, treaters, storers, and disposers of hazardous waste are required to provide information about their activities to state environmental agencies. These agencies, in turn pass on the information to regional and national EPA offices. Accidents or other activities at facilities that treat, store or dispose of hazardous wastes have sometimes led to the release of hazardous waste or hazardous constituents into soil, ground water, surface water, or air. When that happens, the RCRA Corrective Action program is one program that may be used to accomplish the necessary cleanup.This data layer shows those RCRA sites that are located at BRAC Federal Facilities. Additional RCRA sites and other BRAC sites (those that are not RCRA sites) are included in other data layers as part of this web service.Note: RCRA facilities which are not undergoing corrective action are not considered ??Cleanups?? in Cleanups in My Community. The complete set of RCRA facilities can be accessed via
19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS ...
19. WINDOW DETAIL, NORTH WALL OF GARAGE ADDITION. VIEW SHOWS CONCRETE BLOCK CONSTRUCTION OF ADDITION. - Chollas Heights Naval Radio Transmitting Facility, Transmitter Building, 6410 Zero Road, San Diego, San Diego County, CA
A flexural crack model for damage detection in reinforced concrete structures
NASA Astrophysics Data System (ADS)
Hamad, W. I.; Owen, J. S.; Hussein, M. F. M.
2011-07-01
The use of changes in vibration data for damage detection of reinforced concrete structures faces many challenges that obstruct its transition from a research topic to field applications. Among these is the lack of appropriate damage models that can be deployed in the damage detection methods. In this paper, a model of a simply supported reinforced concrete beam with multiple cracks is developed to examine its use for damage detection and structural health monitoring. The cracks are simulated by a model that accounts for crack formation, propagation and closure. The beam model is studied under different dynamic excitations, including sine sweep and single excitation frequency, for various damage levels. The changes in resonant frequency with increasing loads are examined along with the nonlinear vibration characteristics. The model demonstrates that the resonant frequency reduces by about 10% at the application of 30% of the ultimate load and then drops gradually by about 25% at 70% of the ultimate load. The model also illustrates some nonlinearity in the dynamic response of damaged beams. The appearance of super-harmonics shows that the nonlinearity is higher when the damage level is about 35% and then decreases with increasing damage. The restoring force-displacement relationship predicted the reduction in the overall stiffness of the damaged beam. The model quantitatively predicts the experimental vibration behaviour of damaged RC beams and also shows the damage dependency of nonlinear vibration behaviour.
Clark, Edward B; Hickinbotham, Simon J; Stepney, Susan
2017-05-01
We present a novel stringmol-based artificial chemistry system modelled on the universal constructor architecture (UCA) first explored by von Neumann. In a UCA, machines interact with an abstract description of themselves to replicate by copying the abstract description and constructing the machines that the abstract description encodes. DNA-based replication follows this architecture, with DNA being the abstract description, the polymerase being the copier, and the ribosome being the principal machine in expressing what is encoded on the DNA. This architecture is semantically closed as the machine that defines what the abstract description means is itself encoded on that abstract description. We present a series of experiments with the stringmol UCA that show the evolution of the meaning of genomic material, allowing the concept of semantic closure and transitions between semantically closed states to be elucidated in the light of concrete examples. We present results where, for the first time in an in silico system, simultaneous evolution of the genomic material, copier and constructor of a UCA, giving rise to viable offspring. © 2017 The Author(s).
Measurement of ageing effect on chloride diffusion coefficients in cementitious matrices
NASA Astrophysics Data System (ADS)
Andrade, C.; Castellote, M.; d'Andrea, R.
2011-05-01
Most of the low-level nuclear waste disposal facilities are based in engineered multi barrier systems where reinforced concrete is one of the basic materials. The calculation of the time until steel reinforcement depassivation is a need due to the demand of prediction of the service life of concrete structures in radioactive repositories. In doing that, one of the main steps is the transport of chloride ions towards the reinforcement, as one of the most aggressive agents for the rebars in concrete is chloride ions. Ageing of concrete related to chloride penetration leads to significant decrease of the "apparent diffusion" coefficient with time. If this effect is not considered, considerable bias can be introduced when predicting service life of reinforced concrete of repositories. Several effects have been addressed on their influence on the ageing of concrete, including the evolution with time of the concrete pore refinement, the binding of chlorides to the cement phases and to the changes of chloride "surface concentration". These effects have been studied in specimens made with different mixes trying to represent a wide range of mineral addition proportions. The analysis of their evolution with time has shown that the resistivity alone or the joint consideration of resistivity and binding capacity ( Cb/ Cf), are appropriate parameters to appraise the diffusivity ageing. For practical reasons, an accelerated procedure is proposed in order to calculate ageing for short periods of time.
PLUTONIUM FINISHING PLANT (PFP) 241-Z LIQUID WASTE TREATMENT FACILITY DEACTIVATION AND DEMOLITION
DOE Office of Scientific and Technical Information (OSTI.GOV)
JOHNSTON GA
2008-01-15
Fluor Hanford, Inc. (FH) is proud to submit the Plutonium Finishing Plant (PFP) 241-Z liquid Waste Treatment Facility Deactivation and Demolition (D&D) Project for consideration by the Project Management Institute as Project of the Year for 2008. The decommissioning of the 241-Z Facility presented numerous challenges, many of which were unique with in the Department of Energy (DOE) Complex. The majority of the project budget and schedule was allocated for cleaning out five below-grade tank vaults. These highly contaminated, confined spaces also presented significant industrial safety hazards that presented some of the most hazardous work environments on the Hanford Site.more » The 241-Z D&D Project encompassed diverse tasks: cleaning out and stabilizing five below-grade tank vaults (also called cells), manually size-reducing and removing over three tons of process piping from the vaults, permanently isolating service utilities, removing a large contaminated chemical supply tank, stabilizing and removing plutonium-contaminated ventilation ducts, demolishing three structures to grade, and installing an environmental barrier on the demolition site . All of this work was performed safely, on schedule, and under budget. During the deactivation phase of the project between November 2005 and February 2007, workers entered the highly contaminated confined-space tank vaults 428 times. Each entry (or 'dive') involved an average of three workers, thus equaling approximately 1,300 individual confined -space entries. Over the course of the entire deactivation and demolition period, there were no recordable injuries and only one minor reportable skin contamination. The 241-Z D&D Project was decommissioned under the provisions of the 'Hanford Federal Facility Agreement and Consent Order' (the Tri-Party Agreement or TPA), the 'Resource Conservation and Recovery Act of 1976' (RCRA), and the 'Comprehensive Environmental Response, Compensation, and Liability Act of 1980' (CERCLA). The project completed TPA Milestone M-083-032 to 'Complete those activities required by the 241-Z Treatment and Storage Unit's RCRA Closure Plan' four years and seven months ahead of this legally enforceable milestone. In addition, the project completed TPA Milestone M-083-042 to 'Complete transition and dismantlement of the 241-2 Waste Treatment Facility' four years and four months ahead of schedule. The project used an innovative approach in developing the project-specific RCRA closure plan to assure clear integration between the 241-Z RCRA closure activities and ongoing and future CERCLA actions at PFP. This approach provided a regulatory mechanism within the RCRA closure plan to place segments of the closure that were not practical to address at this time into future actions under CERCLA. Lessons learned from th is approach can be applied to other closure projects within the DOE Complex to control scope creep and mitigate risk. A paper on this topic, entitled 'Integration of the 241-Z Building D and D Under CERCLA with RCRA Closure at the PFP', was presented at the 2007 Waste Management Conference in Tucson, Arizona. In addition, techniques developed by the 241-Z D&D Project to control airborne contamination, clean the interior of the waste tanks, don and doff protective equipment, size-reduce plutonium-contaminated process piping, and mitigate thermal stress for the workers can be applied to other cleanup activities. The project-management team developed a strategy utilizing early characterization, targeted cleanup, and close coordination with PFP Criticality Engineering to significantly streamline the waste- handling costs associated with the project . The project schedule was structured to support an early transition to a criticality 'incredible' status for the 241-Z Facility. The cleanup work was sequenced and coordinated with project-specific criticality analysis to allow the fissile material waste being generated to be managed in a bulk fashion, instead of individual waste packages. This approach negated the need for real-time assay of individual waste packages, greatly improving the efficiency of the cleanup operation. The cleanup and stabilization of the 241-2 Liquid Effluent Treatment Facility reduced radiological risks to the environment and Hanford site workers. It was recognized as a success by regulatory agencies, the media, the DOE-client, and stakeholders. The 241-Z D&D Project demonstrated management excellence in adapting to significant changes in project direction, fostered a safety culture that amassed impressive results on this high-hazard job, maintained excellent communications with the client and stakeholders, and developed and implemented unique cleanup techniques.« less
Program closure and change among VA substance abuse treatment programs.
Floyd, A S
1999-10-01
The population of Veterans Affairs (VA) substance abuse treatment programs in 1990 and 1994 was examined to determine which factors-program legitimacy or cost-accounted for program closure and change. Legitimacy is a concept in institutional theory that organizations tend to take on a form appropriate to the environment. The study had two competing hypotheses. The first was that if external pressures push programs to produce high-quality and efficient treatment, then those that are initially closer to the legitimate form should be less likely to close later, and among surviving programs they should be less likely to experience change. The second hypothesis was that cost is the primary factor in program closure and change. The study used data from administrative surveys of all VA programs (273 in 1990 and 389 in 1994). Program legitimacy variables measured whether programs offered the prevalent type of treatment, such as 12-step groups or behavioral treatment, and had the prevalent type of staff. Program costs did not explain closure or change. For inpatient programs, the risk of closure increased in facilities with more than one substance abuse treatment program. The risk of closure increased for outpatient programs offering the prevalent type of treatment, contrary to what was predicted by the legitimacy hypothesis. Inpatient programs that offered the prevalent treatment were less likely to change the type of treatment offered. Patterns of change differed over time for inpatient and outpatient programs. Legitimacy factors, rather than cost, seem to play a role in program closure and change, although the picture is clearer for inpatient programs than for outpatient programs.
CHARACTERISTICS OF MODERN MSW LANDFILL PERFORMANCE
Landfills have long been used for the permanent land disposal of municipal, industrial, and hazardous solid wastes. .S. federal and state regulations require that these facilities be designed to function for an active life, plus a post-closure period, typically 30 years. n most c...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...
40 CFR 267.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... zero cost for hazardous wastes, or non-hazardous wastes that might have economic value. (b) During the... Section 267.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED...
36 CFR 1.5 - Closures and public use limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., protection of natural or cultural resources, aid to scientific research, implementation of management responsibilities, equitable allocation and use of facilities, or the avoidance of conflict among visitor use... or cultural values, require a long-term or significant modification in the resource management...
1980-09-01
Ogee spillway crest 1269.5 Sharp crest weir (rigid fish screen) 1271.5 N Upstream invert of spillway 1265.4 Downstream invert of spillway 1260.9 Maximum...Sluice gate Access Valve house upstream Regulating facilities Sluice gate i. Spillway. Type Concrete ogee to sharp crested weir Length 26 feet Ogee... crest elevation 1269.5 Sharp crest weir (rigid fish screen) 1271.5 Upstream channel Lake Downstream channel Reinforced concrete channel for
STS-31 Discovery, Orbiter Vehicle (OV) 103, lands on EAFB concrete runway 22
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, rolls along concrete runway 22 at Edwards Air Force Base (EAFB), California, after nose landing gear (NLG) and main landing gear (MLG) touchdown. This view looks down OV-103's port side from the space shuttle main engines (SSMEs) to the nose section. The SSMEs are gimbaled to their descent position and the rudder/speedbrake is deployed on the vertical stabilizer. Wheel stop occurred at 6:51 am (Pacific Daylight Time (PDT)). In the distance EAFB facilities are visible.
ICPP tank farm closure study. Volume 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spaulding, B.C.; Gavalya, R.A.; Dahlmeir, M.M.
1998-02-01
The disposition of INEEL radioactive wastes is now under a Settlement Agreement between the DOE and the State of Idaho. The Settlement Agreement requires that existing liquid sodium bearing waste (SBW), and other liquid waste inventories be treated by December 31, 2012. This agreement also requires that all HLW, including calcined waste, be disposed or made road ready to ship from the INEEL by 2035. Sodium bearing waste (SBW) is produced from decontamination operations and HLW from reprocessing of SNF. SBW and HLW are radioactive and hazardous mixed waste; the radioactive constituents are regulated by DOE and the hazardous constituentsmore » are regulated by the Resource Conservation and Recovery Act (RCRA). Calcined waste, a dry granular material, is produced in the New Waste Calcining Facility (NWCF). Two primary waste tank storage locations exist at the ICPP: Tank Farm Facility (TFF) and the Calcined Solids Storage Facility (CSSF). The TFF has the following underground storage tanks: four 18,400-gallon tanks (WM 100-102, WL 101); four 30,000-gallon tanks (WM 103-106); and eleven 300,000+ gallon tanks. This includes nine 300,000-gallon tanks (WM 182-190) and two 318,000 gallon tanks (WM 180-181). This study analyzes the closure and subsequent use of the eleven 300,000+ gallon tanks. The 18,400 and 30,000-gallon tanks were not included in the work scope and will be closed as a separate activity. This study was conducted to support the HLW Environmental Impact Statement (EIS) waste separations options and addresses closure of the 300,000-gallon liquid waste storage tanks and subsequent tank void uses. A figure provides a diagram estimating how the TFF could be used as part of the separations options. Other possible TFF uses are also discussed in this study.« less
Strength and stiffness of reinforced rectangular columns under biaxially eccentric thrust.
DOT National Transportation Integrated Search
1976-01-01
Compression tests on nine reinforced concrete rectangular columns subjected to : constant thrust and biaxially eccentric moments were conducted at the off-campus : research facility of The University of Texas, The Civil Engineering Structures : Labor...
Code of Federal Regulations, 2011 CFR
2011-07-01
...; organic chemicals; plastics and resins manufacturing; pulp and paper industry; rubber and miscellaneous plastic products; stone, glass, clay, and concrete products; textile manufacturing; transportation..., water supply treatment plant, or air pollution control facility, exclusive of the treated effluent from...
Reusable shielding material for neutron- and gamma-radiation
NASA Astrophysics Data System (ADS)
Calzada, Elbio; Grünauer, Florian; Schillinger, Burkhard; Türck, Harald
2011-09-01
At neutron research facilities all around the world radiation shieldings are applied to reduce the background of neutron and gamma radiation as far as possible in order to perform high quality measurements and to fulfill the radiation protection requirements. The current approach with cement-based compounds has a number of shortcomings: "Heavy concrete" contains a high amount of elements, which are not desired to obtain a high attenuation of neutron and/or gamma radiation (e.g. calcium, carbon, oxygen, silicon and aluminum). A shielding material with a high density of desired nuclei such as iron, hydrogen and boron was developed for the redesign of the neutron radiography facility ANTARES at beam tube 4 (located at a cold neutron source) of FRM-II. The composition of the material was optimized by help of the Monte Carlo code MCNP5. With this shielding material a considerable higher attenuation of background radiation can be obtained compared to usual heavy concretes.
Structural systems for deep sea terminals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rashid, A.
1995-10-01
This paper describes the various structural systems that can be used for loading and unloading crude oil and other by-products by small and large tankers using fixed berths. The overall facility generally consists of a long trestle supporting piping and roadway, loading and unloading platforms supporting loadings arms, metering skid, antenna towers, gangways, surge tanks, etc., breasting dolphins to absorb ships impact, mooring dolphins, and walkways. The paper examines each unit of the facility with the various structural systems applicable with their relative merits and demerits. Some of the structural systems examined are as follows: Use of multiple steel modulesmore » supported by free standing piles versus steel jackets/mini-jackets for loading platforms; Use of concrete platforms; Use of prestress concrete sections versus steel plate girders or steel trusses for trestles; Use of rubblemound causeway in lieu of a trestle in shallow waters; Use of large spare monopile dolphins versus multi-pile steel dolphins.« less
Credit PSR. This photograph displays the south and east facades ...
Credit PSR. This photograph displays the south and east facades of the storage facility as seen when looking to the west northwest (288°). The concrete pit in the foreground is a catch basin designed to hold run-off from spilled oxidizers or clean-up operations, thus preventing them from contaminating the soil - Jet Propulsion Laboratory Edwards Facility, Solid Oxidizer Storage, Edwards Air Force Base, Boron, Kern County, CA
LPT. Shield test facility assembly and test building (TAN646). East ...
LPT. Shield test facility assembly and test building (TAN-646). East facade of ebor helium wing addition. Camera facing west. Note asbestos-cement siding on stair enclosure and upper-level. Concrete siding at lower level. Metal stack. Monorail protrudes from upper level of south wall at left of view. INEEL negative no. HD-40-7-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure
2010-02-01
FY2009 - 2011 • Benefits: Reduced corrosion due to elimination of metallic rebar , reduced weight equates to reduced dead load and increased dynamic...Decks as Replacement for Steel Reinforced Concrete Decks F09AR04: Corrosion Resistant Roofs with Integrated Sustainable PV Power Systems • Where...Army Corrosion Prevention and Control (CPC) Program for Facilities and Infrastructure Dr. Craig E. College Deputy Assistant Chief of Staff for
Final Memorandum on Remedial-Action Objectives for Operable Units 4-10. Tooele Army Depot-North Area
1992-12-01
HAZARDOUS MATERIALS AGENCY (USATHAMA) ABERDEEN PROVING GROUND, MARYLAND Prepared by SEC Donohue, Inc. (Formerly Chem- Nuclear Environmental Services, Inc...Inc. (formerly Chem- Nuclear Environmental Services, Inc.), as deliverables under a Federal Facilities Agreement (FFA) between TEAD, the State of Utah...of Building 659. The building has a concrete floor and bermed containment and is a Nuclear Regulatory Commission (NRC)-licensed facility for the
Babaskin, D V
2009-01-01
Analysis of marketing macroenvironment is an important stage in the formulation of the strategy for the development and operation of a therapeutic and preventive healthcare facility making possible rapid adjustment to sharply changing marketing conditions. The possibility of using expert evaluation for the analysis of the marketing macroenvironment of a sanatorium and spa facility and a concrete medical care service provided (peloidotherapy) is illustrated. The study covers five aspects of marketing macroenvironment, viz. socio-demographic, technological, economic, political and ecological.
The shakeout scenario: Meeting the needs for construction aggregates, asphalt, and concrete
Langer, W.H.
2011-01-01
An Mw 7.8 earthquake as described in the ShakeOut Scenario would cause significantdamage to buildings and infrastructure. Over 6 million tons of newly mined aggregate would be used for emergency repairs and for reconstruction in the five years following the event. This aggregate would be applied mostly in the form of concrete for buildings and bridges, asphalt or concrete for pavement, and unbound gravel for applications such as base course that goes under highway pavement and backfilling for foundations and pipelines. There are over 450 aggregate, concrete, and asphalt plants in the affected area, some of which would be heavily damaged. Meeting the increased demand for construction materials would require readily available permitted reserves, functioning production facilities, a supply of cement and asphalt, a source of water, gas, and electricity, and a trained workforce. Prudent advance preparations would facilitate a timely emergency response and reconstruction following such an earthquake. ?? 2011, Earthquake Engineering Research Institute.
NASA Astrophysics Data System (ADS)
Choung, S.; Francis, A. J.; Um, W.; Choi, S.; Kim, S.; Park, J.; Kim, S.
2013-12-01
The countries that have generated nuclear power have facing problems on the disposal of accumulated radioactive wastes. Geological disposal method has been chosen in many countries including Korea. A safety issue after the closure of geological repository has been raised, because microbial activities lead overpressure in the underground facilities through gas production. In particular, biodegradable organic materials derived from low- and intermediate-level radioactive wastes play important role on microbial activities in the geological repository. This study performed large scale in-situ experiments using organic wastes and groundwater, and investigated geochemical alteration and microbial activities at early stage (~63 days) as representative of the period, after closure of the geological repository. The geochemical alteration controlled significantly the microorganism types and populations. Database of the biogeochemical alteration facilitates prediction of radionuclides' mobility and establishment of remedial strategy against unpredictable accidents and hazards at early stage right after closure of the geological repository.
Mathaes, Roman; Mahler, Hanns-Christian; Roggo, Yves; Huwyler, Joerg; Eder, Juergen; Fritsch, Kamila; Posset, Tobias; Mohl, Silke; Streubel, Alexander
2016-01-01
Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters (e.g., pre-compression force, capping plate height, turntable rotating speed) contribute to the final residual seal force of a sealed container closure system and its relation to container closure integrity and other drug product quality parameters. Stopper compression measured by computer tomography correlated to residual seal force measurements.In our studies, we used different container closure system configurations from different good manufacturing practice drug product fill & finish facilities to investigate the influence of differences in primary packaging, that is, vial size and rubber stopper design on the capping process and the capped drug product. In addition, we compared two large-scale good manufacturing practice manufacturing capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force.The capping plate to plunger distance had a major influence on the obtained residual seal force values of a sealed vial, whereas the capping pre-compression force and the turntable rotation speed showed only a minor influence on the residual seal force of a sealed vial. Capping process parameters could not easily be transferred from capping equipment of different manufacturers. However, the residual seal force tester did provide a valuable tool to compare capping performance of different capping equipment. No vial showed any leakage greater than 10(-8)mbar L/s as measured by a helium mass spectrometry system, suggesting that container closure integrity was warranted in the residual seal force range tested for the tested container closure systems. Capping equipment used in good manufacturing practice manufacturing features different designs and a variety of adjustable process parameters. The overall capping result is a complex interplay of the different capping process parameters and is insufficiently described in the literature. It remains poorly studied how the different capping equipment designs and capping equipment process parameters contribute to the final capping result.In this study, we used different container closure system configurations from different good manufacturing process drug product fill & finish facilities to investigate the influence of the vial size and the rubber stopper design on the capping process. In addition, we compared two examples of large-scale good manufacturing process capping equipment and different capping equipment settings and their impact on product quality and integrity, as determined by residual seal force. © PDA, Inc. 2016.
Communicating Performance Assessments Results - 13609
DOE Office of Scientific and Technical Information (OSTI.GOV)
Layton, Mark
2013-07-01
The F-Area Tank Farms (FTF) and H-Area Tank Farm (HTF) are owned by the U.S. Department of Energy (DOE) and operated by Savannah River Remediation LLC (SRR), Liquid Waste Operations contractor at DOE's Savannah River Site (SRS). The FTF and HTF are active radioactive waste storage and treatment facilities consisting of 51 carbon steel waste tanks and ancillary equipment such as transfer lines, evaporators and pump tanks. Performance Assessments (PAs) for each Tank Farm have been prepared to support the eventual closure of the underground radioactive waste tanks and ancillary equipment. PAs provide the technical bases and results to bemore » used in subsequent documents to demonstrate compliance with the pertinent requirements for final closure of the Tank Farms. The Tank Farms are subject to a number of regulatory requirements. The State regulates Tank Farm operations through an industrial waste water permit and through a Federal Facility Agreement approved by the State, DOE and the Environmental Protection Agency (EPA). Closure documentation will include State-approved Tank Farm Closure Plans and tank-specific closure modules utilizing information from the PAs. For this reason, the State of South Carolina and the EPA must be involved in the performance assessment review process. The residual material remaining after tank cleaning is also subject to reclassification prior to closure via a waste determination pursuant to Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005. PAs are performance-based, risk-informed analyses of the fate and transport of FTF and HTF residual wastes following final closure of the Tank Farms. Since the PAs serve as the primary risk assessment tools in evaluating readiness for closure, it is vital that PA conclusions be communicated effectively. In the course of developing the FTF and HTF PAs, several lessons learned have emerged regarding communicating PA results. When communicating PA results it is important to stress that the primary goal of the PA results is to provide risk understanding, recognizing the magnitude of risk and identifying the conceptual model decisions and critical assumptions that most impact the results. Conceptual models that describe reality using simplified, mathematical approaches, and their roles in arriving at the PA results, must also be communicated. When presenting PA results, evaluations will typically be focused on a single baseline (or Base Case) to provide a foundation for discussion. The PA results are supplemented by other studies (alternate configurations, uncertainty analyses, and sensitivity analyses) which provide a breadth of modeling to supplement the Base Case. The suite of information offered by the various modeling cases and studies provides confidence that the overall risk is understood along with the underlying parameters and conditions that contribute to risk. (author)« less
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
40 CFR 264.142 - Cost estimate for closure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Section 264.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... may be realized with the sale of hazardous wastes, or non-hazardous wastes if applicable under § 264...
43 CFR 423.21 - Responsibilities.
Code of Federal Regulations, 2011 CFR
2011-10-01
... laws and regulations, as well as notices and postings of closed and special use areas established by an... with limitations, restrictions, closures, or special use areas applicable to the use of any device... responsible for the use and treatment of Reclamation facilities, lands, and waterbodies, and the cultural...
36 CFR 1001.5 - Closures and public use limits.
Code of Federal Regulations, 2010 CFR
2010-07-01
... resources, aid to scientific research, implementation of management responsibilities, equitable allocation and use of facilities, or the avoidance of conflict among visitor use activities, the Board may: (1... administered by the Presidio Trust, require a long-term or significant modification in the resource management...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2011 CFR
2011-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2013 CFR
2013-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2012 CFR
2012-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2014 CFR
2014-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
10 CFR 61.42 - Protection of individuals from inadvertent intrusion.
Code of Federal Regulations, 2010 CFR
2010-01-01
....42 Section 61.42 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) LICENSING REQUIREMENTS FOR LAND DISPOSAL OF RADIOACTIVE WASTE Performance Objectives § 61.42 Protection of individuals from inadvertent intrusion. Design, operation, and closure of the land disposal facility must ensure protection of any...
Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C; Berry, C.
Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less
ERIC Educational Resources Information Center
Cohen, Andrew
1994-01-01
Discusses the selection criteria for athletic-facility locker-room flooring that will provide safety, ease of maintenance, and cost savings. Comparative comments are provided on ceramic tile, carpeting, epoxy quartz, coated concrete, rubber flooring, flow-thru tile, and terrazzo. (GR)
DOT National Transportation Integrated Search
2011-12-01
The national transportation network contains a significant number of highway and railway bridges. This research is intended to transform the use of precast/pre-stressed materials in the transportation infrastructure. Specifically it examines how nano...
Slab Track at Facility for Accelerated Service Testing: Performance and Serviceability
DOT National Transportation Integrated Search
2018-02-01
The Transportation Technology Center, Inc., with funding by the Portland Cement Association and the Federal Railroad Administration, documented the available records associated with the performance of the concrete slab track section in the High Tonna...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael R. Kruzic
2007-09-16
Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facilitymore » Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.« less
Wijayaratne, L K Wolly; Fields, Paul G; Arthur, Frank H
2012-04-01
The residual efficacy of the juvenile hormone analog methoprene (Diacon II) was evaluated in bioassays using larvae of Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae) exposed on unsealed concrete or varnished wood treated with a liquid formulation and held at different temperatures. When these two types of surfaces were stored at 20, 30 or 35 degrees C for 0-24 wk, the percentage of adult emergence on concrete increased with time. In contrast, there was no adult emergence from larvae exposed to varnished wood at 24 wk after treatment at any of these temperatures. The presence of flour reduced residual efficacy of methoprene on concrete, but not on varnished wood, with no differences between cleaning frequencies. Methoprene was also stable for 48 h on concrete held at 65 degrees C and wheat, Triticum aestivum L., held at 46 degrees C. Results show that methoprene is stable at a range of temperatures commonly encountered in indoor food storage facilities and at high temperatures attained during insecticidal heat treatments of structures. The residual persistence of methoprene applied to different surface substrates may be affected more by the substrate than by temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
NSTec Environmental Restoration
2013-01-17
This report serves as the combined annual report for post-closure activities for the following closed Corrective Action Units (CAUs): · CAU 90, Area 2 Bitcutter Containment · CAU 91, Area 3 U-3fi Injection Well · CAU 92, Area 6 Decon Pond Facility · CAU 110, Area 3 WMD U-3ax/bl Crater · CAU 111, Area 5 WMD Retired Mixed Waste Pits · CAU 112, Area 23 Hazardous Waste Trenches This report covers fiscal year 2012 (October 2011–September 2012).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lynn Kidman
2008-10-01
This document constitutes an addendum to the July 2003, Closure Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point as described in the document Recommendations and Justifications for Modifications for Use Restrictions Established under the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office Federal Facility Agreement and Consent Order (UR Modification document) dated February 2008. The UR Modification document was approved by NDEP on February 26, 2008. The approval of the UR Modification document constituted approval of each of the recommended UR modifications.
Biosphere 2 test module experimentation program
NASA Technical Reports Server (NTRS)
Alling, Abigail; Leigh, Linda S.; Maccallum, Taber; Alvarez-Romo, Norberto
1990-01-01
The Biosphere 2 Test Module is a facility which has the capability to do either short or long term closures: five month closures with plants were conducted. Also conducted were investigations of specific problems, such as trace gas purification by bioregenerative systems by in-putting a fixed concentration of a gas and observing its uptake over time. In other Test Module experiments, the concentration of one gas was changed to observe what effects this has on other gases present or on the system. The science of biospherics which encompasses the study of closed biological systems provides an opening into the future in space as well as in the Earth's biosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dyer, J. A.
In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, Will E.; Mehta, Sunil
The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, K.G.; Kosson, D.S.; Garrabrants, A.C.
2013-07-01
The Cementitious Barriers Partnership (CBP) Project is a multi-disciplinary, multi-institutional collaboration supported by the U.S. Department of Energy Office of Tank Waste Management. The CBP project has developed a set of integrated modeling tools and leaching test methods to help improve understanding and prediction of the long-term hydraulic and chemical performance of cementitious materials used in nuclear applications. State-of-the-art modeling tools, including LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R}, were selected for their demonstrated abilities to simulate reactive transport and degradation in cementitious materials. The new U.S. Environmental Protection Agency leaching test methods based on the Leaching Environmental Assessment Framework (LEAF), nowmore » adopted as part of the SW-846 RCRA methods, have been used to help make the link between modeling and experiment. Although each of the CBP tools has demonstrated utility as a standalone product, coupling the models over relevant spatial and temporal solution domains can provide more accurate predictions of cementitious materials behavior over relevant periods of performance. The LeachXS{sup TM}/ORCHESTRA and STADIUM{sup R} models were first linked to the GoldSim Monte Carlo simulator to better and more easily characterize model uncertainties and as a means to coupling the models allowing linking to broader performance assessment evaluations that use CBP results for a source term. Two important degradation scenarios were selected for initial demonstration: sulfate ingress / attack and carbonation of cementitious materials. When sufficient sulfate is present in the pore solution external to a concrete barrier, sulfate can diffuse into the concrete, react with the concrete solid phases, and cause cracking that significantly changes the transport and structural properties of the concrete. The penetration of gaseous carbon dioxide within partially saturated concrete usually initiates a series of carbonation reactions with both dissolved ions and the hydrated cement paste. The carbonation process itself does not have a negative effect, per se, on the paste physical properties and can even result in reduced porosity and can help form a protective layer at the surface of concrete. However, carbonation has been shown to increase leaching of some constituents and can potentially have a detrimental effect on reinforced concrete structures by lowering pH to ca. 9 and de-passivating embedded steel (e.g. rebar) and accelerating corrosion, which are important processes related to high-level waste tank integrity and closure evaluations. The use of the CBP Software Toolbox to simulate these important degradation phenomena for both concrete vaults and high-level waste tanks are demonstrated in this paper. (authors)« less
Hazardous Waste Cleanup: Chevron Incorporated-NWPMG00037 Bacon Site in Glenham, New York
Chevron, Inc., former Texaco Research Center, also known as Texaco or Chevron Texaco, operated a Research Center in Glenham, New York from 1931 until its closure in 2003. The Main Facility includes all of the developed areas located north of Fishkill Creek
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2014 CFR
2014-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2012 CFR
2012-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
10 CFR 60.113 - Performance of particular barriers after permanent closure.
Code of Federal Regulations, 2013 CFR
2013-01-01
... complete filling with groundwater of available void spaces in the underground facility shall be...) Geologic setting. The geologic repository shall be located so that pre-waste-emplacement groundwater travel... release rate, designed containment period or pre-waste-emplacement groundwater travel time, provided that...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Security. 264.14 Section 264.14... Standards § 264.14 Security. (a) The owner or operator must prevent the unknowing entry, and minimize the...) for discussion of security requirements at disposal facilities during the post-closure care period...
Tomizawa, Yasuko
2012-12-01
Transcatheter closure of atrial septum defect (ASD) with a closure device is increasing, but the history of clinical use of this procedure is still short, and the efficacy and long-term safety remain unproved. The total number of closure devices implanted throughout the world has not been counted accurately. Therefore, the probability of complications occurring after implantation is uncertain. Device-related complications that occur suddenly late after implantation are life-threatening, and quite often necessitate emergency surgical intervention. In Japanese medical journals, authors reporting closure devices have mentioned no complications and problems in their facilities. Detailed studies of device-related complications and device removal have not been reported in Japan. In fact, this literature search found an unexpectedly large number of reports of various adverse events from many overseas countries. When follow-up duration is short and the number of patients is small, the incidence of complications cannot be determined. Rare complications may emerge in a large series with a long observation period. Consequently, the actual number of incidents related to ASD closure devices is possibly several times higher than the number reported. Guidelines for long-term patient management for patients with an implanted closure device are necessary and post-marketing surveillance is appropriate. Development of a national database, a worldwide registration system, and continuous information disclosure will improve the quality of treatment. The devices currently available are not ideal in view of reports of late complications requiring urgent surgery and the need for life-long follow-up. An ideal device should be free from complications during life, and reliability is indispensable.
NASA Astrophysics Data System (ADS)
Lee, A.; Jung, N. S.; Mokhtari Oranj, L.; Lee, H. S.
2018-06-01
The leakage of radioactive materials generated at particle accelerator facilities is one of the important issues in the view of radiation safety. In this study, fire and flooding at particle accelerator facilities were considered as the non-radiation disasters which result in the leakage of radioactive materials. To analyse the expected effects at each disaster, the case study on fired and flooded particle accelerator facilities was carried out with the property investigation of interesting materials presented in the accelerator tunnel and the activity estimation. Five major materials in the tunnel were investigated: dust, insulators, concrete, metals and paints. The activation levels on the concerned materials were calculated using several Monte Carlo codes (MCNPX 2.7+SP-FISPACT 2007, FLUKA 2011.4c and PHITS 2.64+DCHAIN-SP 2001). The impact weight to environment was estimated for the different beam particles (electron, proton, carbon and uranium) and the different beam energies (100, 430, 600 and 1000 MeV/nucleon). With the consideration of the leakage path of radioactive materials due to fire and flooding, the activation level of selected materials, and the impacts to the environment were evaluated. In the case of flooding, dust, concrete and metal were found as a considerable object. In the case of fire event, dust, insulator and paint were the major concerns. As expected, the influence of normal fire and flooding at electron accelerator facilities would be relatively low for both cases.
Code of Federal Regulations, 2014 CFR
2014-01-01
... radionuclides for use in producing radioactive drugs within the consortium for noncommercial distributions among... storage sheds, warehouse and shop facilities, utilities, concrete mixing plants, docking and unloading... Rico to prescribe drugs in the practice of medicine; Podiatrist means an individual licensed by a State...
Code of Federal Regulations, 2014 CFR
2014-01-01
....g., construction equipment storage sheds, warehouse and shop facilities, utilities, concrete mixing... Columbia or the Commonwealth of Puerto Rico to compound and dispense drugs, prescriptions and poisons... States, the District of Columbia, or the Commonwealth of Puerto Rico to prescribe drugs in the practice...
77 FR 49852 - Notice of Passenger Facility Charge (PFC) Approvals and Disapprovals
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-17
... of Projects Approved for Collection and Use: Runway 11/29 pavement rehabilitation. Taxiway B pavement rehabilitation. Runway 15/33 pavement rehabilitation. Aircraft rescue and firefighting equipment acquisition. Security enhancements. Rehabilitate concrete commercial apron. General aviation apron pavement...
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of the maximum capacity of the fuel storage system; and (7) Provided with a competent concrete... any buildup pressure before heat is applied. (2) Diesel fuel shall not be allowed to enter pipelines...