Sample records for condensed phase explosives

  1. Numerical Simulation of Detonation in Condensed Phase Explosives

    DTIC Science & Technology

    1998-08-01

    34Numerical modelling of shocks in solids with elastic-plastic conditions", Shock Waves, 3: 55-66. 22. Jones, D.A., Oran, E.S. and Guirguis , R. (1990). "A...China Lake, CA 93555-6001, preprint. 55. P.J. Miller , P.J. and G.T. Sutherland, G.T. (1996) Reaction Rate Modelling of PBXN- 110, Shock Compression...report describes the development of a two-dimensional multi-material Eulerian hydrocode to model the effects of detonating condensed phase explosives on

  2. Overview: MURI Center on spectroscopic and time domain detection of trace explosives in condensed and vapor phases

    NASA Astrophysics Data System (ADS)

    Spicer, James B.; Dagdigian, Paul; Osiander, Robert; Miragliotta, Joseph A.; Zhang, Xi-Cheng; Kersting, Roland; Crosley, David R.; Hanson, Ronald K.; Jeffries, Jay

    2003-09-01

    The research center established by Army Research Office under the Multidisciplinary University Research Initiative program pursues a multidisciplinary approach to investigate and advance the use of complementary analytical techniques for sensing of explosives and/or explosive-related compounds as they occur in the environment. The techniques being investigated include Terahertz (THz) imaging and spectroscopy, Laser-Induced Breakdown Spectroscopy (LIBS), Cavity Ring Down Spectroscopy (CRDS) and Resonance Enhanced Multiphoton Ionization (REMPI). This suite of techniques encompasses a diversity of sensing approaches that can be applied to detection of explosives in condensed phases such as adsorbed species in soil or can be used for vapor phase detection above the source. Some techniques allow for remote detection while others have highly specific and sensitive analysis capabilities. This program is addressing a range of fundamental, technical issues associated with trace detection of explosive related compounds using these techniques. For example, while both LIBS and THz can be used to carry-out remote analysis of condensed phase analyte from a distance in excess several meters, the sensitivities of these techniques to surface adsorbed explosive-related compounds are not currently known. In current implementations, both CRDS and REMPI require sample collection techniques that have not been optimized for environmental applications. Early program elements will pursue the fundamental advances required for these techniques including signature identification for explosive-related compounds/interferents and trace analyte extraction. Later program tasks will explore simultaneous application of two or more techniques to assess the benefits of sensor fusion.

  3. Investigating ground effects on mixing and afterburning during a TNT explosion

    NASA Astrophysics Data System (ADS)

    Fedina, E.; Fureby, C.

    2013-05-01

    In this paper, the unconfined and semi-confined condensed phase explosions of TNT will be studied using large eddy simulations based on the unsteady, compressible, reacting, multi-species Navier-Stokes equations to gain further understanding of the physical processes involved in a condensed phase explosion and the effect of confinement on the physical processes involved. The analysis of the mixing and afterburning of TNT explosions in free air (unconfined) and near the ground (semi-confined) indicates that the combustion region of detonation products and air is determined by the vorticity patterns, which are induced by the Richtmeyer-Meshkov instabilities that arise during the explosion. When the explosive is detonated in the vicinity of a surface, the surface affects the shock propagation by creating complex shock systems, thereby changing the orientation of the vorticity, giving the afterburning a mushroom shape, and increasing performance of an explosive charge by prolonging the existence of the mixing layer and thereby the afterburning.

  4. Compressible Heating in the Condense Phase due to Pore Collapse in HMX

    NASA Astrophysics Data System (ADS)

    Zhang, Ju; Jackson, Thomas

    Axisymmetric pore collapse in HMX is studied numerically by solving multi-phase reactive Euler equations. The generation of hot spots in the condense phase due to compressible heating is examined. The motivation is to improve the understanding of the role of embedded cavities in the initiation of reaction in explosives, and to investigate the effect of hot spots in the condense phase due to compressible heating alone, complementing previous study on hot spots due to the reaction in the gas phase and at the interface. It is found that the shock-cavity interaction results in pressures and thus temperatures that are substantially higher than the post-shock values in the condense phase. However, these hot spots in the condense phase due to compressible heating alone do not seem to be sufficiently hot to lead to ignition at shock pressures of 1-3 GPa. Thus, compressible heating in the condense phase may be excluded as a mechanism for initiation of explosives. It should be pointed out that the ignition threshold for the temperature, the so-called ``switch-on'' temperature, of hot spots depend on chemistry kinetics parameters. Switch-on temperature is lower for faster reaction rate. The current chemistry kinetics parameters are based on previous experimental work. This work was supported in part by the Defense Threat Reduction Agency and by the U.S. Department of Energy.

  5. Shock Interaction of Metal Particles in Condensed Explosive Detonation

    NASA Astrophysics Data System (ADS)

    Ripley, Robert; Zhang, Fan; Lien, Fue-Sang

    2005-07-01

    For detonation propagation in a condensed explosive with metal particles, a macro-scale physical model describing the momentum transfer between the explosive and particles has yet to be completely established. Previous 1D and 2D meso-scale modeling studies indicated that significant momentum transfer from the explosive to the particles occurs as the leading shock front crosses the particles, thus influencing the initiation and detonation structure. In this work, 3D meso-scale modeling is conducted to further study the two-phase momentum transfer during the shock diffraction and subsequent detonation in liquid nitromethane containing packed metal particles. Detonation of the condensed explosive is computed using an Arrhenius reaction model and a hybrid EOS model that combines the Mie-Gruneisen equation for reactants and the JWL equation for products. The compressible particles are modeled using the Tait EOS, where the material strength is negligible. The effect of particle packing configuration and inter-particle spacing is shown by parametric studies. Finally, a physical description of the momentum transfer is discussed.

  6. Explosive desorption of icy grain mantles in dense clouds

    NASA Technical Reports Server (NTRS)

    Schutte, W. A.; Greenberg, J. M.

    1991-01-01

    The cycling of the condensible material in dense clouds between the gas phase and the icy grain mantles is investigated. In the model studied, desorption of the ice occurs due to grain mantle explosions when photochemically stored energy is released after transient heating by a cosmic ray particle. It is shown that, depending on the grain size distribution in dense clouds, explosive desorption can maintain up to about eight percent of the carbon in the form of CO in the gas phase at typical cloud densities.

  7. Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering

    NASA Astrophysics Data System (ADS)

    Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team

    Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.

  8. Predicting the Plate Dent Test Output in Order to Assess the Performance of Condensed High Explosives

    NASA Astrophysics Data System (ADS)

    Frem, Dany

    2017-01-01

    In the present study, a relationship is proposed that is capable of predicting the output of the plate dent test. It is shown that the initial density ?; condensed phase heat of formation ?; the number of carbon (C), nitrogen (N), oxygen (O); and the composition molecular weight (MW) are the most important parameters needed in order to accurately predict the absolute dent depth ? produced on 1018 cold-rolled steel by a detonating organic explosive. The estimated ? values can be used to predict the detonation pressure (P) of high explosives; furthermore, we show that a correlation exists between ? and the Gurney velocity ? parameter. The new correlation is used to accurately estimate ? for several C-H-N-O explosive compositions.

  9. Reaction Mechanisms of Energetic Materials in the Condensed Phase: Long-term Aging, Munition Safety and Condensed-Phase Processes in Propellants and Explosives

    DTIC Science & Technology

    2009-03-31

    Journal of the American Society for Mass Spectrometry, 2002. 13(2): p. 135- 143 . 7. Delcorte, A., P. Bertrand, and B.J. Garrison, Collision cascade and...TNCHP. 49, 50 The presence of the keto group in K6 appears to promote a more direct reaction to the gaseous decomposition products. Decomposition

  10. Formation of double front detonations of a condensed-phase explosive with powdered aluminium

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Yoh, Jack J.

    2018-03-01

    The performance characteristics of aluminised high explosive are considered by varying the aluminium (Al) mass fraction in a hybrid non-ideal detonation model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al mass fraction and a double front detonation (DFD) feature when anaerobic Al reaction occurs behind the front. In order to simulate the performance characteristics due to the varying Al mass fraction, the tetrahexamine tetranitramine (HMX) is considered as a base high explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between particles and HMX product gases. While experimental studies have been reported on the effect of Al mass fraction on both gas-phase and solid-phase detonations, the numerical investigations have been limited to only gas-phase detonation for the varying Al particles in the mixture. In the current study, a two-phase model is utilised for understanding the volumetric effects of Al mass fraction in condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterising the performance of aluminised HMX with a maximum Al mass fraction of 50%. The simulated results are compared with the experimental data for 5-25% mass fractions, and the higher mass fraction behaviours are consistent with the experimental observations.

  11. Shock wave induced condensation in fuel-rich gaseous and gas-particles mixtures

    NASA Astrophysics Data System (ADS)

    Fomin, P. A.

    2018-03-01

    The possibility of fuel vapor condensation in shock waves in fuel-rich (cyclohexane-oxygen) gaseous mixtures and explosion safety aspects of this effect are discussed. It is shown, that condensation process can essentially change the chemical composition of the gas. For example, the molar fraction of the oxidizer can increase in a few times. As a result, mixtures in which the initial concentration of fuel vapor exceeds the Upper Flammability Limit can, nevertheless, explode, if condensation shifts the composition of the mixture into the ignition region. The rate of the condensation process is estimated. This process can be fast enough to significantly change the chemical composition of the gas and shift it into the flammable range during the compression phase of blast waves, generated by explosions of fuel-vapor clouds or rapture of pressurized chemical reactors, with characteristic size of a few meters. It is shown that the presence of chemically inert microparticles in the gas mixtures under consideration increases the degree of supercooling and the mass of fuel vapors that have passed into the liquid and reduces the characteristic condensation time in comparison with the gas mixture without microparticles. The fuel vapor condensation should be taken into account in estimation the explosion hazard of chemical reactors, industrial and civil constructions, which may contain fuel-rich gaseous mixtures of heavy hydrocarbons with air.

  12. A hybrid formulation for the numerical simulation of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Michael, L.; Nikiforakis, N.

    2016-07-01

    In this article we present a new formulation and an associated numerical algorithm, for the simulation of combustion and transition to detonation of condensed-phase commercial- and military-grade explosives, which are confined by (or in general interacting with one or more) compliant inert materials. Examples include confined rate-stick problems and interaction of shock waves with gas cavities or solid particles in explosives. This formulation is based on an augmented Euler approach to account for the mixture of the explosive and its products, and a multi-phase diffuse interface approach to solve for the immiscible interaction between the mixture and the inert materials, so it is in essence a hybrid (augmented Euler and multi-phase) model. As such, it has many of the desirable features of the two approaches and, critically for our applications of interest, it provides the accurate recovery of temperature fields across all components. Moreover, it conveys a lot more physical information than augmented Euler, without the complexity of full multi-phase Baer-Nunziato-type models or the lack of robustness of augmented Euler models in the presence of more than two components. The model can sustain large density differences across material interfaces without the presence of spurious oscillations in velocity and pressure, and it can accommodate realistic equations of state and arbitrary (pressure- or temperature-based) reaction-rate laws. Under certain conditions, we show that the formulation reduces to well-known augmented Euler or multi-phase models, which have been extensively validated and used in practice. The full hybrid model and its reduced forms are validated against problems with exact (or independently-verified numerical) solutions and evaluated for robustness for rate-stick and shock-induced cavity collapse case-studies.

  13. Validation and Refinement of the DELFIC Cloud Rise Module

    DTIC Science & Technology

    1977-01-15

    Explosion Energy Fraction in the Cloud, f 13 2.4.2 Temper&ture of Condensed-Phase Matter 13 2.4.3 Altitude 14 2.4.4 Rise V0elociy 14 2.4.5 Mass and Volume 15...2.4.1 Explosion Energy Fraction in the Cloud. f. The original NRDL water-surface burst model used an energy fraction of 33%. For the first DELFIC...of explosion energy) is used to heat soil and air to their respective initial tempera- tures. The soil mans and both initial temperatures are

  14. Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence.

    PubMed

    Wynn, C M; Palmacci, S; Kunz, R R; Rothschild, M

    2010-03-15

    Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (approximately 7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced fluorescence. PD-LIF excitation and emission spectra indicate the creation of NO in vibrationally-excited states with significant rotational energy, useful for low-background detection of the parent compound. The results for homemade explosives are compared to one another and 2,6-dinitrotoluene, a component present in many military explosives.

  15. Planar blast scaling with condensed-phase explosives in a shock tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure,more » shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube walls. Such a technique has previously been used to obtain blast scaling measurements in the planar geometry with gaseous explosives and the condensed-phase explosive nitroguanidine. Recently, there has been much interest in the blast characterization of various non-ideal high explosive (NIHE) materials. With non-ideals, the detonation reaction zone is significantly larger (up to several cm for ANFO) than more ideal explosives. Wave curvature, induced by charge-geometry, can significantly affect the energy release associated with NIHEs. To measure maximum NIHE energy release accurately, it is desirable to minimize any such curvature and, if possible, to overdrive the detonation shock to ensure completion of chemical reactions ahead of the sonic locus associated with the reaction zone. This is achieved in the current study through use of a powerful booster HE and a charge geometry consisting of short cylindrical lengths of NIHE initiated along the charge centerline.« less

  16. Surface-Accelerated Decomposition of δ-HMX.

    PubMed

    Sharia, Onise; Tsyshevsky, Roman; Kuklja, Maija M

    2013-03-07

    Despite extensive efforts to study the explosive decomposition of HMX, a cyclic nitramine widely used as a solid fuel, explosive, and propellant, an understanding of the physicochemical processes, governing the sensitivity of condensed HMX to detonation initiation is not yet achieved. Experimental and theoretical explorations of the initiation of chemistry are equally challenging because of many complex parallel processes, including the β-δ phase transition and the decomposition from both phases. Among four known polymorphs, HMX is produced in the most stable β-phase, which transforms into the most reactive δ-phase under heat or pressure. In this study, the homolytic NO2 loss and HONO elimination precursor reactions of the gas-phase, ideal crystal, and the (100) surface of δ-HMX are explored by first principles modeling. Our calculations revealed that the high sensitivity of δ-HMX is attributed to interactions of surfaces and molecular dipole moments. While both decomposition reactions coexist, the exothermic HONO-isomer formation catalyzes the N-NO2 homolysis, leading to fast violent explosions.

  17. New insights on entrainment and condensation in volcanic plumes: Constraints from independent observations of explosive eruptions and implications for assessing their impacts

    NASA Astrophysics Data System (ADS)

    Aubry, Thomas J.; Jellinek, A. Mark

    2018-05-01

    The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.

  18. Blast waves from violent explosive activity at Yasur Volcano, Vanuatu

    NASA Astrophysics Data System (ADS)

    Marchetti, E.; Ripepe, M.; Delle Donne, D.; Genco, R.; Finizola, A.; Garaebiti, E.

    2013-11-01

    and seismic waveforms were collected during violent strombolian activity at Yasur Volcano (Vanuatu). Averaging ~3000 seismic events showed stable waveforms, evidencing a low-frequency (0.1-0.3 Hz) signal preceding ~5-6 s the explosion. Infrasonic waveforms were mostly asymmetric with a sharp compressive (5-106 Pa) onset, followed by a small long-lasting rarefaction phase. Regardless of the pressure amplitude, the ratio between the positive and negative phases was constant. These waveform characteristics closely resembled blast waves. Infrared imagery showed an apparent cold spherical front ~20 m thick, which moved between 342 and 405 m/s before the explosive hot gas/fragments cloud. We interpret this cold front as that produced by the vapor condensation induced by the passage of the shock front. We suggest that violent strombolian activity at Yasur was driven by supersonic dynamics with gas expanding at 1.1 Mach number inside the conduit.

  19. A two-phase model for aluminized explosives on the ballistic and brisance performance

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-cheol; Lee, Young-hun; Yoh, Jack J.

    2018-02-01

    The performance of aluminized high explosives is considered by varying the aluminum (Al) mass fraction in a heterogeneous mixture model. Since the time scales of the characteristic induction and combustion of high explosives and Al particles differ, the process of energy release behind the leading detonation wave front occurs over an extended period of time. For simulating the performance of aluminized explosives with varying Al mass fraction, HMX (1,3,5,7-tetrahexmine-1,3,5,7-tetrazocane) is considered as a base explosive when formulating the multiphase conservation laws of mass, momentum, and energy exchanges between the HMX product gases and Al particles. In the current study, a two-phase model is utilized in order to determine the effects of the Al mass fraction in a condensed phase explosive. First, two types of confined rate stick tests are considered to investigate the detonation velocity and the acceleration ability, which refers to the radial expansion velocity of the confinement shell. The simulation results of the confined rate stick test are compared with the experimental data for the Al mass fraction range of 0%-25%, and the optimal Al mass fraction is provided, which is consistent with the experimental observations. Additionally, a series of plate dent test simulations are conducted, the results of which show the same tendency as those of the experimental tests with varying Al mass fractions.

  20. Stress-induced activation of decomposition of organic explosives: a simple way to understand.

    PubMed

    Zhang, Chaoyang

    2013-01-01

    We provide a very simply way to understand the stress-induced activation of decomposition of organic explosives by taking the simplest explosive molecule nitromethane (NM) as a prototype and constraining one or two NM molecules in a shell to represent the condensed phrase of NM against the stress caused by tension and compression, sliding and rotational shear, and imperfection. The results show that the stress loaded on NM molecule can always reduce the barriers of its decomposition. We think the origin of this stress-induced activation is due to the increased repulsive intra- and/or inter- molecular interaction potentials in explosives resulted from the stress, whose release is positive to accelerate the decomposition. Besides, by these models, we can understand that the explosives in gaseous state are easier to analyze than those in condensed state and the voids in condensed explosives make them more sensitive to external stimuli relative to the perfect crystals.

  1. A Study of Energy Partitioning Using A Set of Related Explosive Formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C., Jr.; Stewart, D. Scott

    2011-06-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to kinetic energy during the detonation process. This energy is manifest in the internal thermodynamic energy and the translational flow of the products. Historically, the explosive design problem has focused on intramolecular stoichiometry providing prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employee intermolecular ingredients to alter the spatial and temporal distribution of energy release. CHEETA has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and flow energy in the detonation. The equation of state information from CHEETA has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  2. Numerical Simulation of the Detonation of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Wang, Cheng; Ye, Ting; Ning, Jianguo

    Detonation process of a condensed explosive was simulated using a finite difference method. Euler equations were applied to describe the detonation flow field, an ignition and growth model for the chemical reaction and Jones-Wilkins-Lee (JWL) equations of state for the state of explosives and detonation products. Based on the simple mixture rule that assumes the reacting explosives to be a mixture of the reactant and product components, 1D and 2D codes were developed to simulate the detonation process of high explosive PBX9404. The numerical results are in good agreement with the experimental results, which demonstrates that the finite difference method, mixture rule and chemical reaction proposed in this paper are adequate and feasible.

  3. Reflection Patterns Generated by Condensed-Phase Oblique Detonation Interaction with a Rigid Wall

    NASA Astrophysics Data System (ADS)

    Short, Mark; Chiquete, Carlos; Bdzil, John; Meyer, Chad

    2017-11-01

    We examine numerically the wave reflection patterns generated by a detonation in a condensed phase explosive inclined obliquely but traveling parallel to a rigid wall as a function of incident angle. The problem is motivated by the characterization of detonation-material confiner interactions. We compare the reflection patterns for two detonation models, one where the reaction zone is spatially distributed, and the other where the reaction is instantaneous (a Chapman-Jouguet detonation). For the Chapman-Jouguet model, we compare the results of the computations with an asymptotic study recently conducted by Bdzil and Short for small detonation incident angles. We show that the ability of a spatially distributed reaction energy release to turn flow streamlines has a significant impact on the nature of the observed reflection patterns. The computational approach uses a shock-fit methodology.

  4. Detonation propagation in annular arcs of condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa

    2017-11-01

    We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.

  5. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  6. The Fate of Volatiles in Subaqueous Explosive Eruptions: An Analysis of Steam Condensation in the Water Column

    NASA Astrophysics Data System (ADS)

    Cahalan, R. C.; Dufek, J.

