NASA Astrophysics Data System (ADS)
Li, Haifeng; Zhu, Qing; Yang, Xiaoxia; Xu, Linrong
2012-10-01
Typical characteristics of remote sensing applications are concurrent tasks, such as those found in disaster rapid response. The existing composition approach to geographical information processing service chain, searches for an optimisation solution and is what can be deemed a "selfish" way. This way leads to problems of conflict amongst concurrent tasks and decreases the performance of all service chains. In this study, a non-cooperative game-based mathematical model to analyse the competitive relationships between tasks, is proposed. A best response function is used, to assure each task maintains utility optimisation by considering composition strategies of other tasks and quantifying conflicts between tasks. Based on this, an iterative algorithm that converges to Nash equilibrium is presented, the aim being to provide good convergence and maximise the utilisation of all tasks under concurrent task conditions. Theoretical analyses and experiments showed that the newly proposed method, when compared to existing service composition methods, has better practical utility in all tasks.
Visual scanning with or without spatial uncertainty and time-sharing performance
NASA Technical Reports Server (NTRS)
Liu, Yili; Wickens, Christopher D.
1989-01-01
An experiment is reported that examines the pattern of task interference between visual scanning as a sequential and selective attention process and other concurrent spatial or verbal processing tasks. A distinction is proposed between visual scanning with or without spatial uncertainty regarding the possible differential effects of these two types of scanning on interference with other concurrent processes. The experiment required the subject to perform a simulated primary tracking task, which was time-shared with a secondary spatial or verbal decision task. The relevant information that was needed to perform the decision tasks were displayed with or without spatial uncertainty. The experiment employed a 2 x 2 x 2 design with types of scanning (with or without spatial uncertainty), expected scanning distance (low/high), and codes of concurrent processing (spatial/verbal) as the three experimental factors. The results provide strong evidence that visual scanning as a spatial exploratory activity produces greater task interference with concurrent spatial tasks than with concurrent verbal tasks. Furthermore, spatial uncertainty in visual scanning is identified to be the crucial factor in producing this differential effect.
Specificity and transfer effects in time production skill: examining the role of attention.
Wohldmann, Erica L; Healy, Alice F; Bourne, Lyle E
2012-05-01
Two experiments examined transfer of a prospective, time production skill under conditions involving changes in concurrent task requirements. Positive transfer of the time production skill might be expected only when the attentional demands of the concurrent task were held constant from training to test. However, some positive transfer was found even when the concurrent task at retraining was made either easier or more difficult than the concurrent task learned during training. The amount and direction of transfer depended more on the pacing of the stimuli in the secondary task than on the difficulty of the secondary task, even though difficulty affects attentional demands more. These findings are consistent with the procedural reinstatement principle of skill learning, by which transfer from one task to another depends on an overlap in procedures required by the two skills.
Selective impairment of auditory selective attention under concurrent cognitive load.
Dittrich, Kerstin; Stahl, Christoph
2012-06-01
Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that demonstrate such selective load effects for auditory selective attention. The effect of two different cognitive load tasks on two different auditory Stroop tasks was examined, and selective load effects were observed: Interference in a nonverbal-auditory Stroop task was increased under concurrent nonverbal-auditory cognitive load (compared with a no-load condition), but not under concurrent verbal-auditory cognitive load. By contrast, interference in a verbal-auditory Stroop task was increased under concurrent verbal-auditory cognitive load but not under nonverbal-auditory cognitive load. This double-dissociation pattern suggests the existence of different and separable verbal and nonverbal processing resources in the auditory domain.
ERIC Educational Resources Information Center
Zaman, Maliha
2010-01-01
Students may avoid working on difficult tasks because it takes them longer to complete those tasks, which results in a delay to reinforcement. Research studies show that reinforcer and response dimensions can be manipulated within a concurrent operants framework to bias choice allocation toward more difficult tasks. The current study extends…
Stroop proactive control and task conflict are modulated by concurrent working memory load.
Kalanthroff, Eyal; Avnit, Amir; Henik, Avishai; Davelaar, Eddy J; Usher, Marius
2015-06-01
Performance on the Stroop task reflects two types of conflict-informational (between the incongruent word and font color) and task (between the contextually relevant color-naming task and the irrelevant, but automatic, word-reading task). According to the dual mechanisms of control theory (DMC; Braver, 2012), variability in Stroop performance can result from variability in the deployment of a proactive task-demand control mechanism. Previous research has shown that when proactive control (PC) is diminished, both increased Stroop interference and a reversed Stroop facilitation (RF) are observed. Although the current DMC model accounts for the former effect, it does not predict the observed RF, which is considered to be behavioral evidence for task conflict in the Stroop task. Here we expanded the DMC model to account for Stroop RF. Assuming that a concurrent working memory (WM) task reduces PC, we predicted both increased interference and an RF. Nineteen participants performed a standard Stroop task combined with a concurrent n-back task, which was aimed at reducing available WM resources, and thus overloading PC. Although the results indicated common Stroop interference and facilitation in the low-load condition (zero-back), in the high-load condition (two-back), both increased Stroop interference and RF were observed, consistent with the model's prediction. These findings indicate that PC is modulated by concurrent WM load and serves as a common control mechanism for both informational and task Stroop conflicts.
Aging and Concurrent Task Performance: Cognitive Demand and Motor Control
ERIC Educational Resources Information Center
Albinet, Cedric; Tomporowski, Phillip D.; Beasman, Kathryn
2006-01-01
A motor task that requires fine control of upper limb movements and a cognitive task that requires executive processing--first performing them separately and then concurrently--was performed by 18 young and 18 older adults. The motor task required participants to tap alternatively on two targets, the sizes of which varied systematically. The…
The effect of concurrent hand movement on estimated time to contact in a prediction motion task.
Zheng, Ran; Maraj, Brian K V
2018-04-27
In many activities, we need to predict the arrival of an occluded object. This action is called prediction motion or motion extrapolation. Previous researchers have found that both eye tracking and the internal clocking model are involved in the prediction motion task. Additionally, it is reported that concurrent hand movement facilitates the eye tracking of an externally generated target in a tracking task, even if the target is occluded. The present study examined the effect of concurrent hand movement on the estimated time to contact in a prediction motion task. We found different (accurate/inaccurate) concurrent hand movements had the opposite effect on the eye tracking accuracy and estimated TTC in the prediction motion task. That is, the accurate concurrent hand tracking enhanced eye tracking accuracy and had the trend to increase the precision of estimated TTC, but the inaccurate concurrent hand tracking decreased eye tracking accuracy and disrupted estimated TTC. However, eye tracking accuracy does not determine the precision of estimated TTC.
Biomechanical Analyses of Stair-climbing while Dual-tasking
Vallabhajosula, Srikant; Tan, Chi Wei; Mukherjee, Mukul; Davidson, Austin J.; Stergiou, Nicholas
2015-01-01
Stair-climbing while doing a concurrent task like talking or holding an object is a common activity of daily living which poses high risk for falls. While biomechanical analyses of overground walking during dual-tasking have been studied extensively, little is known on the biomechanics of stair-climbing while dual-tasking. We sought to determine the impact of performing a concurrent cognitive or motor task during stair-climbing. We hypothesized that a concurrent cognitive task will have a greater impact on stair climbing performance compared to a concurrent motor task and that this impact will be greater on a higher-level step. Ten healthy young adults performed 10 trials of stair-climbing each under four conditions: stair ascending only, stair ascending and performing subtraction of serial sevens from a three-digit number, stair ascending and carrying an empty opaque box and stair ascending, performing subtraction of serial sevens from a random three-digit number and carrying an empty opaque box. Kinematics (lower extremity joint angles and minimum toe clearance) and kinetics (ground reaction forces and joint moments and powers) data were collected. We found that a concurrent cognitive task impacted kinetics but not kinematics of stair-climbing. The effect of dual-tasking during stair ascent also seemed to vary based on the different phases of stair ascent stance and seem to have greater impact as one climbs higher. Overall, the results of the current study suggest that the association between the executive functioning and motor task (like gait) becomes stronger as the level of complexity of the motor task increases. PMID:25773590
NASA Technical Reports Server (NTRS)
Rosch, E.
1975-01-01
The task of time estimation, an activity occasionally performed by pilots during actual flight, was investigated with the objective of providing human factors investigators with an unobtrusive and minimally loading additional task that is sensitive to differences in flying conditions and flight instrumentation associated with the main task of piloting an aircraft simulator. Previous research indicated that the duration and consistency of time estimates is associated with the cognitive, perceptual, and motor loads imposed by concurrent simple tasks. The relationships between the length and variability of time estimates and concurrent task variables under a more complex situation involving simulated flight were clarified. The wrap-around effect with respect to baseline duration, a consequence of mode switching at intermediate levels of concurrent task distraction, should contribute substantially to estimate variability and have a complex effect on the shape of the resulting distribution of estimates.
Effects of age, task, and frequency on variability of finger tapping.
Sommervoll, Yngve; Ettema, Gertjan; Vereijken, Beatrix
2011-10-01
The goal was to assess whether prior studies might have overestimated performance variability in older adults in dual task conditions by relying on primary motor tasks that are not constant with aging. 30 younger and 31 older adults performed a bimanual tapping task at four different frequencies in isolation or concurrently with a secondary task. Results showed that performance of younger and older adults was not significantly different in performing the tapping task at all frequencies and with either secondary task, as indicated by mean tapping performance and low number of errors in the secondary tasks. Both groups showed increased variability as tapping frequency increased and with the presence of a secondary task. Tapping concurrently while reading words increased tapping variability more than tapping concurrently while naming colours. Although older participants' performances were overall more variable, no interaction effects with age were found and at the highest frequencies of tapping, younger and older participants did not differ in performance.
Effects of speech intelligibility level on concurrent visual task performance.
Payne, D G; Peters, L J; Birkmire, D P; Bonto, M A; Anastasi, J S; Wenger, M J
1994-09-01
Four experiments were performed to determine if changes in the level of speech intelligibility in an auditory task have an impact on performance in concurrent visual tasks. The auditory task used in each experiment was a memory search task in which subjects memorized a set of words and then decided whether auditorily presented probe items were members of the memorized set. The visual tasks used were an unstable tracking task, a spatial decision-making task, a mathematical reasoning task, and a probability monitoring task. Results showed that performance on the unstable tracking and probability monitoring tasks was unaffected by the level of speech intelligibility on the auditory task, whereas accuracy in the spatial decision-making and mathematical processing tasks was significantly worse at low speech intelligibility levels. The findings are interpreted within the framework of multiple resource theory.
Chen, J Y C; Terrence, P I
2008-08-01
This study examined the concurrent performance of military gunnery, robotics control and communication tasks in a simulated environment. More specifically, the study investigated how aided target recognition (AiTR) capabilities (delivered either through tactile or tactile + visual cueing) for the gunnery task might benefit overall performance. Results showed that AiTR benefited not only the gunnery task, but also the concurrent robotics and communication tasks. The participants' spatial ability was found to be a good indicator of their gunnery and robotics task performance. However, when AiTR was available to assist their gunnery task, those participants of lower spatial ability were able to perform their robotics tasks as well as those of higher spatial ability. Finally, participants' workload assessment was significantly higher when they teleoperated (i.e. remotely operated) a robot and when their gunnery task was unassisted. These results will further understanding of multitasking performance in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Zhao, Shijie; Han, Junwei; Hu, Xintao; Jiang, Xi; Lv, Jinglei; Zhang, Tuo; Zhang, Shu; Guo, Lei; Liu, Tianming
2018-06-01
Recently, a growing body of studies have demonstrated the simultaneous existence of diverse brain activities, e.g., task-evoked dominant response activities, delayed response activities and intrinsic brain activities, under specific task conditions. However, current dominant task-based functional magnetic resonance imaging (tfMRI) analysis approach, i.e., the general linear model (GLM), might have difficulty in discovering those diverse and concurrent brain responses sufficiently. This subtraction-based model-driven approach focuses on the brain activities evoked directly from the task paradigm, thus likely overlooks other possible concurrent brain activities evoked during the information processing. To deal with this problem, in this paper, we propose a novel hybrid framework, called extendable supervised dictionary learning (E-SDL), to explore diverse and concurrent brain activities under task conditions. A critical difference between E-SDL framework and previous methods is that we systematically extend the basic task paradigm regressor into meaningful regressor groups to account for possible regressor variation during the information processing procedure in the brain. Applications of the proposed framework on five independent and publicly available tfMRI datasets from human connectome project (HCP) simultaneously revealed more meaningful group-wise consistent task-evoked networks and common intrinsic connectivity networks (ICNs). These results demonstrate the advantage of the proposed framework in identifying the diversity of concurrent brain activities in tfMRI datasets.
Richard, Christian M; Wright, Richard D; Ee, Cheryl; Prime, Steven L; Shimizu, Yujiro; Vavrik, John
2002-01-01
The effect of a concurrent auditory task on visual search was investigated using an image-flicker technique. Participants were undergraduate university students with normal or corrected-to-normal vision who searched for changes in images of driving scenes that involved either driving-related (e.g., traffic light) or driving-unrelated (e.g., mailbox) scene elements. The results indicated that response times were significantly slower if the search was accompanied by a concurrent auditory task. In addition, slower overall responses to scenes involving driving-unrelated changes suggest that the underlying process affected by the concurrent auditory task is strategic in nature. These results were interpreted in terms of their implications for using a cellular telephone while driving. Actual or potential applications of this research include the development of safer in-vehicle communication devices.
The impact of cognitive load on delayed recall.
Camos, Valérie; Portrat, Sophie
2015-08-01
Recent studies have suggested that long-term retention of items studied in a working memory span task depends on the refreshing of memory items-more specifically, on the number of refreshing opportunities. However, it was previously shown that refreshing depends on the cognitive load of the concurrent task introduced in the working memory span task. Thus, cognitive load should determine the long-term retention of items assessed in a delayed-recall test if such retention relies on refreshing. In two experiments, while the amount of refreshing opportunities remained constant, we varied the cognitive load of the concurrent task by either introducing tasks differing in their attentional demands or varying the pace of the concurrent task. To verify that this effect was related to refreshing and not to any maintenance mechanism, we also manipulated the availability of subvocal rehearsal. Replicating previous results, increasing cognitive load reduced immediate recall. This increase also had a detrimental effect on delayed recall. Conversely, the addition of concurrent articulation reduced immediate but not delayed recall. This study shows that both working and episodic memory traces depend on the cognitive load of the concurrent task, whereas the use of rehearsal affects only working memory performance. These findings add further evidence of the dissociation between subvocal rehearsal and attentional refreshing.
Pomplun, M; Reingold, E M; Shen, J
2001-09-01
In three experiments, participants' visual span was measured in a comparative visual search task in which they had to detect a local match or mismatch between two displays presented side by side. Experiment 1 manipulated the difficulty of the comparative visual search task by contrasting a mismatch detection task with a substantially more difficult match detection task. In Experiment 2, participants were tested in a single-task condition involving only the visual task and a dual-task condition in which they concurrently performed an auditory task. Finally, in Experiment 3, participants performed two dual-task conditions, which differed in the difficulty of the concurrent auditory task. Both the comparative search task difficulty (Experiment 1) and the divided attention manipulation (Experiments 2 and 3) produced strong effects on visual span size.
The effects of concurrent cognitive tasks on postural sway in healthy subjects.
Mujdeci, Banu; Turkyilmaz, Didem; Yagcioglu, Suha; Aksoy, Songul
2016-01-01
Keeping balance of the upright stance is a highly practiced daily task for healthy adults and is effectively performed without overt attentional control in most. The purpose of this study was to examine the influence of concurrent cognitive tasks on postural sway in healthy participants. This was a prospective study. 20 healthy volunteer subjects were included. The cognitive and balance tasks were performed separately and then, concurrently. Postural control task consisted of 6 conditions (C) of the Sensory Organization Test. The cognitive task consisted of digit rehearsal task of varying presentation and varying levels of difficulty. A statistically significant difference was noted between dual task and no task for C1, C2, C3 and C4 Sensory Organization Test scores (p<0.05). There was no statistically significant difference between dual task versus non-task for C5, C6 and combined Sensory Organization Test scores (p>0.05). During dual task, increase has been determined in postural sway for C1, C2, C3 and C4 for all presentation modes and difficulty levels of the cognitive tasks. Copyright © 2015 Associação Brasileira de Otorrinolaringologia e Cirurgia Cérvico-Facial. Published by Elsevier Editora Ltda. All rights reserved.
Morgan, Sara J; Hafner, Brian J; Kelly, Valerie E
2016-08-01
Many people with lower limb loss report the need to concentrate on walking. This may indicate increased reliance on cognitive resources when walking compared to individuals without limb loss. This study quantified changes in walking associated with addition of a concurrent cognitive task in persons with transfemoral amputation using microprocessor knees compared to age- and sex-matched controls. Observational, cross-sectional study. Quantitative motion analysis was used to assess walking under both single-task (walking alone) and dual-task (walking while performing a cognitive task) conditions. Primary outcomes were walking speed, step width, step time asymmetry, and cognitive task response latency and accuracy. Repeated-measures analysis of variance was used to examine the effects of task (single-task and dual-task) and group (transfemoral amputation and control) for each outcome. No significant interactions between task and group were observed (all p > 0.11) indicating that a cognitive task did not differentially affect walking between groups. However, walking was slower with wider steps and more asymmetry in people with transfemoral amputation compared to controls under both conditions. Although there were significant differences in walking between people with transfemoral amputation and matched controls, the effects of a concurrent cognitive task on walking were similar between groups. The addition of a concurrent task did not differentially affect walking outcomes in people with and without transfemoral amputation. However, compared to people without limb loss, people with transfemoral amputation adopted a conservative walking strategy. This strategy may reduce the need to concentrate on walking but also contributed to notable gait deviations. © The International Society for Prosthetics and Orthotics 2015.
Künstler, E C S; Finke, K; Günther, A; Klingner, C; Witte, O; Bublak, P
2018-01-01
Dual tasking, or the simultaneous execution of two continuous tasks, is frequently associated with a performance decline that can be explained within a capacity sharing framework. In this study, we assessed the effects of a concurrent motor task on the efficiency of visual information uptake based on the 'theory of visual attention' (TVA). TVA provides parameter estimates reflecting distinct components of visual processing capacity: perceptual threshold, visual processing speed, and visual short-term memory (VSTM) storage capacity. Moreover, goodness-of-fit values and bootstrapping estimates were derived to test whether the TVA-model is validly applicable also under dual task conditions, and whether the robustness of parameter estimates is comparable in single- and dual-task conditions. 24 subjects of middle to higher age performed a continuous tapping task, and a visual processing task (whole report of briefly presented letter arrays) under both single- and dual-task conditions. Results suggest a decline of both visual processing capacity and VSTM storage capacity under dual-task conditions, while the perceptual threshold remained unaffected by a concurrent motor task. In addition, goodness-of-fit values and bootstrapping estimates support the notion that participants processed the visual task in a qualitatively comparable, although quantitatively less efficient way under dual-task conditions. The results support a capacity sharing account of motor-cognitive dual tasking and suggest that even performing a relatively simple motor task relies on central attentional capacity that is necessary for efficient visual information uptake.
Human transinformation rates during one-to-four axis tracking with a concurrent audio task
NASA Technical Reports Server (NTRS)
Baty, D. L.
1972-01-01
The information processing rates of six subjects performing one-, two-, three-, and four-axis compensatory tracking tasks, with and without a concurrent four-choice auditory task were determined. The purpose was to obtain further evidence concerning the nature of an hypothesized ceiling on human transinformation rates. Interference was found among tasks, but the evidence concerning a ceiling on information processing rates was inconclusive.
Buchan, Julie N; Munhall, Kevin G
2012-01-01
Audiovisual speech perception is an everyday occurrence of multisensory integration. Conflicting visual speech information can influence the perception of acoustic speech (namely the McGurk effect), and auditory and visual speech are integrated over a rather wide range of temporal offsets. This research examined whether the addition of a concurrent cognitive load task would affect the audiovisual integration in a McGurk speech task and whether the cognitive load task would cause more interference at increasing offsets. The amount of integration was measured by the proportion of responses in incongruent trials that did not correspond to the audio (McGurk response). An eye-tracker was also used to examine whether the amount of temporal offset and the presence of a concurrent cognitive load task would influence gaze behavior. Results from this experiment show a very modest but statistically significant decrease in the number of McGurk responses when subjects also perform a cognitive load task, and that this effect is relatively constant across the various temporal offsets. Participant's gaze behavior was also influenced by the addition of a cognitive load task. Gaze was less centralized on the face, less time was spent looking at the mouth and more time was spent looking at the eyes, when a concurrent cognitive load task was added to the speech task.
Dutke, Stephan; Jaitner, Thomas; Berse, Timo; Barenberg, Jonathan
2014-02-01
Research on effects of acute physical exercise on performance in a concurrent cognitive task has generated equivocal evidence. Processing efficiency theory predicts that concurrent physical exercise can increase resource requirements for sustaining cognitive performance even when the level of performance is unaffected. This hypothesis was tested in a dual-task experiment. Sixty young adults worked on a primary auditory attention task and a secondary interval production task while cycling on a bicycle ergometer. Physical load (cycling) and cognitive load of the primary task were manipulated. Neither physical nor cognitive load affected primary task performance, but both factors interacted on secondary task performance. Sustaining primary task performance under increased physical and/or cognitive load increased resource consumption as indicated by decreased secondary task performance. Results demonstrated that physical exercise effects on cognition might be underestimated when only single task performance is the focus.
Effects of Concurrent Motor, Linguistic, or Cognitive Tasks on Speech Motor Performance
ERIC Educational Resources Information Center
Dromey, Christopher; Benson, April
2003-01-01
This study examined the influence of 3 different types of concurrent tasks on speech motor performance. The goal was to uncover potential differences in speech movements relating to the nature of the secondary task. Twenty young adults repeated sentences either with or without simultaneous distractor activities. These distractions included a motor…
The Influence of Task Instruction on Action Coding: Constraint Setting or Direct Coding?
ERIC Educational Resources Information Center
Wenke, Dorit; Frensch, Peter A.
2005-01-01
In 3 experiments, the authors manipulated response instructions for 2 concurrently performed tasks. Specifically, the authors' instructions described left and right keypresses on a manual task either as left versus right or as blue versus green keypresses and required either "left" versus "right" or "blue" versus "green" concurrent verbalizations.…
Fox, Annie Beth; Rosen, Jonathan; Crawford, Mary
2009-02-01
Instant messaging (IM) has become one of the most popular forms of computer-mediated communication (CMC) and is especially prevalent on college campuses. Previous research suggests that IM users often multitask while conversing online. To date, no one has yet examined the cognitive effect of concurrent IM use. Participants in the present study (N = 69) completed a reading comprehension task uninterrupted or while concurrently holding an IM conversation. Participants who IMed while performing the reading task took significantly longer to complete the task, indicating that concurrent IM use negatively affects efficiency. Concurrent IM use did not affect reading comprehension scores. Additional analyses revealed that the more time participants reported spending on IM, the lower their reading comprehension scores. Finally, we found that the more time participants reported spending on IM, the lower their self-reported GPA. Implications and future directions are discussed.
Choi, HeeSun; Geden, Michael; Feng, Jing
2017-01-01
Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct.
Choi, HeeSun; Geden, Michael
2017-01-01
Mind wandering has been considered as a mental process that is either independent from the concurrent task or regulated like a secondary task. These accounts predict that the form of mind wandering (i.e., images or words) should be either unaffected by or different from the modality form (i.e., visual or auditory) of the concurrent task. Findings from this study challenge these accounts. We measured the rate and the form of mind wandering in three task conditions: fixation, visual 2-back, and auditory 2-back. Contrary to the general expectation, we found that mind wandering was more likely in the same form as the task. This result can be interpreted in light of recent findings on overlapping brain activations during internally- and externally-oriented processes. Our result highlights the importance to consider the unique interplay between the internal and external mental processes and to measure mind wandering as a multifaceted rather than a unitary construct. PMID:29240817
Single-task fMRI overlap predicts concurrent multitasking interference.
Nijboer, Menno; Borst, Jelmer; van Rijn, Hedderik; Taatgen, Niels
2014-10-15
There is no consensus regarding the origin of behavioral interference that occurs during concurrent multitasking. Some evidence points toward a multitasking locus in the brain, while other results imply that interference is the consequence of task interactions in several brain regions. To investigate this issue, we conducted a functional MRI (fMRI) study consisting of three component tasks, which were performed both separately and in combination. The results indicated that no specific multitasking area exists. Instead, different patterns of activation across conditions could be explained by assuming that the interference is a result of task interactions. Additionally, similarity in single-task activation patterns correlated with a decrease in accuracy during dual-task conditions. Taken together, these results support the view that multitasking interference is not due to a bottleneck in a single "multitasking" brain region, but is a result of interactions between concurrently running processes. Copyright © 2014 Elsevier Inc. All rights reserved.
Incidental category learning and cognitive load in a multisensory environment across childhood.
Broadbent, H J; Osborne, T; Rea, M; Peng, A; Mareschal, D; Kirkham, N Z
2018-06-01
Multisensory information has been shown to facilitate learning (Bahrick & Lickliter, 2000; Broadbent, White, Mareschal, & Kirkham, 2017; Jordan & Baker, 2011; Shams & Seitz, 2008). However, although research has examined the modulating effect of unisensory and multisensory distractors on multisensory processing, the extent to which a concurrent unisensory or multisensory cognitive load task would interfere with or support multisensory learning remains unclear. This study examined the role of concurrent task modality on incidental category learning in 6- to 10-year-olds. Participants were engaged in a multisensory learning task while also performing either a unisensory (visual or auditory only) or multisensory (audiovisual) concurrent task (CT). We found that engaging in an auditory CT led to poorer performance on incidental category learning compared with an audiovisual or visual CT, across groups. In 6-year-olds, category test performance was at chance in the auditory-only CT condition, suggesting auditory concurrent tasks may interfere with learning in younger children, but the addition of visual information may serve to focus attention. These findings provide novel insight into the use of multisensory concurrent information on incidental learning. Implications for the deployment of multisensory learning tasks within education across development and developmental changes in modality dominance and ability to switch flexibly across modalities are discussed. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
The Effects of a Concurrent Task on Human Optimization and Self Control
ERIC Educational Resources Information Center
Reed, Phil; Thompson, Caitlin; Osborne, Lisa A.; McHugh, Louise
2011-01-01
Memory deficits have been shown to hamper decision making in a number of populations. In two experiments, participants were required to select one of three alternatives that varied in reinforcer amount and delay, and the effect of a concurrent task on a behavioral choice task that involved making either an impulsive, self-controlled, or optimal…
Cohen, Anna-Lisa; Gordon, Aliza; Jaudas, Alexander; Hefer, Carmen; Dreisbach, Gesine
2017-03-01
Remembering to perform a delayed intention is referred to as prospective memory (PM). In two studies, participants performed an Eriksen flanker task with an embedded PM task (they had to remember to press F1 if a pre-specified cue appeared). In study 1, participants performed a flanker task with either a concurrent PM task or a delayed PM task (instructed to carry out the intention in a later different task). In the delayed PM condition, the PM cues appeared unexpectedly early and we examined whether attention would be captured by the PM cue even though they were not relevant. Results revealed ongoing task costs solely in the concurrent PM condition but no significant task costs in the delayed PM condition showing that attention was not captured by the PM cue when it appeared in an irrelevant context. In study 2, we compared a concurrent PM condition (exactly as in Study 1) to a PM forget condition in which participants were told at a certain point during the flanker task that they no longer had to perform the PM task. Analyses revealed that participants were able to switch off attending to PM cues when instructed to forget the PM task. Results from both studies demonstrate the flexibility of monitoring as evidenced by the presence versus absence of costs in the ongoing flanker task implying that selective attention, like a lens, can be adjusted to attend or ignore, depending on intention relevance.
[Learning virtual routes: what does verbal coding do in working memory?].
Gyselinck, Valérie; Grison, Élise; Gras, Doriane
2015-03-01
Two experiments were run to complete our understanding of the role of verbal and visuospatial encoding in the construction of a spatial model from visual input. In experiment 1 a dual task paradigm was applied to young adults who learned a route in a virtual environment and then performed a series of nonverbal tasks to assess spatial knowledge. Results indicated that landmark knowledge as asserted by the visual recognition of landmarks was not impaired by any of the concurrent task. Route knowledge, assessed by recognition of directions, was impaired both by a tapping task and a concurrent articulation task. Interestingly, the pattern was modulated when no landmarks were available to perform the direction task. A second experiment was designed to explore the role of verbal coding on the construction of landmark and route knowledge. A lexical-decision task was used as a verbal-semantic dual task, and a tone decision task as a nonsemantic auditory task. Results show that these new concurrent tasks impaired differently landmark knowledge and route knowledge. Results can be interpreted as showing that the coding of route knowledge could be grounded on both a coding of the sequence of events and on a semantic coding of information. These findings also point on some limits of Baddeley's working memory model. (PsycINFO Database Record (c) 2015 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Schumacher, W.; Geiser, G.
1978-01-01
The basic concepts of Petri nets are reviewed as well as their application as the fundamental model of technical systems with concurrent discrete events such as hardware systems and software models of computers. The use of Petri nets is proposed for modeling the human operator dealing with concurrent discrete tasks. Their properties useful in modeling the human operator are discussed and practical examples are given. By means of and experimental investigation of binary concurrent tasks which are presented in a serial manner, the representation of human behavior by Petri nets is demonstrated.
Interaction of attentional and motor control processes in handwriting.
Brown, T L; Donnenwirth, E E
1990-01-01
The interaction between attentional capacity, motor control processes, and strategic adaptations to changing task demands was investigated in handwriting, a continuous (rather than discrete) skilled performance. Twenty-four subjects completed 12 two-minute handwriting samples under instructions stressing speeded handwriting, normal handwriting, or highly legible handwriting. For half of the writing samples, a concurrent auditory monitoring task was imposed. Subjects copied either familiar (English) or unfamiliar (Latin) passages. Writing speed, legibility ratings, errors in writing and in the secondary auditory task, and a derived measure of the average number of characters held in short-term memory during each sample ("planning unit size") were the dependent variables. The results indicated that the ability to adapt to instructions stressing speed or legibility was substantially constrained by the concurrent listening task and by text familiarity. Interactions between instructions, task concurrence, and text familiarity in the legibility ratings, combined with further analyses of planning unit size, indicated that information throughput from temporary storage mechanisms to motor processes mediated the loss of flexibility effect. Overall, the results suggest that strategic adaptations of a skilled performance to changing task circumstances are sensitive to concurrent attentional demands and that departures from "normal" or "modal" performance require attention.
Concurrent processing of vehicle lane keeping and speech comprehension tasks.
Cao, Shi; Liu, Yili
2013-10-01
With the growing prevalence of using in-vehicle devices and mobile devices while driving, a major concern is their impact on driving performance and safety. However, the effects of cognitive load such as conversation on driving performance are still controversial and not well understood. In this study, an experiment was conducted to investigate the concurrent performance of vehicle lane keeping and speech comprehension tasks with improved experimental control of the confounding factors identified in previous studies. The results showed that the standard deviation of lane position (SDLP) was increased when the driving speed was faster (0.30 m at 36 km/h; 0.36 m at 72 km/h). The concurrent comprehension task had no significant effect on SDLP (0.34 m on average) or the standard deviation of steering wheel angle (SDSWA; 5.20° on average). The correct rate of the comprehension task was reduced in the dual-task condition (from 93.4% to 91.3%) compared with the comprehension single-task condition. Mental workload was significantly higher in the dual-task condition compared with the single-task conditions. Implications for driving safety were discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wang, Chia-Yu
2015-08-01
The purpose of this study was to use multiple assessments to investigate the general versus task-specific characteristics of metacognition in dissimilar chemistry topics. This mixed-method approach investigated the nature of undergraduate general chemistry students' metacognition using four assessments: a self-report questionnaire, assessment of concurrent metacognitive skills, confidence judgment, and calibration accuracy. Data were analyzed using a multitrait-multimethod correlation matrix, supplemented with regression analyses, and qualitative interpretation. Significant correlations among task performance, calibration accuracy, and concurrent metacognition within a task suggest a converging relationship. Confidence judgment, however, was not associated with task performance or the other metacognitive measurements. The results partially support hypotheses of both general and task-specific metacognition. However, general and task-specific properties of metacognition were detected using different assessments. Case studies were constructed for two participants to illustrate how concurrent metacognition varied within different task demands. Considerations of how each assessment may appropriate different metacognitive constructs and the importance of the alignment of analytical constructs when using multiple assessments are discussed. These results may help lead to improvements in metacognition assessment and may provide insights into designs of effective metacognitive instruction.
Cutanda, Diana; Correa, Ángel; Sanabria, Daniel
2015-06-01
The present study investigated whether participants can develop temporal preparation driven by auditory isochronous rhythms when concurrently performing an auditory working memory (WM) task. In Experiment 1, participants had to respond to an auditory target presented after a regular or an irregular sequence of auditory stimuli while concurrently performing a Sternberg-type WM task. Results showed that participants responded faster after regular compared with irregular rhythms and that this effect was not affected by WM load; however, the lack of a significant main effect of WM load made it difficult to draw any conclusion regarding the influence of the dual-task manipulation in Experiment 1. In order to enhance dual-task interference, Experiment 2 combined the auditory rhythm procedure with an auditory N-Back task, which required WM updating (monitoring and coding of the information) and was presumably more demanding than the mere rehearsal of the WM task used in Experiment 1. Results now clearly showed dual-task interference effects (slower reaction times [RTs] in the high- vs. the low-load condition). However, such interference did not affect temporal preparation induced by rhythms, with faster RTs after regular than after irregular sequences in the high-load and low-load conditions. These results revealed that secondary tasks demanding memory updating, relative to tasks just demanding rehearsal, produced larger interference effects on overall RTs in the auditory rhythm task. Nevertheless, rhythm regularity exerted a strong temporal preparation effect that survived the interference of the WM task even when both tasks competed for processing resources within the auditory modality. (c) 2015 APA, all rights reserved).
The effects of task difficulty and resource requirements on attention strategies
NASA Technical Reports Server (NTRS)
King, Teresa
1991-01-01
The patterns of attention strategies for task difficulty/resource tasks for which experimental results are presented and analyzed support the hypothesis that subjects may adopt an alternating (rather than concurrent one) when compelled to do so by either the size or the complexity of a visual display. According to the multiple resource model, if subjects had been performing the two tasks concurrently, the cost of this strategy would have been shown by a decrement in the spatial format, rather than the verbal format, due to competition for the same resource. Subjects may apply different strategies as a function of task difficulty and/or resource demand.
ERIC Educational Resources Information Center
Schaefer, Sabine; Krampe, Ralf Th.; Lindenberger, Ulman; Baltes, Paul B.
2008-01-01
Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory…
The Effects of Concurrent Cognitive Load on Phonological Processing in Adults Who Stutter
ERIC Educational Resources Information Center
Jones, Robin M.; Fox, Robert A.; Jacewicz, Ewa
2012-01-01
Purpose: To determine whether phonological processing in adults who stutter (AWS) is disrupted by increased amounts of cognitive load in a concurrent attention-demanding task. Method: Nine AWS and 9 adults who do not stutter (AWNS) participated. Using a dual-task paradigm, the authors presented word pairs for rhyme judgments and, concurrently,…
The Applicability of Rhythm-Motor Tasks to a New Dual Task Paradigm for Older Adults
Kim, Soo Ji; Cho, Sung-Rae; Yoo, Ga Eul
2017-01-01
Given the interplay between cognitive and motor functions during walking, cognitive demands required during gait have been investigated with regard to dual task performance. Along with the needs to understand how the type of concurrent task while walking affects gait performance, there are calls for diversified dual tasks that can be applied to older adults with varying levels of cognitive decline. Therefore, this study aimed to examine how rhythm-motor tasks affect dual task performance and gait control, compared to a traditional cognitive-motor task. Also, it examined whether rhythm-motor tasks are correlated with traditional cognitive-motor task performance and cognitive measures. Eighteen older adults without cognitive impairment participated in this study. Each participant was instructed to walk at self-paced tempo without performing a concurrent task (single walking task) and walk while separately performing two types of concurrent tasks: rhythm-motor and cognitive-motor tasks. Rhythm-motor tasks included instrument playing (WalkIP), matching to rhythmic cueing (WalkRC), and instrument playing while matching to rhythmic cueing (WalkIP+RC). The cognitive-motor task involved counting forward by 3s (WalkCount.f3). In each condition, dual task costs (DTC), a measure for how dual tasks affect gait parameters, were measured in terms of walking speed and stride length. The ratio of stride length to walking speed, a measure for dynamic control of gait, was also examined. The results of this study demonstrated that the task type was found to significantly influence these measures. Rhythm-motor tasks were found to interfere with gait parameters to a lesser extent than the cognitive-motor task (WalkCount.f3). In terms of ratio measures, stride length remained at a similar level, walking speed greatly decreased in the WalkCount.f3 condition. Significant correlations between dual task-related measures during rhythm-motor and cognitive-motor tasks support the potential of applying rhythm-motor tasks to dual task methodology. This study presents how rhythm-motor tasks demand cognitive control at different levels than those engaged by cognitive-motor tasks. It also indicates how these new dual tasks can effectively mediate dual task performance indicative of fall risks, while requiring increased cognitive resources but facilitating gait control as a compensatory strategy to maintain gait stability. PMID:29375462
The effects of concurrent cognitive load on phonological processing in adults who stutter.
Jones, Robin M; Fox, Robert A; Jacewicz, Ewa
2012-12-01
To determine whether phonological processing in adults who stutter (AWS) is disrupted by increased amounts of cognitive load in a concurrent attention-demanding task. Nine AWS and 9 adults who do not stutter (AWNS) participated. Using a dual-task paradigm, the authors presented word pairs for rhyme judgments and, concurrently, letter strings for memory recall. The rhyme judgment task manipulated rhyming type (rhyming/nonrhyming) and orthographic representation (similar/dissimilar). The memory recall task varied stimulus complexity (no letters, 3 letters, 5 letters). Rhyme judgment accuracy and reaction time (RT) were used to assess phonological processing, and letter recall accuracy was used to measure memory recall. For rhyme judgments, AWS were as accurate as AWNS, and the increase in the cognitive load did not affect rhyme judgment accuracy of either group. Significant group differences were found in RTs (delays by AWS were 241 ms greater). RTs of AWS were also slower in the most demanding rhyme condition and varied with the complexity of the memory task. Accuracy of letter recall of AWS was comparatively worse in the most demanding 5-letter condition. Phonological and cognitive processing of AWS is more vulnerable to disruptions caused by increased amounts of cognitive load in concurrent attention-demanding tasks.
Podjarny, Gal; Kamawar, Deepthi; Andrews, Katherine
2017-07-01
Most executive function research examining preschoolers' cognitive flexibility, the ability to think about something in more than one way, has focused on preschoolers' facility for sequentially switching their attention from one dimension to another (e.g., sorting bivalent cards first by color and then by shape). We know very little about preschoolers' ability to coordinate more than one dimension simultaneously (concurrent cognitive flexibility). Here we report on a new task, the Multidimensional Card Selection Task, which was designed to measure children's ability to consider two dimensions, and then three dimensions, concurrently (e.g., shape and size, and then shape, size, and color). More than half of the preschoolers in our sample of 107 (50 3-year-olds and 57 4-year-olds) could coordinate three dimensions simultaneously and consistently across three test trials. Furthermore, performance on the Multidimensional Card Selection Task was related, but not identical, to performance on other cognitive tasks, including a widely used measure of switching cognitive flexibility (the Dimensional Change Card Sort). The Multidimensional Card Selection Task provides a new way to measure concurrent cognitive flexibility in preschoolers, and opens another avenue for exploring the emergence of early cognitive flexibility development. Copyright © 2017 Elsevier Inc. All rights reserved.
Operation Compatibility: A Neglected Contribution to Dual-Task Costs
ERIC Educational Resources Information Center
Pannebakker, Merel M.; Band, Guido P. H.; Ridderinkhof, K. Richard
2009-01-01
Traditionally, dual-task interference has been attributed to the consequences of task load exceeding capacity limitations. However, the current study demonstrates that in addition to task load, the mutual compatibility of the concurrent processes modulates whether 2 tasks can be performed in parallel. In 2 psychological refractory period…
Cooperation driven coherence: Brains working hard together.
Bezerianos, Anastasios; Sun, Yu; Chen, Yu; Woong, Kian Fong; Taya, Fumihiko; Arico, Pietro; Borghini, Gianluca; Babiloni, Fabio; Thakor, Nitish
2015-01-01
The current study aims to look at the difference in coupling of EEG activity of participant pairs while they perform a cooperative, concurrent, independent yet different task at high and low difficulty levels. Participants performed the National Aeronautics and Space Administration (NASA) designed Multi-Attribute Task Battery (MATB-II) task which simulates a pilot and copilot operating an aircraft. Each participant in the pair was responsible for 2 out of 4 subtasks which were independent and different from one another while all tasks occurs concurrently in real time with difficulty levels being the frequency that adjustments are required for each subtask. We found that as the task become more difficult, there was more coupling between the pilot and copilot.
Qu, Xingda
2014-10-27
Though it is well recognized that gait characteristics are affected by concurrent cognitive tasks, how different working memory components contribute to dual task effects on gait is still unknown. The objective of the present study was to investigate dual-task effects on gait characteristics, specifically the application of cognitive tasks involving different working memory components. In addition, we also examined age-related differences in such dual-task effects. Three cognitive tasks (i.e. 'Random Digit Generation', 'Brooks' Spatial Memory', and 'Counting Backward') involving different working memory components were examined. Twelve young (6 males and 6 females, 20 ~ 25 years old) and 12 older participants (6 males and 6 females, 60 ~ 72 years old) took part in two phases of experiments. In the first phase, each cognitive task was defined at three difficulty levels, and perceived difficulty was compared across tasks. The cognitive tasks perceived to be equally difficult were selected for the second phase. In the second phase, four testing conditions were defined, corresponding to a baseline and the three equally difficult cognitive tasks. Participants walked on a treadmill at their self-selected comfortable speed in each testing condition. Body kinematics were collected during treadmill walking, and gait characteristics were assessed using spatial-temporal gait parameters. Application of the concurrent Brooks' Spatial Memory task led to longer step times compared to the baseline condition. Larger step width variability was observed in both the Brooks' Spatial Memory and Counting Backward dual-task conditions than in the baseline condition. In addition, cognitive task effects on step width variability differed between two age groups. In particular, the Brooks' Spatial Memory task led to significantly larger step width variability only among older adults. These findings revealed that cognitive tasks involving the visuo-spatial sketchpad interfered with gait more severely in older versus young adults. Thus, dual-task training, in which a cognitive task involving the visuo-spatial sketchpad (e.g. the Brooks' Spatial Memory task) is concurrently performed with walking, could be beneficial to mitigate impairments in gait among older adults.
Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults
2016-01-01
Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified “division of labor” hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. PMID:26657078
Fargier, Raphaël; Laganaro, Marina
2016-01-01
Running a concurrent task while speaking clearly interferes with speech planning, but whether verbal vs. non-verbal tasks interfere with the same processes is virtually unknown. We investigated the neural dynamics of dual-task interference on word production using event-related potentials (ERPs) with either tones or syllables as concurrent stimuli. Participants produced words from pictures in three conditions: without distractors, while passively listening to distractors and during a distractor detection task. Production latencies increased for tasks with higher attentional demand and were longer for syllables relative to tones. ERP analyses revealed common modulations by dual-task for verbal and non-verbal stimuli around 240 ms, likely corresponding to lexical selection. Modulations starting around 350 ms prior to vocal onset were only observed when verbal stimuli were involved. These later modulations, likely reflecting interference with phonological-phonetic encoding, were observed only when overlap between tasks was maximal and the same underlying neural circuits were engaged (cross-talk).
Douglas, Heather E; Raban, Magdalena Z; Walter, Scott R; Westbrook, Johanna I
2017-03-01
Multi-tasking is an important skill for clinical work which has received limited research attention. Its impacts on clinical work are poorly understood. In contrast, there is substantial multi-tasking research in cognitive psychology, driver distraction, and human-computer interaction. This review synthesises evidence of the extent and impacts of multi-tasking on efficiency and task performance from health and non-healthcare literature, to compare and contrast approaches, identify implications for clinical work, and to develop an evidence-informed framework for guiding the measurement of multi-tasking in future healthcare studies. The results showed healthcare studies using direct observation have focused on descriptive studies to quantify concurrent multi-tasking and its frequency in different contexts, with limited study of impact. In comparison, non-healthcare studies have applied predominantly experimental and simulation designs, focusing on interleaved and concurrent multi-tasking, and testing theories of the mechanisms by which multi-tasking impacts task efficiency and performance. We propose a framework to guide the measurement of multi-tasking in clinical settings that draws together lessons from these siloed research efforts. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Decision Making in Concurrent Multitasking: Do People Adapt to Task Interference?
Nijboer, Menno; Taatgen, Niels A.; Brands, Annelies; Borst, Jelmer P.; van Rijn, Hedderik
2013-01-01
While multitasking has received a great deal of attention from researchers, we still know little about how well people adapt their behavior to multitasking demands. In three experiments, participants were presented with a multicolumn subtraction task, which required working memory in half of the trials. This primary task had to be combined with a secondary task requiring either working memory or visual attention, resulting in different types of interference. Before each trial, participants were asked to choose which secondary task they wanted to perform concurrently with the primary task. We predicted that if people seek to maximize performance or minimize effort required to perform the dual task, they choose task combinations that minimize interference. While performance data showed that the predicted optimal task combinations indeed resulted in minimal interference between tasks, the preferential choice data showed that a third of participants did not show any adaptation, and for the remainder it took a considerable number of trials before the optimal task combinations were chosen consistently. On the basis of these results we argue that, while in principle people are able to adapt their behavior according to multitasking demands, selection of the most efficient combination of strategies is not an automatic process. PMID:24244527
Whitfield, Jason A; Goberman, Alexander M
2017-06-22
Everyday communication is carried out concurrently with other tasks. Therefore, determining how dual tasks interfere with newly learned speech motor skills can offer insight into the cognitive mechanisms underlying speech motor learning in Parkinson disease (PD). The current investigation examines a recently learned speech motor sequence under dual-task conditions. A previously learned sequence of 6 monosyllabic nonwords was examined using a dual-task paradigm. Participants repeated the sequence while concurrently performing a visuomotor task, and performance on both tasks was measured in single- and dual-task conditions. The younger adult group exhibited little to no dual-task interference on the accuracy and duration of the sequence. The older adult group exhibited variability in dual-task costs, with the group as a whole exhibiting an intermediate, though significant, amount of dual-task interference. The PD group exhibited the largest degree of bidirectional dual-task interference among all the groups. These data suggest that PD affects the later stages of speech motor learning, as the dual-task condition interfered with production of the recently learned sequence beyond the effect of normal aging. Because the basal ganglia is critical for the later stages of motor sequence learning, the observed deficits may result from the underlying neural dysfunction associated with PD.
Nieznański, Marek; Obidziński, Michał; Zyskowska, Emilia; Niedziałkowska, Daria
2015-01-01
Previous research has demonstrated that context memory performance decreases as a result of cognitive load. However, the role of specific executive resources availability has not been specified yet. In a dual-task experiment, participants performed three kinds of concurrent task engaging: inhibition, updating, or shifting operations. In comparison with a no-load single-task condition, a significant decrease in item and context memory was observed, regardless of the kind of executive task. When executive load conditions were compared with non-specific cognitive load conditions, a significant interference effect was observed in the case of the inhibition task. The inhibition process appears to be an aspect of executive control, which relies on the same resource as item-context binding does, especially when binding refers to associations retrieved from long-term memory. PMID:26435761
Modality and Task Switching Interactions using Bi-Modal and Bivalent Stimuli
ERIC Educational Resources Information Center
Sandhu, Rajwant; Dyson, Benjamin J.
2013-01-01
Investigations of concurrent task and modality switching effects have to date been studied under conditions of uni-modal stimulus presentation. As such, it is difficult to directly compare resultant task and modality switching effects, as the stimuli afford both tasks on each trial, but only one modality. The current study investigated task and…
ERIC Educational Resources Information Center
Meyer, David E.; Kieras, David E.
Perceptual-motor and cognitive processes whereby people perform multiple concurrent tasks have been studied through an overlapping-tasks procedure in which two successive choice-reaction tasks are performed with a variable interval (stimulus onset asynchrony, or SOA) between the beginning of the first and second tasks. The increase in subjects'…
Information Processing in Memory Tasks.
ERIC Educational Resources Information Center
Johnston, William A.
The intensity of information processing engendered in different phases of standard memory tasks was examined in six experiments. Processing intensity was conceptualized as system capacity consumed, and was measured via a divided-attention procedure in which subjects performed a memory task and a simple reaction-time (RT) task concurrently. The…
RAFCON: A Graphical Tool for Engineering Complex, Robotic Tasks
2016-10-09
Robotic tasks are becoming increasingly complex, and with this also the robotic systems. This requires new tools to manage this complexity and to...execution of robotic tasks, called RAFCON. These tasks are described in hierarchical state machines supporting concurrency. A formal notation of this concept
Capodieci, Agnese; Serafini, Alice; Dessuki, Alice; Cornoldi, Cesare
2018-02-20
The writing abilities of children with ADHD symptoms were examined in a simple dictation task, and then in two conditions with concurrent verbal or visuospatial working memory (WM) loads. The children with ADHD symptoms generally made more spelling mistakes than controls, and the concurrent loads impaired their performance, but with partly different effects. The concurrent verbal WM task prompted an increase in the phonological errors, while the concurrent visuospatial WM task prompted more non-phonological errors, matching the Italian phonology, but not the Italian orthography. In the ADHD group, the children proving better able to cope with a concurrent verbal WM load had a better spelling performance too. The ADHD and control groups had a similar handwriting speed, but the former group's writing quality was poorer. Our results suggest that WM supports writing skills, and that children with ADHD symptoms have general writing difficulties, but strength in coping with concurrent verbal information may support their spelling performance.
A decrease in brain activation associated with driving when listening to someone speak.
Just, Marcel Adam; Keller, Timothy A; Cynkar, Jacquelyn
2008-04-18
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual-task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone.
Threaded cognition: an integrated theory of concurrent multitasking.
Salvucci, Dario D; Taatgen, Niels A
2008-01-01
The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual and motor resources). The theory specifies a parsimonious mechanism that allows for concurrent execution, resource acquisition, and resolution of resource conflicts, without the need for specialized executive processes. By instantiating this mechanism as a computational model, threaded cognition provides explicit predictions of how multitasking behavior can result in interference, or lack thereof, for a given set of tasks. The authors illustrate the theory in model simulations of several representative domains ranging from simple laboratory tasks such as dual-choice tasks to complex real-world domains such as driving and driver distraction. (c) 2008 APA, all rights reserved
A Decrease in Brain Activation Associated with Driving When Listening to Someone Speak
Just, Marcel Adam; Keller, Timothy A.; Cynkar, Jacquelyn
2009-01-01
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular telephone, disrupts driving performance. This study used functional magnetic resonance imaging (fMRI) to investigate the impact of concurrent auditory language comprehension on the brain activity associated with a simulated driving task. Participants steered a vehicle along a curving virtual road, either undisturbed or while listening to spoken sentences that they judged as true or false. The dual task condition produced a significant deterioration in driving accuracy caused by the processing of the auditory sentences. At the same time, the parietal lobe activation associated with spatial processing in the undisturbed driving task decreased by 37% when participants concurrently listened to sentences. The findings show that language comprehension performed concurrently with driving draws mental resources away from the driving and produces deterioration in driving performance, even when it does not require holding or dialing a phone. PMID:18353285
Selective Impairment of Auditory Selective Attention under Concurrent Cognitive Load
ERIC Educational Resources Information Center
Dittrich, Kerstin; Stahl, Christoph
2012-01-01
Load theory predicts that concurrent cognitive load impairs selective attention. For visual stimuli, it has been shown that this impairment can be selective: Distraction was specifically increased when the stimulus material used in the cognitive load task matches that of the selective attention task. Here, we report four experiments that…
Phonological similarity effect in complex span task.
Camos, Valérie; Mora, Gérôme; Barrouillet, Pierre
2013-01-01
The aim of our study was to test the hypothesis that two systems are involved in verbal working memory; one is specifically dedicated to the maintenance of phonological representations through verbal rehearsal while the other would maintain multimodal representations through attentional refreshing. This theoretical framework predicts that phonologically related phenomena such as the phonological similarity effect (PSE) should occur when the domain-specific system is involved in maintenance, but should disappear when concurrent articulation hinders its use. Impeding maintenance in the domain-general system by a concurrent attentional demand should impair recall performance without affecting PSE. In three experiments, we manipulated the concurrent articulation and the attentional demand induced by the processing component of complex span tasks in which participants had to maintain lists of either similar or dissimilar words. Confirming our predictions, PSE affected recall performance in complex span tasks. Although both the attentional demand and the articulatory requirement of the concurrent task impaired recall, only the induction of an articulatory suppression during maintenance made the PSE disappear. These results suggest a duality in the systems devoted to verbal maintenance in the short term, constraining models of working memory.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Task forces. 701.58... Headquarters Organization § 701.58 Task forces. The Director with Council concurrence or the Council may establish task forces from time to time to aid in the preparation of issues for presentation to the Council...
Bonin, Tanor; Smilek, Daniel
2016-04-01
We evaluated whether task-irrelevant inharmonic music produces greater interference with cognitive performance than task-irrelevant harmonic music. Participants completed either an auditory (Experiment 1) or a visual (Experiment 2) version of the cognitively demanding 2-back task in which they were required to categorize each digit in a sequence of digits as either being a target (a digit also presented two positions earlier in the sequence) or a distractor (all other items). They were concurrently exposed to either task-irrelevant harmonic music (judged to be consonant), task-irrelevant inharmonic music (judged to be dissonant), or no music at all as a distraction. The main finding across both experiments was that performance on the 2-back task was worse when participants were exposed to inharmonic music than when they were exposed to harmonic music. Interestingly, performance on the 2-back task was generally the same regardless of whether harmonic music or no music was played. We suggest that inharmonic, dissonant music interferes with cognitive performance by requiring greater cognitive processing than harmonic, consonant music, and speculate about why this might be.
Foveal Processing Under Concurrent Peripheral Load in Profoundly Deaf Adults.
Dye, Matthew W G
2016-04-01
Development of the visual system typically proceeds in concert with the development of audition. One result is that the visual system of profoundly deaf individuals differs from that of those with typical auditory systems. While past research has suggested deaf people have enhanced attention in the visual periphery, it is still unclear whether or not this enhancement entails deficits in central vision. Profoundly deaf and typically hearing adults were administered a variant of the useful field of view task that independently assessed performance on concurrent central and peripheral tasks. Identification of a foveated target was impaired by a concurrent selective peripheral attention task, more so in profoundly deaf adults than in the typically hearing. Previous findings of enhanced performance on the peripheral task were not replicated. These data are discussed in terms of flexible allocation of spatial attention targeted towards perceived task demands, and support a modified "division of labor" hypothesis whereby attentional resources co-opted to process peripheral space result in reduced resources in the central visual field. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience
2016-01-01
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue–response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel “other” task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue–response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. SIGNIFICANCE STATEMENT Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. PMID:27307234
Contributions of Hippocampus and Striatum to Memory-Guided Behavior Depend on Past Experience.
Ferbinteanu, Janina
2016-06-15
The hippocampal and striatal memory systems are thought to operate independently and in parallel in supporting cognitive memory and habits, respectively. Much of the evidence for this principle comes from double dissociation data, in which damage to brain structure A causes deficits in Task 1 but not Task 2, whereas damage to structure B produces the reverse pattern of effects. Typically, animals are explicitly trained in one task. Here, we investigated whether this principle continues to hold when animals concurrently learn two types of tasks. Rats were trained on a plus maze in either a spatial navigation or a cue-response task (sequential training), whereas a third set of rats acquired both (concurrent training). Subsequently, the rats underwent either sham surgery or neurotoxic lesions of the hippocampus (HPC), medial dorsal striatum (DSM), or lateral dorsal striatum (DSL), followed by retention testing. Finally, rats in the sequential training condition also acquired the novel "other" task. When rats learned one task, HPC and DSL selectively supported spatial navigation and cue response, respectively. However, when rats learned both tasks, HPC and DSL additionally supported the behavior incongruent with the processing style of the corresponding memory system. Thus, in certain conditions, the hippocampal and striatal memory systems can operate cooperatively and in synergism. DSM significantly contributed to performance regardless of task or training procedure. Experience with the cue-response task facilitated subsequent spatial learning, whereas experience with spatial navigation delayed both concurrent and subsequent response learning. These findings suggest that there are multiple operational principles that govern memory networks. Currently, we distinguish among several types of memories, each supported by a distinct neural circuit. The memory systems are thought to operate independently and in parallel. Here, we demonstrate that the hippocampus and the dorsal striatum memory systems operate independently and in parallel when rats learn one type of task at a time, but interact cooperatively and in synergism when rats concurrently learn two types of tasks. Furthermore, new learning is modulated by past experiences. These results can be explained by a model in which independent and parallel information processing that occurs in the separate memory-related neural circuits is supplemented by information transfer between the memory systems at the level of the cortex. Copyright © 2016 the authors 0270-6474/16/366459-12$15.00/0.
The functional neuroanatomy of multitasking: combining dual tasking with a short term memory task.
Deprez, Sabine; Vandenbulcke, Mathieu; Peeters, Ron; Emsell, Louise; Amant, Frederic; Sunaert, Stefan
2013-09-01
Insight into the neural architecture of multitasking is crucial when investigating the pathophysiology of multitasking deficits in clinical populations. Presently, little is known about how the brain combines dual-tasking with a concurrent short-term memory task, despite the relevance of this mental operation in daily life and the frequency of complaints related to this process, in disease. In this study we aimed to examine how the brain responds when a memory task is added to dual-tasking. Thirty-three right-handed healthy volunteers (20 females, mean age 39.9 ± 5.8) were examined with functional brain imaging (fMRI). The paradigm consisted of two cross-modal single tasks (a visual and auditory temporal same-different task with short delay), a dual-task combining both single tasks simultaneously and a multi-task condition, combining the dual-task with an additional short-term memory task (temporal same-different visual task with long delay). Dual-tasking compared to both individual visual and auditory single tasks activated a predominantly right-sided fronto-parietal network and the cerebellum. When adding the additional short-term memory task, a larger and more bilateral frontoparietal network was recruited. We found enhanced activity during multitasking in components of the network that were already involved in dual-tasking, suggesting increased working memory demands, as well as recruitment of multitask-specific components including areas that are likely to be involved in online holding of visual stimuli in short-term memory such as occipito-temporal cortex. These results confirm concurrent neural processing of a visual short-term memory task during dual-tasking and provide evidence for an effective fMRI multitasking paradigm. © 2013 Elsevier Ltd. All rights reserved.
Reissland, Jessika; Manzey, Dietrich
2016-07-01
Understanding the mechanisms and performance consequences of multitasking has long been in focus of scientific interest, but has been investigated by three research lines more or less isolated from each other. Studies in the fields of the psychological refractory period, task switching, and interruptions have scored with a high experimental control, but usually do not give participants many degrees of freedom to self-organize the processing of two concurrent tasks. Individual strategies as well as their impact on efficiency have mainly been neglected. Self-organized multitasking has been investigated in the field of human factors, but primarily with respect to overall performance without detailed investigation of how the tasks are processed. The current work attempts to link aspects of these research lines. All of them, explicitly or implicitly, provide hints about an individually preferred type of task organization, either more cautious trying to work strictly serially on only one task at a time or more daring with a focus on task interleaving and, if possible, also partially overlapping (parallel) processing. In two experiments we investigated different strategies of task organization and their impact on efficiency using a new measure of overall multitasking efficiency. Experiment 1 was based on a classical task switching paradigm with two classification tasks, but provided one group of participants with a stimulus preview of the task to switch to next, enabling at least partial overlapping processing. Indeed, this preview led to a reduction of switch costs and to an increase of dual-task efficiency, but only for a subgroup of participants. They obviously exploited the possibility of overlapping processing, while the others worked mainly serially. While task-sequence was externally guided in the first experiment, Experiment 2 extended the approach by giving the participants full freedom of task organization in concurrent performance of the same tasks. Fine-grained analyses of response scheduling again revealed individual differences regarding the preference for strictly serial processing vs. some sort of task interleaving and overlapping processing. However, neither group showed a striking benefit in dual-task efficiency, although the results show that the costs of multitasking can partly be compensated by overlapping processing. Copyright © 2016 Elsevier B.V. All rights reserved.
Development and evaluation of a radar air traffic control research task.
DOT National Transportation Integrated Search
1965-12-01
A system is described in which various elements of the radar air traffic controller's task can be presented repeatedly, reliably, and concurrently to each of six experimental subjects seated at separate task consoles. Programming of display condition...
Langhanns, Christine; Müller, Hermann
2018-01-01
Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening . A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by "higher-order" cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing.
Langhanns, Christine; Müller, Hermann
2018-01-01
Motor-cognitive dual tasks have been intensely studied and it has been demonstrated that even well practiced movements like walking show signs of interference when performed concurrently with a challenging cognitive task. Typically walking speed is reduced, at least in elderly persons. In contrast to these findings, some authors report an increased movement frequency under dual-task conditions, which they call hastening. A tentative explanation has been proposed, assuming that the respective movements are governed by an automatic control regime. Though, under single-task conditions, these automatic processes are supervised by “higher-order” cognitive control processes. However, when a concurrent cognitive task binds all cognitive resources, the automatic process is freed from the detrimental effect of cognitive surveillance, allowing higher movement frequencies. Fast rhythmic movements (>1 Hz) should more likely be governed by such an automatic process than low frequency discrete repetitive movements. Fifteen subjects performed two repetitive movements under single and dual-task condition, that is, in combination with a mental calculation task. According to the expectations derived from the explanatory concept, we found an increased movement frequency under dual-task conditions only for the fast rhythmic movement (paddleball task) but not for the slower discrete repetitive task (pegboard task). fNIRS measurements of prefrontal cortical load confirmed the idea of an automatic processing in the paddleball task, whereas the pegboard task seems to be more controlled by processes interfering with the calculation related processing. PMID:29887815
Time Sharing Between Robotics and Process Control: Validating a Model of Attention Switching.
Wickens, Christopher Dow; Gutzwiller, Robert S; Vieane, Alex; Clegg, Benjamin A; Sebok, Angelia; Janes, Jess
2016-03-01
The aim of this study was to validate the strategic task overload management (STOM) model that predicts task switching when concurrence is impossible. The STOM model predicts that in overload, tasks will be switched to, to the extent that they are attractive on task attributes of high priority, interest, and salience and low difficulty. But more-difficult tasks are less likely to be switched away from once they are being performed. In Experiment 1, participants performed four tasks of the Multi-Attribute Task Battery and provided task-switching data to inform the role of difficulty and priority. In Experiment 2, participants concurrently performed an environmental control task and a robotic arm simulation. Workload was varied by automation of arm movement and both the phases of environmental control and existence of decision support for fault management. Attention to the two tasks was measured using a head tracker. Experiment 1 revealed the lack of influence of task priority and confirmed the differing roles of task difficulty. In Experiment 2, the percentage attention allocation across the eight conditions was predicted by the STOM model when participants rated the four attributes. Model predictions were compared against empirical data and accounted for over 95% of variance in task allocation. More-difficult tasks were performed longer than easier tasks. Task priority does not influence allocation. The multiattribute decision model provided a good fit to the data. The STOM model is useful for predicting cognitive tunneling given that human-in-the-loop simulation is time-consuming and expensive. © 2016, Human Factors and Ergonomics Society.
Grasping objects by their handles: a necessary interaction between cognition and action
NASA Technical Reports Server (NTRS)
Creem, S. H.; Proffitt, D. R.; Kaiser, M. K. (Principal Investigator)
2001-01-01
Research has illustrated dissociations between "cognitive" and "action" systems, suggesting that different representations may underlie phenomenal experience and visuomotor behavior. However, these systems also interact. The present studies show a necessary interaction when semantic processing of an object is required for an appropriate action. Experiment 1 demonstrated that a semantic task interfered with grasping objects appropriately by their handles, but a visuospatial task did not. Experiment 2 assessed performance on a visuomotor task that had no semantic component and showed a reversal of the effects of the concurrent tasks. In Experiment 3, variations on concurrent word tasks suggested that retrieval of semantic information was necessary for appropriate grasping. In all, without semantic processing, the visuomotor system can direct the effective grasp of an object, but not in a manner that is appropriate for its use.
Deep Thinking Increases Task-Set Shielding and Reduces Shifting Flexibility in Dual-Task Performance
ERIC Educational Resources Information Center
Fischer, Rico; Hommel, Bernhard
2012-01-01
Performing two tasks concurrently is difficult, which has been taken to imply the existence of a structural processing bottleneck. Here we sought to assess whether and to what degree one's multitasking abilities depend on the cognitive-control style one engages in. Participants were primed with creativity tasks that either called for divergent…
ERIC Educational Resources Information Center
Reed, Derek D.; DiGennaro Reed, Florence D.; Campisano, Natalie; Lacourse, Kristen; Azulay, Richard L.
2012-01-01
The assessment and improvement of staff members' subjective valuation of nonpreferred work tasks may be one way to increase the quality of staff members' work life. The Task Enjoyment Motivation Protocol (Green, Reid, Passante, & Canipe, 2008) provides a process for supervisors to identify the aversive qualities of nonpreferred job tasks.…
Dual-Task Crosstalk between Saccades and Manual Responses
ERIC Educational Resources Information Center
Huestegge, Lynn; Koch, Iring
2009-01-01
Between-task crosstalk has been discussed as an important source for dual-task costs. In this study, the authors examine concurrently performed saccades and manual responses as a means of studying the role of response-code conflict between 2 tasks. In Experiment 1, participants responded to an imperative auditory stimulus with a left or a right…
Increased reaction times and reduced response preparation already starts at middle age
Wolkorte, Ria; Kamphuis, Janine; Zijdewind, Inge
2014-01-01
Generalized slowing characterizes aging and there is some evidence to suggest that this slowing already starts at midlife. This study aims to assess reaction time changes while performing a concurrent low-force and high-force motor task in young and middle-aged subjects. The high-force motor task is designed to induce muscle fatigue and thereby progressively increase the attentional demands. Twenty-five young (20–30 years, 12 males) and 16 middle-aged (35–55 years, 9 males) adults performed an auditory two-choice reaction time task (CRT) with and without a concurrent low- or high-force motor task. The CRT required subjects to respond to two different stimuli that occurred with a probability of 70 or 30%. The motor task consisted of index finger abduction, at either 10% (10%-dual-task) or 30% (30%-dual-task) of maximal voluntary force. Cognitive task performance was measured as percentage of correct responses and reaction times. Middle-aged subjects responded slower on the frequent but more accurately on the infrequent stimuli of CRT than young subjects. Both young and middle-aged subjects showed increased errors and reaction times while performing under dual-task conditions and both outcome measures increased further under fatiguing conditions. Only under 30%-dual-task demands, an age-effect on dual-task performance was present. Both single- and dual-task conditions showed that already at mid-life response preparation is seriously declined and that subjects implement different strategies to perform a CRT task. PMID:24808862
Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J
2010-09-01
Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.
Chan, Wing-Nga; Tsang, William Wai-Nam
2017-01-01
Turning-while-walking is one of the commonest causes of falls in stroke survivors. It involves cognitive processing and may be challenging when performed concurrently with a cognitive task. Previous studies of dual-tasking involving turning-while-walking in stroke survivors show that the performance of physical tasks is compromised. However, the design of those studies did not address the response of stroke survivors under dual-tasking condition without specifying the task-preference and its effect on the performance of the cognitive task. First, to compare the performance of single-tasking and dual-tasking in stroke survivors. Second, to compare the performance of stroke survivors with non-stroke controls. Fifty-nine stroke survivors and 45 controls were assessed with an auditory Stroop test, a turning-while-walking test, and a combination of the two single tasks. The outcome of the cognitive task was measured by the reaction time and accuracy of the task. The physical task was evaluated by measuring the turning duration, number of steps to turn, and time to complete the turning-while-walking test. Stroke survivors showed a significantly reduced accuracy in the auditory Stroop test when dual-tasking, but there was no change in the reaction time. Their performance in the turning-while-walking task was similar under both single-tasking and dual-tasking condition. Additionally, stroke survivors demonstrated a significantly longer reaction time and lower accuracy than the controls both when single-tasking and dual-tasking. They took longer to turn, with more steps, and needed more time to complete the turning-while-walking task in both tasking conditions. The results show that stroke survivors with high mobility function performed the auditory Stroop test less accurately while preserving simultaneous turning-while-walking performance. They also demonstrated poorer performance in both single-tasking and dual-tasking as compared with controls.
Ó Ciardha, Caoilte; Attard-Johnson, Janice; Bindemann, Markus
2018-04-01
Latency-based measures of sexual interest require additional evidence of validity, as do newer pupil dilation approaches. A total of 102 community men completed six latency-based measures of sexual interest. Pupillary responses were recorded during three of these tasks and in an additional task where no participant response was required. For adult stimuli, there was a high degree of intercorrelation between measures, suggesting that tasks may be measuring the same underlying construct (convergent validity). In addition to being correlated with one another, measures also predicted participants' self-reported sexual interest, demonstrating concurrent validity (i.e., the ability of a task to predict a more validated, simultaneously recorded, measure). Latency-based and pupillometric approaches also showed preliminary evidence of concurrent validity in predicting both self-reported interest in child molestation and viewing pornographic material containing children. Taken together, the study findings build on the evidence base for the validity of latency-based and pupillometric measures of sexual interest.
Klaus, Jana; Mädebach, Andreas; Oppermann, Frank; Jescheniak, Jörg D
2017-04-01
This study investigated to what extent advance planning during sentence production is affected by a concurrent cognitive load. In two picture-word interference experiments in which participants produced subject-verb-object sentences while ignoring auditory distractor words, we assessed advance planning at a phonological (lexeme) and at an abstract-lexical (lemma) level under visuospatial or verbal working memory (WM) load. At the phonological level, subject and object nouns were found to be activated before speech onset with concurrent visuospatial WM load, but only subject nouns were found to be activated with concurrent verbal WM load, indicating a reduced planning scope as a function of type of WM load (Experiment 1). By contrast, at the abstract-lexical level, subject and object nouns were found to be activated regardless of type of concurrent load (Experiment 2). In both experiments, sentence planning had a more detrimental effect on concurrent verbal WM task performance than on concurrent visuospatial WM task performance. Overall, our results suggest that advance planning at the phonological level is more affected by a concurrently performed verbal WM task than advance planning at the abstract-lexical level. Also, they indicate an overlap of resources allocated to phonological planning in speech production and verbal WM.
Botzer, Assaf; Meyer, Joachim; Parmet, Yisrael
2016-09-01
Binary cues help operators perform binary categorization tasks, such as monitoring for system failures. They may also allow them to attend to other tasks they concurrently perform. If the time saved by using cues is allocated to other concurrent tasks, users' overall effort may remain unchanged. In 2 experiments, participants performed a simulated quality control task, together with a tracking task. In half the experimental blocks cues were available, and participants could use them in their decisions about the quality of products (intact or faulty). In Experiment 1, the difficulty of tracking was constant, while in Experiment 2, tracking difficulty differed in the 2 halves of the experiment. In both experiments, participants reported on the NASA Task Load Index that cues improved their performance and reduced their frustration. Consequently, their overall score on mental workload (MWL) was lower with cues. They also reported, however, that cues did not reduce their effort. We conclude that cues and other forms of automation may support task performance and reduce overall MWL, but this will not necessarily mean that users will work less hard. Thus, effort and overall MWL should be evaluated separately, if one wants to obtain a full picture of the effects of automation. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Reimer, Christina B; Strobach, Tilo; Schubert, Torsten
2017-12-01
Visual attention and response selection are limited in capacity. Here, we investigated whether visual attention requires the same bottleneck mechanism as response selection in a dual-task of the psychological refractory period (PRP) paradigm. The dual-task consisted of an auditory two-choice discrimination Task 1 and a conjunction search Task 2, which were presented at variable temporal intervals (stimulus onset asynchrony, SOA). In conjunction search, visual attention is required to select items and to bind their features resulting in a serial search process around the items in the search display (i.e., set size). We measured the reaction time of the visual search task (RT2) and the N2pc, an event-related potential (ERP), which reflects lateralized visual attention processes. If the response selection processes in Task 1 influence the visual attention processes in Task 2, N2pc latency and amplitude would be delayed and attenuated at short SOA compared to long SOA. The results, however, showed that latency and amplitude were independent of SOA, indicating that visual attention was concurrently deployed to response selection. Moreover, the RT2 analysis revealed an underadditive interaction of SOA and set size. We concluded that visual attention does not require the same bottleneck mechanism as response selection in dual-tasks.
Chemtob, C M; Roitblat, H L; Hamada, R S; Muraoka, M Y; Carlson, J G; Bauer, G B
1999-04-01
We examined the ability of Vietnam veterans with PTSD to focus attention on a primary digit detection task while concurrently viewing neutral or Vietnam-related picture and word distractors. Controlling for combat exposure, military service, and psychopathology, veterans with PTSD took longer to detect the target when Vietnam-related pictures were distractors. There were no reaction time differences when word stimuli were distractors. The latency effect was specific to trials with trauma-related pictures and did not spread to neutral trials interleaved within a mixed block of trauma and neutral pictures. Individuals with PTSD recalled proportionally more Vietnam-related words than other groups, implying differential attention to Vietnam-related words. Attending to trauma-related pictures interferes with performance of a concurrent task by individuals with PTSD.
Using ADA Tasks to Simulate Operating Equipment
NASA Technical Reports Server (NTRS)
DeAcetis, Louis A.; Schmidt, Oron; Krishen, Kumar
1990-01-01
A method of simulating equipment using ADA tasks is discussed. Individual units of equipment are coded as concurrently running tasks that monitor and respond to input signals. This technique has been used in a simulation of the space-to-ground Communications and Tracking subsystem of Space Station Freedom.
Using Ada tasks to simulate operating equipment
NASA Technical Reports Server (NTRS)
Deacetis, Louis A.; Schmidt, Oron; Krishen, Kumar
1990-01-01
A method of simulating equipment using Ada tasks is discussed. Individual units of equipment are coded as concurrently running tasks that monitor and respond to input signals. This technique has been used in a simulation of the space-to-ground Communications and Tracking subsystem of Space Station Freedom.
Effects of Single Compared to Dual Task Practice on Learning a Dynamic Balance Task in Young Adults
Kiss, Rainer; Brueckner, Dennis; Muehlbauer, Thomas
2018-01-01
Background: In everyday life, people engage in situations involving the concurrent processing of motor (balance) and cognitive tasks (i.e., “dual task situations”) that result in performance declines in at least one of the given tasks. The concurrent practice of both the motor and cognitive task may counteract these performance decrements. The purpose of this study was to examine the effects of single task (ST) compared to dual task (DT) practice on learning a dynamic balance task. Methods: Forty-eight young adults were randomly assigned to either a ST (i.e., motor or cognitive task training only) or a DT (i.e., motor-cognitive training) practice condition. The motor task required participants to stand on a platform and keeping the platform as close to horizontal as possible. In the cognitive task, participants were asked to recite serial subtractions of three. For 2 days, participants of the ST groups practiced the motor or cognitive task only, while the participants of the DT group concurrently performed both. Root-mean-square error (RMSE) for the motor and total number of correct calculations for the cognitive task were computed. Results: During practice, all groups improved their respective balance and/or cognitive task performance. With regard to the assessment of learning on day 3, we found significantly smaller RMSE values for the ST motor (d = 1.31) and the DT motor-cognitive (d = 0.76) practice group compared to the ST cognitive practice group but not between the ST motor and the DT motor-cognitive practice group under DT test condition. Further, we detected significantly larger total numbers of correct calculations under DT test condition for the ST cognitive (d = 2.19) and the DT motor-cognitive (d = 1.55) practice group compared to the ST motor practice group but not between the ST cognitive and the DT motor-cognitive practice group. Conclusion: We conclude that ST practice resulted in an effective modulation of the trained domain (i.e., motor or cognitive) while only DT practice resulted in an effective modulation of both domains (i.e., motor and cognitive). Thus, particularly DT practice frees up central resources that were used for an effective modulation of motor and cognitive processing mechanisms. PMID:29593614
Santner, Antonia; Kopp, Martin; Federolf, Peter
2018-05-24
Physical training may play a prominent role in the development of preadolescent brains, but it is yet to be determined what type of exercise may generate higher cognitive effects, and if concurrent mental engagement provides further efficacy. The aim of this study is to investigate motor and cognitive effects of a 9-week exercise intervention in children aged 6-10 years. Trainings include the automatisation of challenging coordination exercises with concurrent mental tasks (intervention group) and multisport exercises with and without mental tasks (two control groups). It is hypothesised that all groups gain motor and cognitive effects, but highest benefits are expected for the combination of automatised coordination exercises with mental tasks. Two elementary schools (∼500 students) take part in the study. Data are generated by using the German Motor Performance Test 6-18 (Deutscher Motorik-Test 6-18), TDS (Match 4 Point), d2-R test of attention and Kasel-Concentration-Task for Children Aged 3-8 Years; test-duration: 6-7 min. After pretesting in September 2017 and a 9-week training intervention, post-testing takes place in December 2017 and March 2018 (long-term effects). Training interventions consist of coordination exercises with concurrent mental tasks (intervention group) and multimotor exercises with and without concurrent mental tasks (control groups). Shapiro-Wilk test will be used to test for normal distribution and the Levene test for variance homogeneity. The appropriate multivariate statistical methods (multivariate analysis of variance or Kruskal-Wallis test) will be used for analysing differences among the groups and for comparing preintervention with postintervention performances. All procedures have been approved by the board for ethical questions in science of the University of Innsbruck. Findings will be published in 2018 in international journals and presented at conferences. Schools will be informed of key results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Visu-Petra, George; Varga, Mihai; Miclea, Mircea; Visu-Petra, Laura
2013-01-01
The possibility to enhance the detection efficiency of the Concealed Information Test (CIT) by increasing executive load was investigated, using an interference design. After learning and executing a mock crime scenario, subjects underwent three deception detection tests: an RT-based CIT, an RT-based CIT plus a concurrent memory task (CITMem), and an RT-based CIT plus a concurrent set-shifting task (CITShift). The concealed information effect, consisting in increased RT and lower response accuracy for probe items compared to irrelevant items, was evidenced across all three conditions. The group analyses indicated a larger difference between RTs to probe and irrelevant items in the dual-task conditions, but this difference was not translated in a significantly increased detection efficiency at an individual level. Signal detection parameters based on the comparison with a simulated innocent group showed accurate discrimination for all conditions. Overall response accuracy on the CITMem was highest and the difference between response accuracy to probes and irrelevants was smallest in this condition. Accuracy on the concurrent tasks (Mem and Shift) was high, and responses on these tasks were significantly influenced by CIT stimulus type (probes vs. irrelevants). The findings are interpreted in relation to the cognitive load/dual-task interference literature, generating important insights for research on the involvement of executive functions in deceptive behavior. PMID:23543918
DOT National Transportation Integrated Search
1969-08-01
This study concerned the rate of presentation of stimuli on a task involving the monitoring of a static process of the kind represented by aircraft warning light indicators. The task was performed concurrently with various combinations of tasks requi...
Reading While Listening: A Linear Model of Selective Attention
ERIC Educational Resources Information Center
Martin, Maryanne
1977-01-01
Two experiments are described. One measured performance of subjects on pairs of concurrent verbal tasks, monitoring sentences for certain items while reading. Secondary task performance combined with a primary task is proportional to its performance in isolation. The second experiment checked certain results of the first. (CHK)
Formal Semanol Specification of Ada.
1980-09-01
concurrent task modeling involved very little change to the SEMANOL metalanguage. A primitive capable of initiating concurrent SEMANOL task processors...i.e., #CO-COMPUTE) and two primitivc-; corresponding to integer semaphores (i.c., #P and #V) were all that were required. In addition, these changes... synchronization techniques and choice of correct unblocking alternatives. We should note that it had been our original intention to use the Ada Translator program
Concurrent Learning of Control in Multi agent Sequential Decision Tasks
2018-04-17
Concurrent Learning of Control in Multi-agent Sequential Decision Tasks The overall objective of this project was to develop multi-agent reinforcement...learning (MARL) approaches for intelligent agents to autonomously learn distributed control policies in decentral- ized partially observable...shall be subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number
Working memory costs of task switching.
Liefooghe, Baptist; Barrouillet, Pierre; Vandierendonck, André; Camos, Valérie
2008-05-01
Although many accounts of task switching emphasize the importance of working memory as a substantial source of the switch cost, there is a lack of evidence demonstrating that task switching actually places additional demands on working memory. The present study addressed this issue by implementing task switching in continuous complex span tasks with strictly controlled time parameters. A series of 4 experiments demonstrate that recall performance decreased as a function of the number of task switches and that the concurrent load of item maintenance had no influence on task switching. These results indicate that task switching induces a cost on working memory functioning. Implications for theories of task switching, working memory, and resource sharing are addressed.
Sound segregation via embedded repetition is robust to inattention.
Masutomi, Keiko; Barascud, Nicolas; Kashino, Makio; McDermott, Josh H; Chait, Maria
2016-03-01
The segregation of sound sources from the mixture of sounds that enters the ear is a core capacity of human hearing, but the extent to which this process is dependent on attention remains unclear. This study investigated the effect of attention on the ability to segregate sounds via repetition. We utilized a dual task design in which stimuli to be segregated were presented along with stimuli for a "decoy" task that required continuous monitoring. The task to assess segregation presented a target sound 10 times in a row, each time concurrent with a different distractor sound. McDermott, Wrobleski, and Oxenham (2011) demonstrated that repetition causes the target sound to be segregated from the distractors. Segregation was queried by asking listeners whether a subsequent probe sound was identical to the target. A control task presented similar stimuli but probed discrimination without engaging segregation processes. We present results from 3 different decoy tasks: a visual multiple object tracking task, a rapid serial visual presentation (RSVP) digit encoding task, and a demanding auditory monitoring task. Load was manipulated by using high- and low-demand versions of each decoy task. The data provide converging evidence of a small effect of attention that is nonspecific, in that it affected the segregation and control tasks to a similar extent. In all cases, segregation performance remained high despite the presence of a concurrent, objectively demanding decoy task. The results suggest that repetition-based segregation is robust to inattention. (c) 2016 APA, all rights reserved).
Tsang, William W N; Lam, Nazca K Y; Lau, Kit N L; Leung, Harry C H; Tsang, Crystal M S; Lu, Xi
2013-12-01
To investigate the effects of aging on postural control and cognitive performance in single- and dual-tasking. A cross-sectional comparative design was conducted in a university motion analysis laboratory. Young adults (n = 30; age 21.9 ± 2.4 years) and older adults (n = 30; age 71.9 ± 6.4 years) were recruited. Postural control after stepping down was measured with and without performing a concurrent auditory response task. Measurement included: (1) reaction time and (2) error rate in performing the cognitive task; (3) total sway path and (4) total sway area after stepping down. Our findings showed that the older adults had significantly longer reaction times and higher error rates than the younger subjects in both the single-tasking and dual-tasking conditions. The older adults had significantly longer reaction times and higher error rates when dual-tasking compared with single-tasking, but the younger adults did not. The older adults demonstrated significantly less total sway path, but larger total sway area in single-leg stance after stepping down than the young adults. The older adults showed no significant change in total sway path and area between the dual-tasking and when compared with single-tasking conditions, while the younger adults showed significant decreases in sway. Older adults prioritize postural control by sacrificing cognitive performance when faced with dual-tasking.
Speciali, Danielli S.; Oliveira, Elaine M.; Cardoso, Jefferson R.; Correa, João C. F.; Baker, Richard; Lucareli, Paulo R. G.
2014-01-01
Background: Gait disorders are common in individuals with Parkinson's Disease (PD) and the concurrent performance of motor and cognitive tasks can have marked effects on gait. The Gait Profile Score (GPS) and the Movement Analysis Profile (MAP) were developed in order to summarize the data of kinematics and facilitate understanding of the results of gait analysis. Objective: To investigate the effectiveness of the GPS and MAP in the quantification of changes in gait during a concurrent cognitive load while walking in adults with and without PD. Method: Fourteen patients with idiopathic PD and nine healthy subjects participated in the study. All subjects performed single and dual walking tasks. The GPS/MAP was computed from three-dimensional gait analysis data. Results: Differences were found between tasks for GPS (P<0.05) and Gait Variable Score (GVS) (pelvic rotation, knee flexion-extension and ankle dorsiflexion-plantarflexion) (P<0.05) in the PD group. An interaction between task and group was observed for GPS (P<0.01) for the right side (Cohen's ¯d=0.99), left side (Cohen's ¯d=0.91), and overall (Cohen's ¯d=0.88). No interaction was observed only for hip internal-external rotation and foot internal-external progression GVS variables in the PD group. Conclusions: The results showed gait impairment during the dual task and suggest that GPS/MAP may be used to evaluate the effects of concurrent cognitive load while walking in patients with PD. PMID:25054382
Attention in a multi-task environment
NASA Technical Reports Server (NTRS)
Andre, Anthony D.; Heers, Susan T.
1993-01-01
Two experiments used a low fidelity multi-task simulation to investigate the effects of cue specificity on task preparation and performance. Subjects performed a continuous compensatory tracking task and were periodically prompted to perform one of several concurrent secondary tasks. The results provide strong evidence that subjects enacted a strategy to actively divert resources towards secondary task preparation only when they had specific information about an upcoming task to be performed. However, this strategy was not as much affected by the type of task cued (Experiment 1) or its difficulty level (Experiment 2). Overall, subjects seemed aware of both the costs (degraded primary task tracking) and benefits (improved secondary task performance) of cue information. Implications of the present results for computational human performance/workload models are discussed.
Lang, Angelica E.; Stobart, Jamie; Kociolek, Aaron M.; Milosavljevic, Stephan; Trask, Catherine
2017-01-01
Many occupations in agriculture, construction, transportation, and forestry are non-routine, involving non-cyclical tasks, both discretionary and non-discretionary work breaks, and a mix of work activities. Workers in these industries are exposed to seated whole body vibration (WBV) and tasks consisting of physical, mental, or a combination of demands. Risk assessment tools for non-routinized jobs have emerged but there remains a need to understand the combined effects of different work demands to improve risk assessment methods and ultimately inform ergonomists and workers on optimum work arrangement and scheduling strategies. The objective of this study was to investigate fatigue-related human responses of WBV sequentially combined with physical, mental, or concurrent physical and mental demands. Sixteen healthy participants performed four conditions on four separate days: (1) physically demanding work, (2) mentally demanding work, (3) concurrent work, and (4) control quiet sitting. For each condition, participants performed two 15-minute bouts of the experimental task, separated by 30-minutes of simulated WBV based on realistic all-terrain vehicle (ATV) riding data. A test battery of fatigue measures consisting of biomechanical, physiological, cognitive, and sensorimotor measurements were collected at four interval periods: pre-session, after the first bout of the experimental task and before WBV, after WBV and before the second bout of the experimental task, and post-session. Nine measures demonstrated statistically significant time effects during the control condition; 11, 7, and 12 measures were significant in the physical, mental, and concurrent conditions, respectively. Overall, the effects of seated WBV in combination with different tasks are not additive but possibly synergistic or antagonistic. There appears to be a beneficial effect of seated ATV operation as a means of increasing task variation; but since excessive WBV may independently pose a health risk in the longer-term, these beneficial results may not be sensible as a long-term solution. PMID:29236752
Yung, Marcus; Lang, Angelica E; Stobart, Jamie; Kociolek, Aaron M; Milosavljevic, Stephan; Trask, Catherine
2017-01-01
Many occupations in agriculture, construction, transportation, and forestry are non-routine, involving non-cyclical tasks, both discretionary and non-discretionary work breaks, and a mix of work activities. Workers in these industries are exposed to seated whole body vibration (WBV) and tasks consisting of physical, mental, or a combination of demands. Risk assessment tools for non-routinized jobs have emerged but there remains a need to understand the combined effects of different work demands to improve risk assessment methods and ultimately inform ergonomists and workers on optimum work arrangement and scheduling strategies. The objective of this study was to investigate fatigue-related human responses of WBV sequentially combined with physical, mental, or concurrent physical and mental demands. Sixteen healthy participants performed four conditions on four separate days: (1) physically demanding work, (2) mentally demanding work, (3) concurrent work, and (4) control quiet sitting. For each condition, participants performed two 15-minute bouts of the experimental task, separated by 30-minutes of simulated WBV based on realistic all-terrain vehicle (ATV) riding data. A test battery of fatigue measures consisting of biomechanical, physiological, cognitive, and sensorimotor measurements were collected at four interval periods: pre-session, after the first bout of the experimental task and before WBV, after WBV and before the second bout of the experimental task, and post-session. Nine measures demonstrated statistically significant time effects during the control condition; 11, 7, and 12 measures were significant in the physical, mental, and concurrent conditions, respectively. Overall, the effects of seated WBV in combination with different tasks are not additive but possibly synergistic or antagonistic. There appears to be a beneficial effect of seated ATV operation as a means of increasing task variation; but since excessive WBV may independently pose a health risk in the longer-term, these beneficial results may not be sensible as a long-term solution.
Parallel effects of memory set activation and search on timing and working memory capacity.
Schweickert, Richard; Fortin, Claudette; Xi, Zhuangzhuang; Viau-Quesnel, Charles
2014-01-01
Accurately estimating a time interval is required in everyday activities such as driving or cooking. Estimating time is relatively easy, provided a person attends to it. But a brief shift of attention to another task usually interferes with timing. Most processes carried out concurrently with timing interfere with it. Curiously, some do not. Literature on a few processes suggests a general proposition, the Timing and Complex-Span Hypothesis: A process interferes with concurrent timing if and only if process performance is related to complex span. Complex-span is the number of items correctly recalled in order, when each item presented for study is followed by a brief activity. Literature on task switching, visual search, memory search, word generation and mental time travel supports the hypothesis. Previous work found that another process, activation of a memory set in long term memory, is not related to complex-span. If the Timing and Complex-Span Hypothesis is true, activation should not interfere with concurrent timing in dual-task conditions. We tested such activation in single-task memory search task conditions and in dual-task conditions where memory search was executed with concurrent timing. In Experiment 1, activating a memory set increased reaction time, with no significant effect on time production. In Experiment 2, set size and memory set activation were manipulated. Activation and set size had a puzzling interaction for time productions, perhaps due to difficult conditions, leading us to use a related but easier task in Experiment 3. In Experiment 3 increasing set size lengthened time production, but memory activation had no significant effect. Results here and in previous literature on the whole support the Timing and Complex-Span Hypotheses. Results also support a sequential organization of activation and search of memory. This organization predicts activation and set size have additive effects on reaction time and multiplicative effects on percent correct, which was found.
Concurrent working memory load can facilitate selective attention: evidence for specialized load.
Park, Soojin; Kim, Min-Shik; Chun, Marvin M
2007-10-01
Load theory predicts that concurrent working memory load impairs selective attention and increases distractor interference (N. Lavie, A. Hirst, J. W. de Fockert, & E. Viding). Here, the authors present new evidence that the type of concurrent working memory load determines whether load impairs selective attention or not. Working memory load was paired with a same/different matching task that required focusing on targets while ignoring distractors. When working memory items shared the same limited-capacity processing mechanisms with targets in the matching task, distractor interference increased. However, when working memory items shared processing with distractors in the matching task, distractor interference decreased, facilitating target selection. A specialized load account is proposed to describe the dissociable effects of working memory load on selective processing depending on whether the load overlaps with targets or with distractors. (c) 2007 APA
Barista: A Framework for Concurrent Speech Processing by USC-SAIL
Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G.; Narayanan, Shrikanth S.
2016-01-01
We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0. PMID:27610047
Barista: A Framework for Concurrent Speech Processing by USC-SAIL.
Can, Doğan; Gibson, James; Vaz, Colin; Georgiou, Panayiotis G; Narayanan, Shrikanth S
2014-05-01
We present Barista, an open-source framework for concurrent speech processing based on the Kaldi speech recognition toolkit and the libcppa actor library. With Barista, we aim to provide an easy-to-use, extensible framework for constructing highly customizable concurrent (and/or distributed) networks for a variety of speech processing tasks. Each Barista network specifies a flow of data between simple actors, concurrent entities communicating by message passing, modeled after Kaldi tools. Leveraging the fast and reliable concurrency and distribution mechanisms provided by libcppa, Barista lets demanding speech processing tasks, such as real-time speech recognizers and complex training workflows, to be scheduled and executed on parallel (and/or distributed) hardware. Barista is released under the Apache License v2.0.
Sigrist, Roland; Rauter, Georg; Marchal-Crespo, Laura; Riener, Robert; Wolf, Peter
2015-03-01
Concurrent augmented feedback has been shown to be less effective for learning simple motor tasks than for complex tasks. However, as mostly artificial tasks have been investigated, transfer of results to tasks in sports and rehabilitation remains unknown. Therefore, in this study, the effect of different concurrent feedback was evaluated in trunk-arm rowing. It was then investigated whether multimodal audiovisual and visuohaptic feedback are more effective for learning than visual feedback only. Naïve subjects (N = 24) trained in three groups on a highly realistic virtual reality-based rowing simulator. In the visual feedback group, the subject's oar was superimposed to the target oar, which continuously became more transparent when the deviation between the oars decreased. Moreover, a trace of the subject's trajectory emerged if deviations exceeded a threshold. The audiovisual feedback group trained with oar movement sonification in addition to visual feedback to facilitate learning of the velocity profile. In the visuohaptic group, the oar movement was inhibited by path deviation-dependent braking forces to enhance learning of spatial aspects. All groups significantly decreased the spatial error (tendency in visual group) and velocity error from baseline to the retention tests. Audiovisual feedback fostered learning of the velocity profile significantly more than visuohaptic feedback. The study revealed that well-designed concurrent feedback fosters complex task learning, especially if the advantages of different modalities are exploited. Further studies should analyze the impact of within-feedback design parameters and the transferability of the results to other tasks in sports and rehabilitation.
Cognitive tasks promote automatization of postural control in young and older adults.
Potvin-Desrochers, Alexandra; Richer, Natalie; Lajoie, Yves
2017-09-01
Researchers looking at the effects of performing a concurrent cognitive task on postural control in young and older adults using traditional center-of-pressure measures and complexity measures found discordant results. Results of experiments showing improvements of stability have suggested the use of strategies such as automatization of postural control or stiffening strategy. This experiment aimed to confirm in healthy young and older adults that performing a cognitive task while standing leads to improvements that are due to automaticity of sway by using sample entropy. Twenty-one young adults and twenty-five older adults were asked to stand on a force platform while performing a cognitive task. There were four cognitive tasks: simple reaction time, go/no-go reaction time, equation and occurrence of a digit in a number sequence. Results demonstrated decreased sway area and variability as well as increased sample entropy for both groups when performing a cognitive task. Results suggest that performing a concurrent cognitive task promotes the adoption of an automatic postural control in young and older adults as evidenced by an increased postural stability and postural sway complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Qureshi, Adam W.; Apperly, Ian A.; Samson, Dana
2010-01-01
Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task…
Is the hand to speech what speech is to the hand?
Mildner, V
2000-01-01
Interference between the manual and the verbal performance on two types of concurrent verbal-manual tasks was studied on a sample of 48 female right-handers. The more complex verbal task (storytelling) affected both hands significantly, the less complex (essentially phonemic) task affected only the right hand, with insignificant negative influence on the left-hand performance. No significant reciprocal effects of the motor task on verbalization were found.
Vecchiato, Giovanni; Borghini, Gianluca; Aricò, Pietro; Graziani, Ilenia; Maglione, Anton Giulio; Cherubino, Patrizia; Babiloni, Fabio
2016-10-01
Brain-computer interfaces (BCIs) are widely used for clinical applications and exploited to design robotic and interactive systems for healthy people. We provide evidence to control a sensorimotor electroencephalographic (EEG) BCI system while piloting a flight simulator and attending a double attentional task simultaneously. Ten healthy subjects were trained to learn how to manage a flight simulator, use the BCI system, and answer to the attentional tasks independently. Afterward, the EEG activity was collected during a first flight where subjects were required to concurrently use the BCI, and a second flight where they were required to simultaneously use the BCI and answer to the attentional tasks. Results showed that the concurrent use of the BCI system during the flight simulation does not affect the flight performances. However, BCI performances decrease from the 83 to 63 % while attending additional alertness and vigilance tasks. This work shows that it is possible to successfully control a BCI system during the execution of multiple tasks such as piloting a flight simulator with an extra cognitive load induced by attentional tasks. Such framework aims to foster the knowledge on BCI systems embedded into vehicles and robotic devices to allow the simultaneous execution of secondary tasks.
Krans, Julie; Langner, Oliver; Reinecke, Andrea; Pearson, David G
2013-12-01
The present study addressed the role of context information and dual-task interference during the encoding of negative pictures on intrusion development and voluntary recall. Healthy participants were shown negative pictures with or without context information. Pictures were either viewed alone or concurrently with a visuospatial or verbal task. Participants reported their intrusive images of the pictures in a diary. At follow-up, perceptual and contextual memory was tested. Participants in the context group reported more intrusive images and perceptual voluntary memory than participants in the no context group. No effects of the concurrent tasks were found on intrusive image frequency, but perceptual and contextual memory was affected according to the cognitive load of the task. The analogue method cannot be generalized to real-life trauma and the secondary tasks may differ in cognitive load. The findings challenge a dual memory model of PTSD but support an account in which retrieval strategy, rather than encoding processes, accounts for the experience of involuntary versus voluntary recall. Copyright © 2013 Elsevier Ltd. All rights reserved.
The effects of cognitive loading on balance control in patients with multiple sclerosis.
Negahban, Hossein; Mofateh, Razieh; Arastoo, Ali Asghar; Mazaheri, Masood; Yazdi, Mohammad Jafar Shaterzadeh; Salavati, Mahyar; Majdinasab, Nastaran
2011-10-01
The aim of this study was to compare the effects of concurrent cognitive task (silent backward counting) on balance performance between two groups of multiple sclerosis (MS) (n=23) and healthy (n=23) participates. Three levels of postural difficulty were studied on a force platform, i.e. rigid surface with eyes open, rigid surface with eyes closed, and foam surface with eyes closed. A mixed model analysis of variance showed that under difficult sensory condition of foam surface with eyes closed, execution of concurrent cognitive task caused a significant decrement in variability of sway velocity in anteroposterior direction for the patient group (P<0.01) while this was not the case for healthy participants (P=0.22). Also, the variability of sway velocity in mediolateral direction was significantly decreased during concurrent execution of cognitive task in patient group (P<0.01) and not in healthy participants (P=0.39). Furthermore, in contrast to single tasking, dual tasking had the ability to discriminate between the 2 groups in all conditions of postural difficulty. In conclusion, findings of variability in sway velocity seem to confirm the different response to cognitive loading between two groups of MS and healthy participants. Copyright © 2011 Elsevier B.V. All rights reserved.
Face-gender discrimination is possible in the near-absence of attention.
Reddy, Leila; Wilken, Patrick; Koch, Christof
2004-03-02
The attentional cost associated with the visual discrimination of the gender of a face was investigated. Participants performed a face-gender discrimination task either alone (single-task) or concurrently (dual-task) with a known attentional demanding task (5-letter T/L discrimination). Overall performance on face-gender discrimination suffered remarkably little under the dual-task condition compared to the single-task condition. Similar results were obtained in experiments that controlled for potential training effects or the use of low-level cues in this discrimination task. Our results provide further evidence against the notion that only low-level representations can be accessed outside the focus of attention.
Hwang, Ing-Shiou; Huang, Cheng-Ya
2016-01-01
With appropriate reallocation of central resources, the ability to maintain an erect posture is not necessarily degraded by a concurrent motor task. This study investigated the neural control of a particular postural-suprapostural procedure involving brain mechanisms to solve crosstalk between posture and motor subtasks. Participants completed a single posture task and a dual-task while concurrently conducting force-matching and maintaining a tilted stabilometer stance at a target angle. Stabilometer movements and event-related potentials (ERPs) were recorded. The added force-matching task increased the irregularity of postural response rather than the size of postural response prior to force-matching. In addition, the added force-matching task during stabilometer stance led to marked topographic ERP modulation, with greater P2 positivity in the frontal and sensorimotor-parietal areas of the N1-P2 transitional phase and in the sensorimotor-parietal area of the late P2 phase. The time-frequency distribution of the ERP primary principal component revealed that the dual-task condition manifested more pronounced delta (1–4 Hz) and beta (13–35 Hz) synchronizations but suppressed theta activity (4–8 Hz) before force-matching. The dual-task condition also manifested coherent fronto-parietal delta activity in the P2 period. In addition to a decrease in postural regularity, this study reveals spatio-temporal and temporal-spectral reorganizations of ERPs in the fronto-sensorimotor-parietal network due to the added suprapostural motor task. For a particular set of postural-suprapostural task, the behavior and neural data suggest a facilitatory role of autonomous postural response and central resource expansion with increasing interregional interactions for task-shift and planning the motor-suprapostural task. PMID:27010634
When Content Matters: The Role of Processing Code in Tactile Display Design.
Ferris, Thomas K; Sarter, Nadine
2010-01-01
The distribution of tasks and stimuli across multiple modalities has been proposed as a means to support multitasking in data-rich environments. Recently, the tactile channel and, more specifically, communication via the use of tactile/haptic icons have received considerable interest. Past research has examined primarily the impact of concurrent task modality on the effectiveness of tactile information presentation. However, it is not well known to what extent the interpretation of iconic tactile patterns is affected by another attribute of information: the information processing codes of concurrent tasks. In two driving simulation studies (n = 25 for each), participants decoded icons composed of either spatial or nonspatial patterns of vibrations (engaging spatial and nonspatial processing code resources, respectively) while concurrently interpreting spatial or nonspatial visual task stimuli. As predicted by Multiple Resource Theory, performance was significantly worse (approximately 5-10 percent worse) when the tactile icons and visual tasks engaged the same processing code, with the overall worst performance in the spatial-spatial task pairing. The findings from these studies contribute to an improved understanding of information processing and can serve as input to multidimensional quantitative models of timesharing performance. From an applied perspective, the results suggest that competition for processing code resources warrants consideration, alongside other factors such as the naturalness of signal-message mapping, when designing iconic tactile displays. Nonspatially encoded tactile icons may be preferable in environments which already rely heavily on spatial processing, such as car cockpits.
Lu, Xi; Siu, Ka-Chun; Fu, Siu N; Hui-Chan, Christina W Y; Tsang, William W N
2013-08-01
To compare the performance of older experienced Tai Chi practitioners and healthy controls in dual-task versus single-task paradigms, namely stepping down with and without performing an auditory response task, a cross-sectional study was conducted in the Center for East-meets-West in Rehabilitation Sciences at The Hong Kong Polytechnic University, Hong Kong. Twenty-eight Tai Chi practitioners (73.6 ± 4.2 years) and 30 healthy control subjects (72.4 ± 6.1 years) were recruited. Participants were asked to step down from a 19-cm-high platform and maintain a single-leg stance for 10 s with and without a concurrent cognitive task. The cognitive task was an auditory Stroop test in which the participants were required to respond to different tones of voices regardless of their word meanings. Postural stability after stepping down under single- and dual-task paradigms, in terms of excursion of the subject's center of pressure (COP) and cognitive performance, was measured for comparison between the two groups. Our findings demonstrated significant between-group differences in more outcome measures during dual-task than single-task performance. Thus, the auditory Stroop test showed that Tai Chi practitioners achieved not only significantly less error rate in single-task, but also significantly faster reaction time in dual-task, when compared with healthy controls similar in age and other relevant demographics. Similarly, the stepping-down task showed that Tai Chi practitioners not only displayed significantly less COP sway area in single-task, but also significantly less COP sway path than healthy controls in dual-task. These results showed that Tai Chi practitioners achieved better postural stability after stepping down as well as better performance in auditory response task than healthy controls. The improved performance that was magnified by dual motor-cognitive task performance may point to the benefits of Tai Chi being a mind-and-body exercise.
Schott, Nadja; El-Rajab, Inaam; Klotzbier, Thomas
2016-10-01
While typically developing children produce relatively automatized postural control processes, children with DCD seem to exhibit an automatization deficit. Dual tasks with various cognitive loads seem to be an effective way to assess the automatic deficit hypothesis. The aims of the study were: (1) to examine the effect of a concurrent cognitive task on fine and gross motor tasks in children with DCD, and (2) to determine whether the effect varied with different difficulty levels of the concurrent task. We examined dual-task performance (Trail-Making-Test, Trail-Walking-Test) in 20 children with DCD and 39 typically developing children. Based on the idea of the Trail-Making-Test, participants walked along a fixed pathway, following a prescribed path, delineated by target markers of (1) increasing sequential numbers, and (2) increasing sequential numbers and letters. The motor and cognitive dual-task effects (DTE) were calculated for each task. Regardless of the cognitive task, children with DCD performed equally well in fine and gross motor tasks, and were slower in the dual task conditions than under single task-conditions, compared with children without DCD. Increased cognitive task complexity resulted in slow trail walking as well as slower trail tracing. The motor interference for the gross motor tasks was least for the simplest conditions and greatest for the complex conditions and was more pronounced in children with DCD. Cognitive interference was low irrespective of the motor task. Children with DCD show a different approach to allocation of cognitive resources, and have difficulties making motor skills automatic. The latter notion is consistent with impaired cerebellar function and the "automatization deficit hypothesis", suggesting that any deficit in the automatization process will appear if conscious monitoring of the motor skill is made more difficult by integrating another task requiring attentional resources. Copyright © 2016 Elsevier Ltd. All rights reserved.
Schaefer, Sabine; Krampe, Ralf Th; Lindenberger, Ulman; Baltes, Paul B
2008-05-01
Task prioritization can lead to trade-off patterns in dual-task situations. The authors compared dual-task performances in 9- and 11-year-old children and young adults performing a cognitive task and a motor task concurrently. The motor task required balancing on an ankle-disc board. Two cognitive tasks measured working memory and episodic memory at difficulty levels individually adjusted during the course of extensive training. Adults showed performance decrements in both task domains under dual-task conditions. In contrast, children showed decrements only in the cognitive tasks but actually swayed less under dual-task than under single-task conditions and continued to reduce their body sway even when instructed to focus on the cognitive task. The authors argue that children perform closer to their stability boundaries in the balance task and therefore prioritize protection of their balance under dual-task conditions. (PsycINFO Database Record (c) 2008 APA, all rights reserved).
ERIC Educational Resources Information Center
Bailey, Dallin J.; Dromey, Christopher
2015-01-01
Purpose: The purpose of this study was to examine divided attention over a large age range by looking at the effects of 3 nonspeech tasks on concurrent speech motor performance. The nonspeech tasks were designed to facilitate measurement of bidirectional interference, allowing examination of their sensitivity to speech activity. A cross-sectional…
Multitasking Information Behaviour in Public Libraries: A Survey Study
ERIC Educational Resources Information Center
Spink, Amanda; Alvarado-Albertorio, Frances; Narayan, Bhuva; Brumfield, Jean; Park, Minsoo
2007-01-01
Multitasking information behaviour is the human ability to handle the demands of multiple information tasks concurrently. When we multitask, we work on two or more tasks and switch between those tasks. Multitasking is the way most of us deal with the complex environment we all live in, and recent studies show that people often engage in…
Srinivasan, Divya; Mathiassen, Svend Erik; Hallman, David M; Samani, Afshin; Madeleine, Pascal; Lyskov, Eugene
2016-01-01
Most previous studies of concurrent physical and cognitive demands have addressed tasks of limited relevance to occupational work, and with dissociated physical and cognitive task components. This study investigated effects on muscle activity and heart rate variability of executing a repetitive occupational task with an added cognitive demand integral to correct task performance. Thirty-five healthy females performed 7.5 min of standardized repetitive pipetting work in a baseline condition and a concurrent cognitive condition involving a complex instruction for correct performance. Average levels and variabilities of electromyographic activities in the upper trapezius and extensor carpi radialis (ECR) muscles were compared between these two conditions. Heart rate and heart rate variability were also assessed to measure autonomic nervous system activation. Subjects also rated perceived fatigue in the neck-shoulder region, as well as exertion. Concurrent cognitive demands increased trapezius muscle activity from 8.2% of maximum voluntary exertion (MVE) in baseline to 9.0% MVE (p = 0.0005), but did not significantly affect ECR muscle activity, heart rate, heart rate variability, perceived fatigue or exertion. Trapezius muscle activity increased by about 10%, without any accompanying cardiovascular response to indicate increased sympathetic activation. We suggest this slight increase in trapezius muscle activity to be due to changed muscle activation patterns within or among shoulder muscles. The results suggest that it may be possible to introduce modest cognitive demands necessary for correct performance in repetitive precision work without any major physiological effects, at least in the short term.
Concurrent Path Planning with One or More Humanoid Robots
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Sanders, Adam M. (Inventor)
2014-01-01
A robotic system includes a controller and one or more robots each having a plurality of robotic joints. Each of the robotic joints is independently controllable to thereby execute a cooperative work task having at least one task execution fork, leading to multiple independent subtasks. The controller coordinates motion of the robot(s) during execution of the cooperative work task. The controller groups the robotic joints into task-specific robotic subsystems, and synchronizes motion of different subsystems during execution of the various subtasks of the cooperative work task. A method for executing the cooperative work task using the robotic system includes automatically grouping the robotic joints into task-specific subsystems, and assigning subtasks of the cooperative work task to the subsystems upon reaching a task execution fork. The method further includes coordinating execution of the subtasks after reaching the task execution fork.
Visual short-term memory load strengthens selective attention.
Roper, Zachary J J; Vecera, Shaun P
2014-04-01
Perceptual load theory accounts for many attentional phenomena; however, its mechanism remains elusive because it invokes underspecified attentional resources. Recent dual-task evidence has revealed that a concurrent visual short-term memory (VSTM) load slows visual search and reduces contrast sensitivity, but it is unknown whether a VSTM load also constricts attention in a canonical perceptual load task. If attentional selection draws upon VSTM resources, then distraction effects-which measure attentional "spill-over"-will be reduced as competition for resources increases. Observers performed a low perceptual load flanker task during the delay period of a VSTM change detection task. We observed a reduction of the flanker effect in the perceptual load task as a function of increasing concurrent VSTM load. These findings were not due to perceptual-level interactions between the physical displays of the two tasks. Our findings suggest that perceptual representations of distractor stimuli compete with the maintenance of visual representations held in memory. We conclude that access to VSTM determines the degree of attentional selectivity; when VSTM is not completely taxed, it is more likely for task-irrelevant items to be consolidated and, consequently, affect responses. The "resources" hypothesized by load theory are at least partly mnemonic in nature, due to the strong correspondence they share with VSTM capacity.
Specific transfer effects following variable priority dual-task training in older adults.
Lussier, Maxime; Bugaiska, Aurélia; Bherer, Louis
2017-01-01
Past divided attention training studies in older adults have suggested that variable priority training (VPT) tends to show larger improvement than fixed priority training (FPT). However, it remains unclear whether VPT leads to larger transfer effects. In this study, eighty-three older adults aged between 55 and 65 received five 1-hour sessions of VPT, FPT or of an active placebo. VPT and FPT subjects trained on a complex dual-task condition with variable stimulus timings in order to promote more flexible and self-guided strategies with regard to attentional priority devoted to the concurrent tasks. Real-time individualized feedback was provided to encourage improvement. The active placebo group attended computer classes. Near and far modality transfer tasks were used to assess the generalization of transfer effects. Results showed that VPT induced significantly larger transfer effects than FPT on a near modality transfer task. Evidence for larger transfer effects in VPT than FPT on a far modality transfer task was also observed. Furthermore, the superiority of VPT on FPT in transfer effects was specific to the ability to coordinate two concurrent tasks. Results of this study help better understand the benefits of VPT attentional training on transfer effects, which is an essential outcome for cognitive training effectiveness and relevancy.
NASA Technical Reports Server (NTRS)
Looper, M.
1976-01-01
This study investigates the influence of attention loading on the established intersensory effects of passive bodily rotation on choice reaction time (RT) to visual motion. Subjects sat at the center of rotation in an enclosed rotating chamber and observed an oscilloscope on which were, in the center, a tracking display and, 10 deg left of center, a RT line. Three tracking tasks and a no-tracking control condition were presented to all subjects in combination with the RT task, which occurred with and without concurrent cab rotations. Choice RT to line motions was inhibited (probability less than .001) both when there was simultaneous vestibular stimulation and when there was a tracking task; response latencies lengthened progressively with increased similarity between the RT and tracking tasks. However, the attention conditions did not affect the intersensory effect; the significance of this for the nature of the sensory interaction is discussed.
Matheson, Heath E; Familiar, Ariana M; Thompson-Schill, Sharon L
2018-03-02
Theories of embodied cognition propose that we recognize tools in part by reactivating sensorimotor representations of tool use in a process of simulation. If motor simulations play a causal role in tool recognition then performing a concurrent motor task should differentially modulate recognition of experienced vs. non-experienced tools. We sought to test the hypothesis that an incompatible concurrent motor task modulates conceptual processing of learned vs. non-learned objects by directly manipulating the embodied experience of participants. We trained one group to use a set of novel, 3-D printed tools under the pretense that they were preparing for an archeological expedition to Mars (manipulation group); we trained a second group to report declarative information about how the tools are stored (storage group). With this design, familiarity and visual attention to different object parts was similar for both groups, though their qualitative interactions differed. After learning, participants made familiarity judgments of auditorily presented tool names while performing a concurrent motor task or simply sitting at rest. We showed that familiarity judgments were facilitated by motor state-dependence; specifically, in the manipulation group, familiarity was facilitated by a concurrent motor task, whereas in the spatial group familiarity was facilitated while sitting at rest. These results are the first to directly show that manipulation experience differentially modulates conceptual processing of familiar vs. unfamiliar objects, suggesting that embodied representations contribute to recognizing tools.
The Watchdog Task: Concurrent error detection using assertions
NASA Technical Reports Server (NTRS)
Ersoz, A.; Andrews, D. M.; Mccluskey, E. J.
1985-01-01
The Watchdog Task, a software abstraction of the Watchdog-processor, is shown to be a powerful error detection tool with a great deal of flexibility and the advantages of watchdog techniques. A Watchdog Task system in Ada is presented; issues of recovery, latency, efficiency (communication) and preprocessing are discussed. Different applications, one of which is error detection on a single processor, are examined.
Task choice and semantic interference in picture naming.
Piai, Vitória; Roelofs, Ardi; Schriefers, Herbert
2015-05-01
Evidence from dual-task performance indicates that speakers prefer not to select simultaneous responses in picture naming and another unrelated task, suggesting a response selection bottleneck in naming. In particular, when participants respond to tones with a manual response and name pictures with superimposed semantically related or unrelated distractor words, semantic interference in naming tends to be constant across stimulus onset asynchronies (SOAs) between the tone stimulus and the picture-word stimulus. In the present study, we examine whether semantic interference in picture naming depends on SOA in case of a task choice (naming the picture vs reading the word of a picture-word stimulus) based on tones. This situation requires concurrent processing of the tone stimulus and the picture-word stimulus, but not a manual response to the tones. On each trial, participants either named a picture or read aloud a word depending on the pitch of a tone, which was presented simultaneously with picture-word onset or 350 ms or 1000 ms before picture-word onset. Semantic interference was present with tone pre-exposure, but absent when tone and picture-word stimulus were presented simultaneously. Against the background of the available studies, these results support an account according to which speakers tend to avoid concurrent response selection, but can engage in other types of concurrent processing, such as task choices. Copyright © 2015 Elsevier B.V. All rights reserved.
O'Callaghan, Claire; Shine, James M; Lewis, Simon J G; Andrews-Hanna, Jessica R; Irish, Muireann
2015-02-01
Self-generated cognition, or mind wandering, refers to the quintessentially human tendency to withdraw from the immediate external environment and engage in internally driven mentation. This thought activity is suggested to be underpinned by a distributed set of regions in the brain, referred to as the default network. To date, experimental assessment of mind wandering has typically taken place during performance of a concurrent attention-demanding task. The attentional demands of concurrent tasks can influence the emergence of mind wandering, and their application to clinical disorders with reduced cognitive resources is limited. Furthermore, few paradigms have investigated the phenomenological content of mind wandering episodes. Here, we present data from a novel thought sampling task that measures both the frequency and qualitative content of mind wandering, in the absence of a concurrent task to reduce cognitive demand. The task was validated in a non-pathological cohort of 31 older controls and resting-state functional connectivity analyses in a subset of participants (n=18) was conducted to explore the neural bases of mind wandering. Overall, instances of mind wandering were found to occur in 37% of experimental trials. Resting state functional connectivity analyses confirmed that mind wandering frequency was associated with regional patterns of both increased and decreased default network connectivity, namely in the temporal lobe, posterior cingulate cortex and dorsal medial prefrontal cortex. Our findings demonstrate that the novel task provides a context of low cognitive demand, which is conducive to mind wandering. Furthermore, performance on the task is associated with specific patterns of functional connectivity in the default network. Together, this new paradigm offers an important avenue to investigate the frequency and content of mind wandering in the context of low cognitive demands, and has significant potential to be applied in clinical conditions with reduced cognitive resources. Copyright © 2014 Elsevier Inc. All rights reserved.
van Gog, Tamara; Paas, Fred; van Merriënboer, Jeroen J G; Witte, Puk
2005-12-01
This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The method of cued retrospective reporting used the original computer-based task and a superimposed record of the participant's eye fixations and mouse-keyboard operations as a cue for retrospection. Cued retrospective reporting (with the exception of why information) and concurrent reporting (with the exception of metacognitive information) resulted in a higher number of codes on the different types of information than did retrospective reporting.
Supertaskers: Profiles in extraordinary multitasking ability.
Watson, Jason M; Strayer, David L
2010-08-01
Theory suggests that driving should be impaired for any motorist who is concurrently talking on a cell phone. But is everybody impaired by this dual-task combination? We tested 200 participants in a high-fidelity driving simulator in both single- and dual-task conditions. The dual task involved driving while performing a demanding auditory version of the operation span (OSPAN) task. Whereas the vast majority of participants showed significant performance decrements in dual-task conditions (compared with single-task conditions for either driving or OSPAN tasks), 2.5% of the sample showed absolutely no performance decrements with respect to performing single and dual tasks. In single-task conditions, these "supertaskers" scored in the top quartile on all dependent measures associated with driving and OSPAN tasks, and Monte Carlo simulations indicated that the frequency of supertaskers was significantly greater than chance. These individual differences help to sharpen our theoretical understanding of attention and cognitive control in naturalistic settings.
Szmalec, Arnaud; Vandierendonck, André
2007-08-01
The present study proposes a new executive task, the one-back choice reaction time (RT) task, and implements the selective interference paradigm to estimate the executive demands of the processing components involved in this task. Based on the similarities between a one-back choice RT task and the n-back updating task, it was hypothesized that one-back delaying of a choice reaction involves executive control. In three experiments, framed within Baddeley's (1986) working-memory model, a one-back choice RT task, a choice RT task, articulatory suppression, and matrix tapping were performed concurrently with primary tasks involving verbal, visuospatial, and executive processing. The results demonstrate that one-back delaying of a choice reaction interferes with tasks requiring executive control, while the potential interference at the level of the verbal or visuospatial working memory slave systems remains minimal.
Planning and task management in Parkinson's disease: differential emphasis in dual-task performance.
Bialystok, Ellen; Craik, Fergus I M; Stefurak, Taresa
2008-03-01
Seventeen patients diagnosed with Parkinson's disease completed a complex computer-based task that involved planning and management while also performing an attention-demanding secondary task. The tasks were performed concurrently, but it was necessary to switch from one to the other. Performance was compared to a group of healthy age-matched control participants and a group of young participants. Parkinson's patients performed better than the age-matched controls on almost all measures and as well as the young controls in many cases. However, the Parkinson's patients achieved this by paying relatively less attention to the secondary task and focusing attention more on the primary task. Thus, Parkinson's patients can apparently improve their performance on some aspects of a multidimensional task by simplifying task demands. This benefit may occur as a consequence of their inflexible exaggerated attention to some aspects of a complex task to the relative neglect of other aspects.
Cockpit task management: A preliminary, normative theory
NASA Technical Reports Server (NTRS)
Funk, Ken
1991-01-01
Cockpit task management (CTM) involves the initiation, monitoring, prioritizing, and allocation of resources to concurrent tasks as well as termination of multiple concurrent tasks. As aircrews have more tasks to attend to due to reduced crew sizes and the increased complexity of aircraft and the air transportation system, CTM will become a more critical factor in aviation safety. It is clear that many aviation accidents and incidents can be satisfactorily explained in terms of CTM errors, and it is likely that more accidents induced by poor CTM practice will occur in the future unless the issue is properly addressed. The first step in understanding and facilitating CTM behavior was the development of a preliminary, normative theory of CTM which identifies several important CTM functions. From this theory, some requirements for pilot-vehicle interfaces were developed which are believed to facilitate CTM. A prototype PVI was developed which improves CTM performance and currently, a research program is under way that is aimed at developing a better understanding of CTM and facilitating CTM performance through better equipment and procedures.
Huang, Cheng-Ya; Lin, Linda L.; Hwang, Ing-Shiou
2017-01-01
The aged brain may not make good use of central resources, so dual task performance may be degraded. From the brain connectome perspective, this study investigated dual task deficits of older adults that lead to task failure of a suprapostural motor task with increasing postural destabilization. Twelve younger (mean age: 25.3 years) and 12 older (mean age: 65.8 years) adults executed a designated force-matching task from a level-surface or a stabilometer board. Force-matching error, stance sway, and event-related potential (ERP) in the preparatory period were measured. The force-matching accuracy and the size of postural sway of the older adults tended to be more vulnerable to stance configuration than that of the young adults, although both groups consistently showed greater attentional investment on the postural task as sway regularity increased in the stabilometer condition. In terms of the synchronization likelihood (SL) of the ERP, both younger and older adults had net increases in the strengths of the functional connectivity in the whole brain and in the fronto-sensorimotor network in the stabilometer condition. Also, the SL in the fronto-sensorimotor network of the older adults was greater than that of the young adults for both stance conditions. However, unlike the young adults, the older adults did not exhibit concurrent deactivation of the functional connectivity of the left temporal-parietal-occipital network for postural-suprapostural task with increasing postural load. In addition, the older adults potentiated functional connectivity of the right prefrontal area to cope with concurrent force-matching with increasing postural load. In conclusion, despite a universal negative effect on brain volume conduction, our preliminary results showed that the older adults were still capable of increasing allocation of neural sources, particularly via compensatory recruitment of the right prefrontal loop, for concurrent force-matching under the challenging postural condition. Nevertheless, dual-task performance of the older adults tended to be more vulnerable to postural load than that of the younger adults, in relation to inferior neural economy or a slow adaptation process to stance destabilization for scant dissociation of control hubs in the temporal-parietal-occipital cortex. PMID:28446874
The visual accommodation response during concurrent mental activity
NASA Technical Reports Server (NTRS)
Malmstrom, F. V.; Randle, R. J.; Bendix, J. S.; Weber, R. J.
1980-01-01
The direction and magnitude of the human visual accommodation response during concurrent mental activity are investigated. Subject focusing responses to targets at distances of 0.0 D, 3.0 D and an indeterminate distance were monitored by means of an optometer during the performance of a backwards counting task and a visual imagery task (thinking near and thinking far). In both experiments a shift in accommodation towards the visual far point is observed particularly for the near target, which increases with the duration of the task. The results can be interpreted in terms of both the capacity model of Kahneman (1973) and the autonomic arousal model of Hess and Polt (1964), and are not inconsistent with the possibility of an intermediate resting position.
NASA Technical Reports Server (NTRS)
Simpson, C. A.
1985-01-01
In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.
Common EEG features for behavioral estimation in disparate, real-world tasks.
Touryan, Jon; Lance, Brent J; Kerick, Scott E; Ries, Anthony J; McDowell, Kaleb
2016-02-01
In this study we explored the potential for capturing the behavioral dynamics observed in real-world tasks from concurrent measures of EEG. In doing so, we sought to develop models of behavior that would enable the identification of common cross-participant and cross-task EEG features. To accomplish this we had participants perform both simulated driving and guard duty tasks while we recorded their EEG. For each participant we developed models to estimate their behavioral performance during both tasks. Sequential forward floating selection was used to identify the montage of independent components for each model. Linear regression was then used on the combined power spectra from these independent components to generate a continuous estimate of behavior. Our results show that oscillatory processes, evidenced in EEG, can be used to successfully capture slow fluctuations in behavior in complex, multi-faceted tasks. The average correlation coefficients between the actual and estimated behavior was 0.548 ± 0.117 and 0.701 ± 0.154 for the driving and guard duty tasks respectively. Interestingly, through a simple clustering approach we were able to identify a number of common components, both neural and eye-movement related, across participants and tasks. We used these component clusters to quantify the relative influence of common versus participant-specific features in the models of behavior. These findings illustrate the potential for estimating complex behavioral dynamics from concurrent measures from EEG using a finite library of universal features. Published by Elsevier B.V.
Chong, Raymond K Y; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-07-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed), normal (eyes open) or high (eyes open, sway-referenced surround) visuospatial processing load while concurrently performing a cognitive task of either subtracting backwards by seven or generating words of the same first letter. A decrease in the performance of the balance control task and a decrement in the speed and accuracy of responses were noted during the subtraction but not the word generation task. The interference in the subtraction task was isolated to the first trial of the high but not normal or low visuospatial conditions. Balance control improvements with repeated exposures were observed only in the low visuospatial conditions while performance in the other conditions remained compromised. These results suggest that sensory organization for balance control appear to draw on similar visuospatial computational resources needed for the subtraction but not the word generation task. In accordance with the theory of modularity in human performance, the contrast in results between the subtraction and word generation tasks suggests that the neural overload is related to competition for similar visuospatial processes rather than limited attentional resources. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Cognitive-Motor Interference in an Ecologically Valid Street Crossing Scenario.
Janouch, Christin; Drescher, Uwe; Wechsler, Konstantin; Haeger, Mathias; Bock, Otmar; Voelcker-Rehage, Claudia
2018-01-01
Laboratory-based research revealed that gait involves higher cognitive processes, leading to performance impairments when executed with a concurrent loading task. Deficits are especially pronounced in older adults. Theoretical approaches like the multiple resource model highlight the role of task similarity and associated attention distribution problems. It has been shown that in cases where these distribution problems are perceived relevant to participant's risk of falls, older adults prioritize gait and posture over the concurrent loading task. Here we investigate whether findings on task similarity and task prioritization can be transferred to an ecologically valid scenario. Sixty-three younger adults (20-30 years of age) and 61 older adults (65-75 years of age) participated in a virtual street crossing simulation. The participants' task was to identify suitable gaps that would allow them to cross a simulated two way street safely. Therefore, participants walked on a manual treadmill that transferred their forward motion to forward displacements in a virtual city. The task was presented as a single task (crossing only) and as a multitask. In the multitask condition participants were asked, among others, to type in three digit numbers that were presented either visually or auditorily. We found that for both age groups, street crossing as well as typing performance suffered under multitasking conditions. Impairments were especially pronounced for older adults (e.g., longer crossing initiation phase, more missed opportunities). However, younger and older adults did not differ in the speed and success rate of crossing. Further, deficits were stronger in the visual compared to the auditory task modality for most parameters. Our findings conform to earlier studies that found an age-related decline in multitasking performance in less realistic scenarios. However, task similarity effects were inconsistent and question the validity of the multiple resource model within ecologically valid scenarios.
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-12-01
We examine students' mathematical performance on quantitative "synthesis problems" with varying mathematical complexity. Synthesis problems are tasks comprising multiple concepts typically taught in different chapters. Mathematical performance refers to the formulation, combination, and simplification of equations. Generally speaking, formulation and combination of equations require conceptual reasoning; simplification of equations requires manipulation of equations as computational tools. Mathematical complexity is operationally defined by the number and the type of equations to be manipulated concurrently due to the number of unknowns in each equation. We use two types of synthesis problems, namely, sequential and simultaneous tasks. Sequential synthesis tasks require a chronological application of pertinent concepts, and simultaneous synthesis tasks require a concurrent application of the pertinent concepts. A total of 179 physics major students from a second year mechanics course participated in the study. Data were collected from written tasks and individual interviews. Results show that mathematical complexity negatively influences the students' mathematical performance on both types of synthesis problems. However, for the sequential synthesis tasks, it interferes only with the students' simplification of equations. For the simultaneous synthesis tasks, mathematical complexity additionally impedes the students' formulation and combination of equations. Several reasons may explain this difference, including the students' different approaches to the two types of synthesis problems, cognitive load, and the variation of mathematical complexity within each synthesis type.
Chen, J Y C; Terrence, P I
2009-08-01
This study investigated the performance and workload of the combined position of gunner and robotics operator in a simulated military multitasking environment. Specifically, the study investigated how aided target recognition (AiTR) capabilities for the gunnery task with imperfect reliability (false-alarm-prone vs. miss-prone) might affect the concurrent robotics and communication tasks. Additionally, the study examined whether performance was affected by individual differences in spatial ability and attentional control. Results showed that when the robotics task was simply monitoring the video, participants had the best performance in their gunnery and communication tasks and the lowest perceived workload, compared with the other robotics tasking conditions. There was a strong interaction between the type of AiTR unreliability and participants' perceived attentional control. Overall, for participants with higher perceived attentional control, false-alarm-prone alerts were more detrimental; for low attentional control participants, conversely, miss-prone automation was more harmful. Low spatial ability participants preferred visual cueing and high spatial ability participants favoured tactile cueing. Potential applications of the findings include personnel selection for robotics operation, robotics user interface designs and training development. The present results will provide further understanding of the interplays among automation reliability, multitasking performance and individual differences in military tasking environments. These results will also facilitate the implementation of robots in military settings and will provide useful data to military system designs.
Interfering with free recall of words: Detrimental effects of phonological competition.
Fernandes, Myra A; Wammes, Jeffrey D; Priselac, Sandra; Moscovitch, Morris
2016-09-01
We examined the effect of different distracting tasks, performed concurrently during memory retrieval, on recall of a list of words. By manipulating the type of material and processing (semantic, orthographic, and phonological) required in the distracting task, and comparing the magnitude of memory interference produced, we aimed to infer the kind of representation upon which retrieval of words depends. In Experiment 1, identifying odd digits concurrently during free recall disrupted memory, relative to a full attention condition, when the numbers were presented orthographically (e.g. nineteen), but not numerically (e.g. 19). In Experiment 2, a distracting task that required phonological-based decisions to either word or picture material produced large, but equivalent effects on recall of words. In Experiment 3, phonological-based decisions to pictures in a distracting task disrupted recall more than when the same pictures required semantically-based size estimations. In Experiment 4, a distracting task that required syllable decisions to line drawings interfered significantly with recall, while an equally difficult semantically-based color-decision task about the same line drawings, did not. Together, these experiments demonstrate that the degree of memory interference experienced during recall of words depends primarily on whether the distracting task competes for phonological representations or processes, and less on competition for semantic or orthographic or material-specific representations or processes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pottage, Claire L; Schaefer, Alexandre
2012-02-01
The emotional enhancement of memory is often thought to be determined by attention. However, recent evidence using divided attention paradigms suggests that attention does not play a significant role in the formation of memories for aversive pictures. We report a study that investigated this question using a paradigm in which participants had to encode lists of randomly intermixed negative and neutral pictures under conditions of full attention and divided attention followed by a free recall test. Attention was divided by a highly demanding concurrent task tapping visual processing resources. Results showed that the advantage in recall for aversive pictures was still present in the DA condition. However, mediation analyses also revealed that concurrent task performance significantly mediated the emotional enhancement of memory under divided attention. This finding suggests that visual attentional processes play a significant role in the formation of emotional memories. PsycINFO Database Record (c) 2012 APA, all rights reserved
Is It Really Self-Control? Examining the Predictive Power of the Delay of Gratification Task
Duckworth, Angela L.; Tsukayama, Eli; Kirby, Teri A.
2013-01-01
This investigation tests whether the predictive power of the delay of gratification task (colloquially known as the “marshmallow test”) derives from its assessment of self-control or of theoretically unrelated traits. Among 56 school-age children in Study 1, delay time was associated with concurrent teacher ratings of self-control and Big Five conscientiousness—but not with other personality traits, intelligence, or reward-related impulses. Likewise, among 966 preschool children in Study 2, delay time was consistently associated with concurrent parent and caregiver ratings of self-control but not with reward-related impulses. While delay time in Study 2 was also related to concurrently measured intelligence, predictive relations with academic, health, and social outcomes in adolescence were more consistently explained by ratings of effortful control. Collectively, these findings suggest that delay task performance may be influenced by extraneous traits, but its predictive power derives primarily from its assessment of self-control. PMID:23813422
The emotional startle effect is disrupted by a concurrent working memory task.
King, Rosemary; Schaefer, Alexandre
2011-02-01
Working memory (WM) processes are often thought to play an important role in the cognitive regulation of negative emotions. However, little is known about how they influence emotional processing. We report two experiments that tested whether a concurrent working memory task could modulate the emotional startle eyeblink effect, a well-known index of emotional processing. In both experiments, emotionally negative and neutral pictures were viewed in two conditions: a "cognitive load" (CL) condition, in which participants had to actively maintain information in working memory (WM) while viewing the pictures, and a control "no load" (NL) condition. Picture-viewing instructions were identical across CL and NL. In both experiments, results showed a significant reduction of the emotional modulation of the startle eyeblink reflex in the CL condition compared to the NL condition. These findings suggest that a concurrent WM task disrupts emotional processing even when participants are directing visual focus on emotionally relevant information. Copyright © 2010 Society for Psychophysiological Research.
Concurrent Software Engineering Project
ERIC Educational Resources Information Center
Stankovic, Nenad; Tillo, Tammam
2009-01-01
Concurrent engineering or overlapping activities is a business strategy for schedule compression on large development projects. Design parameters and tasks from every aspect of a product's development process and their interdependencies are overlapped and worked on in parallel. Concurrent engineering suffers from negative effects such as excessive…
The role of memory representation in the vigilance decrement.
Caggiano, Daniel M; Parasuraman, Raja
2004-10-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance-sensitivity decrement over time-is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-01-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-hr ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-hr ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from ~11 trials/pair on the 24-hr ITI task to ~5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert. PMID:20144631
Gygi, Brian; Shafiro, Valeriy
2014-04-01
Speech perception in multitalker environments often requires listeners to divide attention among several concurrent talkers before focusing on one talker with pertinent information. Such attentionally demanding tasks are particularly difficult for older adults due both to age-related hearing loss (presbacusis) and general declines in attentional processing and associated cognitive abilities. This study investigated two signal-processing techniques that have been suggested as a means of improving speech perception accuracy of older adults: time stretching and spatial separation of target talkers. Stimuli in each experiment comprised 2-4 fixed-form utterances in which listeners were asked to consecutively 1) detect concurrently spoken keywords in the beginning of the utterance (divided attention); and, 2) identify additional keywords from only one talker at the end of the utterance (selective attention). In Experiment 1, the overall tempo of each utterance was unaltered or slowed down by 25%; in Experiment 2 the concurrent utterances were spatially coincident or separated across a 180-degree hemifield. Both manipulations improved performance for elderly adults with age-appropriate hearing on both tasks. Increasing the divided attention load by attending to more concurrent keywords had a marked negative effect on performance of the selective attention task only when the target talker was identified by a keyword, but not by spatial location. These findings suggest that the temporal and spatial modifications of multitalker speech improved perception of multitalker speech primarily by reducing competition among cognitive resources required to perform attentionally demanding tasks. Published by Elsevier B.V.
Turchi, Janita; Devan, Bryan; Yin, Pingbo; Sigrist, Emmalynn; Mishkin, Mortimer
2010-07-01
The monkey's ability to learn a set of visual discriminations presented concurrently just once a day on successive days (24-h ITI task) is based on habit formation, which is known to rely on a visuo-striatal circuit and to be independent of visuo-rhinal circuits that support one-trial memory. Consistent with this dissociation, we recently reported that performance on the 24-h ITI task is impaired by a striatal-function blocking agent, the dopaminergic antagonist haloperidol, and not by a rhinal-function blocking agent, the muscarinic cholinergic antagonist scopolamine. In the present study, monkeys were trained on a short-ITI form of concurrent visual discrimination learning, one in which a set of stimulus pairs is repeated not only across daily sessions but also several times within each session (in this case, at about 4-min ITIs). Asymptotic discrimination learning rates in the non-drug condition were reduced by half, from approximately 11 trials/pair on the 24-h ITI task to approximately 5 trials/pair on the 4-min ITI task, and this faster learning was impaired by systemic injections of either haloperidol or scopolamine. The results suggest that in the version of concurrent discrimination learning used here, the short ITIs within a session recruit both visuo-rhinal and visuo-striatal circuits, and that the final performance level is driven by both cognitive memory and habit formation working in concert.
Wickens, Christopher; Colcombe, Angela
2007-10-01
Performance consequences related to integrating an imperfect alert within a complex task domain were examined in two experiments. Cockpit displays of traffic information (CDTIs) are being designed for use in airplane cockpits as responsibility for safe separation becomes shared between pilots and controllers. Of interest in this work is how characteristics of the alarm system such as threshold, modality, and number of alert levels impact concurrent task (flight control) performance and response to potential conflicts. Student pilots performed a tracking task analogous to flight control while simultaneously monitoring for air traffic conflicts with the aid of a CDTI alert as the threshold, modality, and level of alert was varied. As the alerting system became more prone to false alerts, pilot compliance decreased and concurrent performance improved. There was some evidence of auditory preemption with auditory alerts as the false alarm rate increased. Finally, there was no benefit to a three-level system over a two-level system. There is justification for increased false alarm rates, as miss-prone systems appear to be costly. The 4:1 false alarm to miss ratio employed here improved accuracy and concurrent task performance. More research needs to address the potential benefits of likelihood alerting. The issues addressed in this research can be applied to any imperfect alerting system such as in aviation, driving, or air traffic control. It is crucial to understand the performance consequences of new technology and the efficacy of potential mitigating design features within the specific context desired.
Gait performance is not influenced by working memory when walking at a self-selected pace.
Grubaugh, Jordan; Rhea, Christopher K
2014-02-01
Gait performance exhibits patterns within the stride-to-stride variability that can be indexed using detrended fluctuation analysis (DFA). Previous work employing DFA has shown that gait patterns can be influenced by constraints, such as natural aging or disease, and they are informative regarding a person's functional ability. Many activities of daily living require concurrent performance in the cognitive and gait domains; specifically working memory is commonly engaged while walking, which is considered dual-tasking. It is unknown if taxing working memory while walking influences gait performance as assessed by DFA. This study used a dual-tasking paradigm to determine if performance decrements are observed in gait or working memory when performed concurrently. Healthy young participants (N = 16) performed a working memory task (automated operation span task) and a gait task (walking at a self-selected speed on a treadmill) in single- and dual-task conditions. A second dual-task condition (reading while walking) was included to control for visual attention, but also introduced a task that taxed working memory over the long term. All trials involving gait lasted at least 10 min. Performance in the working memory task was indexed using five dependent variables (absolute score, partial score, speed error, accuracy error, and math error), while gait performance was indexed by quantifying the mean, standard deviation, and DFA α of the stride interval time series. Two multivariate analyses of variance (one for gait and one for working memory) were used to examine performance in the single- and dual-task conditions. No differences were observed in any of the gait or working memory dependent variables as a function of task condition. The results suggest the locomotor system is adaptive enough to complete a working memory task without compromising gait performance when walking at a self-selected pace.
Interfering with memory for faces: The cost of doing two things at once.
Wammes, Jeffrey D; Fernandes, Myra A
2016-01-01
We inferred the processes critical for episodic retrieval of faces by measuring susceptibility to memory interference from different distracting tasks. Experiment 1 examined recognition of studied faces under full attention (FA) or each of two divided attention (DA) conditions requiring concurrent decisions to auditorily presented letters. Memory was disrupted in both DA relative to FA conditions, a result contrary to a material-specific account of interference effects. Experiment 2 investigated whether the magnitude of interference depended on competition between concurrent tasks for common processing resources. Studied faces were presented either upright (configurally processed) or inverted (featurally processed). Recognition was completed under FA, or DA with one of two face-based distracting tasks requiring either featural or configural processing. We found an interaction: memory for upright faces was lower under DA when the distracting task required configural than featural processing, while the reverse was true for memory of inverted faces. Across experiments, the magnitude of memory interference was similar (a 19% or 20% decline from FA) regardless of whether the materials in the distracting task overlapped with the to-be-remembered information. Importantly, interference was significantly larger (42%) when the processing demands of the distracting and target retrieval task overlapped, suggesting a processing-specific account of memory interference.
Supervised dictionary learning for inferring concurrent brain networks.
Zhao, Shijie; Han, Junwei; Lv, Jinglei; Jiang, Xi; Hu, Xintao; Zhao, Yu; Ge, Bao; Guo, Lei; Liu, Tianming
2015-10-01
Task-based fMRI (tfMRI) has been widely used to explore functional brain networks via predefined stimulus paradigm in the fMRI scan. Traditionally, the general linear model (GLM) has been a dominant approach to detect task-evoked networks. However, GLM focuses on task-evoked or event-evoked brain responses and possibly ignores the intrinsic brain functions. In comparison, dictionary learning and sparse coding methods have attracted much attention recently, and these methods have shown the promise of automatically and systematically decomposing fMRI signals into meaningful task-evoked and intrinsic concurrent networks. Nevertheless, two notable limitations of current data-driven dictionary learning method are that the prior knowledge of task paradigm is not sufficiently utilized and that the establishment of correspondences among dictionary atoms in different brains have been challenging. In this paper, we propose a novel supervised dictionary learning and sparse coding method for inferring functional networks from tfMRI data, which takes both of the advantages of model-driven method and data-driven method. The basic idea is to fix the task stimulus curves as predefined model-driven dictionary atoms and only optimize the other portion of data-driven dictionary atoms. Application of this novel methodology on the publicly available human connectome project (HCP) tfMRI datasets has achieved promising results.
Dual task cost of walking is related to fall risk in persons with multiple sclerosis.
Wajda, Douglas A; Motl, Robert W; Sosnoff, Jacob J
2013-12-15
Persons with multiple sclerosis (MS) commonly have walking and cognitive impairments. While walking with a simultaneous cognitive task, persons with MS experience a greater decline in walking performance than healthy controls. This change in performance is termed dual task cost or dual task interference and has been associated with fall risk in older adults. We examined whether dual task cost during walking was related to fall risk in persons with MS. Thirty-three ambulatory persons with MS performed walking tasks with and without a concurrent cognitive task (dual task condition) as well as underwent a fall risk assessment. Dual task cost was operationalized as the percent change in velocity from normal walking conditions to dual task walking conditions. Fall risk was quantified using the Physiological Profile Assessment. A Spearman correlation analysis revealed a significant positive correlation between dual task cost of walking velocity and fall risk as well as dual task cost of stride length and fall risk. Overall, the findings indicate that dual task cost is associated with fall risk and may be an important target for falls prevention strategies. © 2013.
Honzel, Nikki; Justus, Timothy; Swick, Diane
2015-01-01
Patients with post-traumatic stress disorder (PTSD) can show declines in working memory. A dual-task design was used to determine if these impairments are linked to executive control limitations. Participants performed a Sternberg memory task with either one or four letters. In the dual-task condition, the maintenance period was filled with an arrow flanker task. PTSD patients were less accurate on the working memory task than controls, especially in the dual-task condition. In the single-task condition, both groups showed similar patterns of brain potentials from 300–500 ms when discriminating old and new probes. However, when taxed with an additional task, the event-related potentials (ERPs) of the PTSD group no longer differentiated old and new probes. In contrast, interference resolution processes in both the single- and dual-task conditions of the flanker were intact. The lack of differentiation in the ERPs reflects impaired working memory performance under more difficult dual-task conditions. Exacerbated difficulty in performing a working memory task with concurrent task demands suggests a specific limitation in executive control resources in PTSD. PMID:24165904
Long, Nicole M.; Kahana, Michael J.
2016-01-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high frequency EEG activity (HFA, 44 – 100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. PMID:27617775
Long, Nicole M; Kahana, Michael J
2017-02-01
Although episodic and semantic memory share overlapping neural mechanisms, it remains unclear how our pre-existing semantic associations modulate the formation of new, episodic associations. When freely recalling recently studied words, people rely on both episodic and semantic associations, shown through temporal and semantic clustering of responses. We asked whether orienting participants toward semantic associations interferes with or facilitates the formation of episodic associations. We compared electroencephalographic (EEG) activity recorded during the encoding of subsequently recalled words that were either temporally or semantically clustered. Participants studied words with or without a concurrent semantic orienting task. We identified a neural signature of successful episodic association formation whereby high-frequency EEG activity (HFA, 44-100 Hz) overlying left prefrontal regions increased for subsequently temporally clustered words, but only for those words studied without a concurrent semantic orienting task. To confirm that this disruption in the formation of episodic associations was driven by increased semantic processing, we measured the neural correlates of subsequent semantic clustering. We found that HFA increased for subsequently semantically clustered words only for lists with a concurrent semantic orienting task. This dissociation suggests that increased semantic processing of studied items interferes with the neural processes that support the formation of novel episodic associations. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Park, George D; Reed, Catherine L
2015-02-01
Researchers acknowledge the interplay between action and attention, but typically consider action as a response to successful attentional selection or the correlation of performance on separate action and attention tasks. We investigated how concurrent action with spatial monitoring affects the distribution of attention across the visual field. We embedded a functional field of view (FFOV) paradigm with concurrent central object recognition and peripheral target localization tasks in a simulated driving environment. Peripheral targets varied across 20-60 deg eccentricity at 11 radial spokes. Three conditions assessed the effects of visual complexity and concurrent action on the size and shape of the FFOV: (1) with no background, (2) with driving background, and (3) with driving background and vehicle steering. The addition of visual complexity slowed task performance and reduced the FFOV size but did not change the baseline shape. In contrast, the addition of steering produced not only shrinkage of the FFOV, but also changes in the FFOV shape. Nonuniform performance decrements occurred in proximal regions used for the central task and for steering, independent of interference from context elements. Multifocal attention models should consider the role of action and account for nonhomogeneities in the distribution of attention. © 2015 SAGE Publications.
Fougnie, Daryl; Marois, René
2009-01-01
The concurrent maintenance of two visual working memory (VWM) arrays can lead to profound interference. It is unclear, however, whether these costs arise from limitations in VWM storage capacity (Fougnie & Marois, 2006), or from interference between the storage of one visual array and encoding or retrieval of another visual array (Cowan & Morey, 2007). Here, we show that encoding a VWM array does not interfere with maintenance of another VWM array unless the two displays exceed maintenance capacity (Experiments 1 and 2). Moreover, manipulating the extent to which encoding and maintenance can interfere with one another had no discernable effect on dual-task performance (Experiment 2). Finally, maintenance of a VWM array was not affected by retrieval of information from another VWM array (Experiment 3). Taken together, these findings demonstrate that dual-task interference between two concurrent VWM tasks is due to a capacity-limited store that is independent from encoding and retrieval processes. PMID:19933566
Perea, Manuel; Marcet, Ana; Lozano, Mario; Gomez, Pablo
2018-05-29
One of the key assumptions of the masked priming lexical decision task (LDT) is that primes are processed without requiring attentional resources. Here, we tested this assumption by presenting a dual-task manipulation to increase memory load and measure the change in masked identity priming on the targets in the LDT. If masked priming does not require attentional resources, increased memory load should have no influence on the magnitude of the observed identity priming effects. We conducted two LDT experiments, using a within-subjects design, to investigate the effect of memory load (via a concurrent matching task Experiment 1 and a concurrent search task in Experiment 2) on masked identity priming. Results showed that the magnitude of masked identity priming on word targets was remarkably similar under high and low memory load. Thus, these experiments provide empirical evidence for the automaticity assumption of masked identity priming in the LDT.
Differential development of retroactive and proactive interference during post-learning wakefulness.
Brawn, Timothy P; Nusbaum, Howard C; Margoliash, Daniel
2018-07-01
Newly encoded, labile memories are prone to disruption during post-learning wakefulness. Here we examine the contributions of retroactive and proactive interference to daytime forgetting on an auditory classification task in a songbird. While both types of interference impair performance, they do not develop concurrently. The retroactive interference of task-B on task-A developed during the learning of task-B, whereas the proactive interference of task-A on task-B emerged during subsequent waking retention. These different time courses indicate an asymmetry in the emergence of retroactive and proactive interference and suggest a mechanistic framework for how different types of interference between new memories develop. © 2018 Brawn et al.; Published by Cold Spring Harbor Laboratory Press.
Ecological Relevance Determines Task Priority in Older Adults' Multitasking.
Doumas, Michail; Krampe, Ralf Th
2015-05-01
Multitasking is a challenging aspect of human behavior, especially if the concurrently performed tasks are different in nature. Several studies demonstrated pronounced performance decrements (dual-task costs) in older adults for combinations of cognitive and motor tasks. However, patterns of costs among component tasks differed across studies and reasons for participants' resource allocation strategies remained elusive. We investigated young and older adults' multitasking of a working memory task and two sensorimotor tasks, one with low (finger force control) and one with high ecological relevance (postural control). The tasks were performed in single-, dual-, and triple-task contexts. Working memory accuracy was reduced in dual-task contexts with either sensorimotor task and deteriorated further under triple-task conditions. Postural and force performance deteriorated with age and task difficulty in dual-task contexts. However, in the triple-task context with its maximum resource demands, older adults prioritized postural control over both force control and memory. Our results identify ecological relevance as the key factor in older adults' multitasking. © The Author 2013. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The source of dual-task limitations: Serial or parallel processing of multiple response selections?
Marois, René
2014-01-01
Although it is generally recognized that the concurrent performance of two tasks incurs costs, the sources of these dual-task costs remain controversial. The serial bottleneck model suggests that serial postponement of task performance in dual-task conditions results from a central stage of response selection that can only process one task at a time. Cognitive-control models, by contrast, propose that multiple response selections can proceed in parallel, but that serial processing of task performance is predominantly adopted because its processing efficiency is higher than that of parallel processing. In the present study, we empirically tested this proposition by examining whether parallel processing would occur when it was more efficient and financially rewarded. The results indicated that even when parallel processing was more efficient and was incentivized by financial reward, participants still failed to process tasks in parallel. We conclude that central information processing is limited by a serial bottleneck. PMID:23864266
Mission control of multiple unmanned aerial vehicles: a workload analysis.
Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon
2005-01-01
With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.
The role of memory representation in the vigilance decrement
CAGGIANO, DANIEL M.; PARASURAMAN, RAJA
2005-01-01
Working memory load is critically important for the overall level of performance on vigilance tasks. However, its role in a key aspect of vigilance—sensitivity decrement over time—is unclear. We used a dual-task procedure in which either a spatial or a nonspatial working memory task was performed simultaneously with a spatial vigilance task for 20 min. Sensitivity in the vigilance task declined over time when the concurrent task involved spatial working memory. In contrast, there was no sensitivity decrement with a nonspatial working memory task. The results provide the first evidence of a specific role for working memory representation in vigilance decrement. The findings are also consistent with a multiple resource theory in which separate resources for memory representation and cognitive control operations are differentially susceptible to depletion over time, depending on the demands of the task at hand. PMID:15732706
Impact of induced joy on literacy in children: does the nature of the task make a difference?
Tornare, Elise; Cuisinier, Frédérique; Czajkowski, Nikolai O; Pons, Francisco
2017-04-01
This research examined whether induced joy influences fifth graders' performance in literacy tasks. Children were asked to recall a joyful experience, used as a joy induction, before completing either a grammar (Study 1) or textual comprehension task (Study 2). The grammar task involved understanding at the surface level and retrieval of appropriate declarative and procedural knowledge, but limited elaboration unlike the textual comprehension task, which tackled inference generation. By differentiating tasks based on depth of processing required for completion we aimed at testing the validity of two concurrent hypotheses: that of a facilitating effect and that of a detrimental effect of induced joy. Compared to controls, joy induced children showed better performance on the grammar task - specifically children with lower language ability. No differences across groups emerged as a function of joy induction on the text comprehension task. Results are discussed with respect to emotion effects on cognition.
Morey, Candice Coker; Cowan, Nelson; Morey, Richard D; Rouder, Jeffery N
2011-02-01
Prominent roles for general attention resources are posited in many models of working memory, but the manner in which these can be allocated differs between models or is not sufficiently specified. We varied the payoffs for correct responses in two temporally-overlapping recognition tasks, a visual array comparison task and a tone sequence comparison task. In the critical conditions, an increase in reward for one task corresponded to a decrease in reward for the concurrent task, but memory load remained constant. Our results show patterns of interference consistent with a trade-off between the tasks, suggesting that a shared resource can be flexibly divided, rather than only fully allotted to either of the tasks. Our findings support a role for a domain-general resource in models of working memory, and furthermore suggest that this resource is flexibly divisible.
Maclean, Linda M; Brown, Laura J E; Khadra, H; Astell, Arlene J
2017-03-01
Previous studies exploring the effects of attention-prioritization on cognitively healthy older adults' gait and cognitive dual task (DT) performance have shown DT cost in gait outcomes but inconsistent effects on cognitive performance, which may reflect task difficulty (the cognitive load). This study aimed to identify whether changing the cognitive load during a walking and counting DT improved the challenge/sensitivity of the cognitive task to observe prioritization effects on concurrent gait and cognitive performance outcomes. Seventy-two cognitively healthy older adults (Mean=73years) walked 15m, counted backwards in 3s and 7s as single tasks (ST), and concurrently walked and counted backwards as DTs. Attention-prioritization was examined in Prioritizing Walking (PW) and Prioritizing Counting (PC) DT conditions. Dual-task performance costs (DTC) were calculated for number of correct cognitive responses (CCR) in the counting tasks, and step-time variability and velocity in the gait task. All DT conditions showed a benefit (DTB) for cognitive outcomes with trade-off cost to gait. In the Serial 3s task, the cognitive DTBs increased in PC over the PW condition (p<0.05), with a greater cost to walking velocity (p<0.05). DT effects were more pronounced in the Serial 7s with a lower cognitive DTB when PC than when PW, (p<0.05) with no trade-off increase in cost to gait outcomes (p<0.05). The findings suggest that increased cognitive load during a gait and cognitive DT produces more pronounced gait measures of attention-prioritization in cognitively healthy older adults. A cognitive load effect was also observed in the cognitive outcomes, with unexpected results. Copyright © 2017 Elsevier B.V. All rights reserved.
Lee, Eun-Ju; Kwon, Gusang; Lee, Aekyoung; Ghajar, Jamshid; Suh, Minah
2011-07-05
In this study, the interaction between individual differences in working memory capacity, which were assessed by the Korean version of the California Verbal Learning Test (K-CVLT), and the effects of oculomotor task load on word recall performance are examined in a dual-task experiment. We hypothesized that varying levels of oculomotor task load should result in different demands on cognitive resources. The verbal working memory task used in this study involved a brief exposure to seven words to be remembered, followed by a 30-second delay during which the subject carried out an oculomotor task. Then, memory performance was assessed by having the subjects recall as many words as possible. Forty healthy normal subjects with no vision-related problems carried out four separate dual-tasks over four consecutive days of participation, wherein word recall performances were tested under unpredictable random SPEM (smooth pursuit eye movement), predictive SPEM, fixation, and eyes-closed conditions. The word recall performance of subjects with low K-CVLT scores was significantly enhanced under predictive SPEM conditions as opposed to the fixation and eyes-closed conditions, but performance was reduced under the random SPEM condition, thus reflecting an inverted-U relationship between the oculomotor task load and word recall performance. Subjects with high K-CVLT scores evidenced steady word recall performances, regardless of the type of oculomotor task performed. The concurrent oculomotor performance measured by velocity error did not differ significantly among the K-CVLT groups. However, the high-scoring subjects evidenced smaller phase errors under predictive SPEM conditions than did the low-scoring subjects; this suggests that different resource allocation strategies may be adopted, depending on individuals' working memory capacity. Copyright © 2011 Elsevier B.V. All rights reserved.
Flaisch, Tobias; Imhof, Martin; Schmälzle, Ralf; Wentz, Klaus-Ulrich; Ibach, Bernd; Schupp, Harald T
2015-01-01
The present study utilized functional magnetic resonance imaging (fMRI) to examine the neural processing of concurrently presented emotional stimuli under varying explicit and implicit attention demands. Specifically, in separate trials, participants indicated the category of either pictures or words. The words were placed over the center of the pictures and the picture-word compound-stimuli were presented for 1500 ms in a rapid event-related design. The results reveal pronounced main effects of task and emotion: the picture categorization task prompted strong activations in visual, parietal, temporal, frontal, and subcortical regions; the word categorization task evoked increased activation only in left extrastriate cortex. Furthermore, beyond replicating key findings regarding emotional picture and word processing, the results point to a dissociation of semantic-affective and sensory-perceptual processes for words: while emotional words engaged semantic-affective networks of the left hemisphere regardless of task, the increased activity in left extrastriate cortex associated with explicitly attending to words was diminished when the word was overlaid over an erotic image. Finally, we observed a significant interaction between Picture Category and Task within dorsal visual-associative regions, inferior parietal, and dorsolateral, and medial prefrontal cortices: during the word categorization task, activation was increased in these regions when the words were overlaid over erotic as compared to romantic pictures. During the picture categorization task, activity in these areas was relatively decreased when categorizing erotic as compared to romantic pictures. Thus, the emotional intensity of the pictures strongly affected brain regions devoted to the control of task-related word or picture processing. These findings are discussed with respect to the interplay of obligatory stimulus processing with task-related attentional control mechanisms.
Flaisch, Tobias; Imhof, Martin; Schmälzle, Ralf; Wentz, Klaus-Ulrich; Ibach, Bernd; Schupp, Harald T.
2015-01-01
The present study utilized functional magnetic resonance imaging (fMRI) to examine the neural processing of concurrently presented emotional stimuli under varying explicit and implicit attention demands. Specifically, in separate trials, participants indicated the category of either pictures or words. The words were placed over the center of the pictures and the picture-word compound-stimuli were presented for 1500 ms in a rapid event-related design. The results reveal pronounced main effects of task and emotion: the picture categorization task prompted strong activations in visual, parietal, temporal, frontal, and subcortical regions; the word categorization task evoked increased activation only in left extrastriate cortex. Furthermore, beyond replicating key findings regarding emotional picture and word processing, the results point to a dissociation of semantic-affective and sensory-perceptual processes for words: while emotional words engaged semantic-affective networks of the left hemisphere regardless of task, the increased activity in left extrastriate cortex associated with explicitly attending to words was diminished when the word was overlaid over an erotic image. Finally, we observed a significant interaction between Picture Category and Task within dorsal visual-associative regions, inferior parietal, and dorsolateral, and medial prefrontal cortices: during the word categorization task, activation was increased in these regions when the words were overlaid over erotic as compared to romantic pictures. During the picture categorization task, activity in these areas was relatively decreased when categorizing erotic as compared to romantic pictures. Thus, the emotional intensity of the pictures strongly affected brain regions devoted to the control of task-related word or picture processing. These findings are discussed with respect to the interplay of obligatory stimulus processing with task-related attentional control mechanisms. PMID:26733895
Effects of Concurrent Music Listening on Emotional Processing
ERIC Educational Resources Information Center
Graham, Rodger; Robinson, Johanna; Mulhall, Peter
2009-01-01
Increased processing time for threatening stimuli is a reliable finding in emotional Stroop tasks. This is particularly pronounced among individuals with anxiety disorders and reflects heightened attentional bias for perceived threat. In this repeated measures study, 35 healthy participants completed a randomized series of Stroop tasks involving…
Plancher, Gaën; Gyselinck, Valérie; Piolino, Pascale
2018-01-01
Memory is one of the most important cognitive functions in a person's life as it is essential for recalling personal memories and performing many everyday tasks. Although a huge number of studies have been conducted in the field, only a few of them investigated memory in realistic situations, due to methodological issues. The various tools that have been developed using virtual environments (VEs) have gained popularity in cognitive psychology and neuropsychology because they enable to create naturalistic and controlled situations, and are thus particularly adapted to the study of episodic memory (EM), for which an ecological evaluation is of prime importance. EM is the conscious recollection of personal events combined with their phenomenological and spatiotemporal encoding contexts. Using an original paradigm in a VE, the objective of the present study was to characterize the construction of episodic memories. While the concept of working memory has become central in the understanding of a wide range of cognitive functions, its role in the integration of episodic memories has seldom been assessed in an ecological context. This experiment aimed at filling this gap by studying how EM is affected by concurrent tasks requiring working memory resources in a realistic situation. Participants navigated in a virtual town and had to memorize as many elements in their spatiotemporal context as they could. During learning, participants had either to perform a concurrent task meant to prevent maintenance through the phonological loop, or a task aimed at preventing maintenance through the visuospatial sketchpad, or no concurrent task. EM was assessed in a recall test performed after learning through various scores measuring the what, where and when of the memories. Results showed that, compared to the control condition with no concurrent task, the prevention of maintenance through the phonological loop had a deleterious impact only on the encoding of central elements. By contrast, the prevention of visuo-spatial maintenance interfered both with the encoding of the temporal context and with the binding. These results suggest that the integration of realistic episodic memories relies on different working memory processes that depend on the nature of the traces.
Reliability and Validity of Dual-Task Mobility Assessments in People with Chronic Stroke
Yang, Lei; He, Chengqi; Pang, Marco Yiu Chung
2016-01-01
Background The ability to perform a cognitive task while walking simultaneously (dual-tasking) is important in real life. However, the psychometric properties of dual-task walking tests have not been well established in stroke. Objective To assess the test-retest reliability, concurrent and known-groups validity of various dual-task walking tests in people with chronic stroke. Design Observational measurement study with a test-retest design. Methods Eighty-eight individuals with chronic stroke participated. The testing protocol involved four walking tasks (walking forward at self-selected and maximal speed, walking backward at self-selected speed, and crossing over obstacles) performed simultaneously with each of the three attention-demanding tasks (verbal fluency, serial 3 subtractions or carrying a cup of water). For each dual-task condition, the time taken to complete the walking task, the correct response rate (CRR) of the cognitive task, and the dual-task effect (DTE) for the walking time and CRR were calculated. Forty-six of the participants were tested twice within 3–4 days to establish test-retest reliability. Results The walking time in various dual-task assessments demonstrated good to excellent reliability [Intraclass correlation coefficient (ICC2,1) = 0.70–0.93; relative minimal detectable change at 95% confidence level (MDC95%) = 29%-45%]. The reliability of the CRR (ICC2,1 = 0.58–0.81) and the DTE in walking time (ICC2,1 = 0.11–0.80) was more varied. The reliability of the DTE in CRR (ICC2,1 = -0.31–0.40) was poor to fair. The walking time and CRR obtained in various dual-task walking tests were moderately to strongly correlated with those of the dual-task Timed-up-and-Go test, thus demonstrating good concurrent validity. None of the tests could discriminate fallers (those who had sustained at least one fall in the past year) from non-fallers. Limitation The results are generalizable to community-dwelling individuals with chronic stroke only. Conclusions The walking time derived from the various dual-task assessments generally demonstrated good to excellent reliability, making them potentially useful in clinical practice and future research endeavors. However, the usefulness of these measurements in predicting falls needs to be further explored. Relatively low reliability was shown in the cognitive outcomes and DTE, which may not be preferred measurements for assessing dual-task performance. PMID:26808662
Interference in Joint Picture Naming
ERIC Educational Resources Information Center
Gambi, Chiara; Van de Cavey, Joris; Pickering, Martin J.
2015-01-01
In 4 experiments we showed that picture naming latencies are affected by beliefs about the task concurrently performed by another speaker. Participants took longer to name pictures when they believed that their partner concurrently named pictures than when they believed their partner was silent (Experiments 1 and 4) or concurrently categorized the…
O'Malley, Shannon; Besner, Derek
2011-12-01
The results of two experiments provide the first direct demonstration that subjects can process a word lexically despite concurrently being engaged in decoding a task cue telling them which of two tasks to perform. These results, taken together with others, point to qualitative differences between the mind's ability to engage in lexical versus sublexical processing during the time they are engaged with other tasks. The emerging picture is one in which some form of resource(s) plays little role during lexical processing whereas the need for some form of resource(s) during sublexical processing serves to bottleneck performance. Copyright © 2011 Elsevier Inc. All rights reserved.
Role of Working Memory in Children's Understanding Spoken Narrative: A Preliminary Investigation
ERIC Educational Resources Information Center
Montgomery, James W.; Polunenko, Anzhela; Marinellie, Sally A.
2009-01-01
The role of phonological short-term memory (PSTM), attentional resource capacity/allocation, and processing speed on children's spoken narrative comprehension was investigated. Sixty-seven children (6-11 years) completed a digit span task (PSTM), concurrent verbal processing and storage (CPS) task (resource capacity/allocation), auditory-visual…
Lin, Keh-chung; Wu, Yi-fang; Chen, I-chen; Tsai, Pei-luen; Wu, Ching-yi; Chen, Chia-ling
2015-01-01
This study investigated separate and concurrent performance on cognitive and hand dexterity tasks and the relationship to daily functioning in 16 people with schizophrenia and 16 healthy control participants. Participants performed the Purdue Pegboard Test and the Serial Seven Subtraction Test under single- and dual-task conditions and completed two daily functioning evaluations. The hand dexterity of all participants declined in the dual-task condition, but the discrepancy between single-task and dual-task hand dexterity was greater in the schizophrenia group than in the control group (p<.03, d>.70, for all). The extent of discrepancy in hand dexterity was negatively correlated with daily functioning in the schizophrenia group (rs=-.3 to -.5, ps=.04-.26). Ability to perform dual tasks may be an indicator of daily functioning in people with schizophrenia. Use of dual-task training may be considered as a therapeutic activity with these clients. Copyright © 2015 by the American Occupational Therapy Association, Inc.
Demanet, Jelle; Verbruggen, Frederick; Liefooghe, Baptist; Vandierendonck, André
2010-06-01
The present study investigated the relative contribution of bottom-up and top-down control to task selection in the voluntary task-switching (VTS) procedure. In order to manipulate the efficiency of top-down control, a concurrent working memory load was imposed during VTS. In three experiments, bottom-up factors, such as stimulus repetitions, repetition of irrelevant information, and stimulus-task associations, were introduced in order to investigate their influence on task selection. We observed that the tendency to repeat tasks was stronger under load, suggesting that top-down control counteracts the automatic tendency to repeat tasks. The results also indicated that task selection can be guided by several elements in the environment, but that only the influence of stimulus repetitions depends on the efficiency of top-down control. The theoretical implications of these findings are discussed within the interplay between top-down and bottom-up control that underlies the voluntary selection of tasks.
Evaluation of 2 cognitive abilities tests in a dual-task environment
NASA Technical Reports Server (NTRS)
Vidulich, M. A.; Tsang, P. S.
1986-01-01
Most real world operators are required to perform multiple tasks simultaneously. In some cases, such as flying a high performance aircraft or trouble shooting a failing nuclear power plant, the operator's ability to time share or process in parallel" can be driven to extremes. This has created interest in selection tests of cognitive abilities. Two tests that have been suggested are the Dichotic Listening Task and the Cognitive Failures Questionnaire. Correlations between these test results and time sharing performance were obtained and the validity of these tests were examined. The primary task was a tracking task with dynamically varying bandwidth. This was performed either alone or concurrently with either another tracking task or a spatial transformation task. The results were: (1) An unexpected negative correlation was detected between the two tests; (2) The lack of correlation between either test and task performance made the predictive utility of the tests scores appear questionable; (3) Pilots made more errors on the Dichotic Listening Task than college students.
NASA Technical Reports Server (NTRS)
Hart, S. G.
1975-01-01
Variation in the length of time productions and verbal estimates of duration was investigated to determine the influence of concurrent activity on operator time perception. The length of 10-, 20-, and 30-sec intervals produced while performing six different compensatory tracking tasks was significantly longer, 23% on the average, than those produced while performing no other task. Verbal estimates of session duration, taken at the end of each of 27 experimental sessions, reflected a parallel increase in subjective underestimation of the passage of time as the difficulty of the task performed increased. These data suggest that estimates of duration made while performing a manual control task provide stable and sensitive measures of the workload imposed by the primary task, with minimal interference.
NASA Technical Reports Server (NTRS)
Simmons, Reid; Apfelbaum, David
2005-01-01
Task Description Language (TDL) is an extension of the C++ programming language that enables programmers to quickly and easily write complex, concurrent computer programs for controlling real-time autonomous systems, including robots and spacecraft. TDL is based on earlier work (circa 1984 through 1989) on the Task Control Architecture (TCA). TDL provides syntactic support for hierarchical task-level control functions, including task decomposition, synchronization, execution monitoring, and exception handling. A Java-language-based compiler transforms TDL programs into pure C++ code that includes calls to a platform-independent task-control-management (TCM) library. TDL has been used to control and coordinate multiple heterogeneous robots in projects sponsored by NASA and the Defense Advanced Research Projects Agency (DARPA). It has also been used in Brazil to control an autonomous airship and in Canada to control a robotic manipulator.
Spatial-sequential and spatial-simultaneous working memory in individuals with Williams syndrome.
Lanfranchi, Silvia; De Mori, Letizia; Mammarella, Irene C; Carretti, Barbara; Vianello, Renzo
2015-05-01
The aim of the present study was to compare visuospatial working memory performance in 18 individuals with Williams syndrome (WS) and 18 typically developing (TD) children matched for nonverbal mental age. Two aspects were considered: task presentation format (i.e., spatial-sequential or spatial-simultaneous), and level of attentional control (i.e., passive or active tasks). Our results showed that individuals with WS performed less well than TD children in passive spatial-simultaneous tasks, but not in passive spatial-sequential tasks. The former's performance was also worse in both active tasks. These findings suggest an impairment in the spatial-simultaneous working memory of individuals with WS, together with a more generalized difficulty in tasks requiring information storage and concurrent processing, as seen in other etiologies of intellectual disability.
Students' conceptual performance on synthesis physics problems with varying mathematical complexity
NASA Astrophysics Data System (ADS)
Ibrahim, Bashirah; Ding, Lin; Heckler, Andrew F.; White, Daniel R.; Badeau, Ryan
2017-06-01
A body of research on physics problem solving has focused on single-concept problems. In this study we use "synthesis problems" that involve multiple concepts typically taught in different chapters. We use two types of synthesis problems, sequential and simultaneous synthesis tasks. Sequential problems require a consecutive application of fundamental principles, and simultaneous problems require a concurrent application of pertinent concepts. We explore students' conceptual performance when they solve quantitative synthesis problems with varying mathematical complexity. Conceptual performance refers to the identification, follow-up, and correct application of the pertinent concepts. Mathematical complexity is determined by the type and the number of equations to be manipulated concurrently due to the number of unknowns in each equation. Data were collected from written tasks and individual interviews administered to physics major students (N =179 ) enrolled in a second year mechanics course. The results indicate that mathematical complexity does not impact students' conceptual performance on the sequential tasks. In contrast, for the simultaneous problems, mathematical complexity negatively influences the students' conceptual performance. This difference may be explained by the students' familiarity with and confidence in particular concepts coupled with cognitive load associated with manipulating complex quantitative equations. Another explanation pertains to the type of synthesis problems, either sequential or simultaneous task. The students split the situation presented in the sequential synthesis tasks into segments but treated the situation in the simultaneous synthesis tasks as a single event.
Can concurrent memory load reduce distraction? A replication study and beyond.
Gil-Gómez de Liaño, Beatriz; Stablum, Franca; Umiltà, Carlo
2016-01-01
The effects of concurrent working memory load in attentional processes have been 1 of the most puzzling issues in cognitive psychology. Studies have shown detrimental effects, no effects, and even beneficial effects of working memory load in different attentional tasks. In the present study we attempted to replicate Kim, Kim, and Chun's (2005, Experiment 3b) findings of beneficial effects of concurrent working memory load in a spatial Stroop-like task. In 3 experiments in which our sample was 3 times larger than that in the original Kim et al. study, we could not replicate their findings. The results are discussed in terms of what may have produced the conflicting results, trying to shed light on how working memory load affects attentional tasks. Also, we emphasize the importance of using adequately large samples in cognitive research. Although we acknowledge the relevance of meta-analyses to analyze conflicting results, in the present article we stress (perhaps more important) the power of an essential trademark in science for research development: replicability. (c) 2015 APA, all rights reserved).
Cognitive—Motor Interference in an Ecologically Valid Street Crossing Scenario
Janouch, Christin; Drescher, Uwe; Wechsler, Konstantin; Haeger, Mathias; Bock, Otmar; Voelcker-Rehage, Claudia
2018-01-01
Laboratory-based research revealed that gait involves higher cognitive processes, leading to performance impairments when executed with a concurrent loading task. Deficits are especially pronounced in older adults. Theoretical approaches like the multiple resource model highlight the role of task similarity and associated attention distribution problems. It has been shown that in cases where these distribution problems are perceived relevant to participant's risk of falls, older adults prioritize gait and posture over the concurrent loading task. Here we investigate whether findings on task similarity and task prioritization can be transferred to an ecologically valid scenario. Sixty-three younger adults (20–30 years of age) and 61 older adults (65–75 years of age) participated in a virtual street crossing simulation. The participants' task was to identify suitable gaps that would allow them to cross a simulated two way street safely. Therefore, participants walked on a manual treadmill that transferred their forward motion to forward displacements in a virtual city. The task was presented as a single task (crossing only) and as a multitask. In the multitask condition participants were asked, among others, to type in three digit numbers that were presented either visually or auditorily. We found that for both age groups, street crossing as well as typing performance suffered under multitasking conditions. Impairments were especially pronounced for older adults (e.g., longer crossing initiation phase, more missed opportunities). However, younger and older adults did not differ in the speed and success rate of crossing. Further, deficits were stronger in the visual compared to the auditory task modality for most parameters. Our findings conform to earlier studies that found an age-related decline in multitasking performance in less realistic scenarios. However, task similarity effects were inconsistent and question the validity of the multiple resource model within ecologically valid scenarios. PMID:29774001
Cockpit Interruptions and Distractions: Effective Management Requires a Careful Balancing Act
NASA Technical Reports Server (NTRS)
Dismukes, R. K.; Young, Grant E.; Sumwalt, Robert L., III; Null, Cynthia H. (Technical Monitor)
1998-01-01
Managing several tasks concurrently is an everyday part of cockpit operations. For the most part, crews handle concurrent task demands efficiently, yet crew preoccupation with one task to the detriment of performing other tasks is one of the more common forms of error in the cockpit. Most pilots are familiar with the December 1972 L1011 crash that occurred when the crew became preoccupied with a landing gear light malfunction and failed to notice that someone had inadvertently bumped off the autopilot. More recently a DC-9 landed gear-up in Houston when the crew, preoccupied with an stabilized approach, failed to recognize that the gear was not down because they had not switched the hydraulic pumps to high. We have recently started a research project to study why crews are vulnerable to these sorts of errors. As part of that project we reviewed NTSB reports of accidents attributed to crew error; we concluded that nearly half of these accidents involved lapses of attention associated with interruptions, distractions, or preoccupation with one task to the exclusion of another task. We have also analyzed 107 ASRS reports involving competing tasks; we present here some of our conclusions from those ASRS reports. These 107 reports involved 21 different types of routine tasks crews neglected at a critical moment while attending to another task. Sixty-nine percent of the neglected tasks involved either failure to monitor the current status or position of the aircraft or failure to monitor the actions of the pilot flying or taxiing. Thirty-four different types of competing activities distracted or preoccupied the pilots. Ninety percent of these competing activities fell into one of four broad categories: communication (e.g., discussion among crew or radio communication), heads-down work (e.g., programming the FMS or reviewing approach plates), responding to abnormals, or searching for VMC traffic. We will discuss examples of each of these four categories and suggest things crews can do to reduce their vulnerability to these and similar situations.
Mizuno, Kei; Tanaka, Masaaki; Tanabe, Hiroki C; Sadato, Norihiro; Watanabe, Yasuyoshi
2012-07-01
The kana pick-out test has been widely used in Japan to evaluate the ability to divide attention in both adult and pediatric patients. However, the neural substrates underlying the ability to divide attention using the kana pick-out test, which requires participants to pick out individual letters (vowels) in a story while also reading for comprehension, thus requiring simultaneous allocation of attention to both activities, are still unclear. Moreover, outside of the clinical area, neuroimaging studies focused on the mechanisms of divided attention during complex story comprehension are rare. Thus, the purpose of the present study, to clarify the neural substrates of kana pick-out test, improves our current understanding of the basic neural mechanisms of dual task performance in verbal memory function. We compared patterns of activation in the brain obtained during performance of the individual tasks of vowel identification and story comprehension, to levels of activation when participants performed the two tasks simultaneously during the kana pick-out test. We found that activations of the left dorsal inferior frontal gyrus and superior parietal lobule increase in functional connectivity to a greater extent during the dual task condition compared to the two single task conditions. In contrast, activations of the left fusiform gyrus and middle temporal gyrus, which are significantly involved in picking out letters and complex sentences during story comprehension, respectively, were reduced in the dual task condition compared to during the two single task conditions. These results suggest that increased activations of the dorsal inferior frontal gyrus and superior parietal lobule during dual task performance may be associated with the capacity for attentional resources, and reduced activations of the left fusiform gyrus and middle temporal gyrus may reflect the difficulty of concurrent processing of the two tasks. In addition, the increase in synchronization between the left dorsal inferior frontal gyrus and superior parietal lobule in the dual task condition may induce effective communication between these brain regions and contribute to more attentional processing than in the single task condition, due to greater and more complex demands on voluntary attentional resources. Copyright © 2012 Elsevier Ltd. All rights reserved.
Howard, Charla L; Wallace, Chris; Abbas, James; Stokic, Dobrivoje S
2017-01-01
We developed and evaluated properties of a new measure of variability in stride length and cadence, termed residual standard deviation (RSD). To calculate RSD, stride length and cadence are regressed against velocity to derive the best fit line from which the variability (SD) of the distance between the actual and predicted data points is calculated. We examined construct, concurrent, and discriminative validity of RSD using dual-task paradigm in 14 below-knee prosthesis users and 13 age- and education-matched controls. Subjects walked first over an electronic walkway while performing separately a serial subtraction and backwards spelling task, and then at self-selected slow, normal, and fast speeds used to derive the best fit line for stride length and cadence against velocity. Construct validity was demonstrated by significantly greater increase in RSD during dual-task gait in prosthesis users than controls (group-by-condition interaction, stride length p=0.0006, cadence p=0.009). Concurrent validity was established against coefficient of variation (CV) by moderate-to-high correlations (r=0.50-0.87) between dual-task cost RSD and dual-task cost CV for both stride length and cadence in prosthesis users and controls. Discriminative validity was documented by the ability of dual-task cost calculated from RSD to effectively differentiate prosthesis users from controls (area under the receiver operating characteristic curve, stride length 0.863, p=0.001, cadence 0.808, p=0.007), which was better than the ability of dual-task cost CV (0.692, 0.648, respectively, not significant). These results validate RSD as a new measure of variability in below-knee prosthesis users. Future studies should include larger cohorts and other populations to ascertain its generalizability. Copyright © 2016 Elsevier B.V. All rights reserved.
Gonzales, Joaquin U; James, C Roger; Yang, Hyung Suk; Jensen, Daniel; Atkins, Lee; Al-Khalil, Kareem; O'Boyle, Michael
2017-05-01
Central arterial hemodynamics is associated with cognitive impairment. Reductions in gait speed during walking while performing concurrent tasks known as dual-tasking (DT) or multi-tasking (MT) is thought to reflect the cognitive cost that exceeds neural capacity to share resources. We hypothesized that central vascular function would associate with decrements in gait speed during DT or MT. Gait speed was measured using a motion capture system in 56 women (30-80y) without mild-cognitive impairment. Dual-tasking was considered walking at a fast-pace while balancing a tray. Multi-tasking was the DT condition plus subtracting by serial 7's. Applanation tonometry was used for measurement of aortic stiffness and central pulse pressure. Doppler-ultrasound was used to measure blood flow velocity and β-stiffness index in the common carotid artery. The percent change in gait speed was larger for MT than DT (14.1±11.2 vs. 8.7±9.6%, p <0.01). Tertiles were formed based on the percent change in gait speed for each condition. No vascular parameters differed across tertiles for DT. In contrast, carotid flow pulsatility (1.85±0.43 vs. 1.47±0.42, p=0.02) and resistance (0.75±0.07 vs. 0.68±0.07, p=0.01) indices were higher in women with more decrement (third tertile) as compared to women with less decrement (first tertile) in gait speed during MT after adjusting for age, gait speed, and task error. Carotid pulse pressure and β-stiffness did not contribute to these tertile differences. Elevated carotid flow pulsatility and resistance are characteristics found in healthy women that show lower cognitive capacity to walk and perform multiple concurrent tasks. Copyright © 2017 Elsevier B.V. All rights reserved.
Short-term memory and dual task performance
NASA Technical Reports Server (NTRS)
Regan, J. E.
1982-01-01
Two hypotheses concerning the way in which short-term memory interacts with another task in a dual task situation are considered. It is noted that when two tasks are combined, the activity of controlling and organizing performance on both tasks simultaneously may compete with either task for a resource; this resource may be space in a central mechanism or general processing capacity or it may be some task-specific resource. If a special relationship exists between short-term memory and control, especially if there is an identity relationship between short-term and a central controlling mechanism, then short-term memory performance should show a decrement in a dual task situation. Even if short-term memory does not have any particular identity with a controlling mechanism, but both tasks draw on some common resource or resources, then a tradeoff between the two tasks in allocating resources is possible and could be reflected in performance. The persistent concurrence cost in memory performance in these experiments suggests that short-term memory may have a unique status in the information processing system.
Brain activations during bimodal dual tasks depend on the nature and combination of component tasks
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2015-01-01
We used functional magnetic resonance imaging to investigate brain activations during nine different dual tasks in which the participants were required to simultaneously attend to concurrent streams of spoken syllables and written letters. They performed a phonological, spatial or “simple” (speaker-gender or font-shade) discrimination task within each modality. We expected to find activations associated specifically with dual tasking especially in the frontal and parietal cortices. However, no brain areas showed systematic dual task enhancements common for all dual tasks. Further analysis revealed that dual tasks including component tasks that were according to Baddeley's model “modality atypical,” that is, the auditory spatial task or the visual phonological task, were not associated with enhanced frontal activity. In contrast, for other dual tasks, activity specifically associated with dual tasking was found in the left or bilateral frontal cortices. Enhanced activation in parietal areas, however, appeared not to be specifically associated with dual tasking per se, but rather with intermodal attention switching. We also expected effects of dual tasking in left frontal supramodal phonological processing areas when both component tasks required phonological processing and in right parietal supramodal spatial processing areas when both tasks required spatial processing. However, no such effects were found during these dual tasks compared with their component tasks performed separately. Taken together, the current results indicate that activations during dual tasks depend in a complex manner on specific demands of component tasks. PMID:25767443
The Effect of Concurrent Semantic Categorization on Delayed Serial Recall
ERIC Educational Resources Information Center
Acheson, Daniel J.; MacDonald, Maryellen C.; Postle, Bradley R.
2011-01-01
The influence of semantic processing on the serial ordering of items in short-term memory was explored using a novel dual-task paradigm. Participants engaged in 2 picture-judgment tasks while simultaneously performing delayed serial recall. List material varied in the presence of phonological overlap (Experiments 1 and 2) and in semantic content…
Targeted On-Demand Team Performance App Development
2018-02-01
ACCOMPLISHMENTS: Major Goals Task Description Status 1 Project Management Administration, oversight and management of all program tasks, expenditures...reporting charts, financial and project management protocols. Create, complete, and submit all documentation for program office and designated... project provided? All subjects participated in simulated emergency medicine events that included concurrent management of three patients with
ERIC Educational Resources Information Center
Wheeler-Hegland, Karen M.; Rosenbek, John C.; Sapienza, Christine M.
2008-01-01
Purpose: This study investigated the concurrent biomechanical and electromyographic properties of 2 swallow-specific tasks (effortful swallow and Mendelsohn maneuver) and 1 swallow-nonspecific (expiratory muscle strength training [EMST]) swallow therapy task in order to examine the differential effects of each on hyoid motion and associated…
Examining Adolescents' Strategic Processing during Online Reading with a Question-Generating Task
ERIC Educational Resources Information Center
Cho, Byeong-Young; Woodward, Lindsay; Li, Dan; Barlow, Wendy
2017-01-01
Forty-three high school students participated in an online reading task to generate a critical question on a controversial topic. Participants' concurrent verbal reports of strategy use (i.e., information location, meaning making, source evaluation, self-monitoring) and their reading outcome (i.e., the generated question) were evaluated with…
From Scribbles to Scrabble: Preschool Children's Developing Knowledge of Written Language
ERIC Educational Resources Information Center
Puranik, Cynthia S.; Lonigan, Christopher J.
2011-01-01
The purpose of this study was to concurrently examine the development of written language across different writing tasks and to investigate how writing features develop in preschool children. Emergent written language knowledge of 372 preschoolers was assessed using numerous writing tasks. The findings from this study indicate that children…
Learners' Uses of Two Types of Written Feedback on a L2 Writing Revision Task
ERIC Educational Resources Information Center
Sachs, Rebecca; Polio, Charlene
2007-01-01
This study examines the effectiveness of written error corrections versus reformulations of second language learners' writing as two means of improving learners' grammatical accuracy on a three-stage composition-comparison-revision task. Concurrent verbal protocols were employed during the comparison stage in order to study the learners' reported…
Automatic semantic encoding in verbal short-term memory: evidence from the concreteness effect.
Campoy, Guillermo; Castellà, Judit; Provencio, Violeta; Hitch, Graham J; Baddeley, Alan D
2015-01-01
The concreteness effect in verbal short-term memory (STM) tasks is assumed to be a consequence of semantic encoding in STM, with immediate recall of concrete words benefiting from richer semantic representations. We used the concreteness effect to test the hypothesis that semantic encoding in standard verbal STM tasks is a consequence of controlled, attention-demanding mechanisms of strategic semantic retrieval and encoding. Experiment 1 analysed the effect of presentation rate, with slow presentations being assumed to benefit strategic, time-dependent semantic encoding. Experiments 2 and 3 provided a more direct test of the strategic hypothesis by introducing three different concurrent attention-demanding tasks. Although Experiment 1 showed a larger concreteness effect with slow presentations, the following two experiments yielded strong evidence against the strategic hypothesis. Limiting available attention resources by concurrent tasks reduced global memory performance, but the concreteness effect was equivalent to that found in control conditions. We conclude that semantic effects in STM result from automatic semantic encoding and provide tentative explanations for the interaction between the concreteness effect and the presentation rate.
Divided attention disrupts perceptual encoding during speech recognition.
Mattys, Sven L; Palmer, Shekeila D
2015-03-01
Performing a secondary task while listening to speech has a detrimental effect on speech processing, but the locus of the disruption within the speech system is poorly understood. Recent research has shown that cognitive load imposed by a concurrent visual task increases dependency on lexical knowledge during speech processing, but it does not affect lexical activation per se. This suggests that "lexical drift" under cognitive load occurs either as a post-lexical bias at the decisional level or as a secondary consequence of reduced perceptual sensitivity. This study aimed to adjudicate between these alternatives using a forced-choice task that required listeners to identify noise-degraded spoken words with or without the addition of a concurrent visual task. Adding cognitive load increased the likelihood that listeners would select a word acoustically similar to the target even though its frequency was lower than that of the target. Thus, there was no evidence that cognitive load led to a high-frequency response bias. Rather, cognitive load seems to disrupt sublexical encoding, possibly by impairing perceptual acuity at the auditory periphery.
Megreya, Ahmed M.; Bindemann, Markus
2017-01-01
It is unresolved whether the permanent auditory deprivation that deaf people experience leads to the enhanced visual processing of faces. The current study explored this question with a matching task in which observers searched for a target face among a concurrent lineup of ten faces. This was compared with a control task in which the same stimuli were presented upside down, to disrupt typical face processing, and an object matching task. A sample of young-adolescent deaf observers performed with higher accuracy than hearing controls across all of these tasks. These results clarify previous findings and provide evidence for a general visual processing advantage in deaf observers rather than a face-specific effect. PMID:28117407
NASA Technical Reports Server (NTRS)
Bortolussi, Michael R.; Hart, Sandra G.; Shively, Robert J.
1987-01-01
A simulation was conducted to determine whether the sensitivity of secondary task measures of pilot workload could be improved by synchronizing their presentation to the occurrence of specific events or pilot actions. This synchronous method of presentation was compared to the more typical asynchronous method, where secondary task presentations are independent of pilot's flight-related activities. Twelve pilots flew low- and high-difficulty scenarios in a motion-base trainer with and without concurrent secondary tasks (e.g., choice reaction time and time production). The difficulty of each scenario was manipulated by the addition of 21 flight-related tasks superimposed on a standard approach and landing sequence. The insertion of the secondary tasks did not affect primary flight performance. However, secondary task performance did reflect workload differences between scenarios and among flight segments within scenarios, replicating the results of an earlier study in which the secondary tasks were presented asynchronously (Bortolussi et al., 1986).
Zielinski, Ingar Marie; Steenbergen, Bert; Schmidt, Anna; Klingels, Katrijn; Simon Martinez, Cristina; de Water, Pascal; Hoare, Brian
2018-03-23
To introduce the Windmill-task, a new objective assessment tool to quantify the presence of mirror movements (MMs) in children with unilateral cerebral palsy (UCP), which are typically assessed with the observation-based Woods and Teuber scale (W&T). Prospective, observational, cohort pilot study. Children's hospital. Prospective cohort of children (N=23) with UCP (age range, 6-15y, mean age, 10.5±2.7y). Not applicable. The concurrent validity of the Windmill-task is assessed, and the sensitivity and specificity for MM detection are compared between both assessments. To assess the concurrent validity, Windmill-task data are compared with W&T data using Spearman rank correlations (ρ) for 2 conditions: affected hand moving vs less affected hand moving. Sensitivity and specificity are compared by measuring the mean percentage of children being assessed inconsistently across both assessments. Outcomes of both assessments correlated significantly (affected hand moving: ρ=.520; P=.005; less affected hand moving: ρ=.488; P=.009). However, many children displayed MMs on the Windmill-task, but not on the W&T (sensitivity: affected hand moving: 27.5%; less affected hand moving: 40.6%). Only 2 children displayed MMs on the W&T, but not on the Windmill-task (specificity: affected hand moving: 2.9%; less affected hand moving: 1.4%). The Windmill-task seems to be a valid tool to assess MMs in children with UCP and has an additional advantage of sensitivity to detect MMs. Copyright © 2018 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Walking stability during cell phone use in healthy adults.
Kao, Pei-Chun; Higginson, Christopher I; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S
2015-05-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. Copyright © 2015 Elsevier B.V. All rights reserved.
Walking Stability during Cell Phone Use in Healthy Adults
Kao, Pei-Chun; Higginson, Christopher I.; Seymour, Kelly; Kamerdze, Morgan; Higginson, Jill S.
2015-01-01
The number of falls and/or accidental injuries associated with cellular phone use during walking is growing rapidly. Understanding the effects of concurrent cell phone use on human gait may help develop safety guidelines for pedestrians. It was shown previously that older adults had more pronounced dual-task interferences than younger adults when concurrent cognitive task required visual information processing. Thus, cell phone use might have greater impact on walking stability in older than in younger adults. This study examined gait stability and variability during a cell phone dialing task (phone) and two classic cognitive tasks, the Paced Auditory Serial Addition Test (PASAT) and Symbol Digit Modalities Test (SDMT). Nine older and seven younger healthy adults walked on a treadmill at four different conditions: walking only, PASAT, phone, and SDMT. We computed short-term local divergence exponent (LDE) of the trunk motion (local stability), dynamic margins of stability (MOS), step spatiotemporal measures, and kinematic variability. Older and younger adults had similar values of short-term LDE during all conditions, indicating that local stability was not affected by the dual-task. Compared to walking only, older and younger adults walked with significantly greater average mediolateral MOS during phone and SDMT conditions but significantly less ankle angle variability during all dual-tasks and less knee angle variability during PASAT. The current findings demonstrate that healthy adults may try to control foot placement and joint kinematics during cell phone use or another cognitive task with a visual component to ensure sufficient dynamic margins of stability and maintain local stability. PMID:25890490
Gennari, Silvia P; Millman, Rebecca E; Hymers, Mark; Mattys, Sven L
2018-06-12
Perceiving speech while performing another task is a common challenge in everyday life. How the brain controls resource allocation during speech perception remains poorly understood. Using functional magnetic resonance imaging (fMRI), we investigated the effect of cognitive load on speech perception by examining brain responses of participants performing a phoneme discrimination task and a visual working memory task simultaneously. The visual task involved holding either a single meaningless image in working memory (low cognitive load) or four different images (high cognitive load). Performing the speech task under high load, compared to low load, resulted in decreased activity in pSTG/pMTG and increased activity in visual occipital cortex and two regions known to contribute to visual attention regulation-the superior parietal lobule (SPL) and the paracingulate and anterior cingulate gyrus (PaCG, ACG). Critically, activity in PaCG/ACG was correlated with performance in the visual task and with activity in pSTG/pMTG: Increased activity in PaCG/ACG was observed for individuals with poorer visual performance and with decreased activity in pSTG/pMTG. Moreover, activity in a pSTG/pMTG seed region showed psychophysiological interactions with areas of the PaCG/ACG, with stronger interaction in the high-load than the low-load condition. These findings show that the acoustic analysis of speech is affected by the demands of a concurrent visual task and that the PaCG/ACG plays a role in allocating cognitive resources to concurrent auditory and visual information. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Peters, Erica N; Rosenberry, Zachary R; Schauer, Gillian L; O'Grady, Kevin E; Johnson, Patrick S
2017-06-01
Although marijuana and tobacco are commonly coused, the nature of their relationship has not been fully elucidated. Behavioral economics has characterized the relationship between concurrently available commodities but has not been applied to marijuana and tobacco couse. U.S. adults ≥18 years who coused marijuana and tobacco cigarettes were recruited via Mechanical Turk, a crowdsourcing service by Amazon. Participants (N = 82) completed online purchasing tasks assessing hypothetical marijuana or tobacco cigarette puff consumption across a range of per-puff prices; 2 single-commodity tasks assessed these when only 1 commodity was available, and 2 cross-commodity tasks assessed these in the presence of a concurrently available fixed-price commodity. Purchasing tasks generated measures of demand elasticity, that is, sensitivity of consumption to prices. In single-commodity tasks, consumption of tobacco cigarette puffs (elasticity of demand: α = 0.0075; 95% confidence interval [0.0066, 0.0085], R² = 0.72) and of marijuana puffs (α = .0044; 95% confidence interval [0.0038, 0.0049], R² = 0.71) declined significantly with increases in price per puff. In cross-commodity tasks when both tobacco cigarette puffs and marijuana puffs were available, demand for 1 commodity was independent of price increases in the other commodity (ps > .05). Results revealed that, in this small sample, marijuana and tobacco cigarettes did not substitute for each other and did not complement each other; instead, they were independent of each other. These preliminary results can inform future studies assessing the economic relationship between tobacco and marijuana in the quickly changing policy climate in the United States. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.
1986-01-01
The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.
Individual Differences in Inhibitory Control Skills at Three Years of Age
Watson, Amanda J.; Bell, Martha Ann
2013-01-01
Sixty-eight 3-year-old children participated in an investigation of inhibitory control (IC). Child IC was measured using various tasks in order to determine the impact on child performance of manipulating task demands. Performance on a nonverbal IC task, but not performance on more difficult motivational or traditional IC tasks, was explained by medial frontal electroencephalographic activity and by language abilities. Because of the unique relations of nonverbal IC with concurrent developmental measures, and because of its potential to predict later social problems, we conclude that it is important to include nonverbal IC measures in investigative IC batteries in early childhood. PMID:23311312
A Framework for Load Balancing of Tensor Contraction Expressions via Dynamic Task Partitioning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lai, Pai-Wei; Stock, Kevin; Rajbhandari, Samyam
In this paper, we introduce the Dynamic Load-balanced Tensor Contractions (DLTC), a domain-specific library for efficient task parallel execution of tensor contraction expressions, a class of computation encountered in quantum chemistry and physics. Our framework decomposes each contraction into smaller unit of tasks, represented by an abstraction referred to as iterators. We exploit an extra level of parallelism by having tasks across independent contractions executed concurrently through a dynamic load balancing run- time. We demonstrate the improved performance, scalability, and flexibility for the computation of tensor contraction expressions on parallel computers using examples from coupled cluster methods.
Brisson, Benoit; Leblanc, Emilie; Jolicoeur, Pierre
2009-02-01
It has recently been demonstrated that a lateralized distractor that matches the individual's top-down control settings elicits an N2pc wave, an electrophysiological index of the focus of visual-spatial attention, indicating that contingent capture has a visual-spatial locus. Here, we investigated whether contingent capture required capacity-limited central resources by incorporating a contingent capture task as the second task of a psychological refractory period (PRP) dual-task paradigm. The N2pc was used to monitor where observers were attending while they performed concurrent central processing known to cause the PRP effect. The N2pc elicited by the lateralized distractor that matched the top-down control settings was attenuated in high concurrent central load conditions, indicating that although involuntary, the deployment of visual-spatial attention occurring during contingent capture depends on capacity-limited central resources.
Does dual-task coordination performance decline in later life?
Sebastián, María V; Mediavilla, Roberto
2017-05-01
This cross-sectional study examined whether changes occur in people’s capacity to coordinate two simultaneous tasks (dual-task) when transitioning from adulthood to later life. The central executive, Baddeley’s working memory model component, is responsible for this coordination. Contradictory results have been reported regarding the relationship between ageing and dual-task performance; but these seem to be related to methodological issues that have been addressed in this study. Nine hundred and seventy-two participants, aged between 35 and 90 years old, volunteered to carry out a verbal digit span task, followed by single and concurrent (dual-task) tests: first, a box crossing task, then, the digit recall task in relation to their memory span, and finally, both these tests simultaneously. We found no difference in people’s capacity to coordinate their attention when doing two tasks in adulthood or healthy later life, including those in the oldest age groups. Furthermore, gender and educational level were not related to dual-task performance. The results support the normal functioning of the central executive in very old people. These data contrast with research with patients suffering from different types of dementia, which show a decrease in their dual-task performance.
Attention Demands of Spoken Word Planning: A Review
Roelofs, Ardi; Piai, Vitória
2011-01-01
Attention and language are among the most intensively researched abilities in the cognitive neurosciences, but the relation between these abilities has largely been neglected. There is increasing evidence, however, that linguistic processes, such as those underlying the planning of words, cannot proceed without paying some form of attention. Here, we review evidence that word planning requires some but not full attention. The evidence comes from chronometric studies of word planning in picture naming and word reading under divided attention conditions. It is generally assumed that the central attention demands of a process are indexed by the extent that the process delays the performance of a concurrent unrelated task. The studies measured the speed and accuracy of linguistic and non-linguistic responding as well as eye gaze durations reflecting the allocation of attention. First, empirical evidence indicates that in several task situations, processes up to and including phonological encoding in word planning delay, or are delayed by, the performance of concurrent unrelated non-linguistic tasks. These findings suggest that word planning requires central attention. Second, empirical evidence indicates that conflicts in word planning may be resolved while concurrently performing an unrelated non-linguistic task, making a task decision, or making a go/no-go decision. These findings suggest that word planning does not require full central attention. We outline a computationally implemented theory of attention and word planning, and describe at various points the outcomes of computer simulations that demonstrate the utility of the theory in accounting for the key findings. Finally, we indicate how attention deficits may contribute to impaired language performance, such as in individuals with specific language impairment. PMID:22069393
Raised visual detection thresholds depend on the level of complexity of cognitive foveal loading.
Plainis, S; Murray, I J; Chauhan, K
2001-01-01
The objective of the study was to measure the interactions between visual thresholds for a simple light (the secondary task) presented peripherally and a simultaneously performed cognitive task (the primary task) presented foveally The primary task was highly visible but varied according to its cognitive complexity. Interactions between the tasks were determined by measuring detection thresholds for the peripheral task and accuracy of performance of the foveal task. Effects were measured for 5, 10, 20, and 30 deg eccentricity of the peripherally presented light and for three levels of cognitive complexity. Mesopic conditions (0.5 lx) were used. As expected, the concurrent presentation of the foveal cognitive task reduced peripheral sensitivity. Moreover, performance of the foveal task was adversely affected when conducting the peripheral task. Performance on both tasks was reduced as the level of complexity of the cognitive task increased. There were qualitative differences in task interactions between the central 10 deg and at greater eccentricities. Within 10 deg there was a disproportionate effect of eccentricity, previously interpreted as the 'tunnel-vision' model of visual field narrowing. Interactions outside 10 deg were less affected by eccentricity. These results are discussed in terms of the known neurophysiological characteristics of the primary visual pathway.
Severe tinnitus and its effect on selective and divided attention.
Stevens, Catherine; Walker, Gary; Boyer, Morten; Gallagher, Melinda
2007-05-01
The effect of chronic, severe tinnitus on two visual tasks was investigated. A general depletion of resources hypothesis states that overall performance would be impaired in a tinnitus group relative to a control group whereas a controlled processing hypothesis states that only tasks that are demanding, requiring strategic processes, are affected. Eleven participants who had experienced severe tinnitus for more than two years comprised the tinnitus group. A control group was matched for age and verbal IQ. Levels of anxiety, depression, and high frequency average hearing level were treated as covariates. Tasks consisted of the say-word (easy) and say-color (demanding) conditions of the Stroop task, a single (baseline) reaction time (RT) task, and dual tasks involving word reading or category naming while performing a concurrent RT task. Results supported the general depletion of resources hypothesis: RT of the tinnitus group was slower in both conditions of the Stroop task, and in the word reading and category naming conditions of the dual task. Differences were not attributable to high frequency average hearing level, anxiety, or depression.
Application of Shuttle EVA Systems to Payloads. Volume 2: Payload EVA Task Completion Plans
NASA Technical Reports Server (NTRS)
1976-01-01
Candidate payload tasks for EVA application were identified and selected, based on an analysis of four representative space shuttle payloads, and typical EVA scenarios with supporting crew timelines and procedures were developed. The EVA preparations and post EVA operations, as well as the timelines emphasizing concurrent payload support functions, were also summarized.
Working Memory and Processing Efficiency in Children's Reasoning.
ERIC Educational Resources Information Center
Halford, Graeme S.; And Others
A series of studies was conducted to determine whether children's reasoning is capacity-limited and whether any such capacity, if it exists, is based on the working memory system. An N-term series (transitive inference) was used as the primary task in an interference paradigm. A concurrent short-term memory load was employed as the secondary task.…
Motor and Executive Control in Repetitive Timing of Brief Intervals
ERIC Educational Resources Information Center
Holm, Linus; Ullen, Fredrik; Madison, Guy
2013-01-01
We investigated the causal role of executive control functions in the production of brief time intervals by means of a concurrent task paradigm. To isolate the influence of executive functions on timing from motor coordination effects, we dissociated executive load from the number of effectors used in the dual task situation. In 3 experiments,…
ERIC Educational Resources Information Center
Verstijnen, I. M.; van Mierlo, C. M.; de Ruijter, P.
2008-01-01
In order to investigate the effect of concurrent phoning and auditory environmental monitoring, the performance of visually impaired people was observed on a dual task that consisted of two simulation tasks. Subjects wore either a bone conducting headset, or closed or open (air conduction) earphones. Reaction times and the correctness of responses…
Relation between CBM-R and CBM-mR Slopes: An Application of Latent Growth Modeling
ERIC Educational Resources Information Center
Yeo, Seungsoo; Fearrington, Jamie Y.; Christ, Theodore J.
2012-01-01
Oral reading tasks and Maze reading tasks are often used interchangeably to assess the level and rate of reading skill development. This study examined the concurrent validity of growth estimates derived from "Curriculum-Based Measurement of Oral Reading" (CBM-R) and "Maze Reading" (CBM-mR). Participants were 1,528 students…
Concurrent Memory Load Can Make RSVP Search More Efficient
ERIC Educational Resources Information Center
Gil-Gomez de Liano, Beatriz; Botella, Juan
2011-01-01
The detrimental effect of increased memory load on selective attention has been demonstrated in many situations. However, in search tasks over time using RSVP methods, it is not clear how memory load affects attentional processes; no effects as well as beneficial and detrimental effects of memory load have been found in these types of tasks. The…
Training specificity and transfer in time and distance estimation.
Healy, Alice F; Tack, Lindsay Anderson; Schneider, Vivian I; Barshi, Immanuel
2015-07-01
Learning is often specific to the conditions of training, making it important to identify which aspects of the testing environment are crucial to be matched in the training environment. In the present study, we examined training specificity in time and distance estimation tasks that differed only in the focus of processing (FOP). External spatial cues were provided for the distance estimation task and for the time estimation task in one condition, but not in another. The presence of a concurrent alphabet secondary task was manipulated during training and testing in all estimation conditions in Experiment 1. For distance as well as for time estimation in both conditions, training of the primary estimation task was found to be specific to the presence of the secondary task. In Experiments 2 and 3, we examined transfer between one estimation task and another, with no secondary task in either case. When all conditions were equal aside from the FOP instructions, including the presence of external spatial cues, Experiment 2 showed "transfer" between tasks, suggesting that training might not be specific to the FOP. When the external spatial cues were removed from the time estimation task, Experiment 3 showed no transfer between time and distance estimations, suggesting that external task cues influenced the procedures used in the estimation tasks.
Buratto, Luciano G.; Pottage, Claire L.; Brown, Charity; Morrison, Catriona M.; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated. PMID:25330251
Buratto, Luciano G; Pottage, Claire L; Brown, Charity; Morrison, Catriona M; Schaefer, Alexandre
2014-01-01
Memory performance is usually impaired when participants have to encode information while performing a concurrent task. Recent studies using recall tasks have found that emotional items are more resistant to such cognitive depletion effects than non-emotional items. However, when recognition tasks are used, the same effect is more elusive as recent recognition studies have obtained contradictory results. In two experiments, we provide evidence that negative emotional content can reliably reduce the effects of cognitive depletion on recognition memory only if stimuli with high levels of emotional intensity are used. In particular, we found that recognition performance for realistic pictures was impaired by a secondary 3-back working memory task during encoding if stimuli were emotionally neutral or had moderate levels of negative emotionality. In contrast, when negative pictures with high levels of emotional intensity were used, the detrimental effects of the secondary task were significantly attenuated.
NASA Technical Reports Server (NTRS)
Brown, David B.
1991-01-01
The results of research and development efforts of the first six months of Task 1, Phase 3 of the project are presented. The goals of Phase 3 are: (1) to further refine the rule base and complete the comparative rule base evaluation; (2) to implement and evaluate a concurrency testing prototype; (3) to convert the complete (unit-level and concurrency) testing prototype to a workstation environment; and (4) to provide a prototype development document to facilitate the transfer of research technology to a working environment. These goals were partially met and the results are summarized.
A general engineering scenario for concurrent engineering environments
NASA Astrophysics Data System (ADS)
Mucino, V. H.; Pavelic, V.
The paper describes an engineering method scenario which categorizes the various activities and tasks into blocks seen as subjects which consume and produce data and information. These methods, tools, and associated utilities interact with other engineering tools by exchanging information in such a way that a relationship between customers and suppliers of engineering data is established clearly, while data exchange consistency is maintained throughout the design process. The events and data transactions are presented in the form of flowcharts in which data transactions represent the connection between the various bricks, which in turn represent the engineering activities developed for the particular task required in the concurrent engineering environment.
Validation of a Behavioral Approach for Measuring Saccades in Parkinson's Disease.
Turner, Travis H; Renfroe, Jenna B; Duppstadt-Delambo, Amy; Hinson, Vanessa K
2017-01-01
Speed and control of saccades are related to disease progression and cognitive functioning in Parkinson's disease (PD). Traditional eye-tracking complexities encumber application for individual evaluations and clinical trials. The authors examined psychometric properties of standalone tasks for reflexive prosaccade latency, volitional saccade initiation, and saccade inhibition (antisaccade) in a heterogeneous sample of 65 PD patients. Demographics had minimal impact on task performance. Thirty-day test-retest reliability estimates for behavioral tasks were acceptable and similar to traditional eye tracking. Behavioral tasks demonstrated concurrent validity with traditional eye-tracking measures; discriminant validity was less clear. Saccade initiation and inhibition discriminated PD patients with cognitive impairment. The present findings support further development and use of the behavioral tasks for assessing latency and control of saccades in PD.
Executive control of stimulus-driven and goal-directed attention in visual working memory.
Hu, Yanmei; Allen, Richard J; Baddeley, Alan D; Hitch, Graham J
2016-10-01
We examined the role of executive control in stimulus-driven and goal-directed attention in visual working memory using probed recall of a series of objects, a task that allows study of the dynamics of storage through analysis of serial position data. Experiment 1 examined whether executive control underlies goal-directed prioritization of certain items within the sequence. Instructing participants to prioritize either the first or final item resulted in improved recall for these items, and an increase in concurrent task difficulty reduced or abolished these gains, consistent with their dependence on executive control. Experiment 2 examined whether executive control is also involved in the disruption caused by a post-series visual distractor (suffix). A demanding concurrent task disrupted memory for all items except the most recent, whereas a suffix disrupted only the most recent items. There was no interaction when concurrent load and suffix were combined, suggesting that deploying selective attention to ignore the distractor did not draw upon executive resources. A final experiment replicated the independent interfering effects of suffix and concurrent load while ruling out possible artifacts. We discuss the results in terms of a domain-general episodic buffer in which information is retained in a transient, limited capacity privileged state, influenced by both stimulus-driven and goal-directed processes. The privileged state contains the most recent environmental input together with goal-relevant representations being actively maintained using executive resources.
Bell, Lindsay; Kellison, Ida; Garvan, Cynthia W; Bussing, Regina
2010-04-01
This study examines whether elementary school-aged children can report behaviors relevant to assessing symptoms of attention-deficit/hyperactivity disorder (ADHD). Interviews were conducted with 120 children aged 6 to 12 years and their parents across 3 waves as part of a longitudinal cohort study of ADHD detection and service use. Child self-reports obtained through the Dimensions of Temperament Scale-Revised-Child (DOTS-R-C) were correlated with parent-reported ADHD symptoms, which were assessed through DSM-IV-based instrument ratings obtained concurrently and 5 years later. The Dimensions of Temperament Scale-Revised-Child subscales Activity Level and Task Orientation demonstrate adequate internal consistency after eliminating items requiring reverse scoring. Children's self-reports of Task Orientation Problems correlate with their parents' concurrent reports of inattention, r(117) = .23, p < .05, and with parents' Wave 3 reports of inattention, r(118) = .25, p < .01 as well as hyperactivity, r(118) = .25, p < .01. Children's self-reports of Activity Level correlate with their parents' concurrent reports of hyperactivity, r(117) = .21, p < .05, as well as Wave 3 reports of hyperactivity/impulsivity, r(118) = .37, p < .001 and inattention, r(118) = .23, p < .05. Findings suggest that children may be capable of producing meaningful self-reports of Activity Level and Task Orientation. We propose that the development of child-friendly self-report instruments targeting ADHD symptoms is merited to facilitate the collection of child input during ADHD assessments.
Caramia, Carlotta; Bernabucci, Ivan; D'Anna, Carmen; De Marchis, Cristiano; Schmid, Maurizio
2017-01-01
The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking-in some specific conditions-might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use.
The Effect of Job Performance Aids on Quality Assurance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fosshage, Erik
Job performance aids (JPAs) have been studied for many decades in a variety of disciplines and for many different types of tasks, yet this is the first known research experiment using JPAs in a quality assurance (QA) context. The objective of this thesis was to assess whether a JPA has an effect on the performance of a QA observer performing the concurrent dual verification technique for a basic assembly task. The JPA used in this study was a simple checklist, and the design borrows heavily from prior research on task analysis and other human factors principles. The assembly task andmore » QA construct of concurrent dual verification are consistent with those of a high consequence manufacturing environment. Results showed that the JPA had only a limited effect on QA performance in the context of this experiment. However, there were three important and unexpected findings that may draw interest from a variety of practitioners. First, a novel testing methodology sensitive enough to measure the effects of a JPA on performance was created. Second, the discovery that there are different probabilities of detection for different types of error in a QA context may be the most far-reaching results. Third, these results highlight the limitations of concurrent dual verification as a control against defects. It is hoped that both the methodology and results of this study are an effective baseline from which to launch future research activities.« less
Bernabucci, Ivan; D'Anna, Carmen; De Marchis, Cristiano; Schmid, Maurizio
2017-01-01
The widespread and pervasive use of smartphones for sending messages, calling, and entertainment purposes, mainly among young adults, is often accompanied by the concurrent execution of other tasks. Recent studies have analyzed how texting, reading or calling while walking–in some specific conditions–might significantly influence gait parameters. The aim of this study is to examine the effect of different smartphone activities on walking, evaluating the variations of several gait parameters. 10 young healthy students (all smartphone proficient users) were instructed to text chat (with two different levels of cognitive load), call, surf on a social network or play with a math game while walking in a real-life outdoor setting. Each of these activities is characterized by a different cognitive load. Using an inertial measurement unit on the lower trunk, spatio-temporal gait parameters, together with regularity, symmetry and smoothness parameters, were extracted and grouped for comparison among normal walking and different dual task demands. An overall significant effect of task type on the aforementioned parameters group was observed. The alterations in gait parameters vary as a function of cognitive effort. In particular, stride frequency, step length and gait speed show a decrement, while step time increases as a function of cognitive effort. Smoothness, regularity and symmetry parameters are significantly altered for specific dual task conditions, mainly along the mediolateral direction. These results may lead to a better understanding of the possible risks related to walking and concurrent smartphone use. PMID:29023456
Improved Cognition While Cycling in Parkinson’s Disease Patients and Healthy Adults
Hazamy, Audrey A.; Altmann, Lori J. P.; Stegemöller, Elizabeth; Bowers, Dawn; Lee, Hyo Keun; Wilson, Jonathan; Okun, Michael S.; Hass, Chris J.
2017-01-01
Persons with Parkinson’s disease (PD) are typically more susceptible than healthy adults to impaired performance when two tasks (dual task interference) are performed simultaneously. This limitation has by many experts been attributed to limitations in cognitive resources. Nearly all studies of dual task performance in PD employ walking or balance-based motor tasks, which are commonly impaired in PD. These tasks can be performed using a combination of one or two executive function tasks. The current study examined whether persons with PD would demonstrate greater dual task effects on cognition compared to healthy older adults (HOAs) during a concurrent cycling task. Participants with and without PD completed a battery of 12 cognitive tasks assessing visual and verbal processing in the following cognitive domains: speed of processing, controlled processing, working memory and executive function. Persons with PD exhibited impairments compared to healthy participants in select tasks (i.e., 0-Back, 2-Back and operation span). Further, both groups unexpectedly exhibited dual task facilitation of response times in visual tasks across cognitive domains, and improved verbal recall during an executive function task. Only one measure, 2-back, showed a speed-accuracy trade-off in the dual task. These results demonstrate that, when paired with a motor task in which they are not impaired, people with PD exhibit similar dual task effects on cognitive tasks as HOAs, even when these dual task effects are facilitative. More generally, these findings demonstrate that pairing cognitive tasks with cycling may actually improve cognitive performance which may have therapeutic relevance to cognitive decline associated with aging and PD pathology. PMID:28088064
Video game practice optimizes executive control skills in dual-task and task switching situations.
Strobach, Tilo; Frensch, Peter A; Schubert, Torsten
2012-05-01
We examined the relation of action video game practice and the optimization of executive control skills that are needed to coordinate two different tasks. As action video games are similar to real life situations and complex in nature, and include numerous concurrent actions, they may generate an ideal environment for practicing these skills (Green & Bavelier, 2008). For two types of experimental paradigms, dual-task and task switching respectively; we obtained performance advantages for experienced video gamers compared to non-gamers in situations in which two different tasks were processed simultaneously or sequentially. This advantage was absent in single-task situations. These findings indicate optimized executive control skills in video gamers. Similar findings in non-gamers after 15 h of action video game practice when compared to non-gamers with practice on a puzzle game clarified the causal relation between video game practice and the optimization of executive control skills. Copyright © 2012 Elsevier B.V. All rights reserved.
Sulik, Michael J; Eisenberg, Nancy; Spinrad, Tracy L; Silva, Kassondra M
2015-07-01
We tested whether respiratory sinus arrhythmia (RSA) reactivity in response to each of three self-regulation tasks (bird and dragon; knock-tap; and gift wrap) would predict self-regulation performance in a sample of 101 preschool-age children (M age = 4.49, SD = .64). While controlling for baseline RSA, decreases in RSA from bird and dragon to knock-tap (but not from baseline to bird and dragon) predicted a latent variable measuring self-regulation. Furthermore, increases in RSA from the knock-tap to gift wrap-the only task involving delay of gratification-were related to concurrent task performance while controlling for the relation between RSA reactivity and the latent self-regulation variable. Results suggest that the relations between RSA reactivity and self-regulatory ability are influenced by task-specific demands and possibly by task order. Furthermore, RSA reactivity appears to relate differently to performance on motivationally salient self-regulation tasks such as delay of gratification relative to cool executive function tasks. © 2015 Wiley Periodicals, Inc.
On the role of verbalization during task set selection: switching or serial order control?
Bryck, Richard L; Mayr, Ulrich
2005-06-01
Recent task-switching work in which paper-and-pencil administered single-task lists were compared with task-alternation lists has demonstrated large increases in task-switch costs with concurrent articulatory suppression (AS), implicating a crucial role for verbalization during switching (Baddeley, Chincotta, & Adlam, 2001; Emerson & Miyake, 2003). Experiment 1 replicated this result, using computerized assessment, albeit with much smaller effect sizes than in the original reports. In Experiment 2, AS interference was reduced when a sequential cue (spatial location) that indicated the current position in the sequence of task alternations was given. Finally, in Experiment 3, switch trials and no-switch trials were compared within a block of alternating runs of two tasks. Again, AS interference was obtained mainly when the endogenous sequencing demand was high, and it was comparable for no-switch and switch trials. These results suggest that verbalization may be critical for endogenous maintenance and updating of a sequential plan, rather than exclusively for the actual switching process.
How does cognitive load influence speech perception? An encoding hypothesis.
Mitterer, Holger; Mattys, Sven L
2017-01-01
Two experiments investigated the conditions under which cognitive load exerts an effect on the acuity of speech perception. These experiments extend earlier research by using a different speech perception task (four-interval oddity task) and by implementing cognitive load through a task often thought to be modular, namely, face processing. In the cognitive-load conditions, participants were required to remember two faces presented before the speech stimuli. In Experiment 1, performance in the speech-perception task under cognitive load was not impaired in comparison to a no-load baseline condition. In Experiment 2, we modified the load condition minimally such that it required encoding of the two faces simultaneously with the speech stimuli. As a reference condition, we also used a visual search task that in earlier experiments had led to poorer speech perception. Both concurrent tasks led to decrements in the speech task. The results suggest that speech perception is affected even by loads thought to be processed modularly, and that, critically, encoding in working memory might be the locus of interference.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment.
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-08-30
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks' execution time can be improved, in particular for some regular jobs.
Strouwen, Carolien; Molenaar, Esther A L M; Keus, Samyra H J; Münks, Liesbeth; Heremans, Elke; Vandenberghe, Wim; Bloem, Bastiaan R; Nieuwboer, Alice
2016-02-01
Impaired dual-task performance significantly impacts upon functional mobility in people with Parkinson's disease (PD). The aim of this study was to identify determinants of dual-task performance in people with PD in three different dual tasks to assess their possible task-dependency. We recruited 121 home-dwelling patients with PD (mean age 65.93 years; mean disease duration 8.67 years) whom we subjected to regular walking (control condition) and to three dual-task conditions: walking combined with a backwards Digit Span task, an auditory Stroop task and a Mobile Phone task. We measured dual-task gait velocity using the GAITRite mat and dual-task reaction times and errors on the concurrent tasks as outcomes. Motor, cognitive and descriptive variables which correlated to dual-task performance (p < 0.20) were entered into a stepwise forward multiple linear regression model. Single-task gait velocity and executive function, tested by the alternating intake test, was significantly associated with gait velocity during the Digit Span (R(2) = 0.65; p < 0.001), the Stroop (R(2) = 0.73; p < 0.001) and the Mobile Phone task (R(2) = 0.62; p < 0.001). In addition, disease severity proved correlated to gait velocity during the Stroop task. Age was a surplus determinant of gait velocity while using a mobile phone. Single-task gait velocity and executive function as measured by a verbal fluency switching task were independent determinants of dual-task gait performance in people with PD. In contrast to expectation, these factors were the same across different tasks, supporting the robustness of the findings. Future study needs to determine whether these factors predict dual-task abnormalities prospectively. Copyright © 2015 Elsevier Ltd. All rights reserved.
Explicit attention interferes with selective emotion processing in human extrastriate cortex.
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2007-02-22
Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (approximately 150-300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon.
Explicit attention interferes with selective emotion processing in human extrastriate cortex
Schupp, Harald T; Stockburger, Jessica; Bublatzky, Florian; Junghöfer, Markus; Weike, Almut I; Hamm, Alfons O
2007-01-01
Background Brain imaging and event-related potential studies provide strong evidence that emotional stimuli guide selective attention in visual processing. A reflection of the emotional attention capture is the increased Early Posterior Negativity (EPN) for pleasant and unpleasant compared to neutral images (~150–300 ms poststimulus). The present study explored whether this early emotion discrimination reflects an automatic phenomenon or is subject to interference by competing processing demands. Thus, emotional processing was assessed while participants performed a concurrent feature-based attention task varying in processing demands. Results Participants successfully performed the primary visual attention task as revealed by behavioral performance and selected event-related potential components (Selection Negativity and P3b). Replicating previous results, emotional modulation of the EPN was observed in a task condition with low processing demands. In contrast, pleasant and unpleasant pictures failed to elicit increased EPN amplitudes compared to neutral images in more difficult explicit attention task conditions. Further analyses determined that even the processing of pleasant and unpleasant pictures high in emotional arousal is subject to interference in experimental conditions with high task demand. Taken together, performing demanding feature-based counting tasks interfered with differential emotion processing indexed by the EPN. Conclusion The present findings demonstrate that taxing processing resources by a competing primary visual attention task markedly attenuated the early discrimination of emotional from neutral picture contents. Thus, these results provide further empirical support for an interference account of the emotion-attention interaction under conditions of competition. Previous studies revealed the interference of selective emotion processing when attentional resources were directed to locations of explicitly task-relevant stimuli. The present data suggest that interference of emotion processing by competing task demands is a more general phenomenon extending to the domain of feature-based attention. Furthermore, the results are inconsistent with the notion of effortlessness, i.e., early emotion discrimination despite concurrent task demands. These findings implicate to assess the presumed automatic nature of emotion processing at the level of specific aspects rather than considering automaticity as an all-or-none phenomenon. PMID:17316444
Buchweitz, Augusto; Keller, Timothy A.; Meyler, Ann; Just, Marcel Adam
2011-01-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared to comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. PMID:21618666
Howard, Steven J; Okely, Anthony D
2015-09-01
Although researchers agree that the first 5 years of life are critical for children's developing executive functions (EFs), further advances are hindered by a lack of consensus on the design and selection of developmentally appropriate EF tasks for young children. Given this debate, well-established adult measures of EF routinely have been adapted for young children. Given young children's comparatively limited cognitive capacities, however, such adaptations do not guarantee that the task's critical EF demands are retained. To investigate this possibility, the current study examined the characteristics that optimize measurement of young children's EFs-specifically, their inhibitory control-using the go/no-go (GNG) task as an exemplar. Sixty preschoolers completed six GNG tasks differing in stimulus animation, presentation time, and response location. Comparison EF tasks were administered to examine concurrent validity of GNG variants. Results indicated effects of stimulus presentation time and response location, with animation further enhancing task validity and reliability. This suggests that current GNG tasks deflate estimates of young children's ability to inhibit, with implications for future design and selection of developmentally appropriate EF tasks.
McCaig, Cassandra M; Adams, Scott G; Dykstra, Allyson D; Jog, Mandar
2016-01-01
Previous studies have demonstrated a negative effect of concurrent walking and talking on gait in Parkinson's disease (PD) but there is limited information about the effect of concurrent walking on speech production. The present study examined the effect of sitting, standing, and three concurrent walking tasks (slow, normal, fast) on conversational speech intensity and speech rate in fifteen individuals with hypophonia related to idiopathic Parkinson's disease (PD) and fourteen age-equivalent controls. Interlocuter (talker-to-talker) distance effects and walking speed were also examined. Concurrent walking was found to produce a significant increase in speech intensity, relative to standing and sitting, in both the control and PD groups. Faster walking produced significantly greater speech intensity than slower walking. Concurrent walking had no effect on speech rate. Concurrent walking and talking produced significant reductions in walking speed in both the control and PD groups. In general, the results of the present study indicate that concurrent walking tasks and the speed of concurrent walking can have a significant positive effect on conversational speech intensity. These positive, "energizing" effects need to be given consideration in future attempts to develop a comprehensive model of speech intensity regulation and they may have important implications for the development of new evaluation and treatment procedures for individuals with hypophonia related to PD. Crown Copyright © 2015. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Chong, Raymond K. Y.; Mills, Bradley; Dailey, Leanna; Lane, Elizabeth; Smith, Sarah; Lee, Kyoung-Hyun
2010-01-01
We tested the hypothesis that a computational overload results when two activities, one motor and the other cognitive that draw on the same neural processing pathways, are performed concurrently. Healthy young adult subjects carried out two seemingly distinct tasks of maintaining standing balance control under conditions of low (eyes closed),…
ERIC Educational Resources Information Center
Bhatarah, Parveen; Ward, Geoff; Tan, Lydia
2006-01-01
In 3 experiments, participants saw lists of 16 words for free recall with or without a 6-digit immediate serial recall (ISR) task after each word. Free recall was performed under standard visual silent and spoken-aloud conditions (Experiment 1), overt rehearsal conditions (Experiment 2), and fixed rehearsal conditions (Experiment 3). The authors…
A representation for error detection and recovery in robot task plans
NASA Technical Reports Server (NTRS)
Lyons, D. M.; Vijaykumar, R.; Venkataraman, S. T.
1990-01-01
A general definition is given of the problem of error detection and recovery in robot assembly systems, and a general representation is developed for dealing with the problem. This invariant representation involves a monitoring process which is concurrent, with one monitor per task plan. A plan hierarchy is discussed, showing how diagnosis and recovery can be handled using the representation.
ERIC Educational Resources Information Center
Broomfield, Laura; McHugh, Louise; Reed, Phil
2010-01-01
Stimulus overselectivity occurs when only one of potentially many aspects of the environment controls behavior. Adult participants were trained and tested on a trial-and-error discrimination learning task while engaging in a concurrent load task, and overselectivity emerged. When responding to the overselected stimulus was reduced by reinforcing a…
Vandierendonck, André
2016-01-01
Working memory researchers do not agree on whether order in serial recall is encoded by dedicated modality-specific systems or by a more general modality-independent system. Although previous research supports the existence of autonomous modality-specific systems, it has been shown that serial recognition memory is prone to cross-modal order interference by concurrent tasks. The present study used a serial recall task, which was performed in a single-task condition and in a dual-task condition with an embedded memory task in the retention interval. The modality of the serial task was either verbal or visuospatial, and the embedded tasks were in the other modality and required either serial or item recall. Care was taken to avoid modality overlaps during presentation and recall. In Experiment 1, visuospatial but not verbal serial recall was more impaired when the embedded task was an order than when it was an item task. Using a more difficult verbal serial recall task, verbal serial recall was also more impaired by another order recall task in Experiment 2. These findings are consistent with the hypothesis of modality-independent order coding. The implications for views on short-term recall and the multicomponent view of working memory are discussed.
Reducing the framing effect in older and younger adults by encouraging analytic processing.
Thomas, Ayanna K; Millar, Peter R
2012-03-01
The present study explored whether the framing effect could be reduced in older and younger adults using techniques that influenced the accessibility of information relevant to the decision-making processing. Accessibility was manipulated indirectly in Experiment 1 by having participants engage in concurrent tasks, and directly in Experiment 2, through an instructions manipulation that required participants to maintain a goal of analytic processing throughout the experimental trial. We tested 120 older and 120 younger adults in Experiment 1. Participants completed 28 decision trials while concurrently either performing a probability calculation task or a memory task. In Experiment 2, we tested 136 older and 136 younger adults. Participants completed 48 decision trials after either having been instructed to "think like a scientist" or base decisions on "gut reactions." Results demonstrated that the framing effect was reduced in older and younger adults in the probability calculation task in Experiment 1 and under the "think like a scientist" instructions manipulation in Experiment 2. These results suggest that when information relevant to unbiased decision making was made more accessible, both older and younger adults were able to reduce susceptibility to the framing effect.
Memory and learning with rapid audiovisual sequences
Keller, Arielle S.; Sekuler, Robert
2015-01-01
We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed. PMID:26575193
Memory and learning with rapid audiovisual sequences.
Keller, Arielle S; Sekuler, Robert
2015-01-01
We examined short-term memory for sequences of visual stimuli embedded in varying multisensory contexts. In two experiments, subjects judged the structure of the visual sequences while disregarding concurrent, but task-irrelevant auditory sequences. Stimuli were eight-item sequences in which varying luminances and frequencies were presented concurrently and rapidly (at 8 Hz). Subjects judged whether the final four items in a visual sequence identically replicated the first four items. Luminances and frequencies in each sequence were either perceptually correlated (Congruent) or were unrelated to one another (Incongruent). Experiment 1 showed that, despite encouragement to ignore the auditory stream, subjects' categorization of visual sequences was strongly influenced by the accompanying auditory sequences. Moreover, this influence tracked the similarity between a stimulus's separate audio and visual sequences, demonstrating that task-irrelevant auditory sequences underwent a considerable degree of processing. Using a variant of Hebb's repetition design, Experiment 2 compared musically trained subjects and subjects who had little or no musical training on the same task as used in Experiment 1. Test sequences included some that intermittently and randomly recurred, which produced better performance than sequences that were generated anew for each trial. The auditory component of a recurring audiovisual sequence influenced musically trained subjects more than it did other subjects. This result demonstrates that stimulus-selective, task-irrelevant learning of sequences can occur even when such learning is an incidental by-product of the task being performed.
Attention and reach-to-grasp movements in Parkinson's disease.
Lu, Cathy; Bharmal, Aamir; Kiss, Zelma H; Suchowersky, Oksana; Haffenden, Angela M
2010-08-01
The role of attention in grasping movements directed at common objects has not been examined in Parkinson's disease (PD), though these movements are critical to activities of daily living. Our primary objective was to determine whether patients with PD demonstrate automaticity in grasping movements directed toward common objects. Automaticity is assumed when tasks can be performed with little or no interference from concurrent tasks. Grasping performance in three patient groups (newly diagnosed, moderate, and advanced/surgically treated PD) on and off of their medication or deep brain stimulation was compared to performance in an age-matched control group. Automaticity was demonstrated by the absence of a decrement in grasping performance when attention was consumed by a concurrent spatial-visualization task. Only the control group and newly diagnosed PD group demonstrated automaticity in their grasping movements. The moderate and advanced PD groups did not demonstrate automaticity. Furthermore, the well-known effects of pharmacotherapy and surgical intervention on movement speed and muscle activation patterns did not appear to reduce the impact of attention-demanding tasks on grasping movements in those with moderate to advanced PD. By the moderate stage of PD, grasping is an attention-demanding process; this change is not ameliorated by dopaminergic or surgical treatments. These findings have important implications for activities of daily living, as devoting attention to the simplest of daily tasks would interfere with complex activities and potentially exacerbate fatigue.
An eye movement analysis of the effect of interruption modality on primary task resumption.
Ratwani, Raj; Trafton, J Gregory
2010-06-01
We examined the effect of interruption modality (visual or auditory) on primary task (visual) resumption to determine which modality was the least disruptive. Theories examining interruption modality have focused on specific periods of the interruption timeline. Preemption theory has focused on the switch from the primary task to the interrupting task. Multiple resource theory has focused on interrupting tasks that are to be performed concurrently with the primary task. Our focus was on examining how interruption modality influences task resumption.We leverage the memory-for-goals theory, which suggests that maintaining an associative link between environmental cues and the suspended primary task goal is important for resumption. Three interruption modality conditions were examined: auditory interruption with the primary task visible, auditory interruption with a blank screen occluding the primary task, and a visual interruption occluding the primary task. Reaction time and eye movement data were collected. The auditory condition with the primary task visible was the least disruptive. Eye movement data suggest that participants in this condition were actively maintaining an associative link between relevant environmental cues on the primary task interface and the suspended primary task goal during the interruption. These data suggest that maintaining cue association is the important factor for reducing the disruptiveness of interruptions, not interruption modality. Interruption-prone computing environments should be designed to allow for the user to have access to relevant primary task cues during an interruption to minimize disruptiveness.
NASA Astrophysics Data System (ADS)
Panfil, Wawrzyniec; Moczulski, Wojciech
2017-10-01
In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.
ERIC Educational Resources Information Center
van Gog, Tamara; Paas, Fred; Merrienboer, Jeroen J. G.; Witte, Puk
2005-01-01
This study investigated the amounts of problem-solving process information ("action," "why," "how," and "metacognitive") elicited by means of concurrent, retrospective, and cued retrospective reporting. In a within-participants design, 26 participants completed electrical circuit troubleshooting tasks under different reporting conditions. The…
Sirois-Leclerc, Geneviève; Remaud, Anthony
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources. PMID:28323843
Sirois-Leclerc, Geneviève; Remaud, Anthony; Bilodeau, Martin
2017-01-01
Postural control is not a fully automatic process, but requires a certain level of attention, particularly as the difficulty of the postural task increases. This study aimed at testing whether experienced contemporary dancers, because of their specialized training involving the control of posture/balance, would present with a dual-task performance suggesting lesser attentional demands associated with dynamic postural control compared with non-dancers. Twenty dancers and 16 non-dancers performed a dynamic postural tracking task in both antero-posterior and side-to-side directions, while standing on a force platform. The postural task was performed, in turn, 1) as a stand-alone task, and concurrently with both 2) a simple reaction time task and 3) a choice reaction time task. Postural control performance was estimated through variables calculated from centre of pressure movements. Although no overall group difference was found in reaction time values, we found a better ability to control the side to side movements of the centre of pressure during the tracking task in dancers compared with non-dancers, which was dependent on the secondary task. This suggests that such increased ability is influenced by available attentional resources.
Farmer, George D; Janssen, Christian P; Nguyen, Anh T; Brumby, Duncan P
2018-04-01
We test people's ability to optimize performance across two concurrent tasks. Participants performed a number entry task while controlling a randomly moving cursor with a joystick. Participants received explicit feedback on their performance on these tasks in the form of a single combined score. This payoff function was varied between conditions to change the value of one task relative to the other. We found that participants adapted their strategy for interleaving the two tasks, by varying how long they spent on one task before switching to the other, in order to achieve the near maximum payoff available in each condition. In a second experiment, we show that this behavior is learned quickly (within 2-3 min over several discrete trials) and remained stable for as long as the payoff function did not change. The results of this work show that people are adaptive and flexible in how they prioritize and allocate attention in a dual-task setting. However, it also demonstrates some of the limits regarding people's ability to optimize payoff functions. Copyright © 2017 The Authors. Cognitive Science published by Wiley Periodicals, Inc. on behalf of Cognitive Science Society.
Swallow, Khena M; Jiang, Yuhong V
2010-04-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). Copyright 2009 Elsevier B.V. All rights reserved.
Swallow, Khena M.; Jiang, Yuhong V.
2009-01-01
Recent work on event perception suggests that perceptual processing increases when events change. An important question is how such changes influence the way other information is processed, particularly during dual-task performance. In this study, participants monitored a long series of distractor items for an occasional target as they simultaneously encoded unrelated background scenes. The appearance of an occasional target could have two opposite effects on the secondary task: It could draw attention away from the second task, or, as a change in the ongoing event, it could improve secondary task performance. Results were consistent with the second possibility. Memory for scenes presented simultaneously with the targets was better than memory for scenes that preceded or followed the targets. This effect was observed when the primary detection task involved visual feature oddball detection, auditory oddball detection, and visual color-shape conjunction detection. It was eliminated when the detection task was omitted, and when it required an arbitrary response mapping. The appearance of occasional, task-relevant events appears to trigger a temporal orienting response that facilitates processing of concurrently attended information (Attentional Boost Effect). PMID:20080232
Ipser, Alberta; Karlinski, Maayan; Freeman, Elliot D
2018-05-07
Sight and sound are out of synch in different people by different amounts for different tasks. But surprisingly, different concurrent measures of perceptual asynchrony correlate negatively (Freeman et al., 2013). Thus, if vision subjectively leads audition in one individual, the same individual might show a visual lag in other measures of audiovisual integration (e.g., McGurk illusion, Stream-Bounce illusion). This curious negative correlation was first observed between explicit temporal order judgments and implicit phoneme identification tasks, performed concurrently as a dual task, using incongruent McGurk stimuli. Here we used a new set of explicit and implicit tasks and congruent stimuli, to test whether this negative correlation persists across testing sessions, and whether it might be an artifact of using specific incongruent stimuli. None of these manipulations eliminated the negative correlation between explicit and implicit measures. This supports the generalizability and validity of the phenomenon, and offers new theoretical insights into its explanation. Our previously proposed "temporal renormalization" theory assumes that the timings of sensory events registered within the brain's different multimodal subnetworks are each perceived relative to a representation of the typical average timing of such events across the wider network. Our new data suggest that this representation is stable and generic, rather than dependent on specific stimuli or task contexts, and that it may be acquired through experience with a variety of simultaneous stimuli. Our results also add further evidence that speech comprehension may be improved in some individuals by artificially delaying voices relative to lip-movements. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Noble, Clifford Elliott, II
2002-09-01
The problem. The purpose of this study was to investigate the ability of three single-task instruments---(a) the Test of English as a Foreign Language, (b) the Aviation Test of Spoken English, and (c) the Single Manual-Tracking Test---and three dual-task instruments---(a) the Concurrent Manual-Tracking and Communication Test, (b) the Certified Flight Instructor's Test, and (c) the Simulation-Based English Test---to predict the language performance of 10 Chinese student pilots speaking English as a second language when operating single-engine and multiengine aircraft within American airspace. Method. This research implemented a correlational design to investigate the ability of the six described instruments to predict the mean score of the criterion evaluation, which was the Examiner's Test. This test assessed the oral communication skill of student pilots on the flight portion of the terminal checkride in the Piper Cadet, Piper Seminole, and Beechcraft King Air airplanes. Results. Data from the Single Manual-Tracking Test, as well as the Concurrent Manual-Tracking and Communication Test, were discarded due to performance ceiling effects. Hypothesis 1, which stated that the average correlation between the mean scores of the dual-task evaluations and that of the Examiner's Test would predict the mean score of the criterion evaluation with a greater degree of accuracy than that of single-task evaluations, was not supported. Hypothesis 2, which stated that the correlation between the mean scores of the participants on the Simulation-Based English Test and the Examiner's Test would predict the mean score of the criterion evaluation with a greater degree of accuracy than that of all single- and dual-task evaluations, was also not supported. The findings suggest that single- and dual-task assessments administered after initial flight training are equivalent predictors of language performance when piloting single-engine and multiengine aircraft.
Changes in Standing and Walking Performance Under Dual-Task Conditions Across the Lifespan.
Ruffieux, Jan; Keller, Martin; Lauber, Benedikt; Taube, Wolfgang
2015-12-01
Simultaneous performance of a postural and a concurrent task is rather unproblematic as long as the postural task is executed in an automatic way. However, in situations where postural control requires more central processing, cognitive resources may be exceeded by the addition of an attentionally demanding task. This may lead to interference between the two tasks, manifested in a decreased performance in one or both tasks (dual-task costs). Owing to changes in attentional demands of postural tasks as well as processing capacities across the lifespan, it might be assumed that dual-task costs are particularly pronounced in children and older adults probably leading to a U-shaped pattern for dual-task costs as a function of age. However, these changes in the ability of dual-tasking posture from childhood to old age have not yet been systematically reviewed. Therefore, Web of Science and PubMed databases were searched for studies comparing dual-task performance with one task being standing or walking in healthy groups of young adults and either children or older adults. Seventy-nine studies met inclusion criteria. For older adults, the expected increase in dual-task costs could be confirmed. In contrast, in children there was only feeble evidence for a trend towards enlarged dual-task costs. More good-quality studies comparing dual-task ability in children, young, and, ideally, also older adults within the same paradigm are needed to draw unambiguous conclusions about lifespan development of dual-task performance in postural tasks. There is evidence that, in older adults, dual-task performance can be improved by training. For the other age groups, these effects have yet to be investigated.
Strategic Adaptation to Task Characteristics, Incentives, and Individual Differences in Dual-Tasking
Janssen, Christian P.; Brumby, Duncan P.
2015-01-01
We investigate how good people are at multitasking by comparing behavior to a prediction of the optimal strategy for dividing attention between two concurrent tasks. In our experiment, 24 participants had to interleave entering digits on a keyboard with controlling a randomly moving cursor with a joystick. The difficulty of the tracking task was systematically varied as a within-subjects factor. Participants were also exposed to different explicit reward functions that varied the relative importance of the tracking task relative to the typing task (between-subjects). Results demonstrate that these changes in task characteristics and monetary incentives, together with individual differences in typing ability, influenced how participants choose to interleave tasks. This change in strategy then affected their performance on each task. A computational cognitive model was used to predict performance for a wide set of alternative strategies for how participants might have possibly interleaved tasks. This allowed for predictions of optimal performance to be derived, given the constraints placed on performance by the task and cognition. A comparison of human behavior with the predicted optimal strategy shows that participants behaved near optimally. Our findings have implications for the design and evaluation of technology for multitasking situations, as consideration should be given to the characteristics of the task, but also to how different users might use technology depending on their individual characteristics and their priorities. PMID:26161851
NASA Astrophysics Data System (ADS)
Bender, Angela D.; Filmer, Hannah L.; Naughtin, Claire K.; Dux, Paul E.
2017-12-01
The ability to perform multiple tasks concurrently is an ever-increasing requirement in our information-rich world. Despite this, multitasking typically compromises performance due to the processing limitations associated with cognitive control and decision-making. While intensive dual-task training is known to improve multitasking performance, only limited evidence suggests that training-related performance benefits can transfer to untrained tasks that share overlapping processes. In the real world, however, coordinating and selecting several responses within close temporal proximity will often occur in high-interference environments. Over the last decade, there have been notable reports that training on video action games that require dynamic multitasking in a demanding environment can lead to transfer effects on aspects of cognition such as attention and working memory. Here, we asked whether continuous and dynamic multitasking training extends benefits to tasks that are theoretically related to the trained tasks. To examine this issue, we asked a group of participants to train on a combined continuous visuomotor tracking task and a perceptual discrimination task for six sessions, while an active control group practiced the component tasks in isolation. A battery of tests measuring response selection, response inhibition, and spatial attention was administered before and immediately after training to investigate transfer. Multitasking training resulted in substantial, task-specific gains in dual-task ability, but there was no evidence that these benefits generalized to other action control tasks. The findings suggest that training on a combined visuomotor tracking and discrimination task results in task-specific benefits but provides no additional value for untrained action selection tasks.
2014-01-01
Background Cerebral palsy (CP) and brain injury (BI) are common conditions that have devastating effects on a child’s ability to use their hands. Hand splinting and task-specific training are two interventions that are often used to address deficits in upper limb skills, both in isolation or concurrently. The aim of this paper is to describe the method to be used to conduct two randomised controlled trials (RCT) investigating (a) the immediate effect of functional hand splints, and (b) the effect of functional hand splints used concurrently with task-specific training compared to functional hand splints alone, and to task-specific training alone in children with CP and BI. The Cognitive Orientation to Occupational Performance (CO-OP) approach will be the task-specific training approach used. Methods/Design Two concurrent trials; a two group, parallel design, RCT with a sample size of 30 participants (15 per group); and a three group, parallel design, assessor blinded, RCT with a sample size of 45 participants (15 per group). Inclusion criteria: age 4-15 years; diagnosis of CP or BI; Manual Abilities Classification System (MACS) level I – IV; hand function goals; impaired hand function; the cognitive, language and behavioural ability to participate in CO-OP. Participants will be randomly allocated to one of 3 groups; (1) functional hand splint only (n=15); (2) functional hand splint combined with task-specific training (n=15); (3) task-specific training only (n=15). Allocation concealment will be achieved using sequentially numbered, sealed opaque envelopes opened by an off-site officer after baseline measures. Treatment will be provided for a period of 2 weeks, with outcome measures taken at baseline, 1 hour after randomisation, 2 weeks and 10 weeks. The functional hand splint will be a wrist cock-up splint (+/- thumb support or supination strap). Task-specific training will involve 10 sessions of CO-OP provided in a group of 2-4 children. Primary outcome measures will be the Canadian Occupational Performance Measure (COPM) and the Goal Attainment Scale (GAS). Analysis will be conducted on an intention-to-treat basis. Discussion This paper outlines the protocol for two randomised controlled trials investigating functional hand splints and CO-OP for children with CP and BI. PMID:25023385
Automation-induced monitoring inefficiency: role of display location.
Singh, I L; Molloy, R; Parasuraman, R
1997-01-01
Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.
Automation-induced monitoring inefficiency: role of display location
NASA Technical Reports Server (NTRS)
Singh, I. L.; Molloy, R.; Parasuraman, R.
1997-01-01
Operators can be poor monitors of automation if they are engaged concurrently in other tasks. However, in previous studies of this phenomenon the automated task was always presented in the periphery, away from the primary manual tasks that were centrally displayed. In this study we examined whether centrally locating an automated task would boost monitoring performance during a flight-simulation task consisting of system monitoring, tracking and fuel resource management sub-tasks. Twelve nonpilot subjects were required to perform the tracking and fuel management tasks manually while watching the automated system monitoring task for occasional failures. The automation reliability was constant at 87.5% for six subjects and variable (alternating between 87.5% and 56.25%) for the other six subjects. Each subject completed four 30 min sessions over a period of 2 days. In each automation reliability condition the automation routine was disabled for the last 20 min of the fourth session in order to simulate catastrophic automation failure (0 % reliability). Monitoring for automation failure was inefficient when automation reliability was constant but not when it varied over time, replicating previous results. Furthermore, there was no evidence of resource or speed accuracy trade-off between tasks. Thus, automation-induced failures of monitoring cannot be prevented by centrally locating the automated task.
Hindi Attar, Catherine; Müller, Matthias M
2012-01-01
A number of studies have shown that emotionally arousing stimuli are preferentially processed in the human brain. Whether or not this preference persists under increased perceptual load associated with a task at hand remains an open question. Here we manipulated two possible determinants of the attentional selection process, perceptual load associated with a foreground task and the emotional valence of concurrently presented task-irrelevant distractors. As a direct measure of sustained attentional resource allocation in early visual cortex we used steady-state visual evoked potentials (SSVEPs) elicited by distinct flicker frequencies of task and distractor stimuli. Subjects either performed a detection (low load) or discrimination (high load) task at a centrally presented symbol stream that flickered at 8.6 Hz while task-irrelevant neutral or unpleasant pictures from the International Affective Picture System (IAPS) flickered at a frequency of 12 Hz in the background of the stream. As reflected in target detection rates and SSVEP amplitudes to both task and distractor stimuli, unpleasant relative to neutral background pictures more strongly withdrew processing resources from the foreground task. Importantly, this finding was unaffected by the factor 'load' which turned out to be a weak modulator of attentional processing in human visual cortex.
Practice and Age-Related Loss of Adaptability in Sensorimotor Performance
Sosnoff, Jacob J.; Voudrie, Stefani J.
2009-01-01
The purpose of the present investigation was to examine whether the ability to adapt to task constraints is influenced by short-term practice in older adults. Young (18–29 years old) and old (65–75 years old) adults produced force output to a constant force target and a 1-Hz sinusoidal force target by way of the index finger flexion. Participants completed each task 5 times per session for 5 concurrent sessions. The amount and structure of force variability was calculated using linear and nonlinear analyses. As expected, there was a decrease in the magnitude of variability (coefficient of variation) in both tasks and task-related change in the structure of force variability (approximate entropy) with training across groups. The authors found older adults to have a greater amount of variability than their younger counterparts in both tasks. Older adults also demonstrated an increase in the structure of force output in the constant task but a decrease in structure in the sinusoidal task. Age differences in the adaptability to task constraints persisted throughout practice. The authors propose that older adults' ability to adapt sensorimotor output to task demands is not a result of lack of familiarity with the task but that it is, instead, characteristic of the aging process. PMID:19201684
Beurskens, Rainer; Bock, Otmar
2013-12-01
Previous literature suggests that age-related deficits of dual-task walking are particularly pronounced with second tasks that require continuous visual processing. Here we evaluate whether the difficulty of the walking task matters as well. To this end, participants were asked to walk along a straight pathway of 20m length in four different walking conditions: (a) wide path and preferred pace; (b) narrow path and preferred pace, (c) wide path and fast pace, (d) obstacled wide path and preferred pace. Each condition was performed concurrently with a task requiring visual processing or fine motor control, and all tasks were also performed alone which allowed us to calculate the dual-task costs (DTC). Results showed that the age-related increase of DTC is substantially larger with the visually demanding than with the motor-demanding task, more so when walking on a narrow or obstacled path. We attribute these observations to the fact that visual scanning of the environment becomes more crucial when walking in difficult terrains: the higher visual demand of those conditions accentuates the age-related deficits in coordinating them with a visual non-walking task. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Wunderlich, Kara L.; Vollmer, Timothy R.
2017-01-01
The current study compared the use of serial and concurrent methods to train multiple exemplars when teaching receptive language skills, providing a systematic replication of Wunderlich, Vollmer, Donaldson, and Phillips (2014). Five preschoolers diagnosed with developmental delays or autism spectrum disorders were taught to receptively identify…
Synchronization in Scratch: A Case Study with Education Science Students
ERIC Educational Resources Information Center
Nikolos, Dimitris; Komis, Vassilis
2015-01-01
The Scratch programming language is an introductory programming language for students. It is also a visual concurrent programming language, where multiple threads are executed simultaneously. Synchronization in concurrent languages is a complex task for novices to understand. Our research is focused on strategies and methods applied by novice…
Persistency and flexibility of complex brain networks underlie dual-task interference.
Alavash, Mohsen; Hilgetag, Claus C; Thiel, Christiane M; Gießing, Carsten
2015-09-01
Previous studies on multitasking suggest that performance decline during concurrent task processing arises from interfering brain modules. Here, we used graph-theoretical network analysis to define functional brain modules and relate the modular organization of complex brain networks to behavioral dual-task costs. Based on resting-state and task fMRI we explored two organizational aspects potentially associated with behavioral interference when human subjects performed a visuospatial and speech task simultaneously: the topological overlap between persistent single-task modules, and the flexibility of single-task modules in adaptation to the dual-task condition. Participants showed a significant decline in visuospatial accuracy in the dual-task compared with single visuospatial task. Global analysis of topological similarity between modules revealed that the overlap between single-task modules significantly correlated with the decline in visuospatial accuracy. Subjects with larger overlap between single-task modules showed higher behavioral interference. Furthermore, lower flexible reconfiguration of single-task modules in adaptation to the dual-task condition significantly correlated with larger decline in visuospatial accuracy. Subjects with lower modular flexibility showed higher behavioral interference. At the regional level, higher overlap between single-task modules and less modular flexibility in the somatomotor cortex positively correlated with the decline in visuospatial accuracy. Additionally, higher modular flexibility in cingulate and frontal control areas and lower flexibility in right-lateralized nodes comprising the middle occipital and superior temporal gyri supported dual-tasking. Our results suggest that persistency and flexibility of brain modules are important determinants of dual-task costs. We conclude that efficient dual-tasking benefits from a specific balance between flexibility and rigidity of functional brain modules. © 2015 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Meneghetti, Chiara; Gyselinck, Valerie; Pazzaglia, Francesca; De Beni, Rossana
2009-01-01
The present study investigates the relation between spatial ability and visuo-spatial and verbal working memory in spatial text processing. In two experiments, participants listened to a spatial text (Experiments 1 and 2) and a non-spatial text (Experiment 1), at the same time performing a spatial or a verbal concurrent task, or no secondary task.…
Future War: An Assessment of Aerospace Campaigns in 2010,
1996-01-01
theoretician: "The impending sixth generation of warfare, with its centerpiece of superior data-processing to support precision smart weaponry, will radically...tions concept of " smart push, warrior pull." If JFACC were colocated with the worldwide intelligence manager, unit taskings and the applicable...intelligence information could be distributed concurrently (" smart push"). Intelligence officers sitting alongside the operational tasking officers would
Van de Weijer-Bergsma, Eva; Kroesbergen, Evelyn H; Jolani, Shahab; Van Luit, Johannes E H
2016-06-01
In two studies, the psychometric properties of an online self-reliant verbal working memory task (the Monkey game) for primary school children (6-12 years of age) were examined. In Study 1, children (n = 5,203) from 31 primary schools participated. The participants completed computerized verbal and visual-spatial working memory tasks (i.e., the Monkey game and the Lion game) and a paper-and-pencil version of Raven's Standard Progressive Matrices. Reading comprehension and math achievement test scores were obtained from the schools. First, the internal consistency of the Monkey game was examined. Second, multilevel modeling was used to examine the effects of classroom membership. Multilevel multivariate regression analysis was used to examine the Monkey game's concurrent relationship with the Lion game and its predictive relationships with reading comprehension and math achievement. Also, age-related differences in performance were examined. In Study 2, the concurrent relationships between the Monkey game and two tester-led computerized working memory tasks were further examined (n = 140). Also, the 1- and 2-year stability of the Monkey game was investigated. The Monkey game showed excellent internal consistency, good concurrent relationships with the other working memory measures, and significant age differences in performance. Performance on the Monkey game was also predictive of subsequent reading comprehension and mathematics performance, even after controlling for individual differences in intelligence. Performance on the Monkey game was influenced by classroom membership. The Monkey game is a reliable and suitable instrument for the online computerized and self-reliant assessment of verbal working memory in primary school children.
Pitts, Brandon J; Sarter, Nadine
2018-06-01
Objective This research sought to determine whether people can perceive and process three nonredundant (and unrelated) signals in vision, hearing, and touch at the same time and how aging and concurrent task demands affect this ability. Background Multimodal displays have been shown to improve multitasking and attention management; however, their potential limitations are not well understood. The majority of studies on multimodal information presentation have focused on the processing of only two concurrent and, most often, redundant cues by younger participants. Method Two experiments were conducted in which younger and older adults detected and responded to a series of singles, pairs, and triplets of visual, auditory, and tactile cues in the absence (Experiment 1) and presence (Experiment 2) of an ongoing simulated driving task. Detection rates, response times, and driving task performance were measured. Results Compared to younger participants, older adults showed longer response times and higher error rates in response to cues/cue combinations. Older participants often missed the tactile cue when three cues were combined. They sometimes falsely reported the presence of a visual cue when presented with a pair of auditory and tactile signals. Driving performance suffered most in the presence of cue triplets. Conclusion People are more likely to miss information if more than two concurrent nonredundant signals are presented to different sensory channels. Application The findings from this work help inform the design of multimodal displays and ensure their usefulness across different age groups and in various application domains.
Morasch, Katherine C.; Bell, Martha Ann
2010-01-01
Eighty-one toddlers (ranging from 24 to 27 months) participated in a biobehavioral investigation of inhibitory control. Maternal-report measures of inhibitory control were related to laboratory tasks assessing inhibitory abilities under conditions of conflict, delay, and compliance challenge as well as toddler verbal ability. Additionally, unique variance in inhibitory control was explained by task-related changes in brain electrical activity at lateral frontal scalp sites as well as concurrent inhibitory task performance. Implications regarding neural correlates of executive function in early development and a central, organizing role of inhibitory processing in toddlerhood are discussed. PMID:20719337
James, Ella L; Lau-Zhu, Alex; Tickle, Hannah; Horsch, Antje; Holmes, Emily A
2016-12-01
Visuospatial working memory (WM) tasks performed concurrently or after an experimental trauma (traumatic film viewing) have been shown to reduce subsequent intrusive memories (concurrent or retroactive interference, respectively). This effect is thought to arise because, during the time window of memory consolidation, the film memory is labile and vulnerable to interference by the WM task. However, it is not known whether tasks before an experimental trauma (i.e. proactive interference) would also be effective. Therefore, we tested if a visuospatial WM task given before a traumatic film reduced intrusions. Findings are relevant to the development of preventative strategies to reduce intrusive memories of trauma for groups who are routinely exposed to trauma (e.g. emergency services personnel) and for whom tasks prior to trauma exposure might be beneficial. Participants were randomly assigned to 1 of 2 conditions. In the Tetris condition (n = 28), participants engaged in the computer game for 11 min immediately before viewing a 12-min traumatic film, whereas those in the Control condition (n = 28) had no task during this period. Intrusive memory frequency was assessed using an intrusion diary over 1-week and an Intrusion Provocation Task at 1-week follow-up. Recognition memory for the film was also assessed at 1-week. Compared to the Control condition, participants in the Tetris condition did not report statistically significant difference in intrusive memories of the trauma film on either measure. There was also no statistically significant difference in recognition memory scores between conditions. The study used an experimental trauma paradigm and findings may not be generalizable to a clinical population. Compared to control, playing Tetris before viewing a trauma film did not lead to a statistically significant reduction in the frequency of later intrusive memories of the film. It is unlikely that proactive interference, at least with this task, effectively influences intrusive memory development. WM tasks administered during or after trauma stimuli, rather than proactively, may be a better focus for intrusive memory amelioration. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Integrated Task and Data Parallel Programming
NASA Technical Reports Server (NTRS)
Grimshaw, A. S.
1998-01-01
This research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers 1995 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Integrated Task And Data Parallel Programming: Language Design
NASA Technical Reports Server (NTRS)
Grimshaw, Andrew S.; West, Emily A.
1998-01-01
his research investigates the combination of task and data parallel language constructs within a single programming language. There are an number of applications that exhibit properties which would be well served by such an integrated language. Examples include global climate models, aircraft design problems, and multidisciplinary design optimization problems. Our approach incorporates data parallel language constructs into an existing, object oriented, task parallel language. The language will support creation and manipulation of parallel classes and objects of both types (task parallel and data parallel). Ultimately, the language will allow data parallel and task parallel classes to be used either as building blocks or managers of parallel objects of either type, thus allowing the development of single and multi-paradigm parallel applications. 1995 Research Accomplishments In February I presented a paper at Frontiers '95 describing the design of the data parallel language subset. During the spring I wrote and defended my dissertation proposal. Since that time I have developed a runtime model for the language subset. I have begun implementing the model and hand-coding simple examples which demonstrate the language subset. I have identified an astrophysical fluid flow application which will validate the data parallel language subset. 1996 Research Agenda Milestones for the coming year include implementing a significant portion of the data parallel language subset over the Legion system. Using simple hand-coded methods, I plan to demonstrate (1) concurrent task and data parallel objects and (2) task parallel objects managing both task and data parallel objects. My next steps will focus on constructing a compiler and implementing the fluid flow application with the language. Concurrently, I will conduct a search for a real-world application exhibiting both task and data parallelism within the same program m. Additional 1995 Activities During the fall I collaborated with Andrew Grimshaw and Adam Ferrari to write a book chapter which will be included in Parallel Processing in C++ edited by Gregory Wilson. I also finished two courses, Compilers and Advanced Compilers, in 1995. These courses complete my class requirements at the University of Virginia. I have only my dissertation research and defense to complete.
Worden, Timothy A; Mendes, Matthew; Singh, Pratham; Vallis, Lori Ann
2016-10-01
Successful planning and execution of motor strategies while concurrently performing a cognitive task has been previously examined, but unfortunately the varied and numerous cognitive tasks studied has limited our fundamental understanding of how the central nervous system successfully integrates and executes these tasks simultaneously. To gain a better understanding of these mechanisms we used a set of cognitive tasks requiring similar central executive function processes and response outputs but requiring different perceptual mechanisms to perform the motor task. Thirteen healthy young adults (20.6±1.6years old) were instrumented with kinematic markers (60Hz) and completed 5 practice, 10 single-task obstacle walking trials and two 40 trial experimental blocks. Each block contained 20 trials of seated (single-task) trials followed by 20 cognitive and obstacle (30% lower leg length) crossing trials (dual-task). Blocks were randomly presented and included either an auditory Stroop task (AST; central interference only) or a visual Stroop task (VST; combined central and structural interference). Higher accuracy rates and shorter response times were observed for the VST versus AST single-task trials (p<0.05). Conversely, for the obstacle stepping performance, larger dual task costs were observed for the VST as compared to the AST for clearance measures (the VST induced larger clearance values for both the leading and trailing feet), indicating VST tasks caused greater interference for obstacle crossing (p<0.05). These results supported the hypothesis that structural interference has a larger effect on motor performance in a dual-task situation compared to cognitive tasks that pose interference at only the central processing stage. Copyright © 2016 Elsevier B.V. All rights reserved.
Howe, Piers D. L.
2017-01-01
To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources. PMID:28410383
Lapierre, Mark D; Cropper, Simon J; Howe, Piers D L
2017-01-01
To understand how the visual system represents multiple moving objects and how those representations contribute to tracking, it is essential that we understand how the processes of attention and working memory interact. In the work described here we present an investigation of that interaction via a series of tracking and working memory dual-task experiments. Previously, it has been argued that tracking is resistant to disruption by a concurrent working memory task and that any apparent disruption is in fact due to observers making a response to the working memory task, rather than due to competition for shared resources. Contrary to this, in our experiments we find that when task order and response order confounds are avoided, all participants show a similar decrease in both tracking and working memory performance. However, if task and response order confounds are not adequately controlled for we find substantial individual differences, which could explain the previous conflicting reports on this topic. Our results provide clear evidence that tracking and working memory tasks share processing resources.
Functional split brain in a driving/listening paradigm
Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-01-01
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects’ ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a “functional split brain” similar to what is observed in patients with an anatomical split. PMID:27911805
Reasoning about Probabilistic Security Using Task-PIOAs
NASA Astrophysics Data System (ADS)
Jaggard, Aaron D.; Meadows, Catherine; Mislove, Michael; Segala, Roberto
Task-structured probabilistic input/output automata (Task-PIOAs) are concurrent probabilistic automata that, among other things, have been used to provide a formal framework for the universal composability paradigms of protocol security. One of their advantages is that that they allow one to distinguish high-level nondeterminism that can affect the outcome of the protocol, from low-level choices, which can't. We present an alternative approach to analyzing the structure of Task-PIOAs that relies on ordered sets. We focus on two of the components that are required to define and apply Task-PIOAs: discrete probability theory and automata theory. We believe our development gives insight into the structure of Task-PIOAs and how they can be utilized to model crypto-protocols. We illustrate our approach with an example from anonymity, an area that has not previously been addressed using Task-PIOAs. We model Chaum's Dining Cryptographers Protocol at a level that does not require cryptographic primitives in the analysis. We show via this example how our approach can leverage a proof of security in the case a principal behaves deterministically to prove security when that principal behaves probabilistically.
Automation trust and attention allocation in multitasking workspace.
Karpinsky, Nicole D; Chancey, Eric T; Palmer, Dakota B; Yamani, Yusuke
2018-07-01
Previous research suggests that operators with high workload can distrust and then poorly monitor automation, which has been generally inferred from automation dependence behaviors. To test automation monitoring more directly, the current study measured operators' visual attention allocation, workload, and trust toward imperfect automation in a dynamic multitasking environment. Participants concurrently performed a manual tracking task with two levels of difficulty and a system monitoring task assisted by an unreliable signaling system. Eye movement data indicate that operators allocate less visual attention to monitor automation when the tracking task is more difficult. Participants reported reduced levels of trust toward the signaling system when the tracking task demanded more focused visual attention. Analyses revealed that trust mediated the relationship between the load of the tracking task and attention allocation in Experiment 1, an effect that was not replicated in Experiment 2. Results imply a complex process underlying task load, visual attention allocation, and automation trust during multitasking. Automation designers should consider operators' task load in multitasking workspaces to avoid reduced automation monitoring and distrust toward imperfect signaling systems. Copyright © 2018. Published by Elsevier Ltd.
Functional split brain in a driving/listening paradigm.
Sasai, Shuntaro; Boly, Melanie; Mensen, Armand; Tononi, Giulio
2016-12-13
We often engage in two concurrent but unrelated activities, such as driving on a quiet road while listening to the radio. When we do so, does our brain split into functionally distinct entities? To address this question, we imaged brain activity with fMRI in experienced drivers engaged in a driving simulator while listening either to global positioning system instructions (integrated task) or to a radio show (split task). We found that, compared with the integrated task, the split task was characterized by reduced multivariate functional connectivity between the driving and listening networks. Furthermore, the integrated information content of the two networks, predicting their joint dynamics above and beyond their independent dynamics, was high in the integrated task and zero in the split task. Finally, individual subjects' ability to switch between high and low information integration predicted their driving performance across integrated and split tasks. This study raises the possibility that under certain conditions of daily life, a single brain may support two independent functional streams, a "functional split brain" similar to what is observed in patients with an anatomical split.
Emulating Real-Life Situations with a Play Task to Observe Parenting Skills and Child Behaviors
Rusby, Julie C.; Metzler, Carol W.; Sanders, Matthew R.; Crowley, Ryann
2015-01-01
Play tasks that use standardized procedures and materials are a practical way to assess parenting skills, child behaviors, and the ways in which parents and children interact. We describe a systematic process for developing the Parent–Child Play Task (PCPT) to assess mother–child interactions for a randomized controlled trial on a video-based parenting program. Participants are 307 mothers and their 3-through 6-year-old children who present oppositional and disruptive behavior challenges. The validity of the PCPT was investigated by testing (a) the extent to which the tasks elicit the specific parent and child behaviors of interest, (b) the consistency of individuals’ behavior across the play tasks, and (c) the concurrent associations of the PCPT observed child behaviors and mother reports of child behavior. The different tasks elicited the mother and child behaviors that they were designed to elicit. Behavior consistency across tasks for individual mothers and children was fair to good, with the exception of two task-specific behaviors. Mothers’ guidance (provision of instructions to foster a skill) during the teaching task and children’s interruptions while mother was busy during the questionnaire task were highly task specific. Modest associations were found between observed children’s noncompliance and inappropriate behaviors, and mother-reported conduct problems and oppositional behaviors. Implications for clinical and research assessments are discussed. PMID:25689090
Visual Working Memory Enhances the Neural Response to Matching Visual Input.
Gayet, Surya; Guggenmos, Matthias; Christophel, Thomas B; Haynes, John-Dylan; Paffen, Chris L E; Van der Stigchel, Stefan; Sterzer, Philipp
2017-07-12
Visual working memory (VWM) is used to maintain visual information available for subsequent goal-directed behavior. The content of VWM has been shown to affect the behavioral response to concurrent visual input, suggesting that visual representations originating from VWM and from sensory input draw upon a shared neural substrate (i.e., a sensory recruitment stance on VWM storage). Here, we hypothesized that visual information maintained in VWM would enhance the neural response to concurrent visual input that matches the content of VWM. To test this hypothesis, we measured fMRI BOLD responses to task-irrelevant stimuli acquired from 15 human participants (three males) performing a concurrent delayed match-to-sample task. In this task, observers were sequentially presented with two shape stimuli and a retro-cue indicating which of the two shapes should be memorized for subsequent recognition. During the retention interval, a task-irrelevant shape (the probe) was briefly presented in the peripheral visual field, which could either match or mismatch the shape category of the memorized stimulus. We show that this probe stimulus elicited a stronger BOLD response, and allowed for increased shape-classification performance, when it matched rather than mismatched the concurrently memorized content, despite identical visual stimulation. Our results demonstrate that VWM enhances the neural response to concurrent visual input in a content-specific way. This finding is consistent with the view that neural populations involved in sensory processing are recruited for VWM storage, and it provides a common explanation for a plethora of behavioral studies in which VWM-matching visual input elicits a stronger behavioral and perceptual response. SIGNIFICANCE STATEMENT Humans heavily rely on visual information to interact with their environment and frequently must memorize such information for later use. Visual working memory allows for maintaining such visual information in the mind's eye after termination of its retinal input. It is hypothesized that information maintained in visual working memory relies on the same neural populations that process visual input. Accordingly, the content of visual working memory is known to affect our conscious perception of concurrent visual input. Here, we demonstrate for the first time that visual input elicits an enhanced neural response when it matches the content of visual working memory, both in terms of signal strength and information content. Copyright © 2017 the authors 0270-6474/17/376638-10$15.00/0.
Hung, Andrew J; Shah, Swar H; Dalag, Leonard; Shin, Daniel; Gill, Inderbir S
2015-08-01
We developed a novel procedure specific simulation platform for robotic partial nephrectomy. In this study we prospectively evaluate its face, content, construct and concurrent validity. This hybrid platform features augmented reality and virtual reality. Augmented reality involves 3-dimensional robotic partial nephrectomy surgical videos overlaid with virtual instruments to teach surgical anatomy, technical skills and operative steps. Advanced technical skills are assessed with an embedded full virtual reality renorrhaphy task. Participants were classified as novice (no surgical training, 15), intermediate (less than 100 robotic cases, 13) or expert (100 or more robotic cases, 14) and prospectively assessed. Cohort performance was compared with the Kruskal-Wallis test (construct validity). Post-study questionnaire was used to assess the realism of simulation (face validity) and usefulness for training (content validity). Concurrent validity evaluated correlation between virtual reality renorrhaphy task and a live porcine robotic partial nephrectomy performance (Spearman's analysis). Experts rated the augmented reality content as realistic (median 8/10) and helpful for resident/fellow training (8.0-8.2/10). Experts rated the platform highly for teaching anatomy (9/10) and operative steps (8.5/10) but moderately for technical skills (7.5/10). Experts and intermediates outperformed novices (construct validity) in efficiency (p=0.0002) and accuracy (p=0.002). For virtual reality renorrhaphy, experts outperformed intermediates on GEARS metrics (p=0.002). Virtual reality renorrhaphy and in vivo porcine robotic partial nephrectomy performance correlated significantly (r=0.8, p <0.0001) (concurrent validity). This augmented reality simulation platform displayed face, content and construct validity. Performance in the procedure specific virtual reality task correlated highly with a porcine model (concurrent validity). Future efforts will integrate procedure specific virtual reality tasks and their global assessment. Copyright © 2015 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Clark, Ross A; Pua, Yong-Hao; Oliveira, Cristino C; Bower, Kelly J; Thilarajah, Shamala; McGaw, Rebekah; Hasanki, Ksaniel; Mentiplay, Benjamin F
2015-07-01
The Microsoft Kinect V2 for Windows, also known as the Xbox One Kinect, includes new and potentially far improved depth and image sensors which may increase its accuracy for assessing postural control and balance. The aim of this study was to assess the concurrent validity and reliability of kinematic data recorded using a marker-based three dimensional motion analysis (3DMA) system and the Kinect V2 during a variety of static and dynamic balance assessments. Thirty healthy adults performed two sessions, separated by one week, consisting of static standing balance tests under different visual (eyes open vs. closed) and supportive (single limb vs. double limb) conditions, and dynamic balance tests consisting of forward and lateral reach and an assessment of limits of stability. Marker coordinate and joint angle data were concurrently recorded using the Kinect V2 skeletal tracking algorithm and the 3DMA system. Task-specific outcome measures from each system on Day 1 and 2 were compared. Concurrent validity of trunk angle data during the dynamic tasks and anterior-posterior range and path length in the static balance tasks was excellent (Pearson's r>0.75). In contrast, concurrent validity for medial-lateral range and path length was poor to modest for all trials except single leg eyes closed balance. Within device test-retest reliability was variable; however, the results were generally comparable between devices. In conclusion, the Kinect V2 has the potential to be used as a reliable and valid tool for the assessment of some aspects of balance performance. Copyright © 2015 Elsevier B.V. All rights reserved.
Bustillo-Casero, Pilar; Villarrasa-Sapiña, Israel; García-Massó, Xavier
2017-10-01
In the present study our aim was to compare dual-task performance in thirteen adolescents and fifteen young adults while concurrently performing a cognitive and a motor task. The postural control variables were obtained under three different conditions: i) bipedal stance, ii) tandem stance and iii) unipedal stance. The cognitive task consisted of a backward digit span test in which the participants were asked to memorize a sequence of numbers and then repeat the number in reverse order at three different difficulty levels (i.e. with 3, 4 and 5 digits). The difficulty of the cognitive task was seen to have different effects on adolescents and young adults. Adolescents seem to prioritize postural control during high difficulty postural conditions while a cross-domain competition model appeared in easy postural conditions. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal production and visuospatial processing.
Benuzzi, Francesca; Basso, Gianpaolo; Nichelli, Paolo
2005-12-01
Current models of prospective timing hypothesize that estimated duration is influenced either by the attentional load or by the short-term memory requirements of a concurrent nontemporal task. In the present study, we addressed this issue with four dual-task experiments. In Exp. 1, the effect of memory load on both reaction time and temporal production was proportional to the number of items of a visuospatial pattern to hold in memory. In Exps. 2, 3, and 4, a temporal production task was combined with two visual search tasks involving either pre-attentive or attentional processing. Visual tasks interfered with temporal production: produced intervals were lengthened proportionally to the display size. In contrast, reaction times increased with display size only when a serial, effortful search was required. It appears that memory and perceptual set size, rather than nonspecific attentional or short-term memory load, can influence prospective timing.
Huo, Xueliang; Johnson-Long, Ashley N.; Ghovanloo, Maysam; Shinohara, Minoru
2015-01-01
The purpose of this study was to compare the motor performance of tongue, using Tongue Drive System, to hand operation for relatively complex tasks under different levels of background physical exertion. Thirteen young able-bodied adults performed tasks that tested the accuracy and variability in tracking a sinusoidal waveform, and the performance in playing two video games that require accurate and rapid movements with cognitive processing using tongue and hand under two levels of background physical exertion. Results show additional background physical activity did not influence rapid and accurate displacement motor performance, but compromised the slow waveform tracking and shooting performances in both hand and tongue. Slow waveform tracking performance by the tongue was compromised with an additional motor or cognitive task, but with an additional motor task only for the hand. Practitioner Summary We investigated the influence of task complexity and background physical exertion on the motor performance of tongue and hand. Results indicate the task performance degrades with an additional concurrent task or physical exertion due to the limited attentional resources available for handling both the motor task and background exertion. PMID:24003900
Buchweitz, Augusto; Keller, Timothy A; Meyler, Ann; Just, Marcel Adam
2012-08-01
The study used fMRI to investigate brain activation in participants who were able to listen to and successfully comprehend two people speaking at the same time (dual-tasking). The study identified brain mechanisms associated with high-level, concurrent dual-tasking, as compared with comprehending a single message. Results showed an increase in the functional connectivity among areas of the language network in the dual task. The increase in synchronization of brain activation for dual-tasking was brought about primarily by a change in the timing of left inferior frontal gyrus (LIFG) activation relative to posterior temporal activation, bringing the LIFG activation into closer correspondence with temporal activation. The results show that the change in LIFG timing was greater in participants with lower working memory capacity, and that recruitment of additional activation in the dual-task occurred only in the areas adjacent to the language network that was activated in the single task. The shift in LIFG activation may be a brain marker of how the brain adapts to high-level dual-tasking. Copyright © 2011 Wiley Periodicals, Inc.
Agmon, Maayan; Armon, Galit; Denesh, Shani; Doumas, Mihalis
2018-01-02
Falls are a major problem for older adults. Many falls occur when a person's attention is divided between two tasks, such as a dual task (DT) involving walking. Most recently, the role of personality in walking performance was addressed; however, its association with DT performance remains to be determined. This cross-sectional study of 73 older, community-dwelling adults explores the association between personality and DT walking and the role of gender in this relationship. Personality was evaluated using the five-factor model. Single-task (ST) and DT assessment of walking-cognitive DT performance comprised a 1-min walking task and an arithmetic task performed separately (ST) and concurrently (DT). Dual-task costs (DTCs), reflecting the proportional difference between ST and DT performance, were also calculated. Gender plays a role in the relationship between personality and DT. Extraversion was negatively associated with DTC-motor for men (ΔR 2 = 0.06, p < 0.05). Conscientiousness was positively associated with DTC-cognition for women (ΔR 2 = 0.08, p < 0.01). These findings may lead to effective personality-based early detection and intervention for fall prevention.
Are forward and backward recall the same? A dual-task study of digit recall.
St Clair-Thompson, Helen L; Allen, Richard J
2013-05-01
There is some debate surrounding the cognitive resources underlying backward digit recall. Some researchers consider it to differ from forward digit recall due to the involvement of executive control, while others suggest that backward recall involves visuospatial resources. Five experiments therefore investigated the role of executive-attentional and visuospatial resources in both forward and backward digit recall. In the first, participants completed visuospatial 0-back and 2-back tasks during the encoding of information to be remembered. The concurrent tasks did not differentially disrupt performance on backward digit recall, relative to forward digit recall. Experiment 2 shifted concurrent load to the recall phase instead and, in this case, revealed a larger effect of both tasks on backward recall, relative to forwards recall, suggesting that backward recall may draw on additional resources during the recall phase and that these resources are visuospatial in nature. Experiments 3 and 4 then further investigated the role of visual processes in forward and backward recall using dynamic visual noise (DVN). In Experiment 3, DVN was presented during encoding of information to be remembered and had no effect upon performance. However, in Experiment 4, it was presented during the recall phase, and the results provided evidence of a role for visual imagery in backward digit recall. These results were replicated in Experiment 5, in which the same list length was used for forward and backward recall tasks. The findings are discussed in terms of both theoretical and practical implications.
The effects of experimental pain and induced optimism on working memory task performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2016-07-01
Pain can interrupt and deteriorate executive task performance. We have previously shown that experimentally induced optimism can diminish the deteriorating effect of cold pressor pain on a subsequent working memory task (i.e., operation span task). In two successive experiments we sought further evidence for the protective role of optimism on pain-induced working memory impairments. We used another working memory task (i.e., 2-back task) that was performed either after or during pain induction. Study 1 employed a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain)×2 (pre-score vs. post-score) mixed factorial design. In half of the participants optimism was induced by the Best Possible Self (BPS) manipulation, which required them to write and visualize about a life in the future where everything turned out for the best. In the control condition, participants wrote and visualized a typical day in their life (TD). Next, participants completed either the cold pressor task (CPT) or a warm water control task (WWCT). Before (baseline) and after the CPT or WWCT participants working memory performance was measured with the 2-back task. The 2-back task measures the ability to monitor and update working memory representation by asking participants to indicate whether the current stimulus corresponds to the stimulus that was presented 2 stimuli ago. Study 2 had a 2 (optimism vs. no-optimism)×2 (pain vs. no-pain) mixed factorial design. After receiving the BPS or control manipulation, participants completed the 2-back task twice: once with painful heat stimulation, and once without any stimulation (counter-balanced order). Continuous heat stimulation was used with temperatures oscillating around 1°C above and 1°C below the individual pain threshold. In study 1, the results did not show an effect of cold pressor pain on subsequent 2-back task performance. Results of study 2 indicated that heat pain impaired concurrent 2-back task performance. However, no evidence was found that optimism protected against this pain-induced performance deterioration. Experimentally induced pain impairs concurrent but not subsequent working memory task performance. Manipulated optimism did not counteract pain-induced deterioration of 2-back performance. It is important to explore factors that may diminish the negative impact of pain on the ability to function in daily life, as pain itself often cannot be remediated. We are planning to conduct future studies that should shed further light on the conditions, contexts and executive operations for which optimism can act as a protective factor. Copyright © 2016 Scandinavian Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Age-Related Differences in Listening Effort During Degraded Speech Recognition.
Ward, Kristina M; Shen, Jing; Souza, Pamela E; Grieco-Calub, Tina M
The purpose of the present study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Twenty-five younger adults (YA; 18-24 years) and 21 older adults (OA; 56-82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants' responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners' performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (single task vs. dual task); and (3) per group (YA vs. OA). Speech recognition declined with increasing spectral degradation for both YA and OA when they performed the task in isolation or concurrently with the visual monitoring task. OA were slower and less accurate than YA on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared with single-task performance, OA experienced greater declines in secondary-task accuracy, but not reaction time, than YA. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. OA experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than YA. These findings are interpreted as suggesting that OA expended greater listening effort than YA, which may be partially attributed to age-related differences in executive control.
Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E
2004-01-01
Background Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Conclusion Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control. PMID:15147586
Quant, Sylvia; Adkin, Allan L; Staines, W Richard; Maki, Brian E; McIlroy, William E
2004-05-17
Although previous studies suggest that postural control requires attention and other cognitive resources, the central mechanisms responsible for this relationship remain unclear. To address this issue, we examined the effects of altered attention on cortical activity and postural responses following mechanical perturbations to upright stance. We hypothesized that cortical activity would be attenuated but not delayed when mechanical perturbations were applied during a concurrent performance of a cognitive task (i.e. when attention was directed away from the perturbation). We also hypothesized that these cortical changes would be accompanied by alterations in the postural response, as evidenced by increases in the magnitude of anteroposterior (AP) centre of pressure (COP) peak displacements and tibialis anterior (TA) muscle activity. Healthy young adults (n = 7) were instructed to continuously track (cognitive task) or not track (control task) a randomly moving visual target using a hand-held joystick. During each of these conditions, unpredictable translations of a moving floor evoked cortical and postural responses. Scalp-recorded cortical activity, COP, and TA electromyographic (EMG) measures were collected. Results revealed a significant decrease in the magnitude of early cortical activity (the N1 response, the first negative peak after perturbation onset) during the tracking task compared to the control condition. More pronounced AP COP peak displacements and EMG magnitudes were also observed for the tracking task and were possibly related to changes in the N1 response. Based on previous notions that the N1 response represents sensory processing of the balance disturbance, we suggest that the attenuation of the N1 response is an important central mechanism that may provide insight into the relationship between attention and postural control.
fMRI Validation of fNIRS Measurements During a Naturalistic Task
Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy
2015-01-01
We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365
Goswami, Usha; Huss, Martina; Mead, Natasha; Fosker, Tim; Verney, John P
2013-05-01
In a recent study, we reported that the accurate perception of beat structure in music ('perception of musical meter') accounted for over 40% of the variance in single word reading in children with and without dyslexia (Huss et al., 2011). Performance in the musical task was most strongly associated with the auditory processing of rise time, even though beat structure was varied by manipulating the duration of the musical notes. Here we administered the same musical task a year later to 88 children with and without dyslexia, and used new auditory processing measures to provide a more comprehensive picture of the auditory correlates of the beat structure task. We also measured reading comprehension and nonword reading in addition to single word reading. One year later, the children with dyslexia performed more poorly in the musical task than younger children reading at the same level, indicating a severe perceptual deficit for musical beat patterns. They now also had significantly poorer perception of sound rise time than younger children. Longitudinal analyses showed that the musical beat structure task was a significant longitudinal predictor of development in reading, accounting for over half of the variance in reading comprehension along with a linguistic measure of phonological awareness. The non-linguistic musical beat structure task is an important independent longitudinal and concurrent predictor of variance in reading attainment by children. The different longitudinal versus concurrent associations between musical beat perception and auditory processing suggest that individual differences in the perception of rhythmic timing are an important shared neural basis for individual differences in children in linguistic and musical processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
The Use of a UNIX-Based Workstation in the Information Systems Laboratory
1989-03-01
system. The conclusions of the research and the resulting recommendations are presented in Chapter III. These recommendations include how to manage...required to run the program on a new system, these should not be significant changes. 2. Processing Environment The UNIX processing environment is...interactive with multi-tasking and multi-user capabilities. Multi-tasking refers to the fact that many programs can be run concurrently. This capability
Does oxytocin lead to emotional interference during a working memory paradigm?
Tollenaar, Marieke S; Ruissen, M; Elzinga, B M; de Bruijn, E R A
2017-12-01
Oxytocin administration may increase attention to emotional information. We hypothesized that this augmented emotional processing might in turn lead to interference on concurrent cognitive tasks. To test this hypothesis, we examined whether oxytocin administration would lead to heightened emotional interference during a working memory paradigm. Additionally, moderating effects of childhood maltreatment were explored. Seventy-eight healthy males received 24 IU of intranasal oxytocin or placebo in a randomized placebo-controlled double-blind between-subjects study. A working memory task was performed during which neutral, positive, and negative distractors were presented. The main outcome observed was that oxytocin did not enhance interference by emotional information during the working memory task. There was a non-significant trend for oxytocin to slow down performance irrespective of distractor valence, while accuracy was unaffected. Exploratory analyses showed that childhood maltreatment was related to lower overall accuracy, but in the placebo condition only. However, the maltreated group sample size was very small precluding any conclusions on its moderating effect. Despite oxytocin's previously proposed role in enhanced emotional processing, no proof was found that this would lead to reduced performance on a concurrent cognitive task. The routes by which oxytocin exerts its effects on cognitive and social-emotional processes remain to be fully elucidated.
Mechanisms of impulsive choice: III. The role of reward processes
Marshall, Andrew T.
2015-01-01
Two experiments examined the relationship between reward processing and impulsive choice. In Experiment 1, rats chose between a smaller-sooner (SS) reward (1 pellet, 10 s) and a larger-later (LL) reward (1, 2, and 4 pellets, 30 s). The rats then experienced concurrent variable-interval 30-s schedules with variations in reward magnitude to evaluate reward magnitude discrimination. LL choice behavior positively correlated with reward magnitude discrimination. In Experiment 2, rats chose between an SS reward (1 pellet, 10 s) and an LL reward (2 and 4 pellets, 30 s). The rats then received either a reward intervention which consisted of concurrent fixed-ratio schedules associated with different magnitudes to improve their reward magnitude discrimination, or a control task. All rats then experienced a post-intervention impulsive choice task followed by a reward magnitude discrimination task to assess intervention efficacy. The rats that received the intervention exhibited increases in post-intervention LL choice behavior, and made more responses for larger-reward magnitudes in the reward magnitude discrimination task, suggesting that the intervention heightened sensitivities to reward magnitude. The results suggest that reward magnitude discrimination plays a key role in individual differences in impulsive choice, and could be a potential target for further intervention developments. PMID:26506254
Threaded Cognition: An Integrated Theory of Concurrent Multitasking
ERIC Educational Resources Information Center
Salvucci, Dario D.; Taatgen, Niels A.
2008-01-01
The authors propose the idea of threaded cognition, an integrated theory of concurrent multitasking--that is, performing 2 or more tasks at once. Threaded cognition posits that streams of thought can be represented as threads of processing coordinated by a serial procedural resource and executed across other available resources (e.g., perceptual…
What Lies Beneath?: Verbal Report in Interlanguage Requests in English
ERIC Educational Resources Information Center
Woodfield, Helen
2010-01-01
The present study investigates the role of concurrent and retrospective verbal report in exploring the cognitive processes of six pairs of advanced ESL learners engaged on a written discourse completion task eliciting status-unequal requests in English. Qualitative analysis of the concurrent data indicate that (i) social contextual aspects of the…
Motormouth: mere exposure depends on stimulus-specific motor simulations.
Topolinski, Sascha; Strack, Fritz
2009-03-01
The authors apply an embodied account to mere exposure, arguing that through the repeated exposure of a particular stimulus, motor responses specifically associated to that stimulus are repeatedly simulated, thus trained, and become increasingly fluent. This increased fluency drives preferences for repeated stimuli. This hypothesis was tested by blocking stimulus-specific motor simulations during repeated exposure. In Experiment 1, chewing gum while evaluating stimuli destroyed mere exposure effects (MEEs) for words but not for visual characters. However, concurrently kneading a ball left both MEEs unaffected. In Experiment 2, concurrently whispering an unrelated word destroyed MEEs for words but not for characters, even when implemented either exclusively during the initial presentation or during the test phase and when the first presentation involved an evaluation or a mere study of the stimuli. In Experiment 3, a double dissociation between 2 classes of stimuli was demonstrated, namely, words (oral) and tunes (vocal). A concurrent oral task (tongue movements) destroyed MEEs for words but not for tone sequences. A concurrent vocal task (humming "mm-hm") destroyed MEEs for tone sequences but not for words. (c) 2009 APA, all rights reserved
Fernandes, Myra A; Davidson, Patrick S R; Glisky, Elizabeth L; Moscovitch, Morris
2004-07-01
On the basis of their scores on composite measures of frontal and temporal lobe function, derived from neuropsychological testing, seniors were divided preexperimentally into 4 groups. Participants studied a list of unrelated words under full attention and recalled them while concurrently performing an animacy decision task to words, an odd-digit identification task to numbers, or no distracting task. Large interference effects on memory were produced by the animacy but not by the odd-digit distracting task, and this pattern was not influenced by level of frontal or temporal lobe function. Results show associative retrieval is largely disrupted by competition for common representations, and it is not affected by a reduction in general processing resources, attentional capacity, or competition for memory structures in the temporal lobe.
Walking and talking: an investigation of cognitive-motor dual tasking in multiple sclerosis.
Hamilton, F; Rochester, L; Paul, L; Rafferty, D; O'Leary, C P; Evans, J J
2009-10-01
Deficits in motor functioning, including walking, and in cognitive functions, including attention, are known to be prevalent in multiple sclerosis (MS), though little attention has been paid to how impairments in these areas of functioning interact. This study investigated the effects of performing a concurrent cognitive task when walking in people with MS. Level of task demand was manipulated to investigate whether this affected level of dual-task decrement. Eighteen participants with MS and 18 healthy controls took part. Participants completed walking and cognitive tasks under single- and dual-task conditions. Compared to healthy controls, MS participants showed greater decrements in performance under dual-task conditions in cognitive task performance, walking speed and swing time variability. In the MS group, the degree of decrement under dual-task conditions was related to levels of fatigue, a measure of general cognitive functioning and self-reported everyday cognitive errors, but not to measures of disease severity or duration. Difficulty with walking and talking in MS may be a result of a divided attention deficit or of overloading of the working memory system, and further investigation is needed. We suggest that difficulty with walking and talking in MS may lead to practical problems in everyday life, including potentially increasing the risk of falls. Clinical tools to assess cognitive-motor dual-tasking ability are needed.
Rey-Mermet, Alodie; Gade, Miriam
2016-10-01
It is assumed that we recruit cognitive control (i.e., attentional adjustment and/or inhibition) to resolve 2 conflicts at a time, such as driving toward a red traffic light and taking care of a near-by ambulance car. A few studies have addressed this issue by combining a Simon task (that required responding with left or right key-press to a stimulus presented on the left or right side of the screen) with either a Stroop task (that required identifying the color of color words) or a Flanker task (that required identifying the target character among flankers). In most studies, the results revealed no interaction between the conflict tasks. However, these studies include a small stimulus set, and participants might have learned the stimulus-response mappings for each stimulus. Thus, it is possible that participants have more relied on episodic memory than on cognitive control to perform the task. In 5 experiments, we combined the 3 tasks pairwise, and we increased the stimulus set size to circumvent episodic memory contributions. The results revealed an interaction between the conflict tasks: Irrespective of task combination, the congruency effect of 1 task was smaller when the stimulus was incongruent for the other task. This suggests that when 2 conflicts are presented concurrently, the control processes induced by 1 conflict source can affect the control processes induced by the other conflict source. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Fox, Mark C; Ericsson, K Anders; Best, Ryan
2011-03-01
Since its establishment, psychology has struggled to find valid methods for studying thoughts and subjective experiences. Thirty years ago, Ericsson and Simon (1980) proposed that participants can give concurrent verbal expression to their thoughts (think aloud) while completing tasks without changing objectively measurable performance (accuracy). In contrast, directed requests for concurrent verbal reports, such as explanations or directions to describe particular kinds of information, were predicted to change thought processes as a consequence of the need to generate this information, thus altering performance. By comparing performance of concurrent verbal reporting conditions with their matching silent control condition, Ericsson and Simon found several studies demonstrating that directed verbalization was associated with changes in performance. In contrast, the lack of effects of thinking aloud was merely suggested by a handful of experimental studies. In this article, Ericsson and Simon's model is tested by a meta-analysis of 94 studies comparing performance while giving concurrent verbalizations to a matching condition without verbalization. Findings based on nearly 3,500 participants show that the "think-aloud" effect size is indistinguishable from zero (r = -.03) and that this procedure remains nonreactive even after statistically controlling additional factors such as task type (primarily visual or nonvisual). In contrast, procedures that entail describing or explaining thoughts and actions are significantly reactive, leading to higher performance than silent control conditions. All verbal reporting procedures tend to increase times to complete tasks. These results suggest that think-aloud should be distinguished from other methods in future studies. Theoretical and practical implications are discussed. (c) 2011 APA, all rights reserved.
2006-06-01
Appendix A. Demographic Questionnaire 25 Appendix B. Attentional Control Survey 27 Appendix C. NASA - TLX Questionnaire 29 Appendix D. Simulator...the National Aeronautics and Space Administration task load index ( NASA - TLX ) questionnaire (appendix C) (Hart & Staveland, 1988). The NASA - TLX is a...There were 2-minute breaks between experimental sessions. Participants assessed their workload using the NASA - TLX after they completed each
Aliakbaryhosseinabadi, Susan; Kamavuako, Ernest Nlandu; Jiang, Ning; Farina, Dario; Mrachacz-Kersting, Natalie
2017-11-01
Dual tasking is defined as performing two tasks concurrently and has been shown to have a significant effect on attention directed to the performance of the main task. In this study, an attention diversion task with two different levels was administered while participants had to complete a cue-based motor task consisting of foot dorsiflexion. An auditory oddball task with two levels of complexity was implemented to divert the user's attention. Electroencephalographic (EEG) recordings were made from nine single channels. Event-related potentials (ERPs) confirmed that the oddball task of counting a sequence of two tones decreased the auditory P300 amplitude more than the oddball task of counting one target tone among three different tones. Pre-movement features quantified from the movement-related cortical potential (MRCP) were changed significantly between single and dual-task conditions in motor and fronto-central channels. There was a significant delay in movement detection for the case of single tone counting in two motor channels only (237.1-247.4ms). For the task of sequence counting, motor cortex and frontal channels showed a significant delay in MRCP detection (232.1-250.5ms). This study investigated the effect of attention diversion in dual-task conditions by analysing both ERPs and MRCPs in single channels. The higher attention diversion lead to a significant reduction in specific MRCP features of the motor task. These results suggest that attention division in dual-tasking situations plays an important role in movement execution and detection. This has important implications in designing real-time brain-computer interface systems. Copyright © 2017 Elsevier B.V. All rights reserved.
The Interaction of Focused Attention with Flow-field Sensitivity
NASA Technical Reports Server (NTRS)
Stoffregen, T.
1984-01-01
Two studies were performed to determine whether a subject's response to naturalistic optical flow specifying egomotion would be affected by a concurrent attention task. In the first study subjects stood in a moving room in which various areas of the optical flow generated by room movement were visible. Subjects responded to room motion with strong compensatory sway when the entire room was visible. When the side walls of the room were completely obscured by stationary screens, leaving only the front wall visible, sway was significantly reduced, though it remained greater than in an eyes-closed control. In Exp. 2 subjects were presented with either the full room (large sway response) or the room with only the front wall visible (moderate response), each in combination with either a hard or easy verbal addition task. Preliminary results show that swaying in the fully visible room and in the room with only the front wall visible increased when combined with either the hard or easy tasks. These preliminary results suggest that at the least the pick-up of optical flow specifying egomotion is not affected by concurrent attentional activity.
Finke, Mareike; Barceló, Francisco; Garolera, Maite; Cortiñas, Miriam; Garrido, Gemma; Pajares, Marta; Escera, Carles
2011-07-01
An accurate representation of task-set information is needed for successful goal directed behavior. Recent studies point to disturbances in the early processing stages as plausible causes for task-switching deficits in schizophrenia. A task-cueing protocol was administered to a group of schizophrenic patients and compared with a sample of age-matched healthy controls. Patients responded slower and less accurate compared with controls in all conditions. The concurrent recording of event-related brain potentials to contextual cues and target events revealed abnormalities in the early processing of both cue-locked and target-locked N1 potentials. Abnormally enhanced target-locked P2 amplitudes were observed in schizophrenic patients for task-switch trials only, suggesting disrupted stimulus evaluation and memory retrieval processes. The endogenous P3 potentials discriminated between task conditions but without further differences between groups. These results suggest that the observed impairments in task-switching behavior were not specifically related to anticipatory set-shifting, but derived from a deficit in the implementation of task-set representations at target onset in the presence of irrelevant and conflicting information. Copyright © 2011 Elsevier B.V. All rights reserved.
Coelho, Daniel Boari; Bourlinova, Catarina; Teixeira, Luis Augusto
2016-12-01
In the present experiment, we aimed to evaluate the interactive effect of performing a cognitive task simultaneously with a manual task requiring either high or low steadiness on APRs. Young volunteers performed the task of recovering upright balance following a mechanical perturbation provoked by unanticipatedly releasing a load pulling the participant's body backwards. The postural task was performed while holding a cylinder steadily on a tray. One group performed that task under high (cylinder' round side down) and another one under low (cylinder' flat side down) manual steadiness constraint. Those tasks were evaluated in the conditions of performing concurrently a cognitive numeric subtraction task and under no cognitive task. Analysis showed that performance of the cognitive task led to increased body and tray displacement, associated with higher displacement at the hip and upper trunk, and lower magnitude of activation of the GM muscle in response to the perturbation. Conversely, high manual steadiness constraint led to reduced tray velocity in association with lower values of trunk displacement, and decreased rotation amplitude at the ankle and hip joints. We found no interactions between the effects of the cognitive and manual tasks on APRs, suggesting that they were processed in parallel in the generation of responses for balance recovery. Modulation of postural responses from the manual and cognitive tasks indicates participation of higher order neural structures in the generation of APRs, with postural responses being affected by multiple mental processes occurring in parallel. Copyright © 2016 Elsevier B.V. All rights reserved.
Rehabilitation of divided attention after severe traumatic brain injury: a randomised trial.
Couillet, Josette; Soury, Stephane; Lebornec, Gaelle; Asloun, Sybille; Joseph, Pierre-Alain; Mazaux, Jean-Michel; Azouvi, Philippe
2010-06-01
Patients with severe traumatic brain injury (TBI) frequently suffer from a difficulty in dealing with two tasks simultaneously. However, there has been little research on the rehabilitation of divided attention. The objective of the present study was to assess the effectiveness of a rehabilitation programme for divided attention after severe TBI. Twelve patients at a subacute/chronic stage after a severe TBI were included. A randomised AB vs. BA cross-over design was used. Training lasted six weeks, with four one-hour sessions per week. It was compared to a non-specific (control) cognitive training. During experimental treatment, patients were trained to perform two concurrent tasks simultaneously. Each one of the two tasks was first trained as a single task, then both tasks were given simultaneously. A progressive hierarchical order of difficulty was used, by progressively increasing task difficulty following each patient's individual improvement. Patients were randomised in two groups: one starting with dual-task training, the other with control training. Outcome measures included target dual-task measures, executive and working memory tasks, non-target tasks, and the Rating Scale of Attentional Behaviour addressing attentional problems in everyday life. Assessment was not blind to treatment condition. A significant training-related effect was found on dual-task measures and on the divided attention item of the Rating Scale of Attentional Behaviour. There was only little effect on executive measures, and no significant effect on non-target measures. These results suggest that training had specific effects on divided attention and helped patients to deal more rapidly and more accurately with dual-task situations.
Brain activity during auditory and visual phonological, spatial and simple discrimination tasks.
Salo, Emma; Rinne, Teemu; Salonen, Oili; Alho, Kimmo
2013-02-16
We used functional magnetic resonance imaging to measure human brain activity during tasks demanding selective attention to auditory or visual stimuli delivered in concurrent streams. Auditory stimuli were syllables spoken by different voices and occurring in central or peripheral space. Visual stimuli were centrally or more peripherally presented letters in darker or lighter fonts. The participants performed a phonological, spatial or "simple" (speaker-gender or font-shade) discrimination task in either modality. Within each modality, we expected a clear distinction between brain activations related to nonspatial and spatial processing, as reported in previous studies. However, within each modality, different tasks activated largely overlapping areas in modality-specific (auditory and visual) cortices, as well as in the parietal and frontal brain regions. These overlaps may be due to effects of attention common for all three tasks within each modality or interaction of processing task-relevant features and varying task-irrelevant features in the attended-modality stimuli. Nevertheless, brain activations caused by auditory and visual phonological tasks overlapped in the left mid-lateral prefrontal cortex, while those caused by the auditory and visual spatial tasks overlapped in the inferior parietal cortex. These overlapping activations reveal areas of multimodal phonological and spatial processing. There was also some evidence for intermodal attention-related interaction. Most importantly, activity in the superior temporal sulcus elicited by unattended speech sounds was attenuated during the visual phonological task in comparison with the other visual tasks. This effect might be related to suppression of processing irrelevant speech presumably distracting the phonological task involving the letters. Copyright © 2012 Elsevier B.V. All rights reserved.
Shi, Yiquan; Wolfensteller, Uta; Schubert, Torsten; Ruge, Hannes
2018-02-01
Cognitive flexibility is essential to cope with changing task demands and often it is necessary to adapt to combined changes in a coordinated manner. The present fMRI study examined how the brain implements such multi-level adaptation processes. Specifically, on a "local," hierarchically lower level, switching between two tasks was required across trials while the rules of each task remained unchanged for blocks of trials. On a "global" level regarding blocks of twelve trials, the task rules could reverse or remain the same. The current task was cued at the start of each trial while the current task rules were instructed before the start of a new block. We found that partly overlapping and partly segregated neural networks play different roles when coping with the combination of global rule reversal and local task switching. The fronto-parietal control network (FPN) supported the encoding of reversed rules at the time of explicit rule instruction. The same regions subsequently supported local task switching processes during actual implementation trials, irrespective of rule reversal condition. By contrast, a cortico-striatal network (CSN) including supplementary motor area and putamen was increasingly engaged across implementation trials and more so for rule reversal than for nonreversal blocks, irrespective of task switching condition. Together, these findings suggest that the brain accomplishes the coordinated adaptation to multi-level demand changes by distributing processing resources either across time (FPN for reversed rule encoding and later for task switching) or across regions (CSN for reversed rule implementation and FPN for concurrent task switching). © 2017 Wiley Periodicals, Inc.
Camilleri, Rebecca; Pavan, Andrea; Campana, Gianluca
2016-08-01
It has recently been demonstrated how perceptual learning, that is an improvement in a sensory/perceptual task upon practice, can be boosted by concurrent high-frequency transcranial random noise stimulation (tRNS). It has also been shown that perceptual learning can generalize and produce an improvement of visual functions in participants with mild refractive defects. By using three different groups of participants (single-blind study), we tested the efficacy of a short training (8 sessions) using a single Gabor contrast-detection task with concurrent hf-tRNS in comparison with the same training with sham stimulation or hf-tRNS with no concurrent training, in improving visual acuity (VA) and contrast sensitivity (CS) of individuals with uncorrected mild myopia. A short training with a contrast detection task is able to improve VA and CS only if coupled with hf-tRNS, whereas no effect on VA and marginal effects on CS are seen with the sole administration of hf-tRNS. Our results support the idea that, by boosting the rate of perceptual learning via the modulation of neuronal plasticity, hf-tRNS can be successfully used to reduce the duration of the perceptual training and/or to increase its efficacy in producing perceptual learning and generalization to improved VA and CS in individuals with uncorrected mild myopia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Task-dependent and task-independent neurovascular responses to syntactic processing⋆
Caplan, David; Chen, Evan; Waters, Gloria
2008-01-01
The neural basis for syntactic processing was studied using event-related fMRI to determine the locations of BOLD signal increases in the contrast of syntactically complex sentences with center-embedded, object-extracted relative clauses and syntactically simple sentences with right-branching, subject-extracted relative clauses in a group of 15 participants in three tasks. In a sentence verification task, participants saw a target sentence in one of these two syntactic forms, followed by a probe in a simple active form, and determined whether the probe expressed a proposition in the target. In a plausibility judgment task, participants determined whether a sentence in one of these two syntactic forms was plausible or implausible. Finally, in a non-word detection task, participants determined whether a sentence in one of these two syntactic forms contained only real words or a non-word. BOLD signal associated with the syntactic contrast increased in the left posterior inferior frontal gyrus in non-word detection and in a widespread set of areas in the other two tasks. We conclude that the BOLD activity in the left posterior inferior frontal gyrus reflects syntactic processing independent of concurrent cognitive operations and the more widespread areas of activation reflect the use of strategies and the use of the products of syntactic processing to accomplish tasks. PMID:18387556
Garner, K. G.; Dux, Paul E.
2015-01-01
Negotiating the information-rich sensory world often requires the concurrent management of multiple tasks. Despite this requirement, humans are thought to be poor at multitasking because of the processing limitations of frontoparietal and subcortical (FP-SC) brain regions. Although training is known to improve multitasking performance, it is unknown how the FP-SC system functionally changes to support improved multitasking. To address this question, we characterized the FP-SC changes that predict training outcomes using an individual differences approach. Participants (n = 100) performed single and multiple tasks in pre- and posttraining magnetic resonance imaging (fMRI) sessions interspersed by either a multitasking or an active-control training regimen. Multivoxel pattern analyses (MVPA) revealed that training induced multitasking improvements were predicted by divergence in the FP-SC blood oxygen level-dependent (BOLD) response patterns to the trained tasks. Importantly, this finding was only observed for participants who completed training on the component (single) tasks and their combination (multitask) and not for the control group. Therefore, the FP-SC system supports multitasking behavior by segregating constituent task representations. PMID:26460014
Coactivation of cognitive control networks during task switching.
Yin, Shouhang; Deák, Gedeon; Chen, Antao
2018-01-01
The ability to flexibly switch between tasks is considered an important component of cognitive control that involves frontal and parietal cortical areas. The present study was designed to characterize network dynamics across multiple brain regions during task switching. Functional magnetic resonance images (fMRI) were captured during a standard rule-switching task to identify switching-related brain regions. Multiregional psychophysiological interaction (PPI) analysis was used to examine effective connectivity between these regions. During switching trials, behavioral performance declined and activation of a generic cognitive control network increased. Concurrently, task-related connectivity increased within and between cingulo-opercular and fronto-parietal cognitive control networks. Notably, the left inferior frontal junction (IFJ) was most consistently coactivated with the 2 cognitive control networks. Furthermore, switching-dependent effective connectivity was negatively correlated with behavioral switch costs. The strength of effective connectivity between left IFJ and other regions in the networks predicted individual differences in switch costs. Task switching was supported by coactivated connections within cognitive control networks, with left IFJ potentially acting as a key hub between the fronto-parietal and cingulo-opercular networks. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Garner, K G; Dux, Paul E
2015-11-17
Negotiating the information-rich sensory world often requires the concurrent management of multiple tasks. Despite this requirement, humans are thought to be poor at multitasking because of the processing limitations of frontoparietal and subcortical (FP-SC) brain regions. Although training is known to improve multitasking performance, it is unknown how the FP-SC system functionally changes to support improved multitasking. To address this question, we characterized the FP-SC changes that predict training outcomes using an individual differences approach. Participants (n = 100) performed single and multiple tasks in pre- and posttraining magnetic resonance imaging (fMRI) sessions interspersed by either a multitasking or an active-control training regimen. Multivoxel pattern analyses (MVPA) revealed that training induced multitasking improvements were predicted by divergence in the FP-SC blood oxygen level-dependent (BOLD) response patterns to the trained tasks. Importantly, this finding was only observed for participants who completed training on the component (single) tasks and their combination (multitask) and not for the control group. Therefore, the FP-SC system supports multitasking behavior by segregating constituent task representations.
The effects of cuing in time-shared tasks. [for aircraft flight route-way-point information
NASA Technical Reports Server (NTRS)
Chechile, R. A.; Sadoski, D. M.
1983-01-01
The results of two divided-attention experiments involving the editing of route-way-point displays on an avionics computer unit are reported. Two side tasks were required of the subjects, and either no cue, verbal cues appearing on the CRT, or symbolic cues (lights on the keyboard adjacent to keys to be used) were given to facilitate the primary editing task. Forty female and 30 male undergraduates were trained in the separate and combined tasks and divided randomly into groups of 25 for the cuing tests. A second test with three 10-subject groups was conducted at least one month later to investigate the efficacy of cuing for infrequently used procedures. It is found that only symbolic cuing significantly improved primary-task performance, increasing editing accuracy in the repetitive tests and reducing editing time in the delayed tests. Verbal cuing, probably because it requires additional cognitive effort, has no significant beneficial effect. These results are considered important for designing instruments for work environments requiring the performance of concurrent tasks, and as aircraft cockpits.
An Expert Supervisor For A Robotic Work Cell
NASA Astrophysics Data System (ADS)
Moed, M. C.; Kelley, R. B.
1988-02-01
To increase task flexibility in a robotic assembly environment, a hierarchical planning and execution system is being developed which will map user specified 3D part assembly tasks into various target robotic work cells, and execute these tasks efficiently using manipulators and sensors available in the work cell. One level of this hierarchy, the Supervisor, is responsible for assigning subtasks of a system generated Task Plan to a set of task specific Specialists and on-line coordination of the activity of these Specialists to accomplish the user specified assembly. The design of the Supervisor can be broken down into five major functional blocks: resource management; concurrency detection; task scheduling; error recovery; and interprocess communication. The Supervisor implementation has been completed on a VAX 11/750 under a Unix environment. PC card Pick-Insert experiments were performed to test this implementation. To test the robustness of the architecture, the Supervisor was then transported to a new work cell under a VMS environment. The experiments performed under Supervisor control in both implementations are discussed after a brief explanation of the functional blocks of the Supervisor and the other levels in the hierarchy.
Estimation Accuracy on Execution Time of Run-Time Tasks in a Heterogeneous Distributed Environment
Liu, Qi; Cai, Weidong; Jin, Dandan; Shen, Jian; Fu, Zhangjie; Liu, Xiaodong; Linge, Nigel
2016-01-01
Distributed Computing has achieved tremendous development since cloud computing was proposed in 2006, and played a vital role promoting rapid growth of data collecting and analysis models, e.g., Internet of things, Cyber-Physical Systems, Big Data Analytics, etc. Hadoop has become a data convergence platform for sensor networks. As one of the core components, MapReduce facilitates allocating, processing and mining of collected large-scale data, where speculative execution strategies help solve straggler problems. However, there is still no efficient solution for accurate estimation on execution time of run-time tasks, which can affect task allocation and distribution in MapReduce. In this paper, task execution data have been collected and employed for the estimation. A two-phase regression (TPR) method is proposed to predict the finishing time of each task accurately. Detailed data of each task have drawn interests with detailed analysis report being made. According to the results, the prediction accuracy of concurrent tasks’ execution time can be improved, in particular for some regular jobs. PMID:27589753
Concurrent planning and execution for a walking robot
NASA Astrophysics Data System (ADS)
Simmons, Reid
1990-07-01
The Planetary Rover project is developing the Ambler, a novel legged robot, and an autonomous software system for walking the Ambler over rough terrain. As part of the project, we have developed a system that integrates perception, planning, and real-time control to navigate a single leg of the robot through complex obstacle courses. The system is integrated using the Task Control Architecture (TCA), a general-purpose set of utilities for building and controlling distributed mobile robot systems. The walking system, as originally implemented, utilized a sequential sense-plan-act control cycle. This report describes efforts to improve the performance of the system by concurrently planning and executing steps. Concurrency was achieved by modifying the existing sequential system to utilize TCA features such as resource management, monitors, temporal constraints, and hierarchical task trees. Performance was increased in excess of 30 percent with only a relatively modest effort to convert and test the system. The results lend support to the utility of using TCA to develop complex mobile robot systems.
Iveson, Matthew H; Della Sala, Sergio; Anderson, Mike; MacPherson, Sarah E
2017-05-01
Goal maintenance is the process where task rules and instructions are kept active to exert their control on behavior. When this process fails, an individual may ignore a rule while performing the task, despite being able to describe it after task completion. Previous research has suggested that the goal maintenance system is limited by the number of concurrent rules which can be maintained during a task, and that this limit is dependent on an individual's level of fluid intelligence. However, the speed at which an individual can process information may also limit their ability to use task rules when the task demands them. In the present study, four experiments manipulated the number of instructions to be maintained by younger and older adults and examined whether performance on a rapid letter-monitoring task was predicted by individual differences in fluid intelligence or processing speed. Fluid intelligence played little role in determining how frequently rules were ignored during the task, regardless of the number of rules to be maintained. In contrast, processing speed predicted the rate of goal neglect in older adults, where increasing the presentation rate of the letter-monitoring task increased goal neglect. These findings suggest that goal maintenance may be limited by the speed at which it can operate. Copyright © 2017. Published by Elsevier B.V.
Beaton, Elliott A; Schmidt, Louis A; Ashbaugh, Andrea R; Santesso, Diane L; Antony, Martin M; McCabe, Randi E
2008-01-01
A number of studies have noted that the pattern of resting frontal brain electrical activity (EEG) is related to individual differences in affective style in healthy infants, children, and adults and some clinical populations when symptoms are reduced or in remission. We measured self-reported trait shyness and sociability, concurrent depressive mood, and frontal brain electrical activity (EEG) at rest and in anticipation of a speech task in a non-clinical sample of healthy young adults selected for high and low social anxiety. Although the patterns of resting and reactive frontal EEG asymmetry did not distinguish among individual differences in social anxiety, the pattern of resting frontal EEG asymmetry was related to trait shyness after controlling for concurrent depressive mood. Individuals who reported a higher degree of shyness were likely to exhibit greater relative right frontal EEG activity at rest. However, trait shyness was not related to frontal EEG asymmetry measured during the speech-preparation task, even after controlling for concurrent depressive mood. These findings replicate and extend prior work on resting frontal EEG asymmetry and individual differences in affective style in adults. Findings also highlight the importance of considering concurrent emotional states of participants when examining psychophysiological correlates of personality. PMID:18728822
Bosshardt, Hans-Georg
2002-01-01
This study investigated how silent reading and word memorization may affect the fluency of concurrently repeated words. The words silently read or memorized were phonologically similar or dissimilar to the words of the repetition task. Fourteen adults who stutter and 16 who do not participated in the experiment. The two groups were matched for age, education, sex, forward and backward memory span and vocabulary. It was found that the disfluencies of persons who stutter significantly increased during word repetition when similar words were read or memorized concurrently. In contrast, the disfluencies of persons who do not stutter were not significantly affected by either secondary task. These results indicate that the speech of persons who stutter is more sensitive to interference from concurrently performed cognitive processing than that of nonstuttering persons. It is proposed that the phonological and articulatory systems of persons who stutter are protected less efficiently from interference by attention-demanding processing within the central executive system. Alternative interpretations are also discussed. Readers will learn how modern speech production theories and the concept of modularity can account for stuttering, and will be able to explain the greater vulnerability of stutterer's speech fluency to concurrent cognitive processing.
Effect of Water Immersion on Dual-task Performance: Implications for Aquatic Therapy.
Schaefer, Sydney Y; Louder, Talin J; Foster, Shayla; Bressel, Eadric
2016-09-01
Much is known about cardiovascular and biomechanical responses to exercise during water immersion, yet an understanding of the higher-order neural responses to water immersion is unclear. The purpose of this study was to compare cognitive and motor performance between land and water environments using a dual-task paradigm, which served as an indirect measure of cortical processing. A quasi-experimental crossover research design is used. Twenty-two healthy participants (age = 24.3 ± 5.24 years) and a single-case patient (age = 73) with mild cognitive impairment performed a cognitive (auditory vigilance) and motor (standing balance) task separately (single-task condition) and simultaneously (dual-task condition) on land and in chest-deep water. Listening errors from the auditory vigilance task and centre of pressure (CoP) area for the balance task measured cognitive and motor performance, respectively. Listening errors for the single-task and dual-task conditions were 42% and 45% lower for the water than land condition, respectively (effect size [ES] = 0.38 and 0.55). CoP area for the single-task and dual-task conditions, however, were 115% and 164% lower on land than in water, respectively, and were lower (≈8-33%) when balancing concurrently with the auditory vigilance task compared with balancing alone, regardless of environment (ES = 0.23-1.7). This trend was consistent for the single-case patient. Participants tended to make fewer 'cognitive' errors while immersed chest-deep in water than on land. These same participants also tended to display less postural sway under dual-task conditions, but more in water than on land. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
Effects of Tai Chi intervention on dual-task ability in older adults: a pilot study.
Hall, Courtney D; Miszko, Tanya; Wolf, Steven L
2009-03-01
To determine if a 12-week program of Tai Chi that has been shown to reduce falls incidence in older adults would improve the ability to allocate attention to balance under dual-task conditions. Pre-/posttest experimental research design. Movement studies research laboratory. Community dwelling older adults (N=15; range, 62-85y) participated in either Tai Chi training or health education classes (controls) for 12 weeks. Participants in the Tai Chi group attended a twice-weekly, 1.5-hour class taught by an experienced instructor. The control group attended a biweekly, 1-hour class for lectures on health-related topics. Two cognitive tasks (responding to auditory or visual stimulus as quickly as possible) were performed concurrently while maintaining static balance during the Sensory Organization Test (SOT) and while avoiding obstacles while walking. The percent change in performance relative to the single-task condition was calculated and defined as the dual-task cost. The dual-task cost was calculated for both the postural and cognitive measures. There was no improvement in the performance of postural stability or cognitive task under dual-task conditions for the SOT for Tai Chi versus controls. There was no improvement in avoiding obstacles under dual-task conditions for Tai Chi versus controls. Contrary to our hypothesis, the findings of this study did not support a benefit of Tai Chi on the ability to allocate attention to balance under dual-task conditions.
LeMonda, Brittany C.; Mahoney, Jeannette R.; Verghese, Joe; Holtzer, Roee
2016-01-01
The Walking While Talking (WWT) dual-task paradigm is a mobility stress test that predicts major outcomes, including falls, frailty, disability, and mortality in aging. Certain personality traits, such as neuroticism, extraversion, and their combination, have been linked to both cognitive and motor outcomes. We examined whether individual differences in personality dimensions of neuroticism and extraversion predicted dual-task performance decrements (both motor and cognitive) on a WWT task in non-demented older adults. We hypothesized that the combined effect of high neuroticism-low extraversion would be related to greater dual-task costs in gait velocity and cognitive performance in non-demented older adults. Participants (N = 295; age range, = 65–95 years; female = 164) completed the Big Five Inventory and WWT task involving concurrent gait and a serial 7's subtraction task. Gait velocity was obtained using an instrumented walkway. The high neuroticism-low extraversion group incurred greater dual-task costs (i.e., worse performance) in both gait velocity {95% confidence interval (CI) [−17.68 to −3.07]} and cognitive performance (95% CI [−19.34 to −2.44]) compared to the low neuroticism-high extraversion group, suggesting that high neuroticism-low extraversion interferes with the allocation of attentional resources to competing task demands during the WWT task. Older individuals with high neuroticism-low extraversion may be at higher risk for falls, mobility decline and other adverse outcomes in aging. PMID:26527241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vydyanathan, Naga; Krishnamoorthy, Sriram; Sabin, Gerald M.
2009-08-01
Complex parallel applications can often be modeled as directed acyclic graphs of coarse-grained application-tasks with dependences. These applications exhibit both task- and data-parallelism, and combining these two (also called mixedparallelism), has been shown to be an effective model for their execution. In this paper, we present an algorithm to compute the appropriate mix of task- and data-parallelism required to minimize the parallel completion time (makespan) of these applications. In other words, our algorithm determines the set of tasks that should be run concurrently and the number of processors to be allocated to each task. The processor allocation and scheduling decisionsmore » are made in an integrated manner and are based on several factors such as the structure of the taskgraph, the runtime estimates and scalability characteristics of the tasks and the inter-task data communication volumes. A locality conscious scheduling strategy is used to improve inter-task data reuse. Evaluation through simulations and actual executions of task graphs derived from real applications as well as synthetic graphs shows that our algorithm consistently generates schedules with lower makespan as compared to CPR and CPA, two previously proposed scheduling algorithms. Our algorithm also produces schedules that have lower makespan than pure taskand data-parallel schedules. For task graphs with known optimal schedules or lower bounds on the makespan, our algorithm generates schedules that are closer to the optima than other scheduling approaches.« less
Visual cue-specific craving is diminished in stressed smokers.
Cochran, Justinn R; Consedine, Nathan S; Lee, John M J; Pandit, Chinmay; Sollers, John J; Kydd, Robert R
2017-09-01
Craving among smokers is increased by stress and exposure to smoking-related visual cues. However, few experimental studies have tested both elicitors concurrently and considered how exposures may interact to influence craving. The current study examined craving in response to stress and visual cue exposure, separately and in succession, in order to better understand the relationship between craving elicitation and the elicitor. Thirty-nine smokers (21 males) who forwent smoking for 30 minutes were randomized to complete a stress task and a visual cue task in counterbalanced orders (creating the experimental groups); for the cue task, counterbalanced blocks of neutral, motivational control, and smoking images were presented. Self-reported craving was assessed after each block of visual stimuli and stress task, and after a recovery period following each task. As expected, the stress and smoking images generated greater craving than neutral or motivational control images (p < .001). Interactions indicated craving in those who completed the stress task first differed from those who completed the visual cues task first (p < .05), such that stress task craving was greater than all image type craving (all p's < .05) only if the visual cue task was completed first. Conversely, craving was stable across image types when the stress task was completed first. Findings indicate when smokers are stressed, visual cues have little additive effect on craving, and different types of visual cues elicit comparable craving. These findings may imply that once stressed, smokers will crave cigarettes comparably notwithstanding whether they are exposed to smoking image cues.
NASA Technical Reports Server (NTRS)
Gopher, D.; Wickens, C. D.
1975-01-01
A one dimensional compensatory tracking task and a digit processing reaction time task were combined in a three phase experiment designed to investigate tracking performance in time sharing. Adaptive techniques, elaborate feedback devices, and on line standardization procedures were used to adjust task difficulty to the ability of each individual subject and manipulate time sharing demands. Feedback control analysis techniques were employed in the description of tracking performance. The experimental results show that when the dynamics of a system are constrained, in such a manner that man machine system stability is no longer a major concern of the operator, he tends to adopt a first order control describing function, even with tracking systems of higher order. Attention diversion to a concurrent task leads to an increase in remnant level, or nonlinear power. This decrease in linearity is reflected both in the output magnitude spectra of the subjects, and in the linear fit of the amplitude ratio functions.
Multidisciplinary optimization for engineering systems - Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Multidisciplinary optimization for engineering systems: Achievements and potential
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1989-01-01
The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed.
Age-related differences in listening effort during degraded speech recognition
Ward, Kristina M.; Shen, Jing; Souza, Pamela E.; Grieco-Calub, Tina M.
2016-01-01
Objectives The purpose of the current study was to quantify age-related differences in executive control as it relates to dual-task performance, which is thought to represent listening effort, during degraded speech recognition. Design Twenty-five younger adults (18–24 years) and twenty-one older adults (56–82 years) completed a dual-task paradigm that consisted of a primary speech recognition task and a secondary visual monitoring task. Sentence material in the primary task was either unprocessed or spectrally degraded into 8, 6, or 4 spectral channels using noise-band vocoding. Performance on the visual monitoring task was assessed by the accuracy and reaction time of participants’ responses. Performance on the primary and secondary task was quantified in isolation (i.e., single task) and during the dual-task paradigm. Participants also completed a standardized psychometric measure of executive control, including attention and inhibition. Statistical analyses were implemented to evaluate changes in listeners’ performance on the primary and secondary tasks (1) per condition (unprocessed vs. vocoded conditions); (2) per task (baseline vs. dual task); and (3) per group (younger vs. older adults). Results Speech recognition declined with increasing spectral degradation for both younger and older adults when they performed the task in isolation or concurrently with the visual monitoring task. Older adults were slower and less accurate than younger adults on the visual monitoring task when performed in isolation, which paralleled age-related differences in standardized scores of executive control. When compared to single-task performance, older adults experienced greater declines in secondary-task accuracy, but not reaction time, than younger adults. Furthermore, results revealed that age-related differences in executive control significantly contributed to age-related differences on the visual monitoring task during the dual-task paradigm. Conclusions Older adults experienced significantly greater declines in secondary-task accuracy during degraded speech recognition than younger adults. These findings are interpreted as suggesting that older listeners expended greater listening effort than younger listeners, and may be partially attributed to age-related differences in executive control. PMID:27556526
NASA Technical Reports Server (NTRS)
Vidulich, M. A.; Wickens, C. D.
1985-01-01
Dissociations between subjective workload assessments and performance were investigated. The difficulty of a Sternberg memory search task was manipulated by varying stimulus presentation rate, stimulus discernibility, value of good performance, and automaticity of performance. All Sternberg task conditions were performed both alone and concurrently with a tracking task. Bipolar subjective workload assessments were collected. Dissociations between workload and performance were found related to automaticity, presentation rate, and motivation level. The results were interpreted as supporting the hypothesis that the specific cognitive processes responsible for subjective assessments can differ from those responsible for performance. The potential contamination these dissociations could inflict on operational workload assessments is discussed.
McBride, D M; Cherry, B J; Kee, D W; Neale, P L
1995-07-01
The study was conducted to clarify factors involved in dual-task finger-tapping interference. Left-handers, as assessed by hand-writing preference and left-hand baseline tapping advantage, tapped both alone and while solving anagrams. Even though the left-hand baseline tapping advantage was experimentally removed on some (adjusted) trials, greater left- than right-hand tapping interference was observed during concurrent task performance. This result coupled with previous findings for right-handed subjects [Kee and Cherry, Neuropsychologia, Vol. 28, pp. 313-316, 1990] indicates that lateralized interference effects are not merely due to initial baseline tapping differences as proposed by Willis and Goodwin [Neuropsychologia, Vol. 25, pp. 719-724, 1987].
COMP Superscalar, an interoperable programming framework
NASA Astrophysics Data System (ADS)
Badia, Rosa M.; Conejero, Javier; Diaz, Carlos; Ejarque, Jorge; Lezzi, Daniele; Lordan, Francesc; Ramon-Cortes, Cristian; Sirvent, Raul
2015-12-01
COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for (i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators. A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.
The Recruitment of Shifting and Inhibition in On-line Science and Mathematics Tasks.
Vosniadou, Stella; Pnevmatikos, Dimitrios; Makris, Nikos; Lepenioti, Despina; Eikospentaki, Kalliopi; Chountala, Anna; Kyrianakis, Giorgos
2018-06-13
Prior research has investigated the recruitment of inhibition in the use of science/mathematics concepts in tasks that require the rejection of a conflicting, nonscientific initial concept. The present research examines if inhibition is the only EF skill recruited in such tasks and investigates whether shifting is also involved. It also investigates whether inhibition and/or shifting are recruited in tasks in which the use of science/mathematics concepts does not require the rejection of an initial concept, or which require only the use of initial concepts. One hundred and thirty-three third- and fifth-grade children participated in two inhibition and shifting tasks and two science and mathematics conceptual understanding and conceptual change (CU&C) tasks. All the tasks were on-line, and performance was measured in accuracy and RTs. The CU&C tasks involved the use of initial concepts and of science/mathematics concepts which required conceptual changes for their initial formation. Only in one of the tasks the use of the science/mathematics concepts required the concurrent rejection of an initial concept. The results confirmed that in this task inhibition was recruited and also showed that the speed of shifting was a significant predictor of performance. Shifting was a significant predictor of performance in all the tasks, regardless of whether they involved science/mathematics or initial concepts. It is argued that shifting is likely to be recruited in complex tasks that require multiple comparisons of stimuli and the entertainment of different perspectives. Inhibition seems to be a more selective cognitive skill likely to be recruited when the use of science/mathematics concepts requires the rejection of a conflicting initial concept. © 2018 Cognitive Science Society, Inc.
Attention effects on the processing of task-relevant and task-irrelevant speech sounds and letters
Mittag, Maria; Inauri, Karina; Huovilainen, Tatu; Leminen, Miika; Salo, Emma; Rinne, Teemu; Kujala, Teija; Alho, Kimmo
2013-01-01
We used event-related brain potentials (ERPs) to study effects of selective attention on the processing of attended and unattended spoken syllables and letters. Participants were presented with syllables randomly occurring in the left or right ear and spoken by different voices and with a concurrent foveal stream of consonant letters written in darker or lighter fonts. During auditory phonological (AP) and non-phonological tasks, they responded to syllables in a designated ear starting with a vowel and spoken by female voices, respectively. These syllables occurred infrequently among standard syllables starting with a consonant and spoken by male voices. During visual phonological and non-phonological tasks, they responded to consonant letters with names starting with a vowel and to letters written in dark fonts, respectively. These letters occurred infrequently among standard letters with names starting with a consonant and written in light fonts. To examine genuine effects of attention and task on ERPs not overlapped by ERPs associated with target processing or deviance detection, these effects were studied only in ERPs to auditory and visual standards. During selective listening to syllables in a designated ear, ERPs to the attended syllables were negatively displaced during both phonological and non-phonological auditory tasks. Selective attention to letters elicited an early negative displacement and a subsequent positive displacement (Pd) of ERPs to attended letters being larger during the visual phonological than non-phonological task suggesting a higher demand for attention during the visual phonological task. Active suppression of unattended speech during the AP and non-phonological tasks and during the visual phonological tasks was suggested by a rejection positivity (RP) to unattended syllables. We also found evidence for suppression of the processing of task-irrelevant visual stimuli in visual ERPs during auditory tasks involving left-ear syllables. PMID:24348324
Uncapher, Melina R; Rugg, Michael D
2008-02-01
Considerable evidence suggests that attentional resources are necessary for the encoding of episodic memories, but the nature of the relationship between attention and neural correlates of encoding is unclear. Here we address this question using functional magnetic resonance imaging and a divided-attention paradigm in which competition for different types of attentional resources was manipulated. Fifteen volunteers were scanned while making animacy judgments to visually presented words and concurrently performing one of three tasks on auditorily presented words: male/female voice discrimination (control task), 1-back voice comparison (1-back task), or indoor/outdoor judgment (semantic task). The 1-back and semantic tasks were designed to compete for task-generic and task-specific attentional resources, respectively. Using the "remember/know" procedure, memory for the study words was assessed after 15 min. In the control condition, subsequent memory effects associated with later recollection were identified in the left dorsal inferior frontal gyrus and in the left hippocampus. These effects were differentially attenuated in the two more difficult divided-attention conditions. The effects of divided attention seem, therefore, to reflect impairments due to limitations at both task-generic and task-specific levels. Additionally, each of the two more difficult divided-attention conditions was associated with subsequent memory effects in regions distinct from those showing effects in the control condition. These findings suggest the engagement of alternative encoding processes to those engaged in the control task. The overall pattern of findings suggests that divided attention can impact later memory in different ways, and accordingly, that different attentional resources, including task-generic and task-specific resources, make distinct contributions to successful episodic encoding.
Queueing Network Models for Parallel Processing of Task Systems: an Operational Approach
NASA Technical Reports Server (NTRS)
Mak, Victor W. K.
1986-01-01
Computer performance modeling of possibly complex computations running on highly concurrent systems is considered. Earlier works in this area either dealt with a very simple program structure or resulted in methods with exponential complexity. An efficient procedure is developed to compute the performance measures for series-parallel-reducible task systems using queueing network models. The procedure is based on the concept of hierarchical decomposition and a new operational approach. Numerical results for three test cases are presented and compared to those of simulations.
Perrotin, Audrey; Isingrini, Michel; Souchay, Céline; Clarys, David; Taconnat, Laurence
2006-05-01
This research investigated adult age differences in a metamemory monitoring task-episodic feeling-of-knowing (FOK) and in an episodic memory task-cued recall. Executive functioning and processing speed were examined as mediators of these age differences. Young and elderly adults were administered an episodic FOK task, a cued recall task, executive tests and speed tests. Age-related decline was observed on all the measures. Correlation analyses revealed a pattern of double dissociation which indicates a specific relationship between executive score and FOK accuracy, and between speed score and cued recall. When executive functioning and processing speed were evaluated concurrently on FOK and cued recall variables, hierarchical regression analyses showed that executive score was a better mediator of age-related variance in FOK, and that speed score was the better mediator of age-related variance in cued recall.
On the role of working memory in spatial contextual cueing.
Travis, Susan L; Mattingley, Jason B; Dux, Paul E
2013-01-01
The human visual system receives more information than can be consciously processed. To overcome this capacity limit, we employ attentional mechanisms to prioritize task-relevant (target) information over less relevant (distractor) information. Regularities in the environment can facilitate the allocation of attention, as demonstrated by the spatial contextual cueing paradigm. When observers are exposed repeatedly to a scene and invariant distractor information, learning from earlier exposures enhances the search for the target. Here, we investigated whether spatial contextual cueing draws on spatial working memory resources and, if so, at what level of processing working memory load has its effect. Participants performed 2 tasks concurrently: a visual search task, in which the spatial configuration of some search arrays occasionally repeated, and a spatial working memory task. Increases in working memory load significantly impaired contextual learning. These findings indicate that spatial contextual cueing utilizes working memory resources.
Reduced auditory processing capacity during vocalization in children with Selective Mutism.
Arie, Miri; Henkin, Yael; Lamy, Dominique; Tetin-Schneider, Simona; Apter, Alan; Sadeh, Avi; Bar-Haim, Yair
2007-02-01
Because abnormal Auditory Efferent Activity (AEA) is associated with auditory distortions during vocalization, we tested whether auditory processing is impaired during vocalization in children with Selective Mutism (SM). Participants were children with SM and abnormal AEA, children with SM and normal AEA, and normally speaking controls, who had to detect aurally presented target words embedded within word lists under two conditions: silence (single task), and while vocalizing (dual task). To ascertain specificity of auditory-vocal deficit, effects of concurrent vocalizing were also examined during a visual task. Children with SM and abnormal AEA showed impaired auditory processing during vocalization relative to children with SM and normal AEA, and relative to control children. This impairment is specific to the auditory modality and does not reflect difficulties in dual task per se. The data extends previous findings suggesting that deficient auditory processing is involved in speech selectivity in SM.
Divided attention can enhance memory encoding: the attentional boost effect in implicit memory.
Spataro, Pietro; Mulligan, Neil W; Rossi-Arnaud, Clelia
2013-07-01
Distraction during encoding has long been known to disrupt later memory performance. Contrary to this long-standing result, we show that detecting an infrequent target in a dual-task paradigm actually improves memory encoding for a concurrently presented word, above and beyond the performance reached in the full-attention condition. This absolute facilitation was obtained in 2 perceptual implicit tasks (lexical decision and word fragment completion) but not in a conceptual implicit task (semantic classification). In the case of recognition memory, the facilitation was relative, bringing accuracy in the divided attention condition up to the level of accuracy in the full attention condition. The findings follow from the hypothesis that the attentional boost effect reflects enhanced visual encoding of the study stimulus consequent to the transient orienting response to the dual-task target. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Amputation and prosthesis implantation shape body and peripersonal space representations
Canzoneri, Elisa; Marzolla, Marilena; Amoresano, Amedeo; Verni, Gennaro; Serino, Andrea
2013-01-01
Little is known about whether and how multimodal representations of the body (BRs) and of the space around the body (Peripersonal Space, PPS) adapt to amputation and prosthesis implantation. In order to investigate this issue, we tested BR in a group of upper limb amputees by means of a tactile distance perception task and PPS by means of an audio-tactile interaction task. Subjects performed the tasks with stimulation either on the healthy limb or the stump of the amputated limb, while wearing or not wearing their prosthesis. When patients performed the tasks on the amputated limb, without the prosthesis, the perception of arm length shrank, with a concurrent shift of PPS boundaries towards the stump. Conversely, wearing the prosthesis increased the perceived length of the stump and extended the PPS boundaries so as to include the prosthetic hand, such that the prosthesis partially replaced the missing limb. PMID:24088746
Deep Multi-Task Learning for Tree Genera Classification
NASA Astrophysics Data System (ADS)
Ko, C.; Kang, J.; Sohn, G.
2018-05-01
The goal for our paper is to classify tree genera using airborne Light Detection and Ranging (LiDAR) data with Convolution Neural Network (CNN) - Multi-task Network (MTN) implementation. Unlike Single-task Network (STN) where only one task is assigned to the learning outcome, MTN is a deep learning architect for learning a main task (classification of tree genera) with other tasks (in our study, classification of coniferous and deciduous) simultaneously, with shared classification features. The main contribution of this paper is to improve classification accuracy from CNN-STN to CNN-MTN. This is achieved by introducing a concurrence loss (Lcd) to the designed MTN. This term regulates the overall network performance by minimizing the inconsistencies between the two tasks. Results show that we can increase the classification accuracy from 88.7 % to 91.0 % (from STN to MTN). The second goal of this paper is to solve the problem of small training sample size by multiple-view data generation. The motivation of this goal is to address one of the most common problems in implementing deep learning architecture, the insufficient number of training data. We address this problem by simulating training dataset with multiple-view approach. The promising results from this paper are providing a basis for classifying a larger number of dataset and number of classes in the future.
Effects of memory rehearsal on driver performance: experiment and theoretical account.
Salvucci, Dario D; Beltowska, Joanna
2008-10-01
We report an experiment and a theoretical analysis concerning the effects of an exclusively cognitive task, specifically a memory rehearsal task, on driver performance. Although recent work on driver distraction has elucidated the sometimes significant effects of cognitive processing on driver performance, these studies have typically mixed cognitive with perceptual and motor processing, making it difficult to isolate the effects of cognitive processing alone. We asked participants to drive in a driving simulator during only the rehearsal stage of a serial-recall memory task while we measured their ability to maintain a central lane position and respond to the illumination of a lead vehicle's brake lights. Memory rehearsal significantly affected drivers' steering performance as measured by lateral deviation from lane center, and it also significantly affected drivers' response time to the braking stimulus for the higher load memory task. These results lend support to a theoretical account of cognitive distraction provided by threaded cognition theory in terms of a cognitive bottleneck in procedural processing, and they also suggest that consideration of task urgency may be important in accounting for performance trade-offs among concurrent tasks. The experiment augments the current understanding of cognitive driver distraction and suggests that even exclusively cognitive secondary tasks may sometimes affect driver performance.
Postural control and attentional demand during adolescence.
Palluel, Estelle; Nougier, Vincent; Olivier, Isabelle
2010-10-28
In the present study we aimed to determine the attentional cost of postural control during adolescence by studying the influence of a cognitive task on concurrent postural control. 38 teenagers aged 12 to 17years and 13 young adults (mean age=26.1) stood barefoot on a force platform in a semi-tandem position. A dual-task paradigm consisted of performing a Stroop or a COUNTING BACKWARD task while simultaneously standing quietly on a firm or foam support surface. Different centre of pressure (CoP) measures were calculated (90% confidence ellipse area, mean velocity, root mean square on the antero-posterior (AP) and medio-lateral (ML) axes). The number and percentage of correct responses in the cognitive tasks were also recorded. Our results indicate (1) higher values of surface, ML mean velocity and ML RMS in the COUNTING BACKWARD task in adolescents aged 12 to 15 than in teenagers aged 16 to 17 and in adults, regardless of the complexity of the postural task and, (2) better cognitive performances in the Stroop than in the COUNTING BACKWARD task. The difference in the dual-task performance between the different age groups and particularly the existence of a turning point around 14-15years of age might be due to 1) difficulties in properly allocating attentional resources to two simultaneous tasks and/or, 2) the inability to manage increased cognitive requests because of a limited information processing capacity in adolescents aged 14-15years. Copyright © 2010 Elsevier B.V. All rights reserved.
Synaesthesia: when coloured sounds taste sweet.
Beeli, Gian; Esslen, Michaela; Jäncke, Lutz
2005-03-03
Synaesthesia is the involuntary physical experience of a cross-modal linkage--for example, hearing a tone (the inducing stimulus) evokes an additional sensation of seeing a colour (concurrent perception). Of the different types of synaesthesia, most have colour as the concurrent perception, with concurrent perceptions of smell or taste being rare. Here we describe the case of a musician who experiences different tastes in response to hearing different musical tone intervals, and who makes use of her synaesthetic sensations in the complex task of tone-interval identification. To our knowledge, this combination of inducing stimulus and concurrent perception has not been described before.
Wunderlich, Kara L; Vollmer, Timothy R
2017-07-01
The current study compared the use of serial and concurrent methods to train multiple exemplars when teaching receptive language skills, providing a systematic replication of Wunderlich, Vollmer, Donaldson, and Phillips (2014). Five preschoolers diagnosed with developmental delays or autism spectrum disorders were taught to receptively identify letters or letter sounds. Subjects learned the target stimuli slightly faster in concurrent training and a high degree of generalization was obtained following both methods of training, indicating that both the serial and concurrent methods of training are efficient and effective instructional procedures. © 2017 Society for the Experimental Analysis of Behavior.
The nature of working memory for Braille.
Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter
2010-05-26
Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents.
The Nature of Working Memory for Braille
Cohen, Henri; Voss, Patrice; Lepore, Franco; Scherzer, Peter
2010-01-01
Blind individuals have been shown on multiple occasions to compensate for their loss of sight by developing exceptional abilities in their remaining senses. While most research has been focused on perceptual abilities per se in the auditory and tactile modalities, recent work has also investigated higher-order processes involving memory and language functions. Here we examined tactile working memory for Braille in two groups of visually challenged individuals (completely blind subjects, CBS; blind with residual vision, BRV). In a first experimental procedure both groups were given a Braille tactile memory span task with and without articulatory suppression, while the BRV and a sighted group performed a visual version of the task. It was shown that the Braille tactile working memory (BrWM) of CBS individuals under articulatory suppression is as efficient as that of sighted individuals' visual working memory in the same condition. Moreover, the results suggest that BrWM may be more robust in the CBS than in the BRV subjects, thus pointing to the potential role of visual experience in shaping tactile working memory. A second experiment designed to assess the nature (spatial vs. verbal) of this working memory was then carried out with two new CBS and BRV groups having to perform the Braille task concurrently with a mental arithmetic task or a mental displacement of blocks task. We show that the disruption of memory was greatest when concurrently carrying out the mental displacement of blocks, indicating that the Braille tactile subsystem of working memory is likely spatial in nature in CBS. The results also point to the multimodal nature of working memory and show how experience can shape the development of its subcomponents. PMID:20520807
Working Memory in the Prefrontal Cortex
Funahashi, Shintaro
2017-01-01
The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley’s working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified. PMID:28448453
Blini, Elvio; Romeo, Zaira; Spironelli, Chiara; Pitteri, Marco; Meneghello, Francesca; Bonato, Mario; Zorzi, Marco
2016-11-01
Unilateral Spatial Neglect, the most dramatic manifestation of contralesional space unawareness, is a highly heterogeneous syndrome. The presence of neglect is related to core spatially lateralized deficits, but its severity is also modulated by several domain-general factors (such as alertness or sustained attention) and by task demands. We previously showed that a computer-based dual-task paradigm exploiting both lateralized and non-lateralized factors (i.e., attentional load/multitasking) better captures this complex scenario and exacerbates deficits for the contralesional space after right hemisphere damage. Here we asked whether multitasking would reveal contralesional spatial disorders in chronic left-hemisphere damaged (LHD) stroke patients, a population in which impaired spatial processing is thought to be uncommon. Ten consecutive LHD patients with no signs of right-sided neglect at standard neuropsychological testing performed a computerized spatial monitoring task with and without concurrent secondary tasks (i.e., multitasking). Severe contralesional (right) space unawareness emerged in most patients under attentional load in both the visual and auditory modalities. Multitasking affected the detection of contralesional stimuli both when presented concurrently with an ipsilesional one (i.e., extinction for bilateral targets) and when presented in isolation (i.e., left neglect for right-sided targets). No spatial bias emerged in a control group of healthy elderly participants, who performed at ceiling, as well as in a second control group composed of patients with Mild Cognitive Impairment. We conclude that the pathological spatial asymmetry in LHD patients cannot be attributed to a global reduction of cognitive resources but it is the consequence of unilateral brain damage. Clinical and theoretical implications of the load-dependent lack of awareness for contralesional hemispace following LHD are discussed. Copyright © 2016. Published by Elsevier Ltd.
Soylu, Firat; Newman, Sharlene D
2016-02-01
Fingers are used as canonical representations for numbers across cultures. In previous imaging studies, it was shown that arithmetic processing activates neural resources that are known to participate in finger movements. Additionally, in one dual-task study, it was shown that anatomically ordered finger tapping disrupts addition and subtraction more than multiplication, possibly due to a long-lasting effect of early finger counting experiences on the neural correlates and organization of addition and subtraction processes. How arithmetic task difficulty and tapping complexity affect the concurrent performance is still unclear. If early finger counting experiences have bearing on the neural correlates of arithmetic in adults, then one would expect anatomically and non-anatomically ordered tapping to have different interference effects, given that finger counting is usually anatomically ordered. To unravel these issues, we studied how (1) arithmetic task difficulty and (2) the complexity of the finger tapping sequence (anatomical vs. non-anatomical ordering) affect concurrent performance and use of key neural circuits using a mixed block/event-related dual-task fMRI design with adult participants. The results suggest that complexity of the tapping sequence modulates interference on addition, and that one-digit addition (fact retrieval), compared to two-digit addition (calculation), is more affected from anatomically ordered tapping. The region-of-interest analysis showed higher left angular gyrus BOLD response for one-digit compared to two-digit addition, and in no-tapping conditions than dual tapping conditions. The results support a specific association between addition fact retrieval and anatomically ordered finger movements in adults, possibly due to finger counting strategies that deploy anatomically ordered finger movements early in the development.
Gimmon, Yoav; Jacob, Grinshpon; Lenoble-Hoskovec, Constanze; Büla, Christophe; Melzer, Itshak
2013-01-01
Decline in gait stability has been associated with increased fall risk in older adults. Reliable and clinically feasible methods of gait instability assessment are needed. This study evaluated the relative and absolute reliability and concurrent validity of the testing procedure of the clinical version of the Narrow Path Walking Test (NPWT) under single task (ST) and dual task (DT) conditions. Thirty independent community-dwelling older adults (65-87 years) were tested twice. Participants were instructed to walk within the 6-m narrow path without stepping out. Trial time, number of steps, trial velocity, number of step errors, and number of cognitive task errors were determined. Intraclass correlation coefficients (ICCs) were calculated as indices of agreement, and a graphic approach called "mountain plot" was applied to help interpret the direction and magnitude of disagreements between testing procedures. Smallest detectable change and smallest real difference (SRD) were computed to determine clinically relevant improvement at group and individual levels, respectively. Concurrent validity was assessed using Performance Oriented Mobility Assessment Tool (POMA) and the Short Physical Performance Battery (SPPB). Test-retest agreement (ICC1,2) varied from 0.77 to 0.92 in ST and from 0.78 to 0.92 in DT conditions, with no apparent systematic differences between testing procedures demonstrated by the mountain plot graphs. Smallest detectable change and smallest real change were small for motor task performance and larger for cognitive errors. Significant correlations were observed for trial velocity and trial time with POMA and SPPB. The present results indicate that the NPWT testing procedure is highly reliable and reproducible. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Honeine, Jean-Louis; Crisafulli, Oscar; Schieppati, Marco
2017-02-01
The aim of this study was to test the effects of a concurrent cognitive task on the promptness of the sensorimotor integration and reweighting processes following addition and withdrawal of vision. Fourteen subjects stood in tandem while vision was passively added and removed. Subjects performed a cognitive task, consisting of counting backward in steps of three, or were "mentally idle." We estimated the time intervals following addition and withdrawal of vision at which body sway began to change. We also estimated the time constant of the exponential change in body oscillation until the new level of sway was reached, consistent with the current visual state. Under the mentally idle condition, mean latency was 0.67 and 0.46 s and the mean time constant was 1.27 and 0.59 s for vision addition and withdrawal, respectively. Following addition of vision, counting backward delayed the latency by about 300 ms, without affecting the time constant. Following withdrawal, counting backward had no significant effect on either latency or time constant. The extension by counting backward of the time interval to stabilization onset on addition of vision suggests a competition for allocation of cortical resources. Conversely, the absence of cognitive task effect on the rapid onset of destabilization on vision withdrawal, and on the relevant reweighting time course, advocates the intervention of a subcortical process. Diverting attention from a challenging standing task discloses a cortical supervision on the process of sensorimotor integration of new balance-stabilizing information. A subcortical process would instead organize the response to removal of the stabilizing sensory input. NEW & NOTEWORTHY This study is the first to test the effect of an arithmetic task on the time course of balance readjustment following visual withdrawal or addition. Performing such a cognitive task increases the time delay following addition of vision but has no effect on withdrawal dynamics. This suggests that sensorimotor integration following addition of a stabilizing signal is performed at a cortical level, whereas the response to its withdrawal is "automatic" and accomplished at a subcortical level. Copyright © 2017 the American Physiological Society.
Visual short-term memory always requires general attention.
Morey, Candice C; Bieler, Malte
2013-02-01
The role of attention in visual memory remains controversial; while some evidence has suggested that memory for binding between features demands no more attention than does memory for the same features, other evidence has indicated cognitive costs or mnemonic benefits for explicitly attending to bindings. We attempted to reconcile these findings by examining how memory for binding, for features, and for features during binding is affected by a concurrent attention-demanding task. We demonstrated that performing a concurrent task impairs memory for as few as two visual objects, regardless of whether each object includes one or more features. We argue that this pattern of results reflects an essential role for domain-general attention in visual memory, regardless of the simplicity of the to-be-remembered stimuli. We then discuss the implications of these findings for theories of visual working memory.
Iconic memory requires attention
Persuh, Marjan; Genzer, Boris; Melara, Robert D.
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features. PMID:22586389
Iconic memory requires attention.
Persuh, Marjan; Genzer, Boris; Melara, Robert D
2012-01-01
Two experiments investigated whether attention plays a role in iconic memory, employing either a change detection paradigm (Experiment 1) or a partial-report paradigm (Experiment 2). In each experiment, attention was taxed during initial display presentation, focusing the manipulation on consolidation of information into iconic memory, prior to transfer into working memory. Observers were able to maintain high levels of performance (accuracy of change detection or categorization) even when concurrently performing an easy visual search task (low load). However, when the concurrent search was made difficult (high load), observers' performance dropped to almost chance levels, while search accuracy held at single-task levels. The effects of attentional load remained the same across paradigms. The results suggest that, without attention, participants consolidate in iconic memory only gross representations of the visual scene, information too impoverished for successful detection of perceptual change or categorization of features.
The role of working memory in decoding emotions.
Phillips, Louise H; Channon, Shelley; Tunstall, Mary; Hedenstrom, Anna; Lyons, Kathryn
2008-04-01
Decoding facial expressions of emotion is an important aspect of social communication that is often impaired following psychiatric or neurological illness. However, little is known of the cognitive components involved in perceiving emotional expressions. Three dual task studies explored the role of verbal working memory in decoding emotions. Concurrent working memory load substantially interfered with choosing which emotional label described a facial expression (Experiment 1). A key factor in the magnitude of interference was the number of emotion labels from which to choose (Experiment 2). In contrast the ability to decide that two faces represented the same emotion in a discrimination task was relatively unaffected by concurrent working memory load (Experiment 3). Different methods of assessing emotion perception make substantially different demands on working memory. Implications for clinical disorders which affect both working memory and emotion perception are considered. (Copyright) 2008 APA.
Lavric, Aureliu; Mizon, Guy A; Monsell, Stephen
2008-09-01
Changing between cognitive tasks requires a reorganization of cognitive processes. Behavioural evidence suggests this can occur in advance of the stimulus. However, the existence or detectability of an anticipatory task-set reconfiguration process remains controversial, in part because several neuroimaging studies have not detected extra brain activity during preparation for a task switch relative to a task repeat. In contrast, electrophysiological studies have identified potential correlates of preparation for a task switch, but their interpretation is hindered by the scarcity of evidence on their relationship to performance. We aimed to: (i) identify the brain potential(s) reflecting effective preparation for a task-switch in a task-cuing paradigm that shows clear behavioural evidence for advance preparation, and (ii) characterize this activity by means of temporal segmentation and source analysis. Our results show that when advance preparation was effective (as indicated by fast responses), a protracted switch-related component, manifesting itself as widespread posterior positivity and concurrent right anterior negativity, preceded stimulus onset for approximately 300 ms, with sources primarily in the left lateral frontal, right inferior frontal and temporal cortices. When advance preparation was ineffective (as implied by slow responses), or made impossible by a short cue-stimulus interval (CSI), a similar component, with lateral prefrontal generators, peaked approximately 300 ms poststimulus. The protracted prestimulus component (which we show to be distinct from P3 or contingent negative variation, CNV) also correlated over subjects with a behavioural measure of preparation. Furthermore, its differential lateralization for word and picture cues was consistent with a role for verbal self-instruction in preparatory task-set reconfiguration.
Prehn, Kristin; Schulze, Lars; Rossmann, Sabine; Berger, Christoph; Vohs, Knut; Fleischer, Monika; Hauenstein, Karlheinz; Keiper, Peter; Domes, Gregor; Herpertz, Sabine C
2013-02-01
OBJECTIVE. In the present study, we aimed to investigate the influence of concurrently presented emotional stimuli on cognitive task processing in violent criminal offenders primarily characterized by affective instability. METHODS. Fifteen male criminal offenders with antisocial and borderline personality disorder (ASPD and BPD) and 17 healthy controls underwent functional magnetic resonance imaging (fMRI) while performing a working memory task with low and high working memory load. In a second experimental run, to investigate the interaction of emotion and cognition, we presented emotionally neutral, low, or high salient social scenes in the background of the task. RESULTS. During the memory task without pictures, both groups did not differ in general task performance and neural representation of working memory processes. During the memory task with emotional background pictures, however, ASPD-BPD subjects compared to healthy controls showed delayed responses and enhanced activation of the left amygdala in the presence of emotionally high salient pictures independent of working memory load. CONCLUSIONS. These results illustrate an interaction of emotion and cognition in affective instable individuals with enhanced reactivity to emotionally salient stimuli which might be an important factor regarding the understanding of aggressive and violent behaviour in these individuals.
Anodal tDCS applied during multitasking training leads to transferable performance gains.
Filmer, Hannah L; Lyons, Maxwell; Mattingley, Jason B; Dux, Paul E
2017-10-11
Cognitive training can lead to performance improvements that are specific to the tasks trained. Recent research has suggested that transcranial direct current stimulation (tDCS) applied during training of a simple response-selection paradigm can broaden performance benefits to an untrained task. Here we assessed the impact of combined tDCS and training on multitasking, stimulus-response mapping specificity, response-inhibition, and spatial attention performance in a cohort of healthy adults. Participants trained over four days with concurrent tDCS - anodal, cathodal, or sham - applied to the left prefrontal cortex. Immediately prior to, 1 day after, and 2 weeks after training, performance was assessed on the trained multitasking paradigm, an untrained multitasking paradigm, a go/no-go inhibition task, and a visual search task. Training combined with anodal tDCS, compared with training plus cathodal or sham stimulation, enhanced performance for the untrained multitasking paradigm and visual search tasks. By contrast, there were no training benefits for the go/no-go task. Our findings demonstrate that anodal tDCS combined with multitasking training can extend to untrained multitasking paradigms as well as spatial attention, but with no extension to the domain of response inhibition.
Qureshi, Adam W; Apperly, Ian A; Samson, Dana
2010-11-01
Previous research suggests that perspective-taking and other "theory of mind" processes may be cognitively demanding for adult participants, and may be disrupted by concurrent performance of a secondary task. In the current study, a Level-1 visual perspective task was administered to 32 adults using a dual-task paradigm in which the secondary task tapped executive function. Results suggested that the secondary task did not affect the calculation of perspective, but did affect the selection of the relevant (Self or Other) perspective for a given trial. This is the first direct evidence of a cognitively efficient process for "theory of mind" in adults that operates independently of executive function. The contrast between this and previous findings points to a distinction between simple perspective-taking and the more complex and cognitively demanding abilities more typically examined in studies of "theory of mind". It is suggested that these findings may provide a parsimonious explanation of the success of infants on 'indirect' measures of perspective-taking that do not explicitly require selection of the relevant perspective. Copyright © 2010 Elsevier B.V. All rights reserved.
Increasing Optimism Protects Against Pain-Induced Impairment in Task-Shifting Performance.
Boselie, Jantine J L M; Vancleef, Linda M G; Peters, Madelon L
2017-04-01
Persistent pain can lead to difficulties in executive task performance. Three core executive functions that are often postulated are inhibition, updating, and shifting. Optimism, the tendency to expect that good things happen in the future, has been shown to protect against pain-induced performance deterioration in executive function updating. This study tested whether this protective effect of a temporary optimistic state by means of a writing and visualization exercise extended to executive function shifting. A 2 (optimism: optimism vs no optimism) × 2 (pain: pain vs no pain) mixed factorial design was conducted. Participants (N = 61) completed a shifting task once with and once without concurrent painful heat stimulation after an optimism or neutral manipulation. Results showed that shifting performance was impaired when experimental heat pain was applied during task execution, and that optimism counteracted pain-induced deterioration in task-shifting performance. Experimentally-induced heat pain impairs shifting task performance and manipulated optimism or induced optimism counteracted this pain-induced performance deterioration. Identifying psychological factors that may diminish the negative effect of persistent pain on the ability to function in daily life is imperative. Copyright © 2016 American Pain Society. Published by Elsevier Inc. All rights reserved.
Methods for design and evaluation of integrated hardware-software systems for concurrent computation
NASA Technical Reports Server (NTRS)
Pratt, T. W.
1985-01-01
Research activities and publications are briefly summarized. The major tasks reviewed are: (1) VAX implementation of the PISCES parallel programming environment; (2) Apollo workstation network implementation of the PISCES environment; (3) FLEX implementation of the PISCES environment; (4) sparse matrix iterative solver in PSICES Fortran; (5) image processing application of PISCES; and (6) a formal model of concurrent computation being developed.
NASA Technical Reports Server (NTRS)
Kessel, C.; Wickens, C. D.
1978-01-01
The development of the internal model as it pertains to the detection of step changes in the order of control dynamics is investigated for two modes of participation: whether the subjects are actively controlling those dynamics or are monitoring an autopilot controlling them. A transfer of training design was used to evaluate the relative contribution of proprioception and visual information to the overall accuracy of the internal model. Sixteen subjects either tracked or monitored the system dynamics as a 2-dimensional pursuit display under single task conditions and concurrently with a sub-critical tracking task at two difficulty levels. Detection performance was faster and more accurate in the manual as opposed to the autopilot mode. The concurrent tracking task produced a decrement in detection performance for all conditions though this was more marked for the manual mode. The development of an internal model in the manual mode transferred positively to the automatic mode producing enhanced detection performance. There was no transfer from the internal model developed in the automatic mode to the manual mode.
Sweat, Noah W; Bates, Larry W; Hendricks, Peter S
2016-01-01
Developing methods for improving creativity is of broad interest. Classic psychedelics may enhance creativity; however, the underlying mechanisms of action are unknown. This study was designed to assess whether a relationship exists between naturalistic classic psychedelic use and heightened creative problem-solving ability and if so, whether this is mediated by lifetime mystical experience. Participants (N = 68) completed a survey battery assessing lifetime mystical experience and circumstances surrounding the most memorable experience. They were then administered a functional fixedness task in which faster completion times indicate greater creative problem-solving ability. Participants reporting classic psychedelic use concurrent with mystical experience (n = 11) exhibited significantly faster times on the functional fixedness task (Cohen's d = -.87; large effect) and significantly greater lifetime mystical experience (Cohen's d = .93; large effect) than participants not reporting classic psychedelic use concurrent with mystical experience. However, lifetime mystical experience was unrelated to completion times on the functional fixedness task (standardized β = -.06), and was therefore not a significant mediator. Classic psychedelic use may increase creativity independent of its effects on mystical experience. Maximizing the likelihood of mystical experience may need not be a goal of psychedelic interventions designed to boost creativity.
Turn Off the Music! Music Impairs Visual Associative Memory Performance in Older Adults
Reaves, Sarah; Graham, Brittany; Grahn, Jessica; Rabannifard, Parissa; Duarte, Audrey
2016-01-01
Purpose of the Study: Whether we are explicitly listening to it or not, music is prevalent in our environment. Surprisingly, little is known about the effect of environmental music on concurrent cognitive functioning and whether young and older adults are differentially affected by music. Here, we investigated the impact of background music on a concurrent paired associate learning task in healthy young and older adults. Design and Methods: Young and older adults listened to music or to silence while simultaneously studying face–name pairs. Participants’ memory for the pairs was then tested while listening to either the same or different music. Participants also made subjective ratings about how distracting they found each song to be. Results: Despite the fact that all participants rated music as more distracting to their performance than silence, only older adults’ associative memory performance was impaired by music. These results are most consistent with the theory that older adults’ failure to inhibit processing of distracting task-irrelevant information, in this case background music, contributes to their memory impairments. Implications: These data have important practical implications for older adults’ ability to perform cognitively demanding tasks even in what many consider to be an unobtrusive environment. PMID:26035876
A test of the orthographic recoding hypothesis
NASA Astrophysics Data System (ADS)
Gaygen, Daniel E.
2003-04-01
The Orthographic Recoding Hypothesis [D. E. Gaygen and P. A. Luce, Percept. Psychophys. 60, 465-483 (1998)] was tested. According to this hypothesis, listeners recognize spoken words heard for the first time by mapping them onto stored representations of the orthographic forms of the words. Listeners have a stable orthographic representation of words, but no phonological representation, when those words have been read frequently but never heard or spoken. Such may be the case for low frequency words such as jargon. Three experiments using visually and auditorily presented nonword stimuli tested this hypothesis. The first two experiments were explicit tests of memory (old-new tests) for words presented visually. In the first experiment, the recognition of auditorily presented nonwords was facilitated when they previously appeared on a visually presented list. The second experiment was similar, but included a concurrent articulation task during a visual word list presentation, thus preventing covert rehearsal of the nonwords. The results were similar to the first experiment. The third experiment was an indirect test of memory (auditory lexical decision task) for visually presented nonwords. Auditorily presented nonwords were identified as nonwords significantly more slowly if they had previously appeared on the visually presented list accompanied by a concurrent articulation task.
Takegata, Rika; Brattico, Elvira; Tervaniemi, Mari; Varyagina, Olga; Näätänen, Risto; Winkler, István
2005-09-01
The role of attention in conjoining features of an object has been a topic of much debate. Studies using the mismatch negativity (MMN), an index of detecting acoustic deviance, suggested that the conjunctions of auditory features are preattentively represented in the brain. These studies, however, used sequentially presented sounds and thus are not directly comparable with visual studies of feature integration. Therefore, the current study presented an array of spatially distributed sounds to determine whether the auditory features of concurrent sounds are correctly conjoined without focal attention directed to the sounds. Two types of sounds differing from each other in timbre and pitch were repeatedly presented together while subjects were engaged in a visual n-back working-memory task and ignored the sounds. Occasional reversals of the frequent pitch-timbre combinations elicited MMNs of a very similar amplitude and latency irrespective of the task load. This result suggested preattentive integration of auditory features. However, performance in a subsequent target-search task with the same stimuli indicated the occurrence of illusory conjunctions. The discrepancy between the results obtained with and without focal attention suggests that illusory conjunctions may occur during voluntary access to the preattentively encoded object representations.
Just one look: Direct gaze briefly disrupts visual working memory.
Wang, J Jessica; Apperly, Ian A
2017-04-01
Direct gaze is a salient social cue that affords rapid detection. A body of research suggests that direct gaze enhances performance on memory tasks (e.g., Hood, Macrae, Cole-Davies, & Dias, Developmental Science, 1, 67-71, 2003). Nonetheless, other studies highlight the disruptive effect direct gaze has on concurrent cognitive processes (e.g., Conty, Gimmig, Belletier, George, & Huguet, Cognition, 115(1), 133-139, 2010). This discrepancy raises questions about the effects direct gaze may have on concurrent memory tasks. We addressed this topic by employing a change detection paradigm, where participants retained information about the color of small sets of agents. Experiment 1 revealed that, despite the irrelevance of the agents' eye gaze to the memory task at hand, participants were worse at detecting changes when the agents looked directly at them compared to when the agents looked away. Experiment 2 showed that the disruptive effect was relatively short-lived. Prolonged presentation of direct gaze led to recovery from the initial disruption, rather than a sustained disruption on change detection performance. The present study provides the first evidence that direct gaze impairs visual working memory with a rapidly-developing yet short-lived effect even when there is no need to attend to agents' gaze.
Howard, Charla L; Perry, Bonnie; Chow, John W; Wallace, Chris; Stokic, Dobrivoje S
2017-11-01
Sensorimotor impairments after limb amputation impose a threat to stability. Commonly described strategies for maintaining stability are the posture first strategy (prioritization of balance) and posture second strategy (prioritization of concurrent tasks). The existence of these strategies was examined in 13 below-knee prosthesis users and 15 controls during dual-task standing under increasing postural and cognitive challenge by evaluating path length, 95% sway area, and anterior-posterior and medial-lateral amplitudes of the center of pressure. The subjects stood on two force platforms under usual (hard surface/eyes open) and difficult (soft surface/eyes closed) conditions, first alone and while performing a cognitive task without and then with instruction on cognitive prioritization. During standing alone, sway was not significantly different between groups. After adding the cognitive task without prioritization instruction, prosthesis users increased sway more under the dual-task than single-task standing (p ≤ 0.028) during both usual and difficult conditions, favoring the posture second strategy. Controls, however, reduced dual-task sway under a greater postural challenge (p ≤ 0.017), suggesting the posture first strategy. With prioritization of the cognitive task, sway was unchanged or reduced in prosthesis users, suggesting departure from the posture second strategy, whereas controls maintained the posture first strategy. Individual analysis of dual tasking revealed that greater postural demand in controls and greater cognitive challenge in prosthesis users led to both reduced sway and improved cognitive performance, suggesting cognitive-motor facilitation. Thus, activation of additional resources through increased alertness, rather than posture prioritization, may explain dual-task performance in both prosthesis users and controls under increasing postural and cognitive challenge.
Movement Interferes with Visuospatial Working Memory during the Encoding: An ERP Study
Gunduz Can, Rumeysa; Schack, Thomas; Koester, Dirk
2017-01-01
The present study focuses on the functional interactions of cognition and manual action control. Particularly, we investigated the neurophysiological correlates of the dual-task costs of a manual-motor task (requiring grasping an object, holding it, and subsequently placing it on a target) for working memory (WM) domains (verbal and visuospatial) and processes (encoding and retrieval). Thirty participants were tested in a cognitive-motor dual-task paradigm, in which a single block (a verbal or visuospatial WM task) was compared with a dual block (concurrent performance of a WM task and a motor task). Event-related potentials (ERPs) were analyzed separately for the encoding and retrieval processes of verbal and visuospatial WM domains both in single and dual blocks. The behavioral analyses show that the motor task interfered with WM and decreased the memory performance. The performance decrease was larger for the visuospatial task compared with the verbal task, i.e., domain-specific memory costs were obtained. The ERP analyses show the domain-specific interference also at the neurophysiological level, which is further process-specific to encoding. That is, comparing the patterns of WM-related ERPs in the single block and dual block, we showed that visuospatial ERPs changed only for the encoding process when a motor task was performed at the same time. Generally, the present study provides evidence for domain- and process-specific interactions of a prepared manual-motor movement with WM (visuospatial domain during the encoding process). This study, therefore, provides an initial neurophysiological characterization of functional interactions of WM and manual actions in a cognitive-motor dual-task setting, and contributes to a better understanding of the neuro-cognitive mechanisms of motor action control. PMID:28611714
Reliability of functional MR imaging with word-generation tasks for mapping Broca's area.
Brannen, J H; Badie, B; Moritz, C H; Quigley, M; Meyerand, M E; Haughton, V M
2001-10-01
Functional MR (fMR) imaging of word generation has been used to map Broca's area in some patients selected for craniotomy. The purpose of this study was to measure the reliability, precision, and accuracy of word-generation tasks to identify Broca's area. The Brodmann areas activated during performance of word-generation tasks were tabulated in 34 consecutive patients referred for fMR imaging mapping of language areas. In patients performing two iterations of the letter word-generation tasks, test-retest reliability was quantified by using the concurrence ratio (CR), or the number of voxels activated by each iteration in proportion to the average number of voxels activated from both iterations of the task. Among patients who also underwent category or antonym word generation or both, the similarity of the activation from each task was assessed with the CR. In patients who underwent electrocortical stimulation (ECS) mapping of speech function during craniotomy while awake, the sites with speech function were compared with the locations of activation found during fMR imaging of word generation. In 31 of 34 patients, activation was identified in the inferior frontal gyri or middle frontal gyri or both in Brodmann areas 9, 44, 45, or 46, unilaterally or bilaterally, with one or more of the tasks. Activation was noted in the same gyri when the patient performed a second iteration of the letter word-generation task or second task. The CR for pixel precision in a single section averaged 49%. In patients who underwent craniotomy while awake, speech areas located with ECS coincided with areas of the brain activated during a word-generation task. fMR imaging with word-generation tasks produces technically satisfactory maps of Broca's area, which localize the area accurately and reliably.
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict.
Pratt, Nikki; Willoughby, Adrian; Swick, Diane
2011-01-01
Working memory and attention interact in a way that enables us to focus on relevant items and maintain current goals. The influence of working memory on attention has been noted in several studies using dual task designs. Multitasking increases the demands on working memory and reduces the amount of resources available for cognitive control functions such as resolving stimulus conflict. However, few studies have investigated the temporal activation of the cortex while multitasking. The present study addresses the extent to which working memory load influences early (P1) and late (P300) attention-sensitive event-related potential components using a dual task paradigm. Participants performed an arrow flanker task alone (single task condition) or concurrently with a Sternberg memory task (dual task condition). In the flanker task, participants responded to the direction of a central arrow surrounded by congruent or incongruent arrows. In the dual task condition, participants were presented with a Sternberg task that consisted of either four or seven consonants to remember prior to a short block of flanker trials. Participants were slower and less accurate on incongruent versus congruent trials. Furthermore, accuracy on incongruent trials was reduced in both dual task conditions. Likewise, P300 amplitude to incongruent flanker stimuli decreased when working memory load increased. These findings suggest that interference from incongruent flankers was more difficult to suppress when working memory was taxed. In addition, P1 amplitude was diminished on all flanker trials in the dual task condition. This result indicates that top-down attentional control over early visual processing is diminished by increasing demands on working memory. Both the behavioral and electrophysiological results suggest that working memory is critical in maintaining attentional focus and resolving conflict. PMID:21716633
Sedighi, Alireza; Ulman, Sophia M.
2018-01-01
The need to complete multiple tasks concurrently is a common occurrence both daily life and in occupational activities, which can often include simultaneous cognitive and physical demands. As one example, there is increasing availability of head-worn display technologies that can be employed when a user is mobile (e.g., while walking). This new method of information presentation may, however, introduce risks of adverse outcomes such as a decrement to gait performance. The goal of this study was thus to quantify the effects of a head-worn display (i.e., smart glasses) on motor variability during gait and to compare these effects with those of other common information displays (i.e., smartphone and paper-based system). Twenty participants completed four walking conditions, as a single task and in three dual-task conditions (three information displays). In the dual-task conditions, the information display was used to present several cognitive tasks. Three different measures were used to quantify variability in gait parameters for each walking condition (using the cycle-to-cycle standard deviation, sample entropy, and the “goal-equivalent manifold” approach). Our results indicated that participants used less adaptable gait strategies in dual-task walking using the paper-based system and smartphone conditions compared with single-task walking. Gait performance, however, was less affected during dual-task walking with the smart glasses. We conclude that the risk of an adverse gait event (e.g., a fall) in head-down walking conditions (i.e., the paper-based system and smartphone conditions) were higher than in single-task walking, and that head-worn displays might help reduce the risk of such events during dual-task gait conditions. PMID:29630614
Examining the locus of age effects on complex span tasks.
McCabe, Jennifer; Hartman, Marilyn
2003-09-01
To investigate the locus of age effects on complex span tasks, the authors evaluated the contributions of working memory functions and processing speed. Age differences were found in measures of storage capacity, language processing speed, and lower level speed. Statistically controlling for each of these in hierarchical regressions substantially reduced, but did not eliminate, the complex span age effect. Accounting for lower level speed and storage, however, removed essentially the entire age effect, suggesting that both functions play important and independent roles. Additional evidence for the role of storage capacity was the absence of complex span age differences with span size calibrated to individual word span performance. Explanations for age differences based on inhibition and concurrent task performamce were not supported.
García-Rodríguez, Beatriz; Guillén, Carmen Casares; Barba, Rosa Jurado; io Valladolid, Gabriel Rub; Arjona, José Antonio Molina; Ellgring, Heiner
2012-02-15
There is evidence that visuo-spatial capacity can become overloaded when processing a secondary visual task (Dual Task, DT), as occurs in daily life. Hence, we investigated the influence of the visuo-spatial interference in the identification of emotional facial expressions (EFEs) in early stages of Parkinson's disease (PD). We compared the identification of 24 emotional faces that illustrate six basic emotions in, unmedicated recently diagnosed PD patients (16) and healthy adults (20), under two different conditions: a) simple EFE identification, and b) identification with a concurrent visuo-spatial task (Corsi Blocks). EFE identification by PD patients was significantly worse than that of healthy adults when combined with another visual stimulus. Published by Elsevier B.V.
The influence of cognitive load on spatial search performance.
Longstaffe, Kate A; Hood, Bruce M; Gilchrist, Iain D
2014-01-01
During search, executive function enables individuals to direct attention to potential targets, remember locations visited, and inhibit distracting information. In the present study, we investigated these executive processes in large-scale search. In our tasks, participants searched a room containing an array of illuminated locations embedded in the floor. The participants' task was to press the switches at the illuminated locations on the floor so as to locate a target that changed color when pressed. The perceptual salience of the search locations was manipulated by having some locations flashing and some static. Participants were more likely to search at flashing locations, even when they were explicitly informed that the target was equally likely to be at any location. In large-scale search, attention was captured by the perceptual salience of the flashing lights, leading to a bias to explore these targets. Despite this failure of inhibition, participants were able to restrict returns to previously visited locations, a measure of spatial memory performance. Participants were more able to inhibit exploration to flashing locations when they were not required to remember which locations had previously been visited. A concurrent digit-span memory task further disrupted inhibition during search, as did a concurrent auditory attention task. These experiments extend a load theory of attention to large-scale search, which relies on egocentric representations of space. High cognitive load on working memory leads to increased distractor interference, providing evidence for distinct roles for the executive subprocesses of memory and inhibition during large-scale search.
Cooperating Expert Systems For Space Station Power Distribution Management
NASA Astrophysics Data System (ADS)
Nguyen, T. A.; Chiou, W. C.
1987-02-01
In a complex system such as the manned Space Station, it is deem necessary that many expert systems must perform tasks in a concurrent and cooperative manner. An important question arise is: what cooperative-task-performing models are appropriate for multiple expert systems to jointly perform tasks. The solution to this question will provide a crucial automation design criteria for the Space Station complex systems architecture. Based on a client/server model for performing tasks, we have developed a system that acts as a front-end to support loosely-coupled communications between expert systems running on multiple Symbolics machines. As an example, we use two ART*-based expert systems to demonstrate the concept of parallel symbolic manipulation for power distribution management and dynamic load planner/scheduler in the simulated Space Station environment. This on-going work will also explore other cooperative-task-performing models as alternatives which can evaluate inter and intra expert system communication mechanisms. It will be served as a testbed and a bench-marking tool for other Space Station expert subsystem communication and information exchange.
Perceptual load interacts with stimulus processing across sensory modalities.
Klemen, J; Büchel, C; Rose, M
2009-06-01
According to perceptual load theory, processing of task-irrelevant stimuli is limited by the perceptual load of a parallel attended task if both the task and the irrelevant stimuli are presented to the same sensory modality. However, it remains a matter of debate whether the same principles apply to cross-sensory perceptual load and, more generally, what form cross-sensory attentional modulation in early perceptual areas takes in humans. Here we addressed these questions using functional magnetic resonance imaging. Participants undertook an auditory one-back working memory task of low or high perceptual load, while concurrently viewing task-irrelevant images at one of three object visibility levels. The processing of the visual and auditory stimuli was measured in the lateral occipital cortex (LOC) and auditory cortex (AC), respectively. Cross-sensory interference with sensory processing was observed in both the LOC and AC, in accordance with previous results of unisensory perceptual load studies. The present neuroimaging results therefore warrant the extension of perceptual load theory from a unisensory to a cross-sensory context: a validation of this cross-sensory interference effect through behavioural measures would consolidate the findings.
Falls Risk and Simulated Driving Performance in Older Adults
Gaspar, John G.; Neider, Mark B.; Kramer, Arthur F.
2013-01-01
Declines in executive function and dual-task performance have been related to falls in older adults, and recent research suggests that older adults at risk for falls also show impairments on real-world tasks, such as crossing a street. The present study examined whether falls risk was associated with driving performance in a high-fidelity simulator. Participants were classified as high or low falls risk using the Physiological Profile Assessment and completed a number of challenging simulated driving assessments in which they responded quickly to unexpected events. High falls risk drivers had slower response times (~2.1 seconds) to unexpected events compared to low falls risk drivers (~1.7 seconds). Furthermore, when asked to perform a concurrent cognitive task while driving, high falls risk drivers showed greater costs to secondary task performance than did low falls risk drivers, and low falls risk older adults also outperformed high falls risk older adults on a computer-based measure of dual-task performance. Our results suggest that attentional differences between high and low falls risk older adults extend to simulated driving performance. PMID:23509627
NASA Astrophysics Data System (ADS)
Häner, R.; Wächter, J.
2012-04-01
The project Collaborative, Complex, and Critical Decision-Support in Evolving Crises (TRIDEC), co-funded by the European Commission in its Seventh Framework Programme aims at establishing a network of dedicated, autonomous legacy systems for large-scale concurrent management of natural crises utilising heterogeneous information resources. TRIDEC's architecture reflects the System-of- Systems (SoS) approach which is based on task-oriented systems, cooperatively interacting as a collective in a common environment. The design of the TRIDEC-SoS follows the principles of service-oriented and event-driven architectures (SOA & EDA) exceedingly focusing on a loose coupling of the systems. The SoS approach in combination with SOA and EDA has the distinction of being able to provide novel and coherent behaviours and features resulting from a process of dynamic self-organisation. Self-organisation is a process without the need for a central or external coordinator controlling it through orchestration. It is the result of enacted concurrent tasks in a collaborative environment of geographically distributed systems. Although the individual systems act completely autonomously, their interactions expose emergent structures of evolving nature. Particularly, the fact is important that SoS are inherently able to evolve on all facets of intelligent information management. This includes adaptive properties, e.g. seamless integration of new resource types or the adoption of new fields in natural crisis management. In the case of TRIDEC with various heterogeneous participants involved, concurrent information processing is of fundamental importance because of the achievable improvements regarding cooperative decision making. Collaboration within TRIDEC will be implemented with choreographies and conversations. Choreographies specify the expected behaviour between two or more participants; conversations describe the message exchange between all participants emphasising their logical relation. The TRIDEC choreography will be based on the definition of Behavioural Interfaces and Service Level Agreements, which describe the interactions of all participants involved in the collaborative process by binding the tasks of dedicated systems to high-level business processes. All methods of a Behavioural Interfaces can be assigned dynamically to the activities of a business process. This allows it to utilise a system during the run-time of a business process and thus, for example enabling task balancing or the delegation of responsibilities. Since the individual parts of a SoS are normally managed independently and operate autonomously because of their geographical distribution it is of vital importance to ensure the reliability (robustness and correctness) of their interactions which will be achieved by applying the Design by Contract (DbC) approach to the TRIDEC architecture. Key challenge for TRIDEC is establishing a reliable adaptive system which exposes an emergent behaviour, for example intelligent monitoring strategies or dynamic system adaptions even in case of partly system failures. It is essential for TRIDEC that for example redundant parts of the system can take over tasks from defect components in a process of re-organising its network.
Zhou, Diange; Zhou, Junhong; Chen, Hu; Manor, Brad; Lin, Jianhao; Zhang, Jue
2015-08-01
Transcranial direct current stimulation (tDCS) targeting the prefrontal cortex reduces the size and speed of standing postural sway in younger adults, particularly when performing a cognitive dual task. Here, we hypothesized that tDCS would alter the complex dynamics of postural sway as quantified by multiscale entropy (MSE). Twenty healthy older adults completed two study visits. Center-of-pressure (COP) fluctuations were recorded during single-task (i.e., quiet standing) and dual-task (i.e., standing while performing serial subtractions) conditions, both before and after a 20-min session of real or sham tDCS. MSE was used to estimate COP complexity within each condition. The percentage change in complexity from single- to dual-task conditions (i.e., dual-task cost) was also calculated. Before tDCS, COP complexity was lower (p = 0.04) in the dual-task condition as compared to the single-task condition. Neither real nor sham tDCS altered complexity in the single-task condition. As compared to sham tDCS, real tDCS increased complexity in the dual-task condition (p = 0.02) and induced a trend toward improved serial subtraction performance (p = 0.09). Moreover, those subjects with lower dual-task COP complexity at baseline exhibited greater percentage increases in complexity following real tDCS (R = -0.39, p = 0.05). Real tDCS also reduced the dual-task cost to complexity (p = 0.02), while sham stimulation had no effect. A single session of tDCS targeting the prefrontal cortex increased standing postural sway complexity with concurrent non-postural cognitive task. This form of noninvasive brain stimulation may be a safe strategy to acutely improve postural control by enhancing the system's capacity to adapt to stressors.
The disruptive effects of pain on multitasking in a virtual errands task.
Moore, David J; Law, Anna S
2017-07-01
Pain is known to have a disruptive effect on cognitive performance, but prior studies have used highly constrained laboratory tasks that lack ecological validity. In everyday life people are required to complete more complex sets of tasks, prioritising task completion and recalling lists of tasks which need to be completed, and these tasks continue to be attempted during episodes or states of pain. The present study therefore examined the impact of thermal induced pain on a simulated errand task. Fifty-five healthy adults (36 female) performed the Edinburgh Virtual Errands Task (EVET) either during a painful thermal sensation or with no concurrent pain. Participants also completed the Experience of Cognitive Intrusion of Pain (ECIP) questionnaire to measure their self-reported cognitive impact of pain in general life. Participants who completed the EVET task in pain and who self-reported high intrusion of pain made significantly more errors than those who reported lower intrusion on the ECIP. Findings here support the growing literature that suggests that pain has a significant impact on cognitive performance. Furthermore, these findings support the developing literature suggesting that this relationship is complex when considering real world cognition, and that self-report on the ECIP relates well to performance on a task designed to reflect the complexities of everyday living. If extrapolated to chronic pain populations, these data suggest that pain during complex multitasking performance may have a significant impact on the number of errors made. For people highly vulnerable to cognitive intrusion by pain, this may result in errors such as selecting the wrong location or item to perform tasks, or forgetting to perform these tasks at the correct time. If these findings are shown to extend to chronic pain populations then occupational support to manage complex task performance, using for example diaries/electronic reminders, may help to improve everyday abilities. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Stelzel, Christine; Schauenburg, Gesche; Rapp, Michael A.; Heinzel, Stephan; Granacher, Urs
2017-01-01
Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19–30 and 66–84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks. PMID:28484411
Concurrent Programming Using Actors: Exploiting Large-Scale Parallelism,
1985-10-07
ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK* Artificial Inteligence Laboratory AREA Is WORK UNIT NUMBERS 545 Technology Square...D-R162 422 CONCURRENT PROGRMMIZNG USING f"OS XL?ITP TEH l’ LARGE-SCALE PARALLELISH(U) NASI AC E Al CAMBRIDGE ARTIFICIAL INTELLIGENCE L. G AGHA ET AL...RESOLUTION TEST CHART N~ATIONAL BUREAU OF STANDA.RDS - -96 A -E. __ _ __ __’ .,*- - -- •. - MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL
Salmon, Paul Matthew; Goode, Natassia; Spiertz, Antje; Thomas, Miles; Grant, Eryn; Clacy, Amanda
2017-06-01
Questions have been raised regarding the impact that providing concurrent verbal protocols has on task performance in various settings; however, there has been little empirical testing of this in road transport. The aim of this study was to examine the impact of providing concurrent verbal protocols on driving performance. Participants drove an instrumented vehicle around a set route, twice whilst providing a concurrent verbal protocol, and twice without. A comparison revealed no differences in behaviour related to speed, braking and steering wheel angle when driving mid-block, but a significant difference in aspects of braking and acceleration at roundabouts. When not providing a verbal protocol, participants were found to brake harder on approach to a roundabout and accelerate more heavily coming out of roundabouts. It is concluded that providing verbal protocols may have a positive effect on braking and accelerating. Practical implications related to driver training and future research are discussed. Practitioner Summary: Verbal protocol analysis is used by ergonomists to understand aspects of cognition and decision-making during complex tasks such as driving and control room operation. This study examines the impact that it has on driving performance, providing evidence to support its continued use in ergonomics applications.
Talebi, Hossein; Moossavi, Abdollah; Faghihzadeh, Soghrat
2014-01-01
Older adults with cerebrovascular accident (CVA) show evidence of auditory and speech perception problems. In present study, it was examined whether these problems are due to impairments of concurrent auditory segregation procedure which is the basic level of auditory scene analysis and auditory organization in auditory scenes with competing sounds. Concurrent auditory segregation using competing sentence test (CST) and dichotic digits test (DDT) was assessed and compared in 30 male older adults (15 normal and 15 cases with right hemisphere CVA) in the same age groups (60-75 years old). For the CST, participants were presented with target message in one ear and competing message in the other one. The task was to listen to target sentence and repeat back without attention to competing sentence. For the DDT, auditory stimuli were monosyllabic digits presented dichotically and the task was to repeat those. Comparing mean score of CST and DDT between CVA patients with right hemisphere impairment and normal participants showed statistically significant difference (p=0.001 for CST and p<0.0001 for DDT). The present study revealed that abnormal CST and DDT scores of participants with right hemisphere CVA could be related to concurrent segregation difficulties. These findings suggest that low level segregation mechanisms and/or high level attention mechanisms might contribute to the problems.
Attention improves encoding of task-relevant features in the human visual cortex
Jehee, Janneke F.M.; Brady, Devin K.; Tong, Frank
2011-01-01
When spatial attention is directed towards a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer’s task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature, and not when the grating’s contrast had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks but color-selective responses were enhanced only when color was task-relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location, but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features, and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information. PMID:21632942
Concurrent development of facial identity and expression discrimination.
Dalrymple, Kirsten A; Visconti di Oleggio Castello, Matteo; Elison, Jed T; Gobbini, M Ida
2017-01-01
Facial identity and facial expression processing both appear to follow a protracted developmental trajectory, yet these trajectories have been studied independently and have not been directly compared. Here we investigated whether these processes develop at the same or different rates using matched identity and expression discrimination tasks. The Identity task begins with a target face that is a morph between two identities (Identity A/Identity B). After a brief delay, the target face is replaced by two choice faces: 100% Identity A and 100% Identity B. Children 5-12-years-old were asked to pick the choice face that is most similar to the target identity. The Expression task is matched in format and difficulty to the Identity task, except the targets are morphs between two expressions (Angry/Happy, or Disgust/Surprise). The same children were asked to pick the choice face with the expression that is most similar to the target expression. There were significant effects of age, with performance improving (becoming more accurate and faster) on both tasks with increasing age. Accuracy and reaction times were not significantly different across tasks and there was no significant Age x Task interaction. Thus, facial identity and facial expression discrimination appear to develop at a similar rate, with comparable improvement on both tasks from age five to twelve. Because our tasks are so closely matched in format and difficulty, they may prove useful for testing face identity and face expression processing in special populations, such as autism or prosopagnosia, where one of these abilities might be impaired.
Two-and-a-half-year-olds succeed at a traditional false-belief task with reduced processing demands.
Setoh, Peipei; Scott, Rose M; Baillargeon, Renée
2016-11-22
When tested with traditional false-belief tasks, which require answering a standard question about the likely behavior of an agent with a false belief, children perform below chance until age 4 y or later. When tested without such questions, however, children give evidence of false-belief understanding much earlier. Are traditional tasks difficult because they tap a more advanced form of false-belief understanding (fundamental-change view) or because they impose greater processing demands (processing-demands view)? Evidence that young children succeed at traditional false-belief tasks when processing demands are reduced would support the latter view. In prior research, reductions in inhibitory-control demands led to improvements in young children's performance, but often only to chance (instead of below-chance) levels. Here we examined whether further reductions in processing demands might lead to success. We speculated that: (i) young children could respond randomly in a traditional low-inhibition task because their limited information-processing resources are overwhelmed by the total concurrent processing demands in the task; and (ii) these demands include those from the response-generation process activated by the standard question. This analysis suggested that 2.5-y-old toddlers might succeed at a traditional low-inhibition task if response-generation demands were also reduced via practice trials. As predicted, toddlers performed above chance following two response-generation practice trials; toddlers failed when these trials either were rendered less effective or were used in a high-inhibition task. These results support the processing-demands view: Even toddlers succeed at a traditional false-belief task when overall processing demands are reduced.
Estimating endogenous changes in task performance from EEG
Touryan, Jon; Apker, Gregory; Lance, Brent J.; Kerick, Scott E.; Ries, Anthony J.; McDowell, Kaleb
2014-01-01
Brain wave activity is known to correlate with decrements in behavioral performance as individuals enter states of fatigue, boredom, or low alertness.Many BCI technologies are adversely affected by these changes in user state, limiting their application and constraining their use to relatively short temporal epochs where behavioral performance is likely to be stable. Incorporating a passive BCI that detects when the user is performing poorly at a primary task, and adapts accordingly may prove to increase overall user performance. Here, we explore the potential for extending an established method to generate continuous estimates of behavioral performance from ongoing neural activity; evaluating the extended method by applying it to the original task domain, simulated driving; and generalizing the method by applying it to a BCI-relevant perceptual discrimination task. Specifically, we used EEG log power spectra and sequential forward floating selection (SFFS) to estimate endogenous changes in behavior in both a simulated driving task and a perceptual discrimination task. For the driving task the average correlation coefficient between the actual and estimated lane deviation was 0.37 ± 0.22 (μ ± σ). For the perceptual discrimination task we generated estimates of accuracy, reaction time, and button press duration for each participant. The correlation coefficients between the actual and estimated behavior were similar for these three metrics (accuracy = 0.25 ± 0.37, reaction time = 0.33 ± 0.23, button press duration = 0.36 ± 0.30). These findings illustrate the potential for modeling time-on-task decrements in performance from concurrent measures of neural activity. PMID:24994968
Spinelli, Simona; Ballard, Theresa; Feldon, Joram; Higgins, Guy A; Pryce, Christopher R
2006-08-01
With the CAmbridge Neuropsychological Test Automated Battery (CANTAB), computerized neuropsychological tasks can be presented on a touch-sensitive computer screen, and this system has been used to assess cognitive processes in neuropsychiatric patients, healthy volunteers, and species of non-human primate, primarily the rhesus macaque and common marmoset. Recently, we reported that the common marmoset, a small-bodied primate, can be trained to a high and stable level of performance on the CANTAB five-choice serial reaction time (5-CSRT) task of attention, and a novel task of working memory, the concurrent delayed match-to-position (CDMP) task. Here, in order to increase understanding of the specific cognitive demands of these tasks and the importance of acetylcholine to their performance, the effects of systemic delivery of the muscarinic receptor antagonist scopolamine and the nicotinic receptor agonist nicotine were studied. In the 5-CSRT task, nicotine enhanced performance in terms of increased sustained attention, whilst scopolamine led to increased omissions despite a high level of orientation to the correct stimulus location. In the CDMP task, scopolamine impaired performance at two stages of the task that differ moderately in terms of memory retention load but both of which are likely to require working memory, including interference-coping, abilities. Nicotine tended to enhance performance at the long-delay stage specifically but only against a background of relatively low baseline performance. These data are consistent with a dissociation of the roles of muscarinic and nicotinic cholinergic receptors in the regulation of both sustained attention and working memory in primates.
The effect of billboard design specifications on driving: A pilot study.
Marciano, Hadas; Setter, Pe'erly
2017-07-01
Decades of research on the effects of advertising billboards on road accident rates, driver performance, and driver visual scanning behavior, has produced no conclusive findings. We suggest that road safety researchers should shift their focus and attempt to identify the billboard characteristics that are most distracting to drivers. This line of research may produce concrete guidelines for permissible billboards that would be likely to reduce the influence of the billboards on road safety. The current study is a first step towards this end. A pool of 161 photos of real advertising billboards was used as stimuli within a triple task paradigm designed to simulate certain components of driving. Each trial consisted of one ongoing tracking task accompanied by two additional concurrent tasks: (1) billboard observation task; and (2) circle color change identification task. Five clusters of billboards, identified by conducting a cluster analysis of their graphic content, were used as a within variable in one-way ANOVAs conducted on performance level data collected from the multiple tasks. Cluster 5, labeled Loaded Billboards, yielded significantly deteriorated performance on the tracking task. Cluster 4, labeled Graphical Billboards, yielded deteriorated performance primarily on the color change identification task. Cluster 3, labeled Minimal Billboards, had no effect on any of these tasks. We strongly recommend that these clusters be systematically explored in experiments involving additional real driving settings, such as driving simulators and field studies. This will enable validation of the current results and help incorporate them into real driving situations. Copyright © 2017. Published by Elsevier Ltd.
Attention improves encoding of task-relevant features in the human visual cortex.
Jehee, Janneke F M; Brady, Devin K; Tong, Frank
2011-06-01
When spatial attention is directed toward a particular stimulus, increased activity is commonly observed in corresponding locations of the visual cortex. Does this attentional increase in activity indicate improved processing of all features contained within the attended stimulus, or might spatial attention selectively enhance the features relevant to the observer's task? We used fMRI decoding methods to measure the strength of orientation-selective activity patterns in the human visual cortex while subjects performed either an orientation or contrast discrimination task, involving one of two laterally presented gratings. Greater overall BOLD activation with spatial attention was observed in visual cortical areas V1-V4 for both tasks. However, multivariate pattern analysis revealed that orientation-selective responses were enhanced by attention only when orientation was the task-relevant feature and not when the contrast of the grating had to be attended. In a second experiment, observers discriminated the orientation or color of a specific lateral grating. Here, orientation-selective responses were enhanced in both tasks, but color-selective responses were enhanced only when color was task relevant. In both experiments, task-specific enhancement of feature-selective activity was not confined to the attended stimulus location but instead spread to other locations in the visual field, suggesting the concurrent involvement of a global feature-based attentional mechanism. These results suggest that attention can be remarkably selective in its ability to enhance particular task-relevant features and further reveal that increases in overall BOLD amplitude are not necessarily accompanied by improved processing of stimulus information.
Longo, Alessia; Federolf, Peter; Haid, Thomas; Meulenbroek, Ruud
2018-06-01
In many daily jobs, repetitive arm movements are performed for extended periods of time under continuous cognitive demands. Even highly monotonous tasks exhibit an inherent motor variability and subtle fluctuations in movement stability. Variability and stability are different aspects of system dynamics, whose magnitude may be further affected by a cognitive load. Thus, the aim of the study was to explore and compare the effects of a cognitive dual task on the variability and local dynamic stability in a repetitive bimanual task. Thirteen healthy volunteers performed the repetitive motor task with and without a concurrent cognitive task of counting aloud backwards in multiples of three. Upper-body 3D kinematics were collected and postural reconfigurations-the variability related to the volunteer's postural change-were determined through a principal component analysis-based procedure. Subsequently, the most salient component was selected for the analysis of (1) cycle-to-cycle spatial and temporal variability, and (2) local dynamic stability as reflected by the largest Lyapunov exponent. Finally, end-point variability was evaluated as a control measure. The dual cognitive task proved to increase the temporal variability and reduce the local dynamic stability, marginally decrease endpoint variability, and substantially lower the incidence of postural reconfigurations. Particularly, the latter effect is considered to be relevant for the prevention of work-related musculoskeletal disorders since reduced variability in sustained repetitive tasks might increase the risk of overuse injuries.
Shirota, Yuichiro; Terney, Daniella; Antal, Andrea; Paulus, Walter
2017-01-01
Transcranial direct current stimulation (tDCS) has been reported to have bidirectional influence on the amplitude of motor-evoked potentials (MEPs) in resting participants in a polarity-specific manner: anodal tDCS increased and cathodal tDCS decreased them. More recently, the effects of tDCS have been shown to depend on a number of additional factors. We investigated whether a small variety of movements involving target and non-target muscles could differentially modify the efficacy of tDCS. MEPs were elicited from the right first dorsal interosseous muscle, defined as the target muscle, by single pulse transcranial magnetic stimulation (TMS) over the primary motor cortex (M1). During M1 tDCS, which lasted for 10 min applying anodal, cathodal, or sham condition, the participants were instructed to squeeze a ball with their right hand (Task 1), to move their right index finger only in the medial (Task 2), in the lateral direction (Task 3), or in medial and lateral direction alternatively (Task 4). Anodal tDCS reduced MEP amplitudes measured in Task 1 and Task 2, but to a lesser extent in the latter. In Task 3, anodal tDCS led to greater MEP amplitudes than cathodal stimulation. Alternating movements resulted in no effect of tDCS on MEP amplitude (Task 4). The results are congruent with the current notion that the aftereffects of tDCS are highly variable relying on a number of factors including the type of movements executed during stimulation.
Klemen, Jane; Büchel, Christian; Bühler, Mira; Menz, Mareike M; Rose, Michael
2010-03-01
Attentional interference between tasks performed in parallel is known to have strong and often undesired effects. As yet, however, the mechanisms by which interference operates remain elusive. A better knowledge of these processes may facilitate our understanding of the effects of attention on human performance and the debilitating consequences that disruptions to attention can have. According to the load theory of cognitive control, processing of task-irrelevant stimuli is increased by attending in parallel to a relevant task with high cognitive demands. This is due to the relevant task engaging cognitive control resources that are, hence, unavailable to inhibit the processing of task-irrelevant stimuli. However, it has also been demonstrated that a variety of types of load (perceptual and emotional) can result in a reduction of the processing of task-irrelevant stimuli, suggesting a uniform effect of increased load irrespective of the type of load. In the present study, we concurrently presented a relevant auditory matching task [n-back working memory (WM)] of low or high cognitive load (1-back or 2-back WM) and task-irrelevant images at one of three object visibility levels (0%, 50%, or 100%). fMRI activation during the processing of the task-irrelevant visual stimuli was measured in the lateral occipital cortex and found to be reduced under high, compared to low, WM load. In combination with previous findings, this result is suggestive of a more generalized load theory, whereby cognitive load, as well as other types of load (e.g., perceptual), can result in a reduction of the processing of task-irrelevant stimuli, in line with a uniform effect of increased load irrespective of the type of load.
Gagnon, Christine; Desjardins-Crépeau, Laurence; Tournier, Isabelle; Desjardins, Michèle; Lesage, Frédéric; Greenwood, Carol E; Bherer, Louis
2012-06-15
Glucose enhancing effects in older adults have mostly been observed for episodic memory, but have recently been found for attentional control performance. Yet, brain activation patterns underlying these effects are still unknown. The present study examined the acute effects of glucose ingestion on prefrontal brain activation during the execution of a divided attention task in fasting non-diabetic older adults. Twenty older adults (60 years and older) took part in the study that included two experimental sessions. After an overnight fast, participants received either a glucose drink (50 g) or a placebo (saccharin) drink, following which they completed a dual-task. During task execution, prefrontal activation was recorded with functional near-infrared spectroscopy (fNIRS). A repeated-measures design was used such that each participant served as his or her own control. The two experimental sessions were counterbalanced among participants and were performed two weeks apart. When participants were in the glucose condition, they showed similar dual-task costs for both tasks, whereas in the placebo condition they prioritized one task over the other, with a significantly larger dual-task cost for the non-prioritized task (p<0.01). Differential brain activation was also observed in right ventral-lateral prefrontal regions for oxygenated hemoglobin and deoxygenated hemoglobin, with more activation apparent in the glucose condition (p<0.05). Furthermore, behavioral and activation data were influenced by individual differences in glucose regulation. Glucose ingestion appears to momentarily enhance fasting seniors' capacity to coordinate more equally two concurrent tasks and this is reflected in brain activation patterns. Copyright © 2012 Elsevier B.V. All rights reserved.
Walking while talking: Young adults flexibly allocate resources between speech and gait.
Raffegeau, Tiphanie E; Haddad, Jeffrey M; Huber, Jessica E; Rietdyk, Shirley
2018-05-26
Walking while talking is an ideal multitask behavior to assess how young healthy adults manage concurrent tasks as it is well-practiced, cognitively demanding, and has real consequences for impaired performance in either task. Since the association between cognitive tasks and gait appears stronger when the gait task is more challenging, gait challenge was systematically manipulated in this study. To understand how young adults accomplish the multitask behavior of walking while talking as the gait challenge was systematically manipulated. Sixteen young adults (21 ± 1.6 years, 9 males) performed three gait tasks with and without speech: unobstructed gait (easy), obstacle crossing (moderate), obstacle crossing and tray carrying (difficult). Participants also provided a speech sample while seated for a baseline indicator of speech. The speech task was to speak extemporaneously about a topic (e.g. first car). Gait speed and the duration of silent pauses during speaking were determined. Silent pauses reflect cognitive processes involved in speech production and language planning. When speaking and walking without obstacles, gait speed decreased (relative to walking without speaking) but silent pause duration did not change (relative to seated speech). These changes are consistent with the idea that, in the easy gait task, participants placed greater value on speech pauses than on gait speed, likely due to the negative social consequences of impaired speech. In the moderate and difficult gait tasks both parameters changed: gait speed decreased and silent pauses increased. Walking while talking is a cognitively demanding task for healthy young adults, despite being a well-practiced habitual activity. These findings are consistent with the integrated model of task prioritization from Yogev-Seligmann et al., [1]. Copyright © 2018 Elsevier B.V. All rights reserved.
Ivanova, Maria V; Hallowell, Brooke
2014-01-01
Deficits in working memory (WM) are an important subset of cognitive processing deficits associated with aphasia. However, there are serious limitations to research on WM in aphasia largely due to the lack of an established valid measure of WM impairment for this population. The aim of the current study was to address shortcomings of previous measures by developing and empirically evaluating a novel WM task with a sentence-picture matching processing component designed to circumvent confounds inherent in existing measures of WM in aphasia. The novel WM task was presented to persons with (n=27) and without (n=33) aphasia. Results demonstrated high concurrent validity of a novel WM task. Individuals with aphasia performed significantly worse on all conditions of the WM task compared to individuals without aphasia. Different patterns of performance across conditions were observed for the two groups. Additionally, WM capacity was significantly related to auditory comprehension abilities in individuals with mild aphasia but not those with moderate aphasia. Strengths of the novel WM task are that it allows for differential control for length versus complexity of verbal stimuli and indexing of the relative influence of each, minimizes metalinguistic requirements, enables control for complexity of processing components, allows participants to respond with simple gestures or verbally, and eliminates reading requirements. Results support the feasibility and validity of using a novel task to assess WM in individuals with and without aphasia. Readers will be able to (1) discuss the limitations of current working memory measures for individuals with aphasia; (2) describe how task design features of a new working memory task for people with aphasia address shortcomings of existing measures; (3) summarize the evidence supporting the validity of the novel working memory task. Copyright © 2014 Elsevier Inc. All rights reserved.
Connolly, Samantha L; Abramson, Lyn Y; Alloy, Lauren B
2016-01-01
Negative information processing biases have been hypothesised to serve as precursors for the development of depression. The current study examined negative self-referent information processing and depressive symptoms in a community sample of adolescents (N = 291, Mage at baseline = 12.34 ± 0.61, 53% female, 47.4% African-American, 49.5% Caucasian and 3.1% Biracial). Participants completed a computerised self-referent encoding task (SRET) and a measure of depressive symptoms at baseline and completed an additional measure of depressive symptoms nine months later. Several negative information processing biases on the SRET were associated with concurrent depressive symptoms and predicted increases in depressive symptoms at follow-up. Findings partially support the hypothesis that negative information processing biases are associated with depressive symptoms in a nonclinical sample of adolescents, and provide preliminary evidence that these biases prospectively predict increases in depressive symptoms.
Langley, Hillary A.; Coffman, Jennifer L.; Ornstein, Peter A.
2017-01-01
Data from a large-scale, longitudinal research study with an ethnically and socioeconomically diverse sample were utilized to explore linkages between maternal elaborative conversational style and the development of children’s autobiographical and deliberate memory. Assessments were made when the children were 3, 5, and 6 years of age, and the results reveal concurrent and longitudinal linkages between maternal conversational style in a mother-child reminiscing task and children’s autobiographical memory performance. Maternal conversational style while reminiscing was also significantly related to children’s strategic behaviors and recall in two deliberate memory tasks, both concurrently and longitudinally. Results from this examination replicate and extend what is known about the linkages between maternal conversational style, children’s abilities to talk about previous experiences, and children’s deliberate memory skills as they transition from the preschool to early elementary school years. PMID:29270083
Anderson, Rachel J; Dewhurst, Stephen A; Nash, Robert A
2012-03-01
Recent literature has argued that whereas remembering the past and imagining the future make use of shared cognitive substrates, simulating future events places heavier demands on executive resources. These propositions were explored in 3 experiments comparing the impact of imagery and concurrent task demands on speed and accuracy of past event retrieval and future event simulation. Results provide support for the suggestion that both past and future episodes can be constructed through 2 mechanisms: a noneffortful "direct" pathway and a controlled, effortful "generative" pathway. However, limited evidence emerged for the suggestion that simulating of future, compared with retrieving past, episodes places heavier demands on executive resources; only under certain conditions did it emerge as a more error prone and lengthier process. The findings are discussed in terms of how retrieval and simulation make use of the same cognitive substrates in subtly different ways. 2012 APA, all rights reserved
Is overall similarity classification less effortful than single-dimension classification?
Wills, Andy J; Milton, Fraser; Longmore, Christopher A; Hester, Sarah; Robinson, Jo
2013-01-01
It is sometimes argued that the implementation of an overall similarity classification is less effortful than the implementation of a single-dimension classification. In the current article, we argue that the evidence securely in support of this view is limited, and report additional evidence in support of the opposite proposition--overall similarity classification is more effortful than single-dimension classification. Using a match-to-standards procedure, Experiments 1A, 1B and 2 demonstrate that concurrent load reduces the prevalence of overall similarity classification, and that this effect is robust to changes in the concurrent load task employed, the level of time pressure experienced, and the short-term memory requirements of the classification task. Experiment 3 demonstrates that participants who produced overall similarity classifications from the outset have larger working memory capacities than those who produced single-dimension classifications initially, and Experiment 4 demonstrates that instructions to respond meticulously increase the prevalence of overall similarity classification.
Perception of time in microgravity and hypergravity during parabolic flight.
Clément, Gilles
2018-03-07
We explored the effect of gravity on the accuracy for estimating durations of 3.5, 7, and 14 s. Experiments were performed on board an Airbus A310 during parabolic flights eliciting repeated exposures to short periods of 0, 1, and 1.8 g. Two methods for obtaining duration estimates were used, reproduction and production of duration, in two conditions: a control counting condition and a concurrent reading condition. Simple reaction times were also measured to assess attention. The results showed that the temporal accuracies during the reproduction task in the concurrent reading condition were significantly underestimated in 0 g compared with 1 g. Reaction times were also longer in 0 g. However, there was no difference in duration estimates in the production tasks. These results suggest that the temporal underestimation in 0 g is caused by decreased selective attention and impaired retrieval of information in episodic memory.
Interference with facial emotion recognition by verbal but not visual loads.
Reed, Phil; Steed, Ian
2015-12-01
The ability to recognize emotions through facial characteristics is critical for social functioning, but is often impaired in those with a developmental or intellectual disability. The current experiments explored the degree to which interfering with the processing capacities of typically-developing individuals would produce a similar inability to recognize emotions through the facial elements of faces displaying particular emotions. It was found that increasing the cognitive load (in an attempt to model learning impairments in a typically developing population) produced deficits in correctly identifying emotions from facial elements. However, this effect was much more pronounced when using a concurrent verbal task than when employing a concurrent visual task, suggesting that there is a substantial verbal element to the labeling and subsequent recognition of emotions. This concurs with previous work conducted with those with developmental disabilities that suggests emotion recognition deficits are connected with language deficits. Copyright © 2015 Elsevier Ltd. All rights reserved.
Electrophysiological indices of altered working memory processes in long-term ecstasy users.
Nulsen, Claire; Fox, Allison; Hammond, Geoff
2011-10-01
The aim of this study was to determine the effect of light long-term ecstasy consumption on verbal short-term and working memory and to identify the cognitive processes contributing to task performance. Electroencephalogram was recorded while ecstasy users (N = 11), polydrug users (N = 13), and non-users (N = 13) completed forward and backward serial recognition tasks designed to engage verbal short-term memory and verbal working memory, respectively. All three groups displayed significantly lower digit-backward span than digit-forward span with ecstasy users displaying the greatest difference. The parietally distributed P3b was significantly smaller in the digits backward task than in the digits forward task in non-ecstasy-using controls. Ecstasy users did not show the reduced P3b component in the backward task that was seen in both non-ecstasy-using control groups. Ecstasy users' performance was suppressed more by the concurrent processing demands of the working memory task than that of the non-ecstasy-using controls. Non-ecstasy-using controls showed differential event-related potential wave forms in the short-term and working memory tasks, and this pattern was not seen in the ecstasy users. This is consistent with a reduction in the cognitive resources allocated to processing in working memory in ecstasy users. Copyright © 2011 John Wiley & Sons, Ltd.
Modulation of competing memory systems by distraction.
Foerde, Karin; Knowlton, Barbara J; Poldrack, Russell A
2006-08-01
Different forms of learning and memory depend on functionally and anatomically separable neural circuits [Squire, L. R. (1992) Psychol. Rev. 99, 195-231]. Declarative memory relies on a medial temporal lobe system, whereas habit learning relies on the striatum [Cohen, N. J. & Eichenbaum, H. (1993) Memory, Amnesia, and the Hippocampal System (MIT Press, Cambridge, MA)]. How these systems are engaged to optimize learning and behavior is not clear. Here, we present results from functional neuroimaging showing that the presence of a demanding secondary task during learning modulates the degree to which subjects solve a problem using either declarative memory or habit learning. Dual-task conditions did not reduce accuracy but reduced the amount of declarative learning about the task. Medial temporal lobe activity was correlated with task performance and declarative knowledge after learning under single-task conditions, whereas performance was correlated with striatal activity after dual-task learning conditions. These results demonstrate a fundamental difference in these memory systems in their sensitivity to concurrent distraction. The results are consistent with the notion that declarative and habit learning compete to mediate task performance, and they suggest that the presence of distraction can bias this competition. These results have implications for learning in multitask situations, suggesting that, even if distraction does not decrease the overall level of learning, it can result in the acquisition of knowledge that can be applied less flexibly in new situations.
Single-task and dual-task tandem gait test performance after concussion.
Howell, David R; Osternig, Louis R; Chou, Li-Shan
2017-07-01
To compare single-task and dual-task tandem gait test performance between athletes after concussion with controls on observer-timed, spatio-temporal, and center-of-mass (COM) balance control measurements. Ten participants (19.0±5.5years) were prospectively identified and completed a tandem gait test protocol within 72h of concussion and again 1 week, 2 weeks, 1 month, and 2 months post-injury. Seven uninjured controls (20.0±4.5years) completed the same protocol in similar time increments. Tandem gait test trials were performed with (dual-task) and without (single-task) concurrently performing a cognitive test as whole-body motion analysis was performed. Outcome variables included test completion time, average tandem gait velocity, cadence, and whole-body COM frontal plane displacement. Concussion participants took significantly longer to complete the dual-task tandem gait test than controls throughout the first 2 weeks post-injury (mean time=16.4 [95% CI: 13.4-19.4] vs. 10.1 [95% CI: 6.4-13.7] seconds; p=0.03). Single-task tandem gait times were significantly lower 72h post-injury (p=0.04). Dual-task cadence was significantly lower for concussion participants than controls (89.5 [95% CI: 68.6-110.4] vs. 127.0 [95% CI: 97.4-156.6] steps/minute; p=0.04). Moderately-high to high correlations between tandem gait test time and whole-body COM medial-lateral displacement were detected at each time point during dual-task gait (r s =0.70-0.93; p=0.03-0.001). Adding a cognitive task during the tandem gait test resulted in longer detectable deficits post-concussion compared to the traditional single-task tandem gait test. As a clinical tool to assess dynamic motor function, tandem gait may assist with return to sport decisions after concussion. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Mora, Gérome; Camos, Valérie
2015-01-01
Recent models of working memory suggest that two systems are involved in verbal working memory: one is dedicated to the maintenance of phonological representations through verbal rehearsal, while the other would maintain multimodal representations through attentional refreshing (Camos et al., 2009; Baddeley, 2012). Previous studies provided evidence on the existence of these two maintenance systems, on their independence, and how they affect recall performance in adults. However, only one study had already explored the relationships between these two systems in children ( Tam et al., 2010). The aim of the present study was to further examine how the two systems account for working memory performance in children. Eight-year-old children performed complex span tasks in which the availability of either the rehearsal or the refreshing was impeded by a concurrent articulation or an attention-demanding task, respectively. Moreover, the phonological similarity of the memoranda was manipulated. Congruently with studies showing that older children can used these maintenance systems, impeding any of the two systems reduced recall performance. Moreover, the manipulation of the two mechanisms did not interact, as previously observed in adults. This suggests that the two maintenance mechanisms are independent in 8-year-old children as they are in adults. However, the results concerning the phonological similarity effect (PSE) differed from what is observed in adults. Whereas the PSE relies only on the availability of rehearsal in adults, a more complex pattern appeared in children: the concurrent articulation as well as the concurrent task modulated the emergence of the PSE. PMID:25667577
Mora, Gérome; Camos, Valérie
2015-01-01
Recent models of working memory suggest that two systems are involved in verbal working memory: one is dedicated to the maintenance of phonological representations through verbal rehearsal, while the other would maintain multimodal representations through attentional refreshing (Camos et al., 2009; Baddeley, 2012). Previous studies provided evidence on the existence of these two maintenance systems, on their independence, and how they affect recall performance in adults. However, only one study had already explored the relationships between these two systems in children ( Tam et al., 2010). The aim of the present study was to further examine how the two systems account for working memory performance in children. Eight-year-old children performed complex span tasks in which the availability of either the rehearsal or the refreshing was impeded by a concurrent articulation or an attention-demanding task, respectively. Moreover, the phonological similarity of the memoranda was manipulated. Congruently with studies showing that older children can used these maintenance systems, impeding any of the two systems reduced recall performance. Moreover, the manipulation of the two mechanisms did not interact, as previously observed in adults. This suggests that the two maintenance mechanisms are independent in 8-year-old children as they are in adults. However, the results concerning the phonological similarity effect (PSE) differed from what is observed in adults. Whereas the PSE relies only on the availability of rehearsal in adults, a more complex pattern appeared in children: the concurrent articulation as well as the concurrent task modulated the emergence of the PSE.
Lunkenheimer, Erika; Kemp, Christine J.; Lucas-Thompson, Rachel G.; Cole, Pamela M.; Albrecht, Erin C.
2016-01-01
Researchers have argued for more dynamic and contextually relevant measures of regulatory processes in interpersonal interactions. In response, we introduce and examine the effectiveness of a new task, the Parent-Child Challenge Task, designed to assess the self-regulation and coregulation of affect, goal-directed behavior, and physiology in parents and their preschoolers in response to an experimental perturbation. Concurrent and predictive validity was examined via relations with children’s externalizing behaviors. Mothers used only their words to guide their 3-year-old children to complete increasingly difficult puzzles in order to win a prize (N = 96). A challenge condition was initiated mid-way through the task with a newly introduced time limit. The challenge produced decreases in parental teaching and dyadic behavioral variability and increases in child negative affect and dyadic affective variability, measured by dynamic systems-based methods. Children rated lower on externalizing showed respiratory sinus arrhythmia (RSA) suppression in response to challenge, whereas those rated higher on externalizing showed RSA augmentation. Additionally, select task changes in affect, behavior, and physiology predicted teacher-rated externalizing behaviors four months later. Findings indicate the Parent-Child Challenge Task was effective in producing regulatory changes and suggest its utility in assessing biobehavioral self-regulation and coregulation in parents and their preschoolers. PMID:28458616
Lunkenheimer, Erika; Kemp, Christine J; Lucas-Thompson, Rachel G; Cole, Pamela M; Albrecht, Erin C
2017-01-01
Researchers have argued for more dynamic and contextually relevant measures of regulatory processes in interpersonal interactions. In response, we introduce and examine the effectiveness of a new task, the Parent-Child Challenge Task, designed to assess the self-regulation and coregulation of affect, goal-directed behavior, and physiology in parents and their preschoolers in response to an experimental perturbation. Concurrent and predictive validity was examined via relations with children's externalizing behaviors. Mothers used only their words to guide their 3-year-old children to complete increasingly difficult puzzles in order to win a prize ( N = 96). A challenge condition was initiated mid-way through the task with a newly introduced time limit. The challenge produced decreases in parental teaching and dyadic behavioral variability and increases in child negative affect and dyadic affective variability, measured by dynamic systems-based methods. Children rated lower on externalizing showed respiratory sinus arrhythmia (RSA) suppression in response to challenge, whereas those rated higher on externalizing showed RSA augmentation. Additionally, select task changes in affect, behavior, and physiology predicted teacher-rated externalizing behaviors four months later. Findings indicate the Parent-Child Challenge Task was effective in producing regulatory changes and suggest its utility in assessing biobehavioral self-regulation and coregulation in parents and their preschoolers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duke, Roger T.; Crump, Thomas Vu
The work was created to provide a tool for the purpose of improving the management of tasks associated with Agile projects. Agile projects are typically completed in an iterative manner with many short duration tasks being performed as part of iterations. These iterations are generally referred to as sprints. The objective of this work is to create a single tool that enables sprint teams to manage all of their tasks in multiple sprints and automatically produce all standard sprint performance charts with minimum effort. The format of the printed work is designed to mimic a standard Kanban board. The workmore » is developed as a single Excel file with worksheets capable of managing up to five concurrent sprints and up to one hundred tasks. It also includes a summary worksheet providing performance information from all active sprints. There are many commercial project management systems typically designed with features desired by larger organizations with many resources managing multiple programs and projects. The audience for this work is the small organizations and Agile project teams desiring an inexpensive, simple, user-friendly, task management tool. This work uses standard readily available software, Excel, requiring minimum data entry and automatically creating summary charts and performance data. It is formatted to print out and resemble standard flip charts and provide the visuals associated with this type of work.« less
Bhatarah, Parveen; Ward, Geoff; Tan, Lydia
2006-03-01
In 3 experiments, participants saw lists of 16 words for free recall with or without a 6-digit immediate serial recall (ISR) task after each word. Free recall was performed under standard visual silent and spoken-aloud conditions (Experiment 1), overt rehearsal conditions (Experiment 2), and fixed rehearsal conditions (Experiment 3). The authors found that in each experiment, there was no effect of ISR on the magnitude of the recency effect, but interleaved ISR disrupted free recall of those words that would otherwise be rehearsed. The authors conclude that ISR and recency cannot both be outputs from a unitary limited-capacity short-term memory store and discuss the possibility that the process of rehearsal may be common to both tasks.
Cognitive load effects on early visual perceptual processing.
Liu, Ping; Forte, Jason; Sewell, David; Carter, Olivia
2018-05-01
Contrast-based early visual processing has largely been considered to involve autonomous processes that do not need the support of cognitive resources. However, as spatial attention is known to modulate early visual perceptual processing, we explored whether cognitive load could similarly impact contrast-based perception. We used a dual-task paradigm to assess the impact of a concurrent working memory task on the performance of three different early visual tasks. The results from Experiment 1 suggest that cognitive load can modulate early visual processing. No effects of cognitive load were seen in Experiments 2 or 3. Together, the findings provide evidence that under some circumstances cognitive load effects can penetrate the early stages of visual processing and that higher cognitive function and early perceptual processing may not be as independent as was once thought.
Division of attention as a function of the number of steps, visual shifts, and memory load
NASA Technical Reports Server (NTRS)
Chechile, R. A.; Butler, K.; Gutowski, W.; Palmer, E. A.
1986-01-01
The effects on divided attention of visual shifts and long-term memory retrieval during a monitoring task are considered. A concurrent vigilance task was standardized under all experimental conditions. The results show that subjects can perform nearly perfectly on all of the time-shared tasks if long-term memory retrieval is not required for monitoring. With the requirement of memory retrieval, however, there was a large decrease in accuracy for all of the time-shared activities. It was concluded that the attentional demand of longterm memory retrieval is appreciable (even for a well-learned motor sequence), and thus memory retrieval results in a sizable reduction in the capability of subjects to divide their attention. A selected bibliography on the divided attention literature is provided.
Davis-Temple, Janet; Jung, Sunhwa; Sainato, Diane M
2014-05-01
We investigated the effects of a least to most prompting procedure on the performance of board game steps and game-related on-task behavior of young children with special needs and their typically developing peers. This study was conducted employing a concurrent multiple baseline design across participants. After teaching the board game steps using a systematic prompting strategy, the participants demonstrated increases in the performance of board game steps and game-related on-task behavior. In addition, the participants maintained high levels of performance and game-related on-task behavior during post-game training. The effects of teaching board games using prompting strategies, implications for practice, and areas for future study are presented.
Effects of stimulus characteristics and task demands on pilots' perception of dichotic messages
NASA Technical Reports Server (NTRS)
Wenzel, Elizabeth M.
1986-01-01
The experiment is an initial investigation of pilot performance when auditory advisory messages are presented dichotically, either with or without a concurrent pursuit task requiring visual/motor dexterity. The dependent measures were percent correct and correct reaction times for manual responses to the auditory messages. Two stimulus variables which show facilitory effects in traditional dichotic-listening paradigms, differences in pitch and semantic content of the messages, were examined to determine their effectiveness during the functional simulation of helicopter pursuit. In an effort to accumulate points for the advisory messages for accuracy alone or for both accuracy and reaction times which were faster than their opponent's. In general, the combined effects of the stimulus and task variables are additive. When interactions do occur they suggest that an increase in task demands can sometimes mitigate, but usually does not remove, any processing advantages accrued from stimulus characteristics. The implications of these results for cockpit displays are discussed.
Sustained attention failures are primarily due to sustained cognitive load not task monotony.
Head, James; Helton, William S
2014-11-01
We conducted two studies using a modified sustained attention to response task (SART) to investigate the developmental process of SART performance and the role of cognitive load on performance when the speed-accuracy trade-off is controlled experimentally. In study 1, 23 participants completed the modified SART (target stimuli location was not predictable) and a subjective thought content questionnaire 4 times over the span of 4 weeks. As predicted, the influence of speed-accuracy trade-off was significantly mitigated on the modified SART by having target stimuli occur in unpredictable locations. In study 2, 21 of the 23 participants completed an abridged version of the modified SART with a verbal free-recall memory task. Participants performed significantly worse when completing the verbal memory task and SART concurrently. Overall, the results support a resource theory perspective with concern to errors being a result of limited mental resources and not simply mindlessness per se. Copyright © 2014. Published by Elsevier B.V.
Student perception of writing in the science classroom
NASA Astrophysics Data System (ADS)
Deakin, Kathleen J.
This study examines factors that shape four student's perceptions of writing tasks in their science classroom. This qualitative retrospective interview study focuses on four students concurrently enrolled in honors English and honors biology. This research employs a phenomenological perspective on writing, examining whether the writing strategies students acquire in the Language Arts classroom manifest in the content areas. I also adopt Bandura's theoretical perspective on self-efficacy as well as Hillock's notion of writing as inquiry and meaning making. This study concludes that students need ample opportunity to generate content and language that will help reveal a purpose and genre for writing tasks in the content areas. Although all four students approached the writing tasks differently in this study, the tasks set before them were opportunities for replication rather than inquiry Through the case studies of four students as well as current research on content writing, this project works to inform all content area teachers about student perceptions of writing in the content areas.
The detrimental influence of attention on time-to-contact perception.
Baurès, Robin; Balestra, Marianne; Rosito, Maxime; VanRullen, Rufin
2018-04-23
To which extent is attention necessary to estimate the time-to-contact (TTC) of a moving object, that is, determining when the object will reach a specific point? While numerous studies have aimed at determining the visual cues and gaze strategy that allow this estimation, little is known about if and how attention is involved or required in this process. To answer this question, we carried out an experiment in which the participants estimated the TTC of a moving ball, either alone (single-task condition) or concurrently with a Rapid Serial Visual Presentation task embedded within the ball (dual-task condition). The results showed that participants had a better estimation when attention was driven away from the TTC task. This suggests that drawing attention away from the TTC estimation limits cognitive interference, intrusion of knowledge, or expectations that significantly modify the visually-based TTC estimation, and argues in favor of a limited attention to correctly estimate the TTC.
Park, Heeyoung; Lombardino, Linda J
2013-09-01
Processing speed deficits along with phonological awareness deficits have been identified as risk factors for dyslexia. This study was designed to examine the behavioral profiles of two groups, a younger (6-8 years) and an older (10-15 years) group of dyslexic children for the purposes of (1) evaluating the degree to which phonological awareness and processing speed deficits occur in the two developmental cohorts; (2) determining the strength of relationships between the groups' respective mean scores on cognitive tasks of phonological awareness and processing speed and their scores on component skills of reading; and (3) evaluating the degree to which phonological awareness and processing speed serve as concurrent predictors of component reading skills for each group. The mean scaled scores for both groups were similar on all but one processing speed task. The older group was significantly more depressed on a visual matching test of attention, scanning, and speed. Correlations between reading skills and the cognitive constructs were very similar for both age-groups. Neither of the two phonological awareness tasks correlated with either of the two processing speed tasks or with any of the three measures of reading. One of the two processing speed measures served as a concurrent predictor of word- and text-level reading in the younger, however, only the rapid naming measure functioned as a concurrent predictor of word reading in the older group. Conversely, phonological processing measures did not serve as concurrent predictors for word-level or text-level reading in either of the groups. Descriptive analyses of individual subjects' deficits in the domains of phonological awareness and processing speed revealed that (1) both linguistic and nonlinguistic processing speed deficits in the younger dyslexic children occurred at higher rates than deficits in phonological awareness and (2) cognitive deficits within and across these two domains were greater in the older dyslexic children. Our findings underscore the importance of using rapid naming measures when testing school-age children suspected of having a reading disability and suggest that processing speed measures that do not reply on verbal responses may serve as predictors of reading disability in young children prior to their development of naming automaticity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Renaud, Samantha M; Pickens, Laura R G; Fountain, Stephen B
2015-01-01
Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/h nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine/No Stress, Nicotine/No Stress, No Nicotine/Stress, and Nicotine/Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, and Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the "violation element," that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent injection stress, caused a learning impairment in adulthood for the violation element in female rats. Thus, adolescent nicotine impaired adult violation element learning typically attributed to multiple-item learning in the SMC task. Fourth, a paradoxical interaction of injection stress and nicotine exposure in acquisition was observed. In the same female rats in which violation-element learning was impaired by adolescent nicotine exposure, adolescent nicotine experienced without adolescent injection stress produced better learning for chunk-boundary elements in adulthood compared to all other conditions. Thus, adolescent nicotine without concurrent injection stress facilitated adult chunk-boundary element learning typically attributed to concurrent stimulus-response discrimination learning and serial-position learning in the SMC task. To the best of our knowledge, the current study is the first to demonstrate facilitation of adult learning caused by adolescent nicotine exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
Renaud, Samantha M.; Pickens, Laura R. G.; Fountain, Stephen B.
2015-01-01
Nicotine exposure in adolescent rats has been shown to cause learning impairments that persist into adulthood long after nicotine exposure has ended. This study was designed to assess the extent to which the effects of adolescent nicotine exposure on learning in adulthood can be accounted for by adolescent injection stress experienced concurrently with adolescent nicotine exposure. Female rats received either 0.033 mg/hr nicotine (expressed as the weight of the free base) or bacteriostatic water vehicle by osmotic pump infusion on postnatal days 25-53 (P25-53). Half of the nicotine-exposed rats and half of the vehicle rats also received twice-daily injection stress consisting of intraperitoneal saline injections on P26-53. Together these procedures produced 4 groups: No Nicotine / No Stress, Nicotine / No Stress, No Nicotine / Stress, and Nicotine / Stress. On P65-99, rats were trained to perform a structurally complex 24-element serial pattern of responses in the serial multiple choice (SMC) task. Four general results were obtained in the current study. First, learning for within-chunk elements was not affected by either adolescent nicotine exposure, consistent with past work (Pickens, Rowan, Bevins, & Fountain, 2013), or adolescent injection stress. Thus, there were no effects of adolescent nicotine exposure or injection stress on adult within-chunk learning typically attributed to rule learning in the SMC task. Second, adolescent injection stress alone (i.e., without concurrent nicotine exposure) caused transient but significant facilitation of adult learning restricted to a single element of the 24-element pattern, namely, the “violation element,” that was the only element of the pattern that was inconsistent with pattern structure. Thus, adolescent injection stress alone facilitated violation element acquisition in adulthood. Third, also consistent with past work (Pickens et al., 2013), adolescent nicotine exposure, in this case both with and without adolescent injection stress, caused a learning impairment in adulthood for the violation element in female rats. Thus, adolescent nicotine impaired adult violation element learning typically attributed to multiple-item learning in the SMC task. Fourth, a paradoxical interaction of injection stress and nicotine exposure in acquisition was observed. In the same female rats in which violation-element learning was impaired by adolescent nicotine exposure, adolescent nicotine experienced without adolescent injection stress produced better learning for chunk-boundary elements in adulthood compared to all other conditions. Thus, adolescent nicotine without concurrent injection stress facilitated adult chunk-boundary element learning typically attributed to concurrent stimulus-response discrimination learning and serial-position learning in the SMC task. To the best of our knowledge, the current study is the first to demonstrate facilitation of adult learning caused by adolescent nicotine exposure. PMID:25527003
Turn Off the Music! Music Impairs Visual Associative Memory Performance in Older Adults.
Reaves, Sarah; Graham, Brittany; Grahn, Jessica; Rabannifard, Parissa; Duarte, Audrey
2016-06-01
Whether we are explicitly listening to it or not, music is prevalent in our environment. Surprisingly, little is known about the effect of environmental music on concurrent cognitive functioning and whether young and older adults are differentially affected by music. Here, we investigated the impact of background music on a concurrent paired associate learning task in healthy young and older adults. Young and older adults listened to music or to silence while simultaneously studying face-name pairs. Participants' memory for the pairs was then tested while listening to either the same or different music. Participants also made subjective ratings about how distracting they found each song to be. Despite the fact that all participants rated music as more distracting to their performance than silence, only older adults' associative memory performance was impaired by music. These results are most consistent with the theory that older adults' failure to inhibit processing of distracting task-irrelevant information, in this case background music, contributes to their memory impairments. These data have important practical implications for older adults' ability to perform cognitively demanding tasks even in what many consider to be an unobtrusive environment. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Rauter, Georg; Sigrist, Roland; Riener, Robert; Wolf, Peter
2015-01-01
In literature, the effectiveness of haptics for motor learning is controversially discussed. Haptics is believed to be effective for motor learning in general; however, different types of haptic control enhance different movement aspects. Thus, in dependence on the movement aspects of interest, one type of haptic control may be effective whereas another one is not. Therefore, in the current work, it was investigated if and how different types of haptic controllers affect learning of spatial and temporal movement aspects. In particular, haptic controllers that enforce active participation of the participants were expected to improve spatial aspects. Only haptic controllers that provide feedback about the task's velocity profile were expected to improve temporal aspects. In a study on learning a complex trunk-arm rowing task, the effect of training with four different types of haptic control was investigated: position control, path control, adaptive path control, and reactive path control. A fifth group (control) trained with visual concurrent augmented feedback. As hypothesized, the position controller was most effective for learning of temporal movement aspects, while the path controller was most effective in teaching spatial movement aspects of the rowing task. Visual feedback was also effective for learning temporal and spatial movement aspects.
A unifying model of concurrent spatial and temporal modularity in muscle activity.
Delis, Ioannis; Panzeri, Stefano; Pozzo, Thierry; Berret, Bastien
2014-02-01
Modularity in the central nervous system (CNS), i.e., the brain capability to generate a wide repertoire of movements by combining a small number of building blocks ("modules"), is thought to underlie the control of movement. Numerous studies reported evidence for such a modular organization by identifying invariant muscle activation patterns across various tasks. However, previous studies relied on decompositions differing in both the nature and dimensionality of the identified modules. Here, we derive a single framework that encompasses all influential models of muscle activation modularity. We introduce a new model (named space-by-time decomposition) that factorizes muscle activations into concurrent spatial and temporal modules. To infer these modules, we develop an algorithm, referred to as sample-based nonnegative matrix trifactorization (sNM3F). We test the space-by-time decomposition on a comprehensive electromyographic dataset recorded during execution of arm pointing movements and show that it provides a low-dimensional yet accurate, highly flexible and task-relevant representation of muscle patterns. The extracted modules have a well characterized functional meaning and implement an efficient trade-off between replication of the original muscle patterns and task discriminability. Furthermore, they are compatible with the modules extracted from existing models, such as synchronous synergies and temporal primitives, and generalize time-varying synergies. Our results indicate the effectiveness of a simultaneous but separate condensation of spatial and temporal dimensions of muscle patterns. The space-by-time decomposition accommodates a unified view of the hierarchical mapping from task parameters to coordinated muscle activations, which could be employed as a reference framework for studying compositional motor control.
Vichaya, Elisabeth G; Laumet, Geoffroy; Christian, Diana L; Grossberg, Aaron J; Estrada, Darlene J; Heijnen, Cobi J; Kavelaars, Annemieke; Robert Dantzer
2018-04-27
Despite years of research, our understanding of the mechanisms by which inflammation induces depression is still limited. As clinical data points to a strong association between depression and motivational alterations, we sought to (1) characterize the motivational changes that are associated with inflammation in mice, and (2) determine if they depend on inflammation-induced activation of indoleamine 2,3 dioxygenase-1 (IDO1). Lipopolysaccharide (LPS)-treated or spared nerve injured (SNI) wild type (WT) and Ido1 -/- mice underwent behavioral tests of antidepressant activity (e.g., forced swim test) and motivated behavior, including assessment of (1) reward expectancy using a food-related anticipatory activity task, (2) willingness to work for reward using a progressive ratio schedule of food reinforcement, (3) effort allocation using a concurrent choice task, and (4) ability to associate environmental cues with reward using conditioned place preference. LPS- and SNI-induced deficits in behavioral tests of antidepressant activity in WT but not Ido1 -/- mice. Further, LPS decreased food related-anticipatory activity, reduced performance in the progressive ratio task, and shifted effort toward the preferred reward in the concurrent choice task. These effects were observed in both WT and Ido1 -/- mice. Finally, SNI mice developed a conditioned place preference based on relief from pain in an IDO1-independent manner. These findings demonstrate that the motivational effects of inflammation do not require IDO1. Further, they indicate that the motivational component of inflammation-induced depression is mechanistically distinct from that measured by behavioral tests of antidepressant activity.
Cognitive-Motor Interference during Walking in Older Adults with Probable Mild Cognitive Impairment
Klotzbier, Thomas J.; Schott, Nadja
2017-01-01
Although several studies have shown that dual-tasking (DT) mobility is impaired in Alzheimer's disease, studies on the effects of DT conditions in probable Mild Cognitive Impairment (pMCI) have not yielded unequivocal results. The objectives of the study were to (1) examine the effect of a concurrent task on a complex walking task in adults with cognitive impairment; and (2) determine whether the effect varied with different difficulty levels of the concurrent task. Furthermore, the study was designed to evaluate the Trail-Walking Test (TWT) as a potential detection tool for MCI. We examined DT performance in 42 young adults (mean age 23.9 ± 1.98), and 43 older adults (mean age 68.2 ± 6.42). The MoCA was used to stratify the subjects into those with and without pMCI. DT was assessed using the TWT: participants completed 5 trials each of walking along a fixed pathway, stepping on targets with increasing sequential numbers (i.e., 1-2-…-15), and increasing sequential numbers and letters (i.e., 1-A-2-B-3-…-8). Motor and cognitive DT effects (DTE) were calculated for each task. ROC curves were used to distinguish younger and healthy older adults from older adults with pMCI. The TWT showed excellent test-retest reliability across all conditions and groups (ICC : 0.83–0.97). SEM% was also low (<11%) as was the MDC95% (<30%). Within the DT conditions, the pMCI group showed significantly longer durations for all tasks regardless of the cognitive load compared to the younger and the healthy older adults. The motor DTEs were greatest for the complex condition in older adults with pMCI more so than in comparison with younger and healthy older adults. ROC analyses confirmed that only the tasks with higher cognitive load could differentiate older adults with pMCI from controls (area under the curve >0.7, p < 0.05). The TWT is a reliable DT mobility measure in people with pMCI. However, the condition with high cognitive load is more sensitive than the condition with low cognitive load in identifying pMCI. The TWT-3 thus could serve as a screening tool for early detection of individuals with pMCI. Future studies need to determine the neural correlates for cognitive-motor interference in older adults with pMCI. PMID:29321738
Cognitive-Motor Interference during Walking in Older Adults with Probable Mild Cognitive Impairment.
Klotzbier, Thomas J; Schott, Nadja
2017-01-01
Although several studies have shown that dual-tasking (DT) mobility is impaired in Alzheimer's disease, studies on the effects of DT conditions in probable Mild Cognitive Impairment (pMCI) have not yielded unequivocal results. The objectives of the study were to (1) examine the effect of a concurrent task on a complex walking task in adults with cognitive impairment; and (2) determine whether the effect varied with different difficulty levels of the concurrent task. Furthermore, the study was designed to evaluate the Trail-Walking Test (TWT) as a potential detection tool for MCI. We examined DT performance in 42 young adults (mean age 23.9 ± 1.98), and 43 older adults (mean age 68.2 ± 6.42). The MoCA was used to stratify the subjects into those with and without pMCI. DT was assessed using the TWT: participants completed 5 trials each of walking along a fixed pathway, stepping on targets with increasing sequential numbers (i.e., 1-2-…-15), and increasing sequential numbers and letters (i.e., 1-A-2-B-3-…-8). Motor and cognitive DT effects (DTE) were calculated for each task. ROC curves were used to distinguish younger and healthy older adults from older adults with pMCI. The TWT showed excellent test-retest reliability across all conditions and groups (ICC : 0.83-0.97). SEM% was also low (<11%) as was the MDC95% (<30%). Within the DT conditions, the pMCI group showed significantly longer durations for all tasks regardless of the cognitive load compared to the younger and the healthy older adults. The motor DTEs were greatest for the complex condition in older adults with pMCI more so than in comparison with younger and healthy older adults. ROC analyses confirmed that only the tasks with higher cognitive load could differentiate older adults with pMCI from controls (area under the curve >0.7, p < 0.05). The TWT is a reliable DT mobility measure in people with pMCI. However, the condition with high cognitive load is more sensitive than the condition with low cognitive load in identifying pMCI. The TWT-3 thus could serve as a screening tool for early detection of individuals with pMCI. Future studies need to determine the neural correlates for cognitive-motor interference in older adults with pMCI.
Single- and Dual-Task Balance Training Are Equally Effective in Youth
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12–13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed (p < 0.001, d = 5.1), shorter stride length (p < 0.001, d = 4.8), and longer stride time (p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre–post decreases in DT costs for gait velocity (p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes (p > 0.05, d = 0–0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre–post increases (p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group (p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents. PMID:29928248
Single- and Dual-Task Balance Training Are Equally Effective in Youth.
Lüder, Benjamin; Kiss, Rainer; Granacher, Urs
2018-01-01
Due to maturation of the postural control system and secular declines in motor performance, adolescents experience deficits in postural control during standing and walking while concurrently performing cognitive interference tasks. Thus, adequately designed balance training programs may help to counteract these deficits. While the general effectiveness of youth balance training is well-documented, there is hardly any information available on the specific effects of single-task (ST) versus dual-task (DT) balance training. Therefore, the objectives of this study were (i) to examine static/dynamic balance performance under ST and DT conditions in adolescents and (ii) to study the effects of ST versus DT balance training on static/dynamic balance under ST and DT conditions in adolescents. Twenty-eight healthy girls and boys aged 12-13 years were randomly assigned to either 8 weeks of ST or DT balance training. Before and after training, postural sway and spatio-temporal gait parameters were registered under ST (standing/walking only) and DT conditions (standing/walking while concurrently performing an arithmetic task). At baseline, significantly slower gait speed ( p < 0.001, d = 5.1), shorter stride length ( p < 0.001, d = 4.8), and longer stride time ( p < 0.001, d = 3.8) were found for DT compared to ST walking but not standing. Training resulted in significant pre-post decreases in DT costs for gait velocity ( p < 0.001, d = 3.1), stride length (-45%, p < 0.001, d = 2.4), and stride time (-44%, p < 0.01, d = 1.9). Training did not induce any significant changes ( p > 0.05, d = 0-0.1) in DT costs for all parameters of secondary task performance during standing and walking. Training produced significant pre-post increases ( p = 0.001; d = 1.47) in secondary task performance while sitting. The observed increase was significantly greater for the ST training group ( p = 0.04; d = 0.81). For standing, no significant changes were found over time irrespective of the experimental group. We conclude that adolescents showed impaired DT compared to ST walking but not standing. ST and DT balance training resulted in significant and similar changes in DT costs during walking. Thus, there appears to be no preference for either ST or DT balance training in adolescents.
Schabrun, Siobhan M; Lamont, Robyn M; Brauer, Sandra G
2016-01-01
To investigate the feasibility and safety of a combined anodal transcranial direct current stimulation (tDCS) and dual task gait training intervention in people with Parkinson's Disease (PD) and to provide data to support a sample size calculation for a fully powered trial should trends of effectiveness be present. A pilot, randomized, double-blind, sham-controlled parallel group trial with 12 week follow-up. A university physiotherapy department. Sixteen participants diagnosed with PD received nine dual task gait training sessions over 3 weeks. Participants were randomized to receive either active or sham tDCS applied for the first 20 minutes of each session. The primary outcome was gait speed while undertaking concurrent cognitive tasks (word lists, counting, conversation). Secondary measures included step length, cadence, Timed Up and Go, bradykinesia and motor speed. Gait speed, step length and cadence improved in both groups, under all dual task conditions. This effect was maintained at follow-up. There was no difference between the active and sham tDCS groups. Time taken to perform the TUGwords also improved, with no difference between groups. The active tDCS group did however increase their correct cognitive response rate during the TUGwords and TUGcount. Bradykinesia improved after training in both groups. Three weeks of dual task gait training resulted in improved gait under dual task conditions, and bradykinesia, immediately following training and at 12 weeks follow-up. The only parameter enhanced by tDCS was the number of correct responses while performing the dual task TUG. tDCS applied to M1 may not be an effective adjunct to dual task gait training in PD. Australia-New Zealand Clinical Trials Registry ACTRN12613001093774.
Smit, August B.; Verhage, Matthijs
2016-01-01
Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages. PMID:27918287
Dideriksen, Jakob Lund; Feeney, Daniel F; Almuklass, Awad M; Enoka, Roger M
2017-08-01
Force trajectories during isometric force-matching tasks involving isometric contractions vary substantially across individuals. In this study, we investigated if this variability can be explained by discrete time proportional, integral, derivative (PID) control algorithms with varying model parameters. To this end, we analyzed the pinch force trajectories of 24 subjects performing two rapid force-matching tasks with visual feedback. Both tasks involved isometric contractions to a target force of 10% maximal voluntary contraction. One task involved a single action (pinch) and the other required a double action (concurrent pinch and wrist extension). 50,000 force trajectories were simulated with a computational neuromuscular model whose input was determined by a PID controller with different PID gains and frequencies at which the controller adjusted muscle commands. The goal was to find the best match between each experimental force trajectory and all simulated trajectories. It was possible to identify one realization of the PID controller that matched the experimental force produced during each task for most subjects (average index of similarity: 0.87 ± 0.12; 1 = perfect similarity). The similarities for both tasks were significantly greater than that would be expected by chance (single action: p = 0.01; double action: p = 0.04). Furthermore, the identified control frequencies in the simulated PID controller with the greatest similarities decreased as task difficulty increased (single action: 4.0 ± 1.8 Hz; double action: 3.1 ± 1.3 Hz). Overall, the results indicate that discrete time PID controllers are realistic models for the neural control of force in rapid force-matching tasks involving isometric contractions.
Two-and-a-half-year-olds succeed at a traditional false-belief task with reduced processing demands
Scott, Rose M.; Baillargeon, Renée
2016-01-01
When tested with traditional false-belief tasks, which require answering a standard question about the likely behavior of an agent with a false belief, children perform below chance until age 4 y or later. When tested without such questions, however, children give evidence of false-belief understanding much earlier. Are traditional tasks difficult because they tap a more advanced form of false-belief understanding (fundamental-change view) or because they impose greater processing demands (processing-demands view)? Evidence that young children succeed at traditional false-belief tasks when processing demands are reduced would support the latter view. In prior research, reductions in inhibitory-control demands led to improvements in young children’s performance, but often only to chance (instead of below-chance) levels. Here we examined whether further reductions in processing demands might lead to success. We speculated that: (i) young children could respond randomly in a traditional low-inhibition task because their limited information-processing resources are overwhelmed by the total concurrent processing demands in the task; and (ii) these demands include those from the response-generation process activated by the standard question. This analysis suggested that 2.5-y-old toddlers might succeed at a traditional low-inhibition task if response-generation demands were also reduced via practice trials. As predicted, toddlers performed above chance following two response-generation practice trials; toddlers failed when these trials either were rendered less effective or were used in a high-inhibition task. These results support the processing-demands view: Even toddlers succeed at a traditional false-belief task when overall processing demands are reduced. PMID:27821728
Tippey, Kathryn G; Sivaraj, Elayaraj; Ferris, Thomas K
2017-06-01
This study evaluated the individual and combined effects of voice (vs. manual) input and head-up (vs. head-down) display in a driving and device interaction task. Advances in wearable technology offer new possibilities for in-vehicle interaction but also present new challenges for managing driver attention and regulating device usage in vehicles. This research investigated how driving performance is affected by interface characteristics of devices used for concurrent secondary tasks. A positive impact on driving performance was expected when devices included voice-to-text functionality (reducing demand for visual and manual resources) and a head-up display (HUD) (supporting greater visibility of the driving environment). Driver behavior and performance was compared in a texting-while-driving task set during a driving simulation. The texting task was completed with and without voice-to-text using a smartphone and with voice-to-text using Google Glass's HUD. Driving task performance degraded with the addition of the secondary texting task. However, voice-to-text input supported relatively better performance in both driving and texting tasks compared to using manual entry. HUD functionality further improved driving performance compared to conditions using a smartphone and often was not significantly worse than performance without the texting task. This study suggests that despite the performance costs of texting-while-driving, voice input methods improve performance over manual entry, and head-up displays may further extend those performance benefits. This study can inform designers and potential users of wearable technologies as well as policymakers tasked with regulating the use of these technologies while driving.
Age-related effects on postural control under multi-task conditions.
Granacher, Urs; Bridenbaugh, Stephanie A; Muehlbauer, Thomas; Wehrle, Anja; Kressig, Reto W
2011-01-01
Changes in postural sway and gait patterns due to simultaneously performed cognitive (CI) and/or motor interference (MI) tasks have previously been reported and are associated with an increased risk of falling in older adults. The objectives of this study were to investigate the effects of a CI and/or MI task on static and dynamic postural control in young and elderly subjects, and to find out whether there is an association between measures of static and dynamic postural control while concurrently performing the CI and/or MI task. A total of 36 healthy young (n = 18; age: 22.3 ± 3.0 years; BMI: 21.0 ± 1.6 kg/m(2)) and elderly adults (n = 18; age: 73.5 ± 5.5 years; BMI: 24.2 ± 2.9 kg/m(2)) participated in this study. Static postural control was measured during bipedal stance, and dynamic postural control was obtained while walking on an instrumented walkway. Irrespective of the task condition, i.e. single-task or multiple tasks, elderly participants showed larger center-of-pressure displacements and greater stride-to-stride variability than younger participants. Associations between measures of static and dynamic postural control were found only under the single-task condition in the elderly. Age-related deficits in the postural control system seem to be primarily responsible for the observed results. The weak correlations detected between static and dynamic measures could indicate that fall-risk assessment should incorporate dynamic measures under multi-task conditions, and that skills like erect standing and walking are independent of each other and may have to be trained complementarily. Copyright © 2010 S. Karger AG, Basel.
Heinz, Andrew J; Johnson, Jeffrey S
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference.
Heinz, Andrew J.; Johnson, Jeffrey S.
2017-01-01
Studies exploring the role of neural oscillations in cognition have revealed sustained increases in alpha-band power (ABP) during the delay period of verbal and visual working memory (VWM) tasks. There have been various proposals regarding the functional significance of such increases, including the inhibition of task-irrelevant cortical areas as well as the active retention of information in VWM. The present study examines the role of delay-period ABP in mediating the effects of interference arising from on-going visual processing during a concurrent VWM task. Specifically, we reasoned that, if set-size dependent increases in ABP represent the gating out of on-going task-irrelevant visual inputs, they should be predictive with respect to some modulation in visual evoked potentials resulting from a task-irrelevant delay period probe stimulus. In order to investigate this possibility, we recorded the electroencephalogram while subjects performed a change detection task requiring the retention of two or four novel shapes. On a portion of trials, a novel, task-irrelevant bilateral checkerboard probe was presented mid-way through the delay. Analyses focused on examining correlations between set-size dependent increases in ABP and changes in the magnitude of the P1, N1 and P3a components of the probe-evoked response and how such increases might be related to behavior. Results revealed that increased delay-period ABP was associated with changes in the amplitude of the N1 and P3a event-related potential (ERP) components, and with load-dependent changes in capacity when the probe was presented during the delay. We conclude that load-dependent increases in ABP likely play a role in supporting short-term retention by gating task-irrelevant sensory inputs and suppressing potential sources of disruptive interference. PMID:28555099
Remmelink, Esther; Smit, August B; Verhage, Matthijs; Loos, Maarten
2016-11-01
Many neurological and psychiatric disorders are characterized by deficits in cognitive flexibility. Modeling cognitive flexibility in mice enables the investigation of mechanisms underlying these deficits. The majority of currently available behavioral tests targeting this cognitive domain are reversal learning tasks that require scheduled food restriction, extended training periods and labor-intensive, and stress-inducing animal handling. Here, we describe a novel 4-day (4-d) continuously running task measuring discrimination- and reversal learning in an automated home cage (CognitionWall DL/RL task) that largely eliminates these limitations. In this task, mice can earn unlimited number of food rewards by passing through the correct hole of the three-holed CognitionWall. To assess the validity and sensitivity of this novel task, the performance of C57BL/6J mice, amyloid precursor protein/presenilin1 transgenic (APP/PS1) mice, α-calmodulin kinase-II (αCaMKII) T305D knock-in mice, and mice with an orbitofrontal cortex lesion were examined. We found that C57BL/6J mice reach stable performance levels within the 4 d of the task, while experiencing only slight reductions in weight and no major effects on circadian rhythm. The task detected learning deficits in APP/PS1 transgenic and αCaMKII T305D mutant mice. Additionally, we established that the orbitofrontal cortex underlies reversal learning performance in our task. Because of its short duration and the absence of food deprivation and concurrent weight loss, this novel automated home-cage task substantially improves comprehensive preclinical assessment of cognitive functions in mouse models of psychiatric and neurological disorders and also enables analysis during specific developmental stages. © 2016 Remmelink et al.; Published by Cold Spring Harbor Laboratory Press.
Observed Self-Regulation is Associated with Weight in Low-Income Toddlers
Miller, Alison L.; Rosenblum, Katherine L.; Retzloff, Lauren B.; Lumeng, Julie C.
2016-01-01
Obesity emerges in early childhood and tracks across development. Self-regulation develops rapidly during the toddler years, yet few studies have examined toddlers’ self-regulation in relation to concurrent child weight. Further, few studies compare child responses in food and non-food-related tasks. Our goal was to examine toddlers’ observed behavioral and emotional self-regulation in food and non-food tasks in relation to their body mass index z-score (BMIz) and weight status (overweight/obese vs. not). Observational measures were used to assess self-regulation (SR) in four standardized tasks in 133 low-income children (M age=33.1 months; SD=0.6). Behavioral SR was measured by assessing how well the child could delay gratification for a snack (food-related task) and a gift (non-food-related task). Emotional SR was measured by assessing child intensity of negative affect in two tasks designed to elicit frustration: being shown, then denied a cookie (food-related) or a toy (non-food-related). Task order was counterbalanced. BMIz was measured. Bivariate correlations and regression analyses adjusting for child sex, child race/ethnicity, and maternal education were conducted to examine associations of SR with weight. Results were that better behavioral SR in the snack delay task associated with lower BMIz (β=−0.27, p<.05) and lower odds of overweight/obesity (OR=0.66, 95% CI 0.45, 0.96), but behavioral SR in the gift task did not associate with BMIz or weight status. Better emotional SR in the non-food task associated with lower BMIz (β= −0.27, p<.05), and better emotional SR in food and non-food tasks associated with lower odds of overweight/obesity (OR=0.65, 95% CI 0.45, 0.96 and OR=0.56, 95% CI 0.37, 0.87, respectively). Results are discussed regarding how behavioral SR for food and overall emotional SR relate to weight during toddlerhood, and regarding early childhood obesity prevention implications. PMID:27397726
A decrease in brain activation associated with driving when listening to someone speak
DOT National Transportation Integrated Search
2008-02-01
Behavioral studies have shown that engaging in a secondary task, such as talking on a cellular : telephone, disrupts driving performance. This study used functional magnetic resonance : imaging (fMRI) to investigate the impact of concurrent auditory ...
Reduced Dual-Task Performance in MS Patients Is Further Decreased by Muscle Fatigue.
Wolkorte, Ria; Heersema, Dorothea J; Zijdewind, Inge
2015-06-01
Multiple sclerosis (MS) can be accompanied by motor, cognitive, and sensory impairments. Additionally, MS patients often report fatigue as one of their most debilitating symptoms. It is, therefore, expected that MS patients will have difficulties in performing cognitive-motor dual tasks (DTs), especially in a fatiguing condition. To determine whether MS patients are more challenged by a DT than controls in a fatiguing and less-fatiguing condition and whether DT performance is associated with perceived fatigue. A group of 19 MS patients and 19 age-, sex-, and education-matched controls performed a cognitive task (2-choice reaction time task) separately or concurrent with a low-force or a high-force motor task (index finger abduction at 10% or 30% maximal voluntary contraction). MS patients performed less well on a cognitive task than controls. Cognitive task performance under DT conditions decreased more for MS patients. Moreover, under high-force DT conditions, cognitive performance declined in both groups but to a larger degree for MS patients. Besides a decline in cognitive task performance, MS patients also showed a stronger decrease in motor performance under high-force DT conditions. DT costs were positively related to perceived fatigue as measured by questionnaires. Compared with controls, MS patients performed less well on DTs as demonstrated by a reduction in both cognitive and motor performances. This performance decrease was stronger under fatiguing conditions and was related to the sense of fatigue of MS patients. These data illustrate problems that MS patients may encounter in daily life because of their fatigue. © The Author(s) 2014.
Missing a trick: Auditory load modulates conscious awareness in audition.
Fairnie, Jake; Moore, Brian C J; Remington, Anna
2016-07-01
In the visual domain there is considerable evidence supporting the Load Theory of Attention and Cognitive Control, which holds that conscious perception of background stimuli depends on the level of perceptual load involved in a primary task. However, literature on the applicability of this theory to the auditory domain is limited and, in many cases, inconsistent. Here we present a novel "auditory search task" that allows systematic investigation of the impact of auditory load on auditory conscious perception. An array of simultaneous, spatially separated sounds was presented to participants. On half the trials, a critical stimulus was presented concurrently with the array. Participants were asked to detect which of 2 possible targets was present in the array (primary task), and whether the critical stimulus was present or absent (secondary task). Increasing the auditory load of the primary task (raising the number of sounds in the array) consistently reduced the ability to detect the critical stimulus. This indicates that, at least in certain situations, load theory applies in the auditory domain. The implications of this finding are discussed both with respect to our understanding of typical audition and for populations with altered auditory processing. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
User-Assisted Store Recycling for Dynamic Task Graph Schedulers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurt, Mehmet Can; Krishnamoorthy, Sriram; Agrawal, Gagan
The emergence of the multi-core era has led to increased interest in designing effective yet practical parallel programming models. Models based on task graphs that operate on single-assignment data are attractive in several ways: they can support dynamic applications and precisely represent the available concurrency. However, they also require nuanced algorithms for scheduling and memory management for efficient execution. In this paper, we consider memory-efficient dynamic scheduling of task graphs. Specifically, we present a novel approach for dynamically recycling the memory locations assigned to data items as they are produced by tasks. We develop algorithms to identify memory-efficient store recyclingmore » functions by systematically evaluating the validity of a set of (user-provided or automatically generated) alternatives. Because recycling function can be input data-dependent, we have also developed support for continued correct execution of a task graph in the presence of a potentially incorrect store recycling function. Experimental evaluation demonstrates that our approach to automatic store recycling incurs little to no overheads, achieves memory usage comparable to the best manually derived solutions, often produces recycling functions valid across problem sizes and input parameters, and efficiently recovers from an incorrect choice of store recycling functions.« less
Cue Utilization and Cognitive Load in Novel Task Performance
Brouwers, Sue; Wiggins, Mark W.; Helton, William; O’Hare, David; Griffin, Barbara
2016-01-01
This study was designed to examine whether differences in cue utilization were associated with differences in performance during a novel, simulated rail control task, and whether these differences reflected a reduction in cognitive load. Two experiments were conducted, the first of which involved the completion of a 20-min rail control simulation that required participants to re-route trains that periodically required a diversion. Participants with a greater level of cue utilization recorded a consistently greater response latency, consistent with a strategy that maintained accuracy, but reduced the demands on cognitive resources. In the second experiment, participants completed the rail task, during which a concurrent, secondary task was introduced. The results revealed an interaction, whereby participants with lesser levels of cue utilization recorded an increase in response latency that exceeded the response latency recorded for participants with greater levels of cue utilization. The relative consistency of response latencies for participants with greater levels of cue utilization, across all blocks, despite the imposition of a secondary task, suggested that those participants with greater levels of cue utilization had adopted a strategy that was effectively minimizing the impact of additional sources of cognitive load on their performance. PMID:27064669
Cortical and Spinal Mechanisms of Task Failure of Sustained Submaximal Fatiguing Contractions
Williams, Petra S.; Hoffman, Richard L.; Clark, Brian C.
2014-01-01
In this and the subsequent companion paper, results are presented that collectively seek to delineate the contribution that supraspinal circuits have in determining the time to task failure (TTF) of sustained submaximal contractions. The purpose of this study was to compare adjustments in supraspinal and spinal excitability taken concurrently throughout the performance of two different fatigue tasks with identical mechanical demands but different TTF (i.e., force-matching and position-matching tasks). On separate visits, ten healthy volunteers performed the force-matching or position-matching task at 15% of maximum strength with the elbow flexors to task failure. Single-pulse transcranial magnetic stimulation (TMS), paired-pulse TMS, paired cortico-cervicomedullary stimulation, and brachial plexus electrical stimulation were delivered in a 6-stimuli sequence at baseline and every 2–3 minutes throughout fatigue-task performance. Contrary to expectations, the force-matching task TTF was 42% shorter (17.5±7.9 min) than the position-matching task (26.9±15.11 min; p<0.01); however, both tasks caused the same amount of muscle fatigue (p = 0.59). There were no task-specific differences for the total amount or rate of change in the neurophysiologic outcome variables over time (p>0.05). Therefore, failure occurred after a similar mean decline in motorneuron excitability developed (p<0.02, ES = 0.35–0.52) coupled with a similar mean increase in measures of corticospinal excitability (p<0.03, ES = 0.30–0.41). Additionally, the amount of intracortical inhibition decreased (p<0.03, ES = 0.32) and the amount of intracortical facilitation (p>0.10) and an index of upstream excitation of the motor cortex remained constant (p>0.40). Together, these results suggest that as fatigue develops prior to task failure, the increase in corticospinal excitability observed in relationship to the decrease in spinal excitability results from a combination of decreasing intracortical inhibition with constant levels of intracortical facilitation and upstream excitability that together eventually fail to provide the input to the motor cortex necessary for descending drive to overcome the spinal cord resistance, thereby contributing to task failure. PMID:24667484
Working memory representations persist in the face of unexpected task alterations.
Swan, Garrett; Wyble, Brad; Chen, Hui
2017-07-01
It is well known that information can be held in memory while performing other tasks concurrently, such as remembering a color or number during a separate visual search task. However, it is not clear what happens to stored information in the face of unexpected tasks, such as the surprise questions that are often used in experiments related to inattentional and change blindness. Does the unpredicted shift in task context cause memory representations to be cleared in anticipation of new information? To answer this question, we ran two experiments where the task unexpectedly switched partway through the experiment with a surprise question. Half of the participants were asked to report the same attribute (Exp. 1 = Identity, Exp. 2 = Color) of a target stimulus in both presurprise and postsurprise trials, while for the other half, the reported attribute switched from identity to color (Exp. 1) or vice versa (Exp. 2). Importantly, all participants had to read an unexpected set of instructions and respond differently on the surprise trial. Accuracy on the surprise trial was higher for the same-attribute groups than the different-attribute groups. Furthermore, there was no difference in reaction time on the surprise trial between the two groups. These results suggest that information participants expected to report can survive an encounter with an unexpected task. The implication is that failures to report information on a surprise trial in many experiments reflect genuine differences in memory encoding, rather than forgetting or overwriting induced by the surprise question.
The interaction of feature and space based orienting within the attention set.
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the "attention set" (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects.
The interaction of feature and space based orienting within the attention set
Lim, Ahnate; Sinnett, Scott
2014-01-01
The processing of sensory information relies on interacting mechanisms of sustained attention and attentional capture, both of which operate in space and on object features. While evidence indicates that exogenous attentional capture, a mechanism previously understood to be automatic, can be eliminated while concurrently performing a demanding task, we reframe this phenomenon within the theoretical framework of the “attention set” (Most et al., 2005). Consequently, the specific prediction that cuing effects should reappear when feature dimensions of the cue overlap with those in the attention set (i.e., elements of the demanding task) was empirically tested and confirmed using a dual-task paradigm involving both sustained attention and attentional capture, adapted from Santangelo et al. (2007). Participants were required to either detect a centrally presented target presented in a stream of distractors (the primary task), or respond to a spatially cued target (the secondary task). Importantly, the spatial cue could either share features with the target in the centrally presented primary task, or not share any features. Overall, the findings supported the attention set hypothesis showing that a spatial cuing effect was only observed when the peripheral cue shared a feature with objects that were already in the attention set (i.e., the primary task). However, this finding was accompanied by differential attentional orienting dependent on the different types of objects within the attention set, with feature-based orienting occurring for target-related objects, and additional spatial-based orienting for distractor-related objects. PMID:24523682
Ciaramitaro, Vivian M; Chow, Hiu Mei; Eglington, Luke G
2017-03-01
We used a cross-modal dual task to examine how changing visual-task demands influenced auditory processing, namely auditory thresholds for amplitude- and frequency-modulated sounds. Observers had to attend to two consecutive intervals of sounds and report which interval contained the auditory stimulus that was modulated in amplitude (Experiment 1) or frequency (Experiment 2). During auditory-stimulus presentation, observers simultaneously attended to a rapid sequential visual presentation-two consecutive intervals of streams of visual letters-and had to report which interval contained a particular color (low load, demanding less attentional resources) or, in separate blocks of trials, which interval contained more of a target letter (high load, demanding more attentional resources). We hypothesized that if attention is a shared resource across vision and audition, an easier visual task should free up more attentional resources for auditory processing on an unrelated task, hence improving auditory thresholds. Auditory detection thresholds were lower-that is, auditory sensitivity was improved-for both amplitude- and frequency-modulated sounds when observers engaged in a less demanding (compared to a more demanding) visual task. In accord with previous work, our findings suggest that visual-task demands can influence the processing of auditory information on an unrelated concurrent task, providing support for shared attentional resources. More importantly, our results suggest that attending to information in a different modality, cross-modal attention, can influence basic auditory contrast sensitivity functions, highlighting potential similarities between basic mechanisms for visual and auditory attention.
Ivanova, Maria V.; Hallowell, Brooke
2014-01-01
Deficits in working memory (WM) are an important subset of cognitive processing deficits associated with aphasia. However, there are serious limitations to research on WM in aphasia largely due to the lack of an established valid measure of WM impairment for this population. The aim of the current study was to address shortcomings of previous measures by developing and empirically evaluating a novel WM task with a sentence-picture matching processing component designed to circumvent confounds inherent in existing measures of WM in aphasia. The novel WM task was presented to persons with (n = 27) and without (n = 33) aphasia. Results demonstrated high concurrent validity of a novel WM task. Individuals with aphasia performed significantly worse on all conditions of the WM task compared to individuals without aphasia. Different patterns of performance across conditions were observed for the two groups. Additionally, WM capacity was significantly related to auditory comprehension abilities in individuals with mild aphasia but not those with moderate aphasia. Strengths of the novel WM task are that it allows for differential control for length versus complexity of verbal stimuli and indexing of the relative influence of each, minimizes metalinguistic requirements, enables control for complexity of processing components, allows participants to respond with simple gestures or verbally, and eliminates reading requirements. Results support the feasibility and validity of using a novel task to assess WM in individuals with and without aphasia. PMID:24986153
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research. PMID:29618999
Temporal Audiovisual Motion Prediction in 2D- vs. 3D-Environments.
Dittrich, Sandra; Noesselt, Tömme
2018-01-01
Predicting motion is essential for many everyday life activities, e.g., in road traffic. Previous studies on motion prediction failed to find consistent results, which might be due to the use of very different stimulus material and behavioural tasks. Here, we directly tested the influence of task (detection, extrapolation) and stimulus features (visual vs. audiovisual and three-dimensional vs. non-three-dimensional) on temporal motion prediction in two psychophysical experiments. In both experiments a ball followed a trajectory toward the observer and temporarily disappeared behind an occluder. In audiovisual conditions a moving white noise (congruent or non-congruent to visual motion direction) was presented concurrently. In experiment 1 the ball reappeared on a predictable or a non-predictable trajectory and participants detected when the ball reappeared. In experiment 2 the ball did not reappear after occlusion and participants judged when the ball would reach a specified position at two possible distances from the occluder (extrapolation task). Both experiments were conducted in three-dimensional space (using stereoscopic screen and polarised glasses) and also without stereoscopic presentation. Participants benefitted from visually predictable trajectories and concurrent sounds during detection. Additionally, visual facilitation was more pronounced for non-3D stimulation during detection task. In contrast, for a more complex extrapolation task group mean results indicated that auditory information impaired motion prediction. However, a post hoc cross-validation procedure (split-half) revealed that participants varied in their ability to use sounds during motion extrapolation. Most participants selectively profited from either near or far extrapolation distances but were impaired for the other one. We propose that interindividual differences in extrapolation efficiency might be the mechanism governing this effect. Together, our results indicate that both a realistic experimental environment and subject-specific differences modulate the ability of audiovisual motion prediction and need to be considered in future research.
Egi, H; Hattori, M; Tokunaga, M; Suzuki, T; Kawaguchi, K; Sawada, H; Ohdan, H
2013-01-01
The aim of this study was to determine whether any correlation exists between the performance of the Mimic® dV-Trainer (Mimic Technologies, Seattle, Wash., USA) and the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, Calif., USA). Twelve participants were recruited, ranging from residents to consultants. We used four training tasks, consisting of 'Pick and Place', 'Peg Board', 'Thread the Rings' and 'Suture Sponge', from the software program of the Mimic dV-Trainer. The performance of the participants was recorded and measured. Additionally, we prepared the same tasks for the da Vinci Surgical System. All participants completed the tasks using the da Vinci Surgical System and were assessed according to time, the Objective Structured Assessment of Technical Skill checklist and the global rating score for endoscopic suturing assessed by two independent blinded observers. After performing these tasks, the participants completed a questionnaire that evaluated the Mimic dV-Trainer's face and content validity. The final results for each participant for the Mimic dV-Trainer and the da Vinci Surgical System were compared. All participants ranked the Mimic dV-Trainer as a realistic training platform that is useful for residency training. There was a significant relationship between the Mimic dV-Trainer and the da Vinci Surgical System in all four tasks. We verified the reliability of the assessment of the checklist and the global rating scores for endoscopic suturing assessed by the two blinded observers using Cronbach's alpha test (r = 0.803, 0.891). We evaluated the concurrent validity of the Mimic dV-Trainer and the da Vinci Surgical System. Our results suggest the possibility that training using the Mimic dV-Trainer may therefore be able to improve the operator's performance during live robot-assisted surgery. © 2013 S. Karger AG, Basel.
Yang, Wen-Chieh; Hsu, Wei-Li; Wu, Ruey-Meei; Lin, Kwan-Hwa
2016-10-01
Turning difficulty is common in people with Parkinson disease (PD). The clock-turn strategy is a cognitive movement strategy to improve turning performance in people with PD despite its effects are unverified. Therefore, this study aimed to investigate the effects of the clock-turn strategy on the pattern of turning steps, turning performance, and freezing of gait during a narrow turning, and how these effects were influenced by concurrent performance of a cognitive task (dual task). Twenty-five people with PD were randomly assigned to the clock-turn or usual-turn group. Participants performed the Timed Up and Go test with and without concurrent cognitive task during the medication OFF period. The clock-turn group performed the Timed Up and Go test using the clock-turn strategy, whereas participants in the usual-turn group performed in their usual manner. Measurements were taken during the 180° turn of the Timed Up and Go test. The pattern of turning steps was evaluated by step time variability and step time asymmetry. Turning performance was evaluated by turning time and number of turning steps. The number and duration of freezing of gait were calculated by video review. The clock-turn group had lower step time variability and step time asymmetry than the usual-turn group. Furthermore, the clock-turn group turned faster with fewer freezing of gait episodes than the usual-turn group. Dual task increased the step time variability and step time asymmetry in both groups but did not affect turning performance and freezing severity. The clock-turn strategy reduces turning time and freezing of gait during turning, probably by lowering step time variability and asymmetry. Dual task compromises the effects of the clock-turn strategy, suggesting a competition for attentional resources.Video Abstract available for more insights from the authors (see Supplemental Digital Content 1, http://links.lww.com/JNPT/A141).
Talebi, Hossein; Moossavi, Abdollah; Faghihzadeh, Soghrat
2014-01-01
Background: Older adults with cerebrovascular accident (CVA) show evidence of auditory and speech perception problems. In present study, it was examined whether these problems are due to impairments of concurrent auditory segregation procedure which is the basic level of auditory scene analysis and auditory organization in auditory scenes with competing sounds. Methods: Concurrent auditory segregation using competing sentence test (CST) and dichotic digits test (DDT) was assessed and compared in 30 male older adults (15 normal and 15 cases with right hemisphere CVA) in the same age groups (60-75 years old). For the CST, participants were presented with target message in one ear and competing message in the other one. The task was to listen to target sentence and repeat back without attention to competing sentence. For the DDT, auditory stimuli were monosyllabic digits presented dichotically and the task was to repeat those. Results: Comparing mean score of CST and DDT between CVA patients with right hemisphere impairment and normal participants showed statistically significant difference (p=0.001 for CST and p<0.0001 for DDT). Conclusion: The present study revealed that abnormal CST and DDT scores of participants with right hemisphere CVA could be related to concurrent segregation difficulties. These findings suggest that low level segregation mechanisms and/or high level attention mechanisms might contribute to the problems. PMID:25679009
Effects of motor congruence on visual working memory.
Quak, Michel; Pecher, Diane; Zeelenberg, Rene
2014-10-01
Grounded-cognition theories suggest that memory shares processing resources with perception and action. The motor system could be used to help memorize visual objects. In two experiments, we tested the hypothesis that people use motor affordances to maintain object representations in working memory. Participants performed a working memory task on photographs of manipulable and nonmanipulable objects. The manipulable objects were objects that required either a precision grip (i.e., small items) or a power grip (i.e., large items) to use. A concurrent motor task that could be congruent or incongruent with the manipulable objects caused no difference in working memory performance relative to nonmanipulable objects. Moreover, the precision- or power-grip motor task did not affect memory performance on small and large items differently. These findings suggest that the motor system plays no part in visual working memory.
Fox, Mark C; Charness, Neil
2010-03-01
Few studies have examined the impact of age on reactivity to concurrent think-aloud (TA) verbal reports. An initial study with 30 younger and 31 older adults revealed that thinking aloud improves older adult performance on a short form of the Raven's Matrices (Bors & Stokes, 1998, Educational and Psychological Measurement, 58, p. 382) but did not affect other tasks. In the replication experiment, 30 older adults (mean age = 73.0) performed the Raven's Matrices and three other tasks to replicate and extend the findings of the initial study. Once again older adults performed significantly better only on the Raven's Matrices while thinking aloud. Performance gains on this task were substantial (d = 0.73 and 0.92 in Experiments 1 and 2, respectively), corresponding to a fluid intelligence increase of nearly one standard deviation.
The cognitive costs of the counter-stereotypic: gender, emotion, and social presence.
McCarty, Megan K; Kelly, Janice R; Williams, Kipling D
2014-01-01
We explored the concurrent and subsequent cognitive consequences of the experience of gender counter-stereotypic emotions. Participants experiencing gender counter-stereotypic emotions were expected to display less emotional expression and demonstrate poorer cognitive performance when in the public condition than when in the private condition. Seventy-one women and 66 men completed an anger- or sadness-inducing task privately or publicly. Participants completed two cognitive tasks: one during and one after the emotion-induction task. Participants exhibited poorer performance during and following gender counter-stereotypic emotions only in the public condition. Direct evidence for greater suppression of gender counter-stereotypic emotions in the public conditions was not obtained. These results suggest that the same public emotional events may be differentially cognitively depleting depending on one's gender, potentially contributing to the perpetuation of stereotypes.
Time estimation as a secondary task to measure workload: Summary of research
NASA Technical Reports Server (NTRS)
Hart, S. G.; Mcpherson, D.; Loomis, L. L.
1978-01-01
Actively produced intervals of time were found to increase in length and variability, whereas retrospectively produced intervals decreased in length although they also increased in variability with the addition of a variety of flight-related tasks. If pilots counted aloud while making a production, however, the impact of concurrent activity was minimized, at least for the moderately demanding primary tasks that were selected. The effects of feedback on estimation accuracy and consistency were greatly enhanced if a counting or tapping production technique was used. This compares with the minimal effect that feedback had when no overt timekeeping technique was used. Actively made verbal estimates of sessions filled with different activities performed during the interval were increased. Retrospectively made verbal estimates, however, increased in length as the amount and complexity of activities performed during the interval were increased.
NASA Technical Reports Server (NTRS)
Shields, W. E.; Smith, J. D.; Washburn, D. A.; Rumbaugh, D. M. (Principal Investigator)
1997-01-01
The authors asked whether animals, like humans, use an uncertain response adaptively to escape indeterminate stimulus relations. Humans and monkeys were placed in a same-different task, known to be challenging for animals. Its difficulty was increased further by reducing the size of the stimulus differences, thereby making many same and different trials difficult to tell apart. Monkeys do escape selectively from these threshold trials, even while coping with 7 absolute stimulus levels concurrently. Monkeys even adjust their response strategies on short time scales according to the local task conditions. Signal-detection and optimality analyses confirm the similarity of humans' and animals' performances. Whereas associative interpretations account poorly for these results, an intuitive uncertainty construct does so easily. The authors discuss the cognitive processes that allow uncertainty's adaptive use and recommend further comparative studies of metacognition.
From Scribbles to Scrabble: Preschool Children’s Developing Knowledge of Written Language
Puranik, Cynthia S.; Lonigan, Christopher J.
2011-01-01
The purpose of this study was to concurrently examine the development of written language across several writing tasks and to investigate how writing features develop in preschool children. Emergent written language knowledge of 372 preschoolers was assessed using numerous writing tasks. The findings from this study indicate that children possess a great deal of writing knowledge before beginning school. Children appear to progress along a continuum from scribbling to conventional spelling, and this progression is linear and task dependent. There was clear evidence to support the claim that universal writing features develop before language-specific features. Children as young as 3 years possess knowledge regarding universal and language-specific writing features. There is substantial developmental continuity in literacy skills from the preschool period into early elementary grades. Implications of these findings on writing development are discussed. PMID:22448101
Aftanas, Lyubomir I; Bazanova, Olga M; Novozhilova, Nataliya V
2018-01-01
Background: Recent studies have demonstrated that the assessment of postural performance may be a potentially reliable and objective marker of the psychomotor retardation (PMR) in the major depressive disorder (MDD). One of the important facets of MDD-related PMR is reflected in disrupted central mechanisms of psychomotor control, heavily influenced by compelling maladaptive depressive rumination. In view of this we designed a research paradigm that included sequential execution of simple single-posture task followed by more challenging divided attention posture tasks, involving concurring motor and ideomotor workloads. Another difficulty dimension assumed executing of all the tasks with eyes open (EO) (easy) and closed (EC) (difficult) conditions. We aimed at investigating the interplay between the severity of MDD, depressive rumination, and efficiency of postural performance. Methods: Compared with 24 age- and body mass index-matched healthy controls (HCs), 26 patients with MDD sequentially executed three experimental tasks: (1) single-posture task of maintaining a quiet stance (ST), (2) actual posture-motor dual task (AMT); and (3) mental/imaginary posture-motor dual task (MMT). All the tasks were performed in the EO and the EC conditions. The primary dependent variable was the amount of kinetic energy ( E ) expended for the center of pressure deviations (CoPDs), whereas the absolute divided attention cost index showed energy cost to the dual-tasking vs. the single-posture task according to the formula: Δ E = ( E Dual-task - E Single-task ). Results: The signs of PMR in the MDD group were objectively indexed by deficient posture control in the EC condition along with overall slowness of fine motor and ideomotor activity. Another important and probably more challenging feature of the findings was that the posture deficit manifested in the ST condition was substantially and significantly attenuated in the MMT and AMT performance dual-tasking activity. A multiple linear regression analysis evidenced further that the dual-tasking energy cost (i.e., Δ E ) significantly predicted clinical scores of severity of MDD and depressive rumination. Conclusion: The findings allow to suggest that execution of concurrent actual or imaginary fine motor task with closed visual input deallocates attentional resources from compelling maladaptive depressive rumination thereby attenuating severity of absolute dual-tasking energy costs for balance maintenance in patients with MDD. Significance: Quantitative assessment of PMR through measures of the postural performance in dual-tasking may be useful to capture the negative impact of past depressive episodes, optimize the personalized treatment selection, and improve the understanding of the pathophysiological mechanisms underlying MDD.
2014-01-01
Background Multiple tasking is an integral part of daily mobility. Patients with Parkinson’s disease have dual tasking difficulties due to their combined motor and cognitive deficits. Two contrasting physiotherapy interventions have been proposed to alleviate dual tasking difficulties: either to discourage simultaneous execution of dual tasks (consecutive training); or to practice their concurrent use (integrated training). It is currently unclear which of these training methods should be adopted to achieve safe and consolidated dual task performance in daily life. Therefore, the proposed randomized controlled trial will compare the effects of integrated versus consecutive training of dual tasking (tested by combining walking with cognitive exercises). Methods and design Hundred and twenty patients with Parkinson’s disease will be recruited to participate in this multi-centered, single blind, randomized controlled trial. Patients in Hoehn & Yahr stage II-III, with or without freezing of gait, and who report dual task difficulties will be included. All patients will undergo a six-week control period without intervention after which they will be randomized to integrated or consecutive task practice. Training will consist of standardized walking and cognitive exercises delivered at home four times a week during six weeks. Treatment is guided by a physiotherapist twice a week and consists of two sessions of self-practice using an MP3 player. Blinded testers will assess patients before and after the control period, after the intervention period and after a 12-week follow-up period. The primary outcome measure is dual task gait velocity, i.e. walking combined with a novel untrained cognitive task to evaluate the consolidation of learning. Secondary outcomes include several single and dual task gait and cognitive measures, functional outcomes and a quality of life scale. Falling will be recorded as a possible adverse event using a weekly phone call for the entire study period. Discussion This randomized study will evaluate the effectiveness and safety of integrated versus consecutive task training in patients with Parkinson’s disease. The study will also highlight whether dual task gait training leads to robust motor learning effects, and whether these can be retained and carried-over to untrained dual tasks and functional mobility. Trial registration Clinicaltrials.gov NCT01375413. PMID:24674594
Szturm, Tony; Maharjan, Pramila; Marotta, Jonathan J; Shay, Barbara; Shrestha, Shiva; Sakhalkar, Vedant
2013-09-01
Mobility limitations and cognitive impairments, each common with aging, reduce levels of physical and mental activity, are prognostic of future adverse health events, and are associated with an increased fall risk. The purpose of this study was to examine whether divided attention during walking at a constant speed would decrease locomotor rhythm, stability, and cognitive performance. Young healthy participants (n=20) performed a visuo-spatial cognitive task in sitting and while treadmill walking at 2 speeds (0.7 and 1.0 m/s).Treadmill speed had a significant effect on temporal gait variables and ML-COP excursion. Cognitive load did not have a significant effect on average temporal gait variables or COP excursion, but variation of gait variables increased during dual-task walking. ML and AP trunk motion was found to decrease during dual-task walking. There was a significant decrease in cognitive performance (success rate, response time and movement time) while walking, but no effect due to treadmill speed. In conclusion walking speed is an important variable to be controlled in studies that are designed to examine effects of concurrent cognitive tasks on locomotor rhythm, pacing and stability. Divided attention during walking at a constant speed did result in decreased performance of a visuo-spatial cognitive task and an increased variability in locomotor rhythm. Copyright © 2013 Elsevier B.V. All rights reserved.
Attending to unrelated targets boosts short-term memory for color arrays.
Makovski, Tal; Swallow, Khena M; Jiang, Yuhong V
2011-05-01
Detecting a target typically impairs performance in a second, unrelated task. It has been recently reported however, that detecting a target in a stream of distractors can enhance long-term memory of faces and scenes that were presented concurrently with the target (the attentional boost effect). In this study we ask whether target detection also enhances performance in a visual short-term memory task, where capacity limits are severe. Participants performed two tasks at once: a one shot, color change detection task and a letter-detection task. In Experiment 1, a central letter appeared at the same time as 3 or 5 color patches (memory display). Participants encoded the colors and pressed the spacebar if the letter was a T (target). After a short retention interval, a probe display of color patches appeared. Performance on the change detection task was enhanced when a target, rather than a distractor, appeared with the memory display. This effect was not modulated by memory load or the frequency of trials in which a target appeared. However, there was no enhancement when the target appeared at the same time as the probe display (Experiment 2a) or during the memory retention interval (Experiment 2b). Together these results suggest that detecting a target facilitates the encoding of unrelated information into visual short-term memory. Copyright © 2010 Elsevier Ltd. All rights reserved.
Functional roles of the cingulo-frontal network in performance on working memory.
Kondo, Hirohito; Morishita, Masanao; Osaka, Naoyuki; Osaka, Mariko; Fukuyama, Hidenao; Shibasaki, Hiroshi
2004-01-01
We examined the relationship between brain activities and task performance on working memory. A large-scale study was initially administered to identify good and poor performers using the operation span and reading span tasks. On the basis of those span scores, we divided 20 consenting participants into high- and low-span groups. In an fMRI study, the participants performed verification of arithmetic problems and retention of target words either concurrently or separately. The behavioral results showed that performance was better in the high-span group than in the low-span group under a dual-task condition, but not under two single-task conditions. The anterior cingulate cortex (ACC), left prefrontal cortex (PFC), left inferior frontal cortex, and bilateral parietal cortex were primarily activated for both span groups. We found that signal changes in the ACC were greater in the high-span group than in the low-span group under the dual-task condition, but not under the single-task conditions. Structural equation modeling indicated that an estimate of effective connectivity from the ACC to the left PFC was positive for the high-span group and negative for the-low span group, suggesting that closer cooperation between the two brain regions was strongly related to working memory performance. We conclude that central executive functioning for attention shifting is modulated by the cingulo-frontal network.
Assessing Self-Awareness through Gaze Agency
Crespi, Sofia Allegra; de’Sperati, Claudio
2016-01-01
We define gaze agency as the awareness of the causal effect of one’s own eye movements in gaze-contingent environments, which might soon become a widespread reality with the diffusion of gaze-operated devices. Here we propose a method for measuring gaze agency based on self-monitoring propensity and sensitivity. In one task, naïf observers watched bouncing balls on a computer monitor with the goal of discovering the cause of concurrently presented beeps, which were generated in real-time by their saccades or by other events (Discovery Task). We manipulated observers’ self-awareness by pre-exposing them to a condition in which beeps depended on gaze direction or by focusing their attention to their own eyes. These manipulations increased propensity to agency discovery. In a second task, which served to monitor agency sensitivity at the sensori-motor level, observers were explicitly asked to detect gaze agency (Detection Task). Both tasks turned out to be well suited to measure both increases and decreases of gaze agency. We did not find evident oculomotor correlates of agency discovery or detection. A strength of our approach is that it probes self-monitoring propensity–difficult to evaluate with traditional tasks based on bodily agency. In addition to putting a lens on this novel cognitive function, measuring gaze agency could reveal subtle self-awareness deficits in pathological conditions and during development. PMID:27812138
Broster, Lucas S; Jenkins, Shonna L; Holmes, Sarah D; Edwards, Matthew G; Jicha, Gregory A; Jiang, Yang
2018-05-07
Forms of implicit memory, including repetition effects, are preserved relative to explicit memory in clinical Alzheimer's disease. Consequently, cognitive interventions for persons with Alzheimer's disease have been developed that leverage this fact. However, despite the clinical robustness of behavioral repetition effects, altered neural mechanisms of repetition effects are studied as biomarkers of both clinical Alzheimer's disease and pre-morbid Alzheimer's changes in the brain. We hypothesized that the clinical preservation of behavioral repetition effects results in part from concurrent operation of discrete memory systems. We developed two experiments that included probes of emotional repetition effects differing in that one included an embedded working memory task. We found that neural repetition effects manifested in patients with amnestic mild cognitive impairment, the earliest form of clinical Alzheimer's disease, during emotional working memory tasks, but they did not manifest during the task that lacked the embedded working memory manipulation. Specifically, the working memory task evoked neural repetition effects in the P600 time-window, but the same neural mechanism was only minimally implicated in the task without a working memory component. We also found that group differences in behavioral repetition effects were smaller in the experiment with a working memory task. We suggest that cross-domain cognitive challenge can expose "defunct" neural capabilities of individuals with amnestic mild cognitive impairment. Copyright © 2018. Published by Elsevier Ltd.
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing
Dorneich, Michael C.; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D.; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who “close the loop” by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution. PMID:28400716
Evaluation of the Display of Cognitive State Feedback to Drive Adaptive Task Sharing.
Dorneich, Michael C; Passinger, Břetislav; Hamblin, Christopher; Keinrath, Claudia; Vašek, Jiři; Whitlow, Stephen D; Beekhuyzen, Martijn
2017-01-01
This paper presents an adaptive system intended to address workload imbalances between pilots in future flight decks. Team performance can be maximized when task demands are balanced within crew capabilities and resources. Good communication skills enable teams to adapt to changes in workload, and include the balancing of workload between team members This work addresses human factors priorities in the aviation domain with the goal to develop concepts that balance operator workload, support future operator roles and responsibilities, and support new task requirements, while allowing operators to focus on the most safety critical tasks. A traditional closed-loop adaptive system includes the decision logic to turn automated adaptations on and off. This work takes a novel approach of replacing the decision logic, normally performed by the automation, with human decisions. The Crew Workload Manager (CWLM) was developed to objectively display the workload between pilots and recommend task sharing; it is then the pilots who "close the loop" by deciding how to best mitigate unbalanced workload. The workload was manipulated by the Shared Aviation Task Battery (SAT-B), which was developed to provide opportunities for pilots to mitigate imbalances in workload between crew members. Participants were put in situations of high and low workload (i.e., workload was manipulated as opposed to being measured), the workload was then displayed to pilots, and pilots were allowed to decide how to mitigate the situation. An evaluation was performed that utilized the SAT-B to manipulate workload and create workload imbalances. Overall, the CWLM reduced the time spent in unbalanced workload and improved the crew coordination in task sharing while not negatively impacting concurrent task performance. Balancing workload has the potential to improve crew resource management and task performance over time, and reduce errors and fatigue. Paired with a real-time workload measurement system, the CWLM could help teams manage their own task load distribution.
Xiong, Lilin; Huang, Xiao; Li, Jie; Mao, Peng; Wang, Xiang; Wang, Rubing; Tang, Meng
2018-06-13
Indoor physical environments appear to influence learning efficiency nowadays. For improvement in learning efficiency, environmental scenarios need to be designed when occupants engage in different learning tasks. However, how learning efficiency is affected by indoor physical environment based on task types are still not well understood. The present study aims to explore the impacts of three physical environmental factors (i.e., temperature, noise, and illuminance) on learning efficiency according to different types of tasks, including perception, memory, problem-solving, and attention-oriented tasks. A 3 × 4 × 3 full factorial design experiment was employed in a university classroom with 10 subjects recruited. Environmental scenarios were generated based on different levels of temperature (17 °C, 22 °C, and 27 °C), noise (40 dB(A), 50 dB(A), 60 dB(A), and 70 dB(A)) and illuminance (60 lx, 300 lx, and 2200 lx). Accuracy rate (AC), reaction time (RT), and the final performance indicator (PI) were used to quantify learning efficiency. The results showed ambient temperature, noise, and illuminance exerted significant main effect on learning efficiency based on four task types. Significant concurrent effects of the three factors on final learning efficiency was found in all tasks except problem-solving-oriented task. The optimal environmental scenarios for top learning efficiency were further identified under different environmental interactions. The highest learning efficiency came in thermoneutral, relatively quiet, and bright conditions in perception-oriented task. Subjects performed best under warm, relatively quiet, and moderately light exposure when recalling images in the memory-oriented task. Learning efficiency peaked to maxima in thermoneutral, fairly quiet, and moderately light environment in problem-solving process while in cool, fairly quiet and bright environment with regard to attention-oriented task. The study provides guidance for building users to conduct effective environmental intervention with simultaneous controls of ambient temperature, noise, and illuminance. It contributes to creating the most suitable indoor physical environment for improving occupants learning efficiency according to different task types. The findings could further supplement the present indoor environment-related standards or norms with providing empirical reference on environmental interactions.
Projected 2050 Model Simulations for the Chesapeake Bay Program
The Chesapeake Bay Program as has been tasked with assessing how changes in climate systems are expected to alter key variables and processes within the Watershed in concurrence with land use changes. EPA’s Office of Research and Development will be conducting historic and...
Manipulating Slot Machine Preference in Problem Gamblers through Contextual Control
ERIC Educational Resources Information Center
Nastally, Becky L.; Dixon, Mark R.; Jackson, James W.
2010-01-01
Pathological and nonpathological gamblers completed a task that assessed preference among 2 concurrently available slot machines. Subsequent assessments of choice were conducted after various attempts to transfer contextual functions associated with irrelevant characteristics of the slot machines. Results indicated that the nonproblem gambling…
Concurrent Validity of the Strength-Based "Behavioral Objective Sequence"
ERIC Educational Resources Information Center
Wilder, Lynn K.; Braaten, Sheldon; Wilhite, Kathi; Algozzine, Bob
2006-01-01
An essential task of diagnosticians is the accurate assessment of behavioral skills. Traditionally, deficit-based behavioral assessments have underscored student social skill deficits. Strength-based assessments delineate student competencies and are useful for individualized education program (IEP) and behavioral intervention plan (BIP)…
Holmes, Jeffrey D; Jenkins, Mary E; Johnson, Andrew M; Hunt, Michael A; Clark, Ross A
2013-04-01
Impaired postural stability places individuals with Parkinson's at an increased risk for falls. Given the high incidence of fall-related injuries within this population, ongoing assessment of postural stability is important. To evaluate the validity of the Nintendo Wii(®) balance board as a measurement tool for the assessment of postural stability in individuals with Parkinson's. Twenty individuals with Parkinson's participated. Subjects completed testing on two balance tasks with eyes open and closed on a Wii(®) balance board and biomechanical force platform. Bland-Altman plots and a two-way, random-effects, single measure intraclass correlation coefficient model were used to assess concurrent validity of centre-of-pressure data. Concurrent validity was demonstrated to be excellent across balance tasks (intraclass correlation coefficients = 0.96, 0.98, 0.92, 0.94). This study suggests that the Wii(®) balance board is a valid tool for the quantification of postural stability among individuals with Parkinson's.
Guimond, Synthia; Vachon, François; Nolden, Sophie; Lefebvre, Christine; Grimault, Stephan; Jolicoeur, Pierre
2011-11-01
We studied the neuronal mechanisms that implement acoustic short-term memory (ASTM) for pitch using event-related potentials (ERP). Experiment 1 isolated an ERP component, the sustained anterior negativity (SAN), that increased in amplitude with increasing memory load in ASTM using stimuli with equal duration at all memory loads. The SAN load effect found in Experiment 1, when pitch had to be remembered to perform the task, was absent in Experiment 2 using the same sounds when memory was not required. In Experiment 3, the memory task was performed without or with concurrent articulatory suppression during the retention interval to prevent rehearsal via an articulatory loop. Load-related effects observed in Experiment 1 were found again, whether participants engaged in concurrent suppression or not. The results suggest that the SAN reflects activity required to maintain pitch objects in an ASTM system that is distinct from articulatory rehearsal. Copyright © 2011 Society for Psychophysiological Research.