ERIC Educational Resources Information Center
National Science Foundation, Washington, DC.
This report addresses an opportunity to accelerate progress in virtually every branch of science and engineering concurrently, while also boosting the American economy as business firms also learn to exploit these new capabilities. The successful rapid advancement in both science and technology creates its own challenges, four of which are…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shusharina, N; Khan, F; Sharp, G
Purpose: To determine the dose level and timing of the boost in locally advanced lung cancer patients with confirmed tumor recurrence by comparing different boosting strategies by an impact of dose escalation in improvement of the therapeutic ratio. Methods: We selected eighteen patients with advanced NSCLC and confirmed recurrence. For each patient, a base IMRT plan to 60 Gy prescribed to PTV was created. Then we compared three dose escalation strategies: a uniform escalation to the original PTV, an escalation to a PET-defined target planned sequentially and concurrently. The PET-defined targets were delineated by biologically-weighed regions on a pre-treatment 18F-FDGmore » PET. The maximal achievable dose, without violating the OAR constraints, was identified for each boosting method. The EUD for the target, spinal cord, combined lung, and esophagus was compared for each plan. Results: The average prescribed dose was 70.4±13.9 Gy for the uniform boost, 88.5±15.9 Gy for the sequential boost and 89.1±16.5 Gy for concurrent boost. The size of the boost planning volume was 12.8% (range: 1.4 – 27.9%) of the PTV. The most prescription-limiting dose constraints was the V70 of the esophagus. The EUD within the target increased by 10.6 Gy for the uniform boost, by 31.4 Gy for the sequential boost and by 38.2 for the concurrent boost. The EUD for OARs increased by the following amounts: spinal cord, 3.1 Gy for uniform boost, 2.8 Gy for sequential boost, 5.8 Gy for concurrent boost; combined lung, 1.6 Gy for uniform, 1.1 Gy for sequential, 2.8 Gy for concurrent; esophagus, 4.2 Gy for uniform, 1.3 Gy for sequential, 5.6 Gy for concurrent. Conclusion: Dose escalation to a biologically-weighed gross tumor volume defined on a pre-treatment 18F-FDG PET may provide improved therapeutic ratio without breaching predefined OAR constraints. Sequential boost provides better sparing of OARs as compared with concurrent boost.« less
Hamilton, Daniel George; Bale, Rebecca; Jones, Claire; Fitzgerald, Emma; Khor, Richard; Knight, Kellie; Wasiak, Jason
2016-06-01
The purpose of this systematic review was to summarise the evidence from studies investigating the integration of tumour bed boosts into whole breast irradiation for patients with Stage 0-III breast cancer, with a focus on its impact on acute and late toxicities. A comprehensive systematic electronic search through the Ovid MEDLINE, EMBASE and PubMed databases from January 2000 to January 2015 was conducted. Studies were considered eligible if they investigated the efficacy of hypo- or normofractionated whole breast irradiation with the inclusion of a daily concurrent boost. The primary outcomes of interest were the degree of observed acute and late toxicity following radiotherapy treatment. Methodological quality assessment was performed on all included studies using either the Newcastle-Ottawa Scale or a previously published investigator-derived quality instrument. The search identified 35 articles, of which 17 satisfied our eligibility criteria. Thirteen and eleven studies reported on acute and late toxicities respectively. Grade 3 acute skin toxicity ranged from 1 to 7% whilst moderate to severe fibrosis and telangiectasia were both limited to 9%. Reported toxicity profiles were comparable to historical data at similar time-points. Studies investigating the delivery of concurrent boosts with whole breast radiotherapy courses report safe short to medium-term toxicity profiles and cosmesis rates. Whilst the quality of evidence and length of follow-up supporting these findings is low, sufficient evidence has been generated to consider concurrent boost techniques as an alternative to conventional sequential techniques. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monjazeb, Arta M., E-mail: arta.monjazeb@ucdmc.ucdavis.edu; Ayala, Deandra; Jensen, Courtney
2012-02-01
Objectives: To describe the results of a Phase I dose escalation trial for newly diagnosed glioblastoma multiforme (GBM) using a hypofractionated concurrent intensity-modulated radiotherapy (IMRT) boost. Methods: Twenty-one patients were enrolled between April 1999 and August 2003. Radiotherapy consisted of daily fractions of 1.8 Gy with a concurrent boost of 0.7 Gy (total 2.5 Gy daily) to a total dose of 70, 75, or 80 Gy. Concurrent chemotherapy was not permitted. Seven patients were enrolled at each dose and dose limiting toxicities were defined as irreversible Grade 3 or any Grade 4-5 acute neurotoxicity attributable to radiotherapy. Results: All patientsmore » experienced Grade 1 or 2 acute toxicities. Acutely, 8 patients experienced Grade 3 and 1 patient experienced Grade 3 and 4 toxicities. Of these, only two reversible cases of otitis media were attributable to radiotherapy. No dose-limiting toxicities were encountered. Only 2 patients experienced Grade 3 delayed toxicity and there was no delayed Grade 4 toxicity. Eleven patients requiring repeat resection or biopsy were found to have viable tumor and radiation changes with no cases of radionecrosis alone. Median overall and progression-free survival for this cohort were 13.6 and 6.5 months, respectively. One- and 2-year survival rates were 57% and 19%. At recurrence, 15 patients received chemotherapy, 9 underwent resection, and 5 received radiotherapy. Conclusions: Using a hypofractionated concurrent IMRT boost, we were able to safely treat patients to 80 Gy without any dose-limiting toxicity. Given that local failure still remains the predominant pattern for GBM patients, a trial of dose escalation with IMRT and temozolomide is warranted.« less
FIVE-YEAR RESULTS OF ADJUVANT RADIOTHER
Osa, Etin-Osa O.; DeWyngaert, Keith; Roses, Daniel; Speyer, James; Guth, Amber; Axelrod, Deborah; Kerimian, Maria Fenton; Goldberg, Judith D.; Formenti, Silvia C.
2015-01-01
Purpose/Objective A technique of prone breast radiotherapy delivered by a regimen of accelerated intensity modulated radiation therapy (IMRT) with a concurrent boost to the tumor bed, was developed at our institution. We report the five year results of this approach. Methods and Materials Between 2003–2006, 404 patients with Stage I–II breast cancer were prospectively enrolled into two consecutive protocols, institutional trials 03–30 and 05–181, that used the same regimen of 40.5Gy/15 fractions delivered to the index breast over 3 weeks, with a concomitant daily boost to the tumor bed of 0.5Gy (total dose=48Gy). All patients were treated after segmental mastectomy, had negative margins, and nodal assessment. Patients were set up prone: only if lung or heart volumes were in the field was a supine set-up attempted, and chosen if found to better spare these organs. Results 92% of patients were treated prone, 8% supine. 72% had stage I, 28% stage II invasive breast cancer. In-field lung volume ranged from 0 –228.27cc, mean: 19.65cc. In-field heart volume for left breast cancer patients ranged from 0–21.24cc, mean: 1.59cc. There was no heart in the field for right breast cancer patients. At a median follow-up of five years, the five-year cumulative incidence of isolated ipsilateral breast tumor recurrence was 0.82% (95% CI: 0.65–1.04). The five-year cumulative incidence of regional recurrence was 0.53% (95% CI:0.41–0.69) and the five-year overall cumulative death rate was 1.28% (95% CI: 0.48–3.38). 82% (95% CI: 77–85) of patients judged their final cosmetic result as excellent/good. Conclusions Prone accelerated IMRT with a concomitant boost results in excellent local control, optimal sparing of heart and lung, with good cosmesis. RTOG 10–05, a phase III, multi-institutional, randomized trial is ongoing and is evaluating the equivalence of a similar dose and fractionation approach to standard six weeks radiotherapy with a sequential boost. PMID:24867535
Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard James; Voter, Arthur F.; Perez, Danny
Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less
Discrete event performance prediction of speculatively parallel temperature-accelerated dynamics
Zamora, Richard James; Voter, Arthur F.; Perez, Danny; ...
2016-12-01
Due to its unrivaled ability to predict the dynamical evolution of interacting atoms, molecular dynamics (MD) is a widely used computational method in theoretical chemistry, physics, biology, and engineering. Despite its success, MD is only capable of modeling time scales within several orders of magnitude of thermal vibrations, leaving out many important phenomena that occur at slower rates. The Temperature Accelerated Dynamics (TAD) method overcomes this limitation by thermally accelerating the state-to-state evolution captured by MD. Due to the algorithmically complex nature of the serial TAD procedure, implementations have yet to improve performance by parallelizing the concurrent exploration of multiplemore » states. Here we utilize a discrete event-based application simulator to introduce and explore a new Speculatively Parallel TAD (SpecTAD) method. We investigate the SpecTAD algorithm, without a full-scale implementation, by constructing an application simulator proxy (SpecTADSim). Finally, following this method, we discover that a nontrivial relationship exists between the optimal SpecTAD parameter set and the number of CPU cores available at run-time. Furthermore, we find that a majority of the available SpecTAD boost can be achieved within an existing TAD application using relatively simple algorithm modifications.« less
Chitapanarux, Imjai; Tharavichitkul, Ekkasit; Kamnerdsupaphon, Pimkhuan; Pukanhapan, Nantaka; Vongtama, Roy
2013-01-01
The aim of this study was to compare the efficacy and safety of concurrent chemoradiotherapy (CCRT) vs accelerated hyperfractionation with concomitant boost (CCB) as a primary treatment for patients with Stage III–IV squamous cell carcinoma of head and neck (SCCHN). A total of 85 non-metastatic advanced SCCHN patients were accrued from January 2003 to December 2007. Of these, 48 and 37 patients received CCRT and CCB, respectively. The patients were randomized to receive either three cycles of carboplatin and 5-fluorouracil plus conventional radiotherapy (CCRT, 66 Gy in 6.5 weeks) or hybrid accelerated radiotherapy (CCB, 70 Gy in 6 weeks). The primary endpoint was determined by locoregional control rate. The secondary endpoints were overall survival and toxicity. With a median follow-up of 43 months (range, 3–102), the 5-year locoregional control rate was 69.6% in the CCRT arm vs 55.0% in the CCB arm (P = 0.184). The 5-year overall survival rate was marginally significantly different (P = 0.05): 76.1% in the CCRT arm vs 63.5% in the CCB arm. Radiotherapy treatment interruptions of more than three days were 60.4% and 40.5% in the CCRT arm and CCB arm, respectively. The median total treatment time was 55.5 days in the CCRT arm and 49 days in the CCB arm. The rate of Grade 3–4 acute mucositis was significantly higher in the CCB arm (67.6% vs 41.7%, P = 0.01), but no high grade hematologic toxicities were found in the CCB arm (27.2% vs 0%). CCRT has shown a trend of improving outcome over CCB irradiation in locoregionally advanced head and neck cancer. PMID:23740894
Huang, Yu-Ming M; McCammon, J Andrew; Miao, Yinglong
2018-04-10
Through adding a harmonic boost potential to smooth the system potential energy surface, Gaussian accelerated molecular dynamics (GaMD) provides enhanced sampling and free energy calculation of biomolecules without the need of predefined reaction coordinates. This work continues to improve the acceleration power and energy reweighting of the GaMD by combining the GaMD with replica exchange algorithms. Two versions of replica exchange GaMD (rex-GaMD) are presented: force constant rex-GaMD and threshold energy rex-GaMD. During simulations of force constant rex-GaMD, the boost potential can be exchanged between replicas of different harmonic force constants with fixed threshold energy. However, the algorithm of threshold energy rex-GaMD tends to switch the threshold energy between lower and upper bounds for generating different levels of boost potential. Testing simulations on three model systems, including the alanine dipeptide, chignolin, and HIV protease, demonstrate that through continuous exchanges of the boost potential, the rex-GaMD simulations not only enhance the conformational transitions of the systems but also narrow down the distribution width of the applied boost potential for accurate energetic reweighting to recover biomolecular free energy profiles.
Choice reaction time to movement of eccentric visual targets during concurrent rotary acceleration
NASA Technical Reports Server (NTRS)
Hamerman, J. A.
1979-01-01
This study investigates the influence of concurrent rotary acceleration on choice reaction time (RT) to a small, accelerating visual cursor on a cathode-ray tube. Subjects sat in an enclosed rotating device at the center of rotation and observed a 3-mm dot accelerating at different rates across a cathode-ray tube. The dot was viewed at various eccentricities under conditions of visual stimulation alone and with concurrent rotary acceleration. Subjects responded to both vertical and horizontal dot movements. There was a significant inverse relationship between choice RT and level of dot acceleration (p less than .001), and a significant direct relationship between choice RT and eccentricity (p less than .001). There was no significant difference between choice RT to vertical or horizontal dot motion (p greater than .25), and choice RT was not significantly affected by concurrent rotary acceleration (p greater than .10). The results are discussed in terms of the effects of vestibular stimulation on choice RT to visual motion.
Sinko, William; de Oliveira, César Augusto F; Pierce, Levi C T; McCammon, J Andrew
2012-01-10
Molecular dynamics (MD) is one of the most common tools in computational chemistry. Recently, our group has employed accelerated molecular dynamics (aMD) to improve the conformational sampling over conventional molecular dynamics techniques. In the original aMD implementation, sampling is greatly improved by raising energy wells below a predefined energy level. Recently, our group presented an alternative aMD implementation where simulations are accelerated by lowering energy barriers of the potential energy surface. When coupled with thermodynamic integration simulations, this implementation showed very promising results. However, when applied to large systems, such as proteins, the simulation tends to be biased to high energy regions of the potential landscape. The reason for this behavior lies in the boost equation used since the highest energy barriers are dramatically more affected than the lower ones. To address this issue, in this work, we present a new boost equation that prevents oversampling of unfavorable high energy conformational states. The new boost potential provides not only better recovery of statistics throughout the simulation but also enhanced sampling of statistically relevant regions in explicit solvent MD simulations.
User's design handbook for a Standardized Control Module (SCM) for DC to DC Converters, volume 2
NASA Technical Reports Server (NTRS)
Lee, F. C.
1980-01-01
A unified design procedure is presented for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt. All key results and performance indices, for buck, boost, and buck/boost switching regulators which are relevant to SCM design considerations are included to facilitate frequent references.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Kwan Ho; Ahn, Sung Ja; Pyo, Hong Ryull
Purpose: We evaluated the efficacy of synchronous three-dimensional (3D) conformal boost to the gross tumor volume (GTV) in concurrent chemoradiotherapy for patients with locally advanced non-small-cell lung cancer (NSCLC). Methods and Materials: Eligibility included unresectable Stage III NSCLC with no pleural effusion, no supraclavicular nodal metastases, and Eastern Cooperative Oncology Group performance score of 0-1. Forty-nine patients with pathologically proven NSCLC were enrolled. Eighteen patients had Stage IIIA and 31 had Stage IIIB. By using 3D conformal radiotherapy (RT) techniques, a dose of 1.8 Gy was delivered to the planning target volume with a synchronous boost of 0.6 Gy tomore » the GTV, with a total dose of 60 Gy to the GTV and 45 Gy to the planning target volume in 25 fractions during 5 weeks. All patients received weekly chemotherapy consisting of paclitaxel and carboplatin during RT. Results: With a median follow-up of 36.8 months (range, 29.0-45.5 months) for surviving patients, median survival was 28.1 months. One-, 2- and 3-year overall survival rates were 77%, 56.4%, and 43.8%, respectively. Corresponding local progression-free survival rates were 71.2%, 53.7%, and 53.7%. Compliance was 90% for RT and 88% for chemotherapy. Acute esophagitis of Grade 2 or higher occurred in 29 patients. Two patients with T4 lesions died of massive bleeding and hemoptysis during treatment (Grade 5). Overall late toxicity was acceptable. Conclusions: Based on the favorable outcome with acceptable toxicity, the acceleration scheme using 3D conformal GTV boost in this trial is warranted to compare with conventional fractionation in a Phase III trial.« less
2013-01-01
Background Patients with brain metastases from lung cancer have poor prognoses and short survival time, and they are often excluded from clinical trials. Whole-cranial irradiation is considered to be the standard treatment, but its efficacy is not satisfactory. The purpose of this phase II clinical trial was to evaluate the preliminary efficacy and safety of the treatment of whole-brain irradiation plus three-dimensional conformal boost combined with concurrent topotecan for the patients with brain metastases from lung cancer. Methods Patients with brain metastasis from lung cancer received concurrent chemotherapy and radiotherapy: conventional fractionated whole-brain irradiation, 2 fields/time, 1 fraction/day, 2 Gy/fraction, 5 times/week, and DT 40 Gy/20 fractions; for the patients with ≤ 3 lesions with diameter ≥ 2 cm, a three-dimensional (3-D) conformal localised boost was given to increase the dosage to 56–60 Gy; and during radiotherapy, concurrent chemotherapy with topotecan was given (the chemoradiotherapy group, CRT). The patients with brain metastasis from lung cancer during the same period who received radiotherapy only were selected as the controls (the radiotherapy-alone group, RT). Results From March 2009 to March 2012, both 38 patients were enrolled into two groups. The median progression-free survival(PFS) time , the 1- and 2-year PFS rates of CRT group and RT group were 6 months, 42.8%, 21.6% and 3 months, 11.6%, 8.7% (χ2 = 6.02, p = 0.014), respectively. The 1- and 2-year intracranial lesion control rates of CRT and RT were 75.9% , 65.2% and 41.6% , 31.2% (χ2 = 3.892, p = 0.049), respectively. The 1- and 2-year overall survival rates (OS) of CRT and RT were 50.8% , 37.9% and 40.4% , 16.5% (χ2 = 1.811, p = 0.178), respectively. The major side effects were myelosuppression and digestive toxicities, but no differences were observed between the two groups. Conclusion Compared with radiotherapy alone, whole-brain irradiation plus 3-D conformal boost irradiation and concurrent topotecan chemotherapy significantly improved the PFS rate and the intracranial lesion control rate of patients with brain metastases from lung cancer, and no significant increases in side effects were observed. Based on these results, this treatment method is recommended for phase III clinical trial. PMID:24125485
1996-07-24
to fuel tank 27 aboard 23 test torpedo 26. Pressure switch 19B operates to close solenoid 24 valve 22A and concurrently open solenoid valve 22D...leading to a pump explosion. The boost pump 4 is driven by its 11 motor 14B and positive displacement pump 1 by its respective 12 motor 14A. Pressure ... switch 19A monitors the head pressure 13 created by the boost pump 4 and it will shut off the motor 14A of 14 the positive displacement pump 1 if
Analysis and design of a standardized control module for switching regulators
NASA Astrophysics Data System (ADS)
Lee, F. C.; Mahmoud, M. F.; Yu, Y.; Kolecki, J. C.
1982-07-01
Three basic switching regulators: buck, boost, and buck/boost, employing a multiloop standardized control module (SCM) were characterized by a common small signal block diagram. Employing the unified model, regulator performances such as stability, audiosusceptibility, output impedance, and step load transient are analyzed and key performance indexes are expressed in simple analytical forms. More importantly, the performance characteristics of all three regulators are shown to enjoy common properties due to the unique SCM control scheme which nullifies the positive zero and provides adaptive compensation to the moving poles of the boost and buck/boost converters. This allows a simple unified design procedure to be devised for selecting the key SCM control parameters for an arbitrarily given power stage configuration and parameter values, such that all regulator performance specifications can be met and optimized concurrently in a single design attempt.
Cellular Mechanisms of Transcranial Direct Current Stimulation
2016-07-14
32 Section 3 Electrical stimulation accelerates and boosts the capacity for synaptic learning ...................... 50 Section 4...Section 3: tDCS is thought to boost the learning of tasks or therapy applied at the same time. We provide a cellular mechanism for this. Moreover, we...show that thus “boosting” is specific to the trained task. [Aim 2] Section 4: tDCS is though to boost learning by promoting synaptic plasticity. We
Picardi, Vincenzo; Deodato, Francesco; Guido, Alessandra; Giaccherini, Lucia; Macchia, Gabriella; Gambacorta, Maria A; Arcelli, Alessandra; Farioli, Andrea; Cellini, Francesco; Cuicchi, Dajana; DI Fabio, Francesca; Poggioli, Gilberto; Ardizzoni, Andrea; Frezza, Giovanni; Cilla, Savino; Caravatta, Luciana; Valentini, Vincenzo; Fuccio, Lorenzo; Morganti, Alessio G
2016-08-01
The aim of this study was to evaluate the pathological response of locally advanced rectal cancer after preoperative concurrent two-drug chemotherapy and intensified radiation therapy (RT) with concomitant boost. Patients with T4 tumor or local recurrence were included. A trial based on two-stage Simon's design was planned. RT was performed with 3D-conformal technique. The dose to the mesorectum and pelvic lymph nodes was 45 Gy (1.8 Gy/fraction). A concomitant boost was delivered to Gross Tumor Volume (GTV) 2 cm margin to a total dose of 55 Gy (2.2 Gy/fraction). The following concurrent chemotherapy was administered: Raltitrexed (3 mg/m(2)) and oxaliplatin (130 mg/m(2)) on days 1, 17, and 35 of RT. Pathological response was evaluated according to the Mandard classification. Toxicities were scored according to the Common Terminology Criteria for Adverse Events v3.0 scale. Eighteen patients (median age=64.5 years) were enrolled. The median follow-up was 22 months (range=2-36 months). After chemoradiation treatment, 16 patients underwent surgical resection (seven anterior resections and nine abdominal-perineal amputation); two patients did not undergo surgery due to early metastatic progression or refusal. R0 resection was achieved in all patients who underwent surgery. Five patients had pathological complete response [27.7%; 95% confidence interval (CI)=9.7-53.5%] and two patients showed only microscopic residual disease (11.1%; 95% CI=0.1-34.7%). Mandard grades 1 and 2 were detected in seven patients (38.9%; 95% CI=17.3-64.3%). Acute grade 3 or more toxicity was found in eight patients (44.4%; 95% CI=21.5-69.2%): one leucopenia-neutropenia, one liver, one skin and five cases of gastrointestinal toxicities. No patient had local tumor recurrence. One-, 2- and 3-year cumulative disease-free survival were 93.8%. One-, 2- and 3-year cumulative overall survival were 92.3%. Concurrent chemoradiation with concomitant boost in patients with advanced rectal cancer allows complete or near-complete pathological response in more than 38% of patients. However, severe acute toxicity was reported in more than one-third of patients. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Committee approves bill to boost NIH funding.
2015-08-01
A U.S. House of Representatives committee approved the 21st Century Cures Act. If passed by Congress, the bill would boost funding for the NIH and FDA and introduce new strategies for accelerating the approval of drugs and devices. ©2015 American Association for Cancer Research.
A proposal for antiparallel acceleration of positrons using CEBAF
NASA Astrophysics Data System (ADS)
Tiefenback, M.; Wojtsekhowski, B.
2018-05-01
We present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e- acceleration and counter clockwise e+ acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increased energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.
Assessment of MCRM Boost Assist from Orbit for Deep Space Missions
NASA Technical Reports Server (NTRS)
2000-01-01
Report provides results of analysis for the beamed energy driven MHD Chemical Rocket Motor (MCRM) for application to boost from orbit to escape for deep space and interplanetary missions. Parametric analyses were performed in the mission to determine operating regime for which the MCRM provides significant propulsion performance enhancement. Analysis of the MHD accelerator was performed numerical computational methods to determine design and operational features necessary to achieve Isp on the order of 2,000 to 3,000 seconds. Algorithms were developed to scale weights for the accelerator and power supply. Significant improvement in propulsion system performance can be achieved with the beamed energy driven MCRM. The limiting factor on achievable vehicle acceleration is the specific power of the rectenna.
Coulomb-driven energy boost of heavy ions for laser-plasma acceleration.
Braenzel, J; Andreev, A A; Platonov, K; Klingsporn, M; Ehrentraut, L; Sandner, W; Schnürer, M
2015-03-27
An unprecedented increase of kinetic energy of laser accelerated heavy ions is demonstrated. Ultrathin gold foils have been irradiated by an ultrashort laser pulse at a peak intensity of 8×10^{19} W/ cm^{2}. Highly charged gold ions with kinetic energies up to >200 MeV and a bandwidth limited energy distribution have been reached by using 1.3 J laser energy on target. 1D and 2D particle in cell simulations show how a spatial dependence on the ion's ionization leads to an enhancement of the accelerating electrical field. Our theoretical model considers a spatial distribution of the ionization inside the thin target, leading to a field enhancement for the heavy ions by Coulomb explosion. It is capable of explaining the energy boost of highly charged ions, enabling a higher efficiency for the laser-driven heavy ion acceleration.
Airy Wave Packets Accelerating in Space-Time
NASA Astrophysics Data System (ADS)
Kondakci, H. Esat; Abouraddy, Ayman F.
2018-04-01
Although diffractive spreading is an unavoidable feature of all wave phenomena, certain waveforms can attain propagation invariance. A lesser-explored strategy for achieving optical self-similar propagation exploits the modification of the spatiotemporal field structure when observed in reference frames moving at relativistic speeds. For such an observer, it is predicted that the associated Lorentz boost can bring to a halt the axial dynamics of a wave packet of an arbitrary profile. This phenomenon is particularly striking in the case of a self-accelerating beam—such as an Airy beam—whose peak normally undergoes a transverse displacement upon free propagation. Here we synthesize an acceleration-free Airy wave packet that travels in a straight line by deforming its spatiotemporal spectrum to reproduce the impact of a Lorentz boost. The roles of the axial spatial coordinate and time are swapped, leading to "time diffraction" manifested in self-acceleration observed in the propagating Airy wave-packet frame.
A proposal for antiparallel acceleration of positrons using CEBAF
Tiefenback, M.; Wojtsekhowski, B.
2018-05-01
Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less
A proposal for antiparallel acceleration of positrons using CEBAF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiefenback, M.; Wojtsekhowski, B.
Here, we present a scheme for positron beam acceleration in CEBAF antiparallel to the normal electron path, requiring no change in polarity of the magnet systems. This feature is essential to the principal benefit: enabling extremely simple configuration changes between conventional (clockwise) e - acceleration and counter clockwise e + acceleration. Additionally, it appears possible to configure the accelerating cavity phases to support concurrent acceleration of the electron and positron beams. The last mode also may enable use of the higher peak current electron beam for system diagnostics. The inherent penalty of the concurrent mode in acceleration efficiency and increasedmore » energy spread may render this a commissioning-only diagnostic option, but the possibility appears worthy of consideration.« less
On the application of accelerated molecular dynamics to liquid water simulations.
de Oliveira, César Augusto F; Hamelberg, Donald; McCammon, J Andrew
2006-11-16
Our group recently proposed a robust bias potential function that can be used in an efficient all-atom accelerated molecular dynamics (MD) approach to simulate the transition of high energy barriers without any advance knowledge of the potential-energy landscape. The main idea is to modify the potential-energy surface by adding a bias, or boost, potential in regions close to the local minima, such that all transitions rates are increased. By applying the accelerated MD simulation method to liquid water, we observed that this new simulation technique accelerates the molecular motion without losing its microscopic structure and equilibrium properties. Our results showed that the application of a small boost energy on the potential-energy surface significantly reduces the statistical inefficiency of the simulation while keeping all the other calculated properties unchanged. On the other hand, although aggressive acceleration of the dynamics simulation increases the self-diffusion coefficient of water molecules greatly and dramatically reduces the correlation time of the simulation, configurations representative of the true structure of liquid water are poorly sampled. Our results also showed the strength and robustness of this simulation technique, which confirm this approach as a very useful and promising tool to extend the time scale of the all-atom simulations of biological system with explicit solvent models. However, we should keep in mind that there is a compromise between the strength of the boost applied in the simulation and the reproduction of the ensemble average properties.
ERIC Educational Resources Information Center
Gold, Eva; Edmunds, Kimberly; Maluk, Holly; Reumann-Moore, Rebecca
2011-01-01
In 2010-11, the School District of Philadelphia (the District) operated thirteen accelerated high schools that served approximately 2,000 under-credited, over-age students. Each of the accelerated schools was managed by one of seven external providers, each with its own educational approach, and each with a contractual agreement with the…
The Proton Synchrotron (PS): At the Core of the CERN Accelerators
NASA Astrophysics Data System (ADS)
Cundy, Donald; Gilardoni, Simone
The following sections are included: * Introduction * Extraction: Getting the Beam to Leave the Accelerator * Acceleration and Bunch Gymnastics * Boosting PS Beam Intensity * Capacitive Energy Storage Replaces Flywheel * Taking the Neutrinos by the Horns * OMEGA: Towards the Electronic Bubble Chamber * ISOLDE: Targeting a New Era in Nuclear Physics * The CERN n_TOF Facility: Catching Neutrons on the Fly * References
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cooper, Benjamin T.; Formenti-Ujlaki, George F.; Li, Xiaochun
Purpose: To report the results of a prospective randomized trial comparing a daily versus weekly boost to the tumor cavity during the course of accelerated radiation to the breast with patients in the prone position. Methods and Materials: From 2009 to 2012, 400 patients with stage 0 to II breast cancer who had undergone segmental mastectomy participated in an institutional review board–approved trial testing prone breast radiation therapy to 40.5 Gy in 15 fractions 5 d/wk to the whole breast, after randomization to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy, on Friday.more » The present noninferiority trial tested the primary hypothesis that a weekly boost produced no more acute toxicity than did a daily boost. The recurrence-free survival was estimated for both treatment arms using the Kaplan-Meier method; the relative risk of recurrence or death was estimated, and the 2 arms were compared using the log-rank test. Results: At a median follow-up period of 45 months, no deaths related to breast cancer had occurred. The weekly boost regimen produced no more grade ≥2 acute toxicity than did the daily boost regimen (8.1% vs 10.4%; noninferiority Z = −2.52; P=.006). No statistically significant difference was found in the cumulative incidence of long-term fibrosis or telangiectasia of grade ≥2 between the 2 arms (log-rank P=.923). Two local and two distant recurrences developed in the daily treatment arm and three local and one distant developed in the weekly arm. The 4-year recurrence-free survival rate was not different between the 2 treatment arms (98% for both arms). Conclusions: A tumor bed boost delivered either daily or weekly was tolerated similarly during accelerated prone breast radiation therapy, with excellent control of disease and comparable cosmetic results.« less
Liu, Yue-E; Lin, Qiang; Meng, Fan-Jie; Chen, Xue-Ji; Ren, Xiao-Cang; Cao, Bin; Wang, Na; Zong, Jie; Peng, Yu; Ku, Ya-Jun; Chen, Yan
2013-08-11
Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy.
2013-01-01
Background Increasing the radiotherapy dose can result in improved local control for non-small-cell lung cancer (NSCLC) and can thereby improve survival. Accelerated hypofractionated radiotherapy can expose tumors to a high dose of radiation in a short period of time, but the optimal treatment regimen remains unclear. The purpose of this study was to evaluate the feasibility of utilizing high-dose accelerated hypofractionated three-dimensional conformal radiotherapy (at 3 Gy/fraction) with concurrent vinorelbine (NVB) and carboplatin (CBP) chemotherapy for the treatment of local advanced NSCLC. Methods Untreated patients with unresectable stage IIIA/IIIB NSCLC or patients with a recurrence of NSCLC received accelerated hypofractionated three-dimensional conformal radiotherapy. The total dose was greater than or equal to 60 Gy. The accelerated hypofractionated radiotherapy was conducted once daily at 3 Gy/fraction with 5 fractions per week, and the radiotherapy was completed in 5 weeks. In addition to radiotherapy, the patients also received at least 1 cycle of a concurrent two-drug chemotherapy regimen of NVB and CBP. Results A total of 26 patients (19 previously untreated cases and 7 cases of recurrent disease) received 60Gy-75Gy radiotherapy with concurrent chemotherapy. All of the patients underwent evaluations for toxicity and preliminary therapeutic efficacy. There were no treatment-related deaths within the entire patient group. The major acute adverse reactions were radiation esophagitis (88.5%) and radiation pneumonitis (42.3%). The percentages of grade III acute radiation esophagitis and grade III radiation pneumonitis were 15.4% and 7.7%, respectively. Hematological toxicities were common and did not significantly affect the implementation of chemoradiotherapy after supportive treatment. Two patients received high dose of 75 Gy had grade III late esophageal toxicity, and none had grade IV and above. Grade III and above late lung toxicity did not occur. Conclusion High-dose accelerated hypofractionated three-dimensional conformal radiotherapy with a dose of 60 Gy or greater with concurrent NVB and CBP chemotherapy might be feasible. However esophagus toxicity needs special attention. A phase I trial is recommended to obtain the maximum tolerated radiation dose of accelerated hypofractionated radiotherapy with concurrent chemotherapy. PMID:23937855
Morris, Meghan D; Lemus, Hector; Wagner, Karla D; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A
2013-01-01
To identify factors associated with time to initiation of (i) sex work prior to injecting drugs initiation; (ii) injection drug use prior to sex work initiation; and (iii) concurrent sex work and injection drug use (i.e. initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Parametric survival analysis of baseline data for time to initiation event. Tijuana and Ciudad Juarez situated on the Mexico-US border. A total of 557 FSW-IDUs aged ≥18 years. Interview-administered surveys assessing context of sex work and injection drug use initiation. Nearly half (n = 258) initiated sex work prior to beginning to inject, a third (n = 163) initiated injection first and a quarter (n = 136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one-third initiate injection drug use before beginning sex work and one-quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. © 2012 The Authors, Addiction © 2012 Society for the Study of Addiction.
Morris, Meghan D.; Lemus, Hector; Wagner, Karla D.; Martinez, Gustavo; Lozada, Remedios; Gómez, Rangel María Gudelia; Strathdee, Steffanie A.
2012-01-01
Aims To identify factors associated with time to initiation of (1) sex work prior to injecting drugs, (2) injection drug use, and (3) concurrent sex work and injection drug use (i.e., initiated at the same age) among female sex workers who currently inject drugs (FSW-IDU). Design Parametric survival analysis of baseline data for time to initiation event. Setting Tijuana and Ciudad Juarez situated on the Mexico-U.S. border. Participants 575 FSW-IDUs aged ≥18. Measurements Interview-administered surveys assessing context of sex work and injection drug use initiation. Findings Nearly half (n=256) initiated sex work prior to beginning to inject, a third (n=163) initiated injection first, and a quarter (n=136) initiated both sex work and injection drug use concurrently. Low education and living in Ciudad Juarez accelerated time to sex work initiation. Being from a southern Mexican state and initiating drug use with inhalants delayed the time to first injection drug use. Having an intimate partner encourage entry into sex work and first injecting drugs to deal with depression accelerated time to initiating sex work and injection concurrently. Early physical abuse accelerated time to initiating sex work and injection, and substantially accelerated time to initiation of both behaviors concurrently. Conclusions Among female sex workers who currently inject drugs in two Mexican-US border cities, nearly half appear to initiate sex work prior to beginning to inject, nearly one third initiate injection drug use before beginning sex work, and one quarter initiate both behaviors concurrently. Predictors of these three trajectories differ, and this provides possible modifiable targets for prevention. PMID:22775475
Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca
2016-08-01
It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Doshi, Urmi; Hamelberg, Donald
2015-05-01
Accelerated molecular dynamics (aMD) has been proven to be a powerful biasing method for enhanced sampling of biomolecular conformations on general-purpose computational platforms. Biologically important long timescale events that are beyond the reach of standard molecular dynamics can be accessed without losing the detailed atomistic description of the system in aMD. Over other biasing methods, aMD offers the advantages of tuning the level of acceleration to access the desired timescale without any advance knowledge of the reaction coordinate. Recent advances in the implementation of aMD and its applications to small peptides and biological macromolecules are reviewed here along with a brief account of all the aMD variants introduced in the last decade. In comparison to the original implementation of aMD, the recent variant in which all the rotatable dihedral angles are accelerated (RaMD) exhibits faster convergence rates and significant improvement in statistical accuracy of retrieved thermodynamic properties. RaMD in conjunction with accelerating diffusive degrees of freedom, i.e. dual boosting, has been rigorously tested for the most difficult conformational sampling problem, protein folding. It has been shown that RaMD with dual boosting is capable of efficiently sampling multiple folding and unfolding events in small fast folding proteins. RaMD with the dual boost approach opens exciting possibilities for sampling multiple timescales in biomolecules. While equilibrium properties can be recovered satisfactorily from aMD-based methods, directly obtaining dynamics and kinetic rates for larger systems presents a future challenge. This article is part of a Special Issue entitled Recent developments of molecular dynamics. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lundstrom, R.R.; Gall, J.M.
1986-01-01
The use of an exhaust-driven boosting device can significantly improve the performance of a vehicle using a small displacement engine. One of the concerns relative to the performance of vehicles using these devices is ''turbo lag,'' or the period of time during which no boost is generated. This paper presents the results of designed experiments comparing the performance of a fixed geometry, wastegated turbocharger to a variable geometry turbocharger incorporating a low-loss bearing system. In addition, experimental tests are presented for the naturally aspirated engine in the same vehicle. The results of the experiments show improvements with the use ofmore » pressure boosting and that there are signifcant differences in the boosting devices tested; specifically, the use of a variable geometry turbocharger demonstrates significant reduction in the length of time required to reach boost and reduced acceleration times for the tests conducted.« less
Van Parijs, Hilde; Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine.
Reynders, Truus; Heuninckx, Karina; Verellen, Dirk; Storme, Guy; De Ridder, Mark
2014-01-01
Background. Breast conserving surgery followed by whole breast irradiation is widely accepted as standard of care for early breast cancer. Addition of a boost dose to the initial tumor area further reduces local recurrences. We investigated the dosimetric benefits of a simultaneously integrated boost (SIB) compared to a sequential boost to hypofractionate the boost volume, while maintaining normofractionation on the breast. Methods. For 10 patients 4 treatment plans were deployed, 1 with a sequential photon boost, and 3 with different SIB techniques: on a conventional linear accelerator, helical TomoTherapy, and static TomoDirect. Dosimetric comparison was performed. Results. PTV-coverage was good in all techniques. Conformity was better with all SIB techniques compared to sequential boost (P = 0.0001). There was less dose spilling to the ipsilateral breast outside the PTVboost (P = 0.04). The dose to the organs at risk (OAR) was not influenced by SIB compared to sequential boost. Helical TomoTherapy showed a higher mean dose to the contralateral breast, but less than 5 Gy for each patient. Conclusions. SIB showed less dose spilling within the breast and equal dose to OAR compared to sequential boost. Both helical TomoTherapy and the conventional technique delivered acceptable dosimetry. SIB seems a safe alternative and can be implemented in clinical routine. PMID:25162031
Divided Attention Can Enhance Memory Encoding: The Attentional Boost Effect in Implicit Memory
ERIC Educational Resources Information Center
Spataro, Pietro; Mulligan, Neil W.; Rossi-Arnaud, Clelia
2013-01-01
Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute…
Accelerating atomistic simulations through self-learning bond-boost hyperdynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez, Danny; Voter, Arthur F
2008-01-01
By altering the potential energy landscape on which molecular dynamics are carried out, the hyperdynamics method of Voter enables one to significantly accelerate the simulation state-to-state dynamics of physical systems. While very powerful, successful application of the method entails solving the subtle problem of the parametrization of the so-called bias potential. In this study, we first clarify the constraints that must be obeyed by the bias potential and demonstrate that fast sampling of the biased landscape is key to the obtention of proper kinetics. We then propose an approach by which the bond boost potential of Miron and Fichthorn canmore » be safely parametrized based on data acquired in the course of a molecular dynamics simulation. Finally, we introduce a procedure, the Self-Learning Bond Boost method, in which the parametrization is step efficiently carried out on-the-fly for each new state that is visited during the simulation by safely ramping up the strength of the bias potential up to its optimal value. The stability and accuracy of the method are demonstrated.« less
Pehlivan, Berrin; Luthi, Francois; Matzinger, Oscar; Betz, Michael; Dragusanu, Daniela; Bulling, Shelley; Bron, Luc; Pasche, Philippe; Seelentag, Walter; Mirimanoff, René O; Zouhair, Abderrahim; Ozsahin, Mahmut
2009-05-01
The aim of this study was to assess feasibility and efficacy of weekly concomitant boost accelerated postoperative radiation therapy (PORT) with concomitant chemotherapy (CT) in patients with locally advanced head and neck cancer (LAHNC). Conformal or intensity-modulated 66-Gy RT was performed in 5.5 weeks in 40 patients. Cisplatin was given at days 1, 22, and 43. Median follow-up was 36 months. Grade 3 mucositis, dysphagia, and erythema was observed in ten (25%), nine (23%), and six (13%) patients, respectively. Grade 3 or more anemia was observed in two (6%) patients, and leukopenia in five (13%) patients. No grade 3 or 4 thrombocytopenia was observed. Grade 3 nephrotoxicity was observed in one patient (3%). No treatment-related mortality was observed. Grade 2 or more xerostomia and edema were observed in ten (25%) and one (3%) patient, respectively. Locoregional relapse occurred in eight patients, and seven patients developed distant metastases. Median time to locoregional relapse was 6 months. Three-year overall, disease-free survival, and locoregional control rates were 63%, 62%, and 81%, respectively. Multivariate analysis revealed that the only prognostic factor was nodal status. Reducing overall treatment time using accelerated PORT/CT by weekly concomitant boost (six fractions per week) combined with concomitant cisplatin CT is easily feasible with acceptable morbidity.
Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation.
Miao, Yinglong; Sinko, William; Pierce, Levi; Bucher, Denis; Walker, Ross C; McCammon, J Andrew
2014-07-08
Accelerated molecular dynamics (aMD) simulations greatly improve the efficiency of conventional molecular dynamics (cMD) for sampling biomolecular conformations, but they require proper reweighting for free energy calculation. In this work, we systematically compare the accuracy of different reweighting algorithms including the exponential average, Maclaurin series, and cumulant expansion on three model systems: alanine dipeptide, chignolin, and Trp-cage. Exponential average reweighting can recover the original free energy profiles easily only when the distribution of the boost potential is narrow (e.g., the range ≤20 k B T) as found in dihedral-boost aMD simulation of alanine dipeptide. In dual-boost aMD simulations of the studied systems, exponential average generally leads to high energetic fluctuations, largely due to the fact that the Boltzmann reweighting factors are dominated by a very few high boost potential frames. In comparison, reweighting based on Maclaurin series expansion (equivalent to cumulant expansion on the first order) greatly suppresses the energetic noise but often gives incorrect energy minimum positions and significant errors at the energy barriers (∼2-3 k B T). Finally, reweighting using cumulant expansion to the second order is able to recover the most accurate free energy profiles within statistical errors of ∼ k B T, particularly when the distribution of the boost potential exhibits low anharmonicity (i.e., near-Gaussian distribution), and should be of wide applicability. A toolkit of Python scripts for aMD reweighting "PyReweighting" is distributed free of charge at http://mccammon.ucsd.edu/computing/amdReweighting/.
Improved Reweighting of Accelerated Molecular Dynamics Simulations for Free Energy Calculation
2015-01-01
Accelerated molecular dynamics (aMD) simulations greatly improve the efficiency of conventional molecular dynamics (cMD) for sampling biomolecular conformations, but they require proper reweighting for free energy calculation. In this work, we systematically compare the accuracy of different reweighting algorithms including the exponential average, Maclaurin series, and cumulant expansion on three model systems: alanine dipeptide, chignolin, and Trp-cage. Exponential average reweighting can recover the original free energy profiles easily only when the distribution of the boost potential is narrow (e.g., the range ≤20kBT) as found in dihedral-boost aMD simulation of alanine dipeptide. In dual-boost aMD simulations of the studied systems, exponential average generally leads to high energetic fluctuations, largely due to the fact that the Boltzmann reweighting factors are dominated by a very few high boost potential frames. In comparison, reweighting based on Maclaurin series expansion (equivalent to cumulant expansion on the first order) greatly suppresses the energetic noise but often gives incorrect energy minimum positions and significant errors at the energy barriers (∼2–3kBT). Finally, reweighting using cumulant expansion to the second order is able to recover the most accurate free energy profiles within statistical errors of ∼kBT, particularly when the distribution of the boost potential exhibits low anharmonicity (i.e., near-Gaussian distribution), and should be of wide applicability. A toolkit of Python scripts for aMD reweighting “PyReweighting” is distributed free of charge at http://mccammon.ucsd.edu/computing/amdReweighting/. PMID:25061441
GeoBoost: accelerating research involving the geospatial metadata of virus GenBank records.
Tahsin, Tasnia; Weissenbacher, Davy; O'Connor, Karen; Magge, Arjun; Scotch, Matthew; Gonzalez-Hernandez, Graciela
2018-05-01
GeoBoost is a command-line software package developed to address sparse or incomplete metadata in GenBank sequence records that relate to the location of the infected host (LOIH) of viruses. Given a set of GenBank accession numbers corresponding to virus GenBank records, GeoBoost extracts, integrates and normalizes geographic information reflecting the LOIH of the viruses using integrated information from GenBank metadata and related full-text publications. In addition, to facilitate probabilistic geospatial modeling, GeoBoost assigns probability scores for each possible LOIH. Binaries and resources required for running GeoBoost are packed into a single zipped file and freely available for download at https://tinyurl.com/geoboost. A video tutorial is included to help users quickly and easily install and run the software. The software is implemented in Java 1.8, and supported on MS Windows and Linux platforms. gragon@upenn.edu. Supplementary data are available at Bioinformatics online.
Boosting CNS axon regeneration by harnessing antagonistic effects of GSK3 activity.
Leibinger, Marco; Andreadaki, Anastasia; Golla, Renate; Levin, Evgeny; Hilla, Alexander M; Diekmann, Heike; Fischer, Dietmar
2017-07-03
Implications of GSK3 activity for axon regeneration are often inconsistent, if not controversial. Sustained GSK3 activity in GSK3 S/A knock-in mice reportedly accelerates peripheral nerve regeneration via increased MAP1B phosphorylation and concomitantly reduces microtubule detyrosination. In contrast, the current study shows that lens injury-stimulated optic nerve regeneration was significantly compromised in these knock-in mice. Phosphorylation of MAP1B and CRMP2 was expectedly increased in retinal ganglion cell (RGC) axons upon enhanced GSK3 activity, but, surprisingly, no GSK3-mediated CRMP2 inhibition was detected in sciatic nerves, thus revealing a fundamental difference between central and peripheral axons. Conversely, genetic or shRNA-mediated conditional KO/knockdown of GSK3β reduced inhibitory phosphorylation of CRMP2 in RGCs and improved optic nerve regeneration. Accordingly, GSK3β KO-mediated neurite growth promotion and myelin disinhibition were abrogated by CRMP2 inhibition and largely mimicked in WT neurons upon expression of constitutively active CRMP2 (CRMP2 T/A ). These results underscore the prevalent requirement of active CRMP2 for optic nerve regeneration. Strikingly, expression of CRMP2 T/A in GSK3 S/A RGCs further boosted optic nerve regeneration, with axons reaching the optic chiasm within 3 wk. Thus, active GSK3 can also markedly promote axonal growth in central nerves if CRMP2 concurrently remains active. Similar to peripheral nerves, GSK3-mediated MAP1B phosphorylation/activation and the reduction of microtubule detyrosination contributed to this effect. Overall, these findings reconcile conflicting data on GSK3-mediated axon regeneration. In addition, the concept of complementary modulation of normally antagonistically targeted GSK3 substrates offers a therapeutically applicable approach to potentiate the regenerative outcome in the injured CNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garden, Adam S.; Harris, Jonathan M.S.; Trotti, Andy
2008-08-01
Purpose: The feasibility of combining concomitant boost-accelerated radiation regimen (AFX-C) with cisplatin was previously demonstrated in this Phase II trial. This article reports the long-term toxicity, relapse patterns, and survival in patients with advanced head and neck carcinoma. Methods and Materials: Between April and November 2000, 84 patients with Stage III-IV HNC were enrolled, and 76 patients were analyzable. Radiation consisted of 72 Gy over 6 weeks. Cisplatin dose was 100 mg/m{sup 2} on Days 1 and 22. Tumor and clinical status were assessed, and acute-late toxicities were graded. Results: The median follow-up for surviving patients is 4.3 years. Themore » 2- and 4-year locoregional failure rates were 33% and 36%, respectively, and the 2- and 4-year survival rates were 70% and 54%, respectively. The worst overall late Grade 3 or 4 toxicity rate was 42%. The prevalence rates of a gastrostomy at any time during follow-up, at 12 months, and at 48 months were 83%, 41%, and 17%, respectively. Five of 36 patients (14%) alive and without disease at last follow-up were gastrostomy-tube dependent. Conclusion: These data of long-term follow-up of patients treated with AFX-C with cisplatin show encouraging results with regard to locoregional disease control and survival, with few recurrences after 2 years. The late toxicity rates are relatively high. However, although prolonged dysphagia was noted in our preliminary report, its prevalence does decreased over time. A Phase III trial comparing AFX-C plus cisplatin against standard radiation plus cisplatin has completed accrual.« less
Chege, Gerald K; Burgers, Wendy A; Müller, Tracey L; Gray, Clive M; Shephard, Enid G; Barnett, Susan W; Ferrari, Guido; Montefiori, David; Williamson, Carolyn; Williamson, Anna-Lise
2017-02-07
Successful future HIV vaccines are expected to generate an effective cellular and humoral response against the virus in both the peripheral blood and mucosal compartments. We previously reported the development of DNA-C and MVA-C vaccines based on HIV-1 subtype C and demonstrated their immunogenicity when given in a DNA prime-MVA boost combination in a nonhuman primate model. In the current study, rhesus macaques previously vaccinated with a DNA-C and MVA-C vaccine regimen were re-vaccinated 3.5years later with MVA-C followed by a protein vaccine based on HIV-1 subtype C envelope formulated with MF59 adjuvant (gp140Env/MF59), and finally a concurrent boost with both vaccines. A single MVA-C re-vaccination elicited T cell responses in all animals similar to previous peak responses, with 4/7 demonstrating responses >1000 SFU/10 6 PBMC. In contrast to an Env/MF59-only vaccine, concurrent boosting with MVA-C and Env/MF59 induced HIV-specific cellular responses in multiple mucosal associated lymph nodes in 6/7 animals, with high magnitude responses in some animals. Both vaccine regimens induced high titer Env-specific antibodies with ADCC activity, as well as neutralization of Tier 1 viruses and modest Tier 2 neutralization. These data demonstrate the feasibility of inducing HIV-specific immunity in the blood and mucosal sites of viral entry by means of DNA and poxvirus-vectored vaccines, in combination with a HIV envelope-based protein vaccine. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Ultra-accelerated natural sunlight exposure testing
Jorgensen, Gary J.; Bingham, Carl; Goggin, Rita; Lewandowski, Allan A.; Netter, Judy C.
2000-06-13
Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.
Modeling laser-plasma acceleration in the laboratory frame
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2011-01-01
A simulation of laser-plasma acceleration in the laboratory frame. Both the laser and the wakefield buckets must be resolved over the entire domain of the plasma, requiring many cells and many time steps. While researchers often use a simulation window that moves with the pulse, this reduces only the multitude of cells, not the multitude of time steps. For an artistic impression of how to solve the simulation by using the boosted-frame method, watch the video "Modeling laser-plasma acceleration in the wakefield frame".
A spatially collocated sound thrusts a flash into awareness
Aller, Máté; Giani, Anette; Conrad, Verena; Watanabe, Masataka; Noppeney, Uta
2015-01-01
To interact effectively with the environment the brain integrates signals from multiple senses. It is currently unclear to what extent spatial information can be integrated across different senses in the absence of awareness. Combining dynamic continuous flash suppression (CFS) and spatial audiovisual stimulation, the current study investigated whether a sound facilitates a concurrent visual flash to elude flash suppression and enter perceptual awareness depending on audiovisual spatial congruency. Our results demonstrate that a concurrent sound boosts unaware visual signals into perceptual awareness. Critically, this process depended on the spatial congruency of the auditory and visual signals pointing towards low level mechanisms of audiovisual integration. Moreover, the concurrent sound biased the reported location of the flash as a function of flash visibility. The spatial bias of sounds on reported flash location was strongest for flashes that were judged invisible. Our results suggest that multisensory integration is a critical mechanism that enables signals to enter conscious perception. PMID:25774126
Salmon, Paul Matthew; Goode, Natassia; Spiertz, Antje; Thomas, Miles; Grant, Eryn; Clacy, Amanda
2017-06-01
Questions have been raised regarding the impact that providing concurrent verbal protocols has on task performance in various settings; however, there has been little empirical testing of this in road transport. The aim of this study was to examine the impact of providing concurrent verbal protocols on driving performance. Participants drove an instrumented vehicle around a set route, twice whilst providing a concurrent verbal protocol, and twice without. A comparison revealed no differences in behaviour related to speed, braking and steering wheel angle when driving mid-block, but a significant difference in aspects of braking and acceleration at roundabouts. When not providing a verbal protocol, participants were found to brake harder on approach to a roundabout and accelerate more heavily coming out of roundabouts. It is concluded that providing verbal protocols may have a positive effect on braking and accelerating. Practical implications related to driver training and future research are discussed. Practitioner Summary: Verbal protocol analysis is used by ergonomists to understand aspects of cognition and decision-making during complex tasks such as driving and control room operation. This study examines the impact that it has on driving performance, providing evidence to support its continued use in ergonomics applications.
Boosting the Light: X-ray Physics in Confinement
Rhisberger, Ralf [HASYLAB/ DESY
2017-12-09
Remarkable effects are observed if light is confined to dimensions comparable to the wavelength of the light. The lifetime of atomic resonances excited by the radiation is strongly reduced in photonic traps, such as cavities or waveguides. Moreover, one observes an anomalous boost of the intensity scattered from the resonant atoms. These phenomena results from the strong enhancement of the photonic density of states in such geometries. Many of these effects are currently being explored in the regime of vsible light due to their relevance for optical information processing. It is thus appealing to study these phenomena also for much shorter wavelengths. This talk illuminates recent experiments where synchrotron x-rays were trapped in planar waveguides to resonantly excite atomos ([57]Fe nuclei_ embedded in them. In fact, one observes that the radiative decay of these excited atoms is strongly accelerated. The temporal acceleration of the decay goes along with a strong boost of the radiation coherently scattered from the confined atmos. This can be exploited to obtain a high signal-to-noise ratio from tiny quantities of material, leading to manifold applications in the investigation of nanostructured materials. One application is the use of ultrathin probe layers to image the internal structure of magnetic layer systems.
General Trends of Dihedral Conformational Transitions in a Globular Protein
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; McCammon, J. Andrew
2017-01-01
Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and Adaptive Biasing Force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions ~2 times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the Bend, Coil and Turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein sidechains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Sidechains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. PMID:26799251
Conceptualizing Concurrent Enrollment: Why High-Achieving Students Go For It
ERIC Educational Resources Information Center
Dare, Lynn; Nowicki, Elizabeth
2015-01-01
Research shows that carefully planned acceleration offers academic benefits with little social or emotional risk to high-ability learners. However, acceleration is underutilized and little is known about students' motivations to accelerate. In this study, 21 high-ability high school students in Grades 11 and 12 took part in a structured…
Achieving Rigorous Accelerated Conformational Sampling in Explicit Solvent.
Doshi, Urmi; Hamelberg, Donald
2014-04-03
Molecular dynamics simulations can provide valuable atomistic insights into biomolecular function. However, the accuracy of molecular simulations on general-purpose computers depends on the time scale of the events of interest. Advanced simulation methods, such as accelerated molecular dynamics, have shown tremendous promise in sampling the conformational dynamics of biomolecules, where standard molecular dynamics simulations are nonergodic. Here we present a sampling method based on accelerated molecular dynamics in which rotatable dihedral angles and nonbonded interactions are boosted separately. This method (RaMD-db) is a different implementation of the dual-boost accelerated molecular dynamics, introduced earlier. The advantage is that this method speeds up sampling of the conformational space of biomolecules in explicit solvent, as the degrees of freedom most relevant for conformational transitions are accelerated. We tested RaMD-db on one of the most difficult sampling problems - protein folding. Starting from fully extended polypeptide chains, two fast folding α-helical proteins (Trpcage and the double mutant of C-terminal fragment of Villin headpiece) and a designed β-hairpin (Chignolin) were completely folded to their native structures in very short simulation time. Multiple folding/unfolding transitions could be observed in a single trajectory. Our results show that RaMD-db is a promisingly fast and efficient sampling method for conformational transitions in explicit solvent. RaMD-db thus opens new avenues for understanding biomolecular self-assembly and functional dynamics occurring on long time and length scales.
The Vestibular System Implements a Linear–Nonlinear Transformation In Order to Encode Self-Motion
Massot, Corentin; Schneider, Adam D.; Chacron, Maurice J.; Cullen, Kathleen E.
2012-01-01
Although it is well established that the neural code representing the world changes at each stage of a sensory pathway, the transformations that mediate these changes are not well understood. Here we show that self-motion (i.e. vestibular) sensory information encoded by VIIIth nerve afferents is integrated nonlinearly by post-synaptic central vestibular neurons. This response nonlinearity was characterized by a strong (∼50%) attenuation in neuronal sensitivity to low frequency stimuli when presented concurrently with high frequency stimuli. Using computational methods, we further demonstrate that a static boosting nonlinearity in the input-output relationship of central vestibular neurons accounts for this unexpected result. Specifically, when low and high frequency stimuli are presented concurrently, this boosting nonlinearity causes an intensity-dependent bias in the output firing rate, thereby attenuating neuronal sensitivities. We suggest that nonlinear integration of afferent input extends the coding range of central vestibular neurons and enables them to better extract the high frequency features of self-motion when embedded with low frequency motion during natural movements. These findings challenge the traditional notion that the vestibular system uses a linear rate code to transmit information and have important consequences for understanding how the representation of sensory information changes across sensory pathways. PMID:22911113
Highly Productive Application Development with ViennaCL for Accelerators
NASA Astrophysics Data System (ADS)
Rupp, K.; Weinbub, J.; Rudolf, F.
2012-12-01
The use of graphics processing units (GPUs) for the acceleration of general purpose computations has become very attractive over the last years, and accelerators based on many integrated CPU cores are about to hit the market. However, there are discussions about the benefit of GPU computing when comparing the reduction of execution times with the increased development effort [1]. To counter these concerns, our open-source linear algebra library ViennaCL [2,3] uses modern programming techniques such as generic programming in order to provide a convenient access layer for accelerator and GPU computing. Other GPU-accelerated libraries are primarily tuned for performance, but less tailored to productivity and portability: MAGMA [4] provides dense linear algebra operations via a LAPACK-comparable interface, but no dedicated matrix and vector types. Cusp [5] is closest in functionality to ViennaCL for sparse matrices, but is based on CUDA and thus restricted to devices from NVIDIA. However, no convenience layer for dense linear algebra is provided with Cusp. ViennaCL is written in C++ and uses OpenCL to access the resources of accelerators, GPUs and multi-core CPUs in a unified way. On the one hand, the library provides iterative solvers from the family of Krylov methods, including various preconditioners, for the solution of linear systems typically obtained from the discretization of partial differential equations. On the other hand, dense linear algebra operations are supported, including algorithms such as QR factorization and singular value decomposition. The user application interface of ViennaCL is compatible to uBLAS [6], which is part of the peer-reviewed Boost C++ libraries [7]. This allows to port existing applications based on uBLAS with a minimum of effort to ViennaCL. Conversely, the interface compatibility allows to use the iterative solvers from ViennaCL with uBLAS types directly, thus enabling code reuse beyond CPU-GPU boundaries. Out-of-the-box support for types from the Eigen library [8] and MTL 4 [9] are provided as well, enabling a seamless transition from single-core CPU to GPU and multi-core CPU computations. Case studies from the numerical solution of PDEs are given and isolated performance benchmarks are discussed. Also, pitfalls in scientific computing with GPUs and accelerators are addressed, allowing for a first evaluation of whether these novel devices can be mapped well to certain applications. References: [1] R. Bordawekar et al., Technical Report, IBM, 2010 [2] ViennaCL library. Online: http://viennacl.sourceforge.net/ [3] K. Rupp et al., GPUScA, 2010 [4] MAGMA library. Online: http://icl.cs.utk.edu/magma/ [5] Cusp library. Online: http://code.google.com/p/cusp-library/ [6] uBLAS library. Online: http://www.boost.org/libs/numeric/ublas/ [7] Boost C++ Libraries. Online: http://www.boost.org/ [8] Eigen library. Online: http://eigen.tuxfamily.org/ [9] MTL 4 Library. Online: http://www.mtl4.org/
Clinical radiobiology of stage T2-T3 bladder cancer.
Majewski, Wojciech; Maciejewski, Boguslaw; Majewski, Stanislaw; Suwinski, Rafal; Miszczyk, Leszek; Tarnawski, Rafal
2004-09-01
To evaluate the relationship between total radiation dose and overall treatment time (OTT) with the treatment outcome, with adjustment for selected clinical factors, in patients with Stage T2-T3 bladder cancer treated with curative radiotherapy (RT). The analysis was based on 480 patients with Stage T2-T3 bladder cancer who were treated at the Center of Oncology in Gliwice between 1975 and 1995. The mean total radiation dose was 65.5 Gy, and the mean OTT was 51 days. In 261 patients (54%), planned and unplanned gaps occurred during RT. Four fractionation schedules were used: (1) conventional fractionation (once daily, 1.8-2.5 Gy/fraction); (2) protracted fractionation (pelvic RT, once daily, 1.6-1.7 Gy/fraction, boost RT, once daily, 2.0 Gy/fraction); (3) accelerated hyperfractionated boost (pelvic RT, once daily, 2.0 Gy/fraction; boost RT, twice daily, 1.3-1.4 Gy/fraction); and (4) accelerated hyperfractionation (pelvic and boost RT, twice daily, 1.2-1.5 Gy/fraction). In all fractionation schedules, the total radiation dose was similar (average 65.5 Gy), but the OTT was different (mean 53 days for conventional fractionation, 62 days for protracted fractionation, 45 days for accelerated hyperfractionated boost, and 41 days for accelerated hyperfractionation). A Cox proportional hazard model and maximum likelihood logistic model were used to evaluate the relationship between the treatment-related parameters (total radiation dose, dose per fraction, and OTT) and clinical factors (clinical T stage, hemoglobin level and bladder capacity before RT) and treatment outcome. With a median follow-up of 76 months, the actuarial 5-year local control rate was 47%, and the overall survival rate was 40%. The logistic analysis, which included the total dose, OTT, and T stage, revealed that all of these factors were significantly related to tumor control probability (p = 0.021 for total radiation dose, p = 0.038 for OTT, and p = 0.00068 for T stage). A multivariate Cox model, which included the treatment-related parameters and other clinical factors, revealed that the hemoglobin level and bladder capacity before RT and T-stage were statistically significant factors determining local control and overall survival. The total radiation dose was of borderline statistical significance for overall survival (p = 0.087), and OTT did not reach statistical significance. The results of our study showed that the treatment outcome after RT for bladder cancer depends mainly on clinical factors: hemoglobin level and bladder capacity before RT, and clinical T stage. An increase in the total radiation dose seemed to be associated with a better treatment outcome. The effect of the OTT was difficult to define, because it was influenced by other prognostic factors.
General trends of dihedral conformational transitions in a globular protein.
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C; McCammon, J Andrew
2016-04-01
Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ∼ 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. © 2016 Wiley Periodicals, Inc.
General trends of dihedral conformational transitions in a globular protein
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; ...
2016-02-15
In this paper, dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed bymore » the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. In conclusion, these general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins.« less
A MiniBooNE Accelerator-Produced (sub)-GeV Dark Matter Search
NASA Astrophysics Data System (ADS)
Thornton, Remington; MiniBooNE-DM Collaboration
2016-09-01
Cosmological observations indicate that our universe contains dark matter (DM), yet we have no measurements of its microscopic properties. Whereas the gravitational interaction of DM is well understood, its interaction with the Standard Model is not. Direct detection experiments search for a nuclear recoil interaction produced by a DM relic particle and have a low-mass sensitivity edge of order 1 GeV. To detect DM with mass below 1 GeV, either the sensitivity of the experiments needs to be improved or use of accelerators producing boosted low-mass DM are needed. Using neutrino detectors to search for low-mass DM is logical due to the similarity of the DM and ν signatures in the detector. The MiniBooNE experiment, located at Fermilab on the Booster Neutrino Beamline, ran for 10 years in ν and ν modes and is already well understood, making it desirable to search for accelerator-produced boosted low-mass DM. A search for DM produced by 8 GeV protons hitting a steel beam-dump has finished, collecting 1 . 86 ×1020 POT . Final analysis containing 90% confidence limits and a model independent fit will be presented.
Cante, Domenico; Petrucci, Edoardo; Sciacero, Piera; Piva, Cristina; Ferrario, Silvia; Bagnera, Silvia; Patania, Sebastiano; Mondini, Guido; Pasquino, Massimo; Casanova Borca, Valeria; Vellani, Giorgio; La Porta, Maria Rosa; Franco, Pierfrancesco
2017-09-01
Accelerated hypofractionated whole-breast radiotherapy (WBRT) is considered a standard therapeutic option for early breast cancer (EBC) in the postoperative setting after breast conservation (BCS). A boost to the lumpectomy cavity may further increase local control. We herein report on the 10-year results of a series of EBC patients treated after BCS with hypofractionated WBRT with a concomitant photon boost to the surgical bed over 4 weeks. Between 2005 and 2007, 178 EBC patients were treated with a basic course of radiotherapy consisting of 45 Gy to the whole breast in 20 fractions (2.25 Gy daily) with an additional boost dose of 0.25 Gy delivered concomitantly to the lumpectomy cavity, for an additional dose of 5 Gy. Median follow-up period was 117 months. At 10-year, overall, cancer-specific, disease-free survival and local control were 92.2% (95% CI 88.7-93.4%), 99.2% (95% CI 96.7-99.7%), 95.5% (95% CI 91.2-97.2%) and 97.3% (95% CI 94.5-98.9%), respectively. Only eight patients recurred. Four in-breast recurrences, two axillary node relapses and two metastatic localizations were observed. Fourteen patients died during the observation period due to other causes while breast cancer-related deaths were eight. At last follow-up, ≥G2 fibrosis and telangiectasia were seen in 7% and 5% of patients. No major lung and heart toxicities were observed. Cosmetic results were excellent/good in 87.8% of patients and fair/poor in 12.2%. Hypofractionated WBRT with concomitant boost to the lumpectomy cavity after BCS in EBC led to consistent clinical results at 10 years. Hence, it can be considered a valid treatment option in this setting.
Allal, Abdelkarim S; Taussky, Daniel; Mach, Nicolas; Becker, Minerva; Bieri, Sabine; Dulguerov, Pavel
2004-04-01
Accelerated schedules are effective in overcoming repopulation during radiotherapy (RT) for head-and-neck cancers, but their feasibility is compromised by increased toxicity. The therapeutic ratio may be particularly favorable for 5-week regimens. This study reports the 10-year experience of a single institution in the routine use of concomitant boost RT as standard radical treatment in all but the most favorable stage patients. Between February 1991 and June 2001, 296 patients (mean age, 59 years) were treated with concomitant boost RT either alone (67%) or combined with cisplatin-based chemotherapy (33%), with a median tumor dose of 69.9 Gy. Tumors were located in the oropharynx in 52%, hypopharynx in 20%, larynx in 15%, nasopharynx in 7%, and oral cavity in 6%. International Union Against Cancer Stage III-IV disease represented 77% of tumors. The median follow-up for surviving patients was 55 months (range, 10-138 months). The RT schedule was completed to the prescribed dose in all but 1 patient. Twenty patients (7%) had a treatment interruption (median, 5 days; range, 2-35 days). Grade 3-4 Radiation Therapy Oncology Group acute toxicity was observed in 77% of patients, and nutritional support was required in 110 patients (37%). For all patients, the 5-year actuarial locoregional control and disease-free survival rate was 72% and 61%, respectively. In a multivariate analysis, only T and N stage was significantly associated with locoregional control and disease-free survival. Grade 3-4 late toxicity occurred in 14%, mostly bone and cartilage necrosis. The present, moderately accelerated, concomitant boost regimen is logistically feasible, causing minimal inconvenience to the technical staff and yielding a high rate of patient compliance. Concomitant chemotherapy administration is feasible provided that patients are carefully selected and supportive care is introduced in a timely fashion. Considering the manageable toxicity and the satisfactory tumor control obtained, this regimen represents a good choice when considering implementation of an altered RT fractionation schedule as standard treatment for head-and-neck cancers.
76 FR 17736 - Major Capital Investment Program-New Starts
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-30
... DEPARTMENT OF TRANSPORTATION Federal Transit Administration Major Capital Investment Program--New... unallocated Major Capital Investment (New Starts) program funds. The funds accelerate federal payments for new... projects. The funding will give a well-timed boost to communities that have made important investments in...
Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.
Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia
2013-07-01
Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Hsu, Hsun-Ta; Fulginiti, Anthony; Rice, Eric; Rhoades, Harmony; Winetrobe, Hailey; Danforth, Laura
2018-05-03
Although homeless youth are likely to engage in concurrent sexual relationships and doing so can accelerate HIV transmission, the issue of sexual concurrency (i.e., having sexual partnerships that overlap in time) has received scarce attention in this vulnerable population. The literature that exists tends to focus on individuals' characteristics that may be associated with concurrency and overlooks the influence of their social environment. Informed by the risk amplification and abatement model (RAAM), this study explored the association between pro-social and problematic social network connections, and sexual concurrency among homeless youth using drop-in center services (N = 841). Nearly 37% of youth engaged in concurrency. Partially consistent with the RAAM, regression analyses showed that affiliation with more problematic ties (i.e., having more network members who practice concurrency and unprotected sex) was associated with greater sexual concurrency. Programs addressing HIV risk among homeless youth in drop-in centers should consider the role youths' network composition may play in concurrency.
SHEAR ACCELERATION IN EXPANDING FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rieger, F. M.; Duffy, P., E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: peter.duffy@ucd.ie
Shear flows are naturally expected to occur in astrophysical environments and potential sites of continuous non-thermal Fermi-type particle acceleration. Here we investigate the efficiency of expanding relativistic outflows to facilitate the acceleration of energetic charged particles to higher energies. To this end, the gradual shear acceleration coefficient is derived based on an analytical treatment. The results are applied to the context of the relativistic jets from active galactic nuclei. The inferred acceleration timescale is investigated for a variety of conical flow profiles (i.e., power law, Gaussian, Fermi–Dirac) and compared to the relevant radiative and non-radiative loss timescales. The results exemplifymore » that relativistic shear flows are capable of boosting cosmic-rays to extreme energies. Efficient electron acceleration, on the other hand, requires weak magnetic fields and may thus be accompanied by a delayed onset of particle energization and affect the overall jet appearance (e.g., core, ridge line, and limb-brightening).« less
ERIC Educational Resources Information Center
Davis, Elisabeth; Smither, Cameron; Zhu, Bo; Stephan, Jennifer
2017-01-01
Acceleration programs are academically challenging courses in which high school students can simultaneously earn credit toward a high school diploma and a postsecondary degree (dual credit). These programs include Advanced Placement courses, concurrent-enrollment courses, Postsecondary Enrollment Options courses (a dual-enrollment program in…
Omidvari, Shapour; Zohourinia, Shadi; Ansari, Mansour; Ghahramani, Leila; Zare-Bandamiri, Mohammad; Mosalaei, Ahmad; Ahmadloo, Niloofar; Pourahmad, Saeedeh; Nasrolahi, Hamid; Hamedi, Sayed Hasan
2015-01-01
Purpose Despite advances in rectal cancer treatment over the last decade, local control and risk of late side effects due to external beam radiation therapy (EBRT) remain as concerns. The present study aimed to investigate the efficacy and the safety of low-dose-rate endorectal brachytherapy (LDRBT) as a boost to neoadjuvant chemoradiation for use in treating locally advanced distal rectal adenocarcinomas. Methods This phase-II clinical trial included 34 patients (as the study arm) with newly diagnosed, locally advanced (clinical T3-T4 and/or N1/N2, M0) lower rectal cancer. For comparative analysis, 102 matched patients (as the historical control arm) with rectal cancer were also selected. All the patients were treated with LDRBT (15 Gy in 3 fractions) and concurrent chemoradiation (45-50.4 Gy). Concurrent chemotherapy consisted of oxaliplatin 130 mg/m2 intravenously on day 1 plus oral capecitabine 825 mg/m2 twice daily during LDRBT and EBRT. Results The study results revealed a significant differences between the study arm and the control arm in terms in the pathologic tumor size (2.1 cm vs. 3.6 cm, P = 0.001), the pathologic tumor stage (35% T3-4 vs. 65% T3-4, P = 0.003), and the pathologic complete response (29.4% vs. 11.7%, P < 0.028). Moreover, a significantly higher dose of EBRT (P = 0.041) was found in the control arm, and a longer time to surgery was observed in the study arm (P < 0.001). The higher rate of treatment-related toxicities, such as mild proctitis and anemia, in the study arm was tolerable and easily manageable. Conclusion A boost of LDRBT can optimize the pathologic complete response, with acceptable toxicities, in patients with distal rectal cancer. PMID:26361613
Omidvari, Shapour; Zohourinia, Shadi; Ansari, Mansour; Ghahramani, Leila; Zare-Bandamiri, Mohammad; Mosalaei, Ahmad; Ahmadloo, Niloofar; Pourahmad, Saeedeh; Nasrolahi, Hamid; Hamedi, Sayed Hasan; Mohammadianpanah, Mohammad
2015-08-01
Despite advances in rectal cancer treatment over the last decade, local control and risk of late side effects due to external beam radiation therapy (EBRT) remain as concerns. The present study aimed to investigate the efficacy and the safety of low-dose-rate endorectal brachytherapy (LDRBT) as a boost to neoadjuvant chemoradiation for use in treating locally advanced distal rectal adenocarcinomas. This phase-II clinical trial included 34 patients (as the study arm) with newly diagnosed, locally advanced (clinical T3-T4 and/or N1/N2, M0) lower rectal cancer. For comparative analysis, 102 matched patients (as the historical control arm) with rectal cancer were also selected. All the patients were treated with LDRBT (15 Gy in 3 fractions) and concurrent chemoradiation (45-50.4 Gy). Concurrent chemotherapy consisted of oxaliplatin 130 mg/m(2) intravenously on day 1 plus oral capecitabine 825 mg/m(2) twice daily during LDRBT and EBRT. The study results revealed a significant differences between the study arm and the control arm in terms in the pathologic tumor size (2.1 cm vs. 3.6 cm, P = 0.001), the pathologic tumor stage (35% T3-4 vs. 65% T3-4, P = 0.003), and the pathologic complete response (29.4% vs. 11.7%, P < 0.028). Moreover, a significantly higher dose of EBRT (P = 0.041) was found in the control arm, and a longer time to surgery was observed in the study arm (P < 0.001). The higher rate of treatment-related toxicities, such as mild proctitis and anemia, in the study arm was tolerable and easily manageable. A boost of LDRBT can optimize the pathologic complete response, with acceptable toxicities, in patients with distal rectal cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelsey, Chris R., E-mail: christopher.kelsey@duke.edu; Das, Shiva; Gu, Lin
2015-12-01
Purpose: To determine the maximum tolerated dose of radiation therapy (RT) given in an accelerated fashion with concurrent chemotherapy using intensity modulated RT. Methods and Materials: Patients with locally advanced lung cancer (non-small cell and small cell) with good performance status and minimal weight loss received concurrent cisplatin and etoposide with RT. Intensity modulated RT with daily image guidance was used to facilitate esophageal avoidance and delivered using 6 fractions per week (twice daily on Fridays with a 6-hour interval). The dose was escalated from 58 Gy to a planned maximum dose of 74 Gy in 4 Gy increments in a standardmore » 3 + 3 trial design. Dose-limiting toxicity (DLT) was defined as acute grade 3-5 nonhematologic toxicity attributed to RT. Results: A total of 24 patients were enrolled, filling all dose cohorts, all completing RT and chemotherapy as prescribed. Dose-limiting toxicity occurred in 1 patient at 58 Gy (grade 3 esophagitis) and 1 patient at 70 Gy (grade 3 esophageal fistula). Both patients with DLTs had large tumors (12 cm and 10 cm, respectively) adjacent to the esophagus. Three additional patients were enrolled at both dose cohorts without further DLT. In the final 74-Gy cohort, no DLTs were observed (0 of 6). Conclusions: Dose escalation and acceleration to 74 Gy with intensity modulated RT and concurrent chemotherapy was tolerable, with a low rate of grade ≥3 acute esophageal reactions.« less
Cost Prediction via Quantitative Analysis of Complexity in U.S. Navy Shipbuilding
2014-06-01
in regards to the analysis of advanced sensors and weaponry, the summation of singular values via a singular value decomposition will be used in the...In the DDG 51 class, the Main Reduction Gear (MRG) reduces the 3600-RPM produced by the LM-2500 gas turbines to approximately 168-RPM (at full...RDT&E efforts are currently underway to reduce complexity of the MCS by developing a wireless approach that will concurrently boost the host ship’s
Systems analysis of a low-acceleration research facility
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Ferebee, Melvin J., Jr.; Wright, Robert L.
1988-01-01
The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skladowski, Krzysztof, E-mail: skladowski@io.gliwice.pl; Hutnik, Marcin; Wygoda, Andrzej
2013-03-01
Purpose: To report long-term results of randomized trial comparing 2 accelerated fractionations of definitive radiation therapy assessing the need to irradiate during weekend in patients with head and neck squamous cell carcinoma. Methods and Materials: A total of 345 patients with SCC of the oral cavity, larynx, and oro- or hypo-pharynx, stage T2-4N0-1M0, were randomized to receive continuous accelerated irradiation (CAIR: once per day, 7 days per week) or concomitant accelerated boost (CB: once per day, 3 days per week, and twice per day, 2 days per week). Total dose ranged from 66.6-72 Gy, dose per fraction was 1.8 Gy,more » number of fractions ranged from 37-40 fractions, and overall treatment time ranged from 37-40 days. Results: No differences for all trial end-points were noted. At 5 and 10 years, the actuarial rates of local-regional control were 63% and 60% for CAIR vs 65% and 60% for CB, and the corresponding overall survival were 40% and 25% vs 44% and 25%, respectively. Confluent mucositis was the main acute toxicity, with an incidence of 89% in CAIR and 86% in CB patients. The 5-year rate of grade 3-4 late radiation morbidity was 6% for both regimens. Conclusions: Results of this trial indicate that the effects of accelerated fractionation can be achieve by delivering twice-per-day irradiation on weekday(s). This trial has also confirmed that an accelerated, 6-weeks schedule is a reasonable option for patients with intermediate-stage head-and-neck squamous cell carcinoma because of the associated high cure rate and minimal severe late toxicity.« less
Badakhshi, Harun; Ismail, Mahmoud; Boskos, Christos; Zhao, Kuaile; Kaul, David
2017-06-01
This study analyzed the impact of concomitant boost on long-term clinical outcomes in locally advanced rectal cancer. A total of 141 patients (median age=61 years) were treated with neoadjuvant chemoradiotherapy. Median total dose was 50.4 Gy. Forty-three patients received a concomitant boost. Concurrent chemotherapy consisted of 5-fluorouracil (5-FU), given as a 24-h continuous infusion. Mean follow-up was 83.7 months. The 3, 5-, and 10-year overall survival (OS) rates were 91.9%, 84.6%, and 52.9%, respectively. Recurrence-free survival (RFS) rates at 3, 5, and 10 years were 91.4%, 88.9%, and 79.3%, respectively. Metastasis-free survival (MFS) rates at 3, 5, and 10 years were 84.6%, 75.4%, and 49.9%, respectively. Overall, 9.9% of all patients achieved pathological complete response. Down-staging of T- or N-stage was achieved in 55.1% and 41.5% of patients. Multivariate analysis revealed that female sex (p=0.011), concomitant boost-radiotherapy (p=0.014), and the presence of fewer than five positive lymph nodes (p<0.001) were positive predictors of OS. Fewer than five positive lymph nodes was also a positive predictor for RFS (p=0.019). Female gender (p=0.018) and fewer than five positive lymph nodes (p<0.001) were significant predictors for MFS. Our data support the efficacy of preoperative treatment for rectal cancer in terms of local outcomes. Intensified radiotherapy using a concomitant boost has a positive effect on OS. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Electric Vehicle Battery Development Gains Momentum - Continuum Magazine
to improve and accelerate battery design and boost EDV performance and consumer appeal - and chemistry, cell design, and battery pack options for particular vehicle platforms Factor in electrochemical separate, competitive, validated, and easy-to-use CAEBAT software tools for battery pack design. The three
ERIC Educational Resources Information Center
Western Interstate Commission for Higher Education, 2006
2006-01-01
This document was designed to inform members of the policy, education, and research communities about existing state and institutional policies and practices associated with four accelerated learning programs: Advanced Placement (AP), dual/concurrent enrollment, the International Baccalaureate (IB) Diploma Program, and Tech-Prep. This effort was…
Ultrahigh-energy cosmic rays from tidally-ignited white dwarfs
NASA Astrophysics Data System (ADS)
Alves Batista, Rafael; Silk, Joseph
2017-11-01
Ultrahigh-energy cosmic rays (UHECRs) can be accelerated by tidal disruption events of stars by black holes. We suggest a novel mechanism for UHECR acceleration wherein white dwarfs (WDs) are tidally compressed by intermediate-mass black holes (IMBHs), leading to their ignition and subsequent explosion as a supernova. Cosmic rays accelerated by the supernova may receive an energy boost when crossing the accretion-powered jet. The rate of encounters between WDs and IMBHs can be relatively high, as the number of IMBHs may be substantially augmented once account is taken of their likely presence in dwarf galaxies. Here we show that this kind of tidal disruption event naturally provides an intermediate composition for the observed UHECRs, and suggest that dwarf galaxies and globular clusters are suitable sites for particle acceleration to ultrahigh energies.
Energy Management of Manned Boost-Glide Vehicles: A Historical Perspective
NASA Technical Reports Server (NTRS)
Day, Richard E.
2004-01-01
As flight progressed from propellers to jets to rockets, the propulsive energy grew exponentially. With the development of rocket-only boosted vehicles, energy management of these boost-gliders became a distinct requirement for the unpowered return to base, alternate landing site, or water-parachute landing, starting with the X-series rocket aircraft and terminating with the present-day Shuttle. The problem presented here consists of: speed (kinetic energy) - altitude (potential energy) - steep glide angles created by low lift-to-drag ratios (L/D) - distance to landing site - and the bothersome effects of the atmospheric characteristics varying with altitude. The primary discussion regards post-boost, stabilized glides; however, the effects of centrifugal and geopotential acceleration are discussed as well. The aircraft and spacecraft discussed here are the X-1, X-2, X-15, and the Shuttle; and to a lesser, comparative extent, Mercury, Gemini, Apollo, and lifting bodies. The footprints, landfalls, and methods developed for energy management are also described. The essential tools required for energy management - simulator planning, instrumentation, radar, telemetry, extended land or water range, Mission Control Center (with specialist controllers), and emergency alternate landing sites - were first established through development of early concepts and were then validated by research flight tests.
NASA Astrophysics Data System (ADS)
Latypov, A. F.
2009-03-01
The fuel economy was estimated at boost trajectory of aerospace plane during energy supply to the free stream. Initial and final velocities of the flight were given. A model of planning flight above cold air in infinite isobaric thermal wake was used. The comparison of fuel consumption was done at optimal trajectories. The calculations were done using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was constructed in the first part of the paper for estimating the ramjet thrust and specific impulse. To estimate the aerodynamic drag of aircraft a quadratic dependence on aerodynamic lift is used. The energy for flow heating is obtained at the sacrifice of an equivalent decrease of exergy of combustion products. The dependencies are obtained for increasing the range coefficient of cruise flight at different Mach numbers. In the second part of the paper, a mathematical model is presented for the boost part of the flight trajectory of the flying vehicle and computational results for reducing the fuel expenses at the boost trajectory at a given value of the energy supplied in front of the aircraft.
Kill: boosting HIV-specific immune responses.
Trautmann, Lydie
2016-07-01
Increasing evidence suggests that purging the latent HIV reservoir in virally suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV-infected cells ('Shock and Kill' strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in-vivo and in-silico models to accelerate the design of new clinical trials. New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment.
Boosting airway T-regulatory cells by gastrointestinal stimulation as a strategy for asthma control.
Strickland, D H; Judd, S; Thomas, J A; Larcombe, A N; Sly, P D; Holt, P G
2011-01-01
The hallmark of atopic asthma is transient airways hyperresponsiveness (AHR) preceded by aeroallergen-induced Th-cell activation. This is preceded by upregulation of CD86 on resident airway dendritic cells (DCs) that normally lack competence in T-cell triggering. Moreover, AHR duration is controlled via T-regulatory (Treg) cells, which can attenuate CD86 upregulation on DC. We show that airway mucosal Treg/DC interaction represents an accessible therapeutic target for asthma control. Notably, baseline airway Treg activity in sensitized rats can be boosted by microbe-derived stimulation of the gut, resulting in enhanced capacity to control CD86 expression on airway DC triggered by aeroallergen and accelerated resolution of AHR.
High-field plasma acceleration in a high-ionization-potential gas
Corde, S.; Adli, E.; Allen, J. M.; ...
2016-06-17
Plasma accelerators driven by particle beams are a very promising future accelerator technology as they can sustain high accelerating fields over long distances with high energy efficiency. They rely on the excitation of a plasma wave in the wake of a drive beam. To generate the plasma, a neutral gas can be field-ionized by the head of the drive beam, in which case the distance of acceleration and energy gain can be strongly limited by head erosion. In our research, we overcome this limit and demonstrate that electrons in the tail of a drive beam can be accelerated by upmore » to 27 GeV in a high-ionization-potential gas (argon), boosting their initial 20.35 GeV energy by 130%. Particle-in-cell simulations show that the argon plasma is sustaining very high electric fields, of ~150 GV m -1, over ~20 cm. Lastly, the results open new possibilities for the design of particle beam drivers and plasma sources.« less
Xu, Youjie; Zhang, Meng; Roozeboom, Kraig; Wang, Donghai
2018-02-01
Four integrated designs were proposed to boost cellulosic ethanol titer and yield. Results indicated co-fermentation of corn flour with hydrolysate liquor from saccharified corn stover was the best integration scheme and able to boost ethanol titers from 19.9 to 123.2 g/L with biomass loading of 8% and from 36.8 to 130.2 g/L with biomass loadings of 16%, respectively, while meeting the minimal ethanol distillation requirement of 40 g/L and achieving high ethanol yields of above 90%. These results indicated integration of first and second generation ethanol production could significantly accelerate the commercialization of cellulosic biofuel production. Co-fermentation of starchy substrate with hydrolysate liquor from saccharified biomass is able to significantly enhance ethanol concentration to reduce energy cost for distillation without sacrificing ethanol yields. This novel method could be extended to any pretreatment of biomass from low to high pH pretreatment as demonstrated in this study. Copyright © 2017 Elsevier Ltd. All rights reserved.
Accelerated corneal crosslinking concurrent with laser in situ keratomileusis.
Celik, H Ugur; Alagöz, Nese; Yildirim, Yusuf; Agca, Alper; Marshall, John; Demirok, Ahmet; Yilmaz, Omer Faruk
2012-08-01
To assess accelerated corneal collagen crosslinking (CXL) applied concurrently with laser in situ keratomileusis (LASIK) in a small group of patients. Beyoglu Eye Research and Training Hospital, Istanbul, Turkey. Prospective pilot interventional case series. In May 2010, patients had LASIK with concurrent accelerated CXL in 1 eye and LASIK only in the fellow eye to treat myopia or myopic astigmatism. The follow-up was 12 months. The attempted correction (spherical equivalent) ranged from -5.00 to -8.50 diopters (D) in the LASIK-CXL group and from -3.00 to -7.25 D in the LASIK-only group. Main outcome measures were manifest refraction, uncorrected (UDVA) and corrected (CDVA) distance visual acuities, and the endothelial cell count. Eight eyes of 3 women and 1 man (age 22 to 39 years old) were enrolled. At the 12-month follow-up, the LASIK-CXL group had a UDVA and manifest refraction equal to or better than those in the LASIK-only group. No eye lost 1 or more lines of CDVA at the final visit. The endothelial cell loss in the LASIK-CXL eye was not greater than in the fellow eye. No side effects were associated with either procedure. Laser in situ keratomileusis with accelerated CXL appears to be a promising modality for future applications to prevent corneal ectasia after LASIK treatment. The results in this pilot series suggest that evaluation of a larger study cohort is warranted. Drs. Yilmaz and Marshall are paid consultants to Avedro, Inc. No other author has a financial or proprietary interest in any material or method mentioned. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.
Hennig, Stefanie; Svensson, Elin M.; Niebecker, Ronald; Fourie, P. Bernard; Weiner, Marc H.; Bonora, Stefano; Peloquin, Charles A.; Gallicano, Keith; Flexner, Charles; Pym, Alex; Vis, Peter; Olliaro, Piero L.; McIlleron, Helen; Karlsson, Mats O.
2016-01-01
Objectives Extensive but fragmented data from existing studies were used to describe the drug–drug interaction between rifabutin and HIV PIs and predict doses achieving recommended therapeutic exposure for rifabutin in patients with HIV-associated TB, with concurrently administered PIs. Methods Individual-level data from 13 published studies were pooled and a population analysis approach was used to develop a pharmacokinetic model for rifabutin, its main active metabolite 25-O-desacetyl rifabutin (des-rifabutin) and drug–drug interaction with PIs in healthy volunteers and patients who had HIV and TB (TB/HIV). Results Key parameters of rifabutin affected by drug–drug interaction in TB/HIV were clearance to routes other than des-rifabutin (reduced by 76%–100%), formation of the metabolite (increased by 224% in patients), volume of distribution (increased by 606%) and distribution to the peripheral compartment (reduced by 47%). For des-rifabutin, clearance was reduced by 35%–76% and volume of distribution increased by 67%–240% in TB/HIV. These changes resulted in overall increased exposure to rifabutin in TB/HIV patients by 210% because of the effects of PIs and 280% with ritonavir-boosted PIs. Conclusions Given together with non-boosted or ritonavir-boosted PIs, rifabutin at 150 mg once daily results in similar or higher exposure compared with rifabutin at 300 mg once daily without concomitant PIs and may achieve peak concentrations within an acceptable therapeutic range. Although 300 mg of rifabutin every 3 days with boosted PI achieves an average equivalent exposure, intermittent doses of rifamycins are not supported by current guidelines. PMID:26832753
Fink, Howard A.; Kuskowski, Michael A.; Cauley, Jane A.; Taylor, Brent C.; Schousboe, John T.; Cawthon, Peggy M.; Ensrud, Kristine E.
2015-01-01
Purpose/Introduction Prior studies suggest that stressful life events may increase adverse health outcomes, including falls and possibly fractures. The current study builds on these findings and examines whether stressful life events are associated with increased bone loss. Methods 4388 men aged ≥65 years in the Osteoporotic Fractures in Men study completed total hip bone mineral density (BMD) measures at baseline and visit 2, approximately 4.6 years later, and self-reported stressful life events data mid-way between baseline and visit 2, and at visit 2. We used linear regression to model the association of stressful life events with concurrent annualized total hip BMD loss, and log binomial regression or Poisson regression to model risk of concurrent accelerated BMD loss (>1 SD more than mean annualized change). Results 75.3% of men reported ≥1 type of stressful life event, including 43.3% with ≥2 types of stressful life events. Mean annualized BMD loss was −0.36% (SD 0.88) and 13.9% of men were categorized with accelerated BMD loss (about 5.7% or more total loss). Rate of annualized BMD loss increased with the number of types of stressful life events after adjustment for age (p<0.001), but not after multivariable adjustment (p=0.07). Multivariable-adjusted risk of accelerated BMD loss increased with the number of types of stressful life events (RR, 1.10 [95% CI, 1.04–1.16]) per increase of 1 type of stressful life event). Fracture risk was not significantly different between stressful life event-accelerated bone loss subgroups (p=0.08). Conclusions In these older men, stressful life events were associated with a small, dose-related increase in risk of concurrent accelerated hip bone loss. Low frequency of fractures limited assessment of whether rapid bone loss mediates any association of stressful life events with incident fractures. Future studies are needed to confirm these findings and to investigate the mechanism that may underlie this association. PMID:25169421
1988-12-01
engineering disciplines. (Here I refer to training in multifunction team mana ement dir’lplines, quality engineering methods, experimental design by such...4001 SSOME ISSUES S• View of strategic issues has been evolving - Speed of design and product deployment - to accelerate experimentation with new...manufacturingprocess design n New technologies (e.g., composites) which can revolutionize prod-uct technical design in some cases Issue still to be faced: " non
Wang, Shu-Lian; Liao, Zhongxing; Liu, Helen; Ajani, Jaffer; Swisher, Stephen; Cox, James D; Komaki, Ritsuko
2006-09-14
To evaluate the dosimetry, efficacy and toxicity of intensity-modulated radiation therapy (IMRT) and concurrent chemotherapy for patients with locally advanced cervical and upper thoracic esophageal cancer. A retrospective study was performed on 7 patients who were definitively treated with IMRT and concurrent chemotherapy. Patients who did not receive IMRT radiation and concurrent chemotherapy were not included in this analysis. IMRT plans were evaluated to assess the tumor coverage and normal tissue avoidance. Treatment response was evaluated and toxicities were assessed. Five- to nine-beam IMRT were used to deliver a total dose of 59.4-66 Gy (median: 64.8 Gy) to the primary tumor with 6-MV photons. The minimum dose received by the planning tumor volume (PTV) of the gross tumor volume boost was 91.2%-98.2% of the prescription dose (standard deviation [SD]: 3.7%-5.7%). The minimum dose received by the PTV of the clinical tumor volume was 93.8%-104.8% (SD: 4.3%-11.1%) of the prescribed dose. With a median follow-up of 15 mo (range: 3-21 mo), all 6 evaluable patients achieved complete response. Of them, 2 developed local recurrences and 2 had distant metastases, 3 survived with no evidence of disease. After treatment, 2 patients developed esophageal stricture requiring frequent dilation and 1 patient developed tracheal-esophageal fistula. Concurrent IMRT and chemotherapy resulted in an excellent early response in patients with locally advanced cervical and upper thoracic esophageal cancer. However, local and distant recurrence and toxicity remain to be a problem. Innovative approaches are needed to improve the outcome.
Kill: Boosting HIV-specific immune responses
Trautmann, Lydie
2016-01-01
Purpose of review Increasing evidences suggest that purging the latent HIV reservoir in virally-suppressed individuals will require both the induction of viral replication from its latent state and the elimination of these reactivated HIV infected cells (“Shock and Kill” strategy). Boosting potent HIV-specific CD8 T cells is a promising way to achieve an HIV cure. Recent findings Recent studies provided the rationale for developing immune interventions to increase the numbers, function and location of HIV-specific CD8 T cells to purge HIV reservoirs. Multiple approaches are being evaluated including very early suppression of HIV replication in acute infection, adoptive cell transfer, therapeutic vaccination or use of immunomodulatory molecules. New assays to measure the killing and antiviral function of induced HIV-specific CD8 T cells have been developed to assess the efficacy of these new approaches. The strategies combining HIV reactivation and immunobased therapies to boost HIV-specific CD8 T cells can be tested in in vivo and in silico models to accelerate the design of new clinical trials. Summary New immunobased strategies are explored to boost HIV-specific CD8 T cells able to purge the HIV-infected cells with the ultimate goal of achieving spontaneous control of viral replication without antiretroviral treatment. PMID:27054280
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balik, S; Weiss, E; Sleeman, W
Purpose: To evaluate the potential impact of several setup error correction strategies on a proposed image-guided adaptive radiotherapy strategy for locally advanced lung cancer. Methods: Daily 4D cone-beam CT and weekly 4D fan-beam CT images were acquired from 9 lung cancer patients undergoing concurrent chemoradiation therapy. Initial planning CT was deformably registered to daily CBCT images to generate synthetic treatment courses. An adaptive radiation therapy course was simulated using the weekly CT images with replanning twice and a hypofractionated, simultaneous integrated boost to a total dose of 66 Gy to the original PTV and either a 66 Gy (no boost)more » or 82 Gy (boost) dose to the boost PTV (ITV + 3mm) in 33 fractions with IMRT or VMAT. Lymph nodes (LN) were not boosted (prescribed to 66 Gy in both plans). Synthetic images were rigidly, bony (BN) or tumor and carina (TC), registered to the corresponding plan CT, dose was computed on these from adaptive replans (PLAN) and deformably accumulated back to the original planning CT. Cumulative D98% of CTV of PT (ITV for 82Gy) and LN, and normal tissue dose changes were analyzed. Results: Two patients were removed from the study due to large registration errors. For the remaining 7 patients, D98% for CTV-PT (ITV-PT for 82 Gy) and CTV-LN was within 1 Gy of PLAN for both 66 Gy and 82 Gy plans with both setup techniques. Overall, TC based setup provided better results, especially for LN coverage (p = 0.1 for 66Gy plan and p = 0.2 for 82 Gy plan, comparison of BN and TC), though not significant. Normal tissue dose constraints violated for some patients if constraint was barely achieved in PLAN. Conclusion: The hypofractionated adaptive strategy appears to be deliverable with soft tissue alignment for the evaluated margins and planning parameters. Research was supported by NIH P01CA116602.« less
Concurrent sexual partnerships among men who have sex with men in Shenzhen, China.
Ha, Toan H; Liu, Hongjie; Liu, Hui; Cai, Yumao; Feng, Tiejian
2010-08-01
The HIV epidemic spreads among men who have sex with men (MSM) in China. The objective of this study was to examine and compare HIV/AIDS knowledge and sexual risk for HIV between MSM who engaged in concurrent sexual partnerships and MSM who did not. A cross-sectional study using respondent driven sampling was conducted among 351 MSM in Shenzhen, China. About half (49%) of respondents reported having concurrent sexual partnerships during the past 6 months. Among MSM with concurrent sexual partnerships, 62% had only male partners and 38% had both male and female partners. The proportion of inconsistent condom use was 42% among MSM with concurrent partners and 30% among MSM without. These 2 groups reported a similar level of self-perceived risk for HIV. Compared to MSM without concurrent sexual partners, those with such partners were more likely to work in entertainment venues and had a lower level of HIV/AIDS knowledge. The large number of MSM engaging in concurrent sexual partnerships and the high prevalence of bisexuality could accelerate the spread of HIV to the general population unless effective HIV interventions for MSM are implemented in China.
GeV Electrons due to a Transition from Laser Wakefield Acceleration to Plasma Wakefield Acceleration
NASA Astrophysics Data System (ADS)
Mo, M. Z.; Masson-Laborde, P.-E.; Ali, A.; Fourmaux, S.; Lassonde, P.; Kieffer, J.-C.; Rozmus, W.; Teychenné, D.; Fedosejevs, R.
2014-10-01
The Laser Wakefield Acceleration (LWFA) experiments performed with the 200 TW laser system located at the Canadian Advanced Laser Light Source facility at INRS, Varennes (Québec) observed at relatively high plasma densities (1 × 1019cm-3) electron bunches of GeV energy gain, more than double of the predicted energy using Lu's scaling law. This energy boost phenomena can be attributed to a transition from LWFA regime to a plasma wakefield acceleration (PWFA) regime. In the first stage, the acceleration mechanism is dominated by the bubble created by the laser in the regime of LWFA, leading to an injection of a large number of electrons. After propagation beyond the depletion length, where the laser pulse is depleted and it can no longer sustain the bubble anymore, the dense bunch of high energy electrons propagating inside the bubble will drive its own wakefield in the PWFA regime that can trap and accelerate a secondary population of electrons up to the GeV level. 3D particle-in-cell simulations support this analysis, and confirm the scenario.
Stable generation of GeV-class electron beams from self-guided laser-plasma channels
NASA Astrophysics Data System (ADS)
Hafz, Nasr A. M.; Jeong, Tae Moon; Choi, Il Woo; Lee, Seong Ku; Pae, Ki Hong; Kulagin, Victor V.; Sung, Jae Hee; Yu, Tae Jun; Hong, Kyung-Han; Hosokai, Tomonao; Cary, John R.; Ko, Do-Kyeong; Lee, Jongmin
2008-09-01
Table-top laser-driven plasma accelerators are gaining attention for their potential use in miniaturizing future high-energy accelerators. By irradiating gas jet targets with ultrashort intense laser pulses, the generation of quasimonoenergetic electron beams was recently observed. Currently, the stability of beam generation and the ability to scale to higher electron beam energies are critical issues for practical laser acceleration. Here, we demonstrate the first generation of stable GeV-class electron beams from stable few-millimetre-long plasma channels in a self-guided wakefield acceleration process. As primary evidence of the laser wakefield acceleration in a bubble regime, we observed a boost of both the electron beam energy and quality by reducing the plasma density and increasing the plasma length in a 1-cm-long gas jet. Subsequent three-dimensional simulations show the possibility of achieving even higher electron beam energies by minimizing plasma bubble elongation, and we anticipate dramatic increases in beam energy and quality in the near future. This will pave the way towards ultracompact, all-optical electron beam accelerators and their applications in science, technology and medicine.
2013-03-11
1、Enough Cases; 2、Elekta Precise 1343 Digital Control Electron Linear Accelerator; Can Undertake Nasopharyngeal Carcinoma Specimens in the Materia,; Image Department of Nose Pharynx Ministry MRI Dynamic Testing,
Antibody production in rabbits administered Freund's complete adjuvant and carprofen concurrently.
Fishback, Joanna E; Stronsky, Sabrina M; Green, Catherine A; Bean, Krystal D; Froude, Jeffrey W
2016-02-01
Freund's complete adjuvant (FCA) is a commonly used immunopotentiator that can boost polyclonal antibody production in animal models such as rabbits, but FCA is also known to cause inflammation and pain. It is important to balance the welfare of animals with the goal of efficiently producing antibodies, but little is known about how common treatments for pain and inflammation, such as non-steroidal anti-inflammatory drugs (NSAIDs), affect the production of polyclonal antibodies. The purpose of this study was to measure polyclonal antibody production in rabbits that were administered FCA either with or without a concurrent treatment of a NSAID, carprofen. Rabbits were divided into two groups and were administered identical treatments of an antigen with adjuvant, and the treatment group also received carprofen injections at different stages of the study. Carprofen treatment did not significantly affect polyclonal antibody production, which suggests that carprofen and other NSAIDs can be used alongside FCA in rabbits to achieve desired levels of antibody production while minimizing pain and distress associated with the use of FCA.
Quantum metrology for gravitational wave astronomy.
Schnabel, Roman; Mavalvala, Nergis; McClelland, David E; Lam, Ping K
2010-11-16
Einstein's general theory of relativity predicts that accelerating mass distributions produce gravitational radiation, analogous to electromagnetic radiation from accelerating charges. These gravitational waves (GWs) have not been directly detected to date, but are expected to open a new window to the Universe once the detectors, kilometre-scale laser interferometers measuring the distance between quasi-free-falling mirrors, have achieved adequate sensitivity. Recent advances in quantum metrology may now contribute to provide the required sensitivity boost. The so-called squeezed light is able to quantum entangle the high-power laser fields in the interferometer arms, and could have a key role in the realization of GW astronomy.
SYNCHROTRON RADIO FREQUENCY PHASE CONTROL SYSTEM
Plotkin, M.; Raka, E.C.; Snyder, H.S.
1963-05-01
A system for canceling varying phase changes introduced by connecting cables and control equipment in an alternating gradient synchrotron is presented. In a specific synchrotron embodiment twelve spaced accelerating stations for the proton bunches are utilized. In order to ensure that the protons receive their boost or kick at the exact instant necessary it is necessary to compensate for phase changes occurring in the r-f circuitry over the wide range of frequencies dictated by the accelerated velocities of the proton bunches. A constant beat frequency is utilized to transfer the r-f control signals through the cables and control equipment to render the phase shift constant and readily compensable. (AEC)
Enhanced charging kinetics of porous electrodes: surface conduction as a short-circuit mechanism.
Mirzadeh, Mohammad; Gibou, Frederic; Squires, Todd M
2014-08-29
We use direct numerical simulations of the Poisson-Nernst-Planck equations to study the charging kinetics of porous electrodes and to evaluate the predictive capabilities of effective circuit models, both linear and nonlinear. The classic transmission line theory of de Levie holds for general electrode morphologies, but only at low applied potentials. Charging dynamics are slowed appreciably at high potentials, yet not as significantly as predicted by the nonlinear transmission line model of Biesheuvel and Bazant. We identify surface conduction as a mechanism which can effectively "short circuit" the high-resistance electrolyte in the bulk of the pores, thus accelerating the charging dynamics and boosting power densities. Notably, the boost in power density holds only for electrode morphologies with continuous conducting surfaces in the charging direction.
NASA Technical Reports Server (NTRS)
Levin, A. D.; Castellano, C. R.; Hague, D. S.
1975-01-01
An aircraft-missile system which performs a high acceleration takeoff followed by a supersonic dash to a 'safe' distance from the launch site is presented. Topics considered are: (1) technological feasibility to the dash on warning concept; (2) aircraft and boost trajectory requirements; and (3) partial cost estimates for a fleet of aircraft which provide 200 missiles on airborne alert. Various aircraft boost propulsion systems were studied such as an unstaged cryogenic rocket, an unstaged storable liquid, and a solid rocket staged system. Various wing planforms were also studied. Vehicle gross weights are given. The results indicate that the dash on warning concept will meet expected performance criteria, and can be implemented using existing technology, such as all-aluminum aircraft and existing high-bypass-ratio turbofan engines.
Ren, Xiao-Cang; Wang, Quan-Yu; Zhang, Rui; Chen, Xue-Ji; Wang, Na; Liu, Yue-E; Zong, Jie; Guo, Zhi-Jun; Wang, Dong-Ying; Lin, Qiang
2016-04-23
Increasing the biological effective dose (BED) of radiotherapy for non-small cell lung cancer (NSCLC) can increase local control rates and improve overall survival. Compared with conventional fractionated radiotherapy, accelerated hypofractionated radiotherapy can yield higher BED, shorten the total treatment time, and theoretically obtain better efficacy. However, currently, there is no optimal hypofractionated radiotherapy regimen. Based on phase I trial results, we performed this phase II trial to further evaluate the safety and preliminary efficacy of accelerated hypofractionated three-dimensional conformal radiation therapy(3-DCRT) combined with concurrent chemotherapy for patients with unresectable stage III NSCLC. Patients with previously untreated unresectable stage III NSCLC received 3-DCRT with a total dose of 69 Gy, delivered at 3 Gy per fraction, once daily, five fractions per week, completed within 4.6 weeks. At the same time, platinum doublet chemotherapy was applied. After 12 patients were enrolled in the group, the trial was terminated early. There were five cases of grade III radiation esophagitis, of which four cases completed the radiation doses of 51 Gy, 51 Gy, 54 Gy, and 66 Gy, and one case had 16 days of radiation interruption. The incidence of grade III acute esophagitis in patients receiving an irradiation dose per fraction ≥2.7 Gy on the esophagus was 83.3% (5/6). The incidence of symptomatic grade III radiation pneumonitis among the seven patients who completed 69 Gy according to the plan was 28.6% (2/7). The median local control (LC) and overall survival (OS) were not achieved; the 1-year LC rate was 59.3%, and the 1-year OS rate was 78.6%. For unresectable stage III NSCLC, the accelerated hypofractionated radiotherapy with a total dose of 69 Gy (3 Gy/f) combined with concurrent chemotherapy might result in severe radiation esophagitis and pneumonitis to severely affect the completion of the radiotherapy. Therefore, we considered that this regimen was infeasible. During the hypofractionated radiotherapy with concurrent chemotherapy, the irradiation dose per fraction to esophagus should be lower than 2.7 Gy. Further studies should be performed using esophageal tolerance as a metric in dose escalation protocols. NCT02720614, the date of registration: March 23, 2016.
Dynamically Reconfigurable Systolic Array Accelorators
NASA Technical Reports Server (NTRS)
Dasu, Aravind (Inventor); Barnes, Robert C. (Inventor)
2014-01-01
A polymorphic systolic array framework that works in conjunction with an embedded microprocessor on an FPGA, that allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms and extendable to more complex applications in the area of aerospace embedded systems.
Ma, Meng-Nan; Zhuo, Ying; Yuan, Ruo; Chai, Ya-Qin
2015-11-17
A highly sensitive electrochemiluminescent (ECL) aptasensor was constructed using semicarbazide (Sem) as co-reaction accelerator to promote the ECL reaction rate of CdTe quantum dots (CdTe QDs) and the co-reactant of peroxydisulfate (S2O8(2-)) for boosting signal amplification. The co-reaction accelerator is a species that when it is introduced into the ECL system containing luminophore and co-reactant, it can interact with co-reactant rather than luminophore to promote the ECL reaction rate of luminophore and co-reactant; thus the ECL signal is significantly amplified in comparison with that in which only luminophore and co-reactant are present. In this work, the ECL signal probes were first fabricated by alternately assembling the Sem and Au nanoparticles (AuNPs) onto the surfaces of hollow Au nanocages (AuNCs) via Au-N bond to obtain the multilayered nanomaterials of (AuNPs-Sem)n-AuNCs for immobilizing amino-terminated detection aptamer of thrombin (TBA2). Notably, the Sem with two -NH2 terminal groups could not only serve as cross-linking reagent to assemble AuNPs and AuNCs but also act as co-reaction accelerator to enhance the ECL reaction rate of CdTe QDs and S2O8(2-) for signal amplification. With the sandwich-type format, TBA2 signal probes could be trapped on the CdTe QD-based sensing interface in the presence of thrombin (TB) to achieve a considerably enhanced ECL signal in S2O8(2-) solution. As a result, the Sem in the TBA2 signal probes could accelerate the reduction of S2O8(2-) to produce the more oxidant mediators of SO4(•-), which further boosted the production of excited states of CdTe QDs to emit light. With the employment of the novel co-reaction accelerator Sem, the proposed ECL biosensor exhibited ultrahigh sensitivity to quantify the concentration of TB from 1 × 10(-7) to 1 nM with a detection limit of 0.03 fM, which demonstrated that the co-reaction accelerator could provide a simple, efficient, and low-cost approach for signal amplification and hold great potential for other ECL biosensors construction.
Sex pheromone of the baldcypress leafroller (Lepidoptera: Tortricidae)
Brian T. Sullivan; Jeremy D. Allison; Richard A. Goyer; William P. Shepherd
2015-01-01
The baldcypress leafroller, Archips goyerana Kruse (Lepidoptera: Tortricidae), is a specialist on Taxodium distichum (L.) Richard and has caused serious defoliation in swamps of southeastern Louisiana, accelerating decline of baldcypress forests concurrently suffering from nutrient depletion, prolonged flooding, and saltwater...
Allal, A S; Dulguerov, P; Bieri, S; Lehmann, W; Kurtz, J M
2000-05-01
This study was conducted to evaluate quality of life (QOL) and functional outcome in patients with carcinomas of the larynx and hypopharynx treated with accelerated radiotherapy (RT). Between January 1991 and September 1996, 21 patients treated with accelerated concomitant boost RT schedule (69.9 Gy in 5. 5 weeks) for laryngeal (n = 10) or hypopharyngeal (n = 11) carcinomas and who remained free of disease at 1-year minimum follow-up were evaluated. The functional outcome was assessed by the subjective Performance Status Scale for Head and Neck cancer (PSSHN) and general QOL by the European Organization for Research and Treatment of Cancer Core QOL questionnaire (EORTC QLQ-C30). The median length of follow-up was 37 months (range, 13 to 75). The PSSHN scores were 89, 84, and 86, respectively, for eating in public, understandability of speech and normalcy of diet (100 = normal function). Significantly lower scores for understandability of speech were observed in patients with advanced and laryngeal carcinomas. Normalcy of diet was affected negatively by the severity of xerostomia. All mean functional scale scores of the EORTC QLQ-C30 module were 20% to 25% below the higher score. Most of these scale scores were significantly affected by the severity of xerostomia. Patients treated with concomitant boost RT for laryngeal and hypopharyngeal carcinomas appear to have similar QOL and functional outcome to those reported for patients treated with conventional or hyperfractionated RT. As expected, many QOL scales were affected by the severity of xero- stomia.
Churn, M; Jones, B; Myint, A Sun
2002-04-01
The optimal treatment for potentially curable carcinoma of the oesophagus unsuitable for surgical resection is unresolved. An intraluminal brachytherapy boost (ILBT) can be used following external beam radiotherapy (EBRT) with or without concurrent chemotherapy (CRT). ILBT increases the dose to the tumour volume substantially while reducing the lung dose but the corresponding high dose to the oesophageal wall may cause increased complications. We report the outcomes of 32 consecutive patients treated with radical radiotherapy. A dose of 45-55 Gy in 20-25 fractions with external beam radiotherapy (EBRT) followed by an ILBT boost. Earlier in the series a low dose rate (LDR) brachytherapy technique using 125Iodine seeds delivering a dose of 20-22 Gy at 25-40 cGy/h was used. This was later superseded by high dose rate (HDR) treatments delivering 8.5-10 Gy in one fraction at 1 cm from the catheter. Patients of age below 76 years, of good performance status and with no other medical contraindication were considered for concurrent chemotherapy (CRT) using a planned regime of cisplatin (80 mg/m2 day 1) and 5-flurouracil (1 g/m2 days 1 to 4) in the first and last weeks of radiotherapy (13 patients). The EBRT and ILBT were well tolerated but 8/13 (62%) patients had dose modifications of chemotherapy in one or both cycles due to advanced age, co-morbidity or toxicity. The median follow-up period of surviving patients was 37 months (range 35-39) and the median overall survival for the whole group was 9 months. The overall survival at 1 year was 34.4% (17.6-51.2%), 15.6% (2.8-28.4%) at 2 and 3 years. Local recurrence-free survival at 1 year was 35.3% (15.9-54.7%) and 24.5% (8.3-44.6%) at 2 and 3 years (Fig. 2). Though symptom relief was good there were six cases of ulceration, six of stricture and two fistulae. Biological equivalent for tumour response (BED Gy,10) and late radiation effects (BED Gy3) were calculated for the different radiotherapy regimens using equations derived from the linear quadratic model. In this series no advantage was found in terms of local control or survival for patients receiving radiotherapy doses resulting in a BED Gy10 greater than 75% of the maximum. Similarly, no significant increase in complications was noted in those patients receiving doses resulting in a BED Gy3 > 75% of the maximum. The merits and hazards of the ILBT boost used in radical radiotherapy are discussed and the relevant literature reviewed.
Defined three-dimensional microenvironments boost induction of pluripotency
NASA Astrophysics Data System (ADS)
Caiazzo, Massimiliano; Okawa, Yuya; Ranga, Adrian; Piersigilli, Alessandra; Tabata, Yoji; Lutolf, Matthias P.
2016-03-01
Since the discovery of induced pluripotent stem cells (iPSCs), numerous approaches have been explored to improve the original protocol, which is based on a two-dimensional (2D) cell-culture system. Surprisingly, nothing is known about the effect of a more biologically faithful 3D environment on somatic-cell reprogramming. Here, we report a systematic analysis of how reprogramming of somatic cells occurs within engineered 3D extracellular matrices. By modulating microenvironmental stiffness, degradability and biochemical composition, we have identified a previously unknown role for biophysical effectors in the promotion of iPSC generation. We find that the physical cell confinement imposed by the 3D microenvironment boosts reprogramming through an accelerated mesenchymal-to-epithelial transition and increased epigenetic remodelling. We conclude that 3D microenvironmental signals act synergistically with reprogramming transcription factors to increase somatic plasticity.
ARIEL e-LINAC: Commissioning and Development
NASA Astrophysics Data System (ADS)
Laxdal, R. E.; Zvyagintsev, V.
2016-09-01
A superconducting electron Linac (e-Linac) will be a part of the ARIEL facility for the production of radioactive ion beams (RIB) at TRIUMF. The e-Linac will consist of five 1.3GHz 9-cell cavities in three cryomodules delivering a 50MeV 10mA beam. The baseline operation will be single pass but a re-circulating ring is planned to allow either energy boost or energy recovery operation. The first stage of the accelerator which consists of two cryomodules has been successfully commissioned in 2014. The paper will discuss the superconducting radio-frequency (SRF) challenges of the accelerator. Cavities, crymodules and RF system design, preparation, and performance will be presented.
Copper nanocluster growth at experimental conditions using temperature accelerated dynamics
NASA Astrophysics Data System (ADS)
Dias, C. S.; Cadilhe, A. C.; Voter, A. F.
2009-03-01
We study the dynamics of vapor phase cluster growth near experimental conditions of pressure at temperatures below 200K. To this end, we carried out temperature accelerated dynamics (TAD) simulations at different vapor pressures to characterize the morphology of the resulting nanoparticles, which leads to a range of values of the flux of impinging atoms at fixed vapor temperature. At typical experimental pressures of 10-3-10-4 bar TAD provides substantial boost over regular Molecular Dynamics (MD). TAD is also advantageous over MD, regarding the sampling of the network of visited states, which provides a deeper understanding of the evolution of the system. We characterize the growth of such clusters at different vapor pressures.
Use of accelerated helium-3 ions for determining oxygen and carbon impurities in some pure materials
NASA Technical Reports Server (NTRS)
Aleksandrova, G. I.; Borisov, G. I.; Demidov, A. M.; Zakharov, Y. A.; Sukhov, G. V.; Shmanenkova, G. I.; Shchelkova, V. P.
1978-01-01
Methods are developed for the determination of O impurity in Be and Si carbide and concurrent determination of C and O impurities in Si and W by irradiation with accelerated He-3 ions and subsequent activity measurements of C-11 and F-18 formed from C and O with the aid of a gamma-gamma coincidence spectrometer. Techniques for determining O in Ge and Ga arsenide with radiochemical separation of F-18 are also described.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seiwert, Tanguy Y., E-mail: tseiwert@medicine.bsd.uchicago.edu; Melotek, James M.; Blair, Elizabeth A.
Purpose: The role of cetuximab in the treatment of locoregionally advanced head and neck squamous cell cancer (LA-HNSCC) remains poorly defined. In this phase 2 randomized study, we investigated the addition of cetuximab to both induction chemotherapy (IC) and hyperfractionated or accelerated chemoradiation. Methods and Materials: Patients with LA-HNSCC were randomized to receive 2 cycles of weekly IC (cetuximab, paclitaxel, carboplatin) and either Cetux-FHX (concurrent cetuximab, 5-fluorouracil, hydroxyurea, and 1.5 Gy twice-daily radiation therapy every other week to 75 Gy) or Cetux-PX (cetuximab, cisplatin, and accelerated radiation therapy with delayed concomitant boost to 72 Gy in 42 fractions). The primary endpoint was progression-freemore » survival (PFS), with superiority compared with historical control achieved if either arm had 2-year PFS ≥70%. Results: 110 patients were randomly assigned to either Cetux-FHX (n=57) or Cetux-PX (n=53). The overall response rate to IC was 91%. Severe toxicity on IC was limited to rash (23% grade ≥3) and myelosuppression (38% grade ≥3 neutropenia). The 2-year rates of PFS for both Cetux-FHX (82.5%) and Cetux-PX (84.9%) were significantly higher than for historical control (P<.001). The 2-year overall survival (OS) was 91.2% for Cetux-FHX and 94.3% for Cetux-PX. With a median follow-up time of 72 months, there were no significant differences in PFS (P=.35) or OS (P=.15) between the treatment arms. The late outcomes for the entire cohort included 5-year PFS, OS, locoregional failure, and distant metastasis rates of 74.1%, 80.3%, 15.7%, and 7.4%, respectively. The 5-year PFS and OS were 84.4% and 91.3%, respectively, among human papillomavirus (HPV)-positive patients and 65.9% and 72.5%, respectively, among HPV-negative patients. Conclusions: The addition of cetuximab to IC and chemoradiation was tolerable and produced long-term control of LA-HNSCC, particularly among poor-prognosis HPV-negative patients. Further investigation of cetuximab may be warranted in the neoadjuvant setting and with non–platinum-based chemoradiation.« less
NASA Astrophysics Data System (ADS)
Latypov, A. F.
2008-12-01
Fuel economy at boost trajectory of the aerospace plane was estimated during energy supply to the free stream. Initial and final flight velocities were specified. The model of a gliding flight above cold air in an infinite isobaric thermal wake was used. The fuel consumption rates were compared at optimal trajectory. The calculations were carried out using a combined power plant consisting of ramjet and liquid-propellant engine. An exergy model was built in the first part of the paper to estimate the ramjet thrust and specific impulse. A quadratic dependence on aerodynamic lift was used to estimate the aerodynamic drag of aircraft. The energy for flow heating was obtained at the expense of an equivalent reduction of the exergy of combustion products. The dependencies were obtained for increasing the range coefficient of cruise flight for different Mach numbers. The second part of the paper presents a mathematical model for the boost interval of the aircraft flight trajectory and the computational results for the reduction of fuel consumption at the boost trajectory for a given value of the energy supplied in front of the aircraft.
Electromagnetic launchers for space applications
NASA Technical Reports Server (NTRS)
Schroeder, J. M.; Gully, J. H.; Driga, M. D.
1989-01-01
An electromagnetic launcher (EML) was designed for NASA-Langley to boost large models to hypervelocity for flight evaluation. Two different concepts were developed using railgun and coilgun principles. A coilgun was designed to accelerate a 14-kg mass to 6 km/s and, by adding additional equipment, to accelerate a 10-kg mass to 11 km/s. The railgun system was designed to accelerate only 14 kg to 6 km/s. Of significance in this development is the opportunity to use the launcher for aeroballistic research of the upper atmosphere, eventually placing packages in low earth orbit using a small rocket. The authors describe the railgun and coilgun launch designs and suggest a reconfiguration for placement of 150-kg parcels into low earth orbit for aeroballistic studies and possible space lab support. Each design is detailed along with the performance adjustments which would be required for circular orbit payload placement.
Wilkowski, Ralf; Thoma, Martin; Weingandt, Helmut; Dühmke, Eckhart; Heinemann, Volker
2005-05-10
Review of the role of chemoradiotherapy in the treatment of locally advanced pancreatic cancer with a specific focus on the technical feasibility and the integration of chemoradiotherapy into multimodal treatment concepts. Combined chemoradiotherapy of pancreatic cancer is a safe treatment with an acceptable profile of side effects when applied with modern planning and radiation techniques as well as considering tissue tolerance. Conventionally fractionated radiation regimens with total doses of 45-50 Gy and small-volume boost radiation with 5.4 Gy have found the greatest acceptance. Locoregional lymphatic drainage should be included in the planning of target volumes because the risk of tumor involvement and local or loco-regional recurrence is high. Up to now, 5-fluorouracil has been considered the "standard" agent for concurrent chemoradiotherapy. The role of gemcitabine given concurrently with radiation has not yet been defined, since high local efficacy may also be accompanied by enhanced toxicities. In addition, no dose or administration form has been determined to be "standard" up to now. The focus of presently ongoing research is to define an effective and feasible regimen of concurrent chemoradiotherapy. While preliminary results indicate promising results using gemcitabine-based chemoradiotherapy, reliable data derived from mature phase III trials are greatly needed. Intensity-modulated radiotherapy has been developed to improve target-specific radiation and to reduce organ toxicity. Its clinical relevance still needs to be defined.
Preoperative chemoradiation of locally advanced T3 rectal cancer combined with an endorectal boost
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakobsen, Anders; Mortensen, John P.; Bisgaard, Claus
2006-02-01
Purpose: To investigate the effect and feasibility of concurrent radiation and chemotherapy combined with endorectal brachytherapy in T3 rectal cancer with complete pathologic remission as end point. Methods and Materials: The study included 50 patients with rectal adenocarcinoma. All patients had T3 tumor with a circumferential margin 0-5 mm on a magnetic resonance imaging scan. The radiotherapy was delivered by a technique including two planning target volumes. Clinical target volume 1 (CTV1) received 60 Gy/30 fractions, and CTV2 received 48.6 Gy/27 fractions. The tumor dose was raised to 65 Gy with endorectal brachytherapy 5 Gy/1 fraction to the tumor bed.more » On treatment days, the patients received uracil and tegafur 300 mg/m2 concurrently with radiotherapy. Results: Forty-eight patients underwent operation. Histopathologic tumor regression was assessed by the Tumor Regression Grade (TRG) system. TRG1 was recorded in 27% of the patients, and a further 27% were classified as TRG2. TRG3 was found in 40%, and 6% had TRG4. The toxicity was low. Conclusion: The results indicate that high-dose radiation with concurrent chemotherapy and endorectal brachytherapy is feasible with a high rate of complete response, but further trials are needed to define its possible role as treatment option.« less
NASA Astrophysics Data System (ADS)
Datta, K.; Neder, R. B.; Chen, J.; Neuefeind, J. C.; Mihailova, B.
2017-11-01
We reveal that concurrent events of inherent entropy boosting and increased synchronization between A - and B -site cation vibrations of an A B O3 -type perovskite structure give rise to a larger piezoelectric response in a ferroelectric system at its morphotropic phase boundary (MPB). It is further evident that the superior piezoelectric properties of x BiNi0.5Zr0.5O3-(1 -x )PbTiO3 in comparison to x BiNi0.5Ti0.5O3-(1 -x )PbTiO3 are due to the absolute flattening of the local potentials for all ferroelectrically active cations with a higher spontaneous polarization at the MPB. These distinctive features are discovered from the analyses of neutron pair distribution functions and Raman scattering data at ambient conditions, which are particularly sensitive to mesoscopic-scale structural correlations. Altogether this uncovers more fundamental structure-property connections for ferroelectric systems exhibiting a MPB, and thereby has a critical impact in contriving efficient novel materials.
Adaptive track scheduling to optimize concurrency and vectorization in GeantV
Apostolakis, J.; Bandieramonte, M.; Bitzes, G.; ...
2015-05-22
The GeantV project is focused on the R&D of new particle transport techniques to maximize parallelism on multiple levels, profiting from the use of both SIMD instructions and co-processors for the CPU-intensive calculations specific to this type of applications. In our approach, vectors of tracks belonging to multiple events and matching different locality criteria must be gathered and dispatched to algorithms having vector signatures. While the transport propagates tracks and changes their individual states, data locality becomes harder to maintain. The scheduling policy has to be changed to maintain efficient vectors while keeping an optimal level of concurrency. The modelmore » has complex dynamics requiring tuning the thresholds to switch between the normal regime and special modes, i.e. prioritizing events to allow flushing memory, adding new events in the transport pipeline to boost locality, dynamically adjusting the particle vector size or switching between vector to single track mode when vectorization causes only overhead. Lastly, this work requires a comprehensive study for optimizing these parameters to make the behaviour of the scheduler self-adapting, presenting here its initial results.« less
Rapid brain MRI acquisition techniques at ultra-high fields
Setsompop, Kawin; Feinberg, David A.; Polimeni, Jonathan R.
2017-01-01
Ultra-high-field MRI provides large increases in signal-to-noise ratio as well as enhancement of several contrast mechanisms in both structural and functional imaging. Combined, these gains result in a substantial boost in contrast-to-noise ratio that can be exploited for higher spatial resolution imaging to extract finer-scale information about the brain. With increased spatial resolution, however, is a concurrent increased image encoding burden that can cause unacceptably long scan times for structural imaging and slow temporal sampling of the hemodynamic response in functional MRI—particularly when whole-brain imaging is desired. To address this issue, new directions of imaging technology development—such as the move from conventional 2D slice-by-slice imaging to more efficient Simultaneous MultiSlice (SMS) or MultiBand imaging (which can be viewed as “pseudo-3D” encoding) as well as full 3D imaging—have provided dramatic improvements in acquisition speed. Such imaging paradigms provide higher SNR efficiency as well as improved encoding efficiency. Moreover, SMS and 3D imaging can make better use of coil sensitivity information in multi-channel receiver arrays used for parallel imaging acquisitions through controlled aliasing in multiple spatial directions. This has enabled unprecedented acceleration factors of an order of magnitude or higher in these imaging acquisition schemes, with low image artifact levels and high SNR. Here we review the latest developments of SMS and 3D imaging methods and related technologies at ultra-high field for rapid high-resolution functional and structural imaging of the brain. PMID:26835884
Sikri, Kriti; Duggal, Priyanka; Kumar, Chanchal; Batra, Sakshi Dhingra; Vashist, Atul; Bhaskar, Ashima; Tripathi, Kritika; Sethi, Tavpritesh; Singh, Amit; Tyagi, Jaya Sivaswami
2018-05-01
Bacterial dormancy is a major impediment to the eradication of tuberculosis (TB), because currently used drugs primarily target actively replicating bacteria. Therefore, decoding of the critical survival pathways in dormant tubercle bacilli is a research priority to formulate new approaches for killing these bacteria. Employing a network-based gene expression analysis approach, we demonstrate that redox active vitamin C (vit C) triggers a multifaceted and robust adaptation response in Mycobacterium tuberculosis (Mtb) involving ~ 67% of the genome. Vit C-adapted bacteria display well-described features of dormancy, including growth stasis and progression to a viable but non-culturable (VBNC) state, loss of acid-fastness and reduction in length, dissipation of reductive stress through triglyceride (TAG) accumulation, protective response to oxidative stress, and tolerance to first line TB drugs. VBNC bacteria are reactivatable upon removal of vit C and they recover drug susceptibility properties. Vit C synergizes with pyrazinamide, a unique TB drug with sterilizing activity, to kill dormant and replicating bacteria, negating any tolerance to rifampicin and isoniazid in combination treatment in both in-vitro and intracellular infection models. Finally, the vit C multi-stress redox models described here also offer a unique opportunity for concurrent screening of compounds/combinations active against heterogeneous subpopulations of Mtb. These findings suggest a novel strategy of vit C adjunctive therapy by modulating bacterial physiology for enhanced efficacy of combination chemotherapy with existing drugs, and also possible synergies to guide new therapeutic combinations towards accelerating TB treatment. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Ultra-accelerated natural sunlight exposure testing facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2003-08-12
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
Mitigating driver distraction with retrospective and concurrent feedback.
Donmez, Birsen; Boyle, Linda Ng; Lee, John D
2008-03-01
An experiment was conducted to assess the effects of retrospective and combined retrospective and concurrent feedback on driver performance and engagement in distracting activities. A previous study conducted by the authors showed that concurrent (or real time) feedback can help drivers better modulate their distracting activities. However, research also shows that concurrent feedback can pose additional distractions due to the limited time and resources available during driving. Retrospective feedback, which is presented at the end of a trip (i.e., post-drive), can include additional information on safety critical situations during a trip and help the driver learn safe driving habits. A driving simulator study was conducted with 48 participants and 3 conditions: retrospective feedback, combined feedback (both retrospective and concurrent), and no feedback (baseline case). The feedback conditions (retrospective and combined) resulted in faster response to lead vehicle braking events as depicted by shorter accelerator release times. Moreover, combined feedback also resulted in longer glances to the road. The results suggest that both feedback types have potential to improve immediate driving performance and driver engagement in distractions. Combined feedback holds the most promise for mitigating the effects of distraction from in-vehicle information systems.
Lunar Orbiter 4 - Photographic Mission Summary. Volume 1
NASA Technical Reports Server (NTRS)
1968-01-01
Photographic summary report of Lunar Orbiter 4 mission. The fourth of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:25 GMT on May 4, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nauticalmile- altitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.
Lunar Orbiter 5. Photographic Mission Summary. Volume 1
NASA Technical Reports Server (NTRS)
1968-01-01
Selected photographs and mission summary of Lunar Orbiter 5. The last of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:33 GMT on August 1, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nautical-mile-altitude Earth orbit were controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-bum period required to inject the spacecraft on the cislunar trajectory about 33 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.
Lunar Orbiter 3 - Photographic Mission Summary
NASA Technical Reports Server (NTRS)
1968-01-01
Systems performance, lunar photography, and launch operations of Lunar Orbiter 3 photographic mission. The third of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 01:17 GMT on February 5,1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final 1 maneuvering and acceleration to the velocity required to maintain the 100-nautical-milealtitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tinkle, Christopher L.; Weinberg, Vivian; Chen, Lee-May
Purpose: Evaluate the efficacy and toxicity of image guided brachytherapy using inverse planning simulated annealing (IPSA) high-dose-rate brachytherapy (HDRB) boost for locoregionally advanced cervical cancer. Methods and Materials: From December 2003 through September 2009, 111 patients with primary cervical cancer were treated definitively with IPSA-planned HDRB boost (28 Gy in 4 fractions) after external radiation at our institution. We performed a retrospective review of our experience using image guided brachytherapy. Of the patients, 70% had a tumor size >4 cm, 38% had regional nodal disease, and 15% had clinically evident distant metastasis, including nonregional nodal disease, at the time of diagnosis. Surgicalmore » staging involving pelvic lymph node dissection was performed in 15% of patients, and 93% received concurrent cisplatin-based chemotherapy. Toxicities are reported according to the Common Terminology Criteria for Adverse Events version 4.0 guidelines. Results: With a median follow-up time of 42 months (range, 3-84 months), no acute or late toxicities of grade 4 or higher were observed, and grade 3 toxicities (both acute and late) developed in 8 patients (1 constitutional, 1 hematologic, 2 genitourinary, 4 gastrointestinal). The 4-year Kaplan-Meier estimate of late grade 3 toxicity was 8%. Local recurrence developed in 5 patients (4 to 9 months after HDRB), regional recurrence in 3 (6, 16, and 72 months after HDRB), and locoregional recurrence in 1 (4 months after HDR boost). The 4-year estimates of local, locoregional, and distant control of disease were 94.0%, 91.9%, and 69.1%, respectively. The overall and disease-free survival rates at 4 years were 64.3% (95% confidence interval [CI] of 54%-73%) and 61.0% (95% CI, 51%-70%), respectively. Conclusions: Definitive radiation by use of inverse planned HDRB boost for locoregionally advanced cervical cancer is well tolerated and achieves excellent local control of disease. However, overall survival continues to be limited by the high rates of distant metastasis.« less
Miao, Yinglong; Feher, Victoria A; McCammon, J Andrew
2015-08-11
A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively.
Gaussian Accelerated Molecular Dynamics: Unconstrained Enhanced Sampling and Free Energy Calculation
2016-01-01
A Gaussian accelerated molecular dynamics (GaMD) approach for simultaneous enhanced sampling and free energy calculation of biomolecules is presented. By constructing a boost potential that follows Gaussian distribution, accurate reweighting of the GaMD simulations is achieved using cumulant expansion to the second order. Here, GaMD is demonstrated on three biomolecular model systems: alanine dipeptide, chignolin folding, and ligand binding to the T4-lysozyme. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of these biomolecules. Furthermore, the free energy profiles obtained from reweighting of the GaMD simulations allow us to identify distinct low-energy states of the biomolecules and characterize the protein-folding and ligand-binding pathways quantitatively. PMID:26300708
NASA Astrophysics Data System (ADS)
Spallicci, Alessandro D. A. M.
2017-09-01
Comments are due on a recent paper by McGruder III (2017) in which the author deals with the concept of gravitational repulsion in the context of the Schwarzschild-Droste solution. Repulsion (deceleration) for ingoing particles into a black hole is a concept proposed several times starting from Droste himself in 1916. It is a coordinate effect appearing to an observer at a remote distance from the black hole and when coordinate time is employed. Repulsion has no bearing and relation to the local physics of the black hole, and moreover it cannot be held responsible for accelerating outgoing particles. Thereby, the energy boost of cosmic rays cannot be produced by repulsion.
Jiang, Wei; Roux, Benoît
2010-07-01
Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.
Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidding, B.; Rosenzweig, J. B.; Xi, Y.
2012-12-21
An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojanmore » Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.« less
Accelerator driven sub-critical core
McIntyre, Peter M; Sattarov, Akhdiyor
2015-03-17
Systems and methods for operating an accelerator driven sub-critical core. In one embodiment, a fission power generator includes a sub-critical core and a plurality of proton beam generators. Each of the proton beam generators is configured to concurrently provide a proton beam into a different area of the sub-critical core. Each proton beam scatters neutrons within the sub-critical core. The plurality of proton beam generators provides aggregate power to the sub-critical core, via the proton beams, to scatter neutrons sufficient to initiate fission in the sub-critical core.
An analysis of the flow field near the fuel injection location in a gas core reactor.
NASA Technical Reports Server (NTRS)
Weinstein, H.; Murty, B. G. K.; Porter, R. W.
1971-01-01
An analytical study is presented which shows the effects of large energy release and the concurrent high acceleration of inner stream fluid on the coaxial flow field in a gas core reactor. The governing equations include the assumptions of only radial radiative transport of energy represented as an energy diffusion term in the Euler equations. The method of integral relations is used to obtain the numerical solution. Results show that the rapidly accelerating, heat generating inner stream actually shrinks in radius as it expands axially.
Richert, Laura; Doussau, Adélaïde; Lelièvre, Jean-Daniel; Arnold, Vincent; Rieux, Véronique; Bouakane, Amel; Lévy, Yves; Chêne, Geneviève; Thiébaut, Rodolphe
2014-02-26
Many candidate vaccine strategies against human immunodeficiency virus (HIV) infection are under study, but their clinical development is lengthy and iterative. To accelerate HIV vaccine development optimised trial designs are needed. We propose a randomised multi-arm phase I/II design for early stage development of several vaccine strategies, aiming at rapidly discarding those that are unsafe or non-immunogenic. We explored early stage designs to evaluate both the safety and the immunogenicity of four heterologous prime-boost HIV vaccine strategies in parallel. One of the vaccines used as a prime and boost in the different strategies (vaccine 1) has yet to be tested in humans, thus requiring a phase I safety evaluation. However, its toxicity risk is considered minimal based on data from similar vaccines. We newly adapted a randomised phase II trial by integrating an early safety decision rule, emulating that of a phase I study. We evaluated the operating characteristics of the proposed design in simulation studies with either a fixed-sample frequentist or a continuous Bayesian safety decision rule and projected timelines for the trial. We propose a randomised four-arm phase I/II design with two independent binary endpoints for safety and immunogenicity. Immunogenicity evaluation at trial end is based on a single-stage Fleming design per arm, comparing the observed proportion of responders in an immunogenicity screening assay to an unacceptably low proportion, without direct comparisons between arms. Randomisation limits heterogeneity in volunteer characteristics between arms. To avoid exposure of additional participants to an unsafe vaccine during the vaccine boost phase, an early safety decision rule is imposed on the arm starting with vaccine 1 injections. In simulations of the design with either decision rule, the risks of erroneous conclusions were controlled <15%. Flexibility in trial conduct is greater with the continuous Bayesian rule. A 12-month gain in timelines is expected by this optimised design. Other existing designs such as bivariate or seamless phase I/II designs did not offer a clear-cut alternative. By combining phase I and phase II evaluations in a multi-arm trial, the proposed optimised design allows for accelerating early stage clinical development of HIV vaccine strategies.
Swallow, Khena M; Jiang, Yuhong V
2010-04-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.
Swallow, Khena M.; Jiang, Yuhong V.
2009-01-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232
DOE Office of Scientific and Technical Information (OSTI.GOV)
Canyilmaz, Emine, E-mail: dremocan@yahoo.com; Yavuz, Melek Nur; Serdar, Lasif
Purpose: The aim of this study was to evaluate the long-term clinical efficacy and toxicity of concomitant boost and accelerated hyperfractionated radiation therapy (CBAHRT) in patients with invasive bladder cancer. Methods and Materials: Between October 1997 and September 2012, 334 patients with diagnoses of invasive bladder cancer were selected. These patients received CBAHRT as a bladder-conserving approach. The treatment consisted of a dose of 45 Gy/1.8 Gy to the whole pelvis with a daily concomitant boost of 1.5 Gy to the tumor. Total dose was 67.5 Gy in 5 weeks. A total of 32 patients (10.3%) had a diagnosis of stage T1, 202 (64.3%) weremore » at stage T2, 46 (14.6%) were at stage T3a, 22 (7%) were at stage T3b, and 12 (3.8%) were at stage T4a. Results: The follow-up period was 33.1 months (range, 4.3-223.3 months). Grade 3 late intestinal toxicity was observed in 9 patients (2.9%), whereas grade 3 late urinary toxicity was observed in 8 patients (2.5%). The median overall survival (OS) was 26.3 months (95% confidence interval [CI]: 21.4-31.2). The 5-, 10, and 15-year OS rates were 32.1% (standard error [SE], ± 0.027), 17.9% (SE, ± 0.025) and 12.5% (SE, ± 0.028), respectively. The median cause-specific survival (CSS) was 42.1 months (95% CI: 28.7-55.5). The 5-, 10-, and 15-year CSS rates were 43.2% (SE, ± 0.03), 30.3% (SE, ± 0.03), and 28% (SE, ± 0.04), respectively. The median relapse-free survival (RFS) was 111.8 months (95% CI: 99.6-124). The 5-, 10-, and 15-year RFS rates were 61.9% (SE, ± 0.03), 57.6% (SE, ± 0.04), and 48.2% (SE, ± 0.07), respectively. Conclusions: The CBAHRT technique demonstrated acceptable toxicity and local control rates in patients with invasive bladder cancer, and this therapy facilitated bladder conservation. In selected patients, the CBAHRT technique is a practical alternative treatment option with acceptable 5-, 10-, and 15-year results in patients undergoing cystectomy as well as concurrent chemoradiation therapy.« less
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-01-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations. PMID:28218247
Laser-Driven Ion Acceleration from Plasma Micro-Channel Targets
NASA Astrophysics Data System (ADS)
Zou, D. B.; Pukhov, A.; Yi, L. Q.; Zhou, H. B.; Yu, T. P.; Yin, Y.; Shao, F. Q.
2017-02-01
Efficient energy boost of the laser-accelerated ions is critical for their applications in biomedical and hadron research. Achiev-able energies continue to rise, with currently highest energies, allowing access to medical therapy energy windows. Here, a new regime of simultaneous acceleration of ~100 MeV protons and multi-100 MeV carbon-ions from plasma micro-channel targets is proposed by using a ~1020 W/cm2 modest intensity laser pulse. It is found that two trains of overdense electron bunches are dragged out from the micro-channel and effectively accelerated by the longitudinal electric-field excited in the plasma channel. With the optimized channel size, these “superponderomotive” energetic electrons can be focused on the front surface of the attached plastic substrate. The much intense sheath electric-field is formed on the rear side, leading to up to ~10-fold ionic energy increase compared to the simple planar geometry. The analytical prediction of the optimal channel size and ion maximum energies is derived, which shows good agreement with the particle-in-cell simulations.
Long-time atomistic dynamics through a new self-adaptive accelerated molecular dynamics method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Yang, L.; Gao, F.
2017-02-27
A self-adaptive accelerated molecular dynamics method is developed to model infrequent atomic- scale events, especially those events that occur on a rugged free-energy surface. Key in the new development is the use of the total displacement of the system at a given temperature to construct a boost-potential, which is slowly increased to accelerate the dynamics. The temperature is slowly increased to accelerate the dynamics. By allowing the system to evolve from one steady-state con guration to another by overcoming the transition state, this self-evolving approach makes it possible to explore the coupled motion of species that migrate on vastly differentmore » time scales. The migrations of single vacancy (V) and small He-V clusters, and the growth of nano-sized He-V clusters in Fe for times in the order of seconds are studied by this new method. An interstitial- assisted mechanism is rst explored for the migration of a helium-rich He-V cluster, while a new two-component Ostwald ripening mechanism is suggested for He-V cluster growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro, Marica; Chiesa, Silvia; Macchia, Gabriella, E-mail: gmacchia@rm.unicatt.it
Purpose: To investigate the maximum tolerated dose of intensity modulated radiation therapy simultaneous integrated boost whole-brain radiation therapy for palliative treatment of patients with <5 brain metastases using a standard linear accelerator. Materials and Methods: The whole brain plus 3-mm margin was defined as the planning target volume (PTV{sub wb}), whereas each brain metastasis, defined as the contrast-enhancing tumor on MRI T1 scans, plus a 3-mm isotropic margin, was defined as metastases PTV (PTV{sub m}). Radiation therapy was delivered in 10 daily fractions (2 weeks). Only the dose to PTV{sub m} was progressively increased in the patient cohorts (35 Gy, 40 Gy, 45 Gy, 50 Gy),more » whereas the PTV{sub wb} was always treated with 30 Gy (3 Gy per fraction) in all patients. The dose-limiting toxicity was evaluated providing that 3 months of follow-up had occurred after the treatment of a 6-patient cohort. Results: Thirty patients were enrolled in the study (dose PTV{sub m}: 35 Gy, 8 patients; 40 Gy, 6 patients; 45 Gy, 6 patients; 50 Gy, 10 patients). The number of treated brain metastases was 1 in 18 patients, 2 in 5 patients, 3 in 6 patients, and 4 in 1 patient. Three patients experienced dose-limiting toxicity: 1 patient at dose level 2 presented grade 3 (G3) skin toxicity; 1 patient at dose level 4 presented G3 neurologic toxicity; and 1 patient at the same level showed brain hemorrhage. Most patients showed G1 to 2 acute toxicity, in most cases skin (n=19) or neurologic (n=10). Twenty-seven were evaluable for response: 6 (22%) stable disease, 18 (67%) partial response, and 3 (11%) complete response. Median survival and 1-year overall survival were 12 months and 53%, respectively. No patient showed late toxicity. Conclusions: In this first prospective trial on the use of intensity modulated radiation therapy simultaneous integrated boost delivered with a standard linear accelerator in patients with brain oligometastases, a boost dose up to 50 Gy in 10 fractions was tolerable according to the study design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Legge, K; O’Connor, D J; Nguyen, D
Purpose: To determine prostate motion during SBRT boost treatments with a Rectafix rectal sparing device in place using kV imaging during treatment. Methods: Patients each had three gold fiducial markers inserted into the prostate and received two VMAT boost fractions of 9.5–10 Gy under the PROMETHEUS clinical trial protocol with a Rectafix rectal retractor in place. Two-dimensional kilovoltage images of fiducial markers were acquired continuously during delivery. Three patients were treated on a Varian Clinac iX linear accelerator (6X, 600 MU/min), where kV images were acquired at 5 Hz during treatment. Seven patients were treated on a Varian Truebeam linearmore » accelerator (10XFFF, 2400 MU/min) where kV images were acquired every 3 seconds. Images were processed off-line using the Kilovoltage Intrafraction Monitoring (KIM) software after treatment. KIM determines prostate position in three dimensions from 2D kV projections using a probability density model and a pre-treatment kV arc. The 3D displacement of the prostate was quantified as a function of time throughout each fraction. Results: From all fractions analyzed, it was found that the prostate had moved less than 1 mm in any direction from its initial position 84.6% of the time. The prostate was between 1 and 2 mm from its initial position 14.2% of the time, between 2 and 3 mm of its initial position 0.8% of the time and was greater than 3 mm from its initial position only 0.4% of the time. Conclusion: The amount of prostate motion observed during prostate SBRT boost treatments with a Rectafix device in place was minimal and lower than that observed in non-Rectafix studies. The Rectafix device reduces rectal dose as well as immobilizing the prostate. Kimberley Legge is the recipient of an Australian Postgraduate Award.« less
Cvek, J; Kubes, J; Skacelikova, E; Otahal, B; Kominek, P; Halamka, M; Feltl, D
2012-08-01
The present study was performed to evaluate the feasibility of a new, 5-week regimen of 70-75 Gy hyperfractionated accelerated radiotherapy with concomitant integrated boost (HARTCIB) for locally advanced, inoperable head and neck cancer. A total of 39 patients with very advanced, stage IV nonmetastatic head and neck squamous cell carcinoma (median gross tumor volume 72 ml) were included in this phase I dose escalation study. A total of 50 fractions intensity-modulated radiotherapy (IMRT) were administered twice daily over 5 weeks. Prescribed total dose/dose per fraction for planning target volume (PTV(tumor)) were 70 Gy in 1.4 Gy fractions, 72.5 Gy in 1.45 Gy fractions, and 75 Gy in 1.5 Gy fractions for 10, 13, and 16 patients, respectively. Uninvolved lymphatic nodes (PTV(uninvolved)) were irradiated with 55 Gy in 1.1 Gy fractions using the concomitant integrated boost. Acute toxicity was evaluated according to the RTOG/EORTC scale; the incidence of grade 3 mucositis was 51% in the oral cavity/pharynx and 0% in skin and the recovery time was ≤ 9 weeks for all patients. Late toxicity was evaluated in patients in complete remission according to the RTOG/EORTC scale. No grade 3/4 late toxicity was observed. The 1-year locoregional progression-free survival was 50% and overall survival was 55%. HARTCIB (75 Gy in 5 weeks) is feasible for patients deemed unsuitable for chemoradiation. Acute toxicity was lower than predicted from radiobiological models; duration of dysphagia and confluent mucositis were particularly short. Better conformity of radiotherapy allows the use of more intensive altered fractionation schedules compared with older studies. These results suggest that further dose escalation might be possible when highly conformal techniques (e.g., stereotactic radiotherapy) are used.
Concurrent Image Processing Executive (CIPE). Volume 2: Programmer's guide
NASA Technical Reports Server (NTRS)
Williams, Winifred I.
1990-01-01
This manual is intended as a guide for application programmers using the Concurrent Image Processing Executive (CIPE). CIPE is intended to become the support system software for a prototype high performance science analysis workstation. In its current configuration CIPE utilizes a JPL/Caltech Mark 3fp Hypercube with a Sun-4 host. CIPE's design is capable of incorporating other concurrent architectures as well. CIPE provides a programming environment to applications' programmers to shield them from various user interfaces, file transactions, and architectural complexities. A programmer may choose to write applications to use only the Sun-4 or to use the Sun-4 with the hypercube. A hypercube program will use the hypercube's data processors and optionally the Weitek floating point accelerators. The CIPE programming environment provides a simple set of subroutines to activate user interface functions, specify data distributions, activate hypercube resident applications, and to communicate parameters to and from the hypercube.
Lorenzen, Emma; Follmann, Frank; Bøje, Sarah; Erneholm, Karin; Olsen, Anja Weinreich; Agerholm, Jørgen Steen; Jungersen, Gregers; Andersen, Peter
2015-01-01
International efforts in developing a vaccine against Chlamydia trachomatis have highlighted the need for novel immunization strategies for the induction of genital immunity. In this study, we evaluated an intramuscular (IM) prime/intranasal boost vaccination strategy in a Göttingen Minipig model with a reproductive system very similar to humans. The vaccine was composed of C. trachomatis subunit antigens formulated in the Th1/Th17 promoting CAF01 adjuvant. IM priming immunizations with CAF01 induced a significant cell-mediated interferon gamma and interleukin 17A response and a significant systemic high-titered neutralizing IgG response. Following genital challenge, intranasally boosted groups mounted an accelerated, highly significant genital IgA response that correlated with enhanced bacterial clearance on day 3 post infection. By detecting antigen-specific secretory component (SC), we showed that the genital IgA was locally produced in the genital mucosa. The highly significant inverse correlation between the vaginal IgA SC response and the chlamydial load suggests that IgA in the minipig model is involved in protection against C. trachomatis. This is important both for our understanding of protective immunity and future vaccination strategies against C. trachomatis and genital pathogens in general. PMID:26734002
Experimental Research in Boost Driver with EDLCs
NASA Astrophysics Data System (ADS)
Matsumoto, Hirokazu
The supply used in servo systems tends to have a high voltage in order to reduce loss and improve the response of motor drives. We propose a new boost motor driver that comprises EDLCs. The proposed driver has a simple structure, wherein the EDLCs are connected in series to the supply, and comprises a charge circuit to charge the EDLCs. The proposed driver has three advantages over conventional boost drivers. The first advantage is that the driver can easily attain the stable boost voltage. The second advantage is that the driver can reduce input power peaks. In a servo system, the input power peaks become greater than the rated power in order to accelerate the motor rapidly. This implies that the equipments that supply power to servo systems must have sufficient power capacity to satisfy the power peaks. The proposed driver can suppress the increase of the power capacity of supply facilities. The third advantage is that the driver can store almost all of the regenerative energy. Conventional drivers have a braking resistor to suppress the increase in the DC link voltage. This causes a considerable reduction in the efficiency. The proposed driver is more efficient than conventional drivers. In this study, the experimental results confirmed the effectiveness of the proposed driver and showed that the drive performance of the proposed driver is the same as that of a conventional driver. Furthermore, it was confirmed that the results of the simulation of a model of the EDLC module, whose capacitance is dependent on the frequency, correspond well with the experimental results.
Ultra-Accelerated Natural Sunlight Exposure Testing Facilities
Lewandowski, Allan A.; Jorgensen, Gary J.
2004-11-23
A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.
Franco, Pierfrancesco; Arcadipane, Francesca; Ragona, Riccardo; Mistrangelo, Massimiliano; Cassoni, Paola; Rondi, Nadia; Morino, Mario; Racca, Patrizia; Ricardi, Umberto
2016-04-01
To report clinical outcomes of a consecutive series of patients with early-stage (T1-T1N0) anal cancer treated with intensity-modulated radiotherapy (IMRT) and a simultaneous integrated boost (SIB) approach similarly to the RTOG 05-29 trial. A cohort of 43 patients underwent SIB-IMRT employing a schedule consisting of 50.4 Gy/28 fractions to the gross tumor volume and 42 Gy/28 fractions to the elective nodal volumes for cT1N0 cases, and 54 Gy/30 fractions and 45 Gy/30 fractions to the same volumes for cT2N0 cases. Chemotherapy was administered concurrently following Nigro's regimen. The primary endpoint was colostomy-free survival (CFS). Secondary endpoints were locoregional control (LRC), disease-free (DFS), cancer-specific (CSS) and overall (OS) survival. Median follow-up was 39.7 months. The actuarial 3-year CFS was 79.4% [95% confidence interval (CI)=61.4-89.7%]. Actuarial 3-year OS and CSS were 90.8% (95% CI=74.1-96.9%) and 93.8% (95% CI=77.3-98.4%), while DFS was 75.5% (95% CI=56.4-87.1%). Actuarial 3-year LRC was 86.1% (95% CI=69.6-94%). On multivariate analysis, tumor size >3 cm showed a trend towards significance in predicting CFS [hazard ratio (HR)=8.6, 95% CI=84.7-88.1%; p=0.069]. Maximum detected adverse events included: skin (G3): 18%; gastrointestinal tract (G2): 67%; genitourinary tract (G3): 3%; genitalia (G2): 30%; anemia (G2): 7%; leukopenia (G3): 26%, leukopenia (G4):7%; neutropenia (G3): 15%; neutropenia (G4): 12%; thrombocytopenia (G3): 9%. Our clinical results support the use of SIB-IMRT in the combined modality treatment of patients with anal cancer. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Hou, Yanping; Zhang, Renduo; Yu, Zebin; Huang, Lirong; Liu, Yuxin; Zhou, Zili
2017-01-01
The single-chamber microbial electrolysis cell constructed with a TiO 2 -coated photocathode, termed photocatalytic microbial electrolysis cell (PMEC), was developed to accelerate methyl orange (MO) degradation and concurrent hydrogen (H 2 ) recovery under UV irradiation. Results showed that faster MO decolorization rates were achieved from the PMEC compared with those without UV irradiation or with open circuit. With increase of MO concentrations (acetate as co-substrate) from 50 to 300mg/L at an applied voltage of 0.8V, decolorization efficiencies decreased from 98% to 76% within 12h, and cyclic H 2 production declined from 113 to 68mL. As the possible mechanism of MO degradation, bioelectrochemical reduction, co-metabolism reduction, and photocatalysis were involved; and degradation intermediates (mainly sulfanilic acid and N,N-dimethylaniline) were further degraded by OH generated from photocatalysis. This makes MO mineralization be possible in the single-chamber PMEC. Hence, the PMEC is a promising system for dyeing wastewater treatment and simultaneous H 2 production. Copyright © 2016 Elsevier Ltd. All rights reserved.
Accelerated Dimension-Independent Adaptive Metropolis
Chen, Yuxin; Keyes, David E.; Law, Kody J.; ...
2016-10-27
This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less
Accelerated Dimension-Independent Adaptive Metropolis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yuxin; Keyes, David E.; Law, Kody J.
This work describes improvements from algorithmic and architectural means to black-box Bayesian inference over high-dimensional parameter spaces. The well-known adaptive Metropolis (AM) algorithm [33] is extended herein to scale asymptotically uniformly with respect to the underlying parameter dimension for Gaussian targets, by respecting the variance of the target. The resulting algorithm, referred to as the dimension-independent adaptive Metropolis (DIAM) algorithm, also shows improved performance with respect to adaptive Metropolis on non-Gaussian targets. This algorithm is further improved, and the possibility of probing high-dimensional (with dimension d 1000) targets is enabled, via GPU-accelerated numerical libraries and periodically synchronized concurrent chains (justimore » ed a posteriori). Asymptotically in dimension, this GPU implementation exhibits a factor of four improvement versus a competitive CPU-based Intel MKL parallel version alone. Strong scaling to concurrent chains is exhibited, through a combination of longer time per sample batch (weak scaling) and yet fewer necessary samples to convergence. The algorithm performance is illustrated on several Gaussian and non-Gaussian target examples, in which the dimension may be in excess of one thousand.« less
Preliminary analysis of space mission applications for electromagnetic launchers
NASA Technical Reports Server (NTRS)
Miller, L. A.; Rice, E. E.; Earhart, R. W.; Conlon, R. J.
1984-01-01
The technical and economic feasibility of using electromagnetically launched EML payloads propelled from the Earth's surface to LEO, GEO, lunar orbit, or to interplanetary space was assessed. Analyses of the designs of rail accelerators and coaxial magnetic accelerators show that each is capable of launching to space payloads of 800 KG or more. A hybrid launcher in which EML is used for the first 2 KM/sec followed by chemical rocket stages was also tested. A cost estimates study shows that one to two EML launches per day are needed to break even, compared to a four-stage rocket. Development models are discussed for: (1) Earth orbital missions; (2) lunar base supply mission; (3) solar system escape mission; (4) Earth escape missions; (5) suborbital missions; (6) electromagnetic boost missions; and (7) space-based missions. Safety factors, environmental impacts, and EML systems analysis are discussed. Alternate systems examined include electrothermal thrustors, an EML rocket gun; an EML theta gun, and Soviet electromagnetic accelerators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hepel, Jaroslaw T., E-mail: jhepel@lifespan.org; Department of Radiation Oncology, Tufts Medical Center, Tufts University, Boston, Massachusetts; Leonard, Kara Lynne
Purpose: Stereotactic body radiation therapy (SBRT) boost to primary and nodal disease after chemoradiation has potential to improve outcomes for advanced non-small cell lung cancer (NSCLC). A dose escalation study was initiated to evaluate the maximum tolerated dose (MTD). Methods and Materials: Eligible patients received chemoradiation to a dose of 50.4 Gy in 28 fractions and had primary and nodal volumes appropriate for SBRT boost (<120 cc and <60 cc, respectively). SBRT was delivered in 2 fractions after chemoradiation. Dose was escalated from 16 to 28 Gy in 2 Gy/fraction increments, resulting in 4 dose cohorts. MTD was defined when ≥2 of 6 patients permore » cohort experienced any treatment-related grade 3 to 5 toxicity within 4 weeks of treatment or the maximum dose was reached. Late toxicity, disease control, and survival were also evaluated. Results: Twelve patients (3 per dose level) underwent treatment. All treatment plans met predetermined dose-volume constraints. The mean age was 64 years. Most patients had stage III disease (92%) and were medically inoperable (92%). The maximum dose level was reached with no grade 3 to 5 acute toxicities. At a median follow-up time of 16 months, 1-year local-regional control (LRC) was 78%. LRC was 50% at <24 Gy and 100% at ≥24 Gy (P=.02). Overall survival at 1 year was 67%. Late toxicity (grade 3-5) was seen in only 1 patient who experienced fatal bronchopulmonary hemorrhage (grade 5). There were no predetermined dose constraints for the proximal bronchial-vascular tree (PBV) in this study. This patient's 4-cc PBV dose was substantially higher than that received by other patients in all 4 cohorts and was associated with the toxicity observed: 20.3 Gy (P<.05) and 73.5 Gy (P=.07) for SBRT boost and total treatment, respectively. Conclusions: SBRT boost to both primary and nodal disease after chemoradiation is feasible and well tolerated. Local control rates are encouraging, especially at doses ≥24 Gy in 2 fractions. Toxicity at the PBV is a concern but potentially can be avoided with strict dose-volume constraints.« less
NASA Astrophysics Data System (ADS)
Yang, Jia-Yue; Cheng, Long; Hu, Ming
2017-12-01
Intermetallic clathrates, one class of guest-host systems with perfectly crystalline structures, hold great potential to be the "phonon glass - electron crystal" thermoelectric materials. Previous studies focus on revealing the atomistic origins of blocked phononic transport, yet little attention is drawn to the enhanced electronic transport. In this work, we investigate the binary type-I M8Si46 (M = Sr, Ba, Tl, and Pb) clathrates and unravel how rattlers concurrently block phononic transport and enhance electronic transport from first-principles. By comparing the empty and filled clathrates, the lattice thermal conductivity is greatly reduced by a factor of 21 due to the decrease in phonon relaxation time for propagative phonons over 0-6 THz by 1.5 orders of magnitude. On the other hand, rattlers bridge charge gaps among cages by donating electrons and thus drastically increase electrical conductivity. The concurrent realization of blocked phononic transport and enhanced electronic transport boosts the figure-of-merit (ZT) of empty clathrate by 4 orders of magnitude. Furthermore, by manipulating metallic rattlers and n-type doping, the power factor is markedly improved and ZT can reach 0.55 at 800 K. These results provide a quantitative description of the guest-host interaction and coupling dynamics from first-principles. The proposed strategy of manipulating ratting atoms and in-situ doping offers important guidance to engineer clathrates with high thermoelectric performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Anne W.M.; Yau, T.K.; Wong, Dominique H.M.
Purpose: To explore a more effective strategy for treating nasopharyngeal carcinoma with extensive locoregional disease. Methods and Materials: Between October 1998 and January 2003, 49 patients with Stage IV(A-B) disease infiltrating or abutting neurologic structures were treated with induction-concurrent chemotherapy and accelerated radiotherapy (RT). A combination of cisplatin and 5-fluorouracil was used in the induction phase and single-agent cisplatin in the concurrent phase. All patients were irradiated with conformal techniques at 2 Gy/fraction, six daily fractions weekly, to a total dose of 70 Gy. Results: Although 92% of patients had one or more acute toxicities Grade 3 or worse, 96%more » completed the whole course of RT, and 92% had five or more cycles of chemotherapy. The great majority of toxicities were uneventful, but 1 patient died of neutropenic sepsis. With a median follow-up of 3.1 years, 20 patients had failure at one or more sites and 15 patients died. The 3-year locoregional and distant failure-free rate was 77% and 75%, respectively, and the overall survival rate was 71%. At last follow-up, 27% of patients had developed late Grade 3 or worse toxicity (24% were hearing impairments), but none had radiation-induced neurologic damage. Conclusion: The current strategy achieved encouraging results for this poor prognostic group, and confirmation of the therapeutic gain by a prospective randomized trial is warranted.« less
Light ion beam fusion research at Sandia National Laboratories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yonas, G.
1983-01-01
Data has been collected on PBFA I using three related diode types: (1) the Ampfion diode, (2) the applied field diode, and (3) the pinch reflex diode. Concurrent with these PBFA I experiments, complementary experiments were carried out on Proto I at Sandia, as well as the Lion accelerator at Cornell University, and the Gamble II accelerator at the Naval Research Laboratory. In addition to these experiments, improved electromagnetic particle-in-cell codes and analytical treatments were brought to bear on improving our understanding of diode phenomena. A brief review of some of the results is given.
Xu, Weiwei; Tao, Ye; Wang, Liqiang; Huang, Yifei
2017-07-27
BACKGROUND Some myopia patients with unsatisfactory corneas consider corneal refractive surgery for different reasons. Accelerated corneal collagen crosslinking (ACXL) is an effective method to enhance the resistance of the cornea. The present investigation was designed to evaluate the changes of biomechanical properties in patients with myopia and thin corneas after femtosecond-laser in situ keratomileusis (FS-LASIK) concurrent with ACXL. MATERIAL AND METHODS A prospective study was designed. A total of 22 eyes of 11 myopia astigmatism patients with unsatisfactory corneas were enrolled. The patients were assigned to femtosecond-laser in situ keratomileusis concurrent with accelerated corneal collagen crosslinking (FS-LASIK-ACXL). The follow-up duration was 24 months. Manifest refraction, uncorrected (UDVA), and corrected distance visual acuity (CDVA), ultra-high-speed camera (Corvis-ST), corneal topography, anterior segment OCT (AS-OCT), Pentacam, and endothelial cell density (ECD) were examined before and after the operation. The corneal biomechanical and refractive data was analyzed using SAS9.3. Data were analyzed through normal distribution test and variance of analysis. The difference was considered as statistically significant when p<0.05. RESULTS The steep K (Ks) values, flat K (Kf) values, average keratometry values (Avek) values, and central corneal thickness (CCT) declined significantly after FS-LASIK-ACXL operation. The values of first applanation length (A1L), the second applanation length (A2L), the first applanation velocity (A1V), the second applanation velocity (A2V), deformation amplitude (DA), highest concavity peak distance (PD), and radius of curvature at the time of highest concavity (HCR) did not show significant difference after the operation. CONCLUSIONS FS-LASIK-ACXL is an effective and safe surgery for improving visual acuity for myopic patients with thin corneas, and it does not increase the risk of iatrogenic keratectasia.
Patil, Dada; Gautam, Manish; Jadhav, Umesh; Mishra, Sanjay; Karupothula, Suresh; Gairola, Sunil; Jadhav, Suresh; Patwardhan, Bhushan
2010-03-01
Stability testing at preformulation stages is a crucial part of drug development. We studied physicochemical stability and biological activity of Withania somnifera (ashwagandha) dried root aqueous extract during six months real-time and under accelerated storage conditions. The characteristic constituents of ashwagandha roots include withanolides such as withaferin A and withanolide A. We modified and validated the HPLC-DAD method for quantitative measurement of withanolides and fingerprint analysis. The results suggest a significant decline in withaferin A and withanolide A content under real and accelerated conditions. The HPLC fingerprint analysis showed significant changes in some peaks during real and accelerated storage (> 20 %). We also observed incidences of clump formation and moisture sensitivity (> 10 %) under real-time and accelerated storage conditions. These changes were concurrent with a significant decline in immunomodulatory activity (p < 0.01) during the third month of the accelerated storage. Thus, adequate control of temperature and humidity is important for WSE containing formulations. This study may help in proposing suitable guidance for storage conditions and shelf life of ashwagandha formulations. (c) Georg Thieme Verlag KG Stuttgart . New York.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poettgen, Christoph, E-mail: christoph.poettgen@uk-essen.d; Eberhardt, Wilfried E.; Gauler, Thomas
2010-03-01
Purpose: To analyze the toxicity profile of an intensified definitive chemoradiotherapy (CRT) schedule in patients with locally advanced non-small-cell lung cancer (Stage IIIA N2/selected IIIB) treated within a prospective multicenter trial. Patients and Methods: After mediastinoscopy and routine staging procedures, three cycles of induction chemotherapy (cisplatin 50 mg/m{sup 2}, Days 1 and 8; paclitaxel 175 mg/m{sup 2} Day 1, every 21 days) were planned, followed by concurrent CRT (accelerated-hyperfractionated regimen, 45 Gy, 2 x 1.5 Gy/d, cisplatin 50 mg/m{sup 2}, Days 64 and 71, vinorelbine 20 mg/m{sup 2}, Days 64 and 71). At 45 Gy, a multidisciplinary panel decision wasmore » made regarding operability. Inoperable patients received definitive radiotherapy (total dose 65 or 71 Gy, depending on the mean lung dose) with additional concurrent chemotherapy (cisplatin 40 mg/m{sup 2}, Day 85; vinorelbine 15 mg/m{sup 2}, Days 85 and 92). Results: A total of 28 patients (23 men and 5 women; median age, 58 years; range 41-73; Stage IIIA in 3 and Stage IIIB in 25) were judged ineligible for surgery by the multidisciplinary panel and underwent definitive CRT (75% of the patients received 71 Gy). The maximum toxicity (Grade 3 or greater) during induction chemotherapy included leukopenia (11%) and anemia (4%). During concurrent CRT, leukopenia (Grade 3 or greater) was observed in 39% of the patients. The maximal nonhematologic toxicity during concurrent CRT included esophagitis (Grade 3 or greater) in 18% and pneumonitis (Grade 3 or greater) in 4% of the patients. At 3 years, the locoregional control rate was 52% (95% confidence interval, 29-75%) and the overall survival rate was 31% (95% confidence interval, 12-50%). Conclusion: This intensified treatment protocol with induction chemotherapy and concurrent CRT, including hyperfractionated-accelerated RT, showed only moderate toxicity and proved feasible. This treatment represents the definitive CRT arm of our ongoing multicenter randomized trial comparing definitive CRT and trimodality treatment.« less
Adimora, Adaora A; Schoenbach, Victor J; Taylor, Eboni M; Khan, Maria R; Schwartz, Robert J; Miller, William C
2013-11-01
Social and economic contextual factors may promote concurrent sexual partnerships, which can accelerate population HIV transmission and are more common among African Americans than U.S. Whites. We investigated the relationship between contextual factors and concurrency. We analyzed past 12-month concurrency prevalence in the 2002 National Survey of Family Growth and its contextual database in relation to county sex ratio (among respondent's racial and ethnic group), percentage in poverty (among respondent's racial and ethnic group), and violent crime rate. Analyses examined counties with balanced (0.95-1.05 males/female) or low (<0.9) sex ratios. Concurrency prevalence was greater (odds ratio [OR]; 95% confidence interval [CI]) in counties with low sex ratios (OR, 1.67; 95% CI, 1.17-2.39), more poverty (OR, 1.18; 95% CI, 0.98-1.42 per 10 percentage-point increase), and higher crime rates (OR, 1.04; 95% CI, 1.00-1.09 per 1000 population/year). Notably, 99.5% of Whites and 93.7% of Hispanics, but only 7.85% of Blacks, lived in balanced sex ratio counties; about 5% of Whites, half of Hispanics, and three-fourths of Blacks resided in counties with >20% same-race poverty. The dramatic Black-White differences in contextual factors in the United States and their association with sexual concurrency could contribute to the nation's profound racial disparities in HIV infection. Copyright © 2013 Elsevier Inc. All rights reserved.
Sweat, Noah W; Bates, Larry W; Hendricks, Peter S
2016-01-01
Developing methods for improving creativity is of broad interest. Classic psychedelics may enhance creativity; however, the underlying mechanisms of action are unknown. This study was designed to assess whether a relationship exists between naturalistic classic psychedelic use and heightened creative problem-solving ability and if so, whether this is mediated by lifetime mystical experience. Participants (N = 68) completed a survey battery assessing lifetime mystical experience and circumstances surrounding the most memorable experience. They were then administered a functional fixedness task in which faster completion times indicate greater creative problem-solving ability. Participants reporting classic psychedelic use concurrent with mystical experience (n = 11) exhibited significantly faster times on the functional fixedness task (Cohen's d = -.87; large effect) and significantly greater lifetime mystical experience (Cohen's d = .93; large effect) than participants not reporting classic psychedelic use concurrent with mystical experience. However, lifetime mystical experience was unrelated to completion times on the functional fixedness task (standardized β = -.06), and was therefore not a significant mediator. Classic psychedelic use may increase creativity independent of its effects on mystical experience. Maximizing the likelihood of mystical experience may need not be a goal of psychedelic interventions designed to boost creativity.
Possibility for ultra-bright electron beam acceleration in dielectric wakefield accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya I.; Carlsten, Bruce E.; Shchegolkov, Dmitry Yu.
2012-12-21
We describe a conceptual proposal to combine the Dielectric Wakefield Accelerator (DWA) with the Emittance Exchanger (EEX) to demonstrate a high-brightness DWA with a gradient of above 100 MV/m and less than 0.1% induced energy spread in the accelerated beam. We currently evaluate the DWA concept as a performance upgrade for the future LANL signature facility MaRIE with the goal of significantly reducing the electron beam energy spread. The preconceptual design for MaRIE is underway at LANL, with the design of the electron linear accelerator being one of the main research goals. Although generally the baseline design needs to bemore » conservative and rely on existing technology, any future upgrade would immediately call for looking into the advanced accelerator concepts capable of boosting the electron beam energy up by a few GeV in a very short distance without degrading the beam's quality. Scoping studies have identified large induced energy spreads as the major cause of beam quality degradation in high-gradient advanced accelerators for free-electron lasers. We describe simulations demonstrating that trapezoidal bunch shapes can be used in a DWA to greatly reduce the induced beam energy spread, and, in doing so, also preserve the beam brightness at levels never previously achieved. This concept has the potential to advance DWA technology to a level that would make it suitable for the upgrades of the proposed Los Alamos MaRIE signature facility.« less
Sanguineti, Giuseppe; Richetti, Antonella; Bignardi, Mario; Corvo', Renzo; Gabriele, Pietro; Sormani, Maria Pia; Antognoni, Paolo
2005-03-01
To determine whether, in the postoperative setting, accelerated fractionation (AF) radiotherapy (RT) yields a superior locoregional control rate compared with conventional fractionation (CF) RT in locally advanced squamous cell carcinomas of the oral cavity, oropharynx, larynx, or hypopharynx. Patients from four institutions with one or more high-risk features (pT4, positive resection margins, pN >1, perineural/lymphovascular invasion, extracapsular extension, subglottic extension) after surgery were randomly assigned to either RT with one daily session of 2 Gy up to 60 Gy in 6 weeks or AF. Accelerated fractionation consisted of a "biphasic concomitant boost" schedule, with the boost delivered during the first and last weeks of treatment, to deliver 64 Gy in 5 weeks. Informed consent was obtained. The primary endpoint of the study was locoregional control. Analysis was on an intention-to-treat basis. From March 1994 to August 2000, 226 patients were randomized. At a median follow-up of 30.6 months (range, 0-110 months), 2-year locoregional control estimates were 80% +/- 4% for CF and 78% +/- 5% for AF (p = 0.52), and 2-year overall survival estimates were 67% +/- 5% for CF and 64% +/- 5% for AF (p = 0.84). The lack of difference in outcome between the two treatment arms was confirmed by multivariate analysis. However, interaction analysis with median values as cut-offs showed a trend for improved locoregional control for those patients who had a delay in starting RT and who were treated with AF compared with those with a similar delay but who were treated with CF (hazard ratio = 0.5, 95% confidence interval 0.2-1.1). Fifty percent of patients treated with AF developed confluent mucositis, compared with only 27% of those treated with CF (p = 0.006). However, mucositis duration was not different between arms. Although preliminary, actuarial Grade 3+ late toxicity estimates at 2 years were 18% +/- 4% and 27% +/- 6% for CF and AF, respectively (p = 0.10). Accelerated fractionation does not seem to be worthwhile for squamous cell carcinoma of the head and neck after resection; however, AF might be an option for patients who delay starting RT.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moyer, Bruce A; Bonnesen, Peter V; Delmau, Laetitia Helene
2011-01-01
This paper describes the chemical performance of the Next-Generation Caustic-Side Solvent Extraction (NG-CSSX) process in its current state of development for removal of cesium from the alkaline high-level tank wastes at the Savannah River Site (SRS) in the US Department of Energy (USDOE) complex. Overall, motivation for seeking a major enhancement in performance for the currently deployed CSSX process stems from needs for accelerating the cleanup schedule and reducing the cost of salt-waste disposition. The primary target of the NG-CSSX development campaign in the past year has been to formulate a solvent system and to design a corresponding flowsheet thatmore » boosts the performance of the SRS Modular CSSX Unit (MCU) from a current minimum decontamination factor of 12 to 40,000. The chemical approach entails use of a more soluble calixarene-crown ether, called MaxCalix, allowing the attainment of much higher cesium distribution ratios (DCs) on extraction. Concurrently decreasing the Cs-7SB modifier concentration is anticipated to promote better hydraulics. A new stripping chemistry has been devised using a vitrification-friendly aqueous boric acid strip solution and a guanidine suppressor in the solvent, resulting in sharply decreased DCs on stripping. Results are reported herein on solvent phase behavior and batch Cs distribution for waste simulants and real waste together with a preliminary flowsheet applicable for implementation in the MCU. The new solvent will enable MCU to process a much wider range of salt feeds and thereby extend its service lifetime beyond its design life of three years. Other potential benefits of NG-CSSX include increased throughput of the SRS Salt Waste Processing Facility (SWPF), currently under construction, and an alternative modular near-tank application at Hanford.« less
Adaptive control for accelerators
Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.
1991-01-01
An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.
Dynamically Reconfigurable Systolic Array Accelerator
NASA Technical Reports Server (NTRS)
Dasu, Aravind; Barnes, Robert
2012-01-01
A polymorphic systolic array framework has been developed that works in conjunction with an embedded microprocessor on a field-programmable gate array (FPGA), which allows for dynamic and complimentary scaling of acceleration levels of two algorithms active concurrently on the FPGA. Use is made of systolic arrays and a hardware-software co-design to obtain an efficient multi-application acceleration system. The flexible and simple framework allows hosting of a broader range of algorithms, and is extendable to more complex applications in the area of aerospace embedded systems. FPGA chips can be responsive to realtime demands for changing applications needs, but only if the electronic fabric can respond fast enough. This systolic array framework allows for rapid partial and dynamic reconfiguration of the chip in response to the real-time needs of scalability, and adaptability of executables.
Noah J. Karberg; Erik A. Lilleskov
2008-01-01
Exotic European earthworms have expanded into worm-free forests of the United States. Concurrently, populations of the white-tailed deer, Odocoileus virginianus, have also increased. During winter, deer use hemlock stands for cover while browsing elsewhere, creating a net organic matter flux into these stands. Deer fecal pellets can provide annual...
Concurrent Enrollment: Comparing How Educators and Students Categorize Students' Motivations
ERIC Educational Resources Information Center
Dare, Alec; Dare, Lynn; Nowicki, Elizabeth
2017-01-01
High-ability students have special education needs that are often overlooked or misunderstood (Blaas in "Aust J Guid Couns" 24(2):243-255, 2014) which may result in talent loss (Saha and Sikora in "Int J Contemp Sociol Discuss J Contemp Ideas Res" 48(1):9-34, 2011). Educational acceleration can help avoid these circumstances…
Modeling Learning and Memory Using Verbal Learning Tests: Results From ACTIVE
Gross, Alden L.
2013-01-01
Objective. To investigate the influence of memory training on initial recall and learning. Method. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Results. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen’s d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. Discussion. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning. PMID:22929389
Modeling learning and memory using verbal learning tests: results from ACTIVE.
Gross, Alden L; Rebok, George W; Brandt, Jason; Tommet, Doug; Marsiske, Michael; Jones, Richard N
2013-03-01
To investigate the influence of memory training on initial recall and learning. The Advanced Cognitive Training for Independent and Vital Elderly study of community-dwelling adults older than age 65 (n = 1,401). We decomposed trial-level recall in the Auditory Verbal Learning Test (AVLT) and Hopkins Verbal Learning Test (HVLT) into initial recall and learning across trials using latent growth models. Trial-level increases in words recalled in the AVLT and HVLT at each follow-up visit followed an approximately logarithmic shape. Over the 5-year study period, memory training was associated with slower decline in Trial 1 AVLT recall (Cohen's d = 0.35, p = .03) and steep pre- and posttraining acceleration in learning (d = 1.56, p < .001). Findings were replicated using the HVLT (decline in initial recall, d = 0.60, p = .01; pre- and posttraining acceleration in learning, d = 3.10, p < .001). Because of the immediate training boost, the memory-trained group had a higher level of recall than the control group through the end of the 5-year study period despite faster decline in learning. This study contributes to the understanding of the mechanisms by which training benefits memory and expands current knowledge by reporting long-term changes in initial recall and learning, as measured from growth models and by characterization of the impact of memory training on these components. Results reveal that memory training delays the worsening of memory span and boosts learning.
Gaussian Accelerated Molecular Dynamics: Theory, Implementation, and Applications
Miao, Yinglong; McCammon, J. Andrew
2018-01-01
A novel Gaussian Accelerated Molecular Dynamics (GaMD) method has been developed for simultaneous unconstrained enhanced sampling and free energy calculation of biomolecules. Without the need to set predefined reaction coordinates, GaMD enables unconstrained enhanced sampling of the biomolecules. Furthermore, by constructing a boost potential that follows a Gaussian distribution, accurate reweighting of GaMD simulations is achieved via cumulant expansion to the second order. The free energy profiles obtained from GaMD simulations allow us to identify distinct low energy states of the biomolecules and characterize biomolecular structural dynamics quantitatively. In this chapter, we present the theory of GaMD, its implementation in the widely used molecular dynamics software packages (AMBER and NAMD), and applications to the alanine dipeptide biomolecular model system, protein folding, biomolecular large-scale conformational transitions and biomolecular recognition. PMID:29720925
Automatic choroid cells segmentation and counting in fluorescence microscopic image
NASA Astrophysics Data System (ADS)
Fei, Jianjun; Zhu, Weifang; Shi, Fei; Xiang, Dehui; Lin, Xiao; Yang, Lei; Chen, Xinjian
2016-03-01
In this paper, we proposed a method to automatically segment and count the rhesus choroid-retinal vascular endothelial cells (RF/6A) in fluorescence microscopic images which is based on shape classification, bottleneck detection and accelerated Dijkstra algorithm. The proposed method includes four main steps. First, a thresholding filter and morphological operations are applied to reduce the noise. Second, a shape classifier is used to decide whether a connected component is needed to be segmented. In this step, the AdaBoost classifier is applied with a set of shape features. Third, the bottleneck positions are found based on the contours of the connected components. Finally, the cells segmentation and counting are completed based on the accelerated Dijkstra algorithm with the gradient information between the bottleneck positions. The results show the feasibility and efficiency of the proposed method.
Naci, Huseyin; Wouters, Olivier J; Gupta, Radhika; Ioannidis, John P A
2017-06-01
Policy Points: Randomized trials-the gold standard of evaluating effectiveness-constitute a small minority of existing evidence on agents given accelerated approval. One-third of randomized trials are in therapeutic areas outside of FDA approval and less than half evaluate the therapeutic benefits of these agents but use them instead as common backbone treatments. Agents receiving accelerated approval are often tested concurrently in several therapeutic areas. For most agents, no substantial time lag is apparent between the average start dates of randomized trials evaluating their effectiveness and those using them as part of background therapies. There appears to be a tendency for therapeutic agents receiving accelerated approval to quickly become an integral component of standard treatment, despite potential shortcomings in their evidence base. Therapeutic agents treating serious conditions are eligible for Food and Drug Administration (FDA) accelerated approval. The clinical evidence accrued on agents receiving accelerated approval has not been systematically evaluated. Our objective was to assess the timing and characteristics of available studies. We first identified clinical studies of novel therapeutic agents receiving accelerated approval. We then (1) categorized those studies as randomized or nonrandomized, (2) explored whether they evaluated the FDA-approved indications, and (3) documented the available treatment comparisons. We also meta-analyzed the difference in start times between randomized studies that (1) did or did not evaluate approved indications and (2) were or were not designed to evaluate the agent's effectiveness. In total, 37 novel therapeutic agents received accelerated approval between 2000 and 2013. Our search of ClinicalTrials.gov identified 7,757 studies, which included 1,258,315 participants. Only one-third of identified studies were randomized controlled trials. Of 1,631 randomized trials with advanced recruitment status, 906 were conducted in therapeutic areas for which agents received initial accelerated approval, 202 were in supplemental indications, and 523 were outside approved indications. Only 411 out of 906 (45.4%) trials were designed to test the effectiveness of agents that received accelerated approval ("evaluation" trials); others used these agents as common background treatment in both arms ("background" trials). There was no detectable lag between average start times of trials conducted within and outside initially approved indications. Evaluation trials started on average 1.52 years (95% CI: 0.87 to 2.17) earlier than background trials. Cumulative evidence on agents with accelerated approvals has major limitations. Most clinical studies including these agents are small and nonrandomized, and about a third are conducted in unapproved areas, typically concurrently with those conducted in approved areas. Most randomized trials including these therapeutic agents are not designed to directly evaluate their clinical benefits but to incorporate them as standard treatment. © 2017 Milbank Memorial Fund.
Adaptive accelerated ReaxFF reactive dynamics with validation from simulating hydrogen combustion.
Cheng, Tao; Jaramillo-Botero, Andrés; Goddard, William A; Sun, Huai
2014-07-02
We develop here the methodology for dramatically accelerating the ReaxFF reactive force field based reactive molecular dynamics (RMD) simulations through use of the bond boost concept (BB), which we validate here for describing hydrogen combustion. The bond order, undercoordination, and overcoordination concepts of ReaxFF ensure that the BB correctly adapts to the instantaneous configurations in the reactive system to automatically identify the reactions appropriate to receive the bond boost. We refer to this as adaptive Accelerated ReaxFF Reactive Dynamics or aARRDyn. To validate the aARRDyn methodology, we determined the detailed sequence of reactions for hydrogen combustion with and without the BB. We validate that the kinetics and reaction mechanisms (that is the detailed sequences of reactive intermediates and their subsequent transformation to others) for H2 oxidation obtained from aARRDyn agrees well with the brute force reactive molecular dynamics (BF-RMD) at 2498 K. Using aARRDyn, we then extend our simulations to the whole range of combustion temperatures from ignition (798 K) to flame temperature (2998K), and demonstrate that, over this full temperature range, the reaction rates predicted by aARRDyn agree well with the BF-RMD values, extrapolated to lower temperatures. For the aARRDyn simulation at 798 K we find that the time period for half the H2 to form H2O product is ∼538 s, whereas the computational cost was just 1289 ps, a speed increase of ∼0.42 trillion (10(12)) over BF-RMD. In carrying out these RMD simulations we found that the ReaxFF-COH2008 version of the ReaxFF force field was not accurate for such intermediates as H3O. Consequently we reoptimized the fit to a quantum mechanics (QM) level, leading to the ReaxFF-OH2014 force field that was used in the simulations.
NASA Astrophysics Data System (ADS)
Spence, Harlan; Reeves, Geoffrey
2012-07-01
The Radiation Belt Storm Probes (RBSP) mission will launch in late summer 2012 and begin its exploration of acceleration and dynamics of energetic particles in the inner magnetosphere. In this presentation, we discuss opportunities afforded by the RBSP Energetic Particle, Composition, and Thermal plasma (ECT) instrument suite to advance our understanding of acceleration processes in the radiation belts. The RBSP-ECT instrument suite comprehensively measures the electron and major ion populations of the inner magnetosphere, from the lowest thermal plasmas of the plasmasphere, to the hot plasma of the ring current, to the relativistic populations of the radiation belts. Collectively, the ECT measurements will reveal the complex cross-energy coupling of these colocated particle populations, which along with concurrent RBSP wave measurements, will permit various wave-particle acceleration mechanisms to be tested. We review the measurement capabilities of the RBSP-ECT instrument suite, and demonstrate several examples of how these measurements will be used to explore candidate acceleration mechanisms and dynamics of radiation belt particles.
Latina, Andrea
2017-12-11
The CLIC study is exploring the scheme for an electron-positron collider with a centre-of-mass energy of 3 TeV in order to make the multi-TeV range accessible for physics. The current goal of the project is to demonstrate the feasibility of the technology by the year 2010. Recently, important progress has been made concerning the high-gradient accelerating structure tests and the experiments with beam in the CLIC test facility, CTF3. On the organizational side, the CLIC international collaborations have significantly gained momentum, boosting the CLIC study.
Momentum dependence in pair production by an external field
NASA Astrophysics Data System (ADS)
Asakawa, M.
1992-08-01
The transverse and the longitudinal momentum dependences of the pair production under an adiabatically exerted uniform abelian external field are calculated with their importance in models for the production of quark-gluon plasma in ultrarelativistic heavy ion collisions in mind. The importance of the initial condition is revealed. We show that superposition of acceleration by the external field and barrier penetration is reflected in the longitudinal momentum dependence. The peculiar nature of the boost invariant system which is expected to be approximately realized in ultrarelativistic nuclear collisions is pointed out.
NASA Astrophysics Data System (ADS)
McClure, J. E.; Prins, J. F.; Miller, C. T.
2014-07-01
Multiphase flow implementations of the lattice Boltzmann method (LBM) are widely applied to the study of porous medium systems. In this work, we construct a new variant of the popular "color" LBM for two-phase flow in which a three-dimensional, 19-velocity (D3Q19) lattice is used to compute the momentum transport solution while a three-dimensional, seven velocity (D3Q7) lattice is used to compute the mass transport solution. Based on this formulation, we implement a novel heterogeneous GPU-accelerated algorithm in which the mass transport solution is computed by multiple shared memory CPU cores programmed using OpenMP while a concurrent solution of the momentum transport is performed using a GPU. The heterogeneous solution is demonstrated to provide speedup of 2.6 × as compared to multi-core CPU solution and 1.8 × compared to GPU solution due to concurrent utilization of both CPU and GPU bandwidths. Furthermore, we verify that the proposed formulation provides an accurate physical representation of multiphase flow processes and demonstrate that the approach can be applied to perform heterogeneous simulations of two-phase flow in porous media using a typical GPU-accelerated workstation.
Spatial distribution of pulmonary blood flow in dogs in increased force environments
NASA Technical Reports Server (NTRS)
Greenleaf, J. F.; Ritman, E. L.; Chevalier, P. A.; Sass, D. J.; Wood, E. H.
1978-01-01
Spatial distribution of pulmonary blood flow during 2- to 3-min exposures to 6-8 Gy acceleration was studied, using radioactive microspheres in dogs, and compared to previously reported 1 Gy control distributions. Isotope distributions were measured by scintiscanning individual 1-cm-thick cross sections of excised, fixed lungs. Results indicate: (1) the fraction of cardiac output traversing left and right lungs did not change systematically with the duration and magnitude of acceleration; but (2) the fraction is strongly affected by the occurrence or absence of fast deep breaths, which cause an increase or decrease, respectively, in blood flow through the dependent lung; and (3) Gy acceleration caused a significant increase in relative pulmonary vascular resistance (PVR) in nondependent and dependent regions of the lung concurrent with a decrease in PVR in the midsagittal region of the thorax.
Speculation and replication in temperature accelerated dynamics
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
2018-02-12
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
Production Level CFD Code Acceleration for Hybrid Many-Core Architectures
NASA Technical Reports Server (NTRS)
Duffy, Austen C.; Hammond, Dana P.; Nielsen, Eric J.
2012-01-01
In this work, a novel graphics processing unit (GPU) distributed sharing model for hybrid many-core architectures is introduced and employed in the acceleration of a production-level computational fluid dynamics (CFD) code. The latest generation graphics hardware allows multiple processor cores to simultaneously share a single GPU through concurrent kernel execution. This feature has allowed the NASA FUN3D code to be accelerated in parallel with up to four processor cores sharing a single GPU. For codes to scale and fully use resources on these and the next generation machines, codes will need to employ some type of GPU sharing model, as presented in this work. Findings include the effects of GPU sharing on overall performance. A discussion of the inherent challenges that parallel unstructured CFD codes face in accelerator-based computing environments is included, with considerations for future generation architectures. This work was completed by the author in August 2010, and reflects the analysis and results of the time.
Speculation and replication in temperature accelerated dynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zamora, Richard J.; Perez, Danny; Voter, Arthur F.
Accelerated Molecular Dynamics (AMD) is a class of MD-based algorithms for the long-time scale simulation of atomistic systems that are characterized by rare-event transitions. Temperature-Accelerated Dynamics (TAD), a traditional AMD approach, hastens state-to-state transitions by performing MD at an elevated temperature. Recently, Speculatively-Parallel TAD (SpecTAD) was introduced, allowing the TAD procedure to exploit parallel computing systems by concurrently executing in a dynamically generated list of speculative future states. Although speculation can be very powerful, it is not always the most efficient use of parallel resources. In this paper, we compare the performance of speculative parallelism with a replica-based technique, similarmore » to the Parallel Replica Dynamics method. A hybrid SpecTAD approach is also presented, in which each speculation process is further accelerated by a local set of replicas. Finally and overall, this work motivates the use of hybrid parallelism whenever possible, as some combination of speculation and replication is typically most efficient.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun
Purpose: To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Methods and Materials: Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks.more » Results: After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). Conclusions: AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery.« less
Kim, Ja Young; Jung, So-Youn; Lee, Seeyoun; Kang, Han-Sung; Lee, Eun Sook; Park, In Hae; Lee, Keun Seok; Ro, Jungsil; Lee, Nam Kwon; Shin, Kyung Hwan
2013-12-01
To report a phase 2 trial of accelerated, hypofractionated whole-breast irradiation (AH-WBI) delivered as a daily dose of 3 Gy to the whole breast followed by a tumor bed boost. Two hundred seventy-six patients diagnosed with breast cancer (pT1-2 and pN0-1a) who had undergone breast-conserving surgery in which the operative margins were negative were treated with AH-WBI delivered as 39 Gy in 13 fractions of 3 Gy to the whole breast once daily over 5 consecutive working days, and 9 Gy in 3 sequential fractions of 3 Gy to a lumpectomy cavity, all within 3.2 weeks. After a median follow-up period of 57 months (range: 27-75 months), the rate of 5-year locoregional recurrence was 1.4% (n=4), whereas that of disease-free survival was 97.4%. No grade 3 skin toxicity was reported during the follow-up period. Qualitative physician cosmetic assessments of good or excellent were noted in 82% of the patients at 2 months after the completion of AH-WBI. The global cosmetic outcome did not worsen over time, and a good or excellent cosmetic outcome was reported in 82% of the patients at 3 years. The mean pretreatment percentage breast retraction assessment was 12.00 (95% confidence interval [CI]: 11.14-12.86). The mean value of percentage breast retraction assessment increased to 13.99 (95% CI: 12.17-15.96) after 1 year and decreased to 13.54 (95% CI: 11.84-15.46) after 3 years but was not significant (P>.05). AH-WBI consisting of 39 Gy in 13 fractions followed by a tumor bed boost sequentially delivering 9 Gy in 3 fractions can be delivered with excellent disease control and tolerable skin toxicity in patients with early-stage breast cancer after breast-conserving surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Livi, Lorenzo; Saieva, Calogero; Borghesi, Simona
2008-07-01
Purpose: The optimal sequencing of adjuvant chemotherapy (CT) and radiation therapy (RT) in patients with early-stage breast cancer remains unclear. Patients and Methods: We retrospectively compared 485 patients treated with conservative breast surgery and postoperative whole-breast RT and six courses of CMF (cyclophosphamide 600 mg/m{sup 2}, methotrexate 40 mg/m{sup 2}, and 5-fluorouracil 600 mg/m{sup 2}) with 300 patients who received postoperative CMF only and with 509 patients treated with postoperative whole-breast RT only. The mean radiation dose delivered was 50 Gy (range, 46-52 Gy) with standard fractionation. The boost dose was 6-16 Gy according to resection margins and at themore » discretion of the radiation oncologist. Acute and late RT toxicity were scored using respectively the Radiation Therapy Oncology Group and the Late Effects in Normal Tissues Subjective, Objective, Management and Analytic scale. Results: A slightly higher Grade 2 acute skin toxicity was recorded in the concurrent group (21.2% vs. 11.2% of the RT only group, p < 0.0001). RT was interrupted more frequently in the CMF/RT group respective to the RT group (8.5% vs. 4.1%; p = 0.006). There was no difference in late toxicity between the two groups. All patients in the concurrent group successfully received the planned dose of RT and CT. Local recurrence rate was 7.6% in CT/RT group and 9.8% in RT group; this difference was not statistically significant at univariate analysis (log-rank test p = 0.98). However, at multivariate analysis adjusted also for pathological tumor, pathological nodes, and age, the CT/RT group showed a statistically lower rate of local recurrence (p = 0.04). Conclusions: Whole-breast RT and concurrent CMF are a safe adjuvant treatment in terms of toxicity.« less
Femtosecond dynamics of energetic electrons in high intensity laser-matter interactions
NASA Astrophysics Data System (ADS)
Pompili, R.; Anania, M. P.; Bisesto, F.; Botton, M.; Castellano, M.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Ferrario, M.; Galletti, M.; Henis, Z.; Petrarca, M.; Schleifer, E.; Zigler, A.
2016-10-01
Highly energetic electrons are generated at the early phases of the interaction of short-pulse high-intensity lasers with solid targets. These escaping particles are identified as the essential core of picosecond-scale phenomena such as laser-based acceleration, surface manipulation, generation of intense magnetic fields and electromagnetic pulses. Increasing the number of the escaping electrons facilitate the late time processes in all cases. Up to now only indirect evidences of these important forerunners have been recorded, thus no detailed study of the governing mechanisms was possible. Here we report, for the first time, direct time-dependent measurements of energetic electrons ejected from solid targets by the interaction with a short-pulse high-intensity laser. We measured electron bunches up to 7 nanocoulombs charge, picosecond duration and 12 megaelectronvolts energy. Our ’snapshots’ capture their evolution with an unprecedented temporal resolution, demonstrat- ing a significant boost in charge and energy of escaping electrons when increasing the geometrical target curvature. These results pave the way toward significant improvement in laser acceleration of ions using shaped targets allowing the future development of small scale laser-ion accelerators.
Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy.
Hansen, Benjamin J; Liu, Ying; Yang, Rusen; Wang, Zhong Lin
2010-07-27
Harvesting energy from multiple sources available in our personal and daily environments is highly desirable, not only for powering personal electronics, but also for future implantable sensor-transmitter devices for biomedical and healthcare applications. Here we present a hybrid energy scavenging device for potential in vivo applications. The hybrid device consists of a piezoelectric poly(vinylidene fluoride) nanofiber nanogenerator for harvesting mechanical energy, such as from breathing or from the beat of a heart, and a flexible enzymatic biofuel cell for harvesting the biochemical (glucose/O2) energy in biofluid, which are two types of energy available in vivo. The two energy harvesting approaches can work simultaneously or individually, thereby boosting output and lifetime. Using the hybrid device, we demonstrate a "self-powered" nanosystem by powering a ZnO nanowire UV light sensor.
Ahlawat, Stuti; Haffty, Bruce G; Goyal, Sharad; Kearney, Thomas; Kirstein, Laurie; Chen, Chunxia; Moore, Dirk F; Khan, Atif J
2016-01-01
Conventionally fractionated whole-breast irradiation (WBI) with a boost takes approximately 6 to 7 weeks. We evaluated a short course of hypofractionated (HF), accelerated WBI in which therapy was completed in 3 weeks inclusive of a sequential boost. We delivered a whole-breast dose of 36.63 Gy in 11 fractions of 3.33 Gy over 11 days, followed by a lumpectomy bed boost in 4 fractions of 3.33 Gy delivered once daily for a total of 15 treatment days. Acute toxicities were scored using Common Terminology Criteria for Adverse Events version 4. Late toxicities were scored using the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer scale. Cosmesis was scored using the Harvard Cosmesis Scale. Our primary endpoint was freedom from locoregional failure; we incorporated early stopping criteria based on predefined toxicity thresholds. Cosmesis was examined as a secondary endpoint. We enrolled 83 women with stages 0 to IIIa breast cancer. After a median follow-up of 40 months, 2 cases of isolated ipsilateral breast tumor recurrence occurred (2 of 83; crude rate, 2.4%). Three-year estimated local recurrence-free survival was 95.9% (95% confidence interval [CI]: 87.8%-98.7%). The 3-year estimated distant recurrence-free survival was 97.3% (95% CI: 89.8%-99.3%). Three-year secondary malignancy-free survival was 94.3% (95% CI: 85.3%-97.8%). Twenty-nine patients (34%) had grade 2 acute toxicity, and 1 patient had a late grade 2 toxicity (fibrosis). One patient had acute grade 3 dermatitis, whereas 2 patients experienced grade 3 late skin toxicity. Ninety-four percent of evaluable patients had good or excellent cosmesis. Our phase 2 institutional study offers one of the shortest courses of HF therapy, delivered in 15 fractions inclusive of a sequential boost. We demonstrated expected low toxicity and high local control rates with good to excellent cosmetic outcomes. This fractionation scheme is feasible and well tolerated and offers women WBI in a highly convenient schedule. Copyright © 2016 Elsevier Inc. All rights reserved.
Boosting laser-ion acceleration with multi-picosecond pulses
Yogo, A.; Mima, K.; Iwata, N.; Tosaki, S.; Morace, A.; Arikawa, Y.; Fujioka, S.; Johzaki, T.; Sentoku, Y.; Nishimura, H.; Sagisaka, A.; Matsuo, K.; Kamitsukasa, N.; Kojima, S.; Nagatomo, H.; Nakai, M.; Shiraga, H.; Murakami, M.; Tokita, S.; Kawanaka, J.; Miyanaga, N.; Yamanoi, K.; Norimatsu, T.; Sakagami, H.; Bulanov, S. V.; Kondo, K.; Azechi, H.
2017-01-01
Using one of the world most powerful laser facility, we demonstrate for the first time that high-contrast multi-picosecond pulses are advantageous for proton acceleration. By extending the pulse duration from 1.5 to 6 ps with fixed laser intensity of 1018 W cm−2, the maximum proton energy is improved more than twice (from 13 to 33 MeV). At the same time, laser-energy conversion efficiency into the MeV protons is enhanced with an order of magnitude, achieving 5% for protons above 6 MeV with the 6 ps pulse duration. The proton energies observed are discussed using a plasma expansion model newly developed that takes the electron temperature evolution beyond the ponderomotive energy in the over picoseconds interaction into account. The present results are quite encouraging for realizing ion-driven fast ignition and novel ion beamlines. PMID:28211913
High-Speed Video Analysis in a Conceptual Physics Class
NASA Astrophysics Data System (ADS)
Desbien, Dwain M.
2011-09-01
The use of probe ware and computers has become quite common in introductory physics classrooms. Video analysis is also becoming more popular and is available to a wide range of students through commercially available and/or free software.2,3 Video analysis allows for the study of motions that cannot be easily measured in the traditional lab setting and also allows real-world situations to be analyzed. Many motions are too fast to easily be captured at the standard video frame rate of 30 frames per second (fps) employed by most video cameras. This paper will discuss using a consumer camera that can record high-frame-rate video in a college-level conceptual physics class. In particular this will involve the use of model rockets to determine the acceleration during the boost period right at launch and compare it to a simple model of the expected acceleration.
Zhao, Tuo; Liu, Han
2016-01-01
We propose an accelerated path-following iterative shrinkage thresholding algorithm (APISTA) for solving high dimensional sparse nonconvex learning problems. The main difference between APISTA and the path-following iterative shrinkage thresholding algorithm (PISTA) is that APISTA exploits an additional coordinate descent subroutine to boost the computational performance. Such a modification, though simple, has profound impact: APISTA not only enjoys the same theoretical guarantee as that of PISTA, i.e., APISTA attains a linear rate of convergence to a unique sparse local optimum with good statistical properties, but also significantly outperforms PISTA in empirical benchmarks. As an application, we apply APISTA to solve a family of nonconvex optimization problems motivated by estimating sparse semiparametric graphical models. APISTA allows us to obtain new statistical recovery results which do not exist in the existing literature. Thorough numerical results are provided to back up our theory. PMID:28133430
Development of a multiplexed electrospray micro-thruster with post-acceleration and beam containment
NASA Astrophysics Data System (ADS)
Lenguito, G.; Gomez, A.
2013-10-01
We report the development of a compact thruster based on Multiplexed ElectroSprays (MES). It relied on a microfabricated Si array of emitters coupled with an extractor electrode and an accelerator electrode. The accelerator stage was introduced for two purposes: containing beam opening and avoiding electrode erosion due to droplet impingement, as well as boosting specific impulse and thrust. Multiplexing is generally necessary as a thrust multiplier to reach eventually the level required (O(102) μN) by small satellites. To facilitate system optimization and debugging, we focused on a 7-nozzle MES device and compared its performance to that of a single emitter. To ensure uniformity of operation of all nozzles their hydraulic impedance was augmented by packing them with micrometer-size beads. Two propellants were tested: a solution of 21.5% methyl ammonium formate in formamide and the better performing pure ionic liquid ethyl ammonium nitrate (EAN). The 7-MES device spraying EAN at ΔV = 5.93 kV covered a specific impulse range from 620 s to 1900 s and a thrust range from 0.6 μN to 5.4 μN, at 62% efficiency. Remarkably, less than 1% of the beam was demonstrated to impact on the accelerator electrode, which bodes well for long-term applications in space.
Radioactive ion beam acceleration at MAFF
NASA Astrophysics Data System (ADS)
Pasini, M.; Kester, O.; Habs, D.; Groß, M.; Sieber, T.; Maier, H. J.; Assmann, W.; Krüken, R.; Faestermann, T.; Schempp, A.; Ratzinger, U.; Safvan, C. P.
2004-12-01
In April 2003, the German safety commission has given the final approval for the oper- ation of the high flux reactor FRM-II. This is an important step towards the development and installation of the Munich accelerator for fission fragments (MAFF), which will deliver highest intensities of neutron rich fission fragments. The acceleration chain of MAFF [1] consists of a charge breeder, which will deliver the ions with a mass to charge ratio of A/q ⩽ 6.3 irrespective of the mass range, and with a repetition rate of maximum 50 Hz. The LINAC operating at 10% duty cycle is composed of a 101.28 IH-RFQ, which will boost up the energy from 2.5 up to 300 keV/u, three IH-tanks that will deliver an energy of 5.4 MeV/u and 2 seven gap IH-resonators that are used to vary the final energy up to a maximum of 5.9 MeV/u. Currently beam dynamics revisions are in progress especially in the low energy section, since the experimental program has requested specific time structures of the beam for TOF experiments. The status of the beam dynamics studies as well as the status of the single components of the accelerator will be presented in this paper.
Hypersonic MHD Propulsion System Integration for the Mercury Lightcraft
NASA Astrophysics Data System (ADS)
Myrabo, L. N.; Rosa, R. J.
2004-03-01
Introduced herein are the design, systems integration, and performance analysis of an exotic magnetohydrodynamic (MHD) slipstream accelerator engine for a single-occupant ``Mercury'' lightcraft. This ultra-energetic, laser-boosted vehicle is designed to ride a `tractor beam' into space, transmitted from a future orbital network of satellite solar power stations. The lightcraft's airbreathing combined-cycle engine employs a rotary pulsed detonation thruster mode for lift-off & landing, and an MHD slipstream accelerator mode at hypersonic speeds. The latter engine transforms the transatmospheric acceleration path into a virtual electromagnetic `mass-driver' channel; the hypersonic momentum exchange process (with the atmosphere) enables engine specific impulses in the range of 6000 to 16,000 seconds, and propellant mass fractions as low as 10%. The single-stage-to-orbit, highly reusable lightcraft can accelerate at 3 Gs into low Earth orbit with its throttle just barely beyond `idle' power, or virtually `disappear' at 30 G's and beyond. The objective of this advanced lightcraft design is to lay the technological foundations for a safe, very low cost (e.g., 1000X below chemical rockets) air and space transportation for human life in the mid-21st Century - a system that will be completely `green' and independent of Earth's limited fossil fuel reserves.
Markant, Julie; Worden, Michael S.; Amso, Dima
2015-01-01
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive driving eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location will boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, Rafal, & Choate, 1985; Posner, 1980) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. PMID:25701278
Modality specificity and integration in working memory: Insights from visuospatial bootstrapping.
Allen, Richard J; Havelka, Jelena; Falcon, Thomas; Evans, Sally; Darling, Stephen
2015-05-01
The question of how meaningful associations between verbal and spatial information might be utilized to facilitate working memory performance is potentially highly instructive for models of memory function. The present study explored how separable processing capacities within specialized domains might each contribute to this, by examining the disruptive impacts of simple verbal and spatial concurrent tasks on young adults' recall of visually presented digit sequences encountered either in a single location or within a meaningful spatial "keypad" configuration. The previously observed advantage for recall in the latter condition (the "visuospatial bootstrapping effect") consistently emerged across 3 experiments, indicating use of familiar spatial information in boosting verbal memory. The magnitude of this effect interacted with concurrent activity; articulatory suppression during encoding disrupted recall to a greater extent when digits were presented in single locations (Experiment 1), while spatial tapping during encoding had a larger impact on the keypad condition and abolished the visuospatial bootstrapping advantage (Experiment 2). When spatial tapping was performed during recall (Experiment 3), no task by display interaction was observed. Outcomes are discussed within the context of the multicomponent model of working memory, with a particular emphasis on cross-domain storage in the episodic buffer (Baddeley, 2000). (c) 2015 APA, all rights reserved).
Li, L; Ng, T B; Song, M; Yuan, F; Liu, Z K; Wang, C L; Jiang, Y; Fu, M; Liu, F
2007-06-01
The antioxidant effects of a polysaccharide-peptide complex (F22) from mushroom (Pleurotus abalonus)-fruiting bodies were studied. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in the liver, kidney, and brain of senescence-accelerated mice showed a marked increase after treatment with the polysaccharide-peptide complex. Concurrently, the gene expression levels of SOD, CAT, and GPx, as determined with real-time polymerase chain reaction, were up-regulated in the liver, kidney, and brain, whereas the MDA content in these organs declined. The maximal lifespan of the mice was prolonged.
NASA Astrophysics Data System (ADS)
Yang, Chao; Song, Jian; Li, Liang; Li, Shengbo; Cao, Dongpu
2016-08-01
This paper presents an economical launching and accelerating mode, including four ordered phases: pure electrical driving, clutch engagement and engine start-up, engine active charging, and engine driving, which can be fit for the alternating conditions and improve the fuel economy of hybrid electric bus (HEB) during typical city-bus driving scenarios. By utilizing the fast response feature of electric motor (EM), an adaptive controller for EM is designed to realize the power demand during the pure electrical driving mode, the engine starting mode and the engine active charging mode. Concurrently, the smoothness issue induced by the sequential mode transitions is solved with a coordinated control logic for engine, EM and clutch. Simulation and experimental results show that the proposed launching and accelerating mode and its control methods are effective in improving the fuel economy and ensure the drivability during the fast transition between the operation modes of HEB.
Xu, Yujin; Wang, Zhun; Liu, Guan; Zheng, Xiao; Wang, Yuezhen; Feng, Wei; Lai, Xiaojing; Zhou, Xia; Li, Pu; Ma, Honglian; Wang, Jin; Hu, Xiao; Chen, Ming
2016-10-01
To evaluate the clinical efficacy and toxicity of simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) in patients with esophageal squamous cell carcinoma (ESCC) in Chinese population. Patients with ESCC, who received SIB-IMRT from September 2011 to January 2013 were retrospectively analyzed. The SIB-IMRT plans were designed to deliver primary gross tumor volume at 60-64.4 Gy in 28-30 fractions, and planning target volume at 50.4-56 Gy in 28-30 fractions. Treatment-related toxicities were estimated based on Common Terminology Criteria for Adverse Events version 4.0, and tumor response after the treatment was estimated according to Response Evaluation Criteria in Solid Tumors version 1.0. Overall survival (OS), locoregional progression-free survival (LPFS), and progression-free survival (PFS) were estimated with Kaplan-Meier. All patients completed definitive radiotherapy, 54 (78.3%) received combined chemotherapy, of which 31 (44.9%) were concurrent chemoradiotherapy and 23 (33.3%) were sequential chemotherapy. The objective response rate is 82.6% (56/69), with complete response 11 (15.9%), partial response 45 (65.2%), stable disease 8 (11.6%), and progressive disease 5 (7.2%). The 1-, 2- and 3-year LPFS was 74.4%, 57.8%, and 55.6%, respectively. The 1-, 2- and 3-year PFS was 62.3%, 41.0%, and 34.2%, respectively, and the 1-, 2-, and 3-year OS was 73.8%, 57.4%, and 41.0%, respectively, with a median OS of 27.1 months (4.5-54.9 m). For those who received concurrent chemotherapy, the 1-, 2-, and 3-year OS was 75.9%, 69.0%, and 55.2%, respectively, better than those who had sequential chemotherapy or radiotherapy alone (χ2 = 3.115, P = 0.078). Radiation esophagitis occurred in 63.8% and 14.5% with Grade 2 and 3, respectively. No patients occurred ≥ Grade 3 radiation pneumonia. It is safe and effective using SIB-IMRT technology to treat patients with ESCC. More prospective clinical studies should be needed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, D.W.; Safai, C.; Goffinet, D.R.
Eleven patients with obstructive jaundice from unresectable cholangiocarcinoma, metastatic porta hepatis adenopathy, or direct compression from a pancreatic malignancy were treated at the Stanford University Medical Center from 1978-1983 with an external drainage procedure followed by high-dose external-beam radiotherapy and by an intracavitary boost to the site of obstruction with Iridium/sup 192/ (Ir/sup 192/). A median dose of 5000 cGy was delivered with 4-6 Mv photons to the tumor bed and regional lymphatics in 9 patients, 1 patient received 2100 cGy to the liver in accelerated fractions because of extensive intrahepatic disease, and 1 patient received 7000 equivalent cGy tomore » his pancreatic tumor bed and regional lymphatics with neon heavy particles. An Ir/sup 192/ wire source later delivered a 3100-10,647 cGy boost to the site of biliary obstruction in each patient, for a mean combined dose of 10,202 cGy to a point 5 mm from the line source. Few acute complications were noted, but 3/11 patients (27%) subsequently developed upper gastrointestinal bleeding from duodenitis or frank duodenal ulceration 4 weeks, 4 months, and 7.5 months following treatment. Eight patients died - 5 with local recurrence +/- distant metastasis, 2 with sepsis, and 1 with widespread systemic metastasis. Autopsies revealed no evidence of biliary tree obstruction in 3/3 patients. Evolution of radiation treatment technqiues for biliary obstruction in the literature is reviewed. High-dose external-beam therapy followed by high-dose Ir/sup 192/ intracavitary boost is well tolerated and provides significant palliation.« less
Beyond δ : Tailoring marked statistics to reveal modified gravity
NASA Astrophysics Data System (ADS)
Valogiannis, Georgios; Bean, Rachel
2018-01-01
Models that seek to explain cosmic acceleration through modifications to general relativity (GR) evade stringent Solar System constraints through a restoring, screening mechanism. Down-weighting the high-density, screened regions in favor of the low density, unscreened ones offers the potential to enhance the amount of information carried in such modified gravity models. In this work, we assess the performance of a new "marked" transformation and perform a systematic comparison with the clipping and logarithmic transformations, in the context of Λ CDM and the symmetron and f (R ) modified gravity models. Performance is measured in terms of the fractional boost in the Fisher information and the signal-to-noise ratio (SNR) for these models relative to the statistics derived from the standard density distribution. We find that all three statistics provide improved Fisher boosts over the basic density statistics. The model parameters for the marked and clipped transformation that best enhance signals and the Fisher boosts are determined. We also show that the mark is useful both as a Fourier and real-space transformation; a marked correlation function also enhances the SNR relative to the standard correlation function, and can on mildly nonlinear scales show a significant difference between the Λ CDM and the modified gravity models. Our results demonstrate how a series of simple analytical transformations could dramatically increase the predicted information extracted on deviations from GR, from large-scale surveys, and give the prospect for a much more feasible potential detection.
Brambilla, Michela; Cobelli, Chiara; Cohen, Leonardo G.; Cotelli, Maria
2016-01-01
Episodic memory displays the largest degree of age-related decline, a process that is accelerated in pathological conditions such as amnestic mild cognitive impairment and Alzheimer's disease. Previous studies have shown that the left lateral prefrontal cortex (PFC) contributes to the encoding of episodic memories along the life span. The aim of this randomized, double-blind, placebo-controlled study was to test the hypothesis that anodal trascranial direct current stimulation (tDCS) over the left lateral PFC during the learning phase would enhance delayed recall of verbal episodic memories in elderly individuals. Older adults learned a list of words while receiving anodal or placebo (sham) tDCS. Memory recall was tested 48 hours and 1 month later. The results showed that anodal tDCS strengthened episodic memories, an effect indicated by enhanced delayed recall (48 hours) compared to placebo stimulation (Cohen's d effect size = 1.01). The observation that PFC-tDCS during learning can boost verbal episodic memory in the elderly opens up the possibility to design-specific neurorehabilitation protocols targeted to conditions that affect episodic memory such as mild cognitive impairment. PMID:26923418
Mallick, Supriya; Kunhiparambath, Haresh; Gupta, Subhash; Benson, Rony; Sharma, Seema; Laviraj, M A; Upadhyay, Ashish Datt; Julka, Pramod Kumar; Sharma, Dayanand; Rath, Goura Kishor
2018-06-23
Maximal safe surgical resection followed by adjuvant chemoradiation has been standard for newly diagnosed glioblastoma multiforme (GBM). Hypofractionated accelerated radiotherapy (HART) has the potential to improve outcome as it reduces the overall treatment time and increases the biological effective dose. Between October 2011 and July 2017, a total of 89 newly diagnosed GBM patients were randomized to conventional fractionated radiotherapy (CRT) or HART. Radiotherapy was delivered in all patients with a three-dimensional conformal radiotherapy technique in CRT arm (60 Gy in 30 fractions over 6 weeks @ 2 Gy/per fraction) or simultaneous integrated boost intensity modulated radiotherapy in HART arm (60 Gy in 20 fractions over 4 weeks @ 3 Gy/per fraction to high-risk planning target volume (PTV) and 50 Gy in 20 fractions over 4 weeks @ 2.5 Gy/per fraction to low-risk PTV). The primary endpoint of the trial was overall survival (OS). After a median follow-up of 11.4 months (Range: 2.9-42.5 months), 26 patients died and 39 patients had progression of the disease. Median OS for the entire cohort was 23.4 months. Median OS in the CRT and HART arms were 18.07 months (95% CI 14.52-NR) and 25.18 months (95% CI 12.89-NR) respectively, p = 0.3. Median progression free survival (PFS) for the entire cohort was 13.5 months (Range: 11.7-15.7 months). In multivariate analysis patients younger than 40 years of age, patients with a gross total resection of tumor and a mutated IDH-1 had significantly better OS. PFS was significantly better for patients with a gross total resection of tumor and a mutated IDH-1. All patients included in the trial completed the planned course of radiation. Only two patients required hospital admission for features of raised intracranial tension. One patient in the HART arm required treatment interruption. HART is comparable to CRT in terms of survival outcome. HART arm had no excess treatment interruption and minimal toxicity. Dose escalation, reduction in overall treatment time, is the advantages with use of HART.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Jia, Xiao-Jing; Huang, Jing-Zi
2015-01-01
To investigate short- and long-term treatment effects and side reactions of lobaplatin plus 5-Fu combined and concurrent radiotherapy in treating patients with inoperable middle-advanced stage esophageal cancer. Sixty patients with middle-advanced stage esophageal squamous cell cancer were retrospectively analyzed. All patients were administered lobaplatin (50 mg intravenously) for 2 h on day 1, and 5-Fu (500 mg/m2) injected intravenously from day 1 to 5 for 1 cycle, in an interval of 21 days for totally 4 cycles. At the same time, late-course accelerated hyperfractionated three-dimensional conformal radiotherapy was performed. Patients were firstly treated with conventional fractionated irradiation (1.8 Gy/d, 5 times/week, a total of 23 treatments, and DT41.4 Gy), and then treated with accelerated hyperfractionated irradiation (1.5 Gy, 2 times/d, a total of 27 Gy in 9 days, an entire course of 6-7 weeks, and DT 68.4 Gy). All patients completed treatment, including 10 complete response (CR), 41 partial response (PR), 7 stable disease (SD), and 2 progressive disease (PD). The total effective rate was 85.0% (51/60). Thirty-nine patients had an increased KPS score. One-, 2-, and 3-year survival rates were 85.3%, 57.5%, and 41.7%, respectively. The median survival time was 27 months. The adverse reactions included myelosuppression, which was mainly degreeI and II. The occurrence rate of radiation esophagitis was 17.5%. No significant hepatic or renal toxicity was observed. Lobaplatin plus 5-Fu combined with concurrent radiotherapy is safe and effective in treating patients with middle-advanced stage esophageal cancer. However, this result warrants further evaluation by randomized clinical studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Ferrandi, Fabrizio
Emerging applications such as data mining, bioinformatics, knowledge discovery, social network analysis are irregular. They use data structures based on pointers or linked lists, such as graphs, unbalanced trees or unstructures grids, which generates unpredictable memory accesses. These data structures usually are large, but difficult to partition. These applications mostly are memory bandwidth bounded and have high synchronization intensity. However, they also have large amounts of inherent dynamic parallelism, because they potentially perform a task for each one of the element they are exploring. Several efforts are looking at accelerating these applications on hybrid architectures, which integrate general purpose processorsmore » with reconfigurable devices. Some solutions, which demonstrated significant speedups, include custom-hand tuned accelerators or even full processor architectures on the reconfigurable logic. In this paper we present an approach for the automatic synthesis of accelerators from C, targeted at irregular applications. In contrast to typical High Level Synthesis paradigms, which construct a centralized Finite State Machine, our approach generates dynamically scheduled hardware components. While parallelism exploitation in typical HLS-generated accelerators is usually bound within a single execution flow, our solution allows concurrently running multiple execution flow, thus also exploiting the coarser grain task parallelism of irregular applications. Our approach supports multiple, multi-ported and distributed memories, and atomic memory operations. Its main objective is parallelizing as many memory operations as possible, independently from their execution time, to maximize the memory bandwidth utilization. This significantly differs from current HLS flows, which usually consider a single memory port and require precise scheduling of memory operations. A key innovation of our approach is the generation of a memory interface controller, which dynamically maps concurrent memory accesses to multiple ports. We present a case study on a typical irregular kernel, Graph Breadth First search (BFS), exploring different tradeoffs in terms of parallelism and number of memories.« less
NASA Astrophysics Data System (ADS)
Song, Y.; Lysak, R. L.
2015-12-01
Parallel E-fields play a crucial role for the acceleration of charged particles, creating discrete aurorae. However, once the parallel electric fields are produced, they will disappear right away, unless the electric fields can be continuously generated and sustained for a fairly long time. Thus, the crucial question in auroral physics is how to generate such a powerful and self-sustained parallel electric fields which can effectively accelerate charge particles to high energy during a fairly long time. We propose that nonlinear interaction of incident and reflected Alfven wave packets in inhomogeneous auroral acceleration region can produce quasi-stationary non-propagating electromagnetic plasma structures, such as Alfvenic double layers (DLs) and Charge Holes. Such Alfvenic quasi-static structures often constitute powerful high energy particle accelerators. The Alfvenic DL consists of localized self-sustained powerful electrostatic electric fields nested in a low density cavity and surrounded by enhanced magnetic and mechanical stresses. The enhanced magnetic and velocity fields carrying the free energy serve as a local dynamo, which continuously create the electrostatic parallel electric field for a fairly long time. The generated parallel electric fields will deepen the seed low density cavity, which then further quickly boosts the stronger parallel electric fields creating both Alfvenic and quasi-static discrete aurorae. The parallel electrostatic electric field can also cause ion outflow, perpendicular ion acceleration and heating, and may excite Auroral Kilometric Radiation.
Neuroprotective potential of high-dose biotin.
McCarty, Mark F; DiNicolantonio, James J
2017-11-01
A recent controlled trial has established that high-dose biotin supplementation - 100 mg, three times daily - has a stabilizing effect on progression of multiple sclerosis (MS). Although this effect has been attributed to an optimization of biotin's essential cofactor role in the brain, a case can be made that direct stimulation of soluble guanylate cyclase (sGC) by pharmacological concentrations of biotin plays a key role in this regard. The utility of high-dose biotin in MS might reflect an anti-inflammatory effect of cGMP on the cerebral microvasculature, as well on oligodendrocyte differentiation and on Schwann cell production of neurotrophic factors thought to have potential for managing MS. But biotin's ability to boost cGMP synthesis in the brain may have broader neuroprotective potential. In many types of neurons and neural cells, cGMP exerts neurotrophic-mimetic effects - entailing activation of the PI3K-Akt and Ras-ERK pathways - that promote neuron survival and plasticity. Hippocampal long term potentiation requires nitric oxide synthesis, which in turn promotes an activating phosphorylation of CREB via a pathway involving cGMP and protein kinase G (PKG). In Alzheimer's disease (AD), amyloid beta suppresses this mechanism by inhibiting sGC activity; agents which exert a countervailing effect by boosting cGMP levels tend to restore effective long-term potentiation in rodent models of AD. Moreover, NO/cGMP suppresses amyloid beta production within the brain by inhibiting expression of amyloid precursor protein and BACE1. In conjunction with cGMP's ability to oppose neuron apoptosis, these effects suggest that high-dose biotin might have potential for the prevention and management of AD. cGMP also promotes neurogenesis, and may lessen stroke risk by impeding atherogenesis and hypertrophic remodeling in the cerebral vasculature. The neuroprotective potential of high-dose biotin likely could be boosted by concurrent administration of brain-permeable phosphodiesterase-5 inhibitors. Copyright © 2017 Elsevier Ltd. All rights reserved.
Xie, Fang-Yun; Zou, Guo-Rong; Hu, Wei-Han; Qi, Shu-Nan; Peng, Miao; Li, Ji-Shi
2009-03-01
Clinical trials on docetaxel plus cisplatin (DDP) (TP regimen) in treating nasopharyngeal carcinoma (NPC) are still uncertain due to limited samples. This study was to compare the short-term efficacy and toxicity of induction chemotherapy with TP regimen followed by concurrent chemoradiotherapy with TP regimen versus DDP in treating locally advanced NPC. Fifty-seven patients with stage T3-4N2-3M0 NPC diagnosed pathologically from December 2005 to December 2006 were randomized into TP group (30 patients) and DDP group (27 patients). Both groups received TP regimen as induction chemotherapy with docetaxel (70 mg/m(2)) on Day 1 and DDP (80 mg/m(2)) on Day 2, repeating every 21 days for 2 cycles. For concurrent chemotherapy, TP group were administered docetaxel (60 mg/m(2)) on Day 1 and DDP (80 mg/m(2)) on Day 2; DDP group were administered DDP (80 mg/m(2)) on Day 1. Both schedules were repeated every 21 days for 2 cycles. Linear accelerator was used as radioactive source. Irradiation field was designed with CT-simulation and conventional fractions. The 57 patients received 111 cycles of induction chemotherapy, and 53 of them received 103 cycles of concurrent chemotherapy; four patients ceased induction chemotherapy and three ceased concurrent chemotherapy. All patients completed radiotherapy. The major toxicity of induction chemotherapy was hematologic toxicity; the main toxicities of concurrent chemoradiotherapy were hematologic toxicity and mucositis. The occurrence rates of Grade 3-4 leucopenia and Grade 3-4 neutropenia were significantly higher in TP group than in DDP groups (p <0.05). In concurrent chemoradiotherapy, the application rate of granulocyte colony stimulating factor (G-CSF) was significantly higher in TP group than in DDP group (100% vs. 72.0%, p<0.05). After concurrent chemoradiotherapy, the complete remission (CR) rates of the nasopharynx and regional lymph nodes were 93.3% and 92.9% in TP group, and were 96.3% and 91.3% in DDP group (p>0.05). The short-term efficacy of induction chemotherapy with TP regimen followed by concurrent chemoradiotherapy with TP regimen on locally advanced NPC is similar to that of TP regimen followed by concurrent chemoradiotherapy with DDP. The toxicity of the former schedule is severer than that of the latter, but it is tolerable with the use of G-CSF. The long-term efficacy of induction chemotherapy with TP regimen followed by concurrent chemoradiotherapy with TP regimen need to be further studied.
Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte
2015-11-26
The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.
Modeling Laser Wakefield Accelerators in a Lorentz Boosted Frame
NASA Astrophysics Data System (ADS)
Vay, J.-L.; Geddes, C. G. R.; Benedetti, C.; Bruhwiler, D. L.; Cormier-Michel, E.; Cowan, B. M.; Cary, J. R.; Grote, D. P.
2010-11-01
Modeling of laser-plasma wakefield accelerators in an optimal frame of reference has been shown to produce up to three orders of magnitude speed-up in calculations from first principles of stages in the 100 MeV-10 GeV energy range. Maximum obtainable speedups calculated using linear theory predict that higher speedups are attainable, in the range of 4-6 orders of magnitude for stages in the energy range of 10 GeV-1 TeV respectively. Practical limitations have been reported and discussed which have prevented reaching these speedups so far, including a violent high frequency numerical instability. The limitations are briefly reviewed and discussed in this paper, as well as their mitigation. It is also reported that the high frequency numerical instability can be controlled effectively using novel numerical techniques that have been implemented in the Particle-In-Cell code Warp, and that 5 and 6 orders of magnitude speedups were demonstrated on 100 GeV and 1 TeV stages respectively, verifying the scaling of plasma accelerators to very high energies, and providing highly efficient tools for the detailed designs of experiments on new lasers such as BELLA.
High-performance modeling of plasma-based acceleration and laser-plasma interactions
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Blaclard, Guillaume; Godfrey, Brendan; Kirchen, Manuel; Lee, Patrick; Lehe, Remi; Lobet, Mathieu; Vincenti, Henri
2016-10-01
Large-scale numerical simulations are essential to the design of plasma-based accelerators and laser-plasma interations for ultra-high intensity (UHI) physics. The electromagnetic Particle-In-Cell (PIC) approach is the method of choice for self-consistent simulations, as it is based on first principles, and captures all kinetic effects, and also scale favorably to many cores on supercomputers. The standard PIC algorithm relies on second-order finite-difference discretization of the Maxwell and Newton-Lorentz equations. We present here novel formulations, based on very high-order pseudo-spectral Maxwell solvers, which enable near-total elimination of the numerical Cherenkov instability and increased accuracy over the standard PIC method for standard laboratory frame and Lorentz boosted frame simulations. We also present the latest implementations in the PIC modules Warp-PICSAR and FBPIC on the Intel Xeon Phi and GPU architectures. Examples of applications will be given on the simulation of laser-plasma accelerators and high-harmonic generation with plasma mirrors. Work supported by US-DOE Contracts DE-AC02-05CH11231 and by the European Commission through the Marie Slowdoska-Curie fellowship PICSSAR Grant Number 624543. Used resources of NERSC.
Proton acceleration by a pair of successive ultraintense femtosecond laser pulses
NASA Astrophysics Data System (ADS)
Ferri, J.; Senje, L.; Dalui, M.; Svensson, K.; Aurand, B.; Hansson, M.; Persson, A.; Lundh, O.; Wahlström, C.-G.; Gremillet, L.; Siminos, E.; DuBois, T. C.; Yi, L.; Martins, J. L.; Fülöp, T.
2018-04-01
We investigate the target normal sheath acceleration of protons in thin aluminum targets irradiated at a relativistic intensity by two time-separated ultrashort (35 fs) laser pulses. When the full-energy laser pulse is temporally split into two identical half-energy pulses, and using target thicknesses of 3 and 6 μm, we observe experimentally that the second half-pulse boosts the maximum energy and charge of the proton beam produced by the first half-pulse for time delays below ˜0.6-1 ps. Using two-dimensional particle-in-cell simulations, we examine the variation of the proton energy spectra with respect to the time-delay between the two pulses. We demonstrate that the expansion of the target front surface caused by the first pulse significantly enhances the hot-electron generation by the second pulse arriving after a few hundreds of fs time delay. This enhancement, however, does not suffice to further accelerate the fastest protons driven by the first pulse once three-dimensional quenching effects have set in. This implies a limit to the maximum time delay that leads to proton energy enhancement, which we theoretically determine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ledebuhr, A.G.; Ng, L.C.; Kordas, J.F.
2002-06-30
This paper summarizes Lawrence Livermore National Laboratory's (LLNL) approach to a proposed Technology Demonstration program for the development of a new class of miniature kill vehicles (MKVs), that they have termed Genius Sand (GS). These miniaturized kinetic kill vehicles offer new capabilities for boost phase intercept (BPI) missions, as well as midcourse intercepts and the defeat of advanced countermeasures. The specific GS MKV properties will depend on the choice of mission application and system architecture, as well as the level of coordinated or autonomous operations in these missions. In general the GS MKVs will mass from between 1 to 5more » kilograms and have several hundred meters per second of {Delta}v and be capable of several g's of acceleration. Based on the results of their previous study effort, they believe that it is feasible to develop and integrate the required technologies into a fully functional GS MKV prototype within the scope of a three-year development effort. They will discuss some of the system architecture trades and applicable technologies that can be applied in an operational MKV system, as a guide to focus any technology demonstration program. They will present the results of a preliminary 6DOF analysis to determine the minimum capabilities of an MKV system. They also will discuss a preliminary design configuration of a 2 kg GS MKV that has between 300-500 m/s of {Delta}v and has at least 2-g's of acceleration capability. They believe a successful GS MKV development effort will require not only a comprehensive component miniaturization program, but a rapid hardware prototyping process, and the ability to utilize high fidelity ground testing methodologies.« less
Frey, Sharon E.; Graham, Irene; Mulligan, Mark J.; Edupuganti, Srilatha; Jackson, Lisa A.; Wald, Anna; Poland, Gregory; Jacobson, Robert; Keyserling, Harry L.; Spearman, Paul; Hill, Heather; Wolff, Mark
2011-01-01
Background. The current US national stockpile of influenza H5 vaccine was produced using the antigen from the strain A/Vietnam/1203/2004 (a clade 1 H5 virus). Recent H5 disease has been caused by antigenically divergent H5 viruses, including A/Indonesia/05/2005 (a clade 2 H5 virus). Methods. The influence of schedule on the antibody response to 2 doses of H5 vaccines (one a clade 1 hemagglutinin protein [HA] vaccine and one a clade 2 HA vaccine) containing 90 μg of antigen was evaluated in healthy adults 18–49 years of age. Results. Two doses of vaccine were required to induce antibody titers ≥1:10 in most subjects. Accelerated schedules were immunogenic, and antibody developed after vaccinations on days 0 and 7, 0 and 14, and 0 and 28, with the day 0 and 7 schedule inducing lower titers than those induced with the other schedules. With mixed vaccine schedules of clade 1 followed by clade 2 vaccine administration, the first vaccination primed for a heterologous boost. The heterologous response was improved when the second vaccination was given 6 months after the first, compared with the response when the second vaccination was given after an interval of 1 month. Conclusions. An accelerated vaccine schedule of injections administered at days 0 and 14 was as immunogenic as a vaccine schedule of injections at days 0 and 28, but both schedules were inferior to a vaccine schedule of injections administered at 0 and 6 months for priming for heterologous vaccine boosting. Clinical Trial Registry Number: NCT00703053 PMID:21282194
Inter-slice Leakage Artifact Reduction Technique for Simultaneous Multi-Slice Acquisitions
Cauley, Stephen F.; Polimeni, Jonathan R.; Bhat, Himanshu; Wang, Dingxin; Wald, Lawrence L.; Setsompop, Kawin
2015-01-01
Purpose Controlled aliasing techniques for simultaneously acquired EPI slices have been shown to significantly increase the temporal efficiency for both diffusion-weighted imaging (DWI) and fMRI studies. The “slice-GRAPPA” (SG) method has been widely used to reconstruct such data. We investigate robust optimization techniques for SG to ensure image reconstruction accuracy through a reduction of leakage artifacts. Methods Split slice-GRAPPA (SP-SG) is proposed as an alternative kernel optimization method. The performance of SP-SG is compared to standard SG using data collected on a spherical phantom and in-vivo on two subjects at 3T. Slice accelerated and non-accelerated data were collected for a spin-echo diffusion weighted acquisition. Signal leakage metrics and time-series SNR were used to quantify the performance of the kernel fitting approaches. Results The SP-SG optimization strategy significantly reduces leakage artifacts for both phantom and in-vivo acquisitions. In addition, a significant boost in time-series SNR for in-vivo diffusion weighted acquisitions with in-plane 2× and slice 3× accelerations was observed with the SP-SG approach. Conclusion By minimizing the influence of leakage artifacts during the training of slice-GRAPPA kernels, we have significantly improved reconstruction accuracy. Our robust kernel fitting strategy should enable better reconstruction accuracy and higher slice-acceleration across many applications. PMID:23963964
Accelerating Wright–Fisher Forward Simulations on the Graphics Processing Unit
Lawrie, David S.
2017-01-01
Forward Wright–Fisher simulations are powerful in their ability to model complex demography and selection scenarios, but suffer from slow execution on the Central Processor Unit (CPU), thus limiting their usefulness. However, the single-locus Wright–Fisher forward algorithm is exceedingly parallelizable, with many steps that are so-called “embarrassingly parallel,” consisting of a vast number of individual computations that are all independent of each other and thus capable of being performed concurrently. The rise of modern Graphics Processing Units (GPUs) and programming languages designed to leverage the inherent parallel nature of these processors have allowed researchers to dramatically speed up many programs that have such high arithmetic intensity and intrinsic concurrency. The presented GPU Optimized Wright–Fisher simulation, or “GO Fish” for short, can be used to simulate arbitrary selection and demographic scenarios while running over 250-fold faster than its serial counterpart on the CPU. Even modest GPU hardware can achieve an impressive speedup of over two orders of magnitude. With simulations so accelerated, one can not only do quick parametric bootstrapping of previously estimated parameters, but also use simulated results to calculate the likelihoods and summary statistics of demographic and selection models against real polymorphism data, all without restricting the demographic and selection scenarios that can be modeled or requiring approximations to the single-locus forward algorithm for efficiency. Further, as many of the parallel programming techniques used in this simulation can be applied to other computationally intensive algorithms important in population genetics, GO Fish serves as an exciting template for future research into accelerating computation in evolution. GO Fish is part of the Parallel PopGen Package available at: http://dl42.github.io/ParallelPopGen/. PMID:28768689
Bednarz, Bryan; Athar, Basit; Xu, X. George
2010-01-01
Purpose: A physician’s decision regarding an ideal treatment approach (i.e., radiation, surgery, and∕or hormonal) for prostate carcinoma is traditionally based on a variety of metrics. One of these metrics is the risk of radiation-induced second primary cancer following radiation treatments. The aim of this study was to investigate the significance of second cancer risks in out-of-field organs from 3D-CRT and IMRT treatments of prostate carcinoma compared to baseline cancer risks in these organs. Methods: Monte Carlo simulations were performed using a detailed medical linear accelerator model and an anatomically realistic adult male whole-body phantom. A four-field box treatment, a four-field box treatment plus a six-field boost, and a seven-field IMRT treatment were simulated. Using BEIR VII risk models, the age-dependent lifetime attributable risks to various organs outside the primary beam with a known predilection for cancer were calculated using organ-averaged equivalent doses. Results: The four-field box treatment had the lowest treatment-related second primary cancer risks to organs outside the primary beam ranging from 7.3×10−9 to 2.54×10−5%∕MU depending on the patients age at exposure and second primary cancer site. The risks to organs outside the primary beam from the four-field box and six-field boost and the seven-field IMRT were nearly equivalent. The risks from the four-field box and six-field boost ranged from 1.39×10−8 to 1.80×10−5%∕MU, and from the seven-field IMRT ranged from 1.60×10−9 to 1.35×10−5%∕MU. The second cancer risks in all organs considered from each plan were below the baseline risks. Conclusions: The treatment-related second cancer risks in organs outside the primary beam due to 3D-CRT and IMRT is small. New risk assessment techniques need to be investigated to address the concern of radiation-induced second cancers from prostate treatments, particularly focusing on risks to organs inside the primary beam. PMID:20527532
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donovan, Ellen M., E-mail: ellen.donovan@icr.ac.u; Ciurlionis, Laura; Fairfoul, Jamie
Purpose: To establish planning solutions for a concomitant three-level radiation dose distribution to the breast using linear accelerator- or tomotherapy-based intensity-modulated radiotherapy (IMRT), for the U.K. Intensity Modulated and Partial Organ (IMPORT) High trial. Methods and Materials: Computed tomography data sets for 9 patients undergoing breast conservation surgery with implanted tumor bed gold markers were used to prepare three-level dose distributions encompassing the whole breast (36 Gy), partial breast (40 Gy), and tumor bed boost (48 or 53 Gy) treated concomitantly in 15 fractions within 3 weeks. Forward and inverse planned IMRT and tomotherapy were investigated as solutions. A standardmore » electron field was compared with a photon field arrangement encompassing the tumor bed boost volume. The out-of-field doses were measured for all methods. Results: Dose-volume constraints of volume >90% receiving 32.4 Gy and volume >95% receiving 50.4 Gy for the whole breast and tumor bed were achieved. The constraint of volume >90% receiving 36 Gy for the partial breast was fulfilled in the inverse IMRT and tomotherapy plans and in 7 of 9 cases of a forward planned IMRT distribution. An electron boost to the tumor bed was inadequate in 8 of 9 cases. The IMRT methods delivered a greater whole body dose than the standard breast tangents. A contralateral lung volume >2.5 Gy was increased in the inverse IMRT and tomotherapy plans, although it did not exceed the constraint. Conclusion: We have demonstrated a set of widely applicable solutions that fulfilled the stringent clinical trial requirements for the delivery of a concomitant three-level dose distribution to the breast.« less
Markant, Julie; Worden, Michael S; Amso, Dima
2015-04-01
Learning through visual exploration often requires orienting of attention to meaningful information in a cluttered world. Previous work has shown that attention modulates visual cortex activity, with enhanced activity for attended targets and suppressed activity for competing inputs, thus enhancing the visual experience. Here we examined the idea that learning may be engaged differentially with variations in attention orienting mechanisms that drive eye movements during visual search and exploration. We hypothesized that attention orienting mechanisms that engaged suppression of a previously attended location would boost memory encoding of the currently attended target objects to a greater extent than those that involve target enhancement alone. To test this hypothesis we capitalized on the classic spatial cueing task and the inhibition of return (IOR) mechanism (Posner, 1980; Posner, Rafal, & Choate, 1985) to demonstrate that object images encoded in the context of concurrent suppression at a previously attended location were encoded more effectively and remembered better than those encoded without concurrent suppression. Furthermore, fMRI analyses revealed that this memory benefit was driven by attention modulation of visual cortex activity, as increased suppression of the previously attended location in visual cortex during target object encoding predicted better subsequent recognition memory performance. These results suggest that not all attention orienting impacts learning and memory equally. Copyright © 2015 Elsevier Inc. All rights reserved.
Troussier, I; Huguet, F; Servagi-Vernat, S; Benahim, C; Khalifa, J; Darmon, I; Ortholan, C; Krebs, L; Dejean, C; Fenoglietto, P; Vieillot, S; Bensadoun, R-J; Thariat, J
2015-04-01
The standard treatment of locally advanced (stage II and III) squamous cell carcinoma of the anal canal consists of concurrent chemoradiotherapy (two cycles of 5-fluoro-uracil, mitomycin C, on a 28-day cycle), with a dose of 45 Gy in 1.8 Gy per fraction in the prophylactic planning target volume and additional 14 to 20 Gy in the boost planning target volume (5 days per week) with a possibility of 15 days gap period between the two sequences. While conformal irradiation may only yield suboptimal tumor coverage using complex photon/electron field junctions (especially on nodal areas), intensity modulated radiation therapy techniques (segmented static, dynamic, volumetric modulated arc therapy and helical tomotherapy) allow better tumour coverage while sparing organs at risk from intermediate/high doses (small intestine, perineum/genitalia, bladder, pelvic bone, etc.). Such dosimetric advantages result in fewer severe acute toxicities and better potential to avoid a prolonged treatment break that increases risk of local failure. These techniques also allow a reduction in late gastrointestinal and skin toxicities of grade 3 or above, as well as better functional conservation of anorectal sphincter. The technical achievements (simulation, contouring, prescription dose, treatment planning, control quality) of volumetric modulated arctherapy are discussed. Copyright © 2015 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.
Numerical simulations of a proposed hollow electron beam collimator for the LHC upgrade at CERN.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Previtali, V.; Stancari, G.; Valishev, A.
2013-07-12
In the last years the LHC collimation system has been performing over the expectations, providing the machine with a nearly perfect e cient cleaning system[1]. Nonetheless, when trying to push the existing accelerators to - and over - their design limits, all the accelerator components are required to boost their performances. In particular, in view of the high luminosity frontier for the LHC, the increased intensity would ask for a more e cient cleaning system. In this framework innovative collimation solutions are under evaluation[2]: one option is the usage of an hollow electron lens for beam halo cleaning. This workmore » intends to study the applicability of an the hollow electron lens for the LHC collimation, by evaluating the case of the existing Tevatron e-lens applied to the nominal LHC 7 TeV beam. New e-lens operation modes are here proposed to standard enhance the electron lens halo removal e ect.« less
Energy boost in laser wakefield accelerators using sharp density transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Döpp, A.; Guillaume, E.; Thaury, C.
The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime, it is much more difficultmore » to achieve phase locking. As an alternative, we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model, we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations, and we present gain estimations for single and multiple stages of rephasing.« less
Prospects of target nanostructuring for laser proton acceleration
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-01-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser–plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck. PMID:28290479
Prospects of target nanostructuring for laser proton acceleration.
Lübcke, Andrea; Andreev, Alexander A; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-14
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Prospects of target nanostructuring for laser proton acceleration
NASA Astrophysics Data System (ADS)
Lübcke, Andrea; Andreev, Alexander A.; Höhm, Sandra; Grunwald, Ruediger; Ehrentraut, Lutz; Schnürer, Matthias
2017-03-01
In laser-based proton acceleration, nanostructured targets hold the promise to allow for significantly boosted proton energies due to strong increase of laser absorption. We used laser-induced periodic surface structures generated in-situ as a very fast and economic way to produce nanostructured targets capable of high-repetition rate applications. Both in experiment and theory, we investigate the impact of nanostructuring on the proton spectrum for different laser-plasma conditions. Our experimental data show that the nanostructures lead to a significant enhancement of absorption over the entire range of laser plasma conditions investigated. At conditions that do not allow for efficient laser absorption by plane targets, i.e. too steep plasma gradients, nanostructuring is found to significantly enhance the proton cutoff energy and conversion efficiency. In contrast, if the plasma gradient is optimized for laser absorption of the plane target, the nanostructure-induced absorption increase is not reflected in higher cutoff energies. Both, simulation and experiment point towards the energy transfer from the laser to the hot electrons as bottleneck.
Analysis of the NASA/MSFC airborne Doppler lidar results from San Gorgonio Pass, California
NASA Technical Reports Server (NTRS)
Cliff, W. C.; Skarda, J. R.; Renne, D. S.; Sandusky, W. F.
1985-01-01
The NASA/MSFC Airborne Doppler Lidar System was flown in July 1981 aboard the NASA/Ames Convair 990 on the east side of San Gorgonio Pass California, near Palm Springs, to measure and investigate the accelerated atmospheric wind field discharging from the pass. At this region, the maritime layer from the west coast accelerates through the pass and spreads out over the valley floor on the east side of the pass. The experiment was selected in order to study accelerated flow in and at the exit of the canyon. Ground truth wind data taken concurrently with the flight data were available from approximately 12 meteorological towers and 3 tala kites for limited comparison purposes. The experiment provided the first spatial data for ensemble averaging of spatial correlations to compute lateral and longitudinal length scales in the lateral and longitudinal directions for both components, and information on atmospheric flow in this region of interest from wind energy resource considerations.
Grace: A cross-platform micromagnetic simulator on graphics processing units
NASA Astrophysics Data System (ADS)
Zhu, Ru
2015-12-01
A micromagnetic simulator running on graphics processing units (GPUs) is presented. Different from GPU implementations of other research groups which are predominantly running on NVidia's CUDA platform, this simulator is developed with C++ Accelerated Massive Parallelism (C++ AMP) and is hardware platform independent. It runs on GPUs from venders including NVidia, AMD and Intel, and achieves significant performance boost as compared to previous central processing unit (CPU) simulators, up to two orders of magnitude. The simulator paved the way for running large size micromagnetic simulations on both high-end workstations with dedicated graphics cards and low-end personal computers with integrated graphics cards, and is freely available to download.
Novel process windows for enabling, accelerating, and uplifting flow chemistry.
Hessel, Volker; Kralisch, Dana; Kockmann, Norbert; Noël, Timothy; Wang, Qi
2013-05-01
Novel Process Windows make use of process conditions that are far from conventional practices. This involves the use of high temperatures, high pressures, high concentrations (solvent-free), new chemical transformations, explosive conditions, and process simplification and integration to boost synthetic chemistry on both the laboratory and production scale. Such harsh reaction conditions can be safely reached in microstructured reactors due to their excellent transport intensification properties. This Review discusses the different routes towards Novel Process Windows and provides several examples for each route grouped into different classes of chemical and process-design intensification. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughn, Timothy L.; Bell, Clay S.; Yacovitch, Tara I.
Coordinated dual-tracer, aircraft-based, and direct component-level measurements were made at midstream natural gas gathering and boosting stations in the Fayetteville shale (Arkansas, USA). On-site component-level measurements were combined with engineering estimates to generate comprehensive facility-level methane emission rate estimates ('study on-site estimates (SOE)') comparable to tracer and aircraft measurements. Combustion slip (unburned fuel entrained in compressor engine exhaust), which was calculated based on 111 recent measurements of representative compressor engines, accounts for an estimated 75% of cumulative SOEs at gathering stations included in comparisons. Measured methane emissions from regenerator vents on glycol dehydrator units were substantially larger than predicted bymore » modelling software; the contribution of dehydrator regenerator vents to the cumulative SOE would increase from 1% to 10% if based on direct measurements. Concurrent measurements at 14 normally-operating facilities show relative agreement between tracer and SOE, but indicate that tracer measurements estimate lower emissions (regression of tracer to SOE = 0.91 (95% CI = 0.83-0.99), R2 = 0.89). Tracer and SOE 95% confidence intervals overlap at 11/14 facilities. Contemporaneous measurements at six facilities suggest that aircraft measurements estimate higher emissions than SOE. Aircraft and study on-site estimate 95% confidence intervals overlap at 3/6 facilities. The average facility level emission rate (FLER) estimated by tracer measurements in this study is 17-73% higher than a prior national study by Marchese et al.« less
Vaughn, Timothy L.; Bell, Clay S.; Yacovitch, Tara I.; ...
2017-02-09
Coordinated dual-tracer, aircraft-based, and direct component-level measurements were made at midstream natural gas gathering and boosting stations in the Fayetteville shale (Arkansas, USA). On-site component-level measurements were combined with engineering estimates to generate comprehensive facility-level methane emission rate estimates ('study on-site estimates (SOE)') comparable to tracer and aircraft measurements. Combustion slip (unburned fuel entrained in compressor engine exhaust), which was calculated based on 111 recent measurements of representative compressor engines, accounts for an estimated 75% of cumulative SOEs at gathering stations included in comparisons. Measured methane emissions from regenerator vents on glycol dehydrator units were substantially larger than predicted bymore » modelling software; the contribution of dehydrator regenerator vents to the cumulative SOE would increase from 1% to 10% if based on direct measurements. Concurrent measurements at 14 normally-operating facilities show relative agreement between tracer and SOE, but indicate that tracer measurements estimate lower emissions (regression of tracer to SOE = 0.91 (95% CI = 0.83-0.99), R2 = 0.89). Tracer and SOE 95% confidence intervals overlap at 11/14 facilities. Contemporaneous measurements at six facilities suggest that aircraft measurements estimate higher emissions than SOE. Aircraft and study on-site estimate 95% confidence intervals overlap at 3/6 facilities. The average facility level emission rate (FLER) estimated by tracer measurements in this study is 17-73% higher than a prior national study by Marchese et al.« less
Carrington, Rhys; Staffurth, John; Warren, Samantha; Partridge, Mike; Hurt, Chris; Spezi, Emiliano; Gwynne, Sarah; Hawkins, Maria A; Crosby, Thomas
2015-11-19
Using radiobiological modelling to estimate normal tissue toxicity, this study investigates the effects of dose escalation for concurrent chemoradiation therapy (CRT) in lower third oesophageal tumours on the stomach. 10 patients with lower third oesophageal cancer were selected from the SCOPE 1 database (ISCRT47718479) with a mean planning target volume (PTV) of 348 cm(3). The original 3D conformal plans (50 Gy3D) were compared to newly created RapidArc plans of 50 GyRA and 60 GyRA, the latter using a simultaneous integrated boost (SIB) technique using a boost volume, PTV2. Dose-volume metrics and estimates of normal tissue complication probability (NTCP) were compared. There was a significant increase in NTCP of the stomach wall when moving from the 50 GyRA to the 60 GyRA plans (11-17 %, Wilcoxon signed rank test, p = 0.01). There was a strong correlation between the NTCP values of the stomach wall and the volume of the stomach wall/PTV 1 and stomach wall/PTV2 overlap structures (R = 0.80 and R = 0.82 respectively) for the 60 GyRA plans. Radiobiological modelling suggests that increasing the prescribed dose to 60 Gy may be associated with a significantly increased risk of toxicity to the stomach. It is recommended that stomach toxicity be closely monitored when treating patients with lower third oesophageal tumours with 60 Gy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
G. CANAVAN
Space Based Interceptor (SBI) have ranges that are adequate to address rogue ICBMs. They are not overly sensitive to 30-60 s delay times. Current technologies would support boost phase intercept with about 150 interceptors. Higher acceleration and velocity could reduce than number by about a factor of 3 at the cost of heavier and more expensive Kinetic Kill Vehicles (KKVs). 6g SBI would reduce optimal constellation costs by about 35%; 8g SBI would reduce them another 20%. Interceptor ranges fall rapidly with theater missile range. Constellations increase significantly for ranges under 3,000 km, even with advanced interceptor technology. For distributedmore » launches, these estimates recover earlier strategic scalings, which demonstrate the improved absentee ratio for larger or multiple launch areas. Constellations increase with the number of missiles and the number of interceptors launched at each. The economic estimates above suggest that two SBI per missile with a modest midcourse underlay is appropriate. The SBI KKV technology would appear to be common for space- and surface-based boost phase systems, and could have synergisms with improved midcourse intercept and discrimination systems. While advanced technology could be helpful in reducing costs, particularly for short range theater missiles, current technology appears adequate for pressing rogue ICBM, accidental, and unauthorized launches.« less
Domi, Arban; Feldmann, Friederike; Basu, Rahul; McCurley, Nathanael; Shifflett, Kyle; Emanuel, Jackson; Hellerstein, Michael S; Guirakhoo, Farshad; Orlandi, Chiara; Flinko, Robin; Lewis, George K; Hanley, Patrick W; Feldmann, Heinz; Robinson, Harriet L; Marzi, Andrea
2018-01-16
Ebola virus (EBOV), isolate Makona, was the causative agent of the West African epidemic devastating predominantly Guinea, Liberia and Sierra Leone from 2013-2016. While several experimental vaccine and treatment approaches have been accelerated through human clinical trials, there is still no approved countermeasure available against this disease. Here, we report the construction and preclinical efficacy testing of a novel recombinant modified vaccinia Ankara (MVA)-based vaccine expressing the EBOV-Makona glycoprotein GP and matrix protein VP40 (MVA-EBOV). GP and VP40 form EBOV-like particles and elicit protective immune responses. In this study, we report 100% protection against lethal EBOV infection in guinea pigs after prime/boost vaccination with MVA-EBOV. Furthermore, this MVA-EBOV protected macaques from lethal disease after a single dose or prime/boost vaccination. The vaccine elicited a variety of antibody responses to both antigens, including neutralizing antibodies and antibodies with antibody-dependent cellular cytotoxic activity specific for GP. This is the first report that a replication-deficient MVA vector can confer full protection against lethal EBOV challenge after a single dose vaccination in macaques.
Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...
2015-10-29
Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less
Sandrini, Marco; Manenti, Rosa; Brambilla, Michela; Cobelli, Chiara; Cohen, Leonardo G; Cotelli, Maria
2016-03-01
Episodic memory displays the largest degree of age-related decline, a process that is accelerated in pathological conditions such as amnestic mild cognitive impairment and Alzheimer's disease. Previous studies have shown that the left lateral prefrontal cortex (PFC) contributes to the encoding of episodic memories along the life span. The aim of this randomized, double-blind, placebo-controlled study was to test the hypothesis that anodal trascranial direct current stimulation (tDCS) over the left lateral PFC during the learning phase would enhance delayed recall of verbal episodic memories in elderly individuals. Older adults learned a list of words while receiving anodal or placebo (sham) tDCS. Memory recall was tested 48 hours and 1 month later. The results showed that anodal tDCS strengthened episodic memories, an effect indicated by enhanced delayed recall (48 hours) compared to placebo stimulation (Cohen's d effect size = 1.01). The observation that PFC-tDCS during learning can boost verbal episodic memory in the elderly opens up the possibility to design-specific neurorehabilitation protocols targeted to conditions that affect episodic memory such as mild cognitive impairment. Copyright © 2016 Elsevier Inc. All rights reserved.
Babaei, Sepideh; Geranmayeh, Amir; Seyyedsalehi, Seyyed Ali
2010-12-01
The supervised learning of recurrent neural networks well-suited for prediction of protein secondary structures from the underlying amino acids sequence is studied. Modular reciprocal recurrent neural networks (MRR-NN) are proposed to model the strong correlations between adjacent secondary structure elements. Besides, a multilayer bidirectional recurrent neural network (MBR-NN) is introduced to capture the long-range intramolecular interactions between amino acids in formation of the secondary structure. The final modular prediction system is devised based on the interactive integration of the MRR-NN and the MBR-NN structures to arbitrarily engage the neighboring effects of the secondary structure types concurrent with memorizing the sequential dependencies of amino acids along the protein chain. The advanced combined network augments the percentage accuracy (Q₃) to 79.36% and boosts the segment overlap (SOV) up to 70.09% when tested on the PSIPRED dataset in three-fold cross-validation. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Booster phenomenon of QuantiFERON-TB Gold after prior intradermal PPD injection.
Igari, H; Watanabe, A; Sato, T
2007-07-01
University medical school in Japan. To clarify the influence of prior intradermal purified protein derivative (PPD) injection on QuantiFERON-TB Gold (QFT-G). Ninety-seven sixth-year university medical students aged 20-29 years concurrently underwent QFT-G and tuberculin skin test (TST). The first negative QFT-G and the first TST <15 mm were followed by a second QFT-G one month later. Five of the 97 (5%) subjects tested positive for the first QFT-G. Thirty-three underwent a second QFT-G, five of whom (15%) turned positive, demonstrating the booster phenomenon of QFT-G. Prior intradermal PPD injection may boost QFT-G. Further studies of the diagnostic significance and immunological mechanisms of this phenomenon are needed. For clinical application, especially during contact screening, QFT-G should be evaluated while keeping in mind the possible influence of prior PPD intradermal injection.
Doshi, Urmi; Hamelberg, Donald
2012-11-13
In enhanced sampling techniques, the precision of the reweighted ensemble properties is often decreased due to large variation in statistical weights and reduction in the effective sampling size. To abate this reweighting problem, here, we propose a general accelerated molecular dynamics (aMD) approach in which only the rotatable dihedrals are subjected to aMD (RaMD), unlike the typical implementation wherein all dihedrals are boosted (all-aMD). Nonrotatable and improper dihedrals are marginally important to conformational changes or the different rotameric states. Not accelerating them avoids the sharp increases in the potential energies due to small deviations from their minimum energy conformations and leads to improvement in the precision of RaMD. We present benchmark studies on two model dipeptides, Ace-Ala-Nme and Ace-Trp-Nme, simulated with normal MD, all-aMD, and RaMD. We carry out a systematic comparison between the performances of both forms of aMD using a theory that allows quantitative estimation of the effective number of sampled points and the associated uncertainty. Our results indicate that, for the same level of acceleration and simulation length, as used in all-aMD, RaMD results in significantly less loss in the effective sample size and, hence, increased accuracy in the sampling of φ-ψ space. RaMD yields an accuracy comparable to that of all-aMD, from simulation lengths 5 to 1000 times shorter, depending on the peptide and the acceleration level. Such improvement in speed and accuracy over all-aMD is highly remarkable, suggesting RaMD as a promising method for sampling larger biomolecules.
Energy saver A-sector power test results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Martin, P.; Flora, R.; Tool, G.
1982-09-15
The superconducting magnets and associated cryogenic components in A-sector represent the initial phase of installation of the Fermilab superconducting accelerator, designed to accelerate proton beams to energies of 1 TeV. Installation of the magnets, comprising one-eighth of the ring, was completed in December, 1981. Cooldown and power tests took place in the first half of 1982, concurrent with main ring use for 400 GeV high energy physics. The tests described in this paper involved 151 cryogenic components in the tunnel: 94 dipoles, 24 quadrupoles, 25 spool pieces, 3 feed cans, 4 turn-around boxes and 1 bypass. Refrigeration was supplied bymore » three satellite refrigerators, the Central Helium Liquefier, and two compressor buildings. The magnets were powered by a single power supply.« less
Assessment of a new web-based sexual concurrency measurement tool for men who have sex with men.
Rosenberg, Eli S; Rothenberg, Richard B; Kleinbaum, David G; Stephenson, Rob B; Sullivan, Patrick S
2014-11-10
Men who have sex with men (MSM) are the most affected risk group in the United States' human immunodeficiency virus (HIV) epidemic. Sexual concurrency, the overlapping of partnerships in time, accelerates HIV transmission in populations and has been documented at high levels among MSM. However, concurrency is challenging to measure empirically and variations in assessment techniques used (primarily the date overlap and direct question approaches) and the outcomes derived from them have led to heterogeneity and questionable validity of estimates among MSM and other populations. The aim was to evaluate a novel Web-based and interactive partnership-timing module designed for measuring concurrency among MSM, and to compare outcomes measured by the partnership-timing module to those of typical approaches in an online study of MSM. In an online study of MSM aged ≥18 years, we assessed concurrency by using the direct question method and by gathering the dates of first and last sex, with enhanced programming logic, for each reported partner in the previous 6 months. From these methods, we computed multiple concurrency cumulative prevalence outcomes: direct question, day resolution / date overlap, and month resolution / date overlap including both 1-month ties and excluding ties. We additionally computed variants of the UNAIDS point prevalence outcome. The partnership-timing module was also administered. It uses an interactive month resolution calendar to improve recall and follow-up questions to resolve temporal ambiguities, combines elements of the direct question and date overlap approaches. The agreement between the partnership-timing module and other concurrency outcomes was assessed with percent agreement, kappa statistic (κ), and matched odds ratios at the individual, dyad, and triad levels of analysis. Among 2737 MSM who completed the partnership section of the partnership-timing module, 41.07% (1124/2737) of individuals had concurrent partners in the previous 6 months. The partnership-timing module had the highest degree of agreement with the direct question. Agreement was lower with date overlap outcomes (agreement range 79%-81%, κ range .55-.59) and lowest with the UNAIDS outcome at 5 months before interview (65% agreement, κ=.14, 95% CI .12-.16). All agreements declined after excluding individuals with 1 sex partner (always classified as not engaging in concurrency), although the highest agreement was still observed with the direct question technique (81% agreement, κ=.59, 95% CI .55-.63). Similar patterns in agreement were observed with dyad- and triad-level outcomes. The partnership-timing module showed strong concurrency detection ability and agreement with previous measures. These levels of agreement were greater than others have reported among previous measures. The partnership-timing module may be well suited to quantifying concurrency among MSM at multiple levels of analysis.
Joseph, Sarah; Quinn, Killian; Greenwood, Aldona; Cope, Alethea V.; McKay, Paul F.; Hayes, Peter J.; Kopycinski, Jakub T.; Gilmour, Jill; Miller, Aleisha N.; Geldmacher, Christof; Nadai, Yuka; Ahmed, Mohamed I. M.; Montefiori, David C.; Dally, Len; Bouliotis, George; Lewis, David J. M.; Tatoud, Roger; Wagner, Ralf; Esteban, Mariano; Shattock, Robin J.; McCormack, Sheena; Weber, Jonathan
2017-01-01
There remains an urgent need for a prophylactic HIV vaccine. We compared combined MVA and adjuvanted gp140 to sequential MVA/gp140 after DNA priming. We expected Env-specific CD4+ T-cells after DNA and MVA priming, and Env-binding antibodies in 100% individuals after boosting with gp140 and that combined vaccines would not compromise safety and might augment immunogenicity. Forty volunteers were primed three times with DNA plasmids encoding (CN54) env and (ZM96) gag-pol-nef at 0, 4 and 8 weeks then boosted with MVA-C (CN54 env and gag-pol-nef) and glucopyranosyl lipid adjuvant—aqueous formulation (GLA-AF) adjuvanted CN54gp140. They were randomised to receive them in combination at the same visit at 16 and 20 weeks (accelerated) or sequentially with MVA-C at 16, 20, and GLA-AF/gp140 at 24 and 28 weeks (standard). All vaccinations were intramuscular. Primary outcomes included ≥grade 3 safety events and the titer of CN54gp140-specific binding IgG. Other outcomes included neutralization, binding antibody specificity and T-cell responses. Two participants experienced asymptomatic ≥grade 3 transaminitis leading to discontinuation of vaccinations, and three had grade 3 solicited local or systemic reactions. A total of 100% made anti-CN54gp140 IgG and combining vaccines did not significantly alter the response; geometric mean titer 6424 (accelerated) and 6578 (standard); neutralization of MW965.2 Tier 1 pseudovirus was superior in the standard group (82 versus 45% responders, p = 0.04). T-cell ELISpot responses were CD4+ and Env-dominant; 85 and 82% responding in the accelerated and standard groups, respectively. Vaccine-induced IgG responses targeted multiple regions within gp120 with the V3 region most immunodominant and no differences between groups detected. Combining MVA and gp140 vaccines did not result in increased adverse events and did not significantly impact upon the titer of Env-specific binding antibodies, which were seen in 100% individuals. The approach did however affect other immune responses; neutralizing antibody responses, seen only to Tier 1 pseudoviruses, were poorer when the vaccines were combined and while T-cell responses were seen in >80% individuals in both groups and similarly CD4 and Env dominant, their breadth/polyfunctionality tended to be lower when the vaccines were combined, suggesting attenuation of immunogenicity and cautioning against this accelerated regimen. PMID:28275375
Steady state quantum discord for circularly accelerated atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Jiawei, E-mail: hujiawei@nbu.edu.cn; Yu, Hongwei, E-mail: hwyu@hunnu.edu.cn; Synergetic Innovation Center for Quantum Effects and Applications, Hunan Normal University, Changsha, Hunan 410081
2015-12-15
We study, in the framework of open quantum systems, the dynamics of quantum entanglement and quantum discord of two mutually independent circularly accelerated two-level atoms in interaction with a bath of fluctuating massless scalar fields in the Minkowski vacuum. We assume that the two atoms rotate synchronically with their separation perpendicular to the rotating plane. The time evolution of the quantum entanglement and quantum discord of the two-atom system is investigated. For a maximally entangled initial state, the entanglement measured by concurrence diminishes to zero within a finite time, while the quantum discord can either decrease monotonically to an asymptoticmore » value or diminish to zero at first and then followed by a revival depending on whether the initial state is antisymmetric or symmetric. When both of the two atoms are initially excited, the generation of quantum entanglement shows a delayed feature, while quantum discord is created immediately. Remarkably, the quantum discord for such a circularly accelerated two-atom system takes a nonvanishing value in the steady state, and this is distinct from what happens in both the linear acceleration case and the case of static atoms immersed in a thermal bath.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Bing; Department of Radiation Oncology, Hangzhou Cancer Hospital, Hangzhou; Hong, Ling-Zhi
Purpose: To prospectively investigate the efficacy and toxicity of accelerated hypofractionated thoracic radiation therapy (HypoTRT) combined with concurrent chemotherapy in the treatment of limited-stage small-cell lung cancer (LS-SCLC), with the hypothesis that both high radiation dose and short radiation time are important in this setting. Methods and Materials: Patients with previously untreated LS-SCLC, Eastern Cooperative Oncology Group performance status of 0 to 2, and adequate organ function were eligible. HypoTRT of 55 Gy at 2.5 Gy per fraction over 30 days was given on the first day of the second or third cycle of chemotherapy. An etoposide/cisplatin regimen was given to 4 tomore » 6 cycles. Patients who had a good response to initial treatment were offered prophylactic cranial irradiation. The primary endpoint was the 2-year progression-free survival rate. Results: Fifty-nine patients were enrolled from July 2007 through February 2012 (median age, 58 years; 86% male). The 2-year progression-free survival rate was 49.0% (95% confidence interval [CI] 35.3%-62.7%). Median survival time was 28.5 months (95% CI 9.0-48.0 months); the 2-year overall survival rate was 58.2% (95% CI 44.5%-71.9%). The 2-year local control rate was 76.4% (95% CI 63.7%-89.1%). The severe hematologic toxicities (grade 3 or 4) were leukopenia (32%), neutropenia (25%), and thrombocytopenia (15%). Acute esophagitis and pneumonitis of grade ≥3 occurred in 25% and 10% of the patients, respectively. Thirty-eight patients (64%) received prophylactic cranial irradiation. Conclusion: Our study showed that HypoTRT of 55 Gy at 2.5 Gy per fraction daily concurrently with etoposide/cisplatin chemotherapy has favorable survival and acceptable toxicity. This radiation schedule deserves further investigation in LS-SCLC.« less
Risk of Carotid Blowout After Reirradiation of the Head and Neck: A Systematic Review
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Mark W., E-mail: mwmcdona@iupui.edu; Indiana University Health Proton Therapy Center, Bloomington, IN; Moore, Michael G.
2012-03-01
Purpose: Carotid blowout (CB) is a rare but frequently fatal complication of head-and-neck (H and N) cancer or its treatment. We sought to determine the reported rate of CB in patients receiving salvage reirradiation for H and N cancer. Methods and Materials: A literature search identified 27 published articles on H and N reirradiation involving 1554 patients, and a pooled analysis was performed to determine the rate of CB. Treatment parameters, including prior radiation dose, interval from prior radiation, dose and fractionation of reirradiation, use of salvage surgery, and chemotherapy, were abstracted and summarized. The cumulative risk of CB wasmore » compared between groups using Fisher's exact test. Results: Among 1554 patients receiving salvage H and N reirradiation, there were 41 reported CBs, for a rate of 2.6%; 76% were fatal. In patients treated in a continuous course with 1.8-2-Gy daily fractions or 1.2-Gy twice-daily fractions, 36% of whom received concurrent chemotherapy, the rate of CB was 1.3%, compared with 4.5% in patients treated with 1.5 Gy twice daily in alternating weeks or with delayed accelerated hyperfractionation, all of whom received concurrent chemotherapy (p = 0.002). There was no statistically significant difference in the rate of CB between patients treated with or without concurrent chemotherapy, or between patients treated with or without salvage surgery before reirradiation. Conclusion: Carotid blowout is an infrequent but serious complication of salvage reirradiation for H and N cancer. The rate of CB was lower among patients treated with conventional or hyperfractionated schedules compared with regimens of accelerated hyperfractionation, though heterogeneous patient populations and treatment parameters preclude definite conclusions. Given the high mortality rate of CB, discussion of the risk of CB is an important component of informed consent for salvage reirradiation.« less
G.A.M.E.: GPU-accelerated mixture elucidator.
Schurz, Alioune; Su, Bo-Han; Tu, Yi-Shu; Lu, Tony Tsung-Yu; Lin, Olivia A; Tseng, Yufeng J
2017-09-15
GPU acceleration is useful in solving complex chemical information problems. Identifying unknown structures from the mass spectra of natural product mixtures has been a desirable yet unresolved issue in metabolomics. However, this elucidation process has been hampered by complex experimental data and the inability of instruments to completely separate different compounds. Fortunately, with current high-resolution mass spectrometry, one feasible strategy is to define this problem as extending a scaffold database with sidechains of different probabilities to match the high-resolution mass obtained from a high-resolution mass spectrum. By introducing a dynamic programming (DP) algorithm, it is possible to solve this NP-complete problem in pseudo-polynomial time. However, the running time of the DP algorithm grows by orders of magnitude as the number of mass decimal digits increases, thus limiting the boost in structural prediction capabilities. By harnessing the heavily parallel architecture of modern GPUs, we designed a "compute unified device architecture" (CUDA)-based GPU-accelerated mixture elucidator (G.A.M.E.) that considerably improves the performance of the DP, allowing up to five decimal digits for input mass data. As exemplified by four testing datasets with verified constitutions from natural products, G.A.M.E. allows for efficient and automatic structural elucidation of unknown mixtures for practical procedures. Graphical abstract .
Energy Beam Highways Through the Skies
NASA Technical Reports Server (NTRS)
Myrabo, Leik N.
1996-01-01
The emergence of Energy Beam Flight Transportation Systems could dramatically change the way we travel in the 21st Century. A framework for formulating 'Highways of Light' and the top level architectures that invoke radically new Space Power Grid infrastructure, are introduced. Basically, such flight systems, hereafter called Lightcraft, would employ off-board energy beam sources (either laser or microwave) to energize on-board dependent 'motors' -- instead of the traditional autonomous 'engines' with their on-board energy sources (e.g., chemical fuels). Extreme reductions in vehicle dry mass appear feasible with the use of off-board power and a high degree of on-board artificial intelligence. Such vehicles may no longer need airports for refueling (since they require no propellant), and could possibly pick up travelers at their homes -- before motoring over to one of many local boost stations, for the flight out. With off-board power, hyper-energetic acceleration performance and boost-glide trajectories become feasible. Hypersonic MS airbreathing propulsion can enable boosts up to twice escape velocity, which will cut trip times to the moon down to 5.5 hours. The predominant technological, environmental and social factors that will result from such transportation systems will be stressed. This presentation first introduces the remote source siting options for the space power system infrastructure, and then provides three representative laser/microwave Lightcraft options (derived from historical Case Studies): i.e., 'Acorn', 'Toy Top', and 'Disc.' Next the gamut of combined-cycle engine options developed for these Lightcraft are examined -- to illuminate the 'emerging technologies' that must be harnessed to produce flight hardware. Needed proof-of concept experiments are identified, along with the Macro-Level Issues that can springboard these revolutionary concepts into hardware reality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ahlawat, Stuti; Haffty, Bruce G.; Goyal, Sharad
Purpose: Conventionally fractionated whole-breast irradiation (WBI) with a boost takes approximately 6 to 7 weeks. We evaluated a short course of hypofractionated (HF), accelerated WBI in which therapy was completed in 3 weeks inclusive of a sequential boost. Methods and Materials: We delivered a whole-breast dose of 36.63 Gy in 11 fractions of 3.33 Gy over 11 days, followed by a lumpectomy bed boost in 4 fractions of 3.33 Gy delivered once daily for a total of 15 treatment days. Acute toxicities were scored using Common Terminology Criteria for Adverse Events version 4. Late toxicities were scored using the Radiation Therapy Oncology Group/European Organization for Researchmore » and Treatment of Cancer scale. Cosmesis was scored using the Harvard Cosmesis Scale. Our primary endpoint was freedom from locoregional failure; we incorporated early stopping criteria based on predefined toxicity thresholds. Cosmesis was examined as a secondary endpoint. Results: We enrolled 83 women with stages 0 to IIIa breast cancer. After a median follow-up of 40 months, 2 cases of isolated ipsilateral breast tumor recurrence occurred (2 of 83; crude rate, 2.4%). Three-year estimated local recurrence-free survival was 95.9% (95% confidence interval [CI]: 87.8%-98.7%). The 3-year estimated distant recurrence-free survival was 97.3% (95% CI: 89.8%-99.3%). Three-year secondary malignancy-free survival was 94.3% (95% CI: 85.3%-97.8%). Twenty-nine patients (34%) had grade 2 acute toxicity, and 1 patient had a late grade 2 toxicity (fibrosis). One patient had acute grade 3 dermatitis, whereas 2 patients experienced grade 3 late skin toxicity. Ninety-four percent of evaluable patients had good or excellent cosmesis. Conclusions: Our phase 2 institutional study offers one of the shortest courses of HF therapy, delivered in 15 fractions inclusive of a sequential boost. We demonstrated expected low toxicity and high local control rates with good to excellent cosmetic outcomes. This fractionation scheme is feasible and well tolerated and offers women WBI in a highly convenient schedule.« less
Nguyen-Tan, Phuc Felix; Zhang, Qiang; Ang, K. Kian; Weber, Randal S.; Rosenthal, David I.; Soulieres, Denis; Kim, Harold; Silverman, Craig; Raben, Adam; Galloway, Thomas J.; Fortin, André; Gore, Elizabeth; Westra, William H.; Chung, Christine H.; Jordan, Richard C.; Gillison, Maura L.; List, Marcie; Le, Quynh-Thu
2014-01-01
Purpose We tested the efficacy and toxicity of cisplatin plus accelerated fractionation with a concomitant boost (AFX-C) versus standard fractionation (SFX) in locally advanced head and neck carcinoma (LA-HNC). Patients and Methods Patients had stage III to IV carcinoma of the oral cavity, oropharynx, hypopharynx, or larynx. Radiation therapy schedules were 70 Gy in 35 fractions over 7 weeks (SFX) or 72 Gy in 42 fractions over 6 weeks (AFX-C). Cisplatin doses were 100 mg/m2 once every 3 weeks for two (AFX-C) or three (SFX) cycles. Toxicities were scored by using National Cancer Institute Common Toxicity Criteria 2.0 and the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. Overall survival (OS) and progression-free survival (PFS) rates were estimated by using the Kaplan-Meier method and were compared by using the one-sided log-rank test. Locoregional failure (LRF) and distant metastasis (DM) rates were estimated by using the cumulative incidence method and Gray's test. Results In all, 721 of 743 patients were analyzable (361, SFX; 360, AFX-C). At a median follow-up of 7.9 years (range, 0.3 to 10.1 years) for 355 surviving patients, no differences were observed in OS (hazard ratio [HR], 0.96; 95% CI, 0.79 to 1.18; P = .37; 8-year survival, 48% v 48%), PFS (HR, 1.02; 95% CI, 0.84 to 1.24; P = .52; 8-year estimate, 42% v 41%), LRF (HR, 1.08; 95% CI, 0.84 to 1.38; P = .78; 8-year estimate, 37% v 39%), or DM (HR, 0.83; 95% CI, 0.56 to 1.24; P = .16; 8-year estimate, 15% v 13%). For oropharyngeal cancer, p16-positive patients had better OS than p16-negative patients (HR, 0.30; 95% CI, 0.21 to 0.42; P < .001; 8-year survival, 70.9% v 30.2%). There were no statistically significant differences in the grade 3 to 5 acute or late toxicities between the two arms and p-16 status. Conclusion When combined with cisplatin, AFX-C neither improved outcome nor increased late toxicity in patients with LA-HNC. Long-term high survival rates in p16-positive patients with oropharyngeal cancer support the ongoing efforts to explore deintensification. PMID:25366680
Nguyen-Tan, Phuc Felix; Zhang, Qiang; Ang, K Kian; Weber, Randal S; Rosenthal, David I; Soulieres, Denis; Kim, Harold; Silverman, Craig; Raben, Adam; Galloway, Thomas J; Fortin, André; Gore, Elizabeth; Westra, William H; Chung, Christine H; Jordan, Richard C; Gillison, Maura L; List, Marcie; Le, Quynh-Thu
2014-12-01
We tested the efficacy and toxicity of cisplatin plus accelerated fractionation with a concomitant boost (AFX-C) versus standard fractionation (SFX) in locally advanced head and neck carcinoma (LA-HNC). Patients had stage III to IV carcinoma of the oral cavity, oropharynx, hypopharynx, or larynx. Radiation therapy schedules were 70 Gy in 35 fractions over 7 weeks (SFX) or 72 Gy in 42 fractions over 6 weeks (AFX-C). Cisplatin doses were 100 mg/m(2) once every 3 weeks for two (AFX-C) or three (SFX) cycles. Toxicities were scored by using National Cancer Institute Common Toxicity Criteria 2.0 and the Radiation Therapy Oncology Group/European Organisation for Research and Treatment of Cancer criteria. Overall survival (OS) and progression-free survival (PFS) rates were estimated by using the Kaplan-Meier method and were compared by using the one-sided log-rank test. Locoregional failure (LRF) and distant metastasis (DM) rates were estimated by using the cumulative incidence method and Gray's test. In all, 721 of 743 patients were analyzable (361, SFX; 360, AFX-C). At a median follow-up of 7.9 years (range, 0.3 to 10.1 years) for 355 surviving patients, no differences were observed in OS (hazard ratio [HR], 0.96; 95% CI, 0.79 to 1.18; P = .37; 8-year survival, 48% v 48%), PFS (HR, 1.02; 95% CI, 0.84 to 1.24; P = .52; 8-year estimate, 42% v 41%), LRF (HR, 1.08; 95% CI, 0.84 to 1.38; P = .78; 8-year estimate, 37% v 39%), or DM (HR, 0.83; 95% CI, 0.56 to 1.24; P = .16; 8-year estimate, 15% v 13%). For oropharyngeal cancer, p16-positive patients had better OS than p16-negative patients (HR, 0.30; 95% CI, 0.21 to 0.42; P < .001; 8-year survival, 70.9% v 30.2%). There were no statistically significant differences in the grade 3 to 5 acute or late toxicities between the two arms and p-16 status. When combined with cisplatin, AFX-C neither improved outcome nor increased late toxicity in patients with LA-HNC. Long-term high survival rates in p16-positive patients with oropharyngeal cancer support the ongoing efforts to explore deintensification. © 2014 by American Society of Clinical Oncology.
COLA with scale-dependent growth: applications to screened modified gravity models
NASA Astrophysics Data System (ADS)
Winther, Hans A.; Koyama, Kazuya; Manera, Marc; Wright, Bill S.; Zhao, Gong-Bo
2017-08-01
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f(R) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative to ΛCDM even when using a fairly small number of COLA time steps.
NASA Astrophysics Data System (ADS)
Agrawal, Ankit; Choudhary, Alok
2016-05-01
Our ability to collect "big data" has greatly surpassed our capability to analyze it, underscoring the emergence of the fourth paradigm of science, which is data-driven discovery. The need for data informatics is also emphasized by the Materials Genome Initiative (MGI), further boosting the emerging field of materials informatics. In this article, we look at how data-driven techniques are playing a big role in deciphering processing-structure-property-performance relationships in materials, with illustrative examples of both forward models (property prediction) and inverse models (materials discovery). Such analytics can significantly reduce time-to-insight and accelerate cost-effective materials discovery, which is the goal of MGI.
Utilization of ontology look-up services in information retrieval for biomedical literature.
Vishnyakova, Dina; Pasche, Emilie; Lovis, Christian; Ruch, Patrick
2013-01-01
With the vast amount of biomedical data we face the necessity to improve information retrieval processes in biomedical domain. The use of biomedical ontologies facilitated the combination of various data sources (e.g. scientific literature, clinical data repository) by increasing the quality of information retrieval and reducing the maintenance efforts. In this context, we developed Ontology Look-up services (OLS), based on NEWT and MeSH vocabularies. Our services were involved in some information retrieval tasks such as gene/disease normalization. The implementation of OLS services significantly accelerated the extraction of particular biomedical facts by structuring and enriching the data context. The results of precision in normalization tasks were boosted on about 20%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winther, Hans A.; Koyama, Kazuya; Wright, Bill S.
We present a general parallelized and easy-to-use code to perform numerical simulations of structure formation using the COLA (COmoving Lagrangian Acceleration) method for cosmological models that exhibit scale-dependent growth at the level of first and second order Lagrangian perturbation theory. For modified gravity theories we also include screening using a fast approximate method that covers all the main examples of screening mechanisms in the literature. We test the code by comparing it to full simulations of two popular modified gravity models, namely f ( R ) gravity and nDGP, and find good agreement in the modified gravity boost-factors relative tomore » ΛCDM even when using a fairly small number of COLA time steps.« less
Blazars: The accelerating inner jet model.
NASA Astrophysics Data System (ADS)
Georganopoulos, M.; Marscher, A. P.
1996-05-01
The standard interpretation of the nonthermal continuum radiation of blazars from radio to gamma -rays is thought to be synchrotron and inverse Compton radiation from a relativistic jet. The inner jet of a blazar is the section of the jet that connects the central engine with the VLBI core of the radio jet. This is a small (la 1 pc) region where the jet is formed, collimated and accelerated to speeds close to that of light. In the accelerating inner jet model ultrarelativistic plasma is generated continuously near the central engine of the AGN and is accelerated hydrodynamically. An external hydrostatic and/or magnetohydrodynamic pressure collimates the flow. In this work a simple relativistic hydrodynamic scheme that produces a simultaneously accelerating and converging flow is coupled with a detailed calculation of the evolution of the electron energy distribution and synchrotron emissivity due to relativistic electrons radiating in a mostly random magnetic field. Higher frequency radiation emanates from smaller distances from the central engine, implying shorter flux variation timescales at higher frequencies, as observed. The velocity of the jet increases with distance; this implies larger Doppler boosting for greater distances down the jet up to the point where the Lorentz factor Gamma la theta (-1) , where theta is the angle between the velocity vector and the line of sight, and therefore at lower frequencies. This can explain some of the differences between RBLs and XBLs as a line-of-sight orientation effect. A square density wave is propagated with the jet velocity and the variability thus induced is studied, taking into account time delay effects. The model is found to agree qualitatively with the observed steady state spectra as well as with the observed variability properties of BL Lac objects.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.
1997-01-01
In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.
Haralambieva, Iana H.; Ovsyannikova, Inna G.; O’Byrne, Megan; Pankratz, V. Shane; Jacobson, Robert M.; Poland, Gregory A.
2011-01-01
The measurement of measles-specific neutralizing antibodies, directed against the surface measles virus hemagglutinin and fusion proteins, is considered the gold standard in measles serology. We assessed functional measles-specific neutralizing antibody levels in a racially diverse cohort of 763 young healthy adolescents after receipt of two doses of measles-mumps-rubella vaccine, by the use of an automated plaque reduction microneutralization (PRMN) assay, and evaluated their relevance to protective antibody levels, as well as their associations with demographic and clinical variables. We also concurrently assessed measles-specific IFNγ Elispot responses and their relation to the observed antibody concentrations. The geometric mean titer for our cohort was 832 mIU/mL (95% CIs: 776; 891). Sixty-eight subjects (8.9%) had antibody concentrations of less than the protective threshold of 210 mIU/mL (corresponding to PRMN titer of 120; suggesting protection against symptomatic disease), and 177 subjects (23.2%) demonstrated persisting antibody concentrations above 1,841 mIU/mL (corresponding to PRMN titer of 1,052; suggesting total protection against viral infection), 7.4 years after vaccination, in the absence of wild-type virus boosting. The mean measles-specific IFNγ Elispot response for our cohort was 46 (95% CIs: 43; 49) IFNγ-positive spots per 200,000 cells with no relation of cellular immunity measures to the observed antibody concentrations. No significant associations between antibody titers and demographic and clinical variables, including gender and race, were observed in our study. In conclusion, in a large observational study of measles immunity, we used an automated high-throughput measles virus-specific neutralization assay to measure humoral immunity, and concurrently determined measles-specific cellular immunity to aid the assessment of potential susceptibility to measles in vaccinated populations. PMID:21539880
Sarheed, Omar; Abdul Rasool, Bazigha K
2011-01-01
It has now been known for over a decade that low frequency ultrasound can be used to effectively enhance transdermal drug penetration - an approach termed sonophoresis. Mechanistically, acoustic cavitation results in the creation of defects in the stratum corneum that allow accelerated absorption of topically applied molecules. The aim of this study was to develop an optimised sonophoresis protocol for studying transdermal drug delivery in vitro. To this end, caffeine was selected as a model hydrophilic drug while porcine skin was used as a model barrier. Following acoustic validation, 20kHz ultrasound was applied for different durations (range: 5 s to 10 min) using three different modes (10%, 33% or 100% duty cycles) and two distinct sonication procedures (either before or concurrent with drug deposition). Each ultrasonic protocol was assessed in terms of its heating and caffeine flux-enhancing effects. It was found that the best regimen was a concurrent 5 min, pulsed (10% duty cycle) beam of SATA intensity 0.37 W/cm2. A key insight was that in the case of pulsed beams of 10% duty cycle, sonication concurrent with drug deposition was superior to sonication prior to drug deposition and potential mechanisms for this are discussed. PMID:21629673
Lipopolysaccharide reduces incentive motivation while boosting preference for high reward in mice.
Vichaya, Elisabeth G; Hunt, Sarah C; Dantzer, Robert
2014-11-01
Inflammation has been implicated in the development of various psychiatric disorders, including depression. However, the neurobehavioral mechanism involved in this relationship remains elusive. This gap in knowledge may best be filled by evaluating elementary neurobehavioral units affected by inflammation rather than behavioral changes in conventional animal tests of depression. To this end, the current study used a concurrent choice paradigm to evaluate inflammation-induced motivational changes. Male C57BL/6J mice (n=27) were food restricted to between 85 and 90% of their free-feeding weight and were trained to perform a concurrent choice task where they nose-poked for grain rewards on a fixed ratio (FR) 1 schedule (low effort/low reward) and chocolate-flavored rewards on a FR-10 schedule (high effort/high reward). A counterbalanced-within subjects design was used. A single intraperitoneal injection of 0.33 mg/kg lipopolysaccharide (LPS) was used to induce peripheral inflammation. Twenty-four hours after LPS administration, mice showed a reduction in the total number of nose pokes. A proportionally greater reduction in nose pokes was observed for grain, resulting in an increase in percent chocolate pellets earned. These behavioral changes cannot be explained by reduced appetite as feeding before the test led to a similar increase in percent chocolate pellets earned but without any decrease in responding. These results indicate that inflammation modulates incentive motivation by affecting willingness to exert effort for reward and not by reducing sensitivity to reward.
Platta, Christopher S; Wallace, Charlie; Gondi, Vinai; Das, Rupak; Straub, Margaret; Al-Niaimi, Ahmed; Applegate, Glenn; Bradley, Kristin A
2014-03-01
To describe an approach to cervical brachytherapy in a patient with congenital septate uterus and locally advanced cervical carcinoma. The patient is a 34-year-old female with septate uterus presenting with pelvic pain. Workup demonstrated a stage IIB cervical adenocarcinoma with imaging evidence of an involved right external iliac lymph node. The patient received whole pelvic radiation, with concurrent weekly cisplatin (40 mg/m(2)), to a dose of 45 Gy in 25 fractions followed by a parametrial boost of 5.4 Gy and an additional nodal boost of 9 Gy. The patient was initiated on cervical brachytherapy following fraction 23 of pelvic radiation. To conform to her septated uterus, a Rotte-Y tandem was used. Additionally, 2 CT-compatible ovoids were placed in the vaginal apex to enhance dose distribution and coverage of the target volume. Each fraction of brachytherapy was performed with CT-based planning. A high-risk clinical target volume (HR-CTV) and normal structures were defined and constrained per American Brachytherapy Society (ABS) and Groupe Européen de Curiethérapie/European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) guidelines. The brachytherapy dose was 27.5 Gy in 5 fractions of 5.5 Gy each, prescribed to the HR-CTV. Herein, we report the first documented case of cervical brachytherapy in a patient with septate uterus and locally advanced cervical carcinoma. Using CT-guided planning, in conjunction with the ABS and GEC-ESTRO guidelines, the patient was effectively treated with adapted cervical brachytherapy, meeting criteria for HR-CTV coverage and normal tissue tolerances.
Extended Acceleration in Slot Gaps and Pulsar High-Energy Emission
NASA Technical Reports Server (NTRS)
White, Nicholas E. (Technical Monitor); Muslimov, Alex G.; Harding, Alice K.
2003-01-01
We revise the physics of primary electron acceleration in the "slot gap" (SG) above the pulsar polar caps (PCs), a regime originally proposed by Arons and Scharlemann (1979) in their electrodynamic model of pulsar PCs. We employ the standard definition of the SG as a pair-free space between the last open field lines and the boundary of the pair plasma column which is expected to develop above the bulk of the PC. The rationale for our revision is that the proper treatment of primary acceleration within the pulsar SGs should take into account the effect of the narrow geometry of the gap on the electrodynamics within the gap and also to include the effect of inertial frame dragging on the particle acceleration. We show that the accelerating electric field within the gap, being significantly boosted by the effect of frame dragging, becomes reduced because of the gap geometry by a factor proportional to the square of the SG width. The combination of the effects of frame dragging and geometrical screening in the gap region naturally gives rise to a regime of extended acceleration, that is not limited to favorably curved field lines as in earlier models, and the possibility of multiple-pair production by curvature photons at very high altitudes, up to several stellar radii. We present our estimates of the characteristic SG thickness across the PC, energetics of primaries accelerated within the gap, high-energy bolometric luminosities emitted from the high altitudes in the gaps, and maximum heating luminosities produced by positrons returning from the elevated pair fronts. The estimated theoretical high-energy luminosities are in good agreement with the corresponding empirical relationships for gamma-ray pulsars. We illustrate the results of our modeling of the pair cascades and gamma-ray emission from the high altitudes in the SG for the Crab pulsar. The combination of the frame-dragging field and high-altitude SG emission enables both acceleration at the smaller inclination angles and a larger emission beam, both necessary to produce widely-spaced double-peaked profiles.
Usherwood, James Richard
2005-01-01
Bipedal walking following inverted pendulum mechanics is constrained by two requirements: sufficient kinetic energy for the vault over midstance and sufficient gravity to provide the centripetal acceleration required for the arc of the body about the stance foot. While the acceleration condition identifies a maximum walking speed at a Froude number of 1, empirical observation indicates favoured walk–run transition speeds at a Froude number around 0.5 for birds, humans and humans under manipulated gravity conditions. In this study, I demonstrate that the risk of ‘take-off’ is greatest at the extremes of stance. This is because before and after kinetic energy is converted to potential, velocities (and so required centripetal accelerations) are highest, while concurrently the component of gravity acting in line with the leg is least. Limitations to the range of walking velocity and stride angle are explored. At walking speeds approaching a Froude number of 1, take-off is only avoidable with very small steps. With realistic limitations on swing-leg frequency, a novel explanation for the walk–run transition at a Froude number of 0.5 is shown. PMID:17148201
Ichikawa, Kazuki; Morishita, Shinichi
2014-01-01
K-means clustering has been widely used to gain insight into biological systems from large-scale life science data. To quantify the similarities among biological data sets, Pearson correlation distance and standardized Euclidean distance are used most frequently; however, optimization methods have been largely unexplored. These two distance measurements are equivalent in the sense that they yield the same k-means clustering result for identical sets of k initial centroids. Thus, an efficient algorithm used for one is applicable to the other. Several optimization methods are available for the Euclidean distance and can be used for processing the standardized Euclidean distance; however, they are not customized for this context. We instead approached the problem by studying the properties of the Pearson correlation distance, and we invented a simple but powerful heuristic method for markedly pruning unnecessary computation while retaining the final solution. Tests using real biological data sets with 50-60K vectors of dimensions 10-2001 (~400 MB in size) demonstrated marked reduction in computation time for k = 10-500 in comparison with other state-of-the-art pruning methods such as Elkan's and Hamerly's algorithms. The BoostKCP software is available at http://mlab.cb.k.u-tokyo.ac.jp/~ichikawa/boostKCP/.
Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics
Davis, Courtney L.; Wahid, Rezwanul; Toapanta, Franklin R.; Simon, Jakub K.
2013-01-01
We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella’s outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design. PMID:23589755
Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.
Davis, Courtney L; Wahid, Rezwanul; Toapanta, Franklin R; Simon, Jakub K; Sztein, Marcelo B; Levy, Doron
2013-01-01
We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design.
Turbo-SMT: Accelerating Coupled Sparse Matrix-Tensor Factorizations by 200×
Papalexakis, Evangelos E.; Faloutsos, Christos; Mitchell, Tom M.; Talukdar, Partha Pratim; Sidiropoulos, Nicholas D.; Murphy, Brian
2015-01-01
How can we correlate the neural activity in the human brain as it responds to typed words, with properties of these terms (like ‘edible’, ‘fits in hand’)? In short, we want to find latent variables, that jointly explain both the brain activity, as well as the behavioral responses. This is one of many settings of the Coupled Matrix-Tensor Factorization (CMTF) problem. Can we accelerate any CMTF solver, so that it runs within a few minutes instead of tens of hours to a day, while maintaining good accuracy? We introduce TURBO-SMT, a meta-method capable of doing exactly that: it boosts the performance of any CMTF algorithm, by up to 200×, along with an up to 65 fold increase in sparsity, with comparable accuracy to the baseline. We apply TURBO-SMT to BRAINQ, a dataset consisting of a (nouns, brain voxels, human subjects) tensor and a (nouns, properties) matrix, with coupling along the nouns dimension. TURBO-SMT is able to find meaningful latent variables, as well as to predict brain activity with competitive accuracy. PMID:26473087
Flight Force Measurements on a Spacecraft to Launch Vehicle Interface
NASA Astrophysics Data System (ADS)
Kaufman, Daniel S.; Gordon, Scott A.
2012-07-01
For several years we had wanted to measure interface forces between a launch vehicle and the Payload. Finally in July 2006 a proposal was made and funded to evaluate the use of flight force measurements (FFM) to improve the loads process of a Spacecraft in its design and test cycle. A NASA/Industry team was formed, the core Team consisted of 20 people. The proposal identified two questions that this assessment would attempt to address by obtaining the flight forces. These questions were: 1) Is flight correlation and reconstruction with acceleration methods sufficient? 2) How much can the loads and therefore the design and qualification be reduced by having force measurements? The objective was to predict the six interface driving forces between the Spacecraft and the Launch Vehicle throughout the boost phase. Then these forces would be compared with reconstructed loads analyses for evaluation in an attempt to answer them. The paper will present the development of a strain based force measurement system and also an acceleration method, actual flight results, post flight evaluations and lessons learned.
NASA Astrophysics Data System (ADS)
Giosan, Liviu; Ponton, Camilo; Usman, Muhammed; Blusztajn, Jerzy; Fuller, Dorian Q.; Galy, Valier; Haghipour, Negar; Johnson, Joel E.; McIntyre, Cameron; Wacker, Lukas; Eglinton, Timothy I.
2017-12-01
Soil erosion plays a crucial role in transferring sediment and carbon from land to sea, yet little is known about the rhythm and rates of soil erosion prior to the most recent few centuries. Here we reconstruct a Holocene erosional history from central India, as integrated by the Godavari River in a sediment core from the Bay of Bengal. We quantify terrigenous fluxes, fingerprint sources for the lithogenic fraction and assess the age of the exported terrigenous carbon. Taken together, our data show that the monsoon decline in the late Holocene significantly increased soil erosion and the age of exported organic carbon. This acceleration of natural erosion was later exacerbated by the Neolithic adoption and Iron Age extensification of agriculture on the Deccan Plateau. Despite a constantly elevated sea level since the middle Holocene, this erosion acceleration led to a rapid growth of the continental margin. We conclude that in monsoon conditions aridity boosts rather than suppresses sediment and carbon export, acting as a monsoon erosional pump modulated by land cover conditions.
Interplay between topological phase and self-acceleration in a vortex symmetric Airy beam.
Fang, Zhao-Xiang; Chen, Yue; Ren, Yu-Xuan; Gong, Lei; Lu, Rong-De; Zhang, An-Qi; Zhao, Hong-Ze; Wang, Pei
2018-03-19
Photons in an optical vortex usually carry orbital angular momentum, which boosts the application of the micro-rotation of absorbing particles and quantum information encoding. Such photons propagate along a straight line in free space or follow a curved trace once guided by an optical fiber. Teleportation of an optical vortex using a beam with non-diffraction and self-healing is quite challenging. We demonstrate the manipulation of the propagation trace of an optical vortex with a symmetric Airy beam (SAB) and found that the SAB experiences self-rotation with the implementation of a topological phase structure of coaxial vortex. Slight misalignment of the vortex and the SAB enables the guiding of the vortex into one of the self-accelerating channels. Multiple off-axis vortices embedded in SAB are also demonstrated to follow the trajectory of the major lobe for the SAB beam. The Poynting vector for the beams proves the direction of the energy flow corresponding to the intensity distribution. Hence, we anticipate that the proposed vortex symmetric Airy beam (VSAB) will provide new possibilities for optical manipulation and optical communication.
GPU-accelerated FDTD modeling of radio-frequency field-tissue interactions in high-field MRI.
Chi, Jieru; Liu, Feng; Weber, Ewald; Li, Yu; Crozier, Stuart
2011-06-01
The analysis of high-field RF field-tissue interactions requires high-performance finite-difference time-domain (FDTD) computing. Conventional CPU-based FDTD calculations offer limited computing performance in a PC environment. This study presents a graphics processing unit (GPU)-based parallel-computing framework, producing substantially boosted computing efficiency (with a two-order speedup factor) at a PC-level cost. Specific details of implementing the FDTD method on a GPU architecture have been presented and the new computational strategy has been successfully applied to the design of a novel 8-element transceive RF coil system at 9.4 T. Facilitated by the powerful GPU-FDTD computing, the new RF coil array offers optimized fields (averaging 25% improvement in sensitivity, and 20% reduction in loop coupling compared with conventional array structures of the same size) for small animal imaging with a robust RF configuration. The GPU-enabled acceleration paves the way for FDTD to be applied for both detailed forward modeling and inverse design of MRI coils, which were previously impractical.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budach, Volker, E-mail: volker.budach@charite.de; Stromberger, Carmen; Poettgen, Christoph
2015-04-01
Purpose: To report the long-term results of the ARO 95-06 randomized trial comparing hyperfractionated accelerated chemoradiation with mitomycin C/5-fluorouracil (C-HART) with hyperfractionated accelerated radiation therapy (HART) alone in locally advanced head and neck cancer. Patients and Methods: The primary endpoint was locoregional control (LRC). Three hundred eighty-four patients with stage III (6%) and IV (94%) oropharyngeal (59.4%), hypopharyngeal (32.3%), and oral cavity (8.3%) cancer were randomly assigned to 30 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total of 70.6 Gy concurrently with mitomycin C/5-FU (C-HART) or 16 Gy/2 Gy daily followed by twice-daily 1.4 Gy to a total dose of 77.6 Gy alone (HART). Statisticalmore » analyses were done with the log-rank test and univariate and multivariate Cox regression analyses. Results: The median follow-up time was 8.7 years (95% confidence interval [CI]: 7.8-9.7 years). At 10 years, the LRC rates were 38.0% (C-HART) versus 26.0% (HART, P=.002). The cancer-specific survival and overall survival rates were 39% and 10% (C-HART) versus 30.0% and 9% (HART, P=.042 and P=.049), respectively. According to multivariate Cox regression analysis, the combined treatment was associated with improved LRC (hazard ratio [HR]: 0.6 [95% CI: 0.5-0.8; P=.002]). The association between combined treatment arm and increased LRC appeared to be limited to oropharyngeal cancer (P=.003) as compared with hypopharyngeal or oral cavity cancer (P=.264). Conclusions: C-HART remains superior to HART in terms of LRC. However, this effect may be limited to oropharyngeal cancer patients.« less
Asbach, Benedikt; Kliche, Alexander; Köstler, Josef; Perdiguero, Beatriz; Esteban, Mariano; Jacobs, Bertram L.; Montefiori, David C.; LaBranche, Celia C.; Yates, Nicole L.; Tomaras, Georgia D.; Ferrari, Guido; Foulds, Kathryn E.; Roederer, Mario; Landucci, Gary; Forthal, Donald N.; Seaman, Michael S.; Hawkins, Natalie; Self, Steven G.; Sato, Alicia; Gottardo, Raphael; Phogat, Sanjay; Tartaglia, James; Barnett, Susan W.; Burke, Brian; Cristillo, Anthony D.; Weiss, Deborah E.; Francis, Jesse; Galmin, Lindsey; Ding, Song; Heeney, Jonathan L.; Pantaleo, Giuseppe
2016-01-01
ABSTRACT In a follow-up to the modest efficacy observed in the RV144 trial, researchers in the HIV vaccine field seek to substantiate and extend the results by evaluating other poxvirus vectors and combinations with DNA and protein vaccines. Earlier clinical trials (EuroVacc trials 01 to 03) evaluated the immunogenicity of HIV-1 clade C GagPolNef and gp120 antigens delivered via the poxviral vector NYVAC. These showed that a vaccination regimen including DNA-C priming prior to a NYVAC-C boost considerably enhanced vaccine-elicited immune responses compared to those with NYVAC-C alone. Moreover, responses were improved by using three as opposed to two DNA-C primes. In the present study, we assessed in nonhuman primates whether such vaccination regimens can be streamlined further by using fewer and accelerated immunizations and employing a novel generation of improved DNA-C and NYVAC-C vaccine candidates designed for higher expression levels and more balanced immune responses. Three different DNA-C prime/NYVAC-C+ protein boost vaccination regimens were tested in rhesus macaques. All regimens elicited vigorous and well-balanced CD8+ and CD4+ T cell responses that were broad and polyfunctional. Very high IgG binding titers, substantial antibody-dependent cellular cytotoxicity (ADCC), and modest antibody-dependent cell-mediated virus inhibition (ADCVI), but very low neutralization activity, were measured after the final immunizations. Overall, immune responses elicited in all three groups were very similar and of greater magnitude, breadth, and quality than those of earlier EuroVacc vaccines. In conclusion, these findings indicate that vaccination schemes can be simplified by using improved antigens and regimens. This may offer a more practical and affordable means to elicit potentially protective immune responses upon vaccination, especially in resource-constrained settings. IMPORTANCE Within the EuroVacc clinical trials, we previously assessed the immunogenicity of HIV clade C antigens delivered in a DNA prime/NYVAC boost regimen. The trials showed that the DNA prime crucially improved the responses, and three DNA primes with a NYVAC boost appeared to be optimal. Nevertheless, T cell responses were primarily directed toward Env, and humoral responses were modest. The aim of this study was to assess improved antigens for the capacity to elicit more potent and balanced responses in rhesus macaques, even with various simpler immunization regimens. Our results showed that the novel antigens in fact elicited larger numbers of T cells with a polyfunctional profile and a good Env-GagPolNef balance, as well as high-titer and Fc-functional antibody responses. Finally, comparison of the different schedules indicates that a simpler regimen of only two DNA primes and one NYVAC boost in combination with protein may be very efficient, thus showing that the novel antigens allow for easier immunization protocols. PMID:26865719
Computer simulations of optimum boost and buck-boost converters
NASA Technical Reports Server (NTRS)
Rahman, S.
1982-01-01
The development of mathematicl models suitable for minimum weight boost and buck-boost converter designs are presented. The facility of an augumented Lagrangian (ALAG) multiplier-based nonlinear programming technique is demonstrated for minimum weight design optimizations of boost and buck-boost power converters. ALAG-based computer simulation results for those two minimum weight designs are discussed. Certain important features of ALAG are presented in the framework of a comprehensive design example for boost and buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight annd loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
Cai, Gang; Zhu, Ji; Palmer, Joshua D; Xu, Ye; Hu, Weigang; Gu, Weilie; Cai, Sanjun; Zhang, Zhen
2015-02-28
This study investigated the local effect and acute toxicity of irinotecan and capecitabine with concurrent intensity-modulated radiation therapy (IMRT) for the treatment of recurrent rectal cancer without prior pelvic irradiation. Seventy-one patients diagnosed with recurrent rectal cancer who did not previously receive pelvic irradiation were treated in our hospital from October 2009 to July 2012. Radiotherapy was delivered to the pelvis, and IMRT of 45 Gy (1.8 Gy per fraction), followed by a boost of 10 Gy to 16 Gy (2 Gy per fraction), was delivered to the recurrent sites. The concurrent chemotherapy regimen was 50 mg/m(2) irinotecan weekly and 625 mg/m(2) capecitabine twice daily (Mon-Fri). Radical surgery was recommended for medically fit patients without extra-pelvic metastases. The patients were followed up every 3 months. Tumor response was evaluated using CT/MRIs according to the RECIST criteria or postoperative pathological findings. NCI-CTC 3.0 was used to score the toxicities. Forty-eight patients (67.6%) had confirmed recurrent rectal cancer without extra pelvic metastases, and 23 patients (32.4%) had extra pelvic metastases. Fourteen patients (19.7%) underwent radical resections (R0) post-chemoradiation. A pathologic complete response was observed in 7 of 14 patients. A clinical complete response was observed in 4 patients (5.6%), and a partial response was observed in 22 patients (31.0%). Only 5 patients (7.0%) showed progressive disease during or shortly after treatment. Of 53 symptomatic patients, clinical complete and partial symptom relief with chemoradiation was achieved in 56.6% and 32.1% of patients, respectively. Only 2 patients (2.8%) experienced grade 4 leukopenia. The most common grade 3 toxicity was diarrhea (16 [22.5%] patients). The median follow-up was 31 months. The cumulative local progression-free survival rate was 74.2% and 33.9% at 1 and 3 years after chemoradiation, respectively. The cumulative total survival rate was 80.1% and 36.5% at 1 and 3 years after chemoradiation, respectively. This study revealed that concurrent irinotecan and capecitabine with IMRT significantly relieves local symptoms and exhibits promising efficacy with manageable toxicities in recurrent rectal cancer without prior pelvic irradiation. Improving the rate of R0 resections will be investigated in a future study.
[Combined use of various laser radiations in thoracic surgery in experimental studies].
Ismailov, D A; Khoroshaev, V A; Shishkin, M A; Baĭbekov, I M
1993-01-01
The impact of various types of low-intensive lasers (He-Ne, copper vapour, ultraviolet, infrared, infrared gallium arsenide) on healing of a wound made by CO2 laser at an output power of 25 W was studied in an experiment on 120 albino Wistar rats. It was found that a concurrent application of high- and low-intensive lasers resulted in acceleration of reparative processes in the lung, stimulating the healing of laser-induced wounds. The infrared gallium arsenide laser was demonstrated to be the best tool in stimulating the healing process.
Thermal Control Subsystem Design for the Avionics of a Space Station Payload
NASA Technical Reports Server (NTRS)
Moran, Matthew E.
1996-01-01
A case study of the thermal control subsystem development for a space based payload is presented from the concept stage through preliminary design. This payload, the Space Acceleration Measurement System 2 (SAMS-2), will measure the acceleration environment at select locations within the International Space Station. Its thermal control subsystem must maintain component temperatures within an acceptable range over a 10 year life span, while restricting accessible surfaces to touch temperature limits and insuring fail safe conditions in the event of loss of cooling. In addition to these primary design objectives, system level requirements and constraints are imposed on the payload, many of which are driven by multidisciplinary issues. Blending these issues into the overall system design required concurrent design sessions with the project team, iterative conceptual design layouts, thermal analysis and modeling, and hardware testing. Multiple tradeoff studies were also performed to investigate the many options which surfaced during the development cycle.
Software defined radio (SDR) architecture for concurrent multi-satellite communications
NASA Astrophysics Data System (ADS)
Maheshwarappa, Mamatha R.
SDRs have emerged as a viable approach for space communications over the last decade by delivering low-cost hardware and flexible software solutions. The flexibility introduced by the SDR concept not only allows the realisation of concurrent multiple standards on one platform, but also promises to ease the implementation of one communication standard on differing SDR platforms by signal porting. This technology would facilitate implementing reconfigurable nodes for parallel satellite reception in Mobile/Deployable Ground Segments and Distributed Satellite Systems (DSS) for amateur radio/university satellite operations. This work outlines the recent advances in embedded technologies that can enable new communication architectures for concurrent multi-satellite or satellite-to-ground missions where multi-link challenges are associated. This research proposes a novel concept to run advanced parallelised SDR back-end technologies in a Commercial-Off-The-Shelf (COTS) embedded system that can support multi-signal processing for multi-satellite scenarios simultaneously. The initial SDR implementation could support only one receiver chain due to system saturation. However, the design was optimised to facilitate multiple signals within the limited resources available on an embedded system at any given time. This was achieved by providing a VHDL solution to the existing Python and C/C++ programming languages along with parallelisation so as to accelerate performance whilst maintaining the flexibility. The improvement in the performance was validated at every stage through profiling. Various cases of concurrent multiple signals with different standards such as frequency (with Doppler effect) and symbol rates were simulated in order to validate the novel architecture proposed in this research. Also, the architecture allows the system to be reconfigurable by providing the opportunity to change the communication standards in soft real-time. The chosen COTS solution provides a generic software methodology for both ground and space applications that will remain unaltered despite new evolutions in hardware, and supports concurrent multi-standard, multi-channel and multi-rate telemetry signals.
Ricca, Jim; Kureshy, Nazo; LeBan, Karen; Prosnitz, Debra; Ryan, Leo
2014-03-01
Evidence exists that community-based intervention packages can have substantial child and newborn mortality impact, and may help more countries meet Millennium Development Goal 4 (MDG 4) targets. A non-governmental organization (NGO) project using such programming in Mozambique documented an annual decline in under-five mortality rate (U5MR) of 9.3% in a province in which Demographic and Health Survey (DHS) data showed a 4.2% U5MR decline during the same period. To test the generalizability of this finding, the same analysis was applied to a group of projects funded by the US Agency for International Development. Projects supported implementation of community-based intervention packages aimed at increasing use of health services while improving preventive and home-care practices for children under five. All projects collect baseline and endline population coverage data for key child health interventions. Twelve projects fitted the inclusion criteria. U5MR decline was estimated by modelling these coverage changes in the Lives Saved Tool (LiST) and comparing with concurrent measured DHS mortality data. Average coverage changes for all interventions exceeded average concurrent trends. When population coverage changes were modelled in LiST, they were estimated to give a child mortality improvement in the project area that exceeded concurrent secular trend in the subnational DHS region in 11 of 12 cases. The average improvement in modelled U5MR (5.8%) was more than twice the concurrent directly measured average decline (2.5%). NGO projects implementing community-based intervention packages appear to be effective in reducing child mortality in diverse settings. There is plausible evidence that they raised coverage for a variety of high-impact interventions and improved U5MR by more than twice the concurrent secular trend. All projects used community-based strategies that achieved frequent interpersonal contact for health behaviour change. Further study of the effectiveness and scalability of similar packages should be part of the effort to accelerate progress towards MDG 4.
NASA Astrophysics Data System (ADS)
Liang, Edison; Fu, Wen; Böttcher, Markus
2017-10-01
We present particle-in-cell simulation results of relativistic shear boundary layers between electron-ion and electron-positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron-positron spine surrounded by a slow-moving or stationary electron-ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron-ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Edison; Fu, Wen; Böttcher, Markus
We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. Thismore » is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.« less
Green certification, e-commerce, and low-carbon economy for international tourist hotels.
Chen, Long-Fei
2018-05-22
Increasing population and over-consumption are placing unprecedented demands on agriculture and natural resources. The Earth is suffering from global warning and environmental destruction while our agricultural systems are concurrently degrading land, water, biodiversity, and climate on a global scale. For a sustainable future, green certification, e-commerce, and environment education can boost low-carbon economy with decreasing carbon emissions, but very few researches address them for the hotel industry. This research studies the performance impact of e-commerce, international hotel chain, local hotel chain, and green certification for carbon emission reductions of international tourist hotels of Taiwan. It reveals that, after a sufficiently long time, there is an improvement in the environmental and economic performance of the green-certified hotel group. In addition, it reveals that, as recommended by the operation policy, the international hotel chain group together with e-commerce has better performance than local hotel chain. It is also discussed how to sustain the continuing improvement in low-carbon performance of the hotel industry.
How the Brain Converts Negative Evaluation into Performance Facilitation.
Prévost, Charlotte; Lau, Hakwan; Mobbs, Dean
2018-02-01
Surpassing negative evaluation is a recurrent theme of success stories. Yet, there is little evidence supporting the counterintuitive idea that negative evaluation might not only motivate people, but also enhance performance. To address this question, we designed a task that required participants to decide whether taking up a risky challenge after receiving positive or negative evaluations from independent judges. Participants believed that these evaluations were based on their prior performance on a related task. Results showed that negative evaluation caused a facilitation in performance. Concurrent functional magnetic resonance imaging revealed that the motivating effect of negative evaluation was represented in the insula and striatum, while the performance boost was associated with functional positive connectivity between the insula and a set of brain regions involved in goal-directed behavior and the orienting of attention. These findings provide new insight into the neural representation of negative evaluation-induced facilitation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Lester-Coll, Nataniel H; Rutter, Charles E; Evans, Suzanne B
2016-04-01
Breast radiotherapy (RT) for elderly women with estrogen receptor positive early stage breast cancer (ER+ESBC) improves local recurrence (LR) rates without benefitting overall survival. Breast boost is a common practice, although the absolute benefit decreases with age. Consequently, an analysis of its cost-effectiveness in the elderly ESBC populations is warranted. A Markov model was used to compare cost-effectiveness of RT with or without a boost in elderly ER+ESBC patients. The ten-year probability of LR with boost was derived from the CALGB 9343 trial and adjusted by the hazard ratio for LR from boost radiotherapy trial data, yielding the LR rate without boost. Remaining parameters were estimated using published data. Boost RT was associated with an increase in mean cost ($7139 vs $6193) and effectiveness (5.66 vs 5.64 quality adjusted life years; QALYs) relative to no boost. The incremental cost-effectiveness ratio (ICER) for boost was $55,903 per QALY. On one-way sensitivity analysis, boost remained cost-effective if the hazard ratio of LR with boost was <0.67. Boost RT for ER+ESBC patients was cost-effective over a wide range of assumptions and inputs over commonly accepted willingness-to pay-thresholds, but particularly in women at higher risk for LR. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Can you boost your metabolism?
Weight-loss boost metabolism; Obesity - boost metabolism; Overweight - boost metabolism ... Cowley MA, Brown WA, Considine RV. Obesity. In: Jameson JL, De Groot ... and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; ...
Computationally Driven Two-Dimensional Materials Design: What Is Next?
Pan, Jie; Lany, Stephan; Qi, Yue
2017-07-17
Two-dimensional (2D) materials offer many key advantages to innovative applications, such as spintronics and quantum information processing. Theoretical computations have accelerated 2D materials design. In this issue of ACS Nano, Kumar et al. report that ferromagnetism can be achieved in functionalized nitride MXene based on first-principles calculations. Their computational results shed light on a potentially vast group of materials for the realization of 2D magnets. In this Perspective, we briefly summarize the promising properties of 2D materials and the role theory has played in predicting these properties. Additionally, we discuss challenges and opportunities to boost the power of computation formore » the prediction of the 'structure-property-process (synthesizability)' relationship of 2D materials.« less
NASA Technical Reports Server (NTRS)
Demakes, P. T.; Hirsch, G. N.; Stewart, W. A.; Glatt, C. R.
1976-01-01
Historical weight estimating relationships were developed for the liquid rocket booster (LRB) using Saturn technology, and modified as required to support the EDIN05 study. Mission performance was computed using February 1975 shuttle configuration groundrules to allow reasonable comparison of the existing shuttle with the EDIN05 designs. The launch trajectory was constrained to pass through both the RTLS/AOA and main engine cut-off points. Performance analysis was based on a point design trajectory model which optimized initial tilt rate and exo-atmospheric pitch profile. A gravity turn was employed during the boost phase in place of the shuttle angle-of-attack profile. Engine throttling add/or shutdown was used to constrain dynamic pressure and/or longitudinal acceleration where necessary.
Beam diagnostics in the CIRFEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnaswamy, J.; Lehrman, I.S.; Hartley, R.
1995-12-31
The CIRFEL system has been operating with electron energies in the range of 11 to 12 MeV and RF pulse length of 3 to 4 {mu}secs. The electrons produced by a Magnesium photocathode illuminated by a 261nm mode locked laser are accelerated in the RF gun, and further boosted in energy by a booster section downstream of the RIF gun. The electrons are energy selected in the bending section before insertion into a permanent magnet wiggler. We describe several recent diagnostic measurements carried out on the CIRFEL system: emittance measurements in two different sections of the beam line, energy andmore » energy spread measurements, and jitter characteristics of the photo cathode drive laser as well as the electron beam energy.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosokai, Tomonao; Zhidkov, Alexei; Yamazaki, Atsushi
2010-03-22
Hundred-mega-electron-volt electron beams with quasi-monoenergetic distribution, and a transverse geometrical emittance as small as approx0.02 pi mm mrad are generated by low power (7 TW, 45 fs) laser pulses tightly focused in helium gas jets in an external static magnetic field, Bapprox1 T. Generation of monoenergetic beams strongly correlates with appearance of a straight, at least 2 mm length plasma channel in a short time before the main laser pulse and with the energy of copropagating picosecond pedestal pulses (PPP). For a moderate energy PPP, the multiple or staged electron self-injection in the channel gives several narrow peaks in themore » electron energy distribution.« less
NASA Technical Reports Server (NTRS)
Ikpe, Stanley A.; Lauenstein, Jean-Marie; Carr, Gregory A.; Hunter, Don; Ludwig, Lawrence L.; Wood, William; Del Castillo, Linda Y.; Fitzpatrick, Fred; Chen, Yuan
2016-01-01
Silicon-Carbide device technology has generated much interest in recent years. With superior thermal performance, power ratings and potential switching frequencies over its Silicon counterpart, Silicon-Carbide offers a greater possibility for high powered switching applications in extreme environment. In particular, Silicon-Carbide Metal-Oxide- Semiconductor Field-Effect Transistors' (MOSFETs) maturing process technology has produced a plethora of commercially available power dense, low on-state resistance devices capable of switching at high frequencies. A novel hard-switched power processing unit (PPU) is implemented utilizing Silicon-Carbide power devices. Accelerated life data is captured and assessed in conjunction with a damage accumulation model of gate oxide and drain-source junction lifetime to evaluate potential system performance at high temperature environments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Warren
The UCLA Plasma Simulation Group is a major partner of the “Community Petascale Project for Accelerator Science and Simulation”. This is the final technical report. We include an overall summary, a list of publications, progress for the most recent year, and individual progress reports for each year. We have made tremendous progress during the three years. SciDAC funds have contributed to the development of a large number of skeleton codes that illustrate how to write PIC codes with a hierarchy of parallelism. These codes cover 2D and 3D as well as electrostatic solvers (which are used in beam dynamics codesmore » and quasi-static codes) and electromagnetic solvers (which are used in plasma based accelerator codes). We also used these ideas to develop a GPU enabled version of OSIRIS. SciDAC funds were also contributed to the development of strategies to eliminate the Numerical Cerenkov Instability (NCI) which is an issue when carrying laser wakefield accelerator (LWFA) simulations in a boosted frame and when quantifying the emittance and energy spread of self-injected electron beams. This work included the development of a new code called UPIC-EMMA which is an FFT based electromagnetic PIC code and to new hybrid algorithms in OSIRIS. A new hybrid (PIC in r-z and gridless in φ) algorithm was implemented into OSIRIS. In this algorithm the fields and current are expanded into azimuthal harmonics and the complex amplitude for each harmonic is calculated separately. The contributions from each harmonic are summed and then used to push the particles. This algorithm permits modeling plasma based acceleration with some 3D effects but with the computational load of an 2D r-z PIC code. We developed a rigorously charge conserving current deposit for this algorithm. Very recently, we made progress in combining the speed up from the quasi-3D algorithm with that from the Lorentz boosted frame. SciDAC funds also contributed to the improvement and speed up of the quasi-static PIC code QuickPIC. We have also used our suite of PIC codes to make scientific discovery. Highlights include supporting FACET experiments which achieved the milestones of showing high beam loading and energy transfer efficiency from a drive electron beam to a witness electron beam and the discovery of a self-loading regime a for high gradient acceleration of a positron beam. Both of these experimental milestones were published in Nature together with supporting QuickPIC simulation results. Simulation results from QuickPIC were used on the cover of Nature in one case. We are also making progress on using highly resolved QuickPIC simulations to show that ion motion may not lead to catastrophic emittance growth for tightly focused electron bunches loaded into nonlinear wakefields. This could mean that fully self-consistent beam loading scenarios are possible. This work remains in progress. OSIRIS simulations were used to discover how 200 MeV electron rings are formed in LWFA experiments, on how to generate electrons that have a series of bunches on nanometer scale, and how to transport electron beams from (into) plasma sections into (from) conventional beam optic sections.« less
A PIPO Boost Converter with Low Ripple and Medium Current Application
NASA Astrophysics Data System (ADS)
Bandri, S.; Sofian, A.; Ismail, F.
2018-04-01
This paper presents a Parallel Input Parallel Output (PIPO) boost converter is proposed to gain power ability of converter, and reduce current inductors. The proposed technique will distribute current for n-parallel inductor and switching component. Four parallel boost converters implement on input voltage 20.5Vdc to generate output voltage 28.8Vdc. The PIPO boost converter applied phase shift pulse width modulation which will compare with conventional PIPO boost converters by using a similar pulse for every switching component. The current ripple reduction shows an advantage PIPO boost converter then conventional boost converter. Varies loads and duty cycle will be simulated and analyzed to verify the performance of PIPO boost converter. Finally, the unbalance of current inductor is able to be verified on four area of duty cycle in less than 0.6.
Chen, Jianzhou; Guo, Hong; Zhai, Tiantian; Chang, Daniel; Chen, Zhijian; Huang, Ruihong; Zhang, Wuzhe; Lin, Kun; Guo, Longjia; Zhou, Mingzhen; Li, Dongsheng; Li, Derui; Chen, Chuangzhen
2016-04-19
The outcomes for patients with esophageal cancer (EC) underwent standard-dose radical radiotherapy were still disappointing. This phase II study investigated the feasibility, safety and efficacy of radiation dose escalation using simultaneous modulated accelerated radiotherapy (SMART) combined with chemotherapy in 60 EC patients. Radiotherapy consisted of 66Gy at 2.2 Gy/fraction to the gross tumor and 54Gy at 1.8 Gy/fraction to subclinical diseases simultaneously. Chemotherapy including cisplatin and 5fluorouracil were administered to all patients during and after radiotherapy. The data showed that the majority of patients (98.3%) completed the whole course of radiotherapy and concurrent chemotherapy. The most common ≥ grade 3 acute toxicities were neutropenia (16.7%), followed by esophagitis (6.7%) and thrombopenia (5.0%). With a median follow-up of 24 months (5-38) for all patients and 30 months (18-38) for those still alive, 11 patients (18.3%) developed ≥ Grade 3 late toxicities and 2 (3.3%) of them died subsequently due to esophageal hemorrhage. The 1- and 2-year local-regional control, distant metastasis-free survival, disease-free survival and overall survival rates were 87.6% and 78.6%, 86.0% and 80.5%, 75.6% and 64.4%, 86.7% and 72.7%, respectively. SMART combined with concurrent chemotherapy is feasible in EC patients with tolerable acute toxicities. They showed a trend of significant improvements in local-regional control and overall survival. Further follow-up is needed to evaluate the late toxicities.
Hyperthermia promotes and prevents respiratory epithelial apoptosis through distinct mechanisms.
Nagarsekar, Ashish; Tulapurkar, Mohan E; Singh, Ishwar S; Atamas, Sergei P; Shah, Nirav G; Hasday, Jeffrey D
2012-12-01
Hyperthermia has been shown to confer cytoprotection and to augment apoptosis in different experimental models. We analyzed the mechanisms of both effects in the same mouse lung epithelial (MLE) cell line (MLE15). Exposing MLE15 cells to heat shock (HS; 42°C, 2 h) or febrile-range hyperthermia (39.5°C) concurrent with activation of the death receptors, TNF receptor 1 or Fas, greatly accelerated apoptosis, which was detectable within 30 minutes and was associated with accelerated activation of caspase-2, -8, and -10, and the proapoptotic protein, Bcl2-interacting domain (Bid). Caspase-3 activation and cell death were partially blocked by inhibitors targeting all three initiator caspases. Cells expressing the IκB superrepessor were more susceptible than wild-type cells to TNF-α-induced apoptosis at 37°C, but HS and febrile-range hyperthermia still increased apoptosis in these cells. Delaying HS for 3 hours after TNF-α treatment abrogated its proapoptotic effect in wild-type cells, but not in IκB superrepressor-expression cells, suggesting that TNF-α stimulates delayed resistance to the proapoptotic effects of HS through an NF-κB-dependent mechanism. Pre-exposure to 2-hour HS beginning 6 to16 hours before TNF-α treatment or Fas activation reduced apoptosis in MLE15 cells. The antiapoptotic effects of HS pretreatment were reduced in TNF-α-treated embryonic fibroblasts from heat shock factor-1 (HSF1)-deficient mice, but the proapoptotic effects of concurrent HS were preserved. Thus, depending on the temperature and timing relative to death receptor activation, hyperthermia can exert pro- and antiapoptotic effects through distinct mechanisms.
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M; Lucas, Megan; Spencer, John S; Amara, Rama Rao; Plikaytis, Bonnie B; Posey, James E; Sable, Suraj B
2016-05-13
Heterologous prime-boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32-52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime-Apa-subunit-boost strategy compared to Apa-subunit-prime-BCG-boost approach. However, parenteral BCG-prime-Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime-boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime-boost regimens against tuberculosis in humans.
Bengtson, C Peter; Kaiser, Martin; Obermayer, Joshua; Bading, Hilmar
2013-07-01
Both synaptic N-methyl-d-aspartate (NMDA) receptors and voltage-operated calcium channels (VOCCs) have been shown to be critical for nuclear calcium signals associated with transcriptional responses to bursts of synaptic input. However the direct contribution to nuclear calcium signals from calcium influx through NMDA receptors and VOCCs has been obscured by their concurrent roles in action potential generation and synaptic transmission. Here we compare calcium responses to synaptically induced bursts of action potentials with identical bursts devoid of any synaptic contribution generated using the pre-recorded burst as the voltage clamp command input to replay the burst in the presence of blockers of action potentials or ionotropic glutamate receptors. Synapse independent replays of bursts produced nuclear calcium responses with amplitudes around 70% of their original synaptically generated signals and were abolished by the L-type VOCC blocker, verapamil. These results identify a major direct source of nuclear calcium from local L-type VOCCs whose activation is boosted by NMDA receptor dependent depolarization. The residual component of synaptically induced nuclear calcium signals which was both VOCC independent and NMDA receptor dependent showed delayed kinetics consistent with a more distal source such as synaptic NMDA receptors or internal stores. The dual requirement of NMDA receptors and L-type VOCCs for synaptic activity-induced nuclear calcium dependent transcriptional responses most likely reflects a direct somatic calcium influx from VOCCs whose activation is amplified by synaptic NMDA receptor-mediated depolarization and whose calcium signal is boosted by a delayed input from distal calcium sources mostly likely entry through NMDA receptors and release from internal stores. This article is part of a Special Issue entitled: 12th European Symposium on Calcium. Copyright © 2013 Elsevier B.V. All rights reserved.
Yang, Kai-Lin; Chang, Yih-Chen; Ko, Hui-Ling; Chi, Mau-Shin; Wang, Hsin-Ell; Hsu, Pei-Sung; Lin, Chen-Chun; Yeh, Diana Yu-Wung; Kao, Shang-Jyh; Jiang, Jiunn-Song; Chi, Kwan-Hwa
2016-11-01
For marginally operable stage IIIA non-small-cell lung cancer (NSCLC), surgery might not be done as planned after neoadjuvant concurrent chemoradiotherapy (CCRT) for reasons (unresectable or medically inoperable conditions, or patient refusal). This study aims to investigate the outcomes of a phased CCRT protocol established to maximize the operability of marginally operable stage IIIA NSCLC and to care for reassessed inoperable patients, in comparison with continuous-course definitive CCRT. Forty-seven patients with marginally operable stage IIIA NSCLC receiving CCRT were included. Twenty-eight patients were treated with our phased CCRT protocol, including neoadjuvant CCRT followed by surgery (group A, n = 16) or, for reassessed inoperable patients, maintenance chemotherapy and split-course CCRT boost (group B, n = 12). The other 19 were treated with continuous-course definitive CCRT (group C). Overall survival (OS) and progression-free survival (PFS) were analyzed. Among all, median OS and PFS were 35.6 and 12.8 months, respectively (median follow-up, 22.3 months). The median OS of group A (not reached) was better than that of group B (34.4 months) and group C (15.2 months) (P = .009). On multivariate analysis, performance status 0 to 1 (hazard ratio [HR], 0.026; P < .001), adenocarcinoma (HR, 0.156; P = .003), and group A (HR, 0.199; P = .033) were independent prognostic factors. The OS of group B (HR, 0.450; 95% confidence interval, 0.118-1.717; P = .243) was not statistically different from that of group C. For marginally operable stage IIIA NSCLC, our phased CCRT strategy may optimize survival by maximizing operability and maintain an acceptable survival for reassessed inoperable patients by split-course CCRT boost following maintenance chemotherapy. Copyright © 2016 Elsevier Inc. All rights reserved.
Warren, Samantha; Partridge, Mike; Carrington, Rhys; Hurt, Chris; Crosby, Thomas; Hawkins, Maria A.
2014-01-01
Purpose This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm3. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5 Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA62.5) was compared to a standard dose plan of 50 Gy/25 fractions (RA50). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA50) to 56.3% (RA62.5), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA50) versus 5.6% (RA62.5) P<.001 and median lung NTCP 6.5% (RA50) versus 7.5% (RA62.5) P<.001. Conclusions Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials. PMID:25304796
McCarty, Mark F
2016-02-12
The serum total and LDL cholesterol levels of long-term vegans tend to be very low. The characteristically low ratio of saturated to unsaturated fat in vegan diets, and the absence of cholesterol in such diets, clearly contribute to this effect. But there is reason to suspect that the quantity and composition of dietary protein also play a role in this regard. Vegan diets of moderate protein intake tend to be relatively low in certain essential amino acids, and as a result may increase hepatic activity of the kinase GCN2, which functions as a gauge of amino acid status. GCN2 activation boosts the liver's production of fibroblast growth factor 21 (FGF21), a factor which favorably affects serum lipids and metabolic syndrome. The ability of FGF21 to decrease LDL cholesterol has now been traced to at least two mechanisms: a suppression of hepatocyte expression of sterol response element-binding protein-2 (SREBP-2), which in turn leads to a reduction in cholesterol synthesis; and up-regulated expression of hepatocyte LDL receptors, reflecting inhibition of a mechanism that promotes proteasomal degradation of these receptors. In mice, the vascular benefits of FGF21 are also mediated by favorable effects on adipocyte function - most notably, increased adipocyte secretion of adiponectin, which directly exerts anti-inflammatory effects on the vasculature which complement the concurrent reduction in LDL particles in preventing or reversing atherosclerosis. If, as has been proposed, plant proteins preferentially stimulate glucagon secretion owing to their amino acid composition, this would represent an additional mechanism whereby plant protein promotes FGF21 activity, as glucagon acts on the liver to boost transcription of the FGF21 gene.
Masoud Rahbari, Reza; Winkley, Lauren; Hill, Jacques; Tahir, Abdul Rahim Mohammed; McKay, Michael; Last, Andrew; Shakespeare, Thomas P; Dwyer, Patrick
2016-06-01
Oropharyngeal squamous cell carcinoma (OPSCC) incidence has increased over the past two decades largely because of an increase in human papilloma virus (HPV)-related OPSCC. We report here outcomes of definitive radiation therapy for OPSCC with simultaneous integrated boost intensity-modulated radiotherapy (IMRT) in a regional Australian cancer centre. We retrospectively reviewed electronic medical records (EMR) of all patients treated with IMRT for head and neck cancer. We included patients who received a curative intent IMRT for OPSCC (2010-2014). Of 61 patients, 80% were men, and the median age was 57 years. Ninety percent of our patients received concurrent systemic therapy, and 68% were p16 positive. The median radiotherapy dose received was 70 Gy in 35 fractions. The median follow up for surviving patients was 22 months. Twenty-four month actuarial data show that the loco-regional recurrence free, metastasis-free MFS, cancer-specific (CaSS) and overall survival percentages were 98.3%, 92.6%, 91% and 90.3%, respectively. We did not observe grades 4 or 5 acute or late toxicities, and 10 patients (16.2%) exhibited persistent grade 3 toxicity 6 months after completing the treatment. The results from curative IMRTs for OPSCC delivered in a regional cancer centre are comparable with results published by tertiary referral centres. A long-term follow up of this patient cohort will continue for further analyses and comparisons with tertiary centres. © 2016 The Royal Australian and New Zealand College of Radiologists.
Müller, Bettina; Sola, José A; Carcamo, Marcela; Ciudad, Ana M; Trujillo, Cristian; Cerda, Berta
2013-01-01
Gallbladder cancer (GBC) is the second leading cause of cancer death in women in Chile. Even after curative surgery, prognosis is grim. To evaluate acute and late toxicity and efficacy of adjuvant chemoradiation (CRT) after curatively resected GBC. We retrospectively analyzed the cohort of patients diagnosed between January 1999 and December 2009, treated with adjuvant CRT at our institution. Treatment protocol considered external beam radiation (RT) (45-54 Gy) to tumor bed and regional lymph nodes with or without concurrent 5-fluorouracil (5-FU) (500 mg/m2/day by 120-hours continuous infusion on days 1-5 and 29-33). Data was obtained from medical records, mortality from death certificates. Survival was estimated by Kaplan- Meier curves. 46 patients with curatively resected GBC received adjuvant CRT. Median age was 57 years (range 33-76); 39 patients were female. After diagnosis, a second surgery was performed in 42 patients. Cholecystectomy with hepatic segmentectomy and lymphadenectomy was the curative surgery in 41 patients. All patients received RT with a planned dose of 45 Gy in 25 fractions, 11 patients received a boost to the tumor bed up to 54 Gy and 34 patients had concurrent 5-FU. Therapy was well tolerated. Five patients experienced grade 3 toxicities. No grade 4 or 5 toxicity was observed. No grade >2 late toxicity was observed. Three- and 5-year overall survival (OS) were 57% and 51%, respectively. Adjuvant chemoradiation is well tolerated and might impact favorably on survival in patients with curatively resected GBC.
Milne boost from Galilean gauge theory
NASA Astrophysics Data System (ADS)
Banerjee, Rabin; Mukherjee, Pradip
2018-03-01
Physical origin of Milne boost invariance of the Newton Cartan spacetime is traced to the effect of local Galilean boosts in its metric structure, using Galilean gauge theory. Specifically, we do not require any gauge field to understand Milne boost invariance.
Robust boosting via convex optimization
NASA Astrophysics Data System (ADS)
Rätsch, Gunnar
2001-12-01
In this work we consider statistical learning problems. A learning machine aims to extract information from a set of training examples such that it is able to predict the associated label on unseen examples. We consider the case where the resulting classification or regression rule is a combination of simple rules - also called base hypotheses. The so-called boosting algorithms iteratively find a weighted linear combination of base hypotheses that predict well on unseen data. We address the following issues: o The statistical learning theory framework for analyzing boosting methods. We study learning theoretic guarantees on the prediction performance on unseen examples. Recently, large margin classification techniques emerged as a practical result of the theory of generalization, in particular Boosting and Support Vector Machines. A large margin implies a good generalization performance. Hence, we analyze how large the margins in boosting are and find an improved algorithm that is able to generate the maximum margin solution. o How can boosting methods be related to mathematical optimization techniques? To analyze the properties of the resulting classification or regression rule, it is of high importance to understand whether and under which conditions boosting converges. We show that boosting can be used to solve large scale constrained optimization problems, whose solutions are well characterizable. To show this, we relate boosting methods to methods known from mathematical optimization, and derive convergence guarantees for a quite general family of boosting algorithms. o How to make Boosting noise robust? One of the problems of current boosting techniques is that they are sensitive to noise in the training sample. In order to make boosting robust, we transfer the soft margin idea from support vector learning to boosting. We develop theoretically motivated regularized algorithms that exhibit a high noise robustness. o How to adapt boosting to regression problems? Boosting methods are originally designed for classification problems. To extend the boosting idea to regression problems, we use the previous convergence results and relations to semi-infinite programming to design boosting-like algorithms for regression problems. We show that these leveraging algorithms have desirable theoretical and practical properties. o Can boosting techniques be useful in practice? The presented theoretical results are guided by simulation results either to illustrate properties of the proposed algorithms or to show that they work well in practice. We report on successful applications in a non-intrusive power monitoring system, chaotic time series analysis and a drug discovery process. --- Anmerkung: Der Autor ist Träger des von der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam vergebenen Michelson-Preises für die beste Promotion des Jahres 2001/2002. In dieser Arbeit werden statistische Lernprobleme betrachtet. Lernmaschinen extrahieren Informationen aus einer gegebenen Menge von Trainingsmustern, so daß sie in der Lage sind, Eigenschaften von bisher ungesehenen Mustern - z.B. eine Klassenzugehörigkeit - vorherzusagen. Wir betrachten den Fall, bei dem die resultierende Klassifikations- oder Regressionsregel aus einfachen Regeln - den Basishypothesen - zusammengesetzt ist. Die sogenannten Boosting Algorithmen erzeugen iterativ eine gewichtete Summe von Basishypothesen, die gut auf ungesehenen Mustern vorhersagen. Die Arbeit behandelt folgende Sachverhalte: o Die zur Analyse von Boosting-Methoden geeignete Statistische Lerntheorie. Wir studieren lerntheoretische Garantien zur Abschätzung der Vorhersagequalität auf ungesehenen Mustern. Kürzlich haben sich sogenannte Klassifikationstechniken mit großem Margin als ein praktisches Ergebnis dieser Theorie herausgestellt - insbesondere Boosting und Support-Vektor-Maschinen. Ein großer Margin impliziert eine hohe Vorhersagequalität der Entscheidungsregel. Deshalb wird analysiert, wie groß der Margin bei Boosting ist und ein verbesserter Algorithmus vorgeschlagen, der effizient Regeln mit maximalem Margin erzeugt. o Was ist der Zusammenhang von Boosting und Techniken der konvexen Optimierung? Um die Eigenschaften der entstehenden Klassifikations- oder Regressionsregeln zu analysieren, ist es sehr wichtig zu verstehen, ob und unter welchen Bedingungen iterative Algorithmen wie Boosting konvergieren. Wir zeigen, daß solche Algorithmen benutzt werden koennen, um sehr große Optimierungsprobleme mit Nebenbedingungen zu lösen, deren Lösung sich gut charakterisieren laesst. Dazu werden Verbindungen zum Wissenschaftsgebiet der konvexen Optimierung aufgezeigt und ausgenutzt, um Konvergenzgarantien für eine große Familie von Boosting-ähnlichen Algorithmen zu geben. o Kann man Boosting robust gegenüber Meßfehlern und Ausreissern in den Daten machen? Ein Problem bisheriger Boosting-Methoden ist die relativ hohe Sensitivität gegenüber Messungenauigkeiten und Meßfehlern in der Trainingsdatenmenge. Um dieses Problem zu beheben, wird die sogenannte 'Soft-Margin' Idee, die beim Support-Vector Lernen schon benutzt wird, auf Boosting übertragen. Das führt zu theoretisch gut motivierten, regularisierten Algorithmen, die ein hohes Maß an Robustheit aufweisen. o Wie kann man die Anwendbarkeit von Boosting auf Regressionsprobleme erweitern? Boosting-Methoden wurden ursprünglich für Klassifikationsprobleme entwickelt. Um die Anwendbarkeit auf Regressionsprobleme zu erweitern, werden die vorherigen Konvergenzresultate benutzt und neue Boosting-ähnliche Algorithmen zur Regression entwickelt. Wir zeigen, daß diese Algorithmen gute theoretische und praktische Eigenschaften haben. o Ist Boosting praktisch anwendbar? Die dargestellten theoretischen Ergebnisse werden begleitet von Simulationsergebnissen, entweder, um bestimmte Eigenschaften von Algorithmen zu illustrieren, oder um zu zeigen, daß sie in der Praxis tatsächlich gut funktionieren und direkt einsetzbar sind. Die praktische Relevanz der entwickelten Methoden wird in der Analyse chaotischer Zeitreihen und durch industrielle Anwendungen wie ein Stromverbrauch-Überwachungssystem und bei der Entwicklung neuer Medikamente illustriert.
Heterologous Prime-Boost Immunisation Regimens Against Infectious Diseases
2006-08-01
of these cells by boosting. DNA vaccines are good priming agents since they are internalised by antigen presenting cells and can induce antigen...presentation via both MHC class I and class II, thereby inducing both cytotoxic T lymphocytes and type 1-helper T lymphocytes. Successful boosting agents ...assessing prime-boost vaccine combinations for protection against infectious agents . • In a number of prime - boost studies, the inclusion of growth
Lorentz boosted frame simulation technique in Particle-in-cell methods
NASA Astrophysics Data System (ADS)
Yu, Peicheng
In this dissertation, we systematically explore the use of a simulation method for modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) method, called the Lorentz boosted frame technique. In the lab frame the plasma length is typically four orders of magnitude larger than the laser pulse length. Using this technique, simulations are performed in a Lorentz boosted frame in which the plasma length, which is Lorentz contracted, and the laser length, which is Lorentz expanded, are now comparable. This technique has the potential to reduce the computational needs of a LWFA simulation by more than four orders of magnitude, and is useful if there is no or negligible reflection of the laser in the lab frame. To realize the potential of Lorentz boosted frame simulations for LWFA, the first obstacle to overcome is a robust and violent numerical instability, called the Numerical Cerenkov Instability (NCI), that leads to unphysical energy exchange between relativistically drifting particles and their radiation. This leads to unphysical noise that dwarfs the real physical processes. In this dissertation, we first present a theoretical analysis of this instability, and show that the NCI comes from the unphysical coupling of the electromagnetic (EM) modes and Langmuir modes (both main and aliasing) of the relativistically drifting plasma. We then discuss the methods to eliminate them. However, the use of FFTs can lead to parallel scalability issues when there are many more cells along the drifting direction than in the transverse direction(s). We then describe an algorithm that has the potential to address this issue by using a higher order finite difference operator for the derivative in the plasma drifting direction, while using the standard second order operators in the transverse direction(s). The NCI for this algorithm is analyzed, and it is shown that the NCI can be eliminated using the same strategies that were used for the hybrid FFT/Finite Difference solver. This scheme also requires a current correction and filtering which require FFTs. However, we show that in this case the FFTs can be done locally on each parallel partition. We also describe how the use of the hybrid FFT/Finite Difference or the hybrid higher order finite difference/second order finite difference methods permit combining the Lorentz boosted frame simulation technique with another "speed up" technique, called the quasi-3D algorithm, to gain unprecedented speed up for the LWFA simulations. In the quasi-3D algorithm the fields and currents are defined on an r--z PIC grid and expanded in azimuthal harmonics. The expansion is truncated with only a few modes so it has similar computational needs of a 2D r--z PIC code. We show that NCI has similar properties in r--z as in z-x slab geometry and show that the same strategies for eliminating the NCI in Cartesian geometry can be effective for the quasi-3D algorithm leading to the possibility of unprecedented speed up. We also describe a new code called UPIC-EMMA that is based on fully spectral (FFT) solver. The new code includes implementation of a moving antenna that can launch lasers in the boosted frame. We also describe how the new hybrid algorithms were implemented into OSIRIS. Examples of LWFA using the boosted frame using both UPIC-EMMA and OSIRIS are given, including the comparisons against the lab frame results. We also describe how to efficiently obtain the boosted frame simulations data that are needed to generate the transformed lab frame data, as well as how to use a moving window in the boosted frame. The NCI is also a major issue for modeling relativistic shocks with PIC algorithm. In relativistic shock simulations two counter-propagating plasmas drifting at relativistic speeds are colliding against each other. We show that the strategies for eliminating the NCI developed in this dissertation are enabling such simulations being run for much longer simulation times, which should open a path for major advances in relativistic shock research. (Abstract shortened by ProQuest.).
Generalizing MOND to explain the missing mass in galaxy clusters
NASA Astrophysics Data System (ADS)
Hodson, Alistair O.; Zhao, Hongsheng
2017-02-01
Context. MOdified Newtonian Dynamics (MOND) is a gravitational framework designed to explain the astronomical observations in the Universe without the inclusion of particle dark matter. MOND, in its current form, cannot explain the missing mass in galaxy clusters without the inclusion of some extra mass, be it in the form of neutrinos or non-luminous baryonic matter. We investigate whether the MOND framework can be generalized to account for the missing mass in galaxy clusters by boosting gravity in high gravitational potential regions. We examine and review Extended MOND (EMOND), which was designed to increase the MOND scale acceleration in high potential regions, thereby boosting the gravity in clusters. Aims: We seek to investigate galaxy cluster mass profiles in the context of MOND with the primary aim at explaining the missing mass problem fully without the need for dark matter. Methods: Using the assumption that the clusters are in hydrostatic equilibrium, we can compute the dynamical mass of each cluster and compare the result to the predicted mass of the EMOND formalism. Results: We find that EMOND has some success in fitting some clusters, but overall has issues when trying to explain the mass deficit fully. We also investigate an empirical relation to solve the cluster problem, which is found by analysing the cluster data and is based on the MOND paradigm. We discuss the limitations in the text.
Next generation radiotherapy biomaterials loaded with high-Z nanoparticles
NASA Astrophysics Data System (ADS)
Cifter, Gizem
This research investigates the dosimetric feasibility of using high-Z nanoparticles as localized radiosensitizers to boost the dose to the residual tumor cells during accelerated partial breast irradiation while minimizing the dose to surrounding healthy tissue. Analytical microdosimetry calculations were carried out to calculate dose enhancement (DEF) in the presence of high-Z nanoparticles. It has been proposed that routinely used inert radiotherapy (RT) biomaterials (e.g. fiducials, spacers) can be upgraded to smarter ones by coating/loading them with radiosensitizing gold nanoparticles (GNPs), for sustained in-situ release after implantation to enhance RT. Prototype smart biomaterials were produced by incorporating the GNPs in poly (D,L-lactide-co-glycolide) (PLGA) polymer millirods during the gel phase of production. In vitro release of GNPs was monitored over time by optical/spectroscopy methods as a function of various design parameters. The prototype smart biomaterials displayed sustained customizable release of NPs in-vitro, reaching a burst release profile approximately after 25 days. The results also show that customizable release profiles can be achievable by varying GNP concentrations that are embedded within smart biomaterials, as well as other design parameters. This would potentially allow customizable local dose boost resulting in diverse treatment planning opportunities for individual cases. Considered together, the results provide preliminary data for development of next generation of RT biomaterials, which can be employed at no additional inconvenience to RT patients.
Ballet, Romain; Emre, Yalin; Jemelin, Stéphane; Charmoy, Mélanie; Tacchini-Cottier, Fabienne; Imhof, Beat A.
2014-01-01
The recruitment of dendritic cells to sites of infections and their migration to lymph nodes is fundamental for antigen processing and presentation to T cells. In the present study, we showed that antibody blockade of junctional adhesion molecule C (JAM-C) on endothelial cells removed JAM-C away from junctions and increased vascular permeability after L. major infection. This has multiple consequences on the output of the immune response. In resistant C57BL/6 and susceptible BALB/c mice, we found higher numbers of innate immune cells migrating from blood to the site of infection. The subsequent migration of dendritic cells (DCs) from the skin to the draining lymph node was also improved, thereby boosting the induction of the adaptive immune response. In C57BL/6 mice, JAM-C blockade after L. major injection led to an enhanced IFN-γ dominated T helper 1 (Th1) response with reduced skin lesions and parasite burden. Conversely, anti JAM-C treatment increased the IL-4-driven T helper 2 (Th2) response in BALB/c mice with disease exacerbation. Overall, our results show that JAM-C blockade can finely-tune the innate cell migration and accelerate the consequent immune response to L. major without changing the type of the T helper cell response. PMID:25474593
Byrne, Maria; Ho, Melanie A; Koleits, Lucas; Price, Casandra; King, Catherine K; Virtue, Patti; Tilbrook, Bronte; Lamare, Miles
2013-07-01
Stenothermal polar benthic marine invertebrates are highly sensitive to environmental perturbations but little is known about potential synergistic effects of concurrent ocean warming and acidification on development of their embryos and larvae. We examined the effects of these stressors on development to the calcifying larval stage in the Antarctic sea urchin Sterechinus neumayeri in embryos reared in present and future (2100+) ocean conditions from fertilization. Embryos were reared in 2 temperature (ambient: -1.0 °C, + 2 °C : 1.0 °C) and 3 pH (ambient: pH 8.0, -0.2-0.4 pH units: 7.8,7.6) levels. Principle coordinates analysis on five larval metrics showed a significant effect of temperature and pH on the pattern of growth. Within each temperature, larvae were separated by pH treatment, a pattern primarily influenced by larval arm and body length. Growth was accelerated by temperature with a 20-28% increase in postoral (PO) length at +2 °C across all pH levels. Growth was strongly depressed by reduced pH with a 8-19% decrease in PO length at pH 7.6-7.8 at both temperatures. The boost in growth caused by warming resulted in larvae that were larger than would be observed if acidification was examined in the absence of warming. However, there was no significant interaction between these stressors. The increase in left-right asymmetry and altered body allometry indicated that decreased pH disrupted developmental patterning and acted as a teratogen (agent causing developmental malformation). Decreased developmental success with just a 2 °C warming indicates that development in S. neumayeri is particularly sensitive to increased temperature. Increased temperature also altered larval allometry. Altered body shape impairs swimming and feeding in echinoplutei. In the absence of adaptation, it appears that the larval phase may be a bottleneck for survivorship of S. neumayeri in a changing ocean in a location where poleward migration to escape inhospitable conditions is not possible. © 2013 Blackwell Publishing Ltd.
Nandakumar, Subhadra; Kannanganat, Sunil; Dobos, Karen M.; Lucas, Megan; Spencer, John S.; Amara, Rama Rao; Plikaytis, Bonnie B.; Posey, James E.; Sable, Suraj B.
2016-01-01
Heterologous prime–boosting has emerged as a powerful vaccination approach against tuberculosis. However, optimal timing to boost BCG-immunity using subunit vaccines remains unclear in clinical trials. Here, we followed the adhesin Apa-specific T-cell responses in BCG-primed mice and investigated its BCG-booster potential. The Apa-specific T-cell response peaked 32–52 weeks after parenteral or mucosal BCG-priming but waned significantly by 78 weeks. A subunit-Apa-boost during the contraction-phase of BCG-response had a greater effect on the magnitude and functional quality of specific cellular and humoral responses compared to a boost at the peak of BCG-response. The cellular response increased following mucosal BCG-prime–Apa-subunit-boost strategy compared to Apa-subunit-prime–BCG-boost approach. However, parenteral BCG-prime–Apa-subunit-boost by a homologous route was the most effective strategy in-terms of enhancing specific T-cell responses during waning in the lung and spleen. Two Apa-boosters markedly improved waning BCG-immunity and significantly reduced Mycobacterium tuberculosis burdens post-challenge. Our results highlight the challenges of optimization of prime–boost regimens in mice where BCG drives persistent immune-activation and suggest that boosting with a heterologous vaccine may be ideal once the specific persisting effector responses are contracted. Our results have important implications for design of prime–boost regimens against tuberculosis in humans. PMID:27173443
Summary Report of Working Group 2: Computation
NASA Astrophysics Data System (ADS)
Stoltz, P. H.; Tsung, R. S.
2009-01-01
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) new hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.
Summary Report of Working Group 2: Computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoltz, P. H.; Tsung, R. S.
2009-01-22
The working group on computation addressed three physics areas: (i) plasma-based accelerators (laser-driven and beam-driven), (ii) high gradient structure-based accelerators, and (iii) electron beam sources and transport [1]. Highlights of the talks in these areas included new models of breakdown on the microscopic scale, new three-dimensional multipacting calculations with both finite difference and finite element codes, and detailed comparisons of new electron gun models with standard models such as PARMELA. The group also addressed two areas of advances in computation: (i) new algorithms, including simulation in a Lorentz-boosted frame that can reduce computation time orders of magnitude, and (ii) newmore » hardware architectures, like graphics processing units and Cell processors that promise dramatic increases in computing power. Highlights of the talks in these areas included results from the first large-scale parallel finite element particle-in-cell code (PIC), many order-of-magnitude speedup of, and details of porting the VPIC code to the Roadrunner supercomputer. The working group featured two plenary talks, one by Brian Albright of Los Alamos National Laboratory on the performance of the VPIC code on the Roadrunner supercomputer, and one by David Bruhwiler of Tech-X Corporation on recent advances in computation for advanced accelerators. Highlights of the talk by Albright included the first one trillion particle simulations, a sustained performance of 0.3 petaflops, and an eight times speedup of science calculations, including back-scatter in laser-plasma interaction. Highlights of the talk by Bruhwiler included simulations of 10 GeV accelerator laser wakefield stages including external injection, new developments in electromagnetic simulations of electron guns using finite difference and finite element approaches.« less
2004-03-27
The second X-43A hypersonic research aircraft and its modified Pegasus booster rocket accelerate after launch from NASA's B-52B launch aircraft over the Pacific Ocean on March 27, 2004. The mission originated from the NASA Dryden Flight Research Center at Edwards Air Force Base, Calif. Minutes later the X-43A separated from the Pegasus booster and accelerated to its intended speed of Mach 7. In a combined research effort involving Dryden, Langley, and several industry partners, NASA demonstrated the value of its X-43A hypersonic research aircraft, as it became the first air-breathing, unpiloted, scramjet-powered plane to fly freely by itself. The March 27 flight, originating from NASA's Dryden Flight Research Center, began with the Agency's B-52B launch aircraft carrying the X-43A out to the test range over the Pacific Ocean off the California coast. The X-43A was boosted up to its test altitude of about 95,000 feet, where it separated from its modified Pegasus booster and flew freely under its own power. Two very significant aviation milestones occurred during this test flight: first, controlled accelerating flight at Mach 7 under scramjet power, and second, the successful stage separation at high dynamic pressure of two non-axisymmetric vehicles. To top it all off, the flight resulted in the setting of a new aeronautical speed record. The X-43A reached a speed of over Mach 7, or about 5,000 miles per hour faster than any known aircraft powered by an air-breathing engine has ever flown.
X-43C Flight Demonstrator Project Overview
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
The X-43C Flight Demonstrator Project is a joint NASA-USAF hypersonic propulsion technology flight demonstration project that will expand the hypersonic flight envelope for air-breathing engines. The Project will demonstrate sustained accelerating flight through three flights of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs will be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA's Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center off the coast of California over water in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration (approximately 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavy-weight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 (approximately 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air-Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides the background for NASA's current hypersonic flight demonstration efforts.
Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz
Graves, W. S.; Bessuille, J.; Brown, P.; ...
2014-12-01
A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness electron bunch on a picosecond laser pulse. The accelerator is a novel high-efficiency standingwave linac and rf photoinjector powered by a single ultrastable rf transmitter at X-band rf frequency. The high efficiency permits operation at repetition rates up to 1 kHz, which is further boosted to 100 kHz by operating with trains of 100 bunches of 100 pC charge, each separated by 5 ns. Themore » entire accelerator is approximately 1 meter long and produces hard x rays tunable over a wide range of photon energies. The colliding laser is a Yb:YAG solid-state amplifier producing 1030 nm, 100 mJ pulses at the same 1 kHz repetition rate as the accelerator. The laser pulse is frequency-doubled and stored for many passes in a ringdown cavity to match the linac pulse structure. At a photon energy of 12.4 keV, the predicted x-ray flux is 5 × 10¹¹ photons/second in a 5% bandwidth and the brilliance is 2 × 10¹² photons/(sec mm² mrad² 0.1%) in pulses with rms pulse length of 490 fs. The nominal electron beam parameters are 18 MeV kinetic energy, 10 microamp average current, 0.5 microsecond macropulse length, resulting in average electron beam power of 180 W. Optimization of the x-ray output is presented along with design of the accelerator, laser, and x-ray optic components that are specific to the particular characteristics of the Compton scattered x-ray pulses.« less
Kepka, Lucyna; Tyc-Szczepaniak, Dobromira; Bujko, Krzysztof
2009-07-01
To determine the efficacy of accelerated hypofractionated three-dimensional conformal radiotherapy (3D-CRT) with dose-per-fraction escalation for treatment of stage III non-small cell lung cancer (NSCLC). Between 2001 and 2007, 173 patients with stage III NSCLC were treated using accelerated 3D-CRT and the simultaneous boost technique. Initially, the total dose of 56.7 Gy (including 39.9 Gy to the elective area) was delivered over 4 weeks in fractions of 2.7 Gy (1.9 Gy to the elective area). The dose-per-fraction escalation study commenced after the outcomes of 70 patients had been evaluated. The dose per fraction was increased from 2.7 through 2.8 Gy (level 1 escalation) to 2.9 Gy (level 2 escalation); the total dose increased, respectively, from 56.7 Gy through 58.8 Gy to 60.9 Gy. The dose to the elective area and the overall treatment time remained unchanged. Fit patients received two to three courses of chemotherapy before radiotherapy. The 2- and 3-year overall survival rates were 32 and 19%, respectively (median survival = 17 months). Of the patients, 7% had grade III acute esophageal toxicity and 6% had grade III or greater late pulmonary toxicity. Two of the nine patients who received the level 2 escalation (60.9 Gy) died of pulmonary toxicity. The study was terminated at a dose of 58.8 Gy and this schema was adopted as the institutional policy for treatment of stage III NSCLC. Although dose escalation with accelerated hypofractionated 3D-CRT was limited, the results and toxicity profiles obtained using this technique are promising.
Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.
Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael
2006-05-01
In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.
NASA Astrophysics Data System (ADS)
Umstadter, Donald
2002-04-01
Conventional electron acceleration at a place like SLAC needs miles to boost particles up to 50 GeV energies by feeding microwaves into a succession of cavities. In recent years we have been developing alternative acceleration concepts, based on lasers focused into plasmas, that might someday do the job in a much smaller space without the use of cavities. Our near term goal is to produce a first stage accelerator that outputs electron beams with lower energy but with properties that are more suitable for x-ray sources, such as those based on Compton scattering or the proposed linear synchrotrons at SLAC and DESY. In the plasma wakefield approach, for example, a terawatt laser beam is focused onto a gas jet, ionizing it and driving plasma waves that move at relativistic speeds. If timed just right, electrons in the plasma can surf the plasma waves to high speeds, as high as 100 MeV in the space of only a millimeter. NanoCoulombs of charge have been accelerated in well-collimated beams (1-degree divergence angle). One problem with this concept is the mismatch between the electron source (sometimes an external photocathode, sometimes an uncontrolled cloud of electrons from the plasma itself) and the incoming laser pulse. We will be reporting methods for generating electrons in a controllable way, namely the use of a pair of crossed laser beams which position, heat, and synchronize the insertion of electrons into the plasma wave. We show that this "all-optical injection" increases the number and energy of energetic electrons as compared with use of only one laser beam. It has been shown theoretically that this approach can ultimately be used to reduce the electron energy spread to a few percent. Besides potential applications to particle physics and x-ray lasers, high gradient acceleration schemes are also expected to benefit the production of medical radioisotopes and the ignition of thermonuclear fusion reactions.
Tryptophan: the key to boosting brain serotonin synthesis in depressive illness.
Badawy, Abdulla A-B
2013-10-01
It has been proposed that focusing on brain serotonin synthesis can advance antidepressant drug development. Biochemical aspects of the serotonin deficiency in major depressive disorder (MDD) are discussed here in detail. The deficiency is caused by a decreased availability of the serotonin precursor tryptophan (Trp) to the brain. This decrease is caused by accelerated Trp degradation, most likely induced by enhancement of the hepatic enzyme tryptophan 2,3-dioxygenase (TDO) by glucocorticoids and/or catecholamines. Induction of the extrahepatic Trp-degrading enzyme indolylamine 2,3-dioxygenase (IDO) by the modest immune activation in MDD has not been demonstrated and, if it occurs, is unlikely to make a significant contribution. Liver TDO appears to be a target of many antidepressants, the mood stabilisers Li(+) and carbamazepine and possibly other adjuncts to antidepressant therapy. The poor, variable and modest antidepressant efficacy of Trp is due to accelerated hepatic Trp degradation, and efficacy can be restored or enhanced by combination with antidepressants or other existing or new TDO inhibitors. Enhancing Trp availability to the brain is thus the key to normalisation of serotonin synthesis and could form the basis for future antidepressant drug development.
ACCELERATION OF COMPACT RADIO JETS ON SUB-PARSEC SCALES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Sung; Lobanov, Andrei P.; Krichbaum, Thomas P.
2016-08-01
Jets of compact radio sources are highly relativistic and Doppler boosted, making studies of their intrinsic properties difficult. Observed brightness temperatures can be used to study the intrinsic physical properties of relativistic jets, and constrain models of jet formation in the inner jet region. We aim to observationally test such inner jet models. The very long baseline interferometry (VLBI) cores of compact radio sources are optically thick at a given frequency. The distance of the core from the central engine is inversely proportional to the frequency. Under the equipartition condition between the magnetic field energy and particle energy densities, themore » absolute distance of the VLBI core can be predicted. We compiled the brightness temperatures of VLBI cores at various radio frequencies of 2, 8, 15, and 86 GHz. We derive the brightness temperature on sub-parsec scales in the rest frame of the compact radio sources. We find that the brightness temperature increases with increasing distance from the central engine, indicating that the intrinsic jet speed (the Lorentz factor) increases along the jet. This implies that the jets are accelerated in the (sub-)parsec regions from the central engine.« less
Beam conditioner for free electron lasers and synchrotrons
Liu, H.; Neil, G.R.
1998-09-08
A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM{sub 10} mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs.
Beam conditioner for free electron lasers and synchrotrons
Liu, Hongxiu; Neil, George R.
1998-01-01
A focused optical is been used to introduce an optical pulse, or electromagnetic wave, colinearly with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM.sub.10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron.
Accelerating image recognition on mobile devices using GPGPU
NASA Astrophysics Data System (ADS)
Bordallo López, Miguel; Nykänen, Henri; Hannuksela, Jari; Silvén, Olli; Vehviläinen, Markku
2011-01-01
The future multi-modal user interfaces of battery-powered mobile devices are expected to require computationally costly image analysis techniques. The use of Graphic Processing Units for computing is very well suited for parallel processing and the addition of programmable stages and high precision arithmetic provide for opportunities to implement energy-efficient complete algorithms. At the moment the first mobile graphics accelerators with programmable pipelines are available, enabling the GPGPU implementation of several image processing algorithms. In this context, we consider a face tracking approach that uses efficient gray-scale invariant texture features and boosting. The solution is based on the Local Binary Pattern (LBP) features and makes use of the GPU on the pre-processing and feature extraction phase. We have implemented a series of image processing techniques in the shader language of OpenGL ES 2.0, compiled them for a mobile graphics processing unit and performed tests on a mobile application processor platform (OMAP3530). In our contribution, we describe the challenges of designing on a mobile platform, present the performance achieved and provide measurement results for the actual power consumption in comparison to using the CPU (ARM) on the same platform.
From Auger to AugerPrime: Understanding Ultrahigh-Energy Cosmic Rays
NASA Astrophysics Data System (ADS)
Montanet, F.; Pierre Auger Collaboration
2016-12-01
Ultrahigh-energy cosmic rays (UHECRs), whose origin is still mysterious, provide a unique probe of the most extreme environments in the universe, of the intergalactic space and of particle physics beyond the reach of terrestrial accelerators. The Pierre Auger Observatory started operating more than a decade ago. Outperforming preceding experiments both in size and in precision, it has boosted forward the field of UHECRs as witnessed by a wealth of results. These include the study of the energy spectrum beyond 1 EeV with its spectral suppression around 40 EeV, of the large-scale anisotropy, of the mass composition, as well as stringent limits on photon and neutrino fluxes. But any harvest of new results also calls for new questions: what is the true nature of the spectral suppression: a propagation effect (so-called Greisen, Zatsepin and Kuz'min or GZK cutoff) or cosmic accelerators running out of steam? What is the composition of UHECRs at the highest energies? In order to answer these questions, the Auger Collaboration is undertaking a major upgrade program of its detectors, the AugerPrime project. The science case and motivations, the technical strategy and the scientific prospects are presented.
Shen, Xiaoying; Basu, Rahul; Sawant, Sheetal; Beaumont, David; Kwa, Sue Fen; LaBranche, Celia; Seaton, Kelly E; Yates, Nicole L; Montefiori, David C; Ferrari, Guido; Wyatt, Linda S; Moss, Bernard; Alam, S Munir; Haynes, Barton F; Tomaras, Georgia D; Robinson, Harriet L
2017-12-15
An important goal of human immunodeficiency virus (HIV) vaccine design is identification of strategies that elicit effective antiviral humoral immunity. One novel approach comprises priming with DNA and boosting with modified vaccinia virus Ankara (MVA) expressing HIV-1 Env on virus-like particles. In this study, we evaluated whether the addition of a gp120 protein in alum or MVA-expressed secreted gp140 (MVAgp140) could improve immunogenicity of a DNA prime-MVA boost vaccine. Five rhesus macaques per group received two DNA primes at weeks 0 and 8 followed by three MVA boosts (with or without additional protein or MVAgp140) at weeks 18, 26, and 40. Both boost immunogens enhanced the breadth of HIV-1 gp120 and V1V2 responses, antibody-dependent cellular cytotoxicity (ADCC), and low-titer tier 1B and tier 2 neutralizing antibody responses. However, there were differences in antibody kinetics, linear epitope specificity, and CD4 T cell responses between the groups. The gp120 protein boost elicited earlier and higher peak responses, whereas the MVAgp140 boost resulted in improved antibody durability and comparable peak responses after the final immunization. Linear V3 specific IgG responses were particularly enhanced by the gp120 boost, whereas the MVAgp140 boost also enhanced responses to linear C5 and C2.2 epitopes. Interestingly, gp120, but not the MVAgp140 boost, increased peak CD4 + T cell responses. Thus, both gp120 and MVAgp140 can augment potential protection of a DNA/MVA vaccine by enhancing gp120 and V1/V2 antibody responses, whereas potential protection by gp120, but not MVAgp140 boosts, may be further impacted by increased CD4 + T cell responses. IMPORTANCE Prior immune correlate analyses with humans and nonhuman primates revealed the importance of antibody responses in preventing HIV-1 infection. A DNA prime-modified vaccinia virus Ankara (MVA) boost vaccine has proven to be potent in eliciting antibody responses. Here we explore the ability of boosts with recombinant gp120 protein or MVA-expressed gp140 to enhance antibody responses elicited by the GOVX-B11 DNA prime-MVA boost vaccine. We found that both types of immunogen boosts enhanced potentially protective antibody responses, whereas the gp120 protein boosts also increased CD4 + T cell responses. Our data provide important information for HIV vaccine designs that aim for effective and balanced humoral and T cell responses. Copyright © 2017 Shen et al.
Variable Thrust, Multiple Start Hybrid Motor Solutions for Missile and Space Applications
2010-06-01
considered: I. Boost/Sustain/Boost. Simulating a tactical solid rocket motor profile with another boost at the end to demonstrate a "throttle up", this...of tactical solid rocket motors were tested with 75%, 50%, and lower sustain-to- boost chamber pressure ratios with rapid throttle-up achieved... solid rocket motors were tested with 75%, 50%, and lower sustain-to-boost chamber pressure ratios with rapid throttle-up achieved following the sustain
Design study of an optical cavity for a future photon collider at ILC
NASA Astrophysics Data System (ADS)
Klemz, G.; Mönig, K.; Will, I.
2006-08-01
Hard photons well above 100 GeV have to be generated in a future photon collider which essentially will be based on the infrastructure of the planned International Linear Collider (ILC). The energy of near-infrared laser photons will be boosted by Compton backscattering against a high-energy relativistic electron beam. For high effectiveness, a very powerful laser system is required that exceeds today's state-of-the-art capabilities. In this paper a design of an auxiliary passive cavity is discussed that resonantly enhances the peak-power of the laser. The properties and prospects of such a cavity are addressed on the basis of the specifications for the European TeV Energy Superconducting Linear Accelerator (TESLA) proposal. Those of the ILC are expected to be similar.
Friction forces on atoms after acceleration
Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; ...
2015-05-12
The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v 4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v 3.« less
Zheng, Qi; Grice, Elizabeth A
2016-10-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost's algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost.
Vargo, John A; Kim, Hayeon; Choi, Serah; Sukumvanich, Paniti; Olawaiye, Alexander B; Kelley, Joseph L; Edwards, Robert P; Comerci, John T; Beriwal, Sushil
2014-12-01
Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 with PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Extended field IMRT was well tolerated and resulted in low regional recurrence in node-positive cervical cancer. The dose of 55 Gy in 25 fractions was effective in eradicating disease in involved nodes, with acceptable late adverse events. Distant metastasis is the predominant mode of failure, and the OUTBACK trial may challenge the presented paradigms. Copyright © 2014 Elsevier Inc. All rights reserved.
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction Control Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2013 CFR
2013-01-01
... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction Control Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Power boost and power-operated control...
BarraCUDA - a fast short read sequence aligner using graphics processing units
2012-01-01
Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.net PMID:22244497
Socinski, Mark A; Morris, David E; Halle, Jan S; Moore, Dominic T; Hensing, Thomas A; Limentani, Steven A; Fraser, Robert; Tynan, Maureen; Mears, Andrea; Rivera, M Patricia; Detterbeck, Frank C; Rosenman, Julian G
2004-11-01
Local control rates at conventional radiotherapy doses (60 to 66 Gy) are poor in stage III non-small-cell lung cancer (NSCLC). Dose escalation using three-dimensional thoracic conformal radiation therapy (TCRT) is one strategy to improve local control and perhaps survival. Stage III NSCLC patients with a good performance status (PS) were treated with induction chemotherapy (carboplatin area under the curve [AUC] 5, irinotecan 100 mg/m(2), and paclitaxel 175 mg/m(2) days 1 and 22) followed by concurrent chemotherapy (carboplatin AUC 2 and paclitaxel 45 mg/m(2) weekly for 7 to 8 weeks) beginning on day 43. Pre- and postchemotherapy computed tomography scans defined the initial clinical target volume (CTV(I)) and boost clinical target volume (CTV(B)), respectively. The CTV(I) received 40 to 50 Gy; the CTV(B) received escalating doses of TCRT from 78 Gy to 82, 86, and 90 Gy. The primary objective was to escalate the TCRT dose from 78 to 90 Gy or to the maximum-tolerated dose. Twenty-nine patients were enrolled (25 assessable patients; median age, 59 years; 62% male; 45% stage IIIA; 38% PS 0; and 38% > or = 5% weight loss). Induction CIP was well tolerated (with filgrastim support) and active (partial response rate, 46.2%; stable disease, 53.8%; and early progression, 0%). The TCRT dose was escalated from 78 to 90 Gy without dose-limiting toxicity. The primary acute toxicity was esophagitis (16%, all grade 3). Late toxicity consisted of grade 2 esophageal stricture (n = 3), bronchial stenosis (n = 2), and fatal hemoptysis (n = 2). The overall response rate was 60%, with a median survival time and 1-year survival probability of 24 months and 0.73 (95% CI, 0.55 to 0.89), respectively. CONCLUSION Escalation of the TCRT dose from 78 to 90 Gy in the context of induction and concurrent chemotherapy was accomplished safely in stage III NSCLC patients.
Nonlinear program based optimization of boost and buck-boost converter designs
NASA Astrophysics Data System (ADS)
Rahman, S.; Lee, F. C.
The facility of an Augmented Lagrangian (ALAG) multiplier based nonlinear programming technique is demonstrated for minimum-weight design optimizations of boost and buck-boost power converters. Certain important features of ALAG are presented in the framework of a comprehensive design example for buck-boost power converter design optimization. The study provides refreshing design insight of power converters and presents such information as weight and loss profiles of various semiconductor components and magnetics as a function of the switching frequency.
Methods, systems and apparatus for controlling operation of two alternating current (AC) machines
Gallegos-Lopez, Gabriel [Torrance, CA; Nagashima, James M [Cerritos, CA; Perisic, Milun [Torrance, CA; Hiti, Silva [Redondo Beach, CA
2012-02-14
A system is provided for controlling two AC machines. The system comprises a DC input voltage source that provides a DC input voltage, a voltage boost command control module (VBCCM), a five-phase PWM inverter module coupled to the two AC machines, and a boost converter coupled to the inverter module and the DC input voltage source. The boost converter is designed to supply a new DC input voltage to the inverter module having a value that is greater than or equal to a value of the DC input voltage. The VBCCM generates a boost command signal (BCS) based on modulation indexes from the two AC machines. The BCS controls the boost converter such that the boost converter generates the new DC input voltage in response to the BCS. When the two AC machines require additional voltage that exceeds the DC input voltage required to meet a combined target mechanical power required by the two AC machines, the BCS controls the boost converter to drive the new DC input voltage generated by the boost converter to a value greater than the DC input voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hau, Eric, E-mail: helloerico@yahoo.com; Browne, Lois H.; Khanna, Sam
Purpose: To evaluate comprehensively the effect of a radiotherapy boost on breast cosmetic outcomes after 5 years in patients treated with breast-conserving surgery. Methods: The St. George and Wollongong trial (NCT00138814) randomized 688 patients with histologically proven Tis-2, N 0-1, M0 carcinoma to the control arm of 50 Gy in 25 fractions (342 patients) and the boost arm of 45 Gy in 25 fractions to the whole breast followed by a 16 Gy in 8 fraction electron boost (346 patients). Five-year cosmetic outcomes were assessed by a panel subjectively in 385 patients and objectively using pBRA (relative breast retraction assessment).more » A subset of patients also had absolute BRA measurements. Clinician assessment and patient self-assessment of overall cosmetic and specific items as well as computer BCCT.core analysis were also performed. Results: The boost arm had improved cosmetic overall outcomes as scored by the panel and BCCT.core software with 79% (p = 0.016) and 81% (p = 0.004) excellent/good cosmesis respectively compared with 68% in no-boost arm. The boost arm also had lower pBRA and BRA values with a mean difference of 0.60 and 1.82 mm, respectively, but was not statistically significant. There was a very high proportion of overall excellent/good cosmetic outcome in 95% and 93% in the boost and no-boost arms using patient self-assessment. However, no difference in overall and specific items scored by clinician assessment and patient self-assessment was found. Conclusion: The results show the negative cosmetic effect of a 16-Gy boost is offset by a lower whole-breast dose of 45 Gy.« less
A Study of 4-level DC-DC Boost Inverter with Passive Component Reduction Consideration
NASA Astrophysics Data System (ADS)
Kasiran, A. N.; Ponniran, A.; Harimon, M. A.; Hamzah, H. H.
2018-04-01
This study is to analyze design principles of boost inductor and capacitor used in the 4-level DC-DC boost converter to realize size reduction of passive component referring to their attributes. The important feature of this circuit is that most of the boost-up energy is transferred from the capacitor-clamped to the output side which the small inductance can be used at the input side. The inductance of the boost inductor is designed by referring the inductor current ripple. On the other hand, the capacitance of the capacitor-clamped is designed by considering voltage stress on semiconductor devices and also the used switching frequency. Besides that, according to the design specifications, the required inductance in 4-level DC-DC boost converter is decreased compared to a conventional conventional DC-DC boost converter. Meanwhile, voltage stress on semiconductor device is depending on the maximum voltage ripple of the capacitor-clamped. A 50 W 4-level DC-DC boost converter prototype has been constructed. The results show that the inductor current ripple was 1.15 A when the inductors, 1 mH and 0.11 mH were used in the conventional and 4-level DC-DC boost converters, respectively. Thus, based on the experimental results, it shows that the reduction of passive components by referring to their attributes in 4-level DC-DC boost converter is achieved. Moreover, the decreasing of voltage stress on the semiconductor devices is an advantage for the selection of low ON-resistance of the devices which will contribute to the reduction of the semiconductor conduction loss. The integration result of boost converter and H-bridge inverter is also shown.
Enhanced betatron radiation by steering a laser-driven plasma wakefield with a tilted shock front
NASA Astrophysics Data System (ADS)
Yu, Changhai; Liu, Jiansheng; Wang, Wentao; Li, Wentao; Qi, Rong; Zhang, Zhijun; Qin, Zhiyong; Liu, Jiaqi; Fang, Ming; Feng, Ke; Wu, Ying; Ke, Lintong; Chen, Yu; Wang, Cheng; Xu, Yi; Leng, Yuxin; Xia, Changquan; Li, Ruxin; Xu, Zhizhan
2018-03-01
We have experimentally realized a scheme to enhance betatron radiation by manipulating transverse oscillation of electrons in a laser-driven plasma wakefield with a tilted shock front (TSF). Very brilliant betatron x-rays have been produced with significant enhancement both in photon yield and peak energy but almost maintain the e-beam energy spread and charge. Particle-in-cell simulations indicate that the accelerated electron beam (e beam) can acquire a very large transverse oscillation amplitude with an increase in more than 10-fold, after being steered into the deflected wakefield due to the refraction of the driving laser at the TSF. Spectral broadening of betatron radiation can be suppressed owing to the small variation in the peak energy of the low-energy-spread e beam in a plasma wiggler regime. It is demonstrated that the e-beam generation, refracting, and wiggling can act as a whole to realize the concurrence of monoenergetic e beams and bright x-rays in a compact laser-wakefield accelerator.
Liu, Yongchao; Wirawan, Adrianto; Schmidt, Bertil
2013-04-04
The maximal sensitivity for local alignments makes the Smith-Waterman algorithm a popular choice for protein sequence database search based on pairwise alignment. However, the algorithm is compute-intensive due to a quadratic time complexity. Corresponding runtimes are further compounded by the rapid growth of sequence databases. We present CUDASW++ 3.0, a fast Smith-Waterman protein database search algorithm, which couples CPU and GPU SIMD instructions and carries out concurrent CPU and GPU computations. For the CPU computation, this algorithm employs SSE-based vector execution units as accelerators. For the GPU computation, we have investigated for the first time a GPU SIMD parallelization, which employs CUDA PTX SIMD video instructions to gain more data parallelism beyond the SIMT execution model. Moreover, sequence alignment workloads are automatically distributed over CPUs and GPUs based on their respective compute capabilities. Evaluation on the Swiss-Prot database shows that CUDASW++ 3.0 gains a performance improvement over CUDASW++ 2.0 up to 2.9 and 3.2, with a maximum performance of 119.0 and 185.6 GCUPS, on a single-GPU GeForce GTX 680 and a dual-GPU GeForce GTX 690 graphics card, respectively. In addition, our algorithm has demonstrated significant speedups over other top-performing tools: SWIPE and BLAST+. CUDASW++ 3.0 is written in CUDA C++ and PTX assembly languages, targeting GPUs based on the Kepler architecture. This algorithm obtains significant speedups over its predecessor: CUDASW++ 2.0, by benefiting from the use of CPU and GPU SIMD instructions as well as the concurrent execution on CPUs and GPUs. The source code and the simulated data are available at http://cudasw.sourceforge.net.
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2014 CFR
2014-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2011 CFR
2011-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Power boost and power-operated control...
14 CFR 29.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Systems § 29.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2012 CFR
2012-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Power boost and power-operated control...
14 CFR 27.695 - Power boost and power-operated control system.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Systems § 27.695 Power boost and power-operated control system. (a) If a power boost or power-operated... failure of all engines. (b) Each alternate system may be a duplicate power portion or a manually operated... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Power boost and power-operated control...
Boosted one dimensional fermionic superfluids on a lattice
NASA Astrophysics Data System (ADS)
Ray, Sayonee; Mukerjee, Subroto; Shenoy, Vijay B.
2017-09-01
We study the effect of a boost (Fermi sea displaced by a finite momentum) on one dimensional systems of lattice fermions with short-ranged interactions. In the absence of a boost such systems with attractive interactions possess algebraic superconducting order. Motivated by physics in higher dimensions, one might naively expect a boost to weaken and ultimately destroy superconductivity. However, we show that for one dimensional systems the effect of the boost can be to strengthen the algebraic superconducting order by making correlation functions fall off more slowly with distance. This phenomenon can manifest in interesting ways, for example, a boost can produce a Luther-Emery phase in a system with both charge and spin gaps by engendering the destruction of the former.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrandina, Gabriella, E-mail: gabriella.ferrandina@libero.it; Gambacorta, Antonietta; Gallotta, Valerio
Purpose: This prospective, phase 2 study aimed at assessing the efficacy of accelerated fractionation radiation therapy by concomitant boosts (CBs) associated with chemoradiation therapy (CRT) of the whole pelvis, in improving the rate of pathological complete response (pCR) to treatment in patients with International Federation of Gynaecology and Obstetrics (FIGO) stage IB2-IVA locally advanced cervical cancer. Methods and Materials: Neoadjuvant CRT included conformal irradiation of the whole pelvis with a total dose of 39.6 Gy (1.8 cGy/fraction, 22 fractions), plus additional irradiation of primary tumor and parametria with 10.8 Gy administered with CBs (0.9 cGy/fraction, 12 fractions, every other day). Concomitant chemotherapy included cisplatinmore » (20 mg/m{sup 2}, days 1-4 and 26-30 of treatment), and capecitabine (1300 mg/m{sup 2}/daily, orally) during the first 2 and the last 2 weeks of treatment. Radical hysterectomy plus pelvic with or without aortic lymphadenectomy was performed within 6 to 8 weeks from CRT. Toxicity was recorded according to Radiation Therapy Oncology Group toxicity criteria and Chassagne grading system. Based on the Simon design, 103 cases were required, and the regimen would be considered active if >45 pCR were registered (α error = 0.05; β error = 0.1). Results: pCR was documented in 51 cases (50.5%), and the regimen was considered active, according to the planned statistical assumptions. At median follow-up of 36 months (range: 7-85 months), the 3-year local failure rate was 7%, whereas the 3-year disease-free and overall survival rates were 73.0% and 86.1%, respectively. Grade 3 leukopenia and neutropenia were reported in only 1 and 2 cases, respectively. Gastrointestinal toxicity was always grade 1 or 2. Conclusions: Addition of CBs in the accelerated fractionation modality to the whole pelvis chemoradiation followed by radical surgery results in a high rate of pathologically assessed complete response to CRT and a very encouraging local control rate, with acceptable toxicity.« less
Effects of working memory load and repeated scenario exposure on emergency braking performance.
Engström, Johan; Aust, Mikael Ljung; Viström, Matias
2010-10-01
The objective of the present study was to examine the effect of working memory load on drivers' responses to a suddenly braking lead vehicle and whether this effect (if any) is moderated by repeated scenario exposure. Several experimental studies have found delayed braking responses to lead vehicle braking events during concurrent performance of nonvisual, working memory-loading tasks, such as hands-free phone conversation. However, the common use of repeated, and hence somewhat expected, braking events may undermine the generalizability of these results to naturalistic, unexpected, emergency braking scenarios. A critical lead vehicle braking scenario was implemented in a fixed-based simulator.The effects of working memory load and repeated scenario exposure on braking performance were examined. Brake response time was decomposed into accelerator pedal release time and accelerator-to-brake pedal movement time. Accelerator pedal release times were strongly reduced with repeated scenario exposure and were delayed by working memory load with a small but significant amount (178 ms).The two factors did not interact. There were no effects on accelerator-to-brake pedal movement time. The results suggest that effects of working memory load on response performance obtained from repeated critical lead vehicle braking scenarios may be validly generalized to real world unexpected events. The results have important implications for the interpretation of braking performance in experimental settings, in particular in the context of safety-related evaluation of in-vehicle information and communication technologies.
Ma, Hsiang-Yang; Lin, Ying-Hsiu; Wang, Chiao-Yin; Chen, Chiung-Nien; Ho, Ming-Chih; Tsui, Po-Hsiang
2016-08-01
Ultrasound Nakagami imaging is an attractive method for visualizing changes in envelope statistics. Window-modulated compounding (WMC) Nakagami imaging was reported to improve image smoothness. The sliding window technique is typically used for constructing ultrasound parametric and Nakagami images. Using a large window overlap ratio may improve the WMC Nakagami image resolution but reduces computational efficiency. Therefore, the objectives of this study include: (i) exploring the effects of the window overlap ratio on the resolution and smoothness of WMC Nakagami images; (ii) proposing a fast algorithm that is based on the convolution operator (FACO) to accelerate WMC Nakagami imaging. Computer simulations and preliminary clinical tests on liver fibrosis samples (n=48) were performed to validate the FACO-based WMC Nakagami imaging. The results demonstrated that the width of the autocorrelation function and the parameter distribution of the WMC Nakagami image reduce with the increase in the window overlap ratio. One-pixel shifting (i.e., sliding the window on the image data in steps of one pixel for parametric imaging) as the maximum overlap ratio significantly improves the WMC Nakagami image quality. Concurrently, the proposed FACO method combined with a computational platform that optimizes the matrix computation can accelerate WMC Nakagami imaging, allowing the detection of liver fibrosis-induced changes in envelope statistics. FACO-accelerated WMC Nakagami imaging is a new-generation Nakagami imaging technique with an improved image quality and fast computation. Copyright © 2016 Elsevier B.V. All rights reserved.
Multi-GPU Accelerated Admittance Method for High-Resolution Human Exposure Evaluation.
Xiong, Zubiao; Feng, Shi; Kautz, Richard; Chandra, Sandeep; Altunyurt, Nevin; Chen, Ji
2015-12-01
A multi-graphics processing unit (GPU) accelerated admittance method solver is presented for solving the induced electric field in high-resolution anatomical models of human body when exposed to external low-frequency magnetic fields. In the solver, the anatomical model is discretized as a three-dimensional network of admittances. The conjugate orthogonal conjugate gradient (COCG) iterative algorithm is employed to take advantage of the symmetric property of the complex-valued linear system of equations. Compared against the widely used biconjugate gradient stabilized method, the COCG algorithm can reduce the solving time by 3.5 times and reduce the storage requirement by about 40%. The iterative algorithm is then accelerated further by using multiple NVIDIA GPUs. The computations and data transfers between GPUs are overlapped in time by using asynchronous concurrent execution design. The communication overhead is well hidden so that the acceleration is nearly linear with the number of GPU cards. Numerical examples show that our GPU implementation running on four NVIDIA Tesla K20c cards can reach 90 times faster than the CPU implementation running on eight CPU cores (two Intel Xeon E5-2603 processors). The implemented solver is able to solve large dimensional problems efficiently. A whole adult body discretized in 1-mm resolution can be solved in just several minutes. The high efficiency achieved makes it practical to investigate human exposure involving a large number of cases with a high resolution that meets the requirements of international dosimetry guidelines.
RBOOST: RIEMANNIAN DISTANCE BASED REGULARIZED BOOSTING
Liu, Meizhu; Vemuri, Baba C.
2011-01-01
Boosting is a versatile machine learning technique that has numerous applications including but not limited to image processing, computer vision, data mining etc. It is based on the premise that the classification performance of a set of weak learners can be boosted by some weighted combination of them. There have been a number of boosting methods proposed in the literature, such as the AdaBoost, LPBoost, SoftBoost and their variations. However, the learning update strategies used in these methods usually lead to overfitting and instabilities in the classification accuracy. Improved boosting methods via regularization can overcome such difficulties. In this paper, we propose a Riemannian distance regularized LPBoost, dubbed RBoost. RBoost uses Riemannian distance between two square-root densities (in closed form) – used to represent the distribution over the training data and the classification error respectively – to regularize the error distribution in an iterative update formula. Since this distance is in closed form, RBoost requires much less computational cost compared to other regularized Boosting algorithms. We present several experimental results depicting the performance of our algorithm in comparison to recently published methods, LP-Boost and CAVIAR, on a variety of datasets including the publicly available OASIS database, a home grown Epilepsy database and the well known UCI repository. Results depict that the RBoost algorithm performs better than the competing methods in terms of accuracy and efficiency. PMID:21927643
NASA Astrophysics Data System (ADS)
Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen
2016-02-01
The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp = 0.9180 and RMSEP = 2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine.
Holmström, Morten Orebo; Riley, Caroline Hasselbalch; Skov, Vibe; Svane, Inge Marie; Hasselbalch, Hans Carl; Andersen, Mads Hald
2018-01-01
The Chronic Myeloproliferative Neoplasms (MPN) are cancers characterized by hyperinflammation and immune deregulation. Concurrently, the expression of the immune check point programmed death ligand 1 (PD-L1) is induced by inflammation. In this study we report on the occurrence of spontaneous T cell responses against a PD-L1 derived epitope in patients with MPN. We show that 71% of patients display a significant immune response against PD-L1, and patients with advanced MPN have significantly fewer and weaker PD-L1 specific immune responses compared to patients with non-advanced MPN. The PD-L1 specific T cell responses are CD4 + T cell responses, and by gene expression analysis we show that expression of PD-L1 is enhanced in patients with MPN. This could imply that the tumor specific immune response in MPN could be enhanced by vaccination with PD-L1 derived epitopes by boosting the anti-regulatory immune response hereby allowing tumor specific T cell to exert anti-tumor immunity.
Daily online testing in large classes: boosting college performance while reducing achievement gaps.
Pennebaker, James W; Gosling, Samuel D; Ferrell, Jason D
2013-01-01
An in-class computer-based system, that included daily online testing, was introduced to two large university classes. We examined subsequent improvements in academic performance and reductions in the achievement gaps between lower- and upper-middle class students in academic performance. Students (N = 901) brought laptop computers to classes and took daily quizzes that provided immediate and personalized feedback. Student performance was compared with the same data for traditional classes taught previously by the same instructors (N = 935). Exam performance was approximately half a letter grade above previous semesters, based on comparisons of identical questions asked from earlier years. Students in the experimental classes performed better in other classes, both in the semester they took the course and in subsequent semester classes. The new system resulted in a 50% reduction in the achievement gap as measured by grades among students of different social classes. These findings suggest that frequent consequential quizzing should be used routinely in large lecture courses to improve performance in class and in other concurrent and subsequent courses.
The Design and Testing of a Dual Fiber Textile Matrix for Accelerating Surface Hemostasis
Fischer, Thomas H.; Vournakis, John N.; Manning, James E.; McCurdy, Shane L.; Rich, Preston B.; Nichols, Timothy C.; Scull, Christopher M.; McCord, Marian G.; Decorta, Joseph A.; Johnson, Peter C.; Smith, Carr J.
2011-01-01
The standard treatment for severe traumatic injury is frequently compression and application of gauze dressing to the site of hemorrhage. However, while able to rapidly absorb pools of shed blood, gauze fails to provide strong surface (topical) hemostasis. The result can be excess hemorrhage-related morbidity and mortality. We hypothesized that cost-effective materials (based on widespread availability of bulk fibers for other commercial uses) could be designed based on fundamental hemostatic principles to partially emulate the wicking properties of gauze while concurrently stimulating superior hemostasis. A panel of readily available textile fibers was screened for the ability to activate platelets and the intrinsic coagulation cascade in vitro. Type E continuous filament glass and a specialty rayon fiber were identified from the material panel as accelerators of hemostatic reactions and were custom woven to produce a dual fiber textile bandage. The glass component strongly activated platelets while the specialty rayon agglutinated red blood cells. In comparison with gauze in vitro, the dual fiber textile significantly enhanced the rate of thrombin generation, clot generation as measured by thromboelastography, adhesive protein adsorption and cellular attachment and activation. These results indicate that hemostatic textiles can be designed that mimic gauze in form but surpass gauze in ability to accelerate hemostatic reactions. PMID:19489008
Concerted manipulation of laser plasma dynamics with two laser pulses
NASA Astrophysics Data System (ADS)
Braenzel, J.; Andreev, A. A.; Ehrentraut, L.; Sommer, D.; Schnürer, M.
2017-05-01
In this article we present experimental results from a counter-propagating two laser pulse experiment at high intensity and using ultrathin gold and plastic foil targets. We applied one laser pulse as a pre-pulse with an intensity of up to 1x1018 W/cm2. By this method we manipulated the pre-plasma of the foil target with which the stronger laser pulse with an intensity of 6x1019W/cm2 interacts. This alters significantly subsequent processes from the laser plasma interaction which we show the ion acceleration and high harmonic generation. On the one hand, the maximum kinetic ion energy and the maximum charge state for gold ions decline due to the pre-heating of the target in the time range of few ps, on the other hand the number of accelerated ions is increased. For the same parameter range we detected a significant raise of the high harmonic emission. Moreover, we present first experimental observations, that when the second laser pulse is applied as a counter-propagating post-pulse the energy distribution of accelerated carbon ions is charge selective altered. Our findings indicate that using this method a parametric optimization can be achieved, which promises new insights about the concurrent processes of the laser plasma dynamics.
AC to DC Bridgeless Boost Converter for Ultra Low Input Energy Harvesting
NASA Astrophysics Data System (ADS)
Dawam, A. H. A.; Muhamad, M.
2018-03-01
This paper presents design of circuit which converts low input AC voltage to a higher output DC voltage. A buck-boost topology and boost topology are combined to condition cycle of an AC input voltage. the unique integration of a combining circuit of buck-boost and boost circuit have been proposed in order to introduce a new direct ac-dc power converter topology without conventional diode bridge rectifier. The converter achieved to convert a milli-volt scale of input AC voltage into a volt scale of output DC voltages which is from 400mV to 3.3V.
Azad, Arun; Bukczynska, Patricia; Jackson, Susan; Haupt, Ygal; Haput, Ygal; Cullinane, Carleen; McArthur, Grant A; Solomon, Benjamin
2014-02-01
To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs, and accelerated senescence after radiation. Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination. Copyright © 2014. Published by Elsevier Inc.
Narayanasamy, Ganesh; Avila, Gabrielle; Mavroidis, Panayiotis; Papanikolaou, Niko; Gutierrez, Alonso; Baacke, Diana; Shi, Zheng; Stathakis, Sotirios
2016-09-01
Prostate cases commonly consist of dual phase planning with a primary plan followed by a boost. Traditionally, the boost phase is planned independently from the primary plan with the risk of generating hot or cold spots in the composite plan. Alternatively, boost phase can be planned taking into account the primary dose. The aim of this study was to compare the composite plans from independently and dependently planned boosts using dosimetric and radiobiological metrics. Ten consecutive prostate patients previously treated at our institution were used to conduct this study on the Raystation™ 4.0 treatment planning system. For each patient, two composite plans were developed: a primary plan with an independently planned boost and a primary plan with a dependently planned boost phase. The primary plan was prescribed to 54 Gy in 30 fractions to the primary planning target volume (PTV1) which includes prostate and seminal vesicles, while the boost phases were prescribed to 24 Gy in 12 fractions to the boost planning target volume (PTV2) that targets only the prostate. PTV coverage, max dose, median dose, target conformity, dose homogeneity, dose to OARs, and probabilities of benefit, injury, and complication-free tumor control (P+) were compared. Statistical significance was tested using either a 2-tailed Student's t-test or Wilcoxon signed-rank test. Dosimetrically, the composite plan with dependent boost phase exhibited smaller hotspots, lower maximum dose to the target without any significant change to normal tissue dose. Radiobiologically, for all but one patient, the percent difference in the P+ values between the two methods was not significant. A large percent difference in P+ value could be attributed to an inferior primary plan. The benefits of considering the dose in primary plan while planning the boost is not significant unless a poor primary plan was achieved.
A cost comparison analysis of adjuvant radiation therapy techniques after breast-conserving surgery.
Lanni, Thomas; Keisch, Martin; Shah, Chirag; Wobb, Jessica; Kestin, Larry; Vicini, Frank
2013-01-01
The aim of this study is to perform a cost analysis to compare adjuvant radiation therapy schedules following breast conserving surgery. Treatment planning and delivery utilization data were modeled for a series of 10 different breast RT techniques. The whole breast (WB) regimens consisted of: (1) Wedge based WB (25 fractions [fx]), (2) WB using IMRT, (3) WBRT with a boost (B), (4) WBRT using IMRT with a B, (5) Canadian WB (16 fx) with 3D-CRT, and (6) Canadian using IMRT. The accelerated partial breast irradiation (APBI) regimens included (7): APBI using 3D-CRT, (8) IMRT, (9) single channel balloon, and (10) multi-channel balloon. Costs incurred by the payer (i.e., direct medical costs) were taken from the 2011 Medicare Fee Schedule. Among all the different regimens examined, Canadian 3D-CRT and APBI 3D-CRT were the least costly whereas WB using IMRT with a B was the most expensive. Both APBI brachytherapy techniques were less costly than conventional WB with a B. In terms of direct medical costs, the technical component accounted for most, if not all, of the disparity among the various treatments. A general trend of decreasing RT costs was observed with further reductions in overall treatment time for WBRT techniques, but not all of the alternative treatment regimens led to similar total cost savings. APBI using brachytherapy techniques was less costly than conventional WBRT with a standard boost. © 2013 Wiley Periodicals, Inc.
Xu, Jiaqi; Li, Xiaodong; Liu, Wei; Sun, Yongfu; Ju, Zhengyu; Yao, Tao; Wang, Chengming; Ju, Huanxin; Zhu, Junfa; Wei, Shiqiang; Xie, Yi
2017-07-24
Structural parameters of ternary transition-metal dichalcogenide (TMD) alloy usually obey Vegard law well, while interestingly it often exhibits boosted electrocatalytic performances relative to its two pristine binary TMDs. To unveil the underlying reasons, we propose an ideal model of ternary TMDs alloy monolayer. As a prototype, MoSeS alloy monolayers are successfully synthesized, in which X-ray absorption fine structure spectroscopy manifests their shortened Mo-S and lengthened Mo-Se bonds, helping to tailor the d-band electronic structure of Mo atoms. Density functional theory calculations illustrate an increased density of states near their conduction band edge, which ensures faster electron transfer confirmed by their lower work function and smaller charge-transfer resistance. Energy calculations show the off-center charge around Mo atoms not only benefits for stabilizing COOH* intermediate confirmed by its most negative formation energy, but also facilitates the rate-limiting CO desorption step verified by CO temperature programmed desorption and electro-stripping tests. As a result, MoSeS alloy monolayers attain the highest 45.2 % Faradaic efficiency for CO production, much larger than that of MoS 2 monolayers (16.6 %) and MoSe 2 monolayers (30.5 %) at -1.15 V vs. RHE. This work discloses how the partially delocalized charge in ternary TMDs alloys accelerates electrocatalytic performances at atomic level, opening new horizons for manipulating CO 2 electroreduction properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Health-Based Capitation Risk Adjustment in Minnesota Public Health Care Programs
Gifford, Gregory A.; Edwards, Kevan R.; Knutson, David J.
2004-01-01
This article documents the history and implementation of health-based capitation risk adjustment in Minnesota public health care programs, and identifies key implementation issues. Capitation payments in these programs are risk adjusted using an historical, health plan risk score, based on concurrent risk assessment. Phased implementation of capitation risk adjustment for these programs began January 1, 2000. Minnesota's experience with capitation risk adjustment suggests that: (1) implementation can accelerate encounter data submission, (2) administrative decisions made during implementation can create issues that impact payment model performance, and (3) changes in diagnosis data management during implementation may require changes to the payment model. PMID:25372356
NASA Technical Reports Server (NTRS)
Spencer, J. W., Jr.; Nur, A. M.
1976-01-01
A description is presented of an experimental assembly which has been developed to conduct concurrent measurements of compressional and shear wave velocities in rocks at high temperatures and confining pressures and with independent control of the pore pressure. The apparatus was used in studies of the joint effects of temperature, external confining pressure, and internal pore water on sonic velocities in Westerly granite. It was found that at a given temperature, confining pressure has a larger accelerating effect on compressional waves in dry rock, whereas at a given confining pressure, temperature has a larger retarding effect on shear waves.
Zheng, Qi; Grice, Elizabeth A.
2016-01-01
Accurate mapping of next-generation sequencing (NGS) reads to reference genomes is crucial for almost all NGS applications and downstream analyses. Various repetitive elements in human and other higher eukaryotic genomes contribute in large part to ambiguously (non-uniquely) mapped reads. Most available NGS aligners attempt to address this by either removing all non-uniquely mapping reads, or reporting one random or "best" hit based on simple heuristics. Accurate estimation of the mapping quality of NGS reads is therefore critical albeit completely lacking at present. Here we developed a generalized software toolkit "AlignerBoost", which utilizes a Bayesian-based framework to accurately estimate mapping quality of ambiguously mapped NGS reads. We tested AlignerBoost with both simulated and real DNA-seq and RNA-seq datasets at various thresholds. In most cases, but especially for reads falling within repetitive regions, AlignerBoost dramatically increases the mapping precision of modern NGS aligners without significantly compromising the sensitivity even without mapping quality filters. When using higher mapping quality cutoffs, AlignerBoost achieves a much lower false mapping rate while exhibiting comparable or higher sensitivity compared to the aligner default modes, therefore significantly boosting the detection power of NGS aligners even using extreme thresholds. AlignerBoost is also SNP-aware, and higher quality alignments can be achieved if provided with known SNPs. AlignerBoost’s algorithm is computationally efficient, and can process one million alignments within 30 seconds on a typical desktop computer. AlignerBoost is implemented as a uniform Java application and is freely available at https://github.com/Grice-Lab/AlignerBoost. PMID:27706155
Glynne-Jones, Rob; Sebag-Montefiore, David; Adams, Richard; McDonald, Alec; Gollins, Simon; James, Roger; Northover, John M A; Meadows, Helen M; Jitlal, Mark
2011-12-01
The United Kingdom Coordinating Committee on Cancer Research anal cancer trial demonstrated the benefit of combined modality treatment (CMT) using radiotherapy (RT), infusional 5-fluorouracil, and mitomycin C over RT alone. The present study retrospectively examines the impact of the recommended 6-week treatment gap and local RT boost on long-term outcome. A total of 577 patients were randomly assigned RT alone or CMT. After a 6-week gap responders received a boost using either additional external beam radiotherapy (EBRT) (15 Gy) or iridium-192 implant (25 Gy). The effect of boost, the gap between initial treatment (RT alone or CMT) and boost (Tgap), and overall treatment time (OTT) were examined for their impact on outcome. Among the 490 good responders, 436 (89%) patients received a boost after initial treatment. For boosted patients, the risk of anal cancer death decreased by 38% (hazard ratio [HR]: 0.62, 99% CI 0.35-1.12; p=0.04), but there was no evidence this was mediated via a reduction in locoregional failure (LRF) (HR: 0.90, 99% CI 0.48-1.68; p=0.66). The difference in Tgap was only 1.4 days longer for EBRT boost, compared with implant (p=0.51). OTT was longer by 6.1 days for EBRT (p=0.006). Tgap and OTT were not associated with LRF. Radionecrosis was reported in 8% of boosted, compared with 0% in unboosted patients (p=0.03). These results question the benefit of a radiotherapy boost after a 6-week gap. The higher doses of a boost may contribute more to an increased risk of late morbidity, rather than local control. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glynne-Jones, Rob, E-mail: rob.glynnejones@nhs.net; Sebag-Montefiore, David; Adams, Richard
Purpose: The United Kingdom Coordinating Committee on Cancer Research anal cancer trial demonstrated the benefit of combined modality treatment (CMT) using radiotherapy (RT), infusional 5-fluorouracil, and mitomycin C over RT alone. The present study retrospectively examines the impact of the recommended 6-week treatment gap and local RT boost on long-term outcome. Methods and Materials: A total of 577 patients were randomly assigned RT alone or CMT. After a 6-week gap responders received a boost using either additional external beam radiotherapy (EBRT) (15 Gy) or iridium-192 implant (25 Gy). The effect of boost, the gap between initial treatment (RT alone ormore » CMT) and boost (Tgap), and overall treatment time (OTT) were examined for their impact on outcome. Results: Among the 490 good responders, 436 (89%) patients received a boost after initial treatment. For boosted patients, the risk of anal cancer death decreased by 38% (hazard ratio [HR]: 0.62, 99% CI 0.35-1.12; p = 0.04), but there was no evidence this was mediated via a reduction in locoregional failure (LRF) (HR: 0.90, 99% CI 0.48-1.68; p = 0.66). The difference in Tgap was only 1.4 days longer for EBRT boost, compared with implant (p = 0.51). OTT was longer by 6.1 days for EBRT (p = 0.006). Tgap and OTT were not associated with LRF. Radionecrosis was reported in 8% of boosted, compared with 0% in unboosted patients (p = 0.03). Conclusions: These results question the benefit of a radiotherapy boost after a 6-week gap. The higher doses of a boost may contribute more to an increased risk of late morbidity, rather than local control.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wong, Philip; Lambert, Christine, E-mail: christine.lambert@muhc.mcgill.ca; Agnihotram, Ramanakumar V.
Purpose: Local recurrence (LR) of ductal carcinoma in situ (DCIS) is reduced by whole-breast irradiation after breast-conserving surgery (BCS). However, the benefit of adding a radiotherapy boost to the surgical cavity for DCIS is unclear. We sought to determine the impact of the boost on LR in patients with DCIS treated at the McGill University Health Centre. Methods and Materials: A total of 220 consecutive cases of DCIS treated with BCS and radiotherapy between January 2000 and December 2006 were reviewed. Of the patients, 36% received a radiotherapy boost to the surgical cavity. Median follow-up was 46 months for themore » boost and no-boost groups. Kaplan-Meier survival analyses and Cox regression analyses were performed. Results: Compared with the no-boost group, patients in the boost group more frequently had positive and <0.1-cm margins (48% vs. 8%) (p < 0.0001) and more frequently were in higher-risk categories as defined by the Van Nuys Prognostic (VNP) index (p = 0.006). Despite being at higher risk for LR, none (0/79) of the patients who received a boost experienced LR, whereas 8 of 141 patients who did not receive a boost experienced an in-breast LR (log-rank p = 0.03). Univariate analysis of prognostic factors (age, tumor size, margin status, histological grade, necrosis, and VNP risk category) revealed only the presence of necrosis to significantly correlate with LR (log-rank p = 0.003). The whole-breast irradiation dose and fractionation schedule did not affect LR rate. Conclusions: Our results suggest that the use of a radiotherapy boost improves local control in DCIS and may outweigh the poor prognostic effect of necrosis.« less
NASA Astrophysics Data System (ADS)
Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.
2018-01-01
Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.
Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less
Space Spider - A concept for fabrication of large structures
NASA Technical Reports Server (NTRS)
Britton, W. R.; Johnston, J. D.
1978-01-01
The Space Spider concept for the automated fabrication of large space structures involves a specialized machine which roll-forms thin gauge material such as aluminum and develops continuous spiral structures with radial struts to sizes of 600-1,000 feet in diameter by 15 feet deep. This concept allows the machine and raw material to be integrated using the Orbiter capabilities, then boosting the rigid system to geosynchronous equatorial orbit (GEO) without high sensitivity to acceleration forces. As a teleoperator controlled device having repetitive operations, the fabrication process can be monitored and verified from a ground-based station without astronaut involvement in GEO. The resultant structure will be useful as an intermediate size platform or as a structural element to be used with other elements such as the space-fabricated beams or composite nested tubes.
Making muscles "stronger": exercise, nutrition, drugs.
Aagaard, P
2004-06-01
As described in this review, maximal muscle strength is strongly influenced by resistive-types of exercise, which induce adaptive changes in both neuromuscular function and muscle morphology. Further, timed intake of protein in conjunction with resistance training elicit greater strength and muscle size gains than resistance training alone. Creatine supplementation amplifies the hypertrophic response to resistance training, although some individuals may not respond positively. Locally produced muscle growth factors are upregulated during creatine supplementation, which contributes to increase the responsiveness of muscle cells to intensive training stimuli. Usage of anabolic steroids boosts muscle hypertrophy beyond inherent genetical limits, not only by increasing the DNA transcription rate for myofibrillar proteins but also by increasing the nucleus-to-cytoplasm ratio due to accelerated activation of myogenic satellite cells. However, severe tissue damaging effects exist with anabolic steroids, some of which are irreversible.
Cytochrome P450-mediated metabolic engineering: current progress and future challenges.
Renault, Hugues; Bassard, Jean-Etienne; Hamberger, Björn; Werck-Reichhart, Danièle
2014-06-01
Cytochromes P450 catalyze a broad range of regiospecific, stereospecific and irreversible steps in the biosynthetic routes of plant natural metabolites with important applications in pharmaceutical, cosmetic, fragrance and flavour, or polymer industries. They are consequently essential drivers for the engineered bioproduction of such compounds. Two ground-breaking developments of commercial products driven by the engineering of P450s are the antimalarial drug precursor artemisinic acid and blue roses or carnations. Tedious optimizations were required to generate marketable products. Hurdles encountered in P450 engineering and their potential solutions are summarized here. Together with recent technical developments and novel approaches to metabolic engineering, the lessons from this pioneering work should considerably boost exploitation of the amazing P450 toolkit emerging from accelerated sequencing of plant genomes. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Efficient Variational Quantum Simulator Incorporating Active Error Minimization
NASA Astrophysics Data System (ADS)
Li, Ying; Benjamin, Simon C.
2017-04-01
One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.
Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; ...
2016-11-14
Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover,more » it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.« less
Large engines and vehicles, 1958
NASA Technical Reports Server (NTRS)
1978-01-01
During the mid-1950s, the Air Force sponsored work on the feasibility of building large, single-chamber engines, presumably for boost-glide aircraft or spacecraft. In 1956, the Army missile development group began studies of large launch vehicles. The possibilities opened up by Sputnik accelerated this work and gave the Army an opportunity to bid for the leading role in launch vehicles. The Air Force had the responsibility for the largest ballistic missiles and hence a ready-made base for extending their capability for spaceflight. During 1958, actions taken to establish a civilian space agency, and the launch vehicle needs seen by its planners, added a third contender to the space vehicle competition. These activities during 1958 are examined as to how they resulted in the initiation of a large rocket engine and the first large launch vehicle.
Yang, Enzhuo; Gu, Jin; Wang, Feifei; Wang, Honghai; Shen, Hongbo; Chen, Zheng W
2016-04-01
Since BCG, the only vaccine widely used against tuberculosis (TB) in the world, provides varied protective efficacy and may not be effective for inducing long-term cellular immunity, it is in an urgent need to develop more effective vaccines and more potent immune strategies against TB. Prime-boost is proven to be a good strategy by inducing long-term protection. In this study, we tested the protective effect against Mycobacterium tuberculosis (Mtb) challenge of prime-boost strategy by recombinant BCG (rBCG) expressing PPE protein Rv3425 fused with Ag85B and Rv3425. Results showed that the prime-boost strategy could significantly increase the protective efficiency against Mtb infection, characterized by reduction of bacterial load in lung and spleen, attenuation of tuberculosis lesions in lung tissues. Importantly, we found that Rv3425 boost, superior to Ag85B boost, provided better protection against Mtb infection. Further research proved that rBCG prime-Rv3425 boost could obviously increase the expansion of lymphocytes, significantly induce IL-2 production by lymphocytes upon PPD stimulation, and inhibit IL-6 production at an early stage. It implied that rBCG prime-Rv3425 boost opted to induce Th1 immune response and provided a long-term protection against TB. These results implicated that rBCG prime-Rv3425 boost is a potent and promising strategy to prevent acute Mtb infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ouyang, Qin; Chen, Quansheng; Zhao, Jiewen
2016-02-05
The approach presented herein reports the application of near infrared (NIR) spectroscopy, in contrast with human sensory panel, as a tool for estimating Chinese rice wine quality; concretely, to achieve the prediction of the overall sensory scores assigned by the trained sensory panel. Back propagation artificial neural network (BPANN) combined with adaptive boosting (AdaBoost) algorithm, namely BP-AdaBoost, as a novel nonlinear algorithm, was proposed in modeling. First, the optimal spectra intervals were selected by synergy interval partial least square (Si-PLS). Then, BP-AdaBoost model based on the optimal spectra intervals was established, called Si-BP-AdaBoost model. These models were optimized by cross validation, and the performance of each final model was evaluated according to correlation coefficient (Rp) and root mean square error of prediction (RMSEP) in prediction set. Si-BP-AdaBoost showed excellent performance in comparison with other models. The best Si-BP-AdaBoost model was achieved with Rp=0.9180 and RMSEP=2.23 in the prediction set. It was concluded that NIR spectroscopy combined with Si-BP-AdaBoost was an appropriate method for the prediction of the sensory quality in Chinese rice wine. Copyright © 2015 Elsevier B.V. All rights reserved.
Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life.
Gobler, Christopher J; Baumann, Hannes
2016-05-01
There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH-low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. © 2016 The Author(s).
Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life
Baumann, Hannes
2016-01-01
There is increasing recognition that low dissolved oxygen (DO) and low pH conditions co-occur in many coastal and open ocean environments. Within temperate ecosystems, these conditions not only develop seasonally as temperatures rise and metabolic rates accelerate, but can also display strong diurnal variability, especially in shallow systems where photosynthetic rates ameliorate hypoxia and acidification by day. Despite the widespread, global co-occurrence of low pH and low DO and the likelihood that these conditions may negatively impact marine life, very few studies have actually assessed the extent to which the combination of both stressors elicits additive, synergistic or antagonistic effects in marine organisms. We review the evidence from published factorial experiments that used static and/or fluctuating pH and DO levels to examine different traits (e.g. survival, growth, metabolism), life stages and species across a broad taxonomic spectrum. Additive negative effects of combined low pH and low DO appear to be most common; however, synergistic negative effects have also been observed. Neither the occurrence nor the strength of these synergistic impacts is currently predictable, and therefore, the true threat of concurrent acidification and hypoxia to marine food webs and fisheries is still not fully understood. Addressing this knowledge gap will require an expansion of multi-stressor approaches in experimental and field studies, and the development of a predictive framework. In consideration of marine policy, we note that DO criteria in coastal waters have been developed without consideration of concurrent pH levels. Given the persistence of concurrent low pH–low DO conditions in estuaries and the increased mortality experienced by fish and bivalves under concurrent acidification and hypoxia compared with hypoxia alone, we conclude that such DO criteria may leave coastal fisheries more vulnerable to population reductions than previously anticipated. PMID:27146441
Maximum power point tracking techniques for wind energy systems using three levels boost converter
NASA Astrophysics Data System (ADS)
Tran, Cuong Hung; Nollet, Frédéric; Essounbouli, Najib; Hamzaoui, Abdelaziz
2018-05-01
This paper presents modeling and simulation of three level Boost DC-DC converter in Wind Energy Conversion System (WECS). Three-level Boost converter has significant advantage compared to conventional Boost. A maximum power point tracking (MPPT) method for a variable speed wind turbine using permanent magnet synchronous generator (PMSG) is also presented. Simulation of three-level Boost converter topology with Perturb and Observe algorithm and Fuzzy Logic Control is implemented in MATLAB/SIMULINK. Results of this simulation show that the system with MPPT using fuzzy logic controller has better performance to the Perturb and Observe algorithm: fast response under changing conditions and small oscillation.
In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey.
Wovkulich, Karen; Stute, Martin; Mailloux, Brian J; Keimowitz, Alison R; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N
2014-09-25
Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949-1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m 2 ) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale.
Modeling and Analysis of Power Processing Systems (MAPPS). Volume 2: Appendices
NASA Technical Reports Server (NTRS)
Lee, F. C.; Radman, S.; Carter, R. A.; Wu, C. H.; Yu, Y.; Chang, R.
1980-01-01
The computer programs and derivations generated in support of the modeling and design optimization program are presented. Programs for the buck regulator, boost regulator, and buck-boost regulator are described. The computer program for the design optimization calculations is presented. Constraints for the boost and buck-boost converter were derived. Derivations of state-space equations and transfer functions are presented. Computer lists for the converters are presented, and the input parameters justified.
Effect of pole zero location on system dynamics of boost converter for micro grid
NASA Astrophysics Data System (ADS)
Lavanya, A.; Vijayakumar, K.; Navamani, J. D.; Jayaseelan, N.
2018-04-01
Green clean energy like photo voltaic, wind energy, fuel cell can be brought together by microgrid.For low voltage sources like photovoltaic cell boost converter is very much essential. This paper explores the dynamic analysis of boost converter in a continuous conduction mode (CCM). The transient performance and stability analysis is carried out in this paper using time domain analysis and frequency domain analysis techniques. Boost converter is simulated using both PSIM and MATLAB software. Furthermore, state space model obtained and the transfer function is derived. The converter behaviour when a step input is applied is analyzed and stability of the converter is analyzed from bode plot frequency for open loop. Effect of the locations of poles and zeros in the transfer function of boost converter and how the performance parameters are affected is discussed in this paper. Closed loop performance with PI controller is also analyzed for boost converter.
Modeling the effect of boost timing in murine irradiated sporozoite prime-boost vaccines
Zhang, Min; Herrero, Miguel A.; Acosta, Francisco J.; Tsuji, Moriya
2018-01-01
Vaccination with radiation-attenuated sporozoites has been shown to induce CD8+ T cell-mediated protection against pre-erythrocytic stages of malaria. Empirical evidence suggests that successive inoculations often improve the efficacy of this type of vaccines. An initial dose (prime) triggers a specific cellular response, and subsequent inoculations (boost) amplify this response to create a robust CD8+ T cell memory. In this work we propose a model to analyze the effect of T cell dynamics on the performance of prime-boost vaccines. This model suggests that boost doses and timings should be selected according to the T cell response elicited by priming. Specifically, boosting during late stages of clonal contraction would maximize T cell memory production for vaccines using lower doses of irradiated sporozoites. In contrast, single-dose inoculations would be indicated for higher vaccine doses. Experimental data have been obtained that support theoretical predictions of the model. PMID:29329308
Design, construction and tests of a 3 GHz proton linac booster (LIBO) for cancer therapy
NASA Astrophysics Data System (ADS)
Berra, Paolo
2007-12-01
In the last ten years the use of proton beams in radiation therapy has become a clinical tool for treatment of deep-seated tumours. LIBO is a RF compact and low cost proton linear accelerator (SCL type) for hadrontherapy. It is conceived by TERA Foundation as a 3 GHz Linac Booster, to be mounted downstream of an existing cyclotron in order to boost the energy of the proton beam up to 200 MeV, needed for deep treatment (~25 cm) in the human body. With this solution it is possible to transform a low energy commercial cyclotron, normally used for eye melanoma therapy, isotope production and nuclear physics research, into an accelerator for deep-seated tumours. A prototype module of LIBO has been built and successfully tested with full RF power at CERN and with proton beam at INFN Laboratori Nazionali del Sud (LNS) in Catania, within an international collaboration between TERA Foundation, CERN, the Universities and INFN groups of Milan and Naples. The mid-term aim of the project is the technology transfer of the accumulated know-how to a consortium of companies and to bring this novel medical tool to hospitals. The design, construction and tests of the LIBO prototype are described in detail.
Reviving the protein quality control system: therapeutic target for cardiac disease in the elderly.
Meijering, Roelien A M; Henning, Robert H; Brundel, Bianca J J M
2015-04-01
It has been firmly established that ageing constitutes a principal risk factor for cardiac disease. Currently, the underlying mechanisms of ageing that contribute to the initiation or acceleration of cardiac disease are essentially unresolved. Prevailing theories of ageing center on the loss of cellular protein homeostasis, by either design (genetically) or "wear and tear" (environmentally). Either or both ways, the normal protein homeostasis in the cell is affected, resulting in aberrant and misfolded proteins. Should such misfolded proteins escape the protein quality control (PQC) system, they become proteotoxic and accelerate the loss of cellular integrity. Impairment of PQC plays a prominent role in the pathophysiology of ageing-related neurodegenerative disorders such as Parkinson's, Huntington׳s, and Alzheimer׳s disease. The concept of an impaired PQC driving ageing-related diseases has recently been expanded to cardiac diseases, including atrial fibrillation, cardiac hypertrophy, and cardiomyopathy. In this review, we provide a brief overview of the PQC system in relation to ageing and discuss the emerging concept of the loss of PQC in cardiomyocytes as a trigger for cardiac disease. Finally, we discuss the potential of boosting the PQC system as an innovative therapeutic target to treat cardiac disease in the elderly. Copyright © 2015 Elsevier Inc. All rights reserved.
Zemp, Roland; Tanadini, Matteo; Plüss, Stefan; Schnüriger, Karin; Singh, Navrag B; Taylor, William R; Lorenzetti, Silvio
2016-01-01
Occupational musculoskeletal disorders, particularly chronic low back pain (LBP), are ubiquitous due to prolonged static sitting or nonergonomic sitting positions. Therefore, the aim of this study was to develop an instrumented chair with force and acceleration sensors to determine the accuracy of automatically identifying the user's sitting position by applying five different machine learning methods (Support Vector Machines, Multinomial Regression, Boosting, Neural Networks, and Random Forest). Forty-one subjects were requested to sit four times in seven different prescribed sitting positions (total 1148 samples). Sixteen force sensor values and the backrest angle were used as the explanatory variables (features) for the classification. The different classification methods were compared by means of a Leave-One-Out cross-validation approach. The best performance was achieved using the Random Forest classification algorithm, producing a mean classification accuracy of 90.9% for subjects with which the algorithm was not familiar. The classification accuracy varied between 81% and 98% for the seven different sitting positions. The present study showed the possibility of accurately classifying different sitting positions by means of the introduced instrumented office chair combined with machine learning analyses. The use of such novel approaches for the accurate assessment of chair usage could offer insights into the relationships between sitting position, sitting behaviour, and the occurrence of musculoskeletal disorders.
Dendritic cells regulate angiogenesis associated with liver fibrogenesis.
Blois, Sandra M; Piccioni, Flavia; Freitag, Nancy; Tirado-González, Irene; Moschansky, Petra; Lloyd, Rodrigo; Hensel-Wiegel, Karin; Rose, Matthias; Garcia, Mariana G; Alaniz, Laura D; Mazzolini, Guillermo
2014-01-01
During liver fibrogenesis the immune response and angiogenesis process are fine-tuned resulting in activation of hepatic stellate cells that produce an excess of extracellular matrix proteins. Dendritic cells (DC) play a central role modulating the liver immunity and have recently been implicated to favour fibrosis regression; although their ability to influence the development of fibrogenesis is unknown. Therefore, we explored whether the depletion of DC during early stages of liver injury has an impact in the development of fibrogenesis. Using the CD11c.DTR transgenic mice, DC were depleted in two experimental models of fibrosis in vivo. The effect of anti-angiogenic therapy was tested during early stages of liver fibrogenesis. DC depletion accelerates the development of fibrosis and as a consequence, the angiogenesis process is boosted. We observed up-regulation of pro-angiogenic factors together with an enhanced vascular endothelial growth factor (VEGF) bioavailability, mainly evidenced by the decrease of anti-angiogenic VEGF receptor 1 (also known as sFlt-1) levels. Interestingly, fibrogenesis process enhanced the expression of Flt-1 on hepatic DC and administration of sFlt-1 was sufficient to abrogate the acceleration of fibrogenesis upon DC depletion. Thus, DC emerge as novel players during the development of liver fibrosis regulating the angiogenesis process and thereby influencing fibrogenesis.
Gutíerrez, Alonso N; Deveau, Michael; Forrest, Lisa J; Tomé, Wolfgang A; Mackie, Thomas R
2007-01-01
Feasibility of delivering a simultaneously integrated boost to canine nasal tumors using helical tomotherapy to improve tumor control probability (TCP) via an increase in total biological equivalent uniform dose (EUD) was evaluated. Eight dogs with varying size nasal tumors (5.8-110.9 cc) were replanned to 42 Gy to the nasal cavity and integrated dose boosts to gross disease of 45.2, 48.3, and 51.3 Gy in 10 fractions. EUD values were calculated for tumors and mean normalized total doses (NTD(mean)) for organs at risk (OAR). Normal Tissue Complication Probability (NTCP) values were obtained for OARs, and estimated TCP values were computed using a logistic dose-response model and based on deliverable EUD boost doses. Significant increases in estimated TCP to 54%, 74%, and 86% can be achieved with 10%, 23%, and 37% mean relative EUD boosts to the gross disease, respectively. NTCP values for blindness of either eye and for brain necrosis were < 0.01% for all boosts. Values for cataract development were 31%, 42%, and 46% for studied boost schemas, respectively. Average NTD(mean) to eyes and brain for mean EUD boosts were 10.2, 11.3, and 12.1 Gy3, and 7.5, 7.2, and 7.9 Gy2, respectively. Using helical tomotherapy, simultaneously integrated dose boosts can be delivered to increase the estimated TCP at 1-year without significantly increasing the NTD(mean) to eyes and brain. Delivery of these treatments in a prospective trial may allow quantification of a dose-response relationship in canine nasal tumors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Colin; Anderson, Penny R.; Li Tianyu
Purpose: We examined the impact of radiation tumor bed boost parameters in early-stage breast cancer on local control and cosmetic outcomes. Methods and Materials: A total of 3,186 women underwent postlumpectomy whole-breast radiation with a tumor bed boost for Tis to T2 breast cancer from 1970 to 2008. Boost parameters analyzed included size, energy, dose, and technique. Endpoints were local control, cosmesis, and fibrosis. The Kaplan-Meier method was used to estimate actuarial incidence, and a Cox proportional hazard model was used to determine independent predictors of outcomes on multivariate analysis (MVA). The median follow-up was 78 months (range, 1-305 months).more » Results: The crude cosmetic results were excellent in 54%, good in 41%, and fair/poor in 5% of patients. The 10-year estimate of an excellent cosmesis was 66%. On MVA, independent predictors for excellent cosmesis were use of electron boost, lower electron energy, adjuvant systemic therapy, and whole-breast IMRT. Fibrosis was reported in 8.4% of patients. The actuarial incidence of fibrosis was 11% at 5 years and 17% at 10 years. On MVA, independent predictors of fibrosis were larger cup size and higher boost energy. The 10-year actuarial local failure was 6.3%. There was no significant difference in local control by boost method, cut-out size, dose, or energy. Conclusions: Likelihood of excellent cosmesis or fibrosis are associated with boost technique, electron energy, and cup size. However, because of high local control and rare incidence of fair/poor cosmesis with a boost, the anatomy of the patient and tumor cavity should ultimately determine the necessary boost parameters.« less
van der Laan, Hans Paul; Dolsma, Wil V; Maduro, John H; Korevaar, Erik W; Hollander, Miranda; Langendijk, Johannes A
2007-07-15
To compare the target coverage and normal tissue dose with the simultaneously integrated boost (SIB) and the sequential boost technique in breast cancer, and to evaluate the incidence of acute skin toxicity in patients treated with the SIB technique. Thirty patients with early-stage left-sided breast cancer underwent breast-conserving radiotherapy using the SIB technique. The breast and boost planning target volumes (PTVs) were treated simultaneously (i.e., for each fraction, the breast and boost PTVs received 1.81 Gy and 2.3 Gy, respectively). Three-dimensional conformal beams with wedges were shaped and weighted using forward planning. Dose-volume histograms of the PTVs and organs at risk with the SIB technique, 28 x (1.81 + 0.49 Gy), were compared with those for the sequential boost technique, 25 x 2 Gy + 8 x 2 Gy. Acute skin toxicity was evaluated for 90 patients treated with the SIB technique according to Common Terminology Criteria for Adverse Events, version 3.0. PTV coverage was adequate with both techniques. With SIB, more efficiently shaped boost beams resulted in smaller irradiated volumes. The mean volume receiving > or =107% of the breast dose was reduced by 20%, the mean volume outside the boost PTV receiving > or =95% of the boost dose was reduced by 54%, and the mean heart and lung dose were reduced by 10%. Of the evaluated patients, 32.2% had Grade 2 or worse toxicity. The SIB technique is proposed for standard use in breast-conserving radiotherapy because of its dose-limiting capabilities, easy implementation, reduced number of treatment fractions, and relatively low incidence of acute skin toxicity.
WE-AB-202-10: Modelling Individual Tumor-Specific Control Probability for Hypoxia in Rectal Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, S; Warren, DR; Wilson, JM
Purpose: To investigate hypoxia-guided dose-boosting for increased tumour control and improved normal tissue sparing using FMISO-PET images Methods: Individual tumor-specific control probability (iTSCP) was calculated using a modified linear-quadratic model with rectal-specific radiosensitivity parameters for three limiting-case assumptions of the hypoxia / FMISO uptake relationship. {sup 18}FMISO-PET images from 2 patients (T3N0M0) from the RHYTHM trial (Investigating Hypoxia in Rectal Tumours NCT02157246) were chosen to delineate a hypoxic region (GTV-MISO defined as tumor-to-muscle ratio > 1.3) within the anatomical GTV. Three VMAT treatment plans were created in Eclipse (Varian): STANDARD (45Gy / 25 fractions to PTV4500); BOOST-GTV (simultaneous integrated boostmore » of 60Gy / 25fr to GTV +0.5cm) and BOOST-MISO (60Gy / 25fr to GTV-MISO+0.5cm). GTV mean dose (in EQD2), iTSCP and normal tissue dose-volume metrics (small bowel, bladder, anus, and femoral heads) were recorded. Results: Patient A showed small hypoxic volume (15.8% of GTV) and Patient B moderate hypoxic volume (40.2% of GTV). Dose escalation to 60Gy was achievable, and doses to femoral heads and small bowel in BOOST plans were comparable to STANDARD plans. For patient A, a reduced maximum bladder dose was observed in BOOST-MISO compared to BOOST-GTV (D0.1cc 49.2Gy vs 54.0Gy). For patient B, a smaller high dose volume was observed for the anus region in BOOST-MISO compared to BOOST-GTV (V55Gy 19.9% vs 100%), which could potentially reduce symptoms of fecal incontinence. For BOOST-MISO, the largest iTSCPs (A: 95.5% / B: 90.0%) assumed local correlation between FMISO uptake and hypoxia, and approached iTSCP values seen for BOOST-GTV (A: 96.1% / B: 90.5%). Conclusion: Hypoxia-guided dose-boosting is predicted to improve local control in rectal tumors when FMISO is spatially correlated to hypoxia, and to reduce dose to organs-at-risk compared to boosting the whole GTV. This could lead to organ-preserving treatment strategies for locally-advanced rectal cancer, thereby improving quality of life. Oxford Cancer Imaging Centre (OCIC); Cancer Research UK (CRUK); Medical Research Council (MRC)« less
Boosting Learning Algorithm for Stock Price Forecasting
NASA Astrophysics Data System (ADS)
Wang, Chengzhang; Bai, Xiaoming
2018-03-01
To tackle complexity and uncertainty of stock market behavior, more studies have introduced machine learning algorithms to forecast stock price. ANN (artificial neural network) is one of the most successful and promising applications. We propose a boosting-ANN model in this paper to predict the stock close price. On the basis of boosting theory, multiple weak predicting machines, i.e. ANNs, are assembled to build a stronger predictor, i.e. boosting-ANN model. New error criteria of the weak studying machine and rules of weights updating are adopted in this study. We select technical factors from financial markets as forecasting input variables. Final results demonstrate the boosting-ANN model works better than other ones for stock price forecasting.
Inelastic Boosted Dark Matter at direct detection experiments
NASA Astrophysics Data System (ADS)
Giudice, Gian F.; Kim, Doojin; Park, Jong-Chul; Shin, Seodong
2018-05-01
We explore a novel class of multi-particle dark sectors, called Inelastic Boosted Dark Matter (iBDM). These models are constructed by combining properties of particles that scatter off matter by making transitions to heavier states (Inelastic Dark Matter) with properties of particles that are produced with a large Lorentz boost in annihilation processes in the galactic halo (Boosted Dark Matter). This combination leads to new signals that can be observed at ordinary direct detection experiments, but require unconventional searches for energetic recoil electrons in coincidence with displaced multi-track events. Related experimental strategies can also be used to probe MeV-range boosted dark matter via their interactions with electrons inside the target material.
Partridge, Roland W; Brown, Fraser S; Brennan, Paul M; Hennessey, Iain A M; Hughes, Mark A
2016-02-01
To assess the potential of the LEAP™ infrared motion tracking device to map laparoscopic instrument movement in a simulated environment. Simulator training is optimized when augmented by objective performance feedback. We explore the potential LEAP has to provide this in a way compatible with affordable take-home simulators. LEAP and the previously validated InsTrac visual tracking tool mapped expert and novice performances of a standardized simulated laparoscopic task. Ability to distinguish between the 2 groups (construct validity) and correlation between techniques (concurrent validity) were the primary outcome measures. Forty-three expert and 38 novice performances demonstrated significant differences in LEAP-derived metrics for instrument path distance (P < .001), speed (P = .002), acceleration (P < .001), motion smoothness (P < .001), and distance between the instruments (P = .019). Only instrument path distance demonstrated a correlation between LEAP and InsTrac tracking methods (novices: r = .663, P < .001; experts: r = .536, P < .001). Consistency of LEAP tracking was poor (average % time hands not tracked: 31.9%). The LEAP motion device is able to track the movement of hands using instruments in a laparoscopic box simulator. Construct validity is demonstrated by its ability to distinguish novice from expert performances. Only time and instrument path distance demonstrated concurrent validity with an existing tracking method however. A number of limitations to the tracking method used by LEAP have been identified. These need to be addressed before it can be considered an alternative to visual tracking for the delivery of objective performance metrics in take-home laparoscopic simulators. © The Author(s) 2015.
Bailey, Jennifer A; Epstein, Marina; Steeger, Christine M; Hill, Karl G
2018-06-01
The current study aimed to understand whether substance-specific parenting practices predicted the probability of child alcohol, cigarette, or marijuana use beyond known family factors like family management and parental substance use and norms. Data were drawn from the Intergenerational Project, which used an accelerated longitudinal design and included 383 families surveyed seven times between 2002 and 2011. Analyses included 224 families with children ages 10-18 years (49% female). Multilevel models tested both concurrent and lagged (predictors at time t - 1, outcomes at time t) associations between child past year use of alcohol, cigarettes, and marijuana and time-varying measures of substance-specific parenting practices, including permitting child use of alcohol or cigarettes; family rules about alcohol, cigarette, and drug use; and child involvement in family member alcohol or cigarette use (getting, opening, or pouring alcoholic drinks; getting or lighting cigarettes for family members). Demographic controls were included. Child involvement in family member substance use predicted an increased probability of child substance use both concurrently and 1 year later, even when controlling parent substance use, pro-substance norms, and family management. Family rules about substance use and parent provision of alcohol or cigarettes were not consistently related to child alcohol, cigarette, or marijuana use. Family-based preventive interventions to reduce youth substance use should continue to focus on family management and include messaging discouraging parents from allowing children to get, open, or pour drinks or get or light cigarettes for family members. Copyright © 2017 The Society for Adolescent Health and Medicine. Published by Elsevier Inc. All rights reserved.
Metcalfe, Hannah J; Biffar, Lucia; Steinbach, Sabine; Guzman, Efrain; Connelley, Tim; Morrison, Ivan; Vordermeier, H Martin; Villarreal-Ramos, Bernardo
2018-05-11
There is a need to improve the efficacy of the BCG vaccine against human and bovine tuberculosis. Previous data showed that boosting bacilli Calmette-Guerin (BCG)-vaccinated cattle with a recombinant attenuated human type 5 adenovirally vectored subunit vaccine (Ad5-85A) increased BCG protection and was associated with increased frequency of Ag85A-specific CD4 + T cells post-boosting. Here, the capacity of Ag85A-specific CD4 + T cell lines - derived before and after viral boosting - to interact with BCG-infected macrophages was evaluated. No difference before and after boosting was found in the capacity of these Ag85A-specific CD4 + T cell lines to restrict mycobacterial growth, but the secretion of IL-10 in vitro post-boost increased significantly. Furthermore, cell lines derived post-boost had no statistically significant difference in the secretion of pro-inflammatory cytokines (IL-1β, IL-12, IFNγ or TNFα) compared to pre-boost lines. In conclusion, the protection associated with the increased number of Ag85A-specific CD4 + T cells restricting mycobacterial growth may be associated with anti-inflammatory properties to limit immune-pathology. Copyright © 2018 Department for Environment Food and Rural Affairs. Published by Elsevier Ltd.. All rights reserved.
Climate and Lightning: An updated TRMM-LIS Analysis
NASA Technical Reports Server (NTRS)
Petersen, Walter A.; Buechler, D. E.
2009-01-01
The TRMM Lightning Imaging Sensor (LIS) has sampled global tropical and sub-tropical lightning flash densities for approximately 11 years. These data were originally processed and results presented by the authors in the 3rd AMS MALD Conference held in 2007 using both pre and post TRMM-boost lightning data. These data were normalized for the orbit boost by scaling the pre-boost data by a fixed constant based on the different swath areas for the pre and post-boost years (post-boost after 2001). Inevitably, one must question this simple approach to accounting for the orbit boost when sampling such a noisy quantity. Hence we are in the process of reprocessing the entire 11-year TRMM LIS dataset to reduce the orbit swath of the post-boost era to that of the pre-boost in order to eliminate sampling bias in the dataset. Study of the diurnal/seasonal/annual sampling suggests that those biases are already minimal and should not contribute to error in examination of annual trends. We will present new analysis of the 11-year annual trends in total lightning flash density for all latitudinal belts and select regions/regimes of the tropics as related to conventional climate signals and precipitation contents in the same period. The results should enable us to address, in some fashion, the sensitivity of the lightning flash density to subtle changes in climate.
NASA Astrophysics Data System (ADS)
Mills, R. T.
2014-12-01
As the high performance computing (HPC) community pushes towards the exascale horizon, the importance and prevalence of fine-grained parallelism in new computer architectures is increasing. This is perhaps most apparent in the proliferation of so-called "accelerators" such as the Intel Xeon Phi or NVIDIA GPGPUs, but the trend also holds for CPUs, where serial performance has grown slowly and effective use of hardware threads and vector units are becoming increasingly important to realizing high performance. This has significant implications for weather, climate, and Earth system modeling codes, many of which display impressive scalability across MPI ranks but take relatively little advantage of threading and vector processing. In addition to increasing parallelism, next generation codes will also need to address increasingly deep hierarchies for data movement: NUMA/cache levels, on node vs. off node, local vs. wide neighborhoods on the interconnect, and even in the I/O system. We will discuss some approaches (grounded in experiences with the Intel Xeon Phi architecture) for restructuring Earth science codes to maximize concurrency across multiple levels (vectors, threads, MPI ranks), and also discuss some novel approaches for minimizing expensive data movement/communication.
Change in Seroma Volume During Whole-Breast Radiation Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rajiv; Spierer, Marnee; Mutyala, Subhakar
2009-09-01
Purpose: After breast-conserving surgery, a seroma often forms in the surgical cavity. If not drained, it may affect the volume of tumor bed requiring a boost after whole-breast radiation therapy (WBRT). Our objective was to evaluate the change in seroma volume that occurs during WBRT, before boost planning. Methods and Materials: A retrospective review was performed of women receiving breast-conserving therapy with evidence of seroma at the time of WBRT planning. Computed tomography (CT) simulation was performed before WBRT and before the tumor bed boost. All patients received either a hypofractionated (42.4 Gy/16 fraction + 9.6 Gy/4 fraction boost) ormore » standard fractionated (50.4 Gy/28 fraction + 10 Gy/5 fraction boost) regimen. Seroma volumes were contoured and compared on CT at the time of WBRT simulation and tumor bed boost planning. Results: Twenty-four patients with evidence of seroma were identified and all patients received WBRT without drainage of the seroma. Mean seroma volume before WBRT and at boost planning were significantly different at 65.7 cm{sup 3} (SD, 50.5 cm{sup 3}) and 35.6 cm{sup 3} (SD, 24.8 cm{sup 3}), respectively (p < 0.001). Mean and median reduction in seroma volume during radiation were 39.6% (SD, 23.8%) and 46.2% (range, 10.7-76.7%), respectively. Fractionation schedule was not correlated with change in seroma volume. Length of time from surgery to start of radiation therapy showed an inverse correlation with change in seroma volume (Pearson correlation r = -0.53, p < 0.01). Conclusions: The volume of seroma changes significantly during WBRT. Consequently, the accuracy of breast boost planning is likely affected, as is the volume of normal breast tissue irradiated. CT-based boost planning before boost irradiation is suggested to ensure appropriate coverage.« less
Santosuosso, Michael; McCormick, Sarah; Zhang, Xizhong; Zganiacz, Anna; Xing, Zhou
2006-08-01
Parenterally administered Mycobacterium bovis BCG vaccine confers only limited immune protection from pulmonary tuberculosis in humans. There is a need for developing effective boosting vaccination strategies. We examined a heterologous prime-boost regimen utilizing BCG as a prime vaccine and our recently described adenoviral vector expressing Ag85A (AdAg85A) as a boost vaccine. Since we recently demonstrated that a single intranasal but not intramuscular immunization with AdAg85A was able to induce potent protection from pulmonary Mycobacterium tuberculosis challenge in a mouse model, we compared the protective effects of parenteral and mucosal booster immunizations following subcutaneous BCG priming. Protection by BCG prime immunization was not effectively boosted by subcutaneous BCG or intramuscular AdAg85A. In contrast, protection by BCG priming was remarkably boosted by intranasal AdAg85A. Such enhanced protection by intranasal AdAg85A was correlated to the numbers of gamma interferon-positive CD4 and CD8 T cells residing in the airway lumen of the lung. Our study demonstrates that intranasal administration of AdAg85A represents an effective way to boost immune protection by parenteral BCG vaccination.
NASA Astrophysics Data System (ADS)
Ha, Sanghyun; Park, Junshin; You, Donghyun
2018-01-01
Utility of the computational power of Graphics Processing Units (GPUs) is elaborated for solutions of incompressible Navier-Stokes equations which are integrated using a semi-implicit fractional-step method. The Alternating Direction Implicit (ADI) and the Fourier-transform-based direct solution methods used in the semi-implicit fractional-step method take advantage of multiple tridiagonal matrices whose inversion is known as the major bottleneck for acceleration on a typical multi-core machine. A novel implementation of the semi-implicit fractional-step method designed for GPU acceleration of the incompressible Navier-Stokes equations is presented. Aspects of the programing model of Compute Unified Device Architecture (CUDA), which are critical to the bandwidth-bound nature of the present method are discussed in detail. A data layout for efficient use of CUDA libraries is proposed for acceleration of tridiagonal matrix inversion and fast Fourier transform. OpenMP is employed for concurrent collection of turbulence statistics on a CPU while the Navier-Stokes equations are computed on a GPU. Performance of the present method using CUDA is assessed by comparing the speed of solving three tridiagonal matrices using ADI with the speed of solving one heptadiagonal matrix using a conjugate gradient method. An overall speedup of 20 times is achieved using a Tesla K40 GPU in comparison with a single-core Xeon E5-2660 v3 CPU in simulations of turbulent boundary-layer flow over a flat plate conducted on over 134 million grids. Enhanced performance of 48 times speedup is reached for the same problem using a Tesla P100 GPU.
Nicholas, B L; Brennan, F R; Hamilton, W D O; Wakelin, D
2003-06-02
Expression of a 17-mer peptide sequence from canine parvovirus expressed on cowpea mosaic virus (CPMV) to form chimaeric virus particles (CVPs) creates vaccine antigens that elicit strong anti-peptide immune responses in mice. Systemic (subcutaneous, s.c.) immunisation and boosting with such CVP constructs produces IgG(2a) serum antibody responses, while mucosal (intranasal, i.n.) immunisation and boosting elicits intestinal IgA responses. Combinations of systemic and mucosal routes for priming and boosting immunisations were used to examine their influence on the level, type and location of immune response generated to one of these constructs (CVP-1). In all cases, s.c. administration, whether for immunisation or boosting, generated a Th1-biased response, reflected in a predominantly IgG(2a) serum antibody isotype and secretion of IFN-gamma from in vitro-stimulated lymphocytes. Serum antibody responses were greatest in animals primed and boosted subcutaneously, and least in mucosally vaccinated mice. The i.n. exposure also led to IFN-gamma release from in vitro-stimulated cells, but serum IgG(2a) was significantly elevated only in mice primed intranasally and boosted subcutaneously. Peptide- and wild-type CPMV-specific IgA responses in gut lavage fluid were greatest in animals exposed mucosally and least in those primed and boosted subcutaneously or primed subcutaneously and boosted orally. Lymphocytes from immunised mice proliferated in response to in vitro stimulation with CPMV but not with peptide. The predominant secretion of IFN-gamma from all immunising/boosting combinations indicates that the route of vaccination and challenge does not alter the Th1 bias of the response to CVP constructs. However, optimal serum and intestinal antibody responses were achieved by combining s.c. and i.n. administration.
Emmer, Kristel L; Wieczorek, Lindsay; Tuyishime, Steven; Molnar, Sebastian; Polonis, Victoria R; Ertl, Hildegund C J
2016-10-23
Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.
NASA Technical Reports Server (NTRS)
Moses, Paul L.
2003-01-01
X-43C Project is a hypersonic flight demonstration being executed as a collaboration between the National Aeronautics and Space Administration (NASA) and the United States Air Force (USAF). X-43C will expand the hypersonic flight envelope for air breathing engines beyond the history making efforts of the Hyper-X Program (X-43A). X-43C will demonstrate sustained accelerating flight during three flight tests of expendable X-43C Demonstrator Vehicles (DVs). The approximately 16-foot long X-43C DV will be boosted to the starting test conditions, separate from the booster, and accelerate from Mach 5 to Mach 7 under its own power and autonomous control. The DVs are to be powered by a liquid hydrocarbon-fueled, fuel-cooled, dual-mode, airframe integrated scramjet engine system developed under the USAF HyTech Program. The Project is managed by NASA Langley Research Center as part of NASA s Next Generation Launch Technology Program. Flight tests will be conducted by NASA Dryden Flight Research Center over water off the coast of California in the Pacific Test Range. The NASA/USAF/industry project is a natural extension of the Hyper-X Program (X-43A), which will demonstrate short duration ( 10 seconds) gaseous hydrogen-fueled scramjet powered flight at Mach 7 and Mach 10 using a heavyweight, largely heat sink construction, experimental engine. The X-43C Project will demonstrate sustained accelerating flight from Mach 5 to Mach 7 ( 4 minutes) using a flight-weight, fuel-cooled, scramjet engine powered by much denser liquid hydrocarbon fuel. The X-43C DV design flows from integrating USAF HyTech developed engine technologies with a NASA Air Breathing Launch Vehicle accelerator-class configuration and Hyper-X heritage vehicle systems designs. This paper describes the X-43C Project and provides background for NASA s current hypersonic flight demonstration efforts.
NASA Astrophysics Data System (ADS)
Wygant, J. R.
2016-12-01
Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Y; Mazur, T; Green, O
Purpose: The clinical commissioning of IMRT subject to a magnetic field is challenging. The purpose of this work is to develop a GPU-accelerated Monte Carlo dose calculation platform based on PENELOPE and then use the platform to validate a vendor-provided MRIdian head model toward quality assurance of clinical IMRT treatment plans subject to a 0.35 T magnetic field. Methods: We first translated PENELOPE from FORTRAN to C++ and validated that the translation produced equivalent results. Then we adapted the C++ code to CUDA in a workflow optimized for GPU architecture. We expanded upon the original code to include voxelized transportmore » boosted by Woodcock tracking, faster electron/positron propagation in a magnetic field, and several features that make gPENELOPE highly user-friendly. Moreover, we incorporated the vendor-provided MRIdian head model into the code. We performed a set of experimental measurements on MRIdian to examine the accuracy of both the head model and gPENELOPE, and then applied gPENELOPE toward independent validation of patient doses calculated by MRIdian’s KMC. Results: We achieve an average acceleration factor of 152 compared to the original single-thread FORTRAN implementation with the original accuracy preserved. For 16 treatment plans including stomach (4), lung (2), liver (3), adrenal gland (2), pancreas (2), spleen (1), mediastinum (1) and breast (1), the MRIdian dose calculation engine agrees with gPENELOPE with a mean gamma passing rate of 99.1% ± 0.6% (2%/2 mm). Conclusions: We developed a Monte Carlo simulation platform based on a GPU-accelerated version of PENELOPE. We validated that both the vendor provided head model and fast Monte Carlo engine used by the MRIdian system are accurate in modeling radiation transport in a patient using 2%/2 mm gamma criteria. Future applications of this platform will include dose validation and accumulation, IMRT optimization, and dosimetry system modeling for next generation MR-IGRT systems.« less
Black String and Velocity Frame Dragging
NASA Astrophysics Data System (ADS)
Lee, Jungjai; Kim, Hyeong-Chan
We investigate velocity frame dragging with the boosted Schwarzschild black string solution and the boosted Kaluza-Klein bubble solution, in which a translational symmetry along the boosted z-coordinate is implemented. The velocity frame dragging effect can be nullified by the motion of an observer using the boost symmetry along the z-coordinate if it is not compact. However, in spacetime with the compact z-coordinate, we show that the effect cannot be removed since the compactification breaks the global Lorentz boost symmetry. As a result, the comoving velocity depends on r and the momentum parameter along the z-coordinate becomes an observer independent characteristic quantity of the black string and bubble solutions. The dragging induces a spherical ergo-region around the black string.
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande.
Kachulis, C; Abe, K; Bronner, C; Hayato, Y; Ikeda, M; Iyogi, K; Kameda, J; Kato, Y; Kishimoto, Y; Marti, Ll; Miura, M; Moriyama, S; Nakahata, M; Nakano, Y; Nakayama, S; Okajima, Y; Orii, A; Pronost, G; Sekiya, H; Shiozawa, M; Sonoda, Y; Takeda, A; Takenaka, A; Tanaka, H; Tasaka, S; Tomura, T; Akutsu, R; Kajita, T; Kaneyuki, K; Nishimura, Y; Okumura, K; Tsui, K M; Labarga, L; Fernandez, P; Blaszczyk, F D M; Gustafson, J; Kearns, E; Raaf, J L; Stone, J L; Sulak, L R; Berkman, S; Tobayama, S; Goldhaber, M; Elnimr, M; Kropp, W R; Mine, S; Locke, S; Weatherly, P; Smy, M B; Sobel, H W; Takhistov, V; Ganezer, K S; Hill, J; Kim, J Y; Lim, I T; Park, R G; Himmel, A; Li, Z; O'Sullivan, E; Scholberg, K; Walter, C W; Ishizuka, T; Nakamura, T; Jang, J S; Choi, K; Learned, J G; Matsuno, S; Smith, S N; Amey, J; Litchfield, R P; Ma, W Y; Uchida, Y; Wascko, M O; Cao, S; Friend, M; Hasegawa, T; Ishida, T; Ishii, T; Kobayashi, T; Nakadaira, T; Nakamura, K; Oyama, Y; Sakashita, K; Sekiguchi, T; Tsukamoto, T; Abe, K E; Hasegawa, M; Suzuki, A T; Takeuchi, Y; Yano, T; Hayashino, T; Hiraki, T; Hirota, S; Huang, K; Jiang, M; Nakamura, K E; Nakaya, T; Quilain, B; Patel, N D; Wendell, R A; Anthony, L H V; McCauley, N; Pritchard, A; Fukuda, Y; Itow, Y; Murase, M; Muto, F; Mijakowski, P; Frankiewicz, K; Jung, C K; Li, X; Palomino, J L; Santucci, G; Vilela, C; Wilking, M J; Yanagisawa, C; Ito, S; Fukuda, D; Ishino, H; Kibayashi, A; Koshio, Y; Nagata, H; Sakuda, M; Xu, C; Kuno, Y; Wark, D; Di Lodovico, F; Richards, B; Tacik, R; Kim, S B; Cole, A; Thompson, L; Okazawa, H; Choi, Y; Ito, K; Nishijima, K; Koshiba, M; Totsuka, Y; Suda, Y; Yokoyama, M; Calland, R G; Hartz, M; Martens, K; Simpson, C; Suzuki, Y; Vagins, M R; Hamabe, D; Kuze, M; Yoshida, T; Ishitsuka, M; Martin, J F; Nantais, C M; Tanaka, H A; Konaka, A; Chen, S; Wan, L; Zhang, Y; Wilkes, R J; Minamino, A
2018-06-01
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.
Search for Boosted Dark Matter Interacting with Electrons in Super-Kamiokande
NASA Astrophysics Data System (ADS)
Kachulis, C.; Abe, K.; Bronner, C.; Hayato, Y.; Ikeda, M.; Iyogi, K.; Kameda, J.; Kato, Y.; Kishimoto, Y.; Marti, Ll.; Miura, M.; Moriyama, S.; Nakahata, M.; Nakano, Y.; Nakayama, S.; Okajima, Y.; Orii, A.; Pronost, G.; Sekiya, H.; Shiozawa, M.; Sonoda, Y.; Takeda, A.; Takenaka, A.; Tanaka, H.; Tasaka, S.; Tomura, T.; Akutsu, R.; Kajita, T.; Kaneyuki, K.; Nishimura, Y.; Okumura, K.; Tsui, K. M.; Labarga, L.; Fernandez, P.; Blaszczyk, F. d. M.; Gustafson, J.; Kearns, E.; Raaf, J. L.; Stone, J. L.; Sulak, L. R.; Berkman, S.; Tobayama, S.; Goldhaber, M.; Elnimr, M.; Kropp, W. R.; Mine, S.; Locke, S.; Weatherly, P.; Smy, M. B.; Sobel, H. W.; Takhistov, V.; Ganezer, K. S.; Hill, J.; Kim, J. Y.; Lim, I. T.; Park, R. G.; Himmel, A.; Li, Z.; O'Sullivan, E.; Scholberg, K.; Walter, C. W.; Ishizuka, T.; Nakamura, T.; Jang, J. S.; Choi, K.; Learned, J. G.; Matsuno, S.; Smith, S. N.; Amey, J.; Litchfield, R. P.; Ma, W. Y.; Uchida, Y.; Wascko, M. O.; Cao, S.; Friend, M.; Hasegawa, T.; Ishida, T.; Ishii, T.; Kobayashi, T.; Nakadaira, T.; Nakamura, K.; Oyama, Y.; Sakashita, K.; Sekiguchi, T.; Tsukamoto, T.; Abe, KE.; Hasegawa, M.; Suzuki, A. T.; Takeuchi, Y.; Yano, T.; Hayashino, T.; Hiraki, T.; Hirota, S.; Huang, K.; Jiang, M.; Nakamura, KE.; Nakaya, T.; Quilain, B.; Patel, N. D.; Wendell, R. A.; Anthony, L. H. V.; McCauley, N.; Pritchard, A.; Fukuda, Y.; Itow, Y.; Murase, M.; Muto, F.; Mijakowski, P.; Frankiewicz, K.; Jung, C. K.; Li, X.; Palomino, J. L.; Santucci, G.; Vilela, C.; Wilking, M. J.; Yanagisawa, C.; Ito, S.; Fukuda, D.; Ishino, H.; Kibayashi, A.; Koshio, Y.; Nagata, H.; Sakuda, M.; Xu, C.; Kuno, Y.; Wark, D.; Di Lodovico, F.; Richards, B.; Tacik, R.; Kim, S. B.; Cole, A.; Thompson, L.; Okazawa, H.; Choi, Y.; Ito, K.; Nishijima, K.; Koshiba, M.; Totsuka, Y.; Suda, Y.; Yokoyama, M.; Calland, R. G.; Hartz, M.; Martens, K.; Simpson, C.; Suzuki, Y.; Vagins, M. R.; Hamabe, D.; Kuze, M.; Yoshida, T.; Ishitsuka, M.; Martin, J. F.; Nantais, C. M.; Tanaka, H. A.; Konaka, A.; Chen, S.; Wan, L.; Zhang, Y.; Wilkes, R. J.; Minamino, A.; Super-Kamiokande Collaboration
2018-06-01
A search for boosted dark matter using 161.9 kt yr of Super-Kamiokande IV data is presented. We search for an excess of elastically scattered electrons above the atmospheric neutrino background, with a visible energy between 100 MeV and 1 TeV, pointing back to the Galactic center or the Sun. No such excess is observed. Limits on boosted dark matter event rates in multiple angular cones around the Galactic center and Sun are calculated. Limits are also calculated for a baseline model of boosted dark matter produced from cold dark matter annihilation or decay. This is the first experimental search for boosted dark matter from the Galactic center or the Sun interacting in a terrestrial detector.
Todor, Dorin A; Barani, Igor J; Lin, Peck-Sun; Anscher, Mitchell S
2011-09-01
To compare the ability of single- and dual-isotope prostate seed implants to escalate biologically effective dose (BED) to foci of disease while reducing prescription dose to the prostate. Nine plans, using 125I, 103Pd, and 131Cs alone and in combination were created retrospectively for 2 patients. Ultrasound and MRI/MRS datasets were used for treatment planning. Voxel-by-voxel BED was calculated for single- and dual-isotope plans. Equivalent uniform BED (EUBED) was used to compare plans. The MRS-positive planning target volumes (PTVi) were delineated along with PTV (prostate+5 mm), rectum, and urethra. Single-isotope implants, prescribed to conventional doses, were generated to achieve good PTV coverage. The PTVi were prospectively used to generate implants using mixtures of isotopes. For mixed-radioisotope implants, we also explored the impact on EUBED of lowering prescription doses by 15%. The EUBED of PTVi in the setting of primary 125I implant increased 20-66% when 103Pd and 131Cs were used compared with 125I boost. Decreasing prescription dose by 15% in mixed-isotope implants results in a potential 10% reduction in urethral EUBED with preservation of PTV coverage while still boosting PTVi (up to 80%). When radiobiologic parameters corresponding to more-aggressive disease are assigned to foci, faster-decaying isotopes used in mixed implants have the potential to preserve the equivalent biological effect of mono-isotope implants considering less-aggressive disease distributed in the entire prostate. This is a hypothesis-generating study proposing a treatment paradigm that could be the middle ground between whole-gland irradiation and focal-only treatment. The use of two isotopes concurrent with decreasing the minimal peripheral dose is shown to increase EUBED of selected subvolumes while preserving the therapeutic effect at the level of the gland. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Todor, Dorin A., E-mail: dtodor@mcvh-vcu.edu; Barani, Igor J.; Lin, Peck-Sun
2011-09-01
Purpose: To compare the ability of single- and dual-isotope prostate seed implants to escalate biologically effective dose (BED) to foci of disease while reducing prescription dose to the prostate. Methods and Materials: Nine plans, using {sup 125}I, {sup 103}Pd, and {sup 131}Cs alone and in combination were created retrospectively for 2 patients. Ultrasound and MRI/MRS datasets were used for treatment planning. Voxel-by-voxel BED was calculated for single- and dual-isotope plans. Equivalent uniform BED (EUBED) was used to compare plans. The MRS-positive planning target volumes (PTV{sub i}) were delineated along with PTV (prostate + 5 mm), rectum, and urethra. Single-isotope implants,more » prescribed to conventional doses, were generated to achieve good PTV coverage. The PTV{sub i} were prospectively used to generate implants using mixtures of isotopes. For mixed-radioisotope implants, we also explored the impact on EUBED of lowering prescription doses by 15%. Results: The EUBED of PTV{sub i} in the setting of primary {sup 125}I implant increased 20-66% when {sup 103}Pd and {sup 131}Cs were used compared with {sup 125}I boost. Decreasing prescription dose by 15% in mixed-isotope implants results in a potential 10% reduction in urethral EUBED with preservation of PTV coverage while still boosting PTV{sub i} (up to 80%). When radiobiologic parameters corresponding to more-aggressive disease are assigned to foci, faster-decaying isotopes used in mixed implants have the potential to preserve the equivalent biological effect of mono-isotope implants considering less-aggressive disease distributed in the entire prostate. Conclusions: This is a hypothesis-generating study proposing a treatment paradigm that could be the middle ground between whole-gland irradiation and focal-only treatment. The use of two isotopes concurrent with decreasing the minimal peripheral dose is shown to increase EUBED of selected subvolumes while preserving the therapeutic effect at the level of the gland.« less
Karlsson, Ingrid; Borggren, Marie; Jensen, Sanne Skov; Heyndrickx, Leo; Stewart-Jones, Guillaume; Scarlatti, Gabriella; Fomsgaard, Anders
2017-11-17
The induction of both neutralizing antibodies and non-neutralizing antibodies with effector functions, for example, antibody-dependent cellular cytotoxicity (ADCC), is desired in the search for effective vaccines against HIV-1. In the pursuit of novel immunogens capable of inducing an efficient antibody response, rabbits were immunized with selected antigens using different prime-boost strategies. We immunized 35 different groups of rabbits with Env antigens from clinical HIV-1 subtypes A and B, including immunization with DNA alone, protein alone, and DNA prime with protein boost. The rabbit sera were screened for ADCC activity using a GranToxiLux-based assay with human peripheral blood mononuclear cells as effector cells and CEM.NKR CCR5 cells coated with HIV-1 envelope as target cells. The groups with the highest ADCC activity were further characterized for cross-reactivity between HIV-1 subtypes. The immunogen inducing the most potent and broadest ADCC response was a trimeric gp140. The ADCC activity was highest against the HIV-1 subtype corresponding to the immunogen. The ADCC activity did not necessarily reflect neutralizing activity in the pseudovirus-TZMbl assay, but there was an overall correlation between the two antiviral activities. We present a rabbit vaccination model and an assay suitable for screening HIV-1 vaccine candidates for the induction of ADCC-mediating antibodies in addition to neutralizing antibodies. The antigens and/or immunization strategies capable of inducing antibodies with ADCC activity did not necessarily induce neutralizing activity and vice versa. Nevertheless, we identified vaccine candidates that were able to concurrently induce both types of responses and that had ADCC activity that was cross-reactive between different subtypes. When searching for an effective vaccine candidate, it is important to evaluate the antibody response using a model and an assay measuring the desired function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markovina, Stephanie; Duan, Fenghai; Snyder, Bradley S.
2015-11-01
Purpose: The American College of Radiology Imaging Network (ACRIN) 6668/Radiation Therapy Oncology Group (RTOG) 0235 study demonstrated that standardized uptake values (SUV) on post-treatment [{sup 18}F]fluorodeoxyglucose-positron emission tomography (FDG-PET) correlated with survival in locally advanced non-small cell lung cancer (NSCLC). This secondary analysis determined whether SUV of regional lymph nodes (RLNs) on post-treatment FDG-PET correlated with patient outcomes. Methods and Materials: Included for analysis were patients treated with concurrent chemoradiation therapy, using radiation doses ≥60 Gy, with identifiable FDG-avid RLNs (distinct from primary tumor) on pretreatment FDG-PET, and post-treatment FDG-PET data. ACRIN core laboratory SUV measurements were used. Event time was calculatedmore » from the date of post-treatment FDG-PET. Local-regional failure was defined as failure within the treated RT volume and reported by the treating institution. Statistical analyses included Wilcoxon signed rank test, Kaplan-Meier curves (log rank test), and Cox proportional hazards regression modeling. Results: Of 234 trial-eligible patients, 139 (59%) had uptake in both primary tumor and RLNs on pretreatment FDG-PET and had SUV data from post-treatment FDG-PET. Maximum SUV was greater for primary tumor than for RLNs before treatment (P<.001) but not different post-treatment (P=.320). Post-treatment SUV of RLNs was not associated with overall survival. However, elevated post-treatment SUV of RLNs, both the absolute value and the percentage of residual activity compared to the pretreatment SUV were associated with inferior local-regional control (P<.001). Conclusions: High residual metabolic activity in RLNs on post-treatment FDG-PET is associated with worse local-regional control. Based on these data, future trials evaluating a radiation therapy boost should consider inclusion of both primary tumor and FDG-avid RLNs in the boost volume to maximize local-regional control.« less
Dose-volume effects in pathologic lymph nodes in locally advanced cervical cancer.
Bacorro, Warren; Dumas, Isabelle; Escande, Alexandre; Gouy, Sebastien; Bentivegna, Enrica; Morice, Philippe; Haie-Meder, Christine; Chargari, Cyrus
2018-03-01
In cervical cancer patients, dose-volume relationships have been demonstrated for tumor and organs-at-risk, but not for pathologic nodes. The nodal control probability (NCP) according to dose/volume parameters was investigated. Patients with node-positive cervical cancer treated curatively with external beam radiotherapy (EBRT) and image-guided brachytherapy (IGABT) were identified. Nodal doses during EBRT, IGABT and boost were converted to 2-Gy equivalent (α/β = 10 Gy) and summed. Pathologic nodes were followed individually from diagnosis to relapse. Statistical analyses comprised log-rank tests (univariate analyses), Cox proportional model (factors with p ≤ 0.1 in univariate) and Probit analyses. A total of 108 patients with 254 unresected pathological nodes were identified. The mean nodal volume at diagnosis was 3.4 ± 5.8 cm 3 . The mean total nodal EQD2 doses were 55.3 ± 5.6 Gy. Concurrent chemotherapy was given in 96%. With a median follow-up of 33.5 months, 20 patients (18.5%) experienced relapse in nodes considered pathologic at diagnosis. Overall nodal recurrence rate was 9.1% (23/254). On univariate analyses, nodal volume (threshold: 3 cm 3 , p < .0001) and lymph node dose (≥57.5 Gy α/β10 , p = .039) were significant for nodal control. The use of simultaneous boost was borderline for significance (p = .07). On multivariate analysis, volume (HR = 8.2, 4.0-16.6, p < .0001) and dose (HR = 2, 1.05-3.9, p = .034) remained independent factors. Probit analysis combining dose and volume showed significant relationships with NCP, with increasing gap between the curves with higher nodal volumes. A nodal dose-volume effect on NCP is demonstrated for the first time, with increasing NCP benefit of additional doses to higher-volume nodes. Copyright © 2018 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warren, Samantha, E-mail: Samantha.warren@oncology.ox.ac.uk; Partridge, Mike; Carrington, Rhys
2014-10-01
Purpose: This study investigated the trade-off in tumor coverage and organ-at-risk sparing when applying dose escalation for concurrent chemoradiation therapy (CRT) of mid-esophageal cancer, using radiobiological modeling to estimate local control and normal tissue toxicity. Methods and Materials: Twenty-one patients with mid-esophageal cancer were selected from the SCOPE1 database (International Standard Randomised Controlled Trials number 47718479), with a mean planning target volume (PTV) of 327 cm{sup 3}. A boost volume, PTV2 (GTV + 0.5 cm margin), was created. Radiobiological modeling of tumor control probability (TCP) estimated the dose required for a clinically significant (+20%) increase in local control as 62.5more » Gy/25 fractions. A RapidArc (RA) plan with a simultaneously integrated boost (SIB) to PTV2 (RA{sub 62.5}) was compared to a standard dose plan of 50 Gy/25 fractions (RA{sub 50}). Dose-volume metrics and estimates of normal tissue complication probability (NTCP) for heart and lungs were compared. Results: Clinically acceptable dose escalation was feasible for 16 of 21 patients, with significant gains (>18%) in tumor control from 38.2% (RA{sub 50}) to 56.3% (RA{sub 62.5}), and only a small increase in predicted toxicity: median heart NTCP 4.4% (RA{sub 50}) versus 5.6% (RA{sub 62.5}) P<.001 and median lung NTCP 6.5% (RA{sub 50}) versus 7.5% (RA{sub 62.5}) P<.001. Conclusions: Dose escalation to the GTV to improve local control is possible when overlap between PTV and organ-at-risk (<8% heart volume and <2.5% lung volume overlap for this study) generates only negligible increase in lung or heart toxicity. These predictions from radiobiological modeling should be tested in future clinical trials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krishnan, Sunil, E-mail: skrishnan@mdanderson.org; Chadha, Awalpreet S.; Suh, Yelin
2016-03-15
Purpose: To review outcomes of locally advanced pancreatic cancer (LAPC) patients treated with dose-escalated intensity modulated radiation therapy (IMRT) with curative intent. Methods and Materials: A total of 200 patients with LAPC were treated with induction chemotherapy followed by chemoradiation between 2006 and 2014. Of these, 47 (24%) having tumors >1 cm from the luminal organs were selected for dose-escalated IMRT (biologically effective dose [BED] >70 Gy) using a simultaneous integrated boost technique, inspiration breath hold, and computed tomographic image guidance. Fractionation was optimized for coverage of gross tumor and luminal organ sparing. A 2- to 5-mm margin around the gross tumor volume wasmore » treated using a simultaneous integrated boost with a microscopic dose. Overall survival (OS), recurrence-free survival (RFS), local-regional and distant RFS, and time to local-regional and distant recurrence, calculated from start of chemoradiation, were the outcomes of interest. Results: Median radiation dose was 50.4 Gy (BED = 59.47 Gy) with a concurrent capecitabine-based (86%) regimen. Patients who received BED >70 Gy had a superior OS (17.8 vs 15.0 months, P=.03), which was preserved throughout the follow-up period, with estimated OS rates at 2 years of 36% versus 19% and at 3 years of 31% versus 9% along with improved local-regional RFS (10.2 vs 6.2 months, P=.05) as compared with those receiving BED ≤70 Gy. Degree of gross tumor volume coverage did not seem to affect outcomes. No additional toxicity was observed in the high-dose group. Higher dose (BED) was the only predictor of improved OS on multivariate analysis. Conclusion: Radiation dose escalation during consolidative chemoradiation therapy after induction chemotherapy for LAPC patients improves OS and local-regional RFS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vargo, John A.; Kim, Hayeon; Choi, Serah
Purpose: Positron emission tomography/computed tomography (PET/CT) is commonly used for nodal staging in locally advanced cervical cancer; however the false negative rate for para-aortic disease are 20% to 25% in PET-positive pelvic nodal disease. Unless surgically staged, pelvis-only treatment may undertreat para-aortic disease. We have treated patients with PET-positive nodes with extended field intensity modulated radiation therapy (IMRT) to address the para-aortic region prophylactically with concomitant boost to involved nodes. The purpose of this study was to assess regional control rates and recurrence patterns. Methods and Materials: Sixty-one patients with cervical cancer (stage IBI-IVA) diagnosed from 2003 to 2012 withmore » PET-avid pelvic nodes treated with extended field IMRT (45 Gy in 25 fractions with concomitant boost to involved nodes to a median of 55 Gy in 25 fractions) with concurrent cisplatin and brachytherapy were retrospectively analyzed. The nodal location was pelvis-only in 41 patients (67%) and pelvis + para-aortic in 20 patients (33%). There were a total of 179 nodes, with a median number of positive nodes of 2 (range, 1-16 nodes) per patient and a median nodal size of 1.8 cm (range, 0.7-4.5 cm). Response was assessed by PET/CT at 12 to 16 weeks. Results: Complete clinical and imaging response at the first follow-up visit was seen in 77% of patients. At a mean follow-up time of 29 months (range, 3-116 months), 8 patients experienced recurrence. The sites of persistent/recurrent disease were as follows: cervix 10 (16.3%), regional nodes 3 (4.9%), and distant 14 (23%). The rate of para-aortic failure in patients with pelvic-only nodes was 2.5%. There were no significant differences in recurrence patterns by the number/location of nodes, largest node size, or maximum node standardized uptake value. The rate of late grade 3+ adverse events was 4%. Conclusions: Extended field IMRT was well tolerated and resulted in low regional recurrence in node-positive cervical cancer. The dose of 55 Gy in 25 fractions was effective in eradicating disease in involved nodes, with acceptable late adverse events. Distant metastasis is the predominant mode of failure, and the OUTBACK trial may challenge the presented paradigms.« less
Reconcile Planck-scale discreteness and the Lorentz-Fitzgerald contraction
NASA Astrophysics Data System (ADS)
Rovelli, Carlo; Speziale, Simone
2003-03-01
A Planck-scale minimal observable length appears in many approaches to quantum gravity. It is sometimes argued that this minimal length might conflict with Lorentz invariance, because a boosted observer can see the minimal length further Lorentz contracted. We show that this is not the case within loop quantum gravity. In loop quantum gravity the minimal length (more precisely, minimal area) does not appear as a fixed property of geometry, but rather as the minimal (nonzero) eigenvalue of a quantum observable. The boosted observer can see the same observable spectrum, with the same minimal area. What changes continuously in the boost transformation is not the value of the minimal length: it is the probability distribution of seeing one or the other of the discrete eigenvalues of the area. We discuss several difficulties associated with boosts and area measurement in quantum gravity. We compute the transformation of the area operator under a local boost, propose an explicit expression for the generator of local boosts, and give the conditions under which its action is unitary.
Angular-momentum-assisted dissociation of CO in strong optical fields
NASA Astrophysics Data System (ADS)
Mullin, Amy; Ogden, Hannah; Murray, Matthew; Liu, Qingnan; Toro, Carlos
2017-04-01
Filaments are produced in CO gas by intense, chirped laser pulses. Visible emission from C2 is observed as a result of chemical reactions of highly excited CO. At laser intensities greater than 1014 W cm-2, the C2 emission shows a strong dependence on laser polarization. Oppositely chirped pulses of light with ω0 = 800 nm are recombined spatially and temporally to generate angularly accelerating electric fields (up to 30 THz) that either have an instantaneous linear polarization or act as a dynamic polarization grating that oscillates among linear and circular polarizations. The angularly accelerating linear polarization corresponds to an optical centrifuge that concurrently drives molecules into high rotational states (with J 50) and induces strong-field dissociation. Higher order excitation is observed for the time-varying laser polarization configuration that does not induce rotational excitation. The results indicate that the presence of rotational angular momentum lowers the threshold for CO dissociation in strong optical fields by coupling nuclear and electronic degrees of freedom. Support from NSF CHE-1058721 and the University of Maryland.
Computational Cosmology at the Bleeding Edge
NASA Astrophysics Data System (ADS)
Habib, Salman
2013-04-01
Large-area sky surveys are providing a wealth of cosmological information to address the mysteries of dark energy and dark matter. Observational probes based on tracking the formation of cosmic structure are essential to this effort, and rely crucially on N-body simulations that solve the Vlasov-Poisson equation in an expanding Universe. As statistical errors from survey observations continue to shrink, and cosmological probes increase in number and complexity, simulations are entering a new regime in their use as tools for scientific inference. Changes in supercomputer architectures provide another rationale for developing new parallel simulation and analysis capabilities that can scale to computational concurrency levels measured in the millions to billions. In this talk I will outline the motivations behind the development of the HACC (Hardware/Hybrid Accelerated Cosmology Code) extreme-scale cosmological simulation framework and describe its essential features. By exploiting a novel algorithmic structure that allows flexible tuning across diverse computer architectures, including accelerated and many-core systems, HACC has attained a performance of 14 PFlops on the IBM BG/Q Sequoia system at 69% of peak, using more than 1.5 million cores.
Are malnutrition and stress risk factors for accelerated cognitive decline? A prisoner of war study.
Sulway, M R; Broe, G A; Creasey, H; Dent, O F; Jorm, A F; Kos, S C; Tennant, C C
1996-03-01
We set out to test the hypothesis that severe malnutrition and stress experienced by prisoners of war (POWs) are associated with cognitive deficits later in life. We assessed 101 former Australian POWs of the Japanese and 108 veteran control subjects using a battery of neuropsychological tests, a depression scale, a clinical examination for dementia, and CT. We divided the POWs into high weight loss (>35%) and low weight loss groups (<35%). We found no significant differences in cognitive performance between the POWs and control subjects or between high and low weight loss groups on any of the tests or in the prevalence of dementia. Scores on the depression scale showed that the former POWs had more depressive symptoms than the control subjects a decade previous, but the difference had diminished over time. This study does not support the hypothesis that malnutrition is a risk factor for accelerated cognitive decline nor the theory that severe stress can lead to hippocampal neuronal loss and cognitive deficits. Cognitive deficits in earlier studies of former POWs may have been associated with concurrent depression.
NASA Astrophysics Data System (ADS)
Shao, Meiyue; Aktulga, H. Metin; Yang, Chao; Ng, Esmond G.; Maris, Pieter; Vary, James P.
2018-01-01
We describe a number of recently developed techniques for improving the performance of large-scale nuclear configuration interaction calculations on high performance parallel computers. We show the benefit of using a preconditioned block iterative method to replace the Lanczos algorithm that has traditionally been used to perform this type of computation. The rapid convergence of the block iterative method is achieved by a proper choice of starting guesses of the eigenvectors and the construction of an effective preconditioner. These acceleration techniques take advantage of special structure of the nuclear configuration interaction problem which we discuss in detail. The use of a block method also allows us to improve the concurrency of the computation, and take advantage of the memory hierarchy of modern microprocessors to increase the arithmetic intensity of the computation relative to data movement. We also discuss the implementation details that are critical to achieving high performance on massively parallel multi-core supercomputers, and demonstrate that the new block iterative solver is two to three times faster than the Lanczos based algorithm for problems of moderate sizes on a Cray XC30 system.
Land-Use Change and Emerging Infectious Disease on an Island Continent
McFarlane, Rosemary A.; Sleigh, Adrian C.; McMichael, Anthony J.
2013-01-01
A more rigorous and nuanced understanding of land-use change (LUC) as a driver of emerging infectious disease (EID) is required. Here we examine post hunter-gatherer LUC as a driver of infectious disease in one biogeographical region with a compressed and documented history—continental Australia. We do this by examining land-use and native vegetation change (LUCC) associations with infectious disease emergence identified through a systematic (1973–2010) and historical (1788–1973) review of infectious disease literature of humans and animals. We find that 22% (20) of the systematically reviewed EIDs are associated with LUCC, most frequently where natural landscapes have been removed or replaced with agriculture, plantations, livestock or urban development. Historical clustering of vector-borne, zoonotic and environmental disease emergence also follows major periods of extensive land clearing. These advanced stages of LUCC are accompanied by changes in the distribution and density of hosts and vectors, at varying scales and chronology. This review of infectious disease emergence in one continent provides valuable insight into the association between accelerated global LUC and concurrent accelerated infectious disease emergence. PMID:23812027
The founding of CEBAF, 1979 to 1987
DOE Office of Scientific and Technical Information (OSTI.GOV)
C. Westfall
1995-02-01
In early 1979 a group of physicists assembled at the University of Virginia (UVa) for a conference entitled ''Future Possibilities for Electron Accelerators.'' In the audience sat an organizer of the conference, UVa professor James McCarthy. While listening to talks by Gregory Loew of the Stanford Linear Accelerator Center (SLAC) and Roger Servranckx of the University of Saskatchewan, McCarthy got very excited. Both discussed new approaches to producing an almost continuous stream of electrons with improved designs for pulse stretcher rings that could be built within a reasonable budget. McCarthy saw the possibility of realizing a dream. This dream hadmore » its origins in the 1950s, when Robert Hofstadter, McCarthy's thesis advisor, made groundbreaking discoveries at Stanford's High Energy Physics Laboratory (HEPL) about the internal structure of nuclei and nucleons. For these experiments Hofstadter used Mark III, the most advanced in a series of electron accelerators designed by William Hansen, who pioneered methods of high frequency acceleration of electrons. The work by Hofstadter and Hansen led to two productive lines of inquiry. One group of researchers studied particle production using electrons at higher energies, which led to the construction in the 1960s of SLAC at Stanford. Another group of researchers, which included McCarthy, investigated nuclear structure with more modest increases in energy accompanied by increases in the duty factor of the electron beam. This line of inquiry, electro-nuclear physics, led in the 1960s and 1970s to a succession of accelerators, including a $7.2 million high duty factor 400 MeV linear accelerator (linac) completed in 1972 at the Bates Laboratory at the Massachusetts Institute of Technology (Bates-MIT), and ambitious attempts to develop untried technologies to further boost energy and duty factor, most notably the effort to develop superconducting radiofrequency (srf) accelerating technology at HEPL. By 1979 electro-nuclear physics had attracted a considerable following. The growing electro-nuclear physics community was eager to find a scheme to permit virtually continuous acceleration, which would greatly improve the capability of performing coincidence experiments. In the words of the UVa conference proceedings, this experimental capability promised to open entire new areas of nuclear physics. Convinced that he could be the one to design the necessary groundbreaking machine after hearing the ideas of Loew and Servranckx, McCarthy began gathering a small accelerator building team. Against all odds, McCarthy's pipe dream resulted in the construction of a major accelerator laboratory, the Continuous Electron Beam Accelerator Facility (CEBAF). The founding of CEBAF is a tale of luck, perseverance, the triumph of flexible amateurism over rigid professionalism, and ironically, the potential of amateurs when supported by a thoroughly professional international network with well-defined methods for organizing and building accelerators. The CEBAF tale also has a surprise ending, for at the last minute, McCarthy's pipe dream was radically transformed by Hermann Grunder, who would direct the construction of the project. The twists and turns of this tale reveal many lessons about what aids and what detracts from the success of a large, federally sponsored scientific project.« less
Miao, Qiguang; Cao, Ying; Xia, Ge; Gong, Maoguo; Liu, Jiachen; Song, Jianfeng
2016-11-01
AdaBoost has attracted much attention in the machine learning community because of its excellent performance in combining weak classifiers into strong classifiers. However, AdaBoost tends to overfit to the noisy data in many applications. Accordingly, improving the antinoise ability of AdaBoost plays an important role in many applications. The sensitiveness to the noisy data of AdaBoost stems from the exponential loss function, which puts unrestricted penalties to the misclassified samples with very large margins. In this paper, we propose two boosting algorithms, referred to as RBoost1 and RBoost2, which are more robust to the noisy data compared with AdaBoost. RBoost1 and RBoost2 optimize a nonconvex loss function of the classification margin. Because the penalties to the misclassified samples are restricted to an amount less than one, RBoost1 and RBoost2 do not overfocus on the samples that are always misclassified by the previous base learners. Besides the loss function, at each boosting iteration, RBoost1 and RBoost2 use numerically stable ways to compute the base learners. These two improvements contribute to the robustness of the proposed algorithms to the noisy training and testing samples. Experimental results on the synthetic Gaussian data set, the UCI data sets, and a real malware behavior data set illustrate that the proposed RBoost1 and RBoost2 algorithms perform better when the training data sets contain noisy data.
Riemann curvature of a boosted spacetime geometry
NASA Astrophysics Data System (ADS)
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
AveBoost2: Boosting for Noisy Data
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.
2004-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the pre- vious base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. In previous work, we developed an algorithm, AveBoost, that constructed distributions orthogonal to the mistake vectors of all the previous models, and then averaged them to create the next base model s distribution. Our experiments demonstrated the superior accuracy of our approach. In this paper, we slightly revise our algorithm to allow us to obtain non-trivial theoretical results: bounds on the training error and generalization error (difference between training and test error). Our averaging process has a regularizing effect which, as expected, leads us to a worse training error bound for our algorithm than for AdaBoost but a superior generalization error bound. For this paper, we experimented with the data that we used in both as originally supplied and with added label noise-a small fraction of the data has its original label changed. Noisy data are notoriously difficult for AdaBoost to learn. Our algorithm's performance improvement over AdaBoost is even greater on the noisy data than the original data.
Reducing late effects of radiotherapy in average risk medulloblastoma.
Ibrahim, Noha Yehia; Abdel Aal, Hisham H; Abdel Kader, Mohamed S; Makaar, Wael S; Shaaban, Ahmed H
2014-03-01
To assess the efficacy and safety in average-risk pediatric medulloblastoma (MB) receiving tumor bed boost irradiation compared to a posterior fossa (PF) boost. Thirty patients were enrolled in the study and divided evenly into two treatment arms of 15. Both arms received 23.4 Gy craniospinal irradiation (CS) and a 32.4 Gy boost. Patients in arm 1 were given PF boosts, and those in arm 2 were given boosts to the gross target volume (GTV). Weekly oncovin was given throughout all radiotherapy (RT). Eight cycles of adjuvant chemotherapy of CCNU, oncovin and platinol were given to all patients after RT. MRI, pure tone audiogram (PTA) and intelligence quotient (IQ) tests were performed before and after RT and every three months thereafter. There were significant differences in the sparing dose to the cochlea and brain stem as well as the volume of the normal brain receiving a 100% dose. There was a significant initial improvement of hearing function in patients given the target volume boost after RT, which was lost after chemotherapy. With a median follow up of 23 months, there was no difference in progression free survival or overall survival between the two arms. Irradiation of the tumor bed after 23.4 Gy craniospinal irradiation for average-risk MB results in similar disease control as a PF boost. Dosimetric sparing for the cochleae and normal tissue is evident in patients receiving tumor bed boosts. The hearing improvement and cognitive function preservation effects of the treatment need more follow up.
Bhatt, Indu; Tripathi, Bhumi Nath
2011-01-01
Nanoparticles are the materials with at least two dimensions between 1 and 100 nm. Mostly these nanoparticles are natural products but their tremendous commercial use has boosted the artificial synthesis of these particles (engineered nanoparticles). Accelerated production and use of these engineered nanoparticles may cause their release in the environment and facilitate the frequent interactions with biotic and abiotic components of the ecosystems. Despite remarkable commercial benefits, their presence in the nature may cause hazardous biological effects. Therefore, detail understanding of their sources, release interaction with environment, and possible risk assessment would provide a basis for safer use of engineered nanoparticles with minimal or no hazardous impact on environment. Keeping all these points in mind the present review provides updated information on various aspects, e.g. sources, different types, synthesis, interaction with environment, possible strategies for risk management of engineered nanoparticles. Copyright © 2010 Elsevier Ltd. All rights reserved.
History of suborbital spaceflight: medical and performance issues.
Campbell, Mark R; Garbino, Alejandro
2011-04-01
The development of manned sub-orbital commercial space vehicles is rapidly occurring and flight testing followed by operational flights will soon begin. The experience of manned suborbital spaceflight at the designated altitude (100 km/62.14 mi) is very limited--two Mercury-Redstone flights, two X-15 flights, one inadvertent Soyuz launch abort, and three recent SpaceShipOne flights, with only 15 min of critical flight time each. All indications were that the sequence of acceleration-weightlessness-deceleration was well tolerated with minimal neurovestibular dysfunction. However, there are some indications that distraction and spatial disorientation did occur. Vertigo on transition from the boost phase to weightlessness was reported on most high-altitude X-15 flights. +Gz tolerance to re-entry deceleration forces (as high as 6 + Gz) after 4 min of weightlessness is still unknown. Only further suborbital spaceflight experience will clarify if pilot performance will be affected.
War on Two Fronts: The Fight against Parasites in Korea and Vietnam.
Harrison, Mark; Yim, Sung Vin
2017-07-01
The Vietnam War has long been regarded as pivotal in the history of the Republic of Korea, although its involvement in this conflict remains controversial. While most scholarship has focused on the political and economic ramifications of the war - and allegations of brutality by Korean troops - few scholars have considered the impact of the conflict upon medicine and public health. This article argues that the war had a transformative impact on medical careers and public health in Korea, and that this can be most clearly seen in efforts to control parasitic diseases. These diseases were a major drain on military manpower and a matter of growing concern domestically. The deployment to Vietnam boosted research into parasitic diseases of all kinds and accelerated the domestic campaign to control malaria and intestinal parasites. It also had a formative impact upon the development of overseas aid.
IIIV/Si Nanoscale Lasers and Their Integration with Silicon Photonics
NASA Astrophysics Data System (ADS)
Bondarenko, Olesya
The rapidly evolving global information infrastructure requires ever faster data transfer within computer networks and stations. Integrated chip scale photonics can pave the way to accelerated signal manipulation and boost bandwidth capacity of optical interconnects in a compact and ergonomic arrangement. A key building block for integrated photonic circuits is an on-chip laser. In this dissertation we explore ways to reduce the physical footprint of semiconductor lasers and make them suitable for high density integration on silicon, a standard material platform for today's integrated circuits. We demonstrated the first room temperature metalo-dielectric nanolaser, sub-wavelength in all three dimensions. Next, we demonstrated a nanolaser on silicon, showing the feasibility of its integration with this platform. We also designed and realized an ultracompact feedback laser with edge-emitting structure, amenable for in-plane coupling with a standard silicon waveguide. Finally, we discuss the challenges and propose solutions for improvement of the device performance and practicality.
Romeo-Guitart, David; Forés, Joaquim; Navarro, Xavier; Casas, Caty
2017-09-20
The "gold standard" treatment of patients with spinal root injuries consists of delayed surgical reconnection of nerves. The sooner, the better, but problems such as injury-induced motor neuronal death and muscle atrophy due to long-term denervation mean that normal movement is not restored. Herein we describe a preclinical model of root avulsion with delayed reimplantation of lumbar roots that was used to establish a new adjuvant pharmacological treatment. Chronic treatment (up to 6 months) with NeuroHeal, a new combination drug therapy identified using a systems biology approach, exerted long-lasting neuroprotection, reduced gliosis and matrix proteoglycan content, accelerated nerve regeneration by activating the AKT pathway, promoted the formation of functional neuromuscular junctions, and reduced denervation-induced muscular atrophy. Thus, NeuroHeal is a promising treatment for spinal nerve root injuries and axonal regeneration after trauma.
A Prerecognition Model for Hot Topic Discovery Based on Microblogging Data
Zhu, Tongyu
2014-01-01
The microblogging is prevailing since its easy and anonymous information sharing at Internet, which also brings the issue of dispersing negative topics, or even rumors. Many researchers have focused on how to find and trace emerging topics for analysis. When adopting topic detection and tracking techniques to find hot topics with streamed microblogging data, it will meet obstacles like streamed microblogging data clustering, topic hotness definition, and emerging hot topic discovery. This paper schemes a novel prerecognition model for hot topic discovery. In this model, the concepts of the topic life cycle, the hot velocity, and the hot acceleration are promoted to calculate the change of topic hotness, which aims to discover those emerging hot topics before they boost and break out. Our experiments show that this new model would help to discover potential hot topics efficiently and achieve considerable performance. PMID:25254235
A prerecognition model for hot topic discovery based on microblogging data.
Zhu, Tongyu; Yu, Jianjun
2014-01-01
The microblogging is prevailing since its easy and anonymous information sharing at Internet, which also brings the issue of dispersing negative topics, or even rumors. Many researchers have focused on how to find and trace emerging topics for analysis. When adopting topic detection and tracking techniques to find hot topics with streamed microblogging data, it will meet obstacles like streamed microblogging data clustering, topic hotness definition, and emerging hot topic discovery. This paper schemes a novel prerecognition model for hot topic discovery. In this model, the concepts of the topic life cycle, the hot velocity, and the hot acceleration are promoted to calculate the change of topic hotness, which aims to discover those emerging hot topics before they boost and break out. Our experiments show that this new model would help to discover potential hot topics efficiently and achieve considerable performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mi, J.; Tan, Y.; Zhang, W.
2011-03-28
For years suffering of Booster Injection Kicker transistor bank driver regulator troubleshooting, a new real time monitor system has been developed. A simple and floating circuit has been designed and tested. This circuit monitor system can monitor the driver regulator power limit resistor status in real time and warn machine operator if the power limit resistor changes values. This paper will mainly introduce the power supply and the new designed monitoring system. This real time resistor monitor circuit shows a useful method to monitor some critical parts in the booster pulse power supply. After two years accelerator operation, it showsmore » that this monitor works well. Previously, we spent a lot of time in booster machine trouble shooting. We will reinstall all 4 PCB into Euro Card Standard Chassis when the power supply system will be updated.« less
A 2020 vision for vaccines against HIV, tuberculosis and malaria.
Rappuoli, Rino; Aderem, Alan
2011-05-26
Acquired immune deficiency syndrome (AIDS), malaria and tuberculosis collectively cause more than five million deaths per year, but have nonetheless eluded conventional vaccine development; for this reason they represent one of the major global public health challenges as we enter the second decade of the twenty-first century. Recent trials have provided evidence that it is possible to develop vaccines that can prevent infection by human immunodeficiency virus (HIV) and malaria. Furthermore, advances in vaccinology, including novel adjuvants, prime-boost regimes and strategies for intracellular antigen presentation, have led to progress in developing a vaccine against tuberculosis. Here we discuss these advances and suggest that new tools such as systems biology and structure-based antigen design will lead to a deeper understanding of mechanisms of protection which, in turn, will lead to rational vaccine development. We also argue that new and innovative approaches to clinical trials will accelerate the availability of these vaccines.
War on Two Fronts: The Fight against Parasites in Korea and Vietnam
Harrison, Mark; Yim, Sung Vin
2017-01-01
The Vietnam War has long been regarded as pivotal in the history of the Republic of Korea, although its involvement in this conflict remains controversial. While most scholarship has focused on the political and economic ramifications of the war – and allegations of brutality by Korean troops – few scholars have considered the impact of the conflict upon medicine and public health. This article argues that the war had a transformative impact on medical careers and public health in Korea, and that this can be most clearly seen in efforts to control parasitic diseases. These diseases were a major drain on military manpower and a matter of growing concern domestically. The deployment to Vietnam boosted research into parasitic diseases of all kinds and accelerated the domestic campaign to control malaria and intestinal parasites. It also had a formative impact upon the development of overseas aid. PMID:28604294
Review on factors affecting the performance of pulse detonation engine
NASA Astrophysics Data System (ADS)
Tripathi, Saurabh; Pandey, Krishna Murari
2018-04-01
Now a day's rocket engines (air-breathing type) are being used for aerospace purposes but the studies have shown that these are less efficient, so alternatives are being searched for these. Pulse Detonation Engine (PDE) is one such efficient engine which can replace the rocket engines. In this review paper, different researches have been cited. As can be observed from various researches, insertion of obstacles is better. Deflagration to Detonation(DDT) transition process is found to be most important factor. So a lot of researches are being done considering this DDT chamber. Also, the ignition chamber and ejector were found to improve the effectiveness of PDE. The PDE works with a range of Mach 0-4. Flame acceleration is also found to increase the DDT process. Use of valve and valveless engine has also been compared. Various other factors have been focused in this review paper which is found to boost PDE performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-08-01
This paper reports that for the sixth consecutive year, Oman should retain its title as the biggest driller in the Middle East in 1991. An accelerated program in 1990 pushed production to an all-time record 700,000 bpd late in the year. Although not a member of Opec, Oman has cooperated with the group in restraining output as needed to support oil prices. Petroleum Development Oman (PDO), a partnership of the government (60%), Royal Dutch Shell (34%), Total (4%) and Partex (2%), remains by far the biggest producer. This year, PDO will begin work on its $500-million effort to boost productionmore » from its Lekhwair field from a current 24,000 bpd to 110,000 bpd by 1994. Last year, PDO also drilled 15 horizontal wells, most of which were successful in increasing per well production compared to conventional vertical holes. The horizontal program has been continued this year with two rings.« less
Polio endgame: the global introduction of inactivated polio vaccine.
Patel, Manish; Zipursky, Simona; Orenstein, Walt; Garon, Julie; Zaffran, Michel
2015-05-01
In 2013, the World Health Assembly endorsed a plan that calls for the ultimate withdrawal of oral polio vaccines (OPV) from all immunization programs globally. The withdrawal would begin in a phased manner with removal of the type 2 component of OPV in 2016 through a global switch from trivalent OPV to bivalent OPV (containing only types 1 and 3). To mitigate risks associated with immunity gaps after OPV type 2 withdrawal, the WHO Strategic Advisory Group of Experts has recommended that all 126 OPV-only using countries introduce at least one dose of inactivated polio vaccine into routine immunization programs by end-2015, before the trivalent OPV-bivalent OPV switch. The introduction of inactivated polio vaccine would reduce risks of reintroduction of type 2 poliovirus by providing some level of seroprotection, facilitating interruption of transmission if outbreaks occur, and accelerating eradication by boosting immunity to types 1 and 3 polioviruses.
Understanding fast macroscale fracture from microcrack post mortem patterns
Guerra, Claudia; Scheibert, Julien; Bonamy, Daniel; Dalmas, Davy
2012-01-01
Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultrafast dynamics of microcrack nucleation, growth, and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatiotemporal microcracking dynamics, with micrometer/nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics. PMID:22203962
Platelet Rich Plasma and Knee Surgery
Sánchez, Mikel; Sánchez, Pello; Orive, Gorka; Anitua, Eduardo; Padilla, Sabino
2014-01-01
In orthopaedic surgery and sports medicine, the knee joint has traditionally been considered the workhorse. The reconstruction of every damaged element in this joint is crucial in achieving the surgeon's goal to restore the knee function and prevent degeneration towards osteoarthritis. In the last fifteen years, the field of regenerative medicine is witnessing a boost of autologous blood-derived platelet rich plasma products (PRPs) application to effectively mimic and accelerate the tissue healing process. The scientific rationale behind PRPs is the delivery of growth factors, cytokines, and adhesive proteins present in platelets and plasma, as well as other biologically active proteins conveyed by the plasma such as fibrinogen, prothrombin, and fibronectin; with this biological engineering approach, new perspectives in knee surgery were opened. This work describes the use of PRP to construct and repair every single anatomical structure involved in knee surgery, detailing the process conducted in ligament, meniscal, and chondral surgery. PMID:25302310
Targeting the host-pathogen interface for treatment of Staphylococcus aureus infection.
Park, Bonggoo; Liu, George Y
2012-03-01
Recent emergence of methicillin-resistant Staphylococcus aureus both within and outside healthcare settings has accelerated the use of once reserved last line antibiotics such as vancomycin. With increased use of antibiotics, there has been a rapid rise in the rate of resistance development to the anti-MRSA drugs. As the antibiotic pipeline becomes strained, alternative strategies are being sought for future treatment of S. aureus. Here, we review several novel anti-staphylococcal strategies that, unlike conventional antibiotics, do not target essential gene products elaborated by the pathogen. The approaches seek instead to weaken the S. aureus defense by neutralizing its virulence factors or boosting host immunity. Other strategies target commensal bacteria that naturally colonize the human host to inhibit S. aureus colonization. Ultimately, the aim is to shift the balance between host defense and pathogen virulence in favor of inhibition of S. aureus pathogenic activities.
NASA Astrophysics Data System (ADS)
Szabó, Sándor; Moner-Girona, Magda; Kougias, Ioannis; Bailis, Rob; Bódis, Katalin
2016-10-01
Pioneering approaches are needed to accelerate universal access to electricity while simultaneously transitioning to reliable, sustainable and affordable energy systems. In sub-Saharan Africa (SSA), the challenges lie in attracting the private sector to complement public investments. Here, we present an integrated ‘low-hanging-fruit’ approach aimed at boosting private investment and speeding up the deployment of renewable energy systems in SSA. We analyse the potential of existing energy infrastructure, where a significant upfront investment has already been made, to be exploited for electricity generation. We develop a comprehensive methodology to identify and select suitable locations in SSA and estimate their potential for exploitation. These locations have been further analysed in terms of power capacity potential, electricity output, investments needed and population to be benefited. This strategy to attract additional finance can easily be reproduced, engaging private investors while simultaneously helping to achieve the United Nations (UN) Sustainable Development Goals on energy.
Radio and X-ray variability of the nucleus of Centaurus A (NGC 5128)
NASA Technical Reports Server (NTRS)
Beall, J. H.; Rose, W. K.; Graf, W.; Price, K. M.; Dent, W. A.; Hobbs, R. W.; Conklin, E. K.; Ulich, B. L.; Dennis, B. R.; Crannell, C. J.
1977-01-01
Centaurus A was observed at radio frequencies of 10.7, 31.4, 85.2, and 89 GHz and at X-ray energies greater than 20 keV. The source exhibits significant variability in all the observed radio frequencies. The observed radio and X-ray intensities show some concurrent variations but do not track one another throughout the observations. A model of the source in which X-rays are produced by inverse Compton scattering of blackbody photons by relativistic electrons is proposed to explain these observations. The observed variations in the electromagnetic spectrum are consistent with adiabatic expansion of a trapped plasma in conjunction with turbulent accelerations of the relativistic electrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
The U.S. Department of Energy's (DOE) Co-Optimization of Fuels & Engines (Co-Optima) initiative is accelerating the introduction of affordable, scalable, and sustainable fuels and high-efficiency, low-emission engines with a first-of-its-kind effort to simultaneously tackle fuel and engine research and development (R&D). This report summarizes accomplishments in the first year of the project. Co-Optima is conducting concurrent research to identify the fuel properties and engine design characteristics needed to maximize vehicle performance and affordability, while deeply cutting emissions. Nine national laboratories - the National Renewable Energy Laboratory and Argonne, Idaho, Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, Pacific Northwest, andmore » Sandia National Laboratories - are collaborating with industry and academia on this groundbreaking research.« less
Electromagnetic Physics Models for Parallel Computing Architectures
NASA Astrophysics Data System (ADS)
Amadio, G.; Ananya, A.; Apostolakis, J.; Aurora, A.; Bandieramonte, M.; Bhattacharyya, A.; Bianchini, C.; Brun, R.; Canal, P.; Carminati, F.; Duhem, L.; Elvira, D.; Gheata, A.; Gheata, M.; Goulas, I.; Iope, R.; Jun, S. Y.; Lima, G.; Mohanty, A.; Nikitina, T.; Novak, M.; Pokorski, W.; Ribon, A.; Seghal, R.; Shadura, O.; Vallecorsa, S.; Wenzel, S.; Zhang, Y.
2016-10-01
The recent emergence of hardware architectures characterized by many-core or accelerated processors has opened new opportunities for concurrent programming models taking advantage of both SIMD and SIMT architectures. GeantV, a next generation detector simulation, has been designed to exploit both the vector capability of mainstream CPUs and multi-threading capabilities of coprocessors including NVidia GPUs and Intel Xeon Phi. The characteristics of these architectures are very different in terms of the vectorization depth and type of parallelization needed to achieve optimal performance. In this paper we describe implementation of electromagnetic physics models developed for parallel computing architectures as a part of the GeantV project. Results of preliminary performance evaluation and physics validation are presented as well.
Lee, Hae-Jin; Lee, Noo Ri; Jung, Minyoung; Kim, Dong Hye; Choi, Eung Ho
2015-12-01
Prolonged and/or repeated damage to the skin barrier followed by atopic dermatitis (AD) is an initial step in atopic march that ultimately progresses to respiratory allergy. Maintaining normal stratum corneum (SC) acidity has been suggested as a therapeutic or preventive strategy for barrier impairment caused by skin inflammation. We determined whether a representative AD murine model, NC/Nga mice, develops airway inflammation after repeated epicutaneous application followed by inhalation of house dust mite (HDM), implying atopic march, and whether prolongation of non-proper SC acidity accelerates respiratory allergy. HDM was applied to the skin of NC/Nga mice, accompanied by the application of neutral cream (pH 7.4) or acidic cream (pH 2.8) for 6 weeks. Intranasal inhalation of HDM was administered daily during the last 3 days. Repeated epicutaneous applications followed by inhalation of HDM in NC/Nga mice induced an atopic march-like progression from AD lesions to respiratory allergy. Concurrent neutral cream treatment accelerated or aggravated the allergic inflammation in the skin and respiratory system, whereas an acidic cream partially alleviated these symptoms. Collectively, we developed an atopic march in NC/Nga mice by HDM application, and found that prevention of a neutral environment in the SC may be an interventional method to inhibit the march.
Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication
... Boost from Existing Medication Spotlight on Research Experimental Treatment for Duchenne Muscular Dystrophy Gets Boost from Existing Medication By Colleen Labbe, M.S. | March 1, 2013 A mouse hanging on a wire during a test of muscle strength. Mice with a mutant dystrophin gene, which ...
Alternative Fuels Data Center: Electric Trolley Boosts Business in
Bakersfield, CaliforniaA> Electric Trolley Boosts Business in Bakersfield, California to someone Business in Bakersfield, California Discover how Bakersfield's electric trolley is giving a green boost to downtown businesses. For information about this project, contact San Joaquin Valley Clean Cities. Download
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johns, Kenneth
BOOST 2013 was the 5th International Joint Theory/Experiment Workshop on Phenomenology, Reconstruction and Searches for Boosted Objects in High Energy Hadron Collisions. It was locally organized and hosted by the Experimental High Energy Physics Group at the University of Arizona and held at Flagstaff, Arizona on August 12-16, 2013. The workshop provided a forum for theorists and experimentalists to present and discuss the latest findings related to the reconstruction of boosted objects in high energy hadron collisions and their use in searches for new physics. This report gives the outcomes of the BOOST 2013 Workshop.
NASA Technical Reports Server (NTRS)
Sable, Dan M.; Cho, Bo H.; Lee, Fred C.
1990-01-01
A detailed comparison of a boost converter, a voltage-fed, autotransformer converter, and a multimodule boost converter, designed specifically for the space platform battery discharger, is performed. Computer-based nonlinear optimization techniques are used to facilitate an objective comparison. The multimodule boost converter is shown to be the optimum topology at all efficiencies. The margin is greatest at 97 percent efficiency. The multimodule, multiphase boost converter combines the advantages of high efficiency, light weight, and ample margin on the component stresses, thus ensuring high reliability.
Boosted Schwarzschild metrics from a Kerr–Schild perspective
NASA Astrophysics Data System (ADS)
Mädler, Thomas; Winicour, Jeffrey
2018-02-01
The Kerr–Schild version of the Schwarzschild metric contains a Minkowski background which provides a definition of a boosted black hole. There are two Kerr–Schild versions corresponding to ingoing or outgoing principle null directions. We show that the two corresponding Minkowski backgrounds and their associated boosts have an unexpected difference. We analyze this difference and discuss the implications in the nonlinear regime for the gravitational memory effect resulting from the ejection of massive particles from an isolated system. We show that the nonlinear effect agrees with the linearized result based upon the retarded Green function only if the velocity of the ejected particle corresponds to a boost symmetry of the ingoing Minkowski background. A boost with respect to the outgoing Minkowski background is inconsistent with the absence of ingoing radiation from past null infinity.
NASA Astrophysics Data System (ADS)
Mukhopadhyay, Debraj; Das, Subhrajit; Arunkumar, G.; Elangovan, D.; Ragunath, G.
2017-11-01
In this paper a current fed interleaved DC - DC boost converter which has an isolated topology and used for high voltage step up is proposed. A basic DC to DC boost converter converts uncontrolled DC voltage into controlled DC voltage of higher magnitude. Whereas this topology has the advantages of lower input current ripple, lesser output voltage, lesser stress on switches, faster transient response, improved reliability and much lesser electromagnetic emission over the conventional DC to DC boost converter. Most important benefit of this interleaved DC to DC boost converter is much higher efficiency. The input current is divided into two paths, substantially ohmic loss (I2R) and inductor ac loss gets reduced and finally the system achieves much higher efficiency. With recent mandates on energy saving interleaved DC to DC boost converter may be used as a very powerful tool to maintain good power density keeping the input current manageable. Higher efficiency also allows higher switching frequency and as a result the topology becomes more compact and cost friendly. The proposed topology boosts 48v DC to 200 V DC. Switching frequency is 100 kHz and PSIM 9.1 Platform has been used for the simulation.
Yang, Ehwa; Gwak, Jeonghwan; Jeon, Moongu
2017-01-01
Due to the reasonably acceptable performance of state-of-the-art object detectors, tracking-by-detection is a standard strategy for visual multi-object tracking (MOT). In particular, online MOT is more demanding due to its diverse applications in time-critical situations. A main issue of realizing online MOT is how to associate noisy object detection results on a new frame with previously being tracked objects. In this work, we propose a multi-object tracker method called CRF-boosting which utilizes a hybrid data association method based on online hybrid boosting facilitated by a conditional random field (CRF) for establishing online MOT. For data association, learned CRF is used to generate reliable low-level tracklets and then these are used as the input of the hybrid boosting. To do so, while existing data association methods based on boosting algorithms have the necessity of training data having ground truth information to improve robustness, CRF-boosting ensures sufficient robustness without such information due to the synergetic cascaded learning procedure. Further, a hierarchical feature association framework is adopted to further improve MOT accuracy. From experimental results on public datasets, we could conclude that the benefit of proposed hybrid approach compared to the other competitive MOT systems is noticeable. PMID:28304366
Gilbert, Peter B.; Grove, Douglas; Gabriel, Erin; Huang, Ying; Gray, Glenda; Hammer, Scott M.; Buchbinder, Susan P.; Kublin, James; Corey, Lawrence; Self, Steven G.
2012-01-01
Five preventative HIV vaccine efficacy trials have been conducted over the last 12 years, all of which evaluated vaccine efficacy (VE) to prevent HIV infection for a single vaccine regimen versus placebo. Now that one of these trials has supported partial VE of a prime-boost vaccine regimen, there is interest in conducting efficacy trials that simultaneously evaluate multiple prime-boost vaccine regimens against a shared placebo group in the same geographic region, for accelerating the pace of vaccine development. This article proposes such a design, which has main objectives (1) to evaluate VE of each regimen versus placebo against HIV exposures occurring near the time of the immunizations; (2) to evaluate durability of VE for each vaccine regimen showing reliable evidence for positive VE; (3) to expeditiously evaluate the immune correlates of protection if any vaccine regimen shows reliable evidence for positive VE; and (4) to compare VE among the vaccine regimens. The design uses sequential monitoring for the events of vaccine harm, non-efficacy, and high efficacy, selected to weed out poor vaccines as rapidly as possible while guarding against prematurely weeding out a vaccine that does not confer efficacy until most of the immunizations are received. The evaluation of the design shows that testing multiple vaccine regimens is important for providing a well-powered assessment of the correlation of vaccine-induced immune responses with HIV infection, and is critically important for providing a reasonably powered assessment of the value of identified correlates as surrogate endpoints for HIV infection. PMID:23181167
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szybist, James P.; Splitter, Derek A.
The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less
Understanding Chemistry-Specific Fuel Differences at a Constant RON in a Boosted SI Engine
Szybist, James P.; Splitter, Derek A.
2018-01-02
The goal of the US Department of Energy Co-Optimization of Fuels and Engines (Co-Optima) initiative is to accelerate the development of advanced fuels and engines for higher efficiency and lower emissions. A guiding principle of this initiative is the central fuel properties hypothesis (CFPH), which states that fuel properties provide an indication of a fuel’s performance, regardless of its chemical composition. This is an important consideration for Co-Optima because many of the fuels under consideration are from bio-derived sources with chemical compositions that are unconventional relative to petroleum-derived gasoline or ethanol. In this study, we investigated a total of sevenmore » fuels in a spark ignition engine under boosted operating conditions to determine whether knock propensity is predicted by fuel antiknock metrics: antiknock index (AKI), research octane number (RON), and octane index (OI). Six of these fuels have a constant RON value but otherwise represent a wide range of fuel properties and chemistry. Consistent with previous studies, we found that OI was a much better predictor of knock propensity that either AKI or RON. However, we also found that there were significant fuel-specific deviations from the OI predictions. Combustion analysis provided insight that fuel kinetic complexities, including the presence of pre-spark heat release, likely limits the ability of standardized tests and metrics to accurately predict knocking tendency at all operating conditions. While limitations of OI were revealed in this study, we found that fuels with unconventional chemistry, in particular esters and ethers, behaved in accordance with CFPH as well as petroleum-derived fuels.« less
PINK1-Mediated Phosphorylation of Parkin Boosts Parkin Activity in Drosophila
Shiba-Fukushima, Kahori; Inoshita, Tsuyoshi; Hattori, Nobutaka; Imai, Yuzuru
2014-01-01
Two genes linked to early onset Parkinson's disease, PINK1 and Parkin, encode a protein kinase and a ubiquitin-ligase, respectively. Both enzymes have been suggested to support mitochondrial quality control. We have reported that Parkin is phosphorylated at Ser65 within the ubiquitin-like domain by PINK1 in mammalian cultured cells. However, it remains unclear whether Parkin phosphorylation is involved in mitochondrial maintenance and activity of dopaminergic neurons in vivo. Here, we examined the effects of Parkin phosphorylation in Drosophila, in which the phosphorylation residue is conserved at Ser94. Morphological changes of mitochondria caused by the ectopic expression of wild-type Parkin in muscle tissue and brain dopaminergic neurons disappeared in the absence of PINK1. In contrast, phosphomimetic Parkin accelerated mitochondrial fragmentation or aggregation and the degradation of mitochondrial proteins regardless of PINK1 activity, suggesting that the phosphorylation of Parkin boosts its ubiquitin-ligase activity. A non-phosphorylated form of Parkin fully rescued the muscular mitochondrial degeneration due to the loss of PINK1 activity, whereas the introduction of the non-phosphorylated Parkin mutant in Parkin-null flies led to the emergence of abnormally fused mitochondria in the muscle tissue. Manipulating the Parkin phosphorylation status affected spontaneous dopamine release in the nerve terminals of dopaminergic neurons, the survivability of dopaminergic neurons and flight activity. Our data reveal that Parkin phosphorylation regulates not only mitochondrial function but also the neuronal activity of dopaminergic neurons in vivo, suggesting that the appropriate regulation of Parkin phosphorylation is important for muscular and dopaminergic functions. PMID:24901221
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hannoun-Levi, Jean-Michel, E-mail: jean-michel.hannoun-levi@nice.fnclcc.fr; Cercle des Oncologues Radiotherapeutes du Sud; Ortholan, Cecile
2011-07-01
Purpose: To retrospectively assess the clinical outcome in anal cancer patients treated with split-course radiation therapy and boosted through external-beam radiation therapy (EBRT) or brachytherapy (BCT). Methods and Materials: From January 2000 to December 2004, a selected group (162 patients) with invasive nonmetastatic anal squamous cell carcinoma was studied. Tumor staging reported was T1 = 31 patients (19%), T2 = 77 patients (48%), T3 = 42 patients (26%), and T4= 12 patients (7%). Lymph node status was N0-1 (86%) and N2-3 (14%). Patients underwent a first course of EBRT: mean dose 45.1 Gy (range, 39.5-50) followed by a boost: meanmore » dose 17.9 Gy (range, 8-25) using EBRT (76 patients, 47%) or BCT (86 patients, 53%). All characteristics of patients and tumors were well balanced between the BCT and EBRT groups. Results: The mean overall treatment time (OTT) was 82 days (range, 45-143) and 67 days (range, 37-128) for the EBRT and BCT groups, respectively (p < 0.001). The median follow-up was 62 months (range, 2-108). The 5-year cumulative rate of local recurrence (CRLR) was 21%. In the univariate analysis, the prognostic factors for CRLR were as follows: T stage (T1-2 = 15% vs. T3-4 = 36%, p = 0.03), boost technique (BCT = 12% vs. EBRT = 33%, p = 0.002) and OTT (OTT <80 days = 14%, OTT {>=}80 days = 34%, p = 0.005). In the multivariate analysis, BCT boost was the unique prognostic factor (hazard ratio = 0.62 (0.41-0.92). In the subgroup of patients with OTT <80 days, the 5-year CRLR was significantly increased with the BCT boost (BC = 9% vs. EBRT = 28%, p = 0.03). In the case of OTT {>=}80 days, the 5-year CRLR was not affected by the boost technique (BCT = 29% vs. EBRT = 38%, p = 0.21). Conclusion: In anal cancer, when OTT is <80 days, BCT boost is superior to EBRT boost for CRLR. These results suggest investigating the benefit of BCT boost in prospective trials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penoncello, Gregory P.; Ding, George X., E-mail: george.ding@vanderbilt.edu
The purpose of this study was (1) to evaluate dose to skin between volumetric-modulated arc therapy (VMAT) and intensity-modulated radiation therapy (IMRT) treatment techniques for target sites in the head and neck, pelvis, and brain and (2) to determine if the treatment dose and fractionation regimen affect the skin dose between traditional sequential boost and integrated boost regimens for patients with head and neck cancer. A total of 19 patients and 48 plans were evaluated. The Eclipse (v11) treatment planning system was used to plan therapy in 9 patients with head and neck cancer, 5 patients with prostate cancer, andmore » 5 patients with brain cancer with VMAT and static-field IMRT. The mean skin dose and the maximum dose to a contiguous volume of 2 cm{sup 3} for head and neck plans and brain plans and a contiguous volume of 5 cm{sup 3} for pelvis plans were compared for each treatment technique. Of the 9 patients with head and neck cancer, 3 underwent an integrated boost regimen. One integrated boost plan was replanned with IMRT and VMAT using a traditional boost regimen. For target sites located in the head and neck, VMAT reduced the mean dose and contiguous hot spot most noticeably in the shoulder region by 5.6% and 5.4%, respectively. When using an integrated boost regimen, the contiguous hot spot skin dose in the shoulder was larger on average than a traditional boost pattern by 26.5% and the mean skin dose was larger by 1.7%. VMAT techniques largely decrease the contiguous hot spot in the skin in the pelvis by an average of 36% compared with IMRT. For the same target coverage, VMAT can reduce the skin dose in all the regions of the body, but more noticeably in the shoulders in patients with head and neck and pelvis cancer. We also found that using integrated boost regimens in patients with head and neck cancer leads to higher shoulder skin doses compared with traditional boost regimens.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jabbari, Siavash; Weinberg, Vivian K.; Kaprealian, Tania
Purpose: High dose rate (HDR) brachytherapy has been established as an excellent monotherapy or after external-beam radiotherapy (EBRT) boost treatment for prostate cancer (PCa). Recently, dosimetric studies have demonstrated the potential for achieving similar dosimetry with stereotactic body radiotherapy (SBRT) compared with HDR brachytherapy. Here, we report our technique, PSA nadir, and acute and late toxicity with SBRT as monotherapy and post-EBRT boost for PCa using HDR brachytherapy fractionation. Patients and Methods: To date, 38 patients have been treated with SBRT at University of California-San Francisco with a minimum follow-up of 12 months. Twenty of 38 patients were treated withmore » SBRT monotherapy (9.5 Gy Multiplication-Sign 4 fractions), and 18 were treated with SBRT boost (9.5 Gy Multiplication-Sign 2 fractions) post-EBRT and androgen deprivation therapy. PSA nadir to date for 44 HDR brachytherapy boost patients with disease characteristics similar to the SBRT boost cohort was also analyzed as a descriptive comparison. Results: SBRT was well tolerated. With a median follow-up of 18.3 months (range, 12.6-43.5), 42% and 11% of patients had acute Grade 2 gastrourinary and gastrointestinal toxicity, respectively, with no Grade 3 or higher acute toxicity to date. Two patients experienced late Grade 3 GU toxicity. All patients are without evidence of biochemical or clinical progression to date, and favorably low PSA nadirs have been observed with a current median PSA nadir of 0.35 ng/mL (range, <0.01-2.1) for all patients (0.47 ng/mL, range, 0.2-2.1 for the monotherapy cohort; 0.10 ng/mL, range, 0.01-0.5 for the boost cohort). With a median follow-up of 48.6 months (range, 16.4-87.8), the comparable HDR brachytherapy boost cohort has achieved a median PSA nadir of 0.09 ng/mL (range, 0.0-3.3). Conclusions: Early results with SBRT monotherapy and post-EBRT boost for PCa demonstrate acceptable PSA response and minimal toxicity. PSA nadir with SBRT boost appears comparable to those achieved with HDR brachytherapy boost.« less
Gaussian Accelerated Molecular Dynamics in NAMD
2016-01-01
Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for “unconstrained” enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules. PMID:28034310
In Situ Oxalic Acid Injection to Accelerate Arsenic Remediation at a Superfund Site in New Jersey
Wovkulich, Karen; Stute, Martin; Mailloux, Brian J.; Keimowitz, Alison R.; Ross, James; Bostick, Benjamin; Sun, Jing; Chillrud, Steven N.
2015-01-01
Arsenic is a prevalent contaminant at a large number of US Superfund sites; establishing techniques that accelerate As remediation could benefit many sites. Hundreds of tons of As were released into the environment by the Vineland Chemical Co. in southern New Jersey during its manufacturing lifetime (1949–1994), resulting in extensive contamination of surface and subsurface soils and sediments, groundwater, and the downstream watershed. Despite substantial intervention at this Superfund site, sufficient aquifer cleanup could require many decades if based on traditional pump and treat technologies only. Laboratory column experiments have suggested that oxalic acid addition to contaminated aquifer solids could promote significant As release from the solid phase. To evaluate the potential of chemical additions to increase As release in situ and boost treatment efficiency, a forced gradient pilot scale study was conducted on the Vineland site. During spring/summer 2009, oxalic acid and bromide tracer were injected into a small portion (~50 m2) of the site for 3 months. Groundwater samples indicate that introduction of oxalic acid led to increased As release. Between 2.9 and 3.6 kg of As were removed from the sampled wells as a result of the oxalic acid treatment during the 3-month injection. A comparison of As concentrations on sediment cores collected before and after treatment and analyzed using X-ray fluorescence spectroscopy suggested reduction in As concentrations of ~36% (median difference) to 48% (mean difference). While further study is necessary, the addition of oxalic acid shows potential for accelerating treatment of a highly contaminated site and decreasing the As remediation time-scale. PMID:25598701
Gaussian Accelerated Molecular Dynamics in NAMD.
Pang, Yui Tik; Miao, Yinglong; Wang, Yi; McCammon, J Andrew
2017-01-10
Gaussian accelerated molecular dynamics (GaMD) is a recently developed enhanced sampling technique that provides efficient free energy calculations of biomolecules. Like the previous accelerated molecular dynamics (aMD), GaMD allows for "unconstrained" enhanced sampling without the need to set predefined collective variables and so is useful for studying complex biomolecular conformational changes such as protein folding and ligand binding. Furthermore, because the boost potential is constructed using a harmonic function that follows Gaussian distribution in GaMD, cumulant expansion to the second order can be applied to recover the original free energy profiles of proteins and other large biomolecules, which solves a long-standing energetic reweighting problem of the previous aMD method. Taken together, GaMD offers major advantages for both unconstrained enhanced sampling and free energy calculations of large biomolecules. Here, we have implemented GaMD in the NAMD package on top of the existing aMD feature and validated it on three model systems: alanine dipeptide, the chignolin fast-folding protein, and the M 3 muscarinic G protein-coupled receptor (GPCR). For alanine dipeptide, while conventional molecular dynamics (cMD) simulations performed for 30 ns are poorly converged, GaMD simulations of the same length yield free energy profiles that agree quantitatively with those of 1000 ns cMD simulation. Further GaMD simulations have captured folding of the chignolin and binding of the acetylcholine (ACh) endogenous agonist to the M 3 muscarinic receptor. The reweighted free energy profiles are used to characterize the protein folding and ligand binding pathways quantitatively. GaMD implemented in the scalable NAMD is widely applicable to enhanced sampling and free energy calculations of large biomolecules.
NASA Astrophysics Data System (ADS)
Rubbia, André
2009-06-01
The current focus of the CERN program is the Large Hadron Collider (LHC), however, CERN is engaged in long baseline neutrino physics with the CNGS project and supports T2K as recognized CERN RE13, and for good reasons: a number of observed phenomena in high-energy physics and cosmology lack their resolution within the Standard Model of particle physics; these puzzles include the origin of neutrino masses, CP-violation in the leptonic sector, and baryon asymmetry of the Universe. They will only partially be addressed at LHC. A positive measurement of sin2 2θ13 > 0.01 would certainly give a tremendous boost to neutrino physics by opening the possibility to study CP violation in the lepton sector and the determination of the neutrino mass hierarchy with upgraded conventional super-beams. These experiments (so called 'Phase II') require, in addition to an upgraded beam power, next generation very massive neutrino detectors with excellent energy resolution and high detection efficiency in a wide neutrino energy range, to cover 1st and 2nd oscillation maxima, and excellent particle identification and p0 background suppression. Two generations of large water Cherenkov detectors at Kamioka (Kamiokande and Super-Kamiokande) have been extremely successful. And there are good reasons to consider a third generation water Cherenkov detector with an order of magnitude larger mass than Super-Kamiokande for both non-accelerator (proton decay, supernovae,...) and accelerator-based physics. On the other hand, a very massive underground liquid Argon detector of about 100 kton could represent a credible alternative for the precision measurements of 'Phase II' and aim at significantly new results in neutrino astroparticle and non-accelerator-based particle physics (e.g. proton decay).
Alternative Fuels Data Center: New York Coalition Helps Local Alternative
Fuel Station Boost Revenue New York Coalition Helps Local Alternative Fuel Station Boost Revenue to someone by E-mail Share Alternative Fuels Data Center: New York Coalition Helps Local Alternative Fuel Station Boost Revenue on Facebook Tweet about Alternative Fuels Data Center: New York
Series Connected Buck-Boost Regulator
NASA Technical Reports Server (NTRS)
Birchenough, Arthur G. (Inventor)
2006-01-01
A Series Connected Buck-Boost Regulator (SCBBR) that switches only a fraction of the input power, resulting in relatively high efficiencies. The SCBBR has multiple operating modes including a buck, a boost, and a current limiting mode, so that an output voltage of the SCBBR ranges from below the source voltage to above the source voltage.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patel, Henal; Goyal, Sharad; Kim, Leonard, E-mail: kimlh@rutgers.edu
Several publications have recommended that patients undergoing whole-breast radiotherapy be resimulated for boost planning. The rationale for this is that the seroma may be smaller when compared with the initial simulation. However, the decision remains whether to use the earlier or later images to define an appropriate boost target volume. A patient undergoing whole-breast radiotherapy had new, injectable, temporary hydrogel fiducial markers placed 1 to 3 cm from the seroma at the time of initial simulation. The patient was resimulated 4.5 weeks later for conformal photon boost planning. Computed tomography (CT) scans acquired at the beginning and the end ofmore » whole-breast radiotherapy showed that shrinkage of the lumpectomy cavity was not matched by a corresponding reduction in the surrounding tissue volume, as demarcated by hydrogel markers. This observation called into question the usual interpretation of cavity shrinkage for boost target definition. For this patient, it was decided to define the boost target volume on the initial planning CT instead of the new CT.« less
De Rosa, Stephen C.; Thomas, Evan P.; Bui, John; Huang, Yunda; deCamp, Allan; Morgan, Cecilia; Kalams, Spyros; Tomaras, Georgia D.; Akondy, Rama; Ahmed, Rafi; Lau, Chuen-Yen; Graham, Barney S.; Nabel, Gary J.; McElrath, M. Juliana
2011-01-01
Many candidate HIV vaccines are designed to primarily elicit T-cell responses. Although repeated immunization with the same vaccine boosts antibody responses, the benefit for T-cell responses is ill-defined. We compared two immunization regimens that include the same recombinant adenoviral serotype 5 (rAd5) boost. Repeated homologous rAd5 immunization fails to increase T-cell responses, but increases gp140 antibody responses ten-fold. DNA prime, as compared with rAd5 prime, directs long-term memory CD8+ T cells toward a terminally differentiated effector memory phenotype with cytotoxic potential. Based on the kinetics of activated cells measured directly ex vivo, the DNA vaccination primes for both CD4+ and CD8+ T cells, despite the lack of detection of the latter until after the boost. These results suggest that heterologous prime-boost combinations have distinct immunological advantages over homologous prime-boosts, and suggest that the effect of DNA on subsequent boosting may not be easily detectable directly after the DNA vaccination. PMID:21844392
Can we predict Acute Medical readmissions using the BOOST tool? A retrospective case note review.
Lee, Geraldine A; Freedman, Daniel; Beddoes, Penelope; Lyness, Emily; Nixon, Imogen; Srivastava, Vivek
2016-01-01
Readmissions within 30-days of hospital discharge are a problem. The aim was to determine if the Better Outcomes for Older Adults through Safe Transitions (BOOST) risk assessment tool was applicable within the UK. Patients over 65 readmitted were identified retrospectively via a casenote review. BOOST assessment was applied with 1 point for each risk factor. 324 patients were readmitted (mean age 77 years) with a median of 7 days between discharge and readmission. The median BOOST score was 3 (IQR 2-4) with polypharmacy evident in 88% and prior hospitalisation in 70%. The tool correctly predicted 90% of readmissions using two or more risk factors and 99.1% if one risk factor was included. The BOOST assessment tool appears appropriate in predicting readmissions however further analysis is required to determine its precision.
Longitudinal hydrodynamics from event-by-event Landau initial conditions
Sen, Abhisek; Gerhard, Jochen; Torrieri, Giorgio; ...
2015-02-02
Here we investigate three-dimensional ideal hydrodynamic evolution, with Landau initial conditions, incorporating event-by-event variation with many events and transverse density inhomogeneities. We show that the transition to boost-invariant flow occurs too late for realistic setups, with corrections of θ (20%-30%) expected at freeze-out for most scenarios. Moreover, the deviation from boost invariance is correlated with both transverse flow and elliptic flow, with the more highly transversely flowing regions also showing the most violation of boost invariance. Therefore, if longitudinal flow is not fully developed at the early stages of heavy ion collisions, hydrodynamics where boost invariance holds at midrapidity ismore » inadequate to extract transport coefficients of the quark-gluon plasma. We conclude by arguing that developing experimental probes of boost invariance is necessary, and suggest some promising directions in this regard.« less
The role of Dark Matter sub-halos in the non-thermal emission of galaxy clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marchegiani, Paolo; Colafrancesco, Sergio, E-mail: Paolo.Marchegiani@wits.ac.za, E-mail: Sergio.Colafrancesco@wits.ac.za
2016-11-01
Annihilation of Dark Matter (DM) particles has been recognized as one of the possible mechanisms for the production of non-thermal particles and radiation in galaxy clusters. Previous studies have shown that, while DM models can reproduce the spectral properties of the radio halo in the Coma cluster, they fail in reproducing the shape of the radio halo surface brightness because they produce a shape that is too concentrated towards the center of the cluster with respect to the observed one. However, in previous studies the DM distribution was modeled as a single spherically symmetric halo, while the DM distribution inmore » Coma is found to have a complex and elongated shape. In this work we calculate a range of non-thermal emissions in the Coma cluster by using the observed distribution of DM sub-halos. We find that, by including the observed sub-halos in the DM model, we obtain a radio surface brightness with a shape similar to the observed one, and that the sub-halos boost the radio emission by a factor between 5 and 20%, thus allowing to reduce the gap between the annihilation cross section required to reproduce the radio halo flux and the upper limits derived from other observations, and that this gap can be explained by realistic values of the boosting factor due to smaller substructures. Models with neutralino mass of 9 GeV and composition τ{sup +} τ{sup −}, and mass of 43 GeV and composition b b-bar can fit the radio halo spectrum using the observed properties of the magnetic field in Coma, and do not predict a gamma-ray emission in excess compared to the recent Fermi-LAT upper limits. These findings make these DM models viable candidate to explain the origin of radio halos in galaxy clusters, avoiding the problems connected to the excessive gamma-ray emission expected from proton acceleration in most of the currently proposed models, where the acceleration of particles is directly or indirectly connected to events related to clusters merging. Therefore, DM models deserve to be better studied both from the theoretical and observational sides; the best spectral bands where it is possible to obtain better information are the radio and the gamma-ray bands, while we do not expect a strong emission in the X-ray band.« less
Tumour bed boost radiotherapy for women after breast-conserving surgery.
Kindts, Isabelle; Laenen, Annouschka; Depuydt, Tom; Weltens, Caroline
2017-11-06
Breast-conserving therapy, involving breast-conserving surgery followed by whole-breast irradiation and optionally a boost to the tumour bed, is a standard therapeutic option for women with early-stage breast cancer. A boost to the tumour bed means that an extra dose of radiation is applied that covers the initial tumour site. The rationale for a boost of radiotherapy to the tumour bed is that (i) local recurrence occurs mostly at the site of the primary tumour because remaining microscopic tumour cells are most likely situated there; and (ii) radiation can eliminate these causative microscopic tumour cells. The boost continues to be used in women at high risk of local recurrence, but is less widely accepted for women at lower risk. Reasons for questioning the boost are twofold. Firstly, the boost brings higher treatment costs. Secondly, the potential adverse events are not negligible. In this Cochrane Review, we investigated the effect of the tumour bed boost on local control and side effects. To assess the effects of tumour bed boost radiotherapy after breast-conserving surgery and whole-breast irradiation for the treatment of breast cancer. We searched the Cochrane Breast Cancer Specialised Register, the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE (January 1966 to 1 March 2017), Embase (1980 to 1 March 2017), the World Health Organization International Clinical Trials Registry Platform, and ClinicalTrials.gov on 1 March 2017. We also searched the European Society of Radiotherapy and Oncology Annual Meeting, the St Gallen Oncology Conferences, and the American Society for Radiation Oncology Annual Meeting for abstracts. Randomised controlled trials comparing the addition and the omission of breast cancer tumour bed boost radiotherapy. Two review authors (IK and CW) performed data extraction and assessed risk of bias using Cochrane's 'Risk of bias' tool, resolving any disagreements through discussion. We entered data into Review Manager 5 for analysis and applied GRADE to assess the quality of the evidence. We included 5 randomised controlled trials analysing a total of 8325 women.Local control appeared to be better for women receiving a tumour bed boost compared to no tumour bed boost (hazard ratio (HR) 0.64, 95% confidence interval (CI) 0.55 to 0.75; 5 studies, 8315 women, low-quality evidence). Overall survival did not differ with or without a tumour bed boost (HR 1.04, 95% CI 0.94 to 1.14; 2 studies, 6342 women, moderate-quality evidence). Disease-free survival did not differ with or without a tumour bed boost (HR 0.94, 95% CI 0.87 to 1.02; 3 studies, 6549 women, low-quality evidence). Late toxicity scored by means of percentage of breast retraction assessment did not differ with or without a tumour bed boost (mean difference 0.38, 95% CI -0.18 to 0.93; 2 studies, 1526 women, very low-quality evidence). Cosmesis scored by a panel was better (i.e. excellent or good compared to fair or poor) in the no-boost group (odds ratio (OR) 1.41, 95% CI 1.07 to 1.85; 2 studies, 1116 women, low-quality evidence). Cosmesis scored by a physician did not differ with or without a tumour bed boost (OR 1.58, 95% CI 0.93 to 2.69; 2 studies, 592 women, very low-quality evidence).We excluded two studies in a sensitivity analysis of local recurrence (because the biological equivalent dose (BED) to the tumour bed was lower, in situ tumours were included, or there was a high risk of selective reporting bias or blinding of outcome assessment bias), which resulted in a HR of 0.62 (95% CI 0.52 to 0.73; 3 studies, 6963 women, high-quality evidence). Subgroup analysis including women older than 40 years of age yielded a HR of 0.65 (95% CI 0.53 to 0.81; 2 studies, 5058 women, high-quality evidence).We found no data for the outcomes of acute toxicity, quality of life, or costs. It appears that local control rates are increased with the boost to the tumour bed, but we found no evidence of a benefit for other oncological outcomes. Subgroup analysis including women older than 40 years of age yielded similarly significant results. Objective percentage of breast retraction assessment appears similar between groups. It appears that the cosmetic outcome is worse with the boost to the tumour bed, but only when measured by a panel, not when assessed by a physician.
Enhancing Working Memory Training with Transcranial Direct Current Stimulation.
Au, Jacky; Katz, Benjamin; Buschkuehl, Martin; Bunarjo, Kimberly; Senger, Thea; Zabel, Chelsea; Jaeggi, Susanne M; Jonides, John
2016-09-01
Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoshaug, Eric P; Van Wychen, Stefanie R; Zhang, Min
Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1)more » genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.« less
McClelland, Shearwood; Sandler, Kiri A; Degnin, Catherine; Chen, Yiyi; Mitin, Timur
2018-06-01
Three randomized clinical trials have established brachytherapy (BT) boost in combination with external beam radiation therapy (EBRT) and androgen deprivation therapy (ADT) as superior to definitive EBRT and ADT alone in terms of biochemical control (but not overall survival) at the expense of increased toxicity in men with high-risk (HR) prostate cancer (PCa). The current view regarding these 2 treatment algorithms among North American genitourinary (GU) experts is not known. A survey was distributed to 88 practicing North American GU physicians serving on decision-making committees of cooperative group research organizations. Questions pertained to opinions regarding BT as monotherapy for low-risk PCa and BT boost for HR PCa. Responders were asked to self-identify as BT experts versus non-experts. Treatment recommendations were correlated with practice patterns using the Fisher exact test. Forty-two radiation oncologists completed the survey, of whom 23 (55%) recommend EBRT and ADT alone and 19 (45%) recommend addition of BT boost. Twenty-five participants (60%) identified themselves as BT experts. Nearly 90% of those recommending BT boost were BT experts versus approximately 10% of non-BT experts (P < .001). Responders who recommended BT monotherapy as first-choice treatment for low-risk PCa were more likely to recommend BT boost for HR PCa (P < .0001). There is a dramatic polarization in opinions regarding incorporation of BT boost into EBRT + ADT therapy for patients with HR PCa among North American GU radiation oncology experts, who serve on decision-making committees and influence the national treatment guidelines and future clinical trials. Those who identify themselves as BT experts are significantly more likely to recommend BT boost. These findings are likely to influence the national guidelines and implementation of BT boost in current and future North American PCa clinical studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Zhu, Wandi; Pewin, Winston; Wang, Chao; Luo, Yuan; Gonzalez, Gilbert X; Mohan, Teena; Prausnitz, Mark R; Wang, Bao-Zhong
2017-09-10
The biodegradable microneedle patch (MNP) is a novel technology for vaccine delivery that could improve the immunogenicity of vaccines. To broaden the protective efficiency of conventional influenza vaccines, a new 4M2e-tFliC fusion protein construct containing M2e sequences from different subtypes was generated. Purified fusion protein was encapsulate into MNPs with a biocompatible polymer for use as a boosting vaccine. The results demonstrated that mice receiving a conventional inactivated vaccine followed by a skin-applied dissolving 4M2e-tFliC MNP boost could better maintain the humoral antibody response than that by the conventional vaccine-prime alone. Compared with an intramuscular injection boost, mice receiving the MNP boost showed significantly enhanced cellular immune responses, hemagglutination-inhibition (HAI) titers, and neutralization titers. Increased frequency of antigen-specific plasma cells and long-lived bone marrow plasma cells was detected in the MNP boosted group as well, indicating that skin vaccination with 4M2e-tFliC facilitated a long-term antibody-mediated immunity. The 4M2e-tFliC MNP-boosted group also possessed enhanced protection against high lethal dose challenges against homologous A/PR/8/34 and A/Aichi/2/68 viruses and protection for a majority of immunized mice against a heterologous A/California/07/2009 H1N1 virus. High levels of M2e specific immune responses were observed in the 4M2e-tFliC MNP-boosted group as well. These results demonstrate that a skin-applied 4M2e-tFliC MNP boosting immunization to seasonal vaccine recipients may be a rapid approach for increasing the protective efficacy of seasonal vaccines in response to a significant drift seen in circulating viruses. The results also provide a new perspective for future exploration of universal influenza vaccines. Copyright © 2017 Elsevier B.V. All rights reserved.
Haslett, Kate; Franks, Kevin; Hanna, Gerard G; Harden, Susan; Hatton, Matthew; Harrow, Stephen; McDonald, Fiona; Ashcroft, Linda; Falk, Sally; Groom, Nicki; Harris, Catherine; McCloskey, Paula; Whitehurst, Philip; Bayman, Neil; Faivre-Finn, Corinne
2016-04-15
The majority of stage III patients with non-small cell lung cancer (NSCLC) are unsuitable for concurrent chemoradiotherapy, the non-surgical gold standard of care. As the alternative treatment options of sequential chemoradiotherapy and radiotherapy alone are associated with high local failure rates, various intensification strategies have been employed. There is evidence to suggest that altered fractionation using hyperfractionation, acceleration, dose escalation, and individualisation may be of benefit. The MAASTRO group have pioneered the concept of 'isotoxic' radiotherapy allowing for individualised dose escalation using hyperfractionated accelerated radiotherapy based on predefined normal tissue constraints. This study aims to evaluate whether delivering isotoxic radiotherapy using intensity modulated radiotherapy (IMRT) is achievable. Isotoxic IMRT is a multicentre feasibility study. From June 2014, a total of 35 patients from 7 UK centres, with a proven histological or cytological diagnosis of inoperable NSCLC, unsuitable for concurrent chemoradiotherapy will be recruited. A minimum of 2 cycles of induction chemotherapy is mandated before starting isotoxic radiotherapy. The dose of radiation will be increased until one or more of the organs at risk tolerance or the maximum dose of 79.2 Gy is reached. The primary end point is feasibility, with accrual rates, local control and overall survival our secondary end points. Patients will be followed up for 5 years. The study has received ethical approval (REC reference: 13/NW/0480) from the National Research Ethics Service (NRES) Committee North West-Greater Manchester South. The trial is conducted in accordance with the Declaration of Helsinki and Good Clinical Practice (GCP). The trial results will be published in a peer-reviewed journal and presented internationally. NCT01836692; Pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Li, Hu; Choi, Cheol Ung; Oh, Dong Joo
2017-01-01
We report herein the optical coherence tomography (OCT) and stent boost imaging guided bioresorbable vascular scaffold (BVS) implantation for right coronary artery (RCA) chronic total occlusion (CTO) lesion. The gold standard for evaluating BVS expansion after percutaneous coronary intervention is OCT. However, stent boost imaging is a new technique that improves fluoroscopy-based assessments of stent overlapping, and the present case shows clinical usefulness of OCT and stent boost imaging guided ‘overlapping’ BVS implantation via antegrade approach for a typical RCA CTO lesion. PMID:28792157
Rantalainen, T; Hesketh, K D; Rodda, C; Duckham, R L
2018-06-16
Jump tests assess lower body power production capacity, and can be used to evaluate athletic ability and development during growth. Wearable inertial measurement units (IMU) seem to offer a feasible alternative to laboratory-based equipment for jump height assessments. Concurrent validity of these devices for jump height assessments has only been established in adults. Therefore, the purpose of this study was to evaluate the concurrent validity of IMU-based jump height estimate compared to contact mat-based jump height estimate in adolescents. Ninety-five adolescents (10-13 years-of-age; girls N=41, height = 154 (SD 9) cm, weight = 44 (11) kg; boys N=54, height=156 (10) cm, weight = 46 (13) kg) completed three counter-movement jumps for maximal jump height on a contact mat. Inertial recordings (accelerations, rotations) were concurrently recorded with a hip-worn IMU (sampling at 256 Hz). Jump height was evaluated based on flight time. The mean IMU-derived jump height was 27.1 (SD 3.8) cm, and the corresponding mean jump-mat-derived value was 21.5 (3.4) cm. While a significant 26% mean difference was observed between the methods (5.5 [95% limits of agreement 2.2 to 8.9] cm, p = 0.006), the correspondence between methods was excellent (ICC = 0.89). The difference between methods was weakly positively associated with jump height (r = 0.28, P = 0.007). Take-off velocity derived jump height was also explored but produced only fair congruence. In conclusion, IMU-derived jump height exhibited excellent congruence to contact mat-based jump height and therefore presents a feasible alternative for jump height assessments in adolescents. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Analyzing and designing object-oriented missile simulations with concurrency
NASA Astrophysics Data System (ADS)
Randorf, Jeffrey Allen
2000-11-01
A software object model for the six degree-of-freedom missile modeling domain is presented. As a precursor, a domain analysis of the missile modeling domain was started, based on the Feature-Oriented Domain Analysis (FODA) technique described by the Software Engineering Institute (SEI). It was subsequently determined the FODA methodology is functionally equivalent to the Object Modeling Technique. The analysis used legacy software documentation and code from the ENDOSIM, KDEC, and TFrames 6-DOF modeling tools, including other technical literature. The SEI Object Connection Architecture (OCA) was the template for designing the object model. Three variants of the OCA were considered---a reference structure, a recursive structure, and a reference structure with augmentation for flight vehicle modeling. The reference OCA design option was chosen for maintaining simplicity while not compromising the expressive power of the OMT model. The missile architecture was then analyzed for potential areas of concurrent computing. It was shown how protected objects could be used for data passing between OCA object managers, allowing concurrent access without changing the OCA reference design intent or structure. The implementation language was the 1995 release of Ada. OCA software components were shown how to be expressed as Ada child packages. While acceleration of several low level and other high operations level are possible on proper hardware, there was a 33% degradation of 4th order Runge-Kutta integrator performance of two simultaneous ordinary differential equations using Ada tasking on a single processor machine. The Defense Department's High Level Architecture was introduced and explained in context with the OCA. It was shown the HLA and OCA were not mutually exclusive architectures, but complimentary. HLA was shown as an interoperability solution, with the OCA as an architectural vehicle for software reuse. Further directions for implementing a 6-DOF missile modeling environment are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rakovitch, Eileen, E-mail: Eileen.rakovitch@sunnybrook.ca; Institute for Clinical Evaluative Sciences, Toronto, Ontario; University of Toronto, Toronto, Ontario
Purpose: To report the outcomes of a population of women with ductal carcinoma in situ (DCIS) treated with breast-conserving surgery and radiation and to evaluate the independent effect of boost radiation on the development of local recurrence. Methods and Materials: All women diagnosed with DCIS and treated with breast-conserving surgery and radiation therapy in Ontario from 1994 to 2003 were identified. Treatments and outcomes were identified through administrative databases and validated by chart review. The impact of boost radiation on the development of local recurrence was determined using survival analyses. Results: We identified 1895 cases of DCIS that were treatedmore » by breast-conserving surgery and radiation therapy; 561 patients received boost radiation. The cumulative 10-year rate of local recurrence was 13% for women who received boost radiation and 12% for those who did not (P=.3). The 10-year local recurrence-free survival (LRFS) rate among women who did and who did not receive boost radiation was 88% and 87%, respectively (P=.27), 94% and 93% for invasive LRFS (P=.58), and was 95% and 93% for DCIS LRFS (P=.31). On multivariable analyses, boost radiation was not associated with a lower risk of local recurrence (hazard ratio = 0.82, 95% confidence interval 0.59-1.15) (P=.25). Conclusions: Among a population of women treated with breast-conserving surgery and radiation for DCIS, additional (boost) radiation was not associated with a lower risk of local or invasive recurrence.« less
Austin, Peter C; Lee, Douglas S
2011-01-01
Purpose: Classification trees are increasingly being used to classifying patients according to the presence or absence of a disease or health outcome. A limitation of classification trees is their limited predictive accuracy. In the data-mining and machine learning literature, boosting has been developed to improve classification. Boosting with classification trees iteratively grows classification trees in a sequence of reweighted datasets. In a given iteration, subjects that were misclassified in the previous iteration are weighted more highly than subjects that were correctly classified. Classifications from each of the classification trees in the sequence are combined through a weighted majority vote to produce a final classification. The authors' objective was to examine whether boosting improved the accuracy of classification trees for predicting outcomes in cardiovascular patients. Methods: We examined the utility of boosting classification trees for classifying 30-day mortality outcomes in patients hospitalized with either acute myocardial infarction or congestive heart failure. Results: Improvements in the misclassification rate using boosted classification trees were at best minor compared to when conventional classification trees were used. Minor to modest improvements to sensitivity were observed, with only a negligible reduction in specificity. For predicting cardiovascular mortality, boosted classification trees had high specificity, but low sensitivity. Conclusions: Gains in predictive accuracy for predicting cardiovascular outcomes were less impressive than gains in performance observed in the data mining literature. PMID:22254181
Petabyte Class Storage at Jefferson Lab (CEBAF)
NASA Technical Reports Server (NTRS)
Chambers, Rita; Davis, Mark
1996-01-01
By 1997, the Thomas Jefferson National Accelerator Facility will collect over one Terabyte of raw information per day of Accelerator operation from three concurrently operating Experimental Halls. When post-processing is included, roughly 250 TB of raw and formatted experimental data will be generated each year. By the year 2000, a total of one Petabyte will be stored on-line. Critical to the experimental program at Jefferson Lab (JLab) is the networking and computational capability to collect, store, retrieve, and reconstruct data on this scale. The design criteria include support of a raw data stream of 10-12 MB/second from Experimental Hall B, which will operate the CEBAF (Continuous Electron Beam Accelerator Facility) Large Acceptance Spectrometer (CLAS). Keeping up with this data stream implies design strategies that provide storage guarantees during accelerator operation, minimize the number of times data is buffered allow seamless access to specific data sets for the researcher, synchronize data retrievals with the scheduling of postprocessing calculations on the data reconstruction CPU farms, as well as support the site capability to perform data reconstruction and reduction at the same overall rate at which new data is being collected. The current implementation employs state-of-the-art StorageTek Redwood tape drives and robotics library integrated with the Open Storage Manager (OSM) Hierarchical Storage Management software (Computer Associates, International), the use of Fibre Channel RAID disks dual-ported between Sun Microsystems SMP servers, and a network-based interface to a 10,000 SPECint92 data processing CPU farm. Issues of efficiency, scalability, and manageability will become critical to meet the year 2000 requirements for a Petabyte of near-line storage interfaced to over 30,000 SPECint92 of data processing power.
Simons, Brian W; Durham, Nicholas M; Bruno, Tullia C; Grosso, Joseph F; Schaeffer, Anthony J; Ross, Ashley E; Hurley, Paula J; Berman, David M; Drake, Charles G; Thumbikat, Praveen; Schaeffer, Edward M
2015-02-01
Inflammation is associated with several diseases of the prostate including benign enlargement and cancer, but a causal relationship has not been established. Our objective was to characterize the prostate inflammatory microenvironment after infection with a human prostate-derived bacterial strain and to determine the effect of inflammation on prostate cancer progression. To this end, we mimicked typical human prostate infection with retrograde urethral instillation of CP1, a human prostatic isolate of Escherichia coli. CP1 bacteria were tropic for the accessory sex glands and induced acute inflammation in the prostate and seminal vesicles, with chronic inflammation lasting at least 1 year. Compared to controls, infection induced both acute and chronic inflammation with epithelial hyperplasia, stromal hyperplasia, and inflammatory cell infiltrates. In areas of inflammation, epithelial proliferation and hyperplasia often persist, despite decreased expression of androgen receptor (AR). Inflammatory cells in the prostates of CP1-infected mice were characterized at 8 weeks post-infection by flow cytometry, which showed an increase in macrophages and lymphocytes, particularly Th17 cells. Inflammation was additionally assessed in the context of carcinogenesis. Multiplex cytokine profiles of inflamed prostates showed that distinct inflammatory cytokines were expressed during prostate inflammation and cancer, with a subset of cytokines synergistically increased during concurrent inflammation and cancer. Furthermore, CP1 infection in the Hi-Myc mouse model of prostate cancer accelerated the development of invasive prostate adenocarcinoma, with 70% more mice developing cancer by 4.5 months of age. This study provides direct evidence that prostate inflammation accelerates prostate cancer progression and gives insight into the microenvironment changes induced by inflammation that may accelerate tumour initiation or progression. Copyright © 2014 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Arun, E-mail: arun.azad@bccancer.bc.ca; Department of Pathology, St. Vincent's Hospital, University of Melbourne, Parkville, Victoria; Bukczynska, Patricia
Purpose: To examine the effects of combined blockade of DNA-dependent protein kinase (DNA-PK) and poly(adenosine diphosphate-ribose) polymerase-1 (PARP-1) on accelerated senescence in irradiated H460 and A549 non-small cell lung cancer cells. Methods and Materials: The effects of KU5788 and AG014699 (inhibitors of DNA-PK and PARP-1, respectively) on clonogenic survival, DNA double-strand breaks (DSBs), apoptosis, mitotic catastrophe, and accelerated senescence in irradiated cells were examined in vitro. For in vivo experiments, H460 xenografts established in athymic nude mice were treated with BEZ235 (a DNA-PK, ATM, and phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor) and AG014699 to determine effects on proliferation, DNA DSBs,more » and accelerated senescence after radiation. Results: Compared with either inhibitor alone, combination treatment with KU57788 and AG014699 reduced postradiation clonogenic survival and significantly increased persistence of Gamma-H2AX (γH2AX) foci in irradiated H460 and A549 cells. Notably, these effects coincided with the induction of accelerated senescence in irradiated cells as reflected by positive β-galactosidase staining, G2-M cell-cycle arrest, enlarged and flattened cellular morphology, increased p21 expression, and senescence-associated cytokine secretion. In irradiated H460 xenografts, concurrent therapy with BEZ235 and AG014699 resulted in sustained Gamma-H2AX (γH2AX) staining and prominent β-galactosidase activity. Conclusion: Combined DNA-PK and PARP-1 blockade increased tumor cell radiosensitivity and enhanced the prosenescent properties of ionizing radiation in vitro and in vivo. These data provide a rationale for further preclinical and clinical testing of this therapeutic combination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Finkel, Morgan A.; Cooper, Benjamin T.; Li, Xiaochun
Purpose: To identify differences in breast cancer patient-reported quality of life (QOL) between 2 radiation tumor bed boost dose regimens. Methods and Materials: Four hundred patients with stage 0, I, or II breast cancer who underwent segmental mastectomy with sentinel node biopsy and/or axillary node dissection were treated with either a daily or weekly boost. Patients were treated prone to 40.5 Gy/15 fractions to the whole breast, 5 days per week. Patients were randomized to a concomitant daily boost to the tumor bed of 0.5 Gy, or a weekly boost of 2 Gy on Friday. Patients completed 6 validated QOL survey instruments at baseline,more » last week of treatment (3 weeks), 45-60 days from the completion of radiation treatment, and at 2-year follow-up. Results: There were no statistically significance differences in responses to the 6 QOL instruments between the daily and weekly radiation boost regimens, even after adjustment for important covariates. However, several changes in responses over time occurred in both arms, including worsening functional status, cosmetic status, and breast-specific pain at the end of treatment as compared with before and 45 to 60 days after the conclusion of treatment. Conclusions: Whole-breast, prone intensity modulated radiation has similar outcomes in QOL measures whether given with a daily or weekly boost. This trial has generated the foundation for a current study of weekly versus daily radiation boost in women with early breast cancer in which 3-dimensional conformal radiation is allowed as a prospective stratification factor.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulino, Arnold C., E-mail: apaulino@tmhs.or; Department of Pediatrics, Division of Hematology/Oncology, Texas Children's Hospital, Houston, TX; Baylor College of Medicine, Houston, TX
2010-12-01
Purpose: To report the incidence of Pediatric Oncology Group (POG) Grade 3 or 4 ototoxicity in a cohort of patients treated with craniospinal irradiation (CSI) followed by posterior fossa (PF) and/or tumor bed (TB) boost using intensity-modulated radiation therapy (IMRT). Methods and Materials: From 1998 to 2006, 44 patients with medulloblastoma were treated with CSI followed by IMRT to the PF and/or TB and cisplatin-based chemotherapy. Patients with standard-risk disease were treated with 18 to 23.4 Gy CSI followed by either a (1) PF boost to 36 Gy and TB boost to 54 to 55.8 Gy or (2) TB boostmore » to 55.8 Gy. Patients with high-risk disease received 36 to 39.6 Gy CSI followed by a (1) PF boost to 54 to 55.8 Gy, (2) PF boost to 45 Gy and TB boost to 55.8 Gy, or (3) TB boost to 55.8 Gy. Median audiogram follow-up was 41 months (range, 11-92.4 months). Results: POG Grade Ototoxicity 0, 1, 2, 3. and 4 was found in 29, 32, 11, 13. and 3 ears. respectively, with POG Grade 3 or 4 accounting for 18.2% of cases. There was a statistically significant difference in mean radiation dose (D{sub mean}) cochlea according to degree of ototoxicity, with D{sub mean} cochlea increasing with severity of hearing loss (p = 0.027). Conclusions: Severe ototoxicity was seen in 18.2% of ears in children treated with IMRT boost and cisplatin-based chemotherapy. Increasing dose to the cochlea was associated with increasing severity of hearing loss.« less
Park, Jong Min; Park, So-Yeon; Choi, Chang Heon; Chun, Minsoo; Kim, Jin Ho; Kim, Jung-In
2017-01-01
To investigate the plan quality of tri-Co-60 intensity-modulated radiation therapy (IMRT) with magnetic-resonance image-guided radiation therapy compared with volumetric-modulated arc therapy (VMAT) for prostate cancer. Twenty patients with intermediate-risk prostate cancer, who received radical VMAT were selected. Additional tri-Co-60 IMRT plans were generated for each patient. Both primary and boost plans were generated with tri-Co-60 IMRT and VMAT techniques. The prescription doses of the primary and boost plans were 50.4 Gy and 30.6 Gy, respectively. The primary and boost planning target volumes (PTVs) of the tri-Co-60 IMRT were generated with 3 mm margins from the primary clinical target volume (CTV, prostate + seminal vesicle) and a boost CTV (prostate), respectively. VMAT had a primary planning target volume (primary CTV + 1 cm or 2 cm margins) and a boost PTV (boost CTV + 0.7 cm margins), respectively. For both tri-Co-60 IMRT and VMAT, all the primary and boost plans were generated that 95% of the target volumes would be covered by the 100% of the prescription doses. Sum plans were generated by summation of primary and boost plans. In sum plans, the average values of V70 Gy of the bladder of tri-Co-60 IMRT vs. VMAT were 4.0% ± 3.1% vs. 10.9% ± 6.7%, (p < 0.001). Average values of V70 Gy of the rectum of tri-Co-60 IMRT vs. VMAT were 5.2% ± 1.8% vs. 19.1% ± 4.0% (p < 0.001). The doses of tri-Co-60 IMRT delivered to the bladder and rectum were smaller than those of VMAT while maintaining identical target coverage in both plans. PMID:29207634
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiaojian; Qiao, Qiao; Department of Radiotherapy, First Hospital of China Medical University, Shenyang
Purpose: To evaluate the efficiency of standard image-guided radiation therapy (IGRT) to account for lumpectomy cavity (LC) variation during whole-breast irradiation (WBI) and propose an adaptive strategy to improve dosimetry if IGRT fails to address the interfraction LC variations. Methods and Materials: Daily diagnostic-quality CT data acquired during IGRT in the boost stage using an in-room CT for 19 breast cancer patients treated with sequential boost after WBI in the prone position were retrospectively analyzed. Contours of the LC, treated breast, ipsilateral lung, and heart were generated by populating contours from planning CTs to boost fraction CTs using an auto-segmentationmore » tool with manual editing. Three plans were generated on each fraction CT: (1) a repositioning plan by applying the original boost plan with the shift determined by IGRT; (2) an adaptive plan by modifying the original plan according to a fraction CT; and (3) a reoptimization plan by a full-scale optimization. Results: Significant variations were observed in LC. The change in LC volume at the first boost fraction ranged from a 70% decrease to a 50% increase of that on the planning CT. The adaptive and reoptimization plans were comparable. Compared with the repositioning plans, the adaptive plans led to an improvement in target coverage for an increased LC case (1 of 19, 7.5% increase in planning target volume evaluation volume V{sub 95%}), and breast tissue sparing for an LC decrease larger than 35% (3 of 19, 7.5% decrease in breast evaluation volume V{sub 50%}; P=.008). Conclusion: Significant changes in LC shape and volume at the time of boost that deviate from the original plan for WBI with sequential boost can be addressed by adaptive replanning at the first boost fraction.« less
NASA Astrophysics Data System (ADS)
Schaeben, Helmut; Semmler, Georg
2016-09-01
The objective of prospectivity modeling is prediction of the conditional probability of the presence T = 1 or absence T = 0 of a target T given favorable or prohibitive predictors B, or construction of a two classes 0,1 classification of T. A special case of logistic regression called weights-of-evidence (WofE) is geologists' favorite method of prospectivity modeling due to its apparent simplicity. However, the numerical simplicity is deceiving as it is implied by the severe mathematical modeling assumption of joint conditional independence of all predictors given the target. General weights of evidence are explicitly introduced which are as simple to estimate as conventional weights, i.e., by counting, but do not require conditional independence. Complementary to the regression view is the classification view on prospectivity modeling. Boosting is the construction of a strong classifier from a set of weak classifiers. From the regression point of view it is closely related to logistic regression. Boost weights-of-evidence (BoostWofE) was introduced into prospectivity modeling to counterbalance violations of the assumption of conditional independence even though relaxation of modeling assumptions with respect to weak classifiers was not the (initial) purpose of boosting. In the original publication of BoostWofE a fabricated dataset was used to "validate" this approach. Using the same fabricated dataset it is shown that BoostWofE cannot generally compensate lacking conditional independence whatever the consecutively processing order of predictors. Thus the alleged features of BoostWofE are disproved by way of counterexamples, while theoretical findings are confirmed that logistic regression including interaction terms can exactly compensate violations of joint conditional independence if the predictors are indicators.
A MODEL OF THE HELIOSPHERE WITH JETS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drake, J. F.; Swisdak, M.; Opher, M., E-mail: drake@umd.edu, E-mail: swisdak@umd.edu, E-mail: mopher@bu.edu
2015-08-01
An analytic model of the heliosheath (HS) between the termination shock (TS) and the heliopause (HP) is developed in the limit in which the interstellar flow and magnetic field are neglected. The heliosphere in this limit is axisymmetric and the overall structure of the HS and HP is controlled by the solar magnetic field even in the limit in which the ratio of the plasma to magnetic field pressure, β = 8πP/B{sup 2}, in the HS is large. The tension of the solar magnetic field produces a drop in the total pressure between the TS and the HP. This samemore » pressure drop accelerates the plasma flow downstream of the TS into the north and south directions to form two collimated jets. The radii of these jets are controlled by the flow through the TS and the acceleration of this flow by the magnetic field—a stronger solar magnetic field boosts the velocity of the jets and reduces the radii of the jets and the HP. MHD simulations of the global heliosphere embedded in a stationary interstellar medium match well with the analytic model. The results suggest that mechanisms that reduce the HS plasma pressure downstream of the TS can enhance the jet outflow velocity and reduce the HP radius to values more consistent with the Voyager 1 observations than in current global models.« less
Nanofluid slip flow over a stretching cylinder with Schmidt and Péclet number effects
NASA Astrophysics Data System (ADS)
Md Basir, Md Faisal; Uddin, M. J.; Md. Ismail, A. I.; Bég, O. Anwar
2016-05-01
A mathematical model is presented for three-dimensional unsteady boundary layer slip flow of Newtonian nanofluids containing gyrotactic microorganisms over a stretching cylinder. Both hydrodynamic and thermal slips are included. By applying suitable similarity transformations, the governing equations are transformed into a set of nonlinear ordinary differential equations with appropriate boundary conditions. The transformed nonlinear ordinary differential boundary value problem is then solved using the Runge-Kutta-Fehlberg fourth-fifth order numerical method in Maple 18 symbolic software. The effects of the controlling parameters on the dimensionless velocity, temperature, nanoparticle volume fractions and microorganism motile density functions have been illustrated graphically. Comparisons of the present paper with the existing published results indicate good agreement and supports the validity and the accuracy of our numerical computations. Increasing bioconvection Schmidt number is observed to depress motile micro-organism density function. Increasing thermal slip parameter leads to a decrease in temperature. Thermal slip also exerts a strong influence on nano-particle concentration. The flow is accelerated with positive unsteadiness parameter (accelerating cylinder) and temperature and micro-organism density function are also increased. However nano-particle concentration is reduced with positive unsteadiness parameter. Increasing hydrodynamic slip is observed to boost temperatures and micro-organism density whereas it decelerates the flow and reduces nano-particle concentrations. The study is relevant to nano-biopolymer manufacturing processes.
Patent data mining: a tool for accelerating HIV vaccine innovation.
Clark, K; Cavicchi, J; Jensen, K; Fitzgerald, R; Bennett, A; Kowalski, S P
2011-05-31
Global access to advanced vaccine technologies is challenged by the interrelated components of intellectual property (IP) management strategies, technology transfer (legal and technical) capabilities and the capacity necessary for accelerating R&D, commercialization and delivery of vaccines. Due to a negative association with the management of IP, patents are often overlooked as a vast resource of freely available, information akin to scientific journals as well as business and technological information and trends fundamental for formulating policies and IP management strategies. Therefore, a fundamental step towards facilitating global vaccine access will be the assembly, organization and analysis of patent landscapes, to identify the amount of patenting, ownership (assignees) and fields of technology covered. This is critical for making informed decisions (e.g., identifying licensees, building research and product development collaborations, and ascertaining freedom to operate). Such information is of particular interest to the HIV vaccine community where the HIV Vaccine Enterprise, have voiced concern that IP rights (particularly patents and trade secrets) may prevent data and materials sharing, delaying progress in research and development of a HIV vaccine. We have compiled and analyzed a representative HIV vaccine patent landscape for a prime-boost, DNA/adenoviral vaccine platform, as an example for identifying obstacles, maximizing opportunities and making informed IP management strategy decisions towards the development and deployment of an efficacious HIV vaccine. Copyright © 2011 Elsevier Ltd. All rights reserved.
Impacts of simultaneous multislice acquisition on sensitivity and specificity in fMRI.
Risk, Benjamin B; Kociuba, Mary C; Rowe, Daniel B
2018-05-15
Simultaneous multislice (SMS) imaging can be used to decrease the time between acquisition of fMRI volumes, which can increase sensitivity by facilitating the removal of higher-frequency artifacts and boosting effective sample size. The technique requires an additional processing step in which the slices are separated, or unaliased, to recover the whole brain volume. However, this may result in signal "leakage" between aliased locations, i.e., slice "leakage," and lead to spurious activation (decreased specificity). SMS can also lead to noise amplification, which can reduce the benefits of decreased repetition time. In this study, we evaluate the original slice-GRAPPA (no leak block) reconstruction algorithm and acceleration factor (AF = 8) used in the fMRI data in the young adult Human Connectome Project (HCP). We also evaluate split slice-GRAPPA (leak block), which can reduce slice leakage. We use simulations to disentangle higher test statistics into true positives (sensitivity) and false positives (decreased specificity). Slice leakage was greatly decreased by split slice-GRAPPA. Noise amplification was decreased by using moderate acceleration factors (AF = 4). We examined slice leakage in unprocessed fMRI motor task data from the HCP. When data were smoothed, we found evidence of slice leakage in some, but not all, subjects. We also found evidence of SMS noise amplification in unprocessed task and processed resting-state HCP data. Copyright © 2018 Elsevier Inc. All rights reserved.
Boosting with Averaged Weight Vectors
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2002-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.