    2015-12-01

    A model has been developed to determine the theoretical limits of steam survival in a water column during a subaqueous explosive eruption. Understanding the role of steam dynamics in particle transport and the evolution of the thermal budget is critical to addressing the first order questions of subaqueous eruption mechanics. Ash transport in subaqueous eruptions is initially coupled to the fate of volatile transport. The survival of steam bubbles to the water surface could enable non-wetted ash transport from the vent to a subaerial ash cloud. Current eruption models assume a very simple plume mixing geometry, that cold water mixes with the plume immediately after erupting, and that the total volume of steam condenses in the initial phase of mixing. This limits the survival of steam to within tens of meters above the vent. Though these assumptions may be valid, they are unproven, and the calculations based on them do not take into account any kinetic constraints on condensation. The following model has been developed to evaluate the limits of juvenile steam survival in a subaqueous explosive eruption. This model utilizes the analytical model for condensation of steam injected into a sub-cooled pool produced in Park et al. (2007). Necessary parameterizations require an iterative internal calculation of the steam saturation temperature and vapor density for each modeled time step. The contribution of volumetric expansion due to depressurization of a rising bubble is calculated and used in conjunction with condensation rate to calculate the temporal evolution of bubble volume and radius. Using steam bubble volume with the BBO equation for Lagrangian transport in a fluid, the bubble rise velocity is calculated and used to evaluate the rise distance. The steam rise model proves a useful tool to compare the effects of steam condensation, volumetric expansion, volume flux, and water depth on the dynamics of juvenile steam. The modeled results show that a sufficiently high volatile flux could lead to the survival of steam bubbles from >1km depths to the ocean surface, though low to intermediate fluxes lead to fairly rapid condensation. Building on this result we also present the results of simulations of multiphase steam jets and consider the likelihood of collapse inside a vapor envelope.

  7. Anatomy of a diffracting detonation in a circular arc of explosive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan

    Using high-resolution numerical simulation, study diffraction of a detonation as it traverses a 270° finite-thickness condensed-phase explosive arc. This geometry admits a steady solution in a frame rotating with angular speed ω 0, which thereby facilitates a detailed analysis of how the loss of energy from the detonation reaction zone due to the diffraction process slows the propagation of the detonation. There exists a region of subsonic flow, between the detonation shock and the curve of sonic flow (labelled the DDZ), which is responsible for setting ω 0. Although the DDZ spans the entire thickness for thin arcs, it ismore » localized to a region near the inside surface as the arc is thickened. Furthermore the explosive energy release near this inside surface plays a disproportionate role in the diffraction process.« less

  8. Anatomy of a diffracting detonation in a circular arc of explosive

    DOE PAGES

    Bdzil, John Bohdan

    2018-02-08

    Using high-resolution numerical simulation, study diffraction of a detonation as it traverses a 270° finite-thickness condensed-phase explosive arc. This geometry admits a steady solution in a frame rotating with angular speed ω 0, which thereby facilitates a detailed analysis of how the loss of energy from the detonation reaction zone due to the diffraction process slows the propagation of the detonation. There exists a region of subsonic flow, between the detonation shock and the curve of sonic flow (labelled the DDZ), which is responsible for setting ω 0. Although the DDZ spans the entire thickness for thin arcs, it ismore » localized to a region near the inside surface as the arc is thickened. Furthermore the explosive energy release near this inside surface plays a disproportionate role in the diffraction process.« less

  9. Desorption in Mass Spectrometry.

    PubMed

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e. , ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed.

  10. Photonic sensor devices for explosive detection.

    PubMed

    Willer, Ulrike; Schade, Wolfgang

    2009-09-01

    For the sensitive online and in situ detection of gaseous species, optical methods are ideally suited. In contrast to chemical analysis, no sample preparation is necessary and therefore spectroscopic methods should be favorable both in respect of a fast signal recovery and economically because no disposal is needed. However, spectroscopic methods are currently not widely used for security applications. We review photonic sensor devices for the detection of explosives in the gas phase as well as the condensed phase and the underlying spectroscopic techniques with respect to their adaptability for security applications, where high sensitivity, high selectivity, and a low false-alarm rate are of importance. The measurements have to be performed under ambient conditions and often remote handling or even operation in standoff configuration is needed. For handheld and portable equipment, special attention is focused on the miniaturization and examples for already-available sensor devices are given.

  11. Ignition and Combustion of Bulk Metals in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Branch, Melvyn C.; Daily, John W.; Abbud-Madrid, Angel

    1999-01-01

    Results of a study of heterogeneous and homogeneous combustion of metals in reduced gravity are presented. Cylindrical titanium and magnesium samples are radiatively ignited in pure-oxygen at 1 atm. Qualitative observations, propagation rates, and burning times are extracted from high-speed cinematography. Time-resolved emission spectra of gas-phase reactions are acquired with an imaging spectrograph. Lower propagation rates of the reacting mass on titanium and of ignition waves on magnesium are obtained at reduced gravity. These rates are compared to theoretical results from fire-spread analyses with a diffusion/convection controlled reaction. The close agreement found between experimental and theoretical propagation rates indicates the strong influence of natural-convection-enhanced oxygen transp6rt on burning rates. Lower oxygen flux and lack of condensed product removal appear to be responsible for longer burning times of magnesium gas-phase diffusion flames in reduced gravity. Spherically symmetric explosions in magnesium flames at reduced gravity (termed radiation-induced metal explosions, or RIME) may be driven by increased radiation heat transfer from accumulated condensed products to an evaporating metal core covered by a porous, flexible oxide coating. In titanium specimens, predominantly heterogeneous burning characterizes the initial steady propagation of the molten mass, while homogeneous gas-phase reactions are detected around particles ejected from the molten mixture. In magnesium specimens, band and line reversal of all the UV spectral systems of Mg and MgO are attributed to the interaction between small oxide particles and the principal gaseous emitters.

  12. The spatial distribution patterns of condensed phase post-blast explosive residues formed during detonation.

    PubMed

    Abdul-Karim, Nadia; Blackman, Christopher S; Gill, Philip P; Karu, Kersti

    2016-10-05

    The continued usage of explosive devices, as well as the ever growing threat of 'dirty' bombs necessitates a comprehensive understanding of particle dispersal during detonation events in order to develop effectual methods for targeting explosive and/or additive remediation efforts. Herein, the distribution of explosive analytes from controlled detonations of aluminised ammonium nitrate and an RDX-based explosive composition were established by systematically sampling sites positioned around each firing. This is the first experimental study to produce evidence that the post-blast residue mass can distribute according to an approximate inverse-square law model, while also demonstrating for the first time that distribution trends can vary depending on individual analytes. Furthermore, by incorporating blast-wave overpressure measurements, high-speed imaging for fireball volume recordings, and monitoring of environmental conditions, it was determined that the principle factor affecting all analyte dispersals was the wind direction, with other factors affecting specific analytes to varying degrees. The dispersal mechanism for explosive residue is primarily the smoke cloud, a finding which in itself has wider impacts on the environment and fundamental detonation theory. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Molecular dynamics study on evaporation and condensation characteristics of thin film liquid Argon on nanostructured surface in nano-scale confinement

    NASA Astrophysics Data System (ADS)

    Hasan, Mohammad Nasim; Rabbi, Kazi Fazle; Sabah, Arefiny; Ahmed, Jannat; Kuri, Subrata Kumar; Rakibuzzaman, S. M.

    2017-06-01

    Investigation of Molecular level phase change phenomena are becoming important in heat and mass transfer research at a very high rate, driven both by the need to understand certain fundamental phenomena as well as by a plethora of new and forthcoming applications in the areas of micro- and nanotechnologies. Molecular dynamics simulation has been carried out to go through the evaporation and condensation characteristics of thin liquid argon film in Nano-scale confinement. In the present study, a cuboid system is modeled for understanding the Nano-scale physics of simultaneous evaporation and condensation. The cuboid system consists of hot and cold parallel platinum plates at the bottom and top ends. The fluid comprised of liquid argon film at the bottom plate and vapor argon in between liquid argon and upper plate of the domain. Three different simulation domains have been created here: (i) Both platinum plates are considered flat, (ii) Upper plate consisting of transverse slots of low height and (iii) Upper plate consisting of transverse slots of bigger height. Considering hydrophilic nature of top and bottom plates, two different high temperatures of the hot wall was set and an observation was made on normal and explosive vaporizations and their impacts on thermal transport. For all the structures, equilibrium molecular dynamics (EMD) was performed to reach equilibrium state at 90 K. Then the lower wall is set to two different temperatures like 110 K and 250 K for all three models to perform non-equilibrium molecular dynamics (NEMD). For vaporization, higher temperature of the hot wall led to faster transport of the liquid argon as a cluster moving from hot wall to cold wall. But excessive temperature causes explosive boiling which seems not good for heat transportation because of less phase change. In case of condensation, an observation was made which indicates that the nanostructured transverse slots facilitate condensation. Two factors affect the rate of condensation when nanostructures are there: (i) increased surface area and (ii) the nanostructure height. The variation of temperature and evaporation number with respect to time was monitored for all cases. An estimation of heat fluxes normal to top and bottom walls also was made to focus the effectiveness of heat transfer in hydrophilic confinement.

  14. Desorption in Mass Spectrometry

    PubMed Central

    Usmanov, Dilshadbek Tursunbayevich; Ninomiya, Satoshi; Chen, Lee Chuin; Saha, Subhrakanti; Mandal, Mridul Kanti; Sakai, Yuji; Takaishi, Rio; Habib, Ahsan; Hiraoka, Kenzo; Yoshimura, Kentaro; Takeda, Sen; Wada, Hiroshi; Nonami, Hiroshi

    2017-01-01

    In mass spectrometry, analytes must be released in the gas phase. There are two representative methods for the gasification of the condensed samples, i.e., ablation and desorption. While ablation is based on the explosion induced by the energy accumulated in the condensed matrix, desorption is a single molecular process taking place on the surface. In this paper, desorption methods for mass spectrometry developed in our laboratory: flash heating/rapid cooling, Leidenfrost phenomenon-assisted thermal desorption (LPTD), solid/solid friction, liquid/solid friction, electrospray droplet impact (EDI) ionization/desorption, and probe electrospray ionization (PESI), will be described. All the methods are concerned with the surface and interface phenomena. The concept of how to desorb less-volatility compounds from the surface will be discussed. PMID:28337398

  15. Study of energy partitioning using a set of related explosive formulations

    NASA Astrophysics Data System (ADS)

    Lieber, Mark; Foster, Joseph C.; Stewart, D. Scott

    2012-03-01

    Condensed phase high explosives convert potential energy stored in the electro-magnetic field structure of complex molecules to high power output during the detonation process. Historically, the explosive design problem has focused on intramolecular energy storage. The molecules of interest are derived via molecular synthesis providing near stoichiometric balance on the physical scale of the molecule. This approach provides prompt reactions based on transport physics at the molecular scale. Modern material design has evolved to approaches that employ intermolecular ingredients to alter the spatial and temporal distribution of energy release. State of the art continuum methods have been used to study this approach to the materials design. Cheetah has been used to produce data for a set of fictitious explosive formulations based on C-4 to study the partitioning of the available energy between internal and kinetic energy in the detonation. The equation of state information from Cheetah has been used in ALE3D to develop an understanding of the relationship between variations in the formulation parameters and the internal energy cycle in the products.

  16. A complete equation of state for non-ideal condensed phase explosives

    NASA Astrophysics Data System (ADS)

    Wilkinson, S. D.; Braithwaite, M.; Nikiforakis, N.; Michael, L.

    2017-12-01

    The objective of this work is to improve the robustness and accuracy of numerical simulations of both ideal and non-ideal explosives by introducing temperature dependence in mechanical equations of state for reactants and products. To this end, we modify existing mechanical equations of state to appropriately approximate the temperature in the reaction zone. Mechanical equations of state of the Mie-Grüneisen form are developed with extensions, which allow the temperature to be evaluated appropriately and the temperature equilibrium condition to be applied robustly. Furthermore, the snow plow model is used to capture the effect of porosity on the reactant equation of state. We apply the methodology to predict the velocity of compliantly confined detonation waves. Once reaction rates are calibrated for unconfined detonation velocities, simulations of confined rate sticks and slabs are performed, and the experimental detonation velocities are matched without further parameter alteration, demonstrating the predictive capability of our simulations. We apply the same methodology to both ideal (PBX9502, a high explosive with principal ingredient TATB) and non-ideal (EM120D, an ANE or ammonium nitrate based emulsion) explosives.

  17. Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust

    PubMed Central

    Dunk, Paul W.; Adjizian, Jean-Joseph; Kaiser, Nathan K.; Quinn, John P.; Blakney, Gregory T.; Ewels, Christopher P.; Marshall, Alan G.; Kroto, Harold W.

    2013-01-01

    Carbonaceous presolar grains of supernovae origin have long been isolated and are determined to be the carrier of anomalous 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay isotope of relatively short-lived 22Na formed by explosive nucleosynthesis, and therefore, a selective and rapid Na physical trapping mechanism must take place during carbon condensation in supernova ejecta. Elucidation of the processes that trap Na and produce large carbon molecules should yield insight into carbon stardust enrichment and formation. Herein, we demonstrate that Na effectively nucleates formation of Na@C60 and other metallofullerenes during carbon condensation under highly energetic conditions in oxygen- and hydrogen-rich environments. Thus, fundamental carbon chemistry that leads to trapping of Na is revealed, and should be directly applicable to gas-phase chemistry involving stellar environments, such as supernova ejecta. The results indicate that, in addition to empty fullerenes, metallofullerenes should be constituents of stellar/circumstellar and interstellar space. In addition, gas-phase reactions of fullerenes with polycyclic aromatic hydrocarbons are investigated to probe “build-up” and formation of carbon stardust, and provide insight into fullerene astrochemistry. PMID:24145444

  18. Manipulating explosive sensitivity through structural modifications in a nitrate ester system

    NASA Astrophysics Data System (ADS)

    Manner, Virginia

    2017-06-01

    Understanding how condensed phase effects influence sensitivity is essential for developing next generation insensitive high explosives. However, the ability to predictably manipulate explosive sensitivity remains an elusive goal. Explosive sensitivity has been suggested to be governed by multiple factors, from intramolecular effects such as bond dissociation energy, oxygen balance, and the electrostatic potential of reactive functional groups, to larger scale effects, such as crystal structure and hot spot formation. We have developed derivatives of the explosive pentaerythritol tetranitrate (PETN) and examined them experimentally and theoretically, in order to better understand which properties influence sensitivity. With this molecular framework, we can evaluate how small changes to the structure of the molecule influence qualities such as oxygen balance, heat of formation, heat capacity, compressibility, crystal packing, and hydrogen bonding, through techniques such as differential scanning calorimetry, x-ray crystallography, and atomistic simulation. We have also used small-scale sensitivity testing as an initial tool to screen for large and consistent differences in handling sensitivity. We will discuss the many factors that contribute to sensitivity in this series of systematically-modified molecules as well as in existing well-studied explosive systems, such as triaminotrinitrobenzene (TATB) and nitroglycerin (NG). In collaboration with: Thomas Myers, Marc Cawkwell, Edward Kober, Bryce Tappan, Geoffrey Brown, Mary Sandstrom, LOS ALAMOS NATL LAB.

  19. Photoacoustic spectroscopy for trace vapor detection and standoff detection of explosives

    NASA Astrophysics Data System (ADS)

    Holthoff, Ellen L.; Marcus, Logan S.; Pellegrino, Paul M.

    2016-05-01

    The Army is investigating several spectroscopic techniques (e.g., infrared spectroscopy) that could allow for an adaptable sensor platform. Current sensor technologies, although reasonably sized, are geared to more classical chemical threats, and the ability to expand their capabilities to a broader range of emerging threats is uncertain. Recently, photoacoustic spectroscopy (PAS), employed in a sensor format, has shown enormous potential to address these ever-changing threats. PAS is one of the more flexible IR spectroscopy variants, and that flexibility allows for the construction of sensors that are designed for specific tasks. PAS is well suited for trace detection of gaseous and condensed media. Recent research has employed quantum cascade lasers (QCLs) in combination with MEMS-scale photoacoustic cell designs. The continuous tuning capability of QCLs over a broad wavelength range in the mid-infrared spectral region greatly expands the number of compounds that can be identified. We will discuss our continuing evaluation of QCL technology as it matures in relation to our ultimate goal of a universal compact chemical sensor platform. Finally, expanding on our previously reported photoacoustic detection of condensed phase samples, we are investigating standoff photoacoustic chemical detection of these materials. We will discuss the evaluation of a PAS sensor that has been designed around increasing operator safety during detection and identification of explosive materials by performing sensing operations at a standoff distance. We investigate a standoff variant of PAS based upon an interferometric sensor by examining the characteristic absorption spectra of explosive hazards collected at 1 m.

  20. The Fireball integrated code package

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dobranich, D.; Powers, D.A.; Harper, F.T.

    1997-07-01

    Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state ofmore » the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.« less

  1. Time-resolved Small Angle X-ray Scattering During the Formation of Detonation Nano-Carbon Condensates

    NASA Astrophysics Data System (ADS)

    Bagge-Hansen, Michael; Hammons, Josh; Nielsen, Mike; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; van Buuren, Tony; Pagoria, Phil; May, Chadd; Jensen, Brian; Gustavsen, Rick; Watkins, Erik; Firestone, Millie; Dattelbaum, Dana; Fried, Larry; Cowan, Matt; Willey, Trevor

    2017-06-01

    Carbon nanomaterials are spontaneously generated under high pressure and temperature conditions present during the detonation of many high explosive (HE) materials. Thermochemical modeling suggests that the phase, size, and morphology of carbon condensates are strongly dependent on the type of HE used and associated evolution of temperature and pressure during the very early stages of detonation. Experimental validation of carbon condensation under these extreme conditions has been technically challenging. Here, we present synchrotron-based, time-resolved small-angle x-ray scattering (TR-SAXS) measurements collected during HE detonations, acquired from discrete sub-100 ps x-ray pulses, every 153.4 ns. We select from various HE materials and geometries to explore a range of achievable pressures and temperatures that span detonation conditions and, correspondingly, generate an array of nano-carbon products, including nano-diamonds and nano-onions. The TR-SAXS patterns evolve rapidly over the first few hundred nanoseconds. Comparing the results with modeling offers significant progress towards a general carbon equation of state. Prepared by LLNL under Contract DE-AC52-07NA27344.

  2. Structural and phase transformations in zinc and brass wires under heating with high-density current pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pervikov, A. V.

    The work is focused on revealing the mechanism of structure and phase transformations in the metal wires under heating with a high-density current pulse (the electric explosion of wires, EEWs). It has been demonstrated on the example of brass and zinc wires that the transition of a current pulse with the density of j ≈ 3.3 × 10{sup 7} A/cm{sup 2} results in homogeneous heating of the crystalline structure of the metal/alloy. It has been determined that under heating with a pulse of high-density current pulse, the electric resistance of the liquid phases of zinc and brass decreases as the temperature increases. The results obtainedmore » allow for a conclusion that the presence of the particles of the condensed phase in the expanding products of EEW is the result of overheating instabilities in the liquid metal.« less

  3. Broadband standoff detection of large molecules by mid-infrared active coherent laser spectrometry.

    PubMed

    Macleod, Neil A; Molero, Francisco; Weidmann, Damien

    2015-01-26

    A widely tunable active coherent laser spectrometer (ACLaS) has been demonstrated for standoff detection of broadband absorbers in the 1280 to 1318 cm-1 spectral region using an external cavity quantum cascade laser as a mid-infrared source. The broad tuning range allows detection and quantification of vapor phase molecules, such as dichloroethane, ethylene glycol dinitrate, and tetrafluoroethane. The level of confidence in molecular mixing ratios retrieved from interfering spectral measurements is assessed in a quantitative manner. A first qualitative demonstration of condensed phase chemical detection on nitroacetanilide has also been conducted. Detection performances of the broadband ACLaS have been placed in the context of explosive detection and compared to that obtained using distributed feedback quantum cascade lasers.

  4. Numerical modelling of underwater detonation of non-ideal condensed-phase explosives

    NASA Astrophysics Data System (ADS)

    Schoch, Stefan; Nikiforakis, Nikolaos

    2015-01-01

    The interest in underwater detonation tests originated from the military, since the expansion and subsequent collapse of the explosive bubble can cause considerable damage to surrounding structures or vessels. In military applications, the explosive is typically represented as a pre-burned material under high pressure, a reasonable assumption due to the short reaction zone lengths, and complete detonation of the unreacted explosive. Hence, numerical simulations of underwater detonation tests have been primarily concerned with the prediction of target loading and the damage incurred rather than the accurate modelling of the underwater detonation process. The mining industry in contrast has adopted the underwater detonation test as a means to experimentally characterise the energy output of their highly non-ideal explosives depending on explosive type and charge configuration. This characterisation requires a good understanding of how the charge shape, pond topography, charge depth, and additional charge confinement affect the energy release, some of which can be successfully quantified with the support of accurate numerical simulations. In this work, we propose a numerical framework which is able to capture the non-ideal explosive behaviour and in addition is capable of capturing both length scales: the reaction zone and the pond domain. The length scale problem is overcome with adaptive mesh refinement, which, along with the explosive model, is validated against experimental data of various TNT underwater detonations. The variety of detonation and bubble behaviour observed in non-ideal detonations is demonstrated in a parameter study over the reactivity of TNT. A representative underwater mining test containing an ammonium-nitrate fuel-oil ratestick charge is carried out to demonstrate that the presented method can be readily applied alongside experimental underwater detonation tests.

  5. Phase Transition in Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under Static Compression: An Application of the First-Principles Method Specialized for CHNO Solid Explosives.

    PubMed

    Zhang, Lei; Jiang, Sheng-Li; Yu, Yi; Long, Yao; Zhao, Han-Yue; Peng, Li-Juan; Chen, Jun

    2016-11-10

    The first-principles method is challenged by accurate prediction of van der Waals interactions, which are ubiquitous in nature and crucial for determining the structure of molecules and condensed matter. We have contributed to this by constructing a set of pseudopotentials and pseudoatomic orbital basis specialized for molecular systems consisting of C/H/N/O elements. The reliability of the present method is verified from the interaction energies of 45 kinds of complexes (comparing with CCSD(T)) and the crystalline structures of 23 kinds of typical explosive solids (comparing with experiments). Using this method, we have studied the phase transition of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) under static compression up to 50 GPa. Kinetically, intramolecular deformation has priority in the competition with intermolecular packing deformation by ∼87%. A possible γ → β phase transition is found at around 2.10 GPa, and the migration of H 2 O has an effect of kinetically pushing this process. We make it clear that no β → δ/ε → δ phase transition occurs at 27 GPa, which has long been a hot debate in experiments. In addition, the P-V relation, bulk modulus, and acoustic velocity are also predicted for α-, δ-, and γ-HMX, which are experimentally unavailable.

  6. Thermodynamic Model of Afterburning in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Howard, M; Fried, L

    2003-04-23

    Thermodynamic states encountered during afterburning of explosion products gases in air were analyzed with the Cheetah code. Results are displayed in the form of Le Chatelier diagrams: the locus of states of specific internal energy versus temperature, for six different condensed explosives charges. Accuracy of the results was confirmed by comparing the fuel and products curves with the heats of detonation and combustion, and species composition as measured in bomb calorimeter experiments. Results were fit with analytic functions u = f ( T ) suitable for specifying the thermodynamic properties required for gas-dynamic models of afterburning in explosions.

  7. Numerical simulation of double front detonations in a non-ideal explosive with varying aluminum concentration

    NASA Astrophysics Data System (ADS)

    Kim, Wuhyun; Gwak, Min-Cheol; Yoh, Jack; Seoul National University Team

    2017-06-01

    The performance characteristics of aluminized HMX are considered by varying the aluminum (Al) concentration in a hybrid non-ideal detonation model. Two cardinal observations are reported: a decrease in detonation velocity with an increase in Al concentration and a double front detonation (DFD) feature when aerobic Al reaction occurs behind the front. While experimental studies have been reported on the effect of Al concentration on both gas-phase and solid-phase detonations, the numerical investigations were limited to only gas-phase detonation for the varying Al concentration. In the current study, a two-phase model is utilized for understanding the volumetric effects of Al concentration in the condensed phase detonations. A series of unconfined and confined rate sticks are considered for characterizing the performance of aluminized HMX with a maximum Al concentration of 50%. The simulated results are compared with the experimental data for 5%-25% concentrations, and the formation of DFD structure under varying Al concentration (0%-50%) in HMX is investigated.

  8. Vacancy-induced initial decomposition of condensed phase NTO via bimolecular hydrogen transfer mechanisms at high pressure: a DFT-D study.

    PubMed

    Liu, Zhichao; Wu, Qiong; Zhu, Weihua; Xiao, Heming

    2015-04-28

    Density functional theory with dispersion-correction (DFT-D) was employed to study the effects of vacancy and pressure on the structure and initial decomposition of crystalline 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (β-NTO), a high-energy insensitive explosive. A comparative analysis of the chemical behaviors of NTO in the ideal bulk crystal and vacancy-containing crystals under applied hydrostatic compression was considered. Our calculated formation energy, vacancy interaction energy, electron density difference, and frontier orbitals reveal that the stability of NTO can be effectively manipulated by changing the molecular environment. Bimolecular hydrogen transfer is suggested to be a potential initial chemical reaction in the vacancy-containing NTO solid at 50 GPa, which is prior to the C-NO2 bond dissociation as its initiation decomposition in the gas phase. The vacancy defects introduced into the ideal bulk NTO crystal can produce a localized site, where the initiation decomposition is preferentially accelerated and then promotes further decompositions. Our results may shed some light on the influence of the molecular environments on the initial pathways in molecular explosives.

  9. Infrasonic waves from volcanic eruptions on the Kamchatka peninsula

    NASA Astrophysics Data System (ADS)

    Gordeev, E. I.; Firstov, P. P.; Kulichkov, S. N.; Makhmudov, E. R.

    2013-07-01

    The IS44 station operates at the observation point of Nachiki on the Kamchatka peninsula, which is part of the International Monitoring System (IMS), and it helps verify compliance with the Comprehensive Nuclear Test-Ban Treaty (CTBT). The Kamchatka Branch, Geophysical Service, Russian Academy of Sciences (KB GS RAS), has a station operating in the village of Paratunka. Both of these stations allow one to monitor strong explosive eruptions of andesitic volcanoes.1 Both kinematic and dynamic parameters of acoustic signals accompanying the eruptions of the Bezymyannyi volcano (at a distance of 361 km from Nachiki) in 2009-2010 and the Kizimen volcano (at a distance of 275 km) on December 31, 2011, are considered. A low-frequency rarefaction phase 60 s in length has been revealed in the initial portion of the record of acoustic signals accompanying such strong eruptions. It is shown that the rarefaction phase occurs due to the rapid condensation of superheated juvenile vapor2 that enters the atmosphere during such explosions.3 The amount of volcanic ash emitted into the atmosphere has been estimated within (3.2-7.3) 106 m3 on the basis of acoustic signals recorded during the eruptions under consideration.

  10. Europa Lander Material Selection Considerations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Alexander S.; Heller, Mellisa

    2017-01-10

    Energetic materials (EMs, explosives, pyrotechnics, propellants) provide high-power output of high temperature reaction products. These products can be solid, liquid, or gaseous during reaction or after the products have equilibrated with the surroundings. For example, high explosives typically consist of carbon, hydrogen, nitrogen, and oxygen bonded within a single molecule, and produce almost exclusively gaseous products. Conversely, intermetallics consist of physical mixtures of metals and metalloids, and produce almost exclusively condensed products. Other materials such as pyrotechnics and propellants have intermediate behavior. All energetic materials react in a self-propagating manner that after ignition, does not necessarily require energy input frommore » the surroundings. The range of reaction velocities can range from mm/s for intermetallics, to km/s for high explosives. Energetic material selection depends on numerous requirements specific to the needs of a system. High explosives are used for applications where high pressure gases are necessary for pushing or fracturing materials (e.g., rock, metal) or creating shock waves or air blast. Propellants are used to produce moderate-pressure, high-temperature products without a shock wave. Pyrotechnics are used to produce numerous effects including: high-temperature products, gases, light, smoke, sound, and others. Thermites are used to produce heat, high-temperature products, materials, and other effects that require condensed products. Intermetallics are used to produce high-temperature condensed products and materials, with very little gas production. Numerous categories of energetic materials exist with overlapping definitions, effects, and properties.« less

  11. Multi-shock experiments on a TATB-based composition

    NASA Astrophysics Data System (ADS)

    Sorin, Remy

    2017-06-01

    Temperature based models for condensed explosive need an unreacted equation of state (EOS) that allows a realistic estimation of the temperature for a shock compression driven at detonation velocity. To feed the detonation models, we aim at exploring the high pressure shock Hugoniot of unreacted TATB composition up to 30 GPa with both hydrodynamic and temperature measurements. We performed on the gas gun facility ARES, multi-shock experiments where the first shock is designed to desensitize the explosive and inhibit the reactivity of the composition. The hydrodynamic behavior was measured via the velocity of a TATB/LiF interface with PDV probes. We attempted to measure the temperature of the shocked material via surface emissivity with a pyrometer calibrated to the expected low temperature range. Based on single shock experiments and on ab-initio calculation, we built a complete EOS for the unreacted phase of the TATB explosive. The hydrodynamic data are in good agreement with our unreacted EOS. Despite the record of multi-stage emissivity signals, the temperature measurements were difficult to interpret dur to high-luminisity phenomena pertubation. In collaboration with: Nicolas Desbiens, Vincent Dubois and Fabrice Gillot, CEA DAM DIF.

  12. Measurement of carbon condensates using small-angle x-ray scattering during detonation of high explosives

    NASA Astrophysics Data System (ADS)

    Willey, T. M.; Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; Hansen, D.; May, C.; van Buuren, T.; Dattelbaum, D. M.; Gustavsen, R. L.; Watkins, E. B.; Firestone, M. A.; Jensen, B. J.; Graber, T.; Bastea, S.; Fried, L.

    2017-01-01

    The lack of experimental validation for processes occurring at sub-micron length scales on time scales ranging from nanoseconds to microseconds hinders detonation model development. Particularly, quantification of late-time energy release requires measurement of carbon condensation kinetics behind detonation fronts. A new small-angle x-ray scattering (SAXS) endstation has been developed for use at The Dynamic Compression Sector to observe carbon condensation during detonation. The endstation and beamline demonstrate unprecedented fidelity; SAXS profiles can be acquired from single x-ray pulses, which in 24-bunch mode are about 80 ps in duration and arrive every 153.4 ns. This paper presents both the current temporal capabilities of this beamline, and the ability to distinguish different carbon condensate morphologies as they form behind detonation fronts. To demonstrate temporal capabilities, three shots acquired during detonation of hexanitrostilbene (HNS) are interleaved to show the evolution of the SAXS in about 50 ns steps. To show fidelity of the SAXS, the scattering from carbon condensates at several hundred nanoseconds varies with explosive: scattering from HNS is consistent with a complex morphology that we assert is associated with sp2 carbon., while Comp B scattering is consistent with soots containing three-dimensional diamond nanoparticles.

  13. Detonation Reaction Zones in Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Tarver, Craig M.

    2006-07-01

    Experimental measurements using nanosecond time resolved embedded gauges and laser interferometric techniques, combined with Non-Equilibrium Zeldovich - von Neumann - Doling (NEZND) theory and Ignition and Growth reactive flow hydrodynamic modeling, have revealed the average pressure/particle velocity states attained in reaction zones of self-sustaining detonation waves in several solid and liquid explosives. The time durations of these reaction zone processes are discussed for explosives based on pentaerythritol tetranitrate (PETN), nitromethane, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), triaminitrinitrobenzene(TATB) and trinitrotoluene (TNT).

  14. Topological states of condensed matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhang, Shou-Cheng

    Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

  15. Topological states of condensed matter

    DOE PAGES

    Wang, Jing; Zhang, Shou-Cheng

    2017-10-25

    Topological states of quantum matter have been investigated intensively in recent years in materials science and condensed matter physics. The field developed explosively largely because of the precise theoretical predictions, well-controlled materials processing, and novel characterization techniques. In this Perspective, we review recent progress in topological insulators, the quantum anomalous Hall effect, chiral topological superconductors, helical topological superconductors and Weyl semimetals.

  16. A study of phase explosion of metal using high power Nd:YAG laser ablation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoh, Jack J.; Lee, H. H.; Choi, J. H.

    2007-12-12

    The interaction of high-power pulsed-laser beam with metal targets in air from 1.06 {mu}m, 5 ns, 3 J/pulse max, Nd:YAG pulsed laser is investigated together with hydrodynamic theories of laser-supported detonation (LSD) wave and multi-material reactive Euler equations. The high speed blast wave generated by the laser ablation of metal reaches maximum velocity of several thousand meters per second. The apparently similar flow conditions to those of reactive shock wave allow one to apply the equations of motion for energetic materials and to understand the explosive behavior of metal vaporization upon laser ablation. The characteristic time at which planar tomore » spherical wave transition occurs is confirmed at low (20 mJ/pulse) to higher (200 mJ/pulse) beam intensities. The flow structure behind the leading shock wave during the early planar shock state is confirmed by the high-resolution multi-material hydrocode originally developed for shock compression of condensed matter.« less

  17. Explosion and Final State of an Unstable Reissner-Nordström Black Hole.

    PubMed

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Montero, Pedro J; Font, José A; Herdeiro, Carlos

    2016-04-08

    A Reissner-Nordström black hole (BH) is superradiantly unstable against spherical perturbations of a charged scalar field enclosed in a cavity, with a frequency lower than a critical value. We use numerical relativity techniques to follow the development of this unstable system-dubbed a charged BH bomb-into the nonlinear regime, solving the full Einstein-Maxwell-Klein-Gordon equations, in spherical symmetry. We show that (i) the process stops before all the charge is extracted from the BH, and (ii) the system settles down into a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. For a low scalar field charge q, the final state is approached smoothly and monotonically. For large q, however, the energy extraction overshoots, and an explosive phenomenon, akin to a bosenova, pushes some energy back into the BH. The charge extraction, by contrast, does not reverse.

  18. Atomistic Simulations of Detonation Instabilities in Condensed Phase Systems

    NASA Astrophysics Data System (ADS)

    Kober, Edward; Heim, Andrew; Germann, Timothy; Jensen, Niels

    2007-06-01

    We report the results of simulations of condensed phase detonation phenomena using a model diatomic system: 2AB -> A2 + B2. The initial set of parameters for this system corresponded to the Model 0 set of C. White et al, which exhibits a steady, Chapman-Jouget (CJ) detonation structure with a reaction zone length of 30-100 å. This has a highly compressed CJ state (V/V0˜0.5) that does not consist of discrete molecular species. The potential form was modified so that a more molecular CJ state resulted, consistent with the models for conventional organic explosives. The new system has a less dense CJ state (V/V0˜0.8), and the reaction zone was substantially extended. The reaction rate fits Arrhenius-type kinetics with an activation energy of ˜2 eV, with a minor density dependence. In contrast, the original Model 0 system had a lower activation energy (˜1 eV) with a stronger density dependence. The new system exhibits quite marked two dimensional instability structures with well-defined wavelengths similar to what has been observed for gas-phase detonations and for nitromethane. Depending on the exothermicity and the width of the periodic simulations, these instabilities can result in either detonation failure or quasi-steady propagation. The observed propagation velocities are several per cent higher than CJ values derived from thermodynamic analyses.

  19. Final report for SERDP WP-2209 Replacement melt-castable formulations for Composition B

    DTIC Science & Technology

    2017-05-19

    Chemical reaction of the materials in the melt ............................................................... 5 Thermal degradation of materials...reasons other than the hazard of explosion, these include: • Chemical reaction of the materials in the melt • Thermal degradation at low...temperature • Sublimation and condensation of explosive material on equipment and exposure to workers Chemical reaction of the materials in the melt

  20. Condensed phase conversion and growth of nanorods and other materials instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2010-10-19

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed phase matrix material instead of from vapor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  1. Dynamical formation of a Reissner-Nordström black hole with scalar hair in a cavity

    NASA Astrophysics Data System (ADS)

    Sanchis-Gual, Nicolas; Degollado, Juan Carlos; Herdeiro, Carlos; Font, José A.; Montero, Pedro J.

    2016-08-01

    In a recent Letter [Sanchis-Gual et al., Phys. Rev. Lett. 116, 141101 (2016)], we presented numerical relativity simulations, solving the full Einstein-Maxwell-Klein-Gordon equations, of superradiantly unstable Reissner-Nordström black holes (BHs), enclosed in a cavity. Low frequency, spherical perturbations of a charged scalar field trigger this instability. The system's evolution was followed into the nonlinear regime, until it relaxed into an equilibrium configuration, found to be a hairy BH: a charged horizon in equilibrium with a scalar field condensate, whose phase is oscillating at the (final) critical frequency. Here, we investigate the impact of adding self-interactions to the scalar field. In particular, we find sufficiently large self-interactions suppress the exponential growth phase, known from linear theory, and promote a nonmonotonic behavior of the scalar field energy. Furthermore, we discuss in detail the influence of the various parameters in this model: the initial BH charge, the initial scalar perturbation, the scalar field charge, the mass, and the position of the cavity's boundary (mirror). We also investigate the "explosive" nonlinear regime previously reported to be akin to a bosenova. A mode analysis shows that the "explosions" can be interpreted as the decay into the BH of modes that exit the superradiant regime.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, Scott I.

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott Stewart, D., E-mail: dss@illinois.edu; Hernández, Alberto; Lee, Kibaek

    The estimation of pressure and temperature histories, which are required to understand chemical pathways in condensed phase explosives during detonation, is discussed. We argue that estimates made from continuum models, calibrated by macroscopic experiments, are essential to inform modern, atomistic-based reactive chemistry simulations at detonation pressures and temperatures. We present easy to implement methods for general equation of state and arbitrarily complex chemical reaction schemes that can be used to compute reactive flow histories for the constant volume, the energy process, and the expansion process on the Rayleigh line of a steady Chapman-Jouguet detonation. A brief review of state-of-the-art ofmore » two-component reactive flow models is given that highlights the Ignition and Growth model of Lee and Tarver [Phys. Fluids 23, 2362 (1980)] and the Wide-Ranging Equation of State model of Wescott, Stewart, and Davis [J. Appl. Phys. 98, 053514 (2005)]. We discuss evidence from experiments and reactive molecular dynamic simulations that motivate models that have several components, instead of the two that have traditionally been used to describe the results of macroscopic detonation experiments. We present simplified examples of a formulation for a hypothetical explosive that uses simple (ideal) equation of state forms and detailed comparisons. Then, we estimate pathways computed from two-component models of real explosive materials that have been calibrated with macroscopic experiments.« less

  4. Electron induced dissociation in condensed-phase nitromethane I: desorption of ionic fragments.

    PubMed

    Bazin, Marc; Ptasińska, Sylwia; Bass, Andrew D; Sanche, Léon

    2009-03-14

    Low energy electron induced dissociation of condensed nitromethane was investigated by measuring the electron stimulated desorption of anions and cations from multilayer films of CH(3)NO(2) and CD(3)NO(2), using a recently constructed, high sensitivity time of flight mass spectrometer. The desorbed yields were measured as a function of incident electron energy in the range between 1 to 20 eV and as function of coverage on Pt and Xe substrates. In anion desorption experiments, the following ions were observed: H(-) (D(-)), O(-), OH(-) (OD(-)), CN(-), NCO(-), NO(2)(-), CHNO(2)(-) (CDNO(2)(-)), CH(2)NO(2)(-) (CD(2)NO(2)(-)). Resonant structure seen in all anion yield functions, is attributed to dissociative electron attachment (DEA), though certain anion signals [e.g., OH(-) (OD(-)) and CH(2)NO(2)(-) (CD(2)NO(2)(-))] are likely the result of reactive scattering by O(-) ions. The dominant desorbed cation signals are CD(3)(+) and NO(+), and the appearance potentials of these species were measured to be 12.2 and 11.5 eV, respectively. The present measurements provide information on how the electron-induced dissociation processes of this proto-typical explosive molecule are modulated by the condensed environment and on how initial dissociation events occurring on a particular molecule, may induce further dissociation.

  5. Theoretical and computer models of detonation in solid explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C.M.; Urtiew, P.A.

    1997-10-01

    Recent experimental and theoretical advances in understanding energy transfer and chemical kinetics have led to improved models of detonation waves in solid explosives. The Nonequilibrium Zeldovich - von Neumann - Doring (NEZND) model is supported by picosecond laser experiments and molecular dynamics simulations of the multiphonon up-pumping and internal vibrational energy redistribution (IVR) processes by which the unreacted explosive molecules are excited to the transition state(s) preceding reaction behind the leading shock front(s). High temperature, high density transition state theory calculates the induction times measured by laser interferometric techniques. Exothermic chain reactions form product gases in highly excited vibrational states,more » which have been demonstrated to rapidly equilibrate via supercollisions. Embedded gauge and Fabry-Perot techniques measure the rates of reaction product expansion as thermal and chemical equilibrium is approached. Detonation reaction zone lengths in carbon-rich condensed phase explosives depend on the relatively slow formation of solid graphite or diamond. The Ignition and Growth reactive flow model based on pressure dependent reaction rates and Jones-Wilkins-Lee (JWL) equations of state has reproduced this nanosecond time resolved experimental data and thus has yielded accurate average reaction zone descriptions in one-, two- and three- dimensional hydrodynamic code calculations. The next generation reactive flow model requires improved equations of state and temperature dependent chemical kinetics. Such a model is being developed for the ALE3D hydrodynamic code, in which heat transfer and Arrhenius kinetics are intimately linked to the hydrodynamics.« less

  6. Condensed phase conversion and growth of nanorods instead of from vapor

    DOEpatents

    Geohegan, David B.; Seals, Roland D.; Puretzky, Alex A.; Fan, Xudong

    2005-08-02

    Compositions, systems and methods are described for condensed phase conversion and growth of nanorods and other materials. A method includes providing a condensed phase matrix material; and activating the condensed phase matrix material to produce a plurality of nanorods by condensed phase conversion and growth from the condensed chase matrix material instead of from vacor. The compositions are very strong. The compositions and methods provide advantages because they allow (1) formation rates of nanostructures necessary for reasonable production rates, and (2) the near net shaped production of component structures.

  7. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.

    2015-06-28

    The dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about −3, which is consistent with a complex disordered, irregular, or folded sp{sup 2} sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  8. Measurement of carbon condensates using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE PAGES

    Bagge-Hansen, M.; Lauderbach, L.; Hodgin, R.; ...

    2015-06-24

    In this study, the dynamics of carbon condensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation end station has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution,more » provide unprecedented signal fidelity over a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. The power-law slope is about -3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  9. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  10. Crack initiation and potential hot-spot formation around a cylindrical defect under dynamic compression

    NASA Astrophysics Data System (ADS)

    Ma, Xiao; Li, Xinguo; Zheng, Xianxu; Li, Kewu; Hu, Qiushi; Li, Jianling

    2017-11-01

    In recent decades, the hot-spot theory of condensed-phase explosives has been a compelling focus of scientific investigation attracting many researchers. The defect in the polymeric binder of the polymer-bonded explosive is called the intergranular defect. In this study, the real polymeric binder was substituted by poly(methyl methacrylate) (PMMA) as it is transparent and has similar thermodynamic properties to some binders. A set of modified split Hopkinson pressure bars equipped with a time-resolved shadowgraph was used to study the process of crack initiation and potential hot-spot formation around a cylindrical defect in PMMA. The new and significant phenomenon that the opening-mode crack emerged earlier than the shearing-mode crack from the cylindrical defect has been published for the first time in this paper. Furthermore, a two-dimensional numerical simulation was performed to show the evolution of both the stress field and the temperature field. The simulation results were in good agreement with the experiment. Finally, the law of potential hot-spot formation is discussed in detail.

  11. Pattern of explosive reaction between uranium hexafluoride and hydrocarbon oils. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rapp, K.E.

    Examination of uranium hexafluoride release incidents occurring over the past three decades of ORGDP experience has identified only four which apparently involved an explosion of a container resulting from reaction between uranium hexafluoride and an impurity. These four incidents exhibit a certain degree of commonality. Each has involved: (1) condensed phase uranium hexafluoride, (2) a moderately elevated temperature, (3) a sufficient quantity of uranium hexafluoride for a significant partial pressure to be maintained independently above that which can be consumed by chemical reaction, and (4) an organic liquid (probably hydrocarbon oil) accidentally present in the container as a contaminant. Themore » purpose of this investigative search was to establish some conditional pattern for these four incidents to which their violent consequences could be attributed. Fortunately, the number of such incidents is relatively small, which emphasizes even more pointedly the unfortunate fact that documentation ranges from thorough to very limited. Documented sources of information are given in the bibliography. Copies of those which are not readily available are contained in six appendices. 8 refs.« less

  12. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng

    2015-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  13. Equation of state of detonation products based on statistical mechanical theory

    NASA Astrophysics Data System (ADS)

    Zhao, Yanhong; Liu, Haifeng; Zhang, Gongmu; Song, Haifeng; Iapcm Team

    2013-06-01

    The equation of state (EOS) of gaseous detonation products is calculated using Ross's modification of hard-sphere variation theory and the improved one-fluid van der Waals mixture model. The condensed phase of carbon is a mixture of graphite, diamond, graphite-like liquid and diamond-like liquid. For a mixed system of detonation products, the free energy minimization principle is used to calculate the equilibrium compositions of detonation products by solving chemical equilibrium equations. Meanwhile, a chemical equilibrium code is developed base on the theory proposed in this article, and then it is used in the three typical calculations as follow: (i) Calculation for detonation parameters of explosive, the calculated values of detonation velocity, the detonation pressure and the detonation temperature are in good agreement with experimental ones. (ii) Calculation for isentropic unloading line of RDX explosive, whose starting points is the CJ point. Comparison with the results of JWL EOS it is found that the calculated value of gamma is monotonically decreasing using the presented theory in this paper, while double peaks phenomenon appears using JWL EOS.

  14. Simulation of Deformation, Momentum and Energy Coupling Particles Deformed by Intense Shocks

    NASA Astrophysics Data System (ADS)

    Lieberthal, B.; Stewart, D. S.; Bdzil, J. B.; Najjar, F. M.; Balachandar, S.; Ling, Y.

    2011-11-01

    Modern energetic materials have embedded solids and inerts in an explosive matrix. A detonation in condensed phase materials, generates intense shocks that deform particles as the incident shock diffracts around them. The post-shock flow generates a wake behind the particle that is influenced by the shape changes of the particle. The gasdynamic flow in the explosive products and its interaction with the deformation of the particle must be treated simultaneously. Direct numerical simulations are carried out that vary the particle-to-surrounding density and impedance ratios to consider heavier and lighter particle. The vorticity deposited on the interface due to shock interaction with the particle, the resulting particle deformation and the net momentum and energy transferred to the particle, on the acoustic and longer viscous time scale are considered. The LLNL multi-physics hydrodynamic code ALE3D is used to carry out the simulations. BL, DSS and JBB supported by AFRL/RW AF FA8651-10-1-0004 & DTRA, HDTRA1-10-1-0020 Off Campus. FMN's work supported by the U.S. DOE/ LLNL, Contract DE-AC52-07NA27344. LLNL-ABS-491794.

  15. Fibrous-Ceramic/Aerogel Composite Insulating Tiles

    NASA Technical Reports Server (NTRS)

    White, Susan M.; Rasky, Daniel J.

    2004-01-01

    Fibrous-ceramic/aerogel composite tiles have been invented to afford combinations of thermal-insulation and mechanical properties superior to those attainable by making tiles of fibrous ceramics alone or aerogels alone. These lightweight tiles can be tailored to a variety of applications that range from insulating cryogenic tanks to protecting spacecraft against re-entry heating. The advantages and disadvantages of fibrous ceramics and aerogels can be summarized as follows: Tiles made of ceramic fibers are known for mechanical strength, toughness, and machinability. Fibrous ceramic tiles are highly effective as thermal insulators in a vacuum. However, undesirably, the porosity of these materials makes them permeable by gases, so that in the presence of air or other gases, convection and gas-phase conduction contribute to the effective thermal conductivity of the tiles. Other disadvantages of the porosity and permeability of fibrous ceramic tiles arise because gases (e.g., water vapor or cryogenic gases) can condense in pores. This condensation contributes to weight, and in the case of cryogenic systems, the heat of condensation undesirably adds to the heat flowing to the objects that one seeks to keep cold. Moreover, there is a risk of explosion associated with vaporization of previously condensed gas upon reheating. Aerogels offer low permeability, low density, and low thermal conductivity, but are mechanically fragile. The basic idea of the present invention is to exploit the best features of fibrous ceramic tiles and aerogels. In a composite tile according to the invention, the fibrous ceramic serves as a matrix that mechanically supports the aerogel, while the aerogel serves as a low-conductivity, low-permeability filling that closes what would otherwise be the open pores of the fibrous ceramic. Because the aerogel eliminates or at least suppresses permeation by gas, gas-phase conduction, and convection, the thermal conductivity of such a composite even at normal atmospheric pressure is not much greater than that of the fibrous ceramic alone in a vacuum.

  16. The Soviet Program for Peaceful Uses of Nuclear Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nordyke, M.D.

    2000-07-26

    During a period of some 23 years between 1965 and 1988, the Soviet Union's ''Program for the Utilization of Nuclear Explosions in the National Economy'' carried out 122 nuclear explosions to study and put into industrial use some 13 applications. In all, 128 explosives with yields ranging from 0.01 to 140 kt were used, with the vast majority being between 2 and 20 kt. Most peaceful applications of nuclear explosions in the Soviet PNE Program were explored in depth with a number of tests, but unfortunately little has been reported on the technical results other than general outcomes. Two applications,more » deep seismic sounding of the Earth's crust and upper mantle and the creation of underground cavities in salt for the storage of gas condensate, found widespread use, representing over 50% of all the explosions. Explosions to explore the technical possibilities of stimulating the production of oil and gas reservoirs accounted for an additional 17%.« less

  17. Synthesis of condensed phases containing polycyclic aromatic hydrocarbons fullerenes and nanotubes

    DOEpatents

    Reilly, Peter T. A.

    2004-10-19

    The invention relates to methods for producing polycyclic aromatic hydrocarbons, fullerenes, and nanotubes, comprising: a. heating at least one carbon-containing material to form a condensed phase comprising at least one polycyclic aromatic hydrocarbon; b. collecting at least some of the condensed phase; c. reacting the condensed phase to form fullerenes and/or nanotubes.

  18. Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography: Environmental Analysis

    DTIC Science & Technology

    2006-01-01

    ENVIRONMENTAL ANALYSIS Analysis of Explosives in Soil Using Solid Phase Microextraction and Gas Chromatography Howard T. Mayfield Air Force Research...Abstract: Current methods for the analysis of explosives in soils utilize time consuming sample preparation workups and extractions. The method detection...chromatography/mass spectrometry to provide a con- venient and sensitive analysis method for explosives in soil. Keywords: Explosives, TNT, solid phase

  19. The dependence of Ammonium-Nitrate Fuel-Oil (ANFO) detonation on confinement

    DOE PAGES

    Jackson, Scott I.

    2016-11-17

    As detonation is a coupled fluid-chemical process, flow divergence inside the detonation reaction zone can strongly influence detonation velocity and energy release. Such divergence is responsible for the diameter-effect and failure-diameter phenomena in condensed-phase explosives and particularly dominant in detonation of nonideal explosives such as Ammonium Nitrate and Fuel Oil (ANFO). In this study, the effect of reaction zone flow divergence on ANFO detonation was explored through variation of the inert confinement and explosive diameter in the rate-stick geometry with cylinder expansion experiments. New tests are discussed and compared to prior experiments. Presented results include the detonation velocity as amore » function of diameter and confinement, reaction zone times, detonation product isentropes and energies, as well as sonic surface pressures and velocities. Product energy densities and isentropes were found to increase with detonation velocity, indicating more complete chemical reaction with increased detonation velocity. In addition, detonation reaction zone times were found to scale with the acoustic transit time of the confiner wall and used to show that the ANFO diameter effect scaled with the reaction zone time for a particle along the flow centerline, regardless of the confinement. Such a result indicates that the ANFO reaction mechanisms are sufficiently slow that the centerline fluid expansion timescale is a limiting factor controlling detonation velocity and energy release.« less

  20. Condensation heat transfer and flow friction in silicon microchannels

    NASA Astrophysics Data System (ADS)

    Wu, Huiying; Wu, Xinyu; Qu, Jian; Yu, Mengmeng

    2008-11-01

    An experimental investigation was performed on heat transfer and flow friction characteristics during steam condensation flow in silicon microchannels. Three sets of trapezoidal silicon microchannels, with hydraulic diameters of 77.5 µm, 93.0 µm and 128.5 µm respectively, were tested under different flow and cooling conditions. It was found that both the condensation heat transfer Nusselt number (Nu) and the condensation two-phase frictional multiplier (phi2Lo) were dependent on the steam Reynolds number (Rev), condensation number (Co) and dimensionless hydraulic diameter (Dh/L). With the increase in the steam Reynolds number, condensation number and dimensionless hydraulic diameter, the condensation Nusselt number increased. However, different variations were observed for the condensation two-phase frictional multiplier. With the increase in the steam Reynolds number and dimensionless hydraulic diameter, the condensation two-phase frictional multiplier decreased, while with the increase in the condensation number, the condensation two-phase frictional multiplier increased. Based on the experimental results, dimensionless correlations for condensation heat transfer and flow friction in silicon microchannels were proposed for the first time. These correlations can be used to determine the condensation heat transfer coefficient and pressure drop in silicon microchannels if the steam mass flow rate, cooling rate and geometric parameters are fixed. It was also found that the condensation heat transfer and flow friction have relations to the injection flow (a transition flow pattern from the annular flow to the slug/bubbly flow), and with injection flow moving toward the outlet, both the condensation heat transfer coefficient and the condensation two-phase frictional multiplier increased.

  1. Disequilibrium condensation environments in space - A frontier in thermodynamics

    NASA Technical Reports Server (NTRS)

    De, B. R.

    1979-01-01

    The thermal-disequilibrium aspect of the problem of dust-particle formation from a gas phase in an open space environment is discussed in an effort to draw attention to the space condensation environment as an interesting arena for application and extension of the ideas and formalisms of nonequilibrium thermodynamics. It is shown that quasi-steady states with a disequilibrium between the gas-phase kinetic temperature and the condensed-phase internal temperature appear to be the norm of condensation environments in space. Consideration of the case of condensation onto a bulk condensed phase indicates that these quasi-steady states may constitute Prigogine dissipative structures. It is suggested that a proper study of the process of condensation in a space environment should include any effects arising from thermal disequilibrium.

  2. Ab initio molecular dynamics study on the initial chemical events in nitramines: thermal decomposition of CL-20.

    PubMed

    Isayev, Olexandr; Gorb, Leonid; Qasim, Mo; Leszczynski, Jerzy

    2008-09-04

    CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane or HNIW) is a high-energy nitramine explosive. To improve atomistic understanding of the thermal decomposition of CL-20 gas and solid phases, we performed a series of ab initio molecular dynamics simulations. We found that during unimolecular decomposition, unlike other nitramines (e.g., RDX, HMX), CL-20 has only one distinct initial reaction channelhomolysis of the N-NO2 bond. We did not observe any HONO elimination reaction during unimolecular decomposition, whereas the ring-breaking reaction was followed by NO 2 fission. Therefore, in spite of limited sampling, that provides a mostly qualitative picture, we proposed here a scheme of unimolecular decomposition of CL-20. The averaged product population over all trajectories was estimated at four HCN, two to four NO2, two to four NO, one CO, and one OH molecule per one CL-20 molecule. Our simulations provide a detailed description of the chemical processes in the initial stages of thermal decomposition of condensed CL-20, allowing elucidation of key features of such processes as composition of primary reaction products, reaction timing, and Arrhenius behavior of the system. The primary reactions leading to NO2, NO, N 2O, and N2 occur at very early stages. We also estimated potential activation barriers for the formation of NO2, which essentially determines overall decomposition kinetics and effective rate constants for NO2 and N2. The calculated solid-phase decomposition pathways correlate with available condensed-phase experimental data.

  3. Exciting gauge field and gravitons in brane-antibrane annihilation.

    PubMed

    Mazumdar, Anupam; Stoica, Horace

    2009-03-06

    In this Letter we point out the inevitability of an explosive production of gauge field and gravity wave during an open string tachyon condensation in a cosmological setting, in an effective field theory model. We will be particularly studying a toy model of brane-antibrane inflation in a warped throat where inflation ends via tachyon condensation. We point out that a tachyonic instability helps fragmenting the homogeneous tachyon and excites gauge field and contributes to the stress-energy tensor which also feeds into the gravity waves.

  4. Spin Order and Phase Transitions in Chains of Polariton Condensates.

    PubMed

    Ohadi, H; Ramsay, A J; Sigurdsson, H; Del Valle-Inclan Redondo, Y; Tsintzos, S I; Hatzopoulos, Z; Liew, T C H; Shelykh, I A; Rubo, Y G; Savvidis, P G; Baumberg, J J

    2017-08-11

    We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

  5. An historical overview of cavity-enhanced methods

    NASA Astrophysics Data System (ADS)

    Paldus, B. A.; Kachanov, A. A.

    2005-10-01

    An historical overview of laser-based, spectroscopic methods that employ high-finesse optical resonators is presented. The overview begins with the early work in atomic absorption (1962) and optical cavities (1974) that led to the first mirror reflectivity measurements in 1980. This paper concludes with very recent extensions of cavity-enhanced methods for the study of condensed-phase media and biological systems. Methods described here include cavity ring-down spectroscopy, integrated cavity output spectroscopy, and noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Given the explosive growth of the field over the past decade, this review does not attempt to present a comprehensive bibliography of all work published in cavity-enhanced spectroscopy, but rather strives to illustrate the rich history, creative diversity, and broad applications potential of these methods.

  6. Phase collapse and revival of a 1-mode Bose-Einstein condensate induced by an off-resonant optical probe field and superselection rules

    NASA Astrophysics Data System (ADS)

    Arruda, L. G. E.; Prataviera, G. A.; de Oliveira, M. C.

    2018-02-01

    Phase collapse and revival for Bose-Einstein condensates are nonlinear phenomena appearing due to atomic collisions. While it has been observed in a general setting involving many modes, for one-mode condensates its occurrence is forbidden by the particle number superselection rule (SSR), which arises because there is no phase reference available. We consider a single mode atomic Bose-Einstein condensate interacting with an off-resonant optical probe field. We show that the condensate phase revival time is dependent on the atom-light interaction, allowing optical control on the atomic collapse and revival dynamics. Incoherent effects over the condensate phase are included by considering a continuous photo-detection over the probe field. We consider conditioned and unconditioned photo-counting events and verify that no extra control upon the condensate is achieved by the probe photo-detection, while further inference of the atomic system statistics is allowed leading to a useful test of the SSR on particle number and its imposition on the kind of physical condensate state.

  7. pH-Stable Eu- and Tb-organic-frameworks mediated by an ionic liquid for the aqueous-phase detection of 2,4,6-trinitrophenol (TNP).

    PubMed

    Qin, Jian-Hua; Wang, Hua-Rui; Han, Min-Le; Chang, Xin-Hong; Ma, Lu-Fang

    2017-11-14

    Two pH-stable luminescent metal-organic frameworks (LMOFs), {[Ln 2 (L) 2 (OH)(HCOO)]·[H 2 O]} n (Ln = Eu 1, Tb 2), based on a new π-conjugated organic building block involving both carboxylate and terpyridine groups were rationally synthesized under a combination of hydro/solvothermal and ionothermal conditions (H 2 L = 4'-(4-(3,5-dicarboxylphenoxy)phenyl)-4,2':6',4''-terpyridine). 1 and 2 are isostructural and feature noninterpenetrated open 3D condensed frameworks constructed by rod-shaped lanthanide-carboxylate building units. Their excellent water-stability and pH-stability allow them to be used in aquatic systems. 1 and 2 both exhibit selective and sensitive aqueous phase detection of the well-known nitroaromatic explosive environmental pollutant 2,4,6-trinitrophenol (TNP), which is highly desirable for practical applications. The presence of a free pyridine group on the LMOF particle surface was strategically utilized for the purpose of exclusive TNP-sensing.

  8. Formation Pathways of Carbon Allotropes in Detonation Condensates

    NASA Astrophysics Data System (ADS)

    Nielsen, Michael; Bagge-Hansen, Michael; Hammons, Josh; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; Lee, Jonathan; van Buuren, Tony; Pagoria, Phil; May, Chadd; Aloni, Shaul; Willey, Trevor

    2017-06-01

    Time-resolved small-angle scattering (TR-SAXS) data reveal evolution in the size and morphology of nano-carbon particles that form during the first microsecond during the detonation of high explosive (HE) materials, but do not provide chemical or phase information. Herein, we present analysis of complementary post-detonation soots collected with minimal environmental carbon or other contamination: HE samples are detonated whithin clean ice capture layers to yield aqueous dispersions of the carbonaceous soot. We report substantial variation in soots formed through the detonation of HE materials that attain a variety of temperatures and pressures during detonation. Transmission electron microscopy analysis of these recovered soots provides physical and chemical information that we compare directly to TR-SAXS data and SAXS measurements from recovered soots. We observe various structures including graphitic and amorphous carbon, nanodiamond, and spherical carbon onions. These experimental data correlate to models of how products from HE materials traverse the carbon phase diagram during detonation. Prepared by LLNL under Contract DE-AC52-07NA27344.

  9. A Scaling Analysis of Frequency Dependent Energy Partition for Local and Regional Seismic Phases from Explosions

    DTIC Science & Technology

    2007-08-31

    explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for which high resolution digital data are available. 12 8...characteristics of regional phase observations from underground nuclear explosions at the former Soviet Semipalatinsk and Novaya Zemlya test sites , the...various regional phases observed from underground nuclear explosions at the former Soviet Semipalatinsk test site (STS). Labeled stations are those for

  10. Numerical study of multiscale compaction-initiated detonation

    NASA Astrophysics Data System (ADS)

    Gambino, J. R.; Schwendeman, D. W.; Kapila, A. K.

    2018-02-01

    A multiscale model of heterogeneous condensed-phase explosives is examined computationally to determine the course of transient events following the application of a piston-driven stimulus. The model is a modified version of that introduced by Gonthier (Combust Sci Technol 175(9):1679-1709, 2003. https://doi.org/10.1080/00102200302373) in which the explosive is treated as a porous, compacting medium at the macro-scale and a collection of closely packed spherical grains capable of undergoing reaction and diffusive heat transfer at the meso-scale. A separate continuum description is ascribed to each scale, and the two scales are coupled together in an energetically consistent manner. Following piston-induced compaction, localized energy deposition at the sites of intergranular contact creates hot spots where reaction begins preferentially. Reaction progress at the macro-scale is determined by the spatial average of that at the grain scale. A parametric study shows that combustion at the macro-scale produces an unsteady detonation with a cyclical character, in which the lead shock loses strength and is overtaken by a stronger secondary shock generated in the partially reacted material behind it. The secondary shock in turn becomes the new lead shock and the process repeats itself.

  11. Modeling the Phase Composition of Gas Condensate in Pipelines

    NASA Astrophysics Data System (ADS)

    Dudin, S. M.; Zemenkov, Yu D.; Shabarov, A. B.

    2016-10-01

    Gas condensate fields demonstrate a number of thermodynamic characteristics to be considered when they are developed, as well as when gas condensate is transported and processed. A complicated phase behavior of the gas condensate system, as well as the dependence of the extracted raw materials on the phase state of the deposit other conditions being equal, is a key aspect. Therefore, when designing gas condensate lines the crucial task is to select the most appropriate methods of calculating thermophysical properties and phase equilibrium of the transported gas condensate. The paper describes a physical-mathematical model of a gas-liquid flow in the gas condensate line. It was developed based on balance equations of conservation of mass, impulse and energy of the transported medium within the framework of a quasi-1D approach. Constitutive relationships are given separately, and practical recommendations on how to apply the research results are provided as well.

  12. Explosive force production during isometric squats correlates with athletic performance in rugby union players.

    PubMed

    Tillin, Neale Anthony; Pain, Matthew Thomas Gerard; Folland, Jonathan

    2013-01-01

    This study investigated the association between explosive force production during isometric squats and athletic performance (sprint time and countermovement jump height). Sprint time (5 and 20 m) and jump height were recorded in 18 male elite-standard varsity rugby union players. Participants also completed a series of maximal- and explosive-isometric squats to measure maximal force and explosive force at 50-ms intervals up to 250 ms from force onset. Sprint performance was related to early phase (≤100 ms) explosive force normalised to maximal force (5 m, r = -0.63, P = 0.005; and 20 m, r = -0.54, P = 0.020), but jump height was related to later phase (>100 ms) absolute explosive force (0.51 < r < 0.61; 0.006 < P < 0.035). When participants were separated for 5-m sprint time (< or ≥ 1s), the faster group had greater normalised explosive force in the first 150 ms of explosive-isometric squats (33-67%; 0.001 < P < 0.017). The results suggest that explosive force production during isometric squats was associated with athletic performance. Specifically, sprint performance was most strongly related to the proportion of maximal force achieved in the initial phase of explosive-isometric squats, whilst jump height was most strongly related to absolute force in the later phase of the explosive-isometric squats.

  13. Measurement of carbon condensation using small-angle x-ray scattering during detonation of the high explosive hexanitrostilbene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagge-Hansen, M.; Lauderbach, L. M.; Hodgin, R.

    2015-06-24

    The dynamics of carboncondensation in detonating high explosives remains controversial. Detonation model validation requires data for processes occurring at nanometer length scales on time scales ranging from nanoseconds to microseconds. A new detonation endstation has been commissioned to acquire and provide time-resolved small-angle x-ray scattering (SAXS) from detonating explosives. Hexanitrostilbene (HNS) was selected as the first to investigate due to its ease of initiation using exploding foils and flyers, vacuum compatibility, high thermal stability, and stoichiometric carbon abundance that produces high carbon condensate yields. The SAXS data during detonation, collected with 300 ns time resolution, provide unprecedented signal fidelity overmore » a broad q-range. This fidelity permits the first analysis of both the Guinier and Porod/power-law regions of the scattering profile during detonation, which contains information about the size and morphology of the resultant carbon condensate nanoparticles. To bolster confidence in these data, the scattering angle and intensity were additionally cross-referenced with a separate, highly calibrated SAXS beamline. The data show that HNS produces carbon particles with a radius of gyration of 2.7 nm in less than 400 ns after the detonation front has passed, and this size and morphology are constant over the next several microseconds. These data directly contradict previous pioneering work on RDX/TNT mixtures and TATB, where observations indicate significant particle growth (50% or more) continues over several microseconds. As a result, the power-law slope is about –3, which is consistent with a complex disordered, irregular, or folded sp 2 sub-arrangement within a relatively monodisperse structure possessing radius of gyration of 2.7 nm after the detonation of HNS.« less

  14. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    NASA Astrophysics Data System (ADS)

    Li, Dongdong; Yu, Xiang

    2016-07-01

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N2 adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×106 M-1 and 0.3 ppm in water solution. More importantly, the materials can be recycled for many times by simply washed with ethanol, showing potential applications in explosives detection.

  15. Matter wave coupling of spatially separated and unequally pumped polariton condensates

    NASA Astrophysics Data System (ADS)

    Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.

    2018-03-01

    Spatial quantum coherence between two separated driven-dissipative polariton condensates created nonresonantly and with a different occupation is studied. We identify the regions where the condensates remain coherent with the phase difference continuously changing with the pumping imbalance and the regions where each condensate acquires its own chemical potential with phase differences exhibiting time-dependent oscillations. We show that in the mutual coherence limit the coupling consists of two competing contributions: a symmetric Heisenberg exchange and the Dzyloshinskii-Moriya asymmetric interactions that enable a continuous tuning of the phase relation across the dyad and derive analytic expressions for these types of interactions. The introduction of nonequal pumping increases the complexity of the type of problems that can be solved by polariton condensates arranged in a graph configuration. If equally pumped polaritons condensates arrange their phases to solve the constrained quadratic minimisation problem with a real symmetric matrix, the nonequally pumped condensates solve that problem for a general Hermitian matrix.

  16. Condenser-free contrast methods for transmitted-light microscopy

    PubMed Central

    WEBB, K F

    2015-01-01

    Phase contrast microscopy allows the study of highly transparent yet detail-rich specimens by producing intensity contrast from phase objects within the sample. Presented here is a generalized phase contrast illumination schema in which condenser optics are entirely abrogated, yielding a condenser-free yet highly effective method of obtaining phase contrast in transmitted-light microscopy. A ring of light emitting diodes (LEDs) is positioned within the light-path such that observation of the objective back focal plane places the illuminating ring in appropriate conjunction with the phase ring. It is demonstrated that true Zernike phase contrast is obtained, whose geometry can be flexibly manipulated to provide an arbitrary working distance between illuminator and sample. Condenser-free phase contrast is demonstrated across a range of magnifications (4–100×), numerical apertures (0.13–1.65NA) and conventional phase positions. Also demonstrated is condenser-free darkfield microscopy as well as combinatorial contrast including Rheinberg illumination and simultaneous, colour-contrasted, brightfield, darkfield and Zernike phase contrast. By providing enhanced and arbitrary working space above the preparation, a range of concurrent imaging and electrophysiological techniques will be technically facilitated. Condenser-free phase contrast is demonstrated in conjunction with scanning ion conductance microscopy (SICM), using a notched ring to admit the scanned probe. The compact, versatile LED illumination schema will further lend itself to novel next-generation transmitted-light microscopy designs. The condenser-free illumination method, using rings of independent or radially-scanned emitters, may be exploited in future in other electromagnetic wavebands, including X-rays or the infrared. PMID:25226859

  17. Thermal explosion violence of HMX-based explosives -- effect of composition, confinement and phase transition using the scaled thermal explosion experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F; Reaugh, J E

    We developed the Scaled Thermal Explosion Experiment (STEX) to provide a database of reaction violence from thermal explosion of explosives of interest. A cylinder of explosive, 1, 2 or 4 inches in diameter, is confined in a steel cylinder with heavy end caps, and heated under controlled conditions until it explodes. Reaction violence is quantified by micropower radar measurement of the cylinder wall velocity, and by strain gauge data at reaction onset. Here we describe the test concept and design, show that the conditions are well understood, and present initial data with HMX-based explosives. The HMX results show that anmore » explosive with high binder content yields less-violent reactions that an explosive with low binder content, and that the HMX phase at the time of explosion plays a key role in reaction violence.« less

  18. Two-Phase Model of Combustion in Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Khasainov, B; Bell, J

    2006-06-19

    A two-phase model for Aluminum particle combustion in explosions is proposed. It combines the gas-dynamic conservation laws for the gas phase with the continuum mechanics laws of multi-phase media, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by the Khasainov model. Combustion is specified as material transformations in the Le Chatelier diagram which depicts the locus of thermodynamic states in the internal energy-temperature plane according to Kuhl. Numerical simulations are used to show the evolution of two-phase combustion fields generated by the explosive dissemination of a powdered Al fuel.

  19. Geometry-induced phase transition in fluids: Capillary prewetting

    NASA Astrophysics Data System (ADS)

    Yatsyshin, Petr; Savva, Nikos; Kalliadasis, Serafim

    2013-02-01

    We report a new first-order phase transition preceding capillary condensation and corresponding to the discontinuous formation of a curved liquid meniscus. Using a mean-field microscopic approach based on the density functional theory we compute the complete phase diagram of a prototypical two-dimensional system exhibiting capillary condensation, namely that of a fluid with long-ranged dispersion intermolecular forces which is spatially confined by a substrate forming a semi-infinite rectangular pore exerting long-ranged dispersion forces on the fluid. In the T-μ plane the phase line of the new transition is tangential to the capillary condensation line at the capillary wetting temperature Tcw. The surface phase behavior of the system maps to planar wetting with the phase line of the new transition, termed capillary prewetting, mapping to the planar prewetting line. If capillary condensation is approached isothermally with T>Tcw, the meniscus forms at the capping wall and unbinds continuously, making capillary condensation a second-order phenomenon. We compute the corresponding critical exponent for the divergence of adsorption.

  20. Fermion masses through four-fermion condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less

  1. Heat storage system utilizing phase change materials government rights

    DOEpatents

    Salyer, Ival O.

    2000-09-12

    A thermal energy transport and storage system is provided which includes an evaporator containing a mixture of a first phase change material and a silica powder, and a condenser containing a second phase change material. The silica powder/PCM mixture absorbs heat energy from a source such as a solar collector such that the phase change material forms a vapor which is transported from the evaporator to the condenser, where the second phase change material melts and stores the heat energy, then releases the energy to an environmental space via a heat exchanger. The vapor is condensed to a liquid which is transported back to the evaporator. The system allows the repeated transfer of thermal energy using the heat of vaporization and condensation of the phase change material.

  2. Mineralogy, textures and mode of formation of a hibonite-bearing Allende inclusion

    NASA Technical Reports Server (NTRS)

    Allen, J. M.; Grossman, L.; Davis, A. M.; Hutcheon, I. D.

    1978-01-01

    The origin of a Type A, hibonite-rich, coarse-grained inclusion is investigated with the electron microprobe and petrographic and scanning electron microscopes. The primary phases are hibonite, rhonite, Ti-Al-pyroxene, spinel, perovskite and melilite. Evidence for the crystallization of the bulk of the primary phases, hibonite and melilite, from a melt is lacking, suggesting that they may have condensed directly from a solar nebular gas instead. Primary phases were intensely altered during a later condensation event which deposited grossular, anorthite, nepheline and wollastonite in veins and cavities. Four or five condensate rims were deposited as successive layers on the outside of the inclusion. From inside to outside, they consist of perovskite + spinel, nepheline + anorthite, Ti-Al-pyroxene + diopside, hedenbergite + or - wollastonite + or - andradite and, finally, prisms of diopside and hedenbergite with wollastonite and andradite. Reverse zoning in melilite; alteration phases and rim phases, which are not stable condensates from a gas of solar composition; and details of the sequence of rim condensates all suggest that the entire condensation history of this inclusion was interrupted by changes in pressure and/or temperature and/or gas phase composition.

  3. Numerical modelling of multiphase liquid-vapor-gas flows with interfaces and cavitation

    NASA Astrophysics Data System (ADS)

    Pelanti, Marica

    2017-11-01

    We are interested in the simulation of multiphase flows where the dynamical appearance of vapor cavities and evaporation fronts in a liquid is coupled to the dynamics of a third non-condensable gaseous phase. We describe these flows by a single-velocity three-phase compressible flow model composed of the phasic mass and total energy equations, the volume fraction equations, and the mixture momentum equation. The model includes stiff mechanical and thermal relaxation source terms for all the phases, and chemical relaxation terms to describe mass transfer between the liquid and vapor phases of the species that may undergo transition. The flow equations are solved by a mixture-energy-consistent finite volume wave propagation scheme, combined with simple and robust procedures for the treatment of the stiff relaxation terms. An analytical study of the characteristic wave speeds of the hierarchy of relaxed models associated to the parent model system is also presented. We show several numerical experiments, including two-dimensional simulations of underwater explosive phenomena where highly pressurized gases trigger cavitation processes close to a rigid surface or to a free surface. This work was supported by the French Government Grant DGA N. 2012.60.0011.00.470.75.01, and partially by the Norwegian Grant RCN N. 234126/E30.

  4. Analysis of flame spread over multicomponent combustibles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohtani, H.; Sato, J.

    1985-01-01

    A theoretical model of volatile component diffusion in the condensed phase is carried out in order to form a basis for predicting the flame spread rate in thermally thick multicomponent combustibles in a non-fluid condensed phase. The fuels could be, e.g., crude oil, heavy oil, or light oil. Mass transfer occurs only by diffusion so the gas phase volatile concentration at the surface is estimated from the condensed phase volatile concentration and the surface temperature, which increases close to the leading flame edge. The flame spread rate is assumed steady. The velocity of the flame spread is shown to bemore » a function of the initial condensed phase temperature and the temperature at the leading flame edge.« less

  5. The Properties of Condensed Explosives for Electromagnetic Energy Coupling,

    DTIC Science & Technology

    1985-10-01

    CONCLUSIONS Due t o the 3-dimensional nature of the experiment, multiple reflections occurred within the eleccrode block during the course of the experiment...Self- integracion is used as a method of band-limiting to prevent resonance, as discussed later. Self-resonance and Cable Matching From Figure C-4

  6. Influence of Dense Inert Additives (W and Pb) on Detonation Conditions and Regime of Condensed Explosives

    NASA Astrophysics Data System (ADS)

    Imkhovik, Nikolay A.

    2010-10-01

    Results of experimental and theoretical studies of the unusual detonation properties of mixtures of high explosives (HEs) with high-density inert additives W and Pb were analyzed and systematized. Typical examples of the nonideal detonation of composite explosives for which the measured detonation pressure is substantially lower and the detonation velocity is higher than the values calculated within the framework of the hydrodynamic model, with the specific heat ratio for the detonation products of ∼6-8, are presented. Mechanisms of formation of anomalous pressure and mass velocity profiles, which explain the correlation between the Chapman-Jouguet pressure for HE-W and HE-Pb mixtures, the velocity of the free surface of duralumin target, and the depth of the dent imprinted in steel witness plates, are described.

  7. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2009-10-16

    Here we investigate the thermodynamic states occurring in explosion fields from the detonation of condensed explosives in air. In typical applications, the pressure of expanded detonation products gases is modeled by a Jones-Wilkins-Lee (JWL) function: P{sub JWL} = f(v,s{sub CJ}); constants in that function are fit to cylinder test data. This function provides a specification of pressure as a function of specific volume, v, along the expansion isentrope (s = constant = s{sub CJ}) starting at the Chapman-Jouguet (CJ) state. However, the JWL function is not a fundamental equation of thermodynamics, and therefore gives an incomplete specification of states. Formore » example, explosions inherently involve shock reflections from surfaces; this changes the entropy of the products, and in such situations the JWL function provides no information on the products states. In addition, most explosives are not oxygen balanced, so if hot detonation products mix with air, they after-burn, releasing the heat of reaction via a turbulent combustion process. This raises the temperature of explosion products cloud to the adiabatic flame temperature ({approx}3,000K). Again, the JWL function provides no information on the combustion products states.« less

  8. Very high pressure combustion; Reaction propagation rates of nitromethane within a diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, S.F.; Foltz, M.F.

    1991-11-01

    This paper reports on the combustion-front propagation rate of nitromethane that has been examined to pressures of 40 GPa. A new and general technique involving pulsed laser ignition of an energetic material within a diamond anvil cell and a method for monitoring the rapid decomposition of nitromethane and other explosives to more stable chemical products is described in detail. Nitromethane is shown to exhibit a flame propagation rate that increases smoothly to 100 m/s at 30 GPa as a function of pressure. Above 30 GPa, the final solid-state combustion products change dramatically and the flame propagation rate begins to decrease.more » The combustion-front propagation rate is analyzed in terms of an existing condensed-phase model that predicts a relationship between the front propagation rate, U, and the pressure derivative of the chemical kinetic activation energy, dE{sub a}/dP, such that a plot of logU{sup 2} vs. P should be linear. The activation energy is analyzed to yield an effective volume of activation, {Delta}V, of {minus}3.4 ml/mol. The chemical kinetic parameters determined from the combustion-front propagation rate analysis of solid high-pressure nitromethane is compared with results from other thermal decomposition studies of this prototypic molecular explosive.« less

  9. Personal, closed-cycle cooling and protective apparatus and thermal battery therefor

    DOEpatents

    Klett, James W.; Klett, Lynn B.

    2004-07-20

    A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

  10. Nonequilibrium phase coexistence and criticality near the second explosion limit of hydrogen combustion

    NASA Astrophysics Data System (ADS)

    Newcomb, Lucas B.; Alaghemandi, Mohammad; Green, Jason R.

    2017-07-01

    While hydrogen is a promising source of clean energy, the safety and optimization of hydrogen technologies rely on controlling ignition through explosion limits: pressure-temperature boundaries separating explosive behavior from comparatively slow burning. Here, we show that the emergent nonequilibrium chemistry of combustible mixtures can exhibit the quantitative features of a phase transition. With stochastic simulations of the chemical kinetics for a model mechanism of hydrogen combustion, we show that the boundaries marking explosive domains of kinetic behavior are nonequilibrium critical points. Near the pressure of the second explosion limit, these critical points terminate the transient coexistence of dynamical phases—one that autoignites and another that progresses slowly. Below the critical point temperature, the chemistry of these phases is indistinguishable. In the large system limit, the pseudo-critical temperature converges to the temperature of the second explosion limit derived from mass-action kinetics.

  11. Nanocarbon condensation in detonation

    DOE PAGES

    Bastea, Sorin

    2017-02-08

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactivemore » conditions.« less

  12. Nanocarbon condensation in detonation

    PubMed Central

    Bastea, Sorin

    2017-01-01

    We analyze the definition of the Gibbs free energy of a nanoparticle in a reactive fluid environment, and propose an approach for predicting the size of carbon nanoparticles produced by the detonation of carbon-rich explosives that regards their condensation as a nucleation process and takes into account absolute entropy effects of the cluster population. The results are consistent with experimental observations and indicate that such entropy considerations are important for determining chemical equilibrium states in energetic materials that contain an excess of carbon. The analysis may be useful for other applications that deal with the nucleation of nanoparticles under reactive conditions. PMID:28176827

  13. Structural-Phase States of Fe-Cu and Fe-Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  14. Gelfand-type problem for two-phase porous media

    PubMed Central

    Gordon, Peter V.; Moroz, Vitaly

    2014-01-01

    We consider a generalization of the Gelfand problem arising in Frank-Kamenetskii theory of thermal explosion. This generalization is a natural extension of the Gelfand problem to two-phase materials, where, in contrast to the classical Gelfand problem which uses a single temperature approach, the state of the system is described by two different temperatures. We show that similar to the classical Gelfand problem the thermal explosion occurs exclusively owing to the absence of stationary temperature distribution. We also show that the presence of interphase heat exchange delays a thermal explosion. Moreover, we prove that in the limit of infinite heat exchange between phases the problem of thermal explosion in two-phase porous media reduces to the classical Gelfand problem with renormalized constants. PMID:24611025

  15. Structural-Phase States of Fe–Cu and Fe–Ag Bimetallic Particles Produced by Electric Explosion of Two Wires

    NASA Astrophysics Data System (ADS)

    Lerner, M. I.; Bakina, O. V.; Pervikov, A. V.; Glazkova, E. A.; Lozhkomoev, A. S.; Vorozhtsov, A. B.

    2018-05-01

    X-ray phase analysis, transmission electron microscopy, and X-ray microanalysis were used to examine the structural-phase states of Fe-Cu and Fe-Ag bimetallic nanoparticles. The nanoparticles were obtained by the electric explosion of two twisted metal wires in argon atmosphere. It was demonstrated that the nanoparticles have the structure of Janus particles. Presence of the Janus particle structure in the samples indicates formation of binary melt under conditions of combined electric explosion of two wires. Phases based on supersaturated solid solutions were not found in the examined samples. The data obtained allow arguing that it is possible to achieve uniform mixing of the two-wire explosion products under the described experiment conditions.

  16. Shock initiated reactions of reactive multi-phase blast explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2017-01-01

    This paper describes a new class of non-ideal explosive compositions made of perfluoropolyether (PFPE), nanoaluminum, and a micron-size, high mass density, reactive metal. Unlike high explosives, these compositions release energy via a fast self-oxidized combustion wave rather than a true self-sustaining detonation. Their reaction rates are shock dependent and they can be overdriven to change their energy release rate. These compositions are fuel rich and have an extended aerobic energy release phase. The term "reactive multiphase blast" refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts energy and momentum [1]; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. Tantalum-based RMBX formulations were tested in two spherical core-shell configurations - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  17. Seismic Energy Generation and Partitioning into Various Regional Phases from Different Seismic Sources in the Middle East Region

    DTIC Science & Technology

    2007-09-20

    phases. The power law parameter values were found to be in close agreement with the constants for nuclear explosions in Nevada and chemical explosions in...caused by the difference of lithostatic pressures between top and bottom of a vertical cylindrical explosive source, typical for borehole chemical ...NORSAR recorded several decoupled chemical explosions in large chambers of underground mines in Sweden (Stevens et al., 2003), however a reference

  18. Experiments With Trapped Neutral Atoms

    DTIC Science & Technology

    2010-01-05

    number of condensate atoms in the trap [11]. (a) i solitons (b) £ 10 \\QT>J — \\^y Darks -WW . ’ VrV Ground state A(|>=0 <* -^ Mr...interacting condensates leading to soliton formation for a relative phase of Pi. (b) The relative phase of two split condensates was monitored for various

  19. Two-phase flow pressure drop and heat transfer during condensation in microchannels with uniform and converging cross-sections

    NASA Astrophysics Data System (ADS)

    Kuo, Ching Yi; Pan, Chin

    2010-09-01

    This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.

  20. Anomalous interfacial tension temperature dependence of condensed phase drops in magnetic fluids

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksey S.

    2018-05-01

    Interfacial tension temperature dependence σ(T) of the condensed phase (drop-like aggregates) in magnetic fluids undergoing field induced phase transition of the "gas-liquid" type was studied experimentally. Numerical analysis of the experimental data has revealed the anomalous (if compared to ordinary one-component fluids) behavior of the σ(T) function for all tested magnetic colloid samples: the condensed phase drops at high T ≈ 75 C exhibit higher σ(T) than the drops condensed at low T ≈ 20 C. The σ(T) behavior is explained by the polydispersity of magnetic colloids: at high T, only the largest colloidal particles are able to take part in the field induced condensation; thus, the increase of T causes the growth of the average particle diameters inside the drop-like aggregates, what in its turn results in the growth of σ(T). The result is confirmed by qualitative theoretical estimations and qualitative experimental observation of the condensed phase "evaporation" process after the applied magnetic field is removed: the drops that are formed due to capillary instability of the drop-like aggregates retract by one order of magnitude faster at high T, and the evaporation of the drops slows down at high T.

  1. A Local Condensation Analysis Representing Two-phase Annular Flow in Condenser/radiator Capillary Tubes

    NASA Technical Reports Server (NTRS)

    Karimi, Amir

    1991-01-01

    NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.

  2. New Trends in Research of Energetic Materials

    DTIC Science & Technology

    2004-05-31

    The seventh consecutive Seminar on new trends in research of energetic materia?s is intended to be a world meeting of young people and university...teachers working in the field of teaching research development processing analyzing and application of all kinds of energetic materials Topics include explosions of gaseous dispersing and condensed systems.

  3. TableSeer: Automatic Table Extraction, Search, and Understanding

    ERIC Educational Resources Information Center

    Liu, Ying

    2009-01-01

    Tables are ubiquitous with a history that pre-dates that of sentential text. Authors often report a summary of their most important findings using tabular structure in documents. For example, scientists widely use tables to present the latest experimental results or statistical data in a condensed fashion. Along with the explosive development of…

  4. Condensation of Forced Convection Two-Phase Flow in a Miniature Tube

    NASA Technical Reports Server (NTRS)

    Begg, E.; Faghri, A.; Krustalev, D.

    1999-01-01

    A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.

  5. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE PAGES

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.; ...

    2017-12-04

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  6. Evaluation of the Deuterium Isotope Effect in the Detonation of Aluminum Containing Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tappan, Bryce C.; Bowden, Patrick R.; Manner, Virginia W.

    During or shortly after a detonation in condensed explosives, the reaction rates and the physical mechanism controlling aluminum reaction is poorly understood. We utilize the kinetic isotope effect to probe Al reactions in detonation product gases in aluminized, protonated and deuterated high explosives using high-fidelity detonation velocity and cylinder wall expansion velocity measurements. By observation of the profile of cylinder wall velocity versus time, we are able to determine the timing of aluminum contribution to energy release in product gases and observe the presence or absence of rate changes isotopic substitution. By comparison of the Al oxidation with lithium fluoridemore » (LiF), data indicate that Al oxidation occurs on an extremely fast time scale, with post-detonation kinetic isotope effects observed in carbon containing formulations.« less

  7. Energy Partitioning of Seismic Phases: Current Datasets and Techniques Aimed at Improving the Future of Event Identification

    NASA Astrophysics Data System (ADS)

    Bonner, J.

    2006-05-01

    Differences in energy partitioning of seismic phases from earthquakes and explosions provide the opportunity for event identification. In this talk, I will briefly review teleseismic Ms:mb and P/S ratio techniques that help identify events based on differences in compressional, shear, and surface wave energy generation from explosions and earthquakes. With the push to identify smaller yield explosions, the identification process has become increasingly complex as varied types of explosions, including chemical, mining, and nuclear, must be identified at regional distances. Thus, I will highlight some of the current views and problems associated with the energy partitioning of seismic phases from single- and delay-fired chemical explosions. One problem yet to have a universally accepted answer is whether the explosion and earthquake populations, based on the Ms:mb discriminants, should be separated at smaller magnitudes. I will briefly describe the datasets and theory that support either converging or parallel behavior of these populations. Also, I will discuss improvement to the currently used methods that will better constrain this problem in the future. I will also discuss the role of regional P/S ratios in identifying explosions. In particular, recent datasets from South Africa, Scandinavia, and the Western United States collected from earthquakes, single-fired chemical explosions, and/or delay-fired mining explosions have provide new insight into regional P, S, Lg, and Rg energy partitioning. Data from co-located mining and chemical explosions suggest that some mining explosions may be used for limited calibration of regional discriminants in regions where no historic explosion data is available.

  8. Dynamics of inhomogeneous chiral condensates

    NASA Astrophysics Data System (ADS)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  9. Dynamics of Electronically Excited Species in Gaseous and Condensed Phase

    DTIC Science & Technology

    1989-12-01

    heatbath models of condensed phase helium, (3) development of models of condensed phase hydrogen and (4) development of simulation procedures for solution... Modelling and Computer Experiments 93 Introduction 93 Monte Carlo Simulations of Helium Bubble States 94 Heatbath Models f6r Helium Bubble States 114...ILLUSTRATIONS 1 He-He* potential energy curves and couplings for two-state model . 40 2 Cross section for He(1P) quenching to He( 3S) 42 3 Opacity

  10. Comparison of the solid-phase fragment condensation and phase-change approaches in the synthesis of salmon I calcitonin.

    PubMed

    Gatos, D; Tzavara, C

    2001-02-01

    Salmon I calcitonin was synthesized using both phase-change and conventional solid-phase fragment condensation (SPFC) approaches, utilizing the Rink amide linker (Fmoc-amido-2,4-dimethoxybenzyl-4-phenoxyacetic acid) combined with 2-chlorotrityl resin and the Fmoc/tBu(Trt)-based protection scheme. Phase-change synthesis, performed by the selective detachment of the fully protected C-terminal 22-mer peptide-linker from the resin and subsequent condensation in solution with the N-terminal 1-10 fragment, gave a product of slightly less purity (85 vs. 92%) than the corresponding synthesis on the solid-phase. In both cases salmon I calcitonin was easily obtained in high purity.

  11. Space shuttle orbiter mechanical refrigeration system

    NASA Technical Reports Server (NTRS)

    Williams, J. L.

    1974-01-01

    A radiator/condenser was designed which is efficient in both condensation (refrigeration) and liquid phase (radiator) operating modes, including switchover from the refrigeration mode to the radiator mode and vice versa. A method for predicting the pressure drop of a condensing two-phase flow in zero-gravity was developed along with a method for predicting the flow regime which would prevail along the condensation path. The hybrid refrigeration system was assembled with the two radiator/condenser panels installed in a space environment simulator. The system was tested under both atmospheric and vacuum conditions. Results of the tests are presented.

  12. Electromagnetic field effects in explosives

    NASA Astrophysics Data System (ADS)

    Tasker, Douglas

    2009-06-01

    Present and previous research on the effects of electromagnetic fields on the initiation and detonation of explosives and the electromagnetic properties of explosives are reviewed. Among the topics related to detonating explosives are: measurements of conductivity; enhancement of performance; and control of initiation and growth of reaction. Hayes...()^1 showed a strong correlation of peak electrical conductivity with carbon content of the detonation products. Ershov.......^2 linked detailed electrical conductivity measurements with reaction kinetics and this work was extended to enhance detonation performance electrically;...^3 for this, electrical power densities of the order of 100 TW/m^2 of explosive surface normal to the detonation front were required. However, small electrical powers are required to affect the initiation and growth of reaction.......^4,5 A continuation of this work will be reported. LA-UR 09-00873 .^1 B. Hayes, Procs. of 4th Symposium (International) on Detonation (1965), p. 595. ^2 A. Ershov, P. Zubkov, and L. Luk'yanchikov, Combustion, Explosion, and Shock Waves 10, 776-782 (1974). ^3 M. Cowperthwaite, Procs. 9th Detonation Symposium (1989), p. 388-395. ^4 M. A. Cook and T. Z. Gwyther, ``Influence of Electric Fields on Shock to Detonation Transition,'' (1965). ^5 D. Salisbury, R. Winter, and L. Biddle, Procs. of the APS Topical Conference on Shock Compression of Condensed Matter (2005) p. 1010-1013.

  13. Quantum Many-Body Dynamics with Driven Bose Condensates: Kibble-Zurek Mechanism and Bose Fireworks

    NASA Astrophysics Data System (ADS)

    Clark, Logan William

    In recent years there has been an explosion of interest in the field of quantum many-body physics. Understanding the complex and often unintuitive behavior of systems containing interacting quantum constituents is not only fascinating but also crucial for developing the next generation of quantum technology, including better materials, sensors, and computers. Yet understanding such systems remains a challenge, particularly when considering the dynamics which occur when they are excited far from equilibrium. Ultracold atomic gases provide an ideal system with which to study dynamics by enabling clean, well-controlled experiments at length- and time-scales which allow us to observe the dynamics directly. This thesis describes experiments on the many-body dynamics of ultracold, bosonic cesium atoms. Our apparatus epitomizes the versatility of ultracold atoms by providing extensive control over the quantum gas. In particular, we will discuss our use of a digital micromirror device to project arbitrary, dynamic external potentials onto the gas; our development of a powerful new scheme for optically controlling Feshbach resonances to enable spatiotemporal control of the interactions between atoms; and our use of near-resonant shaking lattices to modify the kinetic energy of atoms. Taking advantage of this flexible apparatus, we have been able to test a longstanding conjecture based on the Kibble-Zurek mechanism, which says that the dynamics of a system crossing a quantum phase transition should obey a universal scaling symmetry of space and time. After accounting for this scaling symmetry, critical dynamics would be essentially independent of the rate at which a system crossed a phase transition. We tested the universal scaling of critical dynamics by using near-resonant shaking to drive Bose-Einstein condensates across an effectively ferromagnetic quantum phase transition. After crossing the phase transition, condensates divide themselves spatially into domains with finite quasimomentum. We measured the growth of these domains over time and the correlation functions describing their spatial distribution by directly reconstructing the quasimomentum distribution. We observed the expected scaling laws across more than an order of magnitude in the crossing rate, aside from which the observed critical dynamics were indeed independent of the crossing rate. These experiments provide strong support for the universal scaling symmetry of space and time and the extension of the Kibble-Zurek mechanism to quantum phase transitions. We also present the first observation of Bose Fireworks: the sudden emission of many bright, narrow jets of atoms from condensates with oscillating interaction strength. Even though the underlying inelastic s-wave collisions induced by oscillating interactions are isotropic, the collective nature of collisions in the condensate causes the outgoing bosonic atoms to bunch into narrow jets in the horizontal plane. This bunching results from runaway stimulated collisions, which we find can only occur above a threshold oscillation amplitude. The observed atom number in the jets suggests that they are seeded by quantum fluctuations. Moreover, in azimuthal correlation functions we observe forward correlations consistent with theory, which saturate the limit from the uncertainty principle. We also observe partial correlation between counterpropagating jets. Bose Fireworks provide a well-controlled platform for understanding the diverse class of systems in which a coherent source rapidly emits pairs of counterpropagating bosons.

  14. interThermalPhaseChangeFoam-A framework for two-phase flow simulations with thermally driven phase change

    NASA Astrophysics Data System (ADS)

    Nabil, Mahdi; Rattner, Alexander S.

    The volume-of-fluid (VOF) approach is a mature technique for simulating two-phase flows. However, VOF simulation of phase-change heat transfer is still in its infancy. Multiple closure formulations have been proposed in the literature, each suited to different applications. While these have enabled significant research advances, few implementations are publicly available, actively maintained, or inter-operable. Here, a VOF solver is presented (interThermalPhaseChangeFoam), which incorporates an extensible framework for phase-change heat transfer modeling, enabling simulation of diverse phenomena in a single environment. The solver employs object oriented OpenFOAM library features, including Run-Time-Type-Identification to enable rapid implementation and run-time selection of phase change and surface tension force models. The solver is packaged with multiple phase change and surface tension closure models, adapted and refined from earlier studies. This code has previously been applied to study wavy film condensation, Taylor flow evaporation, nucleate boiling, and dropwise condensation. Tutorial cases are provided for simulation of horizontal film condensation, smooth and wavy falling film condensation, nucleate boiling, and bubble condensation. Validation and grid sensitivity studies, interfacial transport models, effects of spurious currents from surface tension models, effects of artificial heat transfer due to numerical factors, and parallel scaling performance are described in detail in the Supplemental Material (see Appendix A). By incorporating the framework and demonstration cases into a single environment, users can rapidly apply the solver to study phase-change processes of interest.

  15. Tachyon condensation due to domain-wall annihilation in Bose-Einstein condensates.

    PubMed

    Takeuchi, Hiromitsu; Kasamatsu, Kenichi; Tsubota, Makoto; Nitta, Muneto

    2012-12-14

    We show theoretically that a domain-wall annihilation in two-component Bose-Einstein condensates causes tachyon condensation accompanied by spontaneous symmetry breaking in a two-dimensional subspace. Three-dimensional vortex formation from domain-wall annihilations is considered a kink formation in subspace. Numerical experiments reveal that the subspatial dynamics obey the dynamic scaling law of phase-ordering kinetics. This model is experimentally feasible and provides insights into how the extra dimensions influence subspatial phase transition in higher-dimensional space.

  16. Phreatomagmatic and phreatic fall and surge deposits from explosions at Kilauea volcano, Hawaii, 1790 a.d.: Keanakakoi Ash Member

    USGS Publications Warehouse

    McPhie, J.; Walker, G.P.L.; Christiansen, R.L.

    1990-01-01

    In or around 1790 a.d. an explosive eruption took place in the summit caldera of Kilauea shield volcano. A group of Hawaiian warriors close to the caldera at the time were killed by the effects of the explosions. The stratigraphy of pyroclastic deposits surrounding Kilauea (i.e., the Keanakakoi Ash Member) suggests that the explosions referred to in the historic record were the culmination of a prolonged hydrovolcanic eruption consisting of three main phases. The first phase was phreatomagmatic and generated well-bedded, fine fallout ash rich in glassy, variably vesiculated, juvenile magmatic and dense, lithic pyroclasts. The ash was mainly dispersed to the southwest of the caldera by the northeasterly trade winds. The second phase produced a Strombolian-style scoria fall deposit followed by phreatomagmatic ash similar to that of the first phase, though richer in accretionary lapilli and lithics. The third and culminating phase was phreatic and deposited lithic-rich lapilli and block fall layers, interbedded with cross-bedded surge deposits, and accretionary lapilli-rich, fine ash beds. These final explosions may have been responsible for the deaths of the warriors. The three phases were separated by quiescent spells during which the primary deposits were eroded and transported downwind in dunes migrating southwestward and locally excavated by fluvial runoff close to the rim. The entire hydrovolcanic eruption may have lasted for weeks or perhaps months. At around the same time, lava erupted from Kilauea's East Rift Zone and probably drained magma from the summit storage. The earliest descriptions of Kilauea (30 years after the Keanakakoi eruption) emphasize the great depth of the floor (300-500 m below the rim) and the presence of stepped ledges. It is therefore likely that the Keanakakoi explosions were deepseated within Kilauea, and that the vent rim was substantially lower than the caldera rim. The change from phreatomagmatic to phreatic phases may reflect the progressive degassing and cooling of the magma during deep withdrawal: throughout the phreatomagmatic phases magma vesiculation contributed to the explosive interaction with water by initiating the fragmentation process: thereafter, the principal role of the subsiding magma column was to supply heat for steam production that drove the phreatic explosions of the final phase. ?? 1990 Springer-Verlag.

  17. Toward wearable sensors: optical sensor for detection of ammonium nitrate-based explosives, ANFO and ANNM.

    PubMed

    Sheykhi, Sara; Mosca, Lorenzo; Anzenbacher, Pavel

    2017-05-04

    Increasing security needs require compact and portable detection tools for the rapid and reliable identification of explosives used in improvised explosive devices (IEDs). We report of an easy-to-use optical sensor for both vapour-phase and solution-phase identification of explosive mixtures that uses a cross-reactive fluorimetric sensor array comprising chemically responsive fluorimetric indicators composed of aromatic aldehydes and polyethyleneimine. Ammonium nitrate-nitromethane (ANNM) was analyzed by paper microzone arrays and nanofiber sensor mats. Progress toward wearable sensors based on electrospun nanofiber mats is outlined.

  18. Probing the Dynamics of Ultra-Fast Condensed State Reactions in Energetic Materials

    ERIC Educational Resources Information Center

    Piekiel, Nicholas William

    2012-01-01

    Energetic materials (EMs) are substances with a high amount of stored energy and the ability to release that energy at a rapid rate. Nanothermites and green organic energetics are two classes of EMs which have gained significant interest as they each have desirable properties over traditional explosives. These systems also possess downfalls, which…

  19. Plastic Media Blasting Waste Treatments

    DTIC Science & Technology

    1988-07-01

    melamine formaldehyde resin with a Mohr hardness of 4.0. Urea and melamine formaldehydes are highly crosslinked condensation polymers. These two...with either melamine formaldehyde or urea formaldehyde resins , which contain no chlorine. Wet scrubbers followed by demisters are added to remove any...latter problem. NARF chemists believe that methacrylate dust will be more explosive than dust from melamine or urea formaldehyde

  20. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2015-04-01

    In this paper the Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model determines the partitioning of organic compounds between the gas and particle phases. It is designed to be modular with different user options depending on the computation time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption into the aqueous phase of particles, activity coefficients and phase separation). Each surrogate can be hydrophilic (condenses only into the aqueous phase of particles), hydrophobic (condenses only into the organic phases of particles) or both (condenses into both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC (UNIversal Functional group Activity Coefficient; Fredenslund et al., 1975) thermodynamic model for short-range interactions and with the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) parameterization for medium- and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium representation and a dynamic representation of organic aerosols (OAs). In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol is not at equilibrium with the gas phase because the organic phases could be semi-solid (very viscous liquid phase). The condensation-evaporation of organic compounds could then be limited by the diffusion in the organic phases due to the high viscosity. An implicit dynamic representation of secondary organic aerosols (SOAs) is available in SOAP with OAs divided into layers, the first layer being at the center of the particle (slowly reaches equilibrium) and the final layer being near the interface with the gas phase (quickly reaches equilibrium). Although this dynamic implicit representation is a simplified approach to model condensation-evaporation with a low number of layers and short CPU (central processing unit) time, it shows good agreements with an explicit representation of condensation-evaporation (no significant differences after a few hours of condensation).

  1. The violent interstellar medium in Milky-Way like disk galaxies

    NASA Astrophysics Data System (ADS)

    Karoline Walch, Stefanie

    2015-08-01

    Molecular clouds are cold, dense, and turbulent filamentary structures that condense out of the multi-phase interstellar medium. They are also the sites of star formation. The minority of new-born stars is massive, but these stars are particularly important for the fate of their parental molecular clouds as their feedback drives turbulence and regulates star formation.I will present results from the SILCC project (SImulating the Life Cycle of molecular Clouds), in which we study the formation and dispersal of molecular clouds within the multi-phase ISM using high-performance, three-dimensional simulations of representative pieces of disk galaxies. Apart from stellar feedback, self-gravity, an external stellar potential, and magnetic fields, we employ an accurate description of gas heating and cooling as well as a small chemical network including molecule formation and (self-)shielding from the interstellar radiation field. We study the impact of the supernova rate and the positioning of the supernova explosions with respect to the molecular gas in a well defined set of simulations. This allows us to draw conclusions on structure of the multi-phase ISM, the amount of molecular gas formed, and the onset of galactic outflows. Furthermore, we show how important stellar wind feedback is for regulating star formation in these disks.

  2. Production of higher quality bio-oils by in-line esterification of pyrolysis vapor

    DOEpatents

    Hilten, Roger Norris; Das, Keshav; Kastner, James R; Bibens, Brian P

    2014-12-02

    The disclosure encompasses in-line reactive condensation processes via vapor phase esterification of bio-oil to decease reactive species concentration and water content in the oily phase of a two-phase oil, thereby increasing storage stability and heating value. Esterification of the bio-oil vapor occurs via the vapor phase contact and subsequent reaction of organic acids with ethanol during condensation results in the production of water and esters. The pyrolysis oil product can have an increased ester content and an increased stability when compared to a condensed pyrolysis oil product not treated with an atomized alcohol.

  3. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2018-06-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  4. Convective heat transfer measurements in a vapour-liquid-liquid three-phase direct contact heat exchanger

    NASA Astrophysics Data System (ADS)

    Mahood, Hameed B.; Campbell, A. N.; Baqir, Ali Sh.; Sharif, A. O.; Thorpe, R. B.

    2017-12-01

    Energy usage is increasing around the world due to the continued development of technology, and population growth. Solar energy is a promising low-grade energy resource that can be harvested and utilised in different applications, such solar heater systems, which are used in both domestic and industrial settings. However, the implementation of an efficient energy conversion system or heat exchanger would enhance such low-grade energy processes. The direct contact heat exchanger could be the right choice due to its ability to efficiently transfer significant amounts of heat, simple design, and low cost. In this work, the heat transfer associated with the direct contact condensation of pentane vapour bubbles in a three-phase direct contact condenser is investigated experimentally. Such a condenser could be used in a cycle with a solar water heater and heat recovery systems. The experiments on the steady state operation of the three-phase direct contact condenser were carried out using a short Perspex tube of 70 cm in total height and an internal diameter of 4 cm. Only a height of 48 cm was active as the direct contact condenser. Pentane vapour, (the dispersed phase) with three different initial temperatures (40° C, 43.5° C and 47.5° C) was directly contacted with water (the continuous phase) at 19° C. The experimental results showed that the total heat transfer rate per unit volume along the direct contact condenser gradually decreased upon moving higher up the condenser. Additionally, the heat transfer rate increases with increasing mass flow rate ratio, but no significant effect on the heat transfer rate of varying the initial temperature of the dispersed phase was seen. Furthermore, both the outlet temperature of the continuous phase and the void fraction were positively correlated with the total heat transfer rate per unit volume, with no considerable effect of the initial temperature difference between the dispersed and continuous phases.

  5. Thermal Explosion Violence of HMX-Based and RDX-Based Explosives - Effects of Composition, Confinement, and Solid Phase Using the Scaled Thermal Explosion Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maienschein, J L; Wardell, J F

    The Scaled Thermal Explosion Experiment (STEX) has been developed to quantify the violence of thermal explosion under well defined and carefully controlled initial and boundary conditions. Here we present results with HMX-based explosives (LX-04 and PBX-9501) and with Composition B. Samples are 2 inches (50 mm) in diameter and 8 inches (200 mm) in length, under confinement of 7,500-30,000 psi (50-200 MPa), with heating rates of 1-3 C/hr. We quantify reaction violence by measuring the wall velocity in the ensuing thermal explosion, and relate the measured velocity to that expected from a detonation. Results with HMX-based explosives (LX-04 and PBX-9501)more » have shown the importance of confinement and HMX solid phase, with reaction violence ranging from mild pressure bursts to near detonations. By contrast, Composition B has shown very violent reactions over a wide range of conditions.« less

  6. Ionic Liquid Fuels for Chemical Propulsion

    DTIC Science & Technology

    2016-10-31

    nucleophilicity in the ionic liquid is critical. Both gas -phase and condensed-phase (CPCM-GIL) density functional theory calculations support the...stability trends in dialkylimidazolium ionic liquids and could be used as a higher accuracy method than the gas -phase DFT approach for predicting thermal...stabilities of ionic liquids in general. One important finding from the comparison of the gas -phase basicities relative to the GIL condensed- phase

  7. Method and apparatus for selective capture of gas phase analytes using metal .beta.-diketonate polymers

    DOEpatents

    Harvey, Scott D [Kennewick, WA

    2011-06-21

    A process and sensor device are disclosed that employ metal .beta.-diketonate polymers to selectively capture gas-phase explosives and weaponized chemical agents in a sampling area or volume. The metal .beta.-diketonate polymers can be applied to surfaces in various analytical formats for detection of: improvised explosive devices, unexploded ordinance, munitions hidden in cargo holds, explosives, and chemical weapons in public areas.

  8. Atomistic Simulations of Chemical Reactivity of TATB Under Thermal and Shock Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manaa, M R; Reed, E J; Fried, L E

    2009-09-23

    The study of chemical transformations that occur at the reactive shock front of energetic materials provides important information for the development of predictive models at the grain-and continuum scales. A major shortcoming of current high explosives models is the lack of chemical kinetics data of the reacting explosive in the high pressure and temperature regimes. In the absence of experimental data, long-time scale atomistic molecular dynamics simulations with reactive chemistry become a viable recourse to provide an insight into the decomposition mechanism of explosives, and to obtain effective reaction rate laws. These rates can then be incorporated into thermo-chemical-hydro codesmore » (such as Cheetah linked to ALE3D) for accurate description of the grain and macro scales dynamics of reacting explosives. In this talk, I will present quantum simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) crystals under thermal decomposition (high density and temperature) and shock compression conditions. This is the first time that condensed phase quantum methods have been used to study the chemistry of insensitive high explosives. We used the quantum-based, self-consistent charge density functional tight binding method (SCC{_}DFTB) to calculate the interatomic forces for reliable predictions of chemical reactions, and to examine electronic properties at detonation conditions for a relatively long time-scale on the order of several hundreds of picoseconds. For thermal decomposition of TATB, we conducted constant volume-temperature simulations, ranging from 0.35 to 2 nanoseconds, at {rho} = 2.87 g/cm{sup 3} at T = 3500, 3000, 2500, and 1500 K, and {rho} = 2.9 g/cm{sup 3} and 2.72 g/cm{sup 3}, at T = 3000 K. We also simulated crystal TATB's reactivity under steady overdriven shock compression using the multi-scale shock technique. We conducted shock simulations with specified shock speeds of 8, 9, and 10 km/s for up to 0.43 ns duration, enabling us to track the reactivity of TATB well into the formation of several stable gas products, such as H{sub 2}O, N{sub 2}, and CO{sub 2}. Although complex chemical transformations are occurring continuously in the dynamical, high temperature, reactive environment of our simulations, a simple overall scheme for the decomposition of TATB emerges: Water is the earliest decomposition products to form, followed by a polymerization (or condensation) process in which several TATB remaining fragments are joined together, initiating the early step in the formation of high-nitrogen clusters, along with stable products such as N{sub 2} and CO{sub 2}. Remarkably, these clusters with high concentration of carbon and nitrogen (and little oxygen) remain dynamically stable for the remaining period of the simulations. Our simulations, thus, reveal a hitherto unidentified region of high concentrations of nitrogen-rich heterocyclic clusters in reacting TATB, whose persistence impede further reactivity towards final products of fluid N{sub 2} and solid carbon. These simulations also predict significant populations of charged species such as NCO{sup -}, H{sup +}, OH{sup -}, H{sub 3}O{sup +}, and O{sup -2}, the first such observation in a reacting explosive. Finally, A reduced four steps, global reaction mechanism with Arrhenius kinetic rates for the decomposition of TATB, along with comparative Cheetah decomposition kinetics at various temperatures has been constructed and will be discussed.« less

  9. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in multiphase environments, with emphasis on the study of hydrodynamic instability growth, mixing, afterburn effects ensuing from the process, particle ignition and combustion (if reactive), dispersion, and their interaction with the vortices in the mixing layer. The post-detonation behavior of heterogeneous explosives is addressed by using three parts to the investigation. In the first part, only one-dimensional effects are considered, with the goal to assess the presently developed dense two-phase formulation. The total deliverable impulsive loading from heterogeneous explosive charges containing inert steel particles is estimated for a suite of operating parameters and compared, and it is demonstrated that heterogeneous explosive charges deliver a higher near-field impulse than homogeneous explosive charges containing the same mass of the high explosive. In the second part, three-dimensional effects such as hydrodynamic instabilities are accounted for, with the focus on characterizing the mixing layer ensuing from the detonation of heterogeneous explosive charges containing inert steel particles. It is shown that particles introduce significant amounts of hydrodynamic instabilities in the mixing layer, resulting in additional physical phenomena that play a prominent role in the flow features. In particular, the fluctuation intensities, fireball size and growth rates are augmented for heterogeneous explosions vis-a-vis homogeneous explosions, thereby demonstrating that solid particles enhance the perturbation intensities in the flow. In the third part of the investigation of heterogeneous explosions, dense, aluminized explosions are considered, and the particles are observed to burn in two phases, with an initial quenching due to the rarefaction wave, and a final quenching outside the fireball. Due to faster response time scales, smaller particles are observed to heat and accelerate more during early times, and also cool and decelerate more at late times, compared to counterpart larger particle sizes. Furthermore, the average particle velocities at late times are observed to be independent of the initial solid volume fraction in the explosive charge, as the particles eventually reach an equilibrium with the local gas. These studies have provided some crucial insights to the flow physics of dense, aluminized explosives. (Abstract shortened by UMI.)

  10. Si Isotopes of Brownleeite

    NASA Technical Reports Server (NTRS)

    Nakamura-Messenger, K.; Messenger, Scott R.; Ito, M.; Keller, L. P.; Clemett, S. J.; Jones, J. H.; Tatsuoka, H.; Zolensky, M. E.; Tatsuoka, H.

    2010-01-01

    Brownleeite is a manganese silicide, ideally stoichiometric MnSi, not previously observed in nature until its discovery within an interplanetary dust particle (IDP) that likely originated from a comet [1]. Three discrete brownleeite grains in the IDP L2055 I3 (4 microns in size, hereafter IDP I3) were identified with maximum dimensions of 100, 250 and 600 nm and fully analyzed using scanning-transmission electron microscopy (STEM) [1]. One of the grains (100 nm in size) was poikilitically enclosed by low-Fe, Mn-enriched (LIME) olivine. LIME olivine is epitaxial to the brownleeite with the brownleeite (200) parallel to the olivine c* [1]. LIME olivine is an enigmatic phase first reported from chondritic porous IDPs and some unequilibrated ordinary chondrites [ 2], that is commonly observed in chondritic-porous IDPs. Recently, LIME olivine has been also found in comet Wild-2 (Stardust) samples [3], indicating that LIME olivine is a common mineral component of comets. LIME olivine has been proposed to form as a high temperature condensate in the protosolar nebula [2]. Brownleeite grains also likely formed as high-temperature condensates either in the early Solar System or in the outflow of an evolved star or supernova explosion [1]. The isotopic composition of the brownleeite grains may strongly constrain their ultimate source. To test this hypothesis, we performed isotopic analyses of the brownleeite and the associated LIME olivine, using the NASA/JSC NanoSIMS 50L ion microprobe.

  11. High Energy Rate Forming Induced Phase Transition in Austenitic Steel

    NASA Astrophysics Data System (ADS)

    Kovacs, T.; Kuzsella, L.

    2017-02-01

    In this study, the effects of explosion hardening on the microstructure and the hardness of austenitic stainless steel have been studied. The optimum explosion hardening technology of austenitic stainless steel was researched. In case of the explosive hardening used new idea means indirect hardening setup. Austenitic stainless steels have high plasticity and can be cold formed easily. However, during cold processing the hardening phenomena always occurs. Upon the explosion impact, the deformation mechanism indicates a plastic deformation and this deformation induces a phase transformation (martensite). The explosion hardening enhances the mechanical properties of the material, includes the wear resistance and hardness [1]. In case of indirect hardening as function of the setup parameters specifically the flayer plate position the hardening increased differently. It was find a relationship between the explosion hardening setup and the hardening level.

  12. Freeze-Tolerant Condensers

    NASA Technical Reports Server (NTRS)

    Crowley, Christopher J.; Elkouhk, Nabil

    2004-01-01

    Two condensers designed for use in dissipating heat carried by working fluids feature two-phase, self-adjusting configurations such that their working lengths automatically vary to suit their input power levels and/or heat-sink temperatures. A key advantage of these condensers is that they can function even if the temperatures of their heat sinks fall below the freezing temperatures of their working fluids and the fluids freeze. The condensers can even be restarted from the frozen condition. The top part of the figure depicts the layout of the first condenser. A two-phase (liquid and vapor) condenser/vapor tube is thermally connected to a heat sink typically, a radiatively or convectively cooled metal panel. A single-phase (liquid) condensate-return tube (return artery) is also thermally connected to the heat sink. At intervals along their lengths, the condenser/vapor tube and the return artery are interconnected through porous plugs. This condenser configuration affords tolerance of freezing, variable effective thermal conductance (such that the return temperature remains nearly constant, independently of the ultimate sink temperature), and overall pressure drop smaller than it would be without the porous interconnections. An additional benefit of this configuration is that the condenser can be made to recover from the completely frozen condition either without using heaters, or else with the help of heaters much smaller than would otherwise be needed. The second condenser affords the same advantages and is based on a similar principle, but it has a different configuration that affords improved flow of working fluid, simplified construction, reduced weight, and faster recovery from a frozen condition.

  13. Stepwise Bose-Einstein Condensation in a Spinor Gas.

    PubMed

    Frapolli, C; Zibold, T; Invernizzi, A; Jiménez-García, K; Dalibard, J; Gerbier, F

    2017-08-04

    We observe multistep condensation of sodium atoms with spin F=1, where the different Zeeman components m_{F}=0,±1 condense sequentially as the temperature decreases. The precise sequence changes drastically depending on the magnetization m_{z} and on the quadratic Zeeman energy q (QZE) in an applied magnetic field. For large QZE, the overall structure of the phase diagram is the same as for an ideal spin-1 gas, although the precise locations of the phase boundaries are significantly shifted by interactions. For small QZE, antiferromagnetic interactions qualitatively change the phase diagram with respect to the ideal case, leading, for instance, to condensation in m_{F}=±1, a phenomenon that cannot occur for an ideal gas with q>0.

  14. Volatiles of Mount St. Helens and their origins

    USGS Publications Warehouse

    Barnes, I.

    1984-01-01

    Analyses have been made of gases in clouds apparently emanating from Mount St. Helens. Despite appearances, most of the water in these clouds does not issue from the volcano. Even directly above a large fumarole ??D and ?? 18O data indicate that only half the water can come from the volcano. Isotopic and chemical evidence also shows the steam in the volcano (-33.0 per mol ??D) from which a condensate of 0.2 N HCI was obtained is not a major cause of the explosions. The steam in the volcano is derived from a metamorphic brine in the underlying Tertiary meta andesite. The gas that caused the explosive eruptions is carbon dioxide. ?? 1984.

  15. Refinement of Regional Distance Seismic Moment Tensor and Uncertainty Analysis for Source-Type Identification

    DTIC Science & Technology

    2011-09-01

    a NSS that lies in this negative explosion positive CLVD quadrant due to the large degree of tectonic release in this event that reversed the phase...Mellman (1986) in their analysis of fundamental model Love and Rayleigh wave amplitude and phase for nuclear and tectonic release source terms, and...1986). Estimating explosion and tectonic release source parameters of underground nuclear explosions from Rayleigh and Love wave observations, Air

  16. Flying Cages in Traveling Wave Ion Mobility: Influence of the Instrumental Parameters on the Topology of the Host-Guest Complexes

    NASA Astrophysics Data System (ADS)

    Carroy, Glenn; Lemaur, Vincent; Henoumont, Céline; Laurent, Sophie; De Winter, Julien; De Pauw, Edwin; Cornil, Jérôme; Gerbaux, Pascal

    2018-01-01

    Supramolecular mass spectrometry has emerged in the last decade as an orthogonal method to access, at the molecular level, the structures of noncovalent complexes extracted from the condensed phase to the rarefied gas phase using electrospray ionization. It is often considered that the soft nature of the ESI source confers to the method the capability to generate structural data comparable to those in the condensed phase. In the present paper, using the ammonium ion/cucurbituril combination as a model system, we investigate using ion mobility and computational chemistry the influence of the instrumental parameters on the topology, i.e., internal versus external association, of gaseous host/guest complex ions. MS and theoretical data are confronted to condensed phase data derived from nuclear magnetic resonance spectroscopy to assess whether the instrumental parameters can play an insidious role when trying to derive condensed phase data from mass spectrometry results. [Figure not available: see fulltext.

  17. Thermodynamic properties of gas-condensate system with abnormally high content of heavy hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zanochuev, S. A.; Shabarov, A. B.; Podorozhnikov, S. Yu; Zakharov, A. A.

    2018-05-01

    Gas-condensate systems (GCS) with an abnormally high content of heavy hydrocarbons are characterized by a sharp change in both phase and component compositions with an insignificant decrease in pressure below the start pressure of the phase transitions (the beginning of condensation). Calculation methods for describing the phase behavior of such systems are very sensitive to the quality of the initial information. The uncertainty of the input data leads not only to significant errors in the forecast of phase compositions, but also to an incorrect phase state estimation of the whole system. The research presents the experimental thermodynamic parameters of the GCS of the BT reservoirs on the Beregovoye field, obtained at the phase equilibrium facility. The data contribute to the adaptation of the calculated models of the phase behavior of the GCS with a change in pressure.

  18. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE PAGES

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-24

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  19. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations.

    PubMed

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J

    2018-04-28

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s -1 ) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  20. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-Molecular Dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients; we use this approach to examine atomic condensation onto 6-56 atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity ( v) between atom and cluster andmore » the initial impact parameter ( b). In all cases there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms, and for 14 atom and 28 atom Mg clusters, as cluster equilibration temperature increases the condensation rate coefficient drops to values below the hard sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (> 1000 m s -1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). In conclusion, the presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.« less

  1. Condensation and dissociation rates for gas phase metal clusters from molecular dynamics trajectory calculations

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Goudeli, Eirini; Hogan, Christopher J.

    2018-04-01

    In gas phase synthesis systems, clusters form and grow via condensation, in which a monomer binds to an existing cluster. While a hard-sphere equation is frequently used to predict the condensation rate coefficient, this equation neglects the influences of potential interactions and cluster internal energy on the condensation process. Here, we present a collision rate theory-molecular dynamics simulation approach to calculate condensation probabilities and condensation rate coefficients. We use this approach to examine atomic condensation onto 6-56-atom Au and Mg clusters. The probability of condensation depends upon the initial relative velocity (v) between atom and cluster and the initial impact parameter (b). In all cases, there is a well-defined region of b-v space where condensation is highly probable, and outside of which the condensation probability drops to zero. For Au clusters with more than 10 atoms, we find that at gas temperatures in the 300-1200 K range, the condensation rate coefficient exceeds the hard-sphere rate coefficient by a factor of 1.5-2.0. Conversely, for Au clusters with 10 or fewer atoms and for 14- and 28-atom Mg clusters, as cluster equilibration temperature increases, the condensation rate coefficient drops to values below the hard-sphere rate coefficient. Calculations also yield the self-dissociation rate coefficient, which is found to vary considerably with gas temperature. Finally, calculations results reveal that grazing (high b) atom-cluster collisions at elevated velocity (>1000 m s-1) can result in the colliding atom rebounding (bounce) from the cluster surface or binding while another atom dissociates (replacement). The presented method can be applied in developing rate equations to predict material formation and growth rates in vapor phase systems.

  2. Heat-transfer characteristics of the R113 annular two-phase closed thermosyphon - Heat transfer in the condenser

    NASA Astrophysics Data System (ADS)

    Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao

    1988-08-01

    Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.

  3. Equation of State for Gaseous Products of Detonation

    NASA Astrophysics Data System (ADS)

    Rightley, Maria

    1998-11-01

    There have been many equations of state (EOS) proposed for gaseous products of detonation, from simple theoretically-based EOS to empirically-based EOS with many adjustable parameters. How well these EOS approximate the real behavior depends on the material which is detonated. Gases, for example, are much easier to represent simply than are condensed or solid materials. If we concentrate solely on the particular class of condensed materials known as high explosives (HE) and their products of detonation, the most common formulation is the Jones-Wilkins-Lee (JWL) EOS. It has six adjustable parameters, and is as popular as it is in some part due to the fact that it can represent well the experiments which are primary source for HE EOS data, the explosive cylinder test. This test uses a cylinder of copper filled with an HE, which is then initiated, and the expansion is recorded. The obtained expansion profile is then used to calibrate the EOS, generally the JWL form. The work presented here will describe the rereading of some old film data, as well as recalibration of that data for the JWL EOS, and progress with modified EOS forms.

  4. Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran

    2014-05-01

    We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.

  5. Interfacial condensation induced by sub-cooled liquid jet

    NASA Astrophysics Data System (ADS)

    Rame, Enrique; Balasubramaniam, R.

    2016-11-01

    When a sub-cooled liquid jet impinges on the free surface between a liquid and its vapor, vapor will condense at a rate dependent on the sub-cooling, the jet strength and fluid properties. In 1966 and during the examination of a different type of condensation flow, Shekriladeze found an approximate result, valid at large condensation rates, that decouples the flow in the liquid phase from that of the vapor, without putting it in the context of a formal asymptotic approximation. In this talk we will develop an asymptotic approximation that contains Shekriladze's result, and extend the calculations to the case when a non-condensable gas is present in the vapor phase.

  6. Explosive synchronization as a process of explosive percolation in dynamical phase space

    PubMed Central

    Zhang, Xiyun; Zou, Yong; Boccaletti, S.; Liu, Zonghua

    2014-01-01

    Explosive synchronization and explosive percolation are currently two independent phenomena occurring in complex networks, where the former takes place in dynamical phase space while the latter in configuration space. It has been revealed that the mechanism of EP can be explained by the Achlioptas process, where the formation of a giant component is controlled by a suppressive rule. We here introduce an equivalent suppressive rule for ES. Before the critical point of ES, the suppressive rule induces the presence of multiple, small sized, synchronized clusters, while inducing the abrupt formation of a giant cluster of synchronized oscillators at the critical coupling strength. We also show how the explosive character of ES degrades into a second-order phase transition when the suppressive rule is broken. These results suggest that our suppressive rule can be considered as a dynamical counterpart of the Achlioptas process, indicating that ES and EP can be unified into a same framework. PMID:24903808

  7. FORMATION OF POLYCYCLIC AROMATIC HYDROCARBONS AND CARBONACEOUS SOLIDS IN GAS-PHASE CONDENSATION EXPERIMENTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaeger, C.; Huisken, F.; Henning, Th.

    2009-05-01

    Carbonaceous grains represent a major component of cosmic dust. In order to understand their formation pathways, they have been prepared in the laboratory by gas-phase condensation reactions such as laser pyrolysis and laser ablation. Our studies demonstrate that the temperature in the condensation zone determines the formation pathway of carbonaceous particles. At temperatures lower than 1700 K, the condensation by-products are mainly polycyclic aromatic hydrocarbons (PAHs) that are also the precursors or building blocks for the condensing soot grains. The low-temperature condensates contain PAH mixtures that are mainly composed of volatile three to five ring systems. At condensation temperatures highermore » than 3500 K, fullerene-like carbon grains and fullerene compounds are formed. Fullerene fragments or complete fullerenes equip the nucleating particles. Fullerenes can be identified as soluble components. Consequently, condensation products in cool and hot astrophysical environments such as cool and hot asymptotic giant branch stars or Wolf-Rayet stars should be different and should have distinct spectral properties.« less

  8. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; Hasan, Mohammad M.; Kharangate, Chirag; O'Neill, Lucas; Konishi, Chris; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2015-01-01

    The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

  9. Numerical study of blast characteristics from detonation of homogeneous explosives

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik; Genin, Franklin; Nance, Doug V.; Menon, Suresh

    2010-04-01

    A new robust numerical methodology is used to investigate the propagation of blast waves from homogeneous explosives. The gas-phase governing equations are solved using a hybrid solver that combines a higher-order shock capturing scheme with a low-dissipation central scheme. Explosives of interest include Nitromethane, Trinitrotoluene, and High-Melting Explosive. The shock overpressure and total impulse are estimated at different radial locations and compared for the different explosives. An empirical scaling correlation is presented for the shock overpressure, incident positive phase pressure impulse, and total impulse. The role of hydrodynamic instabilities to the blast effects of explosives is also investigated in three dimensions, and significant mixing between the detonation products and air is observed. This mixing results in afterburn, which is found to augment the impulse characteristics of explosives. Furthermore, the impulse characteristics are also observed to be three-dimensional in the region of the mixing layer. This paper highlights that while some blast features can be successfully predicted from simple one-dimensional studies, the growth of hydrodynamic instabilities and the impulsive loading of homogeneous explosives require robust three-dimensional investigation.

  10. Condensation and single-phase heat transfer coefficient and flow regime visualization in microchannel tubes for HFC-134A

    NASA Astrophysics Data System (ADS)

    Wang, Wei-Wen William

    This dissertation is to document experimental, local condensation and single-phase heat transfer and flow data of the minute diameter, microchannel tube and to develop correlation methods for optimizing the design of horizontal-microchannel condensers. It is essential to collect local data as the condensation progresses through several different flow patterns, since as more liquid is formed, the mechanism conducting heat transfer and flow is also changing. Therefore, the identification of the flow pattern is as important as the thermal and dynamic data. The experimental results were compared with correlation and flow regime maps from literature. The experiment using refrigerant HFC-134a in flat, multi-port aluminum tubing with 1.46mm hydraulic diameter was conducted. The characteristic of single-phase friction can be described with the analytical solution of square channel. The Gnielinski correlation provided good prediction of single-phase turbulent flow heat transfer. Higher mass fluxes and qualities resulted in increased condensation heat transfer and were more effective in the shear-dominated annular flow. The effect of temperature gradient from wall to refrigerant attributed profoundly in the gravity-dominated wavy/slug flow. Two correlation based on different flow mechanisms were developed for specified flow regimes. Finally, an asymptotic correlation was successfully proposed to account for the entire data regardless of flow patterns. Data taken from experiment and observations obtained from flow visualization, resulted in a better understanding of the physics in microchannel condensation, optimized designs in the microchannel condensers are now possible.

  11. Response of two-phase droplets to intense electromagnetic radiation

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Maloney, Daniel J.; Lawson, William F.; Casleton, Kent H.

    1993-01-01

    The response of two-phase droplets to intense radiant heating is studied to determine the incident power that is required for causing explosive boiling in the liquid phase. The droplets studied consist of strongly absorbing coal particles dispersed in a weakly absorbing water medium. Experiments are performed by confining droplets (radii of 37, 55, and 80 microns) electrodynamically and irradiating them from two sides with pulsed laser beams. Emphasis is placed on the transition region from accelerated droplet vaporization to droplet superheating and explosive boiling. The time scale observed for explosive boiling is more than 2 orders of magnitude longer than published values for pure liquids. The delayed response is the result of energy transfer limitations between the absorbing solid phase and the surrounding liquid.

  12. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE PAGES

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang; ...

    2015-12-03

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  13. High-pressure crystal structures of an insensitive energetic crystal: 1,1-diamino-2,2-dinitroethene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dreger, Zbigniew A.; Stash, Adam I.; Yu, Zhi -Gang

    Understanding the insensitivity/stability of insensitive high explosive crystals requires detailed structural information at high pressures and high temperatures of interest. Synchrotron single crystal x-ray diffraction experiments were used to determine the high-pressure structures of 1,1-diamino-2,2-dinitroethene (FOX-7), a prototypical insensitive high explosive. The phase transition around 4.5 GPa was investigated and the structures were determined at 4.27 GPa (α’-phase) and 5.9 GPa (ε-phase). The α’-phase (monoclinic, P2 1/ n), structurally indistinguishable from the ambient α-phase, transforms to the new ε-phase (triclinic, P1). The most notable features of the ε-phase, compared to the α’-phase, are: formation of planar layers and flattening ofmore » molecules. Density functional theory (DFT-D2) calculations complemented the experimental results. Furthermore, the results presented here are important for understanding the molecular and crystalline attributes governing the high-pressure insensitivity/stability of insensitive high explosive crystals.« less

  14. Phase-driven collapse of the Cooper condensate in a nanosized superconductor

    NASA Astrophysics Data System (ADS)

    Ronzani, Alberto; D'Ambrosio, Sophie; Virtanen, Pauli; Giazotto, Francesco; Altimiras, Carles

    2017-12-01

    Superconductivity can be understood in terms of a phase transition from an uncorrelated electron gas to a condensate of Cooper pairs in which the relative phases of the constituent electrons are coherent over macroscopic length scales. The degree of correlation is quantified by a complex-valued order parameter, whose amplitude is proportional to the strength of the pairing potential in the condensate. Supercurrent-carrying states are associated with nonzero values of the spatial gradient of the phase. The pairing potential and several physical observables of the Cooper condensate can be manipulated by means of temperature, current bias, dishomogeneities in the chemical composition, or application of a magnetic field. Here we show evidence of complete suppression of the energy gap in the local density of quasiparticle states (DOS) of a superconducting nanowire upon establishing a phase difference equal to π over a length scale comparable to the superconducting coherence length. These observations are consistent with a complete collapse of the pairing potential in the center of the wire, in accordance with theoretical modeling based on the quasiclassical theory of superconductivity in diffusive systems. Our spectroscopic data, fully exploring the phase-biased states of the condensate, highlight the profound effect that extreme phase gradients exert on the amplitude of the pairing potential. Moreover, the sharp magnetic response (up to 27 mV/Φ0) observed near the onset of the superconducting gap collapse regime is exploited to realize magnetic flux detectors with noise-equivalent resolution as low as 260 n Φ0/√{Hz} .

  15. Gas-Liquid Processing in Microchannels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.; Twitchell, Alvin

    Processing gases and liquids together in microchannels having at least one dimension <1 mm has unique advantages for rapid heat and mass transfer. One approach for managing the two phases is to use porous structures as wicks within microchannels to segregate the liquid phase from the gas phase. Gas-liquid processing is accomplished by providing a gas flow path and inducing flow of the liquid phase through or along the wick under an induced pressure gradient. A variety of unit operations are enabled, including phase separation, partial condensation, absorption, desorption, and distillation. Results are reported of an investigation of microchannel phasemore » separation in a transparent, single-channel device. Next, heat exchange is integrated with the microchannel wick approach to create a partial condenser that also separates the condensate. Finally, the scale-up to a multi-channel phase separator is described.« less

  16. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, Dennis J.; Perry, Scott M.; Fanson, Paul T.; Jackson, James E.

    1998-01-01

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200.degree. to 360.degree. C. for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water.

  17. Condensed phase preparation of 2,3-pentanedione

    DOEpatents

    Miller, D.J.; Perry, S.M.; Fanson, P.T.; Jackson, J.E.

    1998-11-03

    A condensed phase process for the preparation of purified 2,3-pentanedione from lactic acid and an alkali metal lactate is described. The process uses elevated temperatures between about 200 to 360 C for heating a reaction mixture of lactic acid and an alkali metal lactate to produce the 2,3-pentanedione in a reaction vessel. The 2,3-pentanedione produced is vaporized from the reaction vessel and condensed with water. 5 figs.

  18. Toward an Empirically-Based Parametric Explosion Spectral Model

    DTIC Science & Technology

    2010-09-01

    estimated (Richards and Kim, 2009). This archive could potentially provide 200 recordings of explosions at Semipalatinsk Test Site of the former Soviet...estimates of explosion yield, and prior work at the Nevada Test Site (NTS) (e.g., Walter et al., 1995) has found that explosions in weak materials have...2007). Corner frequency scaling of regional seismic phases for underground nuclear explosions at the Nevada Test Site , Bull. Seismol. Soc. Am. 97

  19. Stand-off detection of vapor phase explosives by resonance enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ehlerding, Anneli; Johansson, Ida; Wallin, Sara; Östmark, Henric

    2010-10-01

    Stand-off measurements on nitromethane (NM), 2,4-DNT and 2,4,6-TNT in vapor phase using resonance Raman spectroscopy have been performed. The Raman cross sections for NM, DNT and TNT in vapor phase have been measured in the wavelength range 210-300 nm under laboratory conditions, in order to estimate how large resonance enhancement factors can be achieved for these explosives. The measurements show that the signal is greatly enhanced, up to 250.000 times for 2,4-DNT and 60.000 times for 2,4,6-TNT compared to the non-resonant signal at 532 nm. For NM the resonance enhancement enabled realistic outdoor measurements in vapor phase at 13 m distance. This all indicate a potential for resonance Raman spectroscopy as a stand-off technique for detection of vapor phase explosives.

  20. Communication: Gas-phase structural isomer identification by Coulomb explosion of aligned molecules

    NASA Astrophysics Data System (ADS)

    Burt, Michael; Amini, Kasra; Lee, Jason W. L.; Christiansen, Lars; Johansen, Rasmus R.; Kobayashi, Yuki; Pickering, James D.; Vallance, Claire; Brouard, Mark; Stapelfeldt, Henrik

    2018-03-01

    The gas-phase structures of four difluoroiodobenzene and two dihydroxybromobenzene isomers were identified by correlating the emission angles of atomic fragment ions created, following femtosecond laser-induced Coulomb explosion. The structural determinations were facilitated by confining the most polarizable axis of each molecule to the detection plane prior to the Coulomb explosion event using one-dimensional laser-induced adiabatic alignment. For a molecular target consisting of two difluoroiodobenzene isomers, each constituent structure could additionally be singled out and distinguished.

  1. Supermode-density-wave-polariton condensation with a Bose–Einstein condensate in a multimode cavity

    PubMed Central

    Kollár, Alicia J.; Papageorge, Alexander T.; Vaidya, Varun D.; Guo, Yudan; Keeling, Jonathan; Lev, Benjamin L.

    2017-01-01

    Phase transitions, where observable properties of a many-body system change discontinuously, can occur in both open and closed systems. By placing cold atoms in optical cavities and inducing strong coupling between light and excitations of the atoms, one can experimentally study phase transitions of open quantum systems. Here we observe and study a non-equilibrium phase transition, the condensation of supermode-density-wave polaritons. These polaritons are formed from a superposition of cavity photon eigenmodes (a supermode), coupled to atomic density waves of a quantum gas. As the cavity supports multiple photon spatial modes and because the light–matter coupling can be comparable to the energy splitting of these modes, the composition of the supermode polariton is changed by the light–matter coupling on condensation. By demonstrating the ability to observe and understand density-wave-polariton condensation in the few-mode-degenerate cavity regime, our results show the potential to study similar questions in fully multimode cavities. PMID:28211455

  2. Turbulent Combustion in SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-11-12

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes intomore » account both the afterburning of the detonation products of the C-4 booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a an unconfined height-of-burst explosion. Computed pressure histories are compared with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less

  3. Clouds in GEOS-5

    NASA Technical Reports Server (NTRS)

    Bacmeister, Julio; Rienecker, Michele; Suarez, Max; Norris, Peter

    2007-01-01

    The GEOS-5 atmospheric model is being developed as a weather-and-climate capable model. It must perform well in assimilation mode as well as in weather and climate simulations and forecasts and in coupled chemistry-climate simulations. In developing GEOS-5, attention has focused on the representation of moist processes. The moist physics package uses a single phase prognostic condensate and a prognostic cloud fraction. Two separate cloud types are distinguished by their source: "anvil" cloud originates in detraining convection, and large-scale cloud originates in a PDF-based condensation calculation. Ice and liquid phases for each cloud type are considered. Once created, condensate and fraction from the anvil and statistical cloud types experience the same loss processes: evaporation of condensate and fraction, auto-conversion of liquid or mixed phase condensate, sedimentation of frozen condensate, and accretion of condensate by falling precipitation. The convective parameterization scheme is the Relaxed Arakawa-Schubert, or RAS, scheme. Satellite data are used to evaluate the performance of the moist physics packages and help in their tuning. In addition, analysis of and comparisons to cloud-resolving models such as the Goddard Cumulus Ensemble model are used to help improve the PDFs used in the moist physics. The presentation will show some of our evaluations including precipitation diagnostics.

  4. Condensation in One-Dimensional Dead-End Nanochannels.

    PubMed

    Zhong, Junjie; Zandavi, Seyed Hadi; Li, Huawei; Bao, Bo; Persad, Aaron H; Mostowfi, Farshid; Sinton, David

    2017-01-24

    Phase change at the nanoscale is at the heart of many biological and geological phenomena. The recent emergence and global implications of unconventional oil and gas production from nanoporous shale further necessitate a higher understanding of phase behavior at these scales. Here, we directly observe condensation and condensate growth of a light hydrocarbon (propane) in discrete sub-100 nm (∼70 nm) channels. Two different condensation mechanisms at this nanoscale are distinguished, continuous growth and discontinuous growth due to liquid bridging ahead of the meniscus, both leading to similar net growth rates. The growth rates agree well with those predicted by a suitably defined thermofluid resistance model. In contrast to phase change at larger scales (∼220 and ∼1000 nm cases), the rate of liquid condensate growth in channels of sub-100 nm size is found to be limited mainly by vapor flow resistance (∼70% of the total resistance here), with interface resistance making up the difference. The condensation-induced vapor flow is in the transitional flow regime (Knudsen flow accounting for up to 13% of total resistance here). Collectively, these results demonstrate that with confinement at sub-100 nm scales, such as is commonly found in porous shale and other applications, condensation conditions deviate from the microscale and larger bulk conditions chiefly due to vapor flow and interface resistances.

  5. Controllable synthesis of iron oxide nanoparticles in porous NaCl matrix

    NASA Astrophysics Data System (ADS)

    Kurapov, Yury A.; E Litvin, Stanislav; Romanenko, Sergey M.; Didikin, Gennadii G.; Oranskaya, Elena I.

    2017-03-01

    The paper gives the results of studying the structure of porous condensates of Fe + NaCl composition, chemical and phase compositions and dimensions of nanoparticles produced from the vapor phase by EB-PVD. Iron nanoparticles at fast removal from the vacuum oxidize in air and possess significant sorption capacity relative to oxygen and moisture. At heating in air, reduction of porous condensate weight occurs right to the temperature of 650 °C, primarily, due to desorption of physically sorbed moisture. Final oxidation of Fe3O4 to Fe2O3 proceeds in the range of 380 °C-650 °C, due to the remaining fraction of physically adsorbed oxygen. At iron concentrations of up to 10-15 at%, condensate sorption capacity is markedly increased with increase of iron concentration, i.e. of the quantity of fine particles. Increase of condensation temperature is accompanied by increase of nanoparticle size, resulting in a considerable reduction of the total area of nanoparticle surface, and, hence of their sorption capacity. In addition to condensation temperature, the size and phase composition of nanoparticles can also be controlled by heat treatment of initial condensate, produced at low condensation temperatures. Magnetite nanoparticles can be transferred into stable colloid systems.

  6. Instruction at the Hopkins Marine Station

    DTIC Science & Technology

    1989-09-07

    SEM observation on refertilization of sea urchin eggs. 3:30-3:45 Navdeep Jaikaria Effect of aphidicolin on chromosomal replication and condensation. 3...9:15 Bll Pavan Electropermeabilization and introduction of inhibitors into sea urchin embryos. 9:15-9:30 Robert Padgett Population explosion in the...David Nagajski Hydrostatic pressure effects on sea urchin development 10:15-10:30 Emily Carrington Thermal and osmotic stress in the intertidal red

  7. A Unique Supernova Graphite: Contemporaneous Condensation of All Things Carbonaceous

    NASA Astrophysics Data System (ADS)

    Croat, T. K.; Jadhav, M.; Lebsack, E.; Bernatowicz, T. J.

    2011-03-01

    We report a supernova graphite that contains internal subgrains of TiC, SiC, Fe and Ni silicides, and iron metal. These phases comprise a complete list of the phases predicted by equilibrium calculations to condense from C-rich supernova zones.

  8. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    DOE PAGES

    Boschini, F.; da Silva Neto, E. H.; Razzoli, E.; ...

    2018-04-02

    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces, ultracold Fermi atoms and cuprate superconductors, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. In this study, we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bimore » 2Sr 2CaCu 2O 8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.« less

  9. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    NASA Astrophysics Data System (ADS)

    Boschini, F.; da Silva Neto, E. H.; Razzoli, E.; Zonno, M.; Peli, S.; Day, R. P.; Michiardi, M.; Schneider, M.; Zwartsenberg, B.; Nigge, P.; Zhong, R. D.; Schneeloch, J.; Gu, G. D.; Zhdanovich, S.; Mills, A. K.; Levy, G.; Jones, D. J.; Giannetti, C.; Damascelli, A.

    2018-05-01

    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces1,2, ultracold Fermi atoms3,4 and cuprate superconductors5,6, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi2Sr2CaCu2O8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.

  10. Collapse of superconductivity in cuprates via ultrafast quenching of phase coherence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boschini, F.; da Silva Neto, E. H.; Razzoli, E.

    The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explore the collective properties of condensate phases via phase fluctuations. Electrically gated oxide interfaces, ultracold Fermi atoms and cuprate superconductors, which are characterized by an intrinsically small phase stiffness, are paradigmatic examples where these tools are having a dramatic impact. In this study, we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bimore » 2Sr 2CaCu 2O 8+δ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.« less

  11. Effect of Heat Treatment on Mechanical Properties and Phase Composition of Magnesium-Aluminum Composite Prepared by Explosive Welding

    NASA Astrophysics Data System (ADS)

    Arisova, V. N.; Trykov, Yu. P.; Slautin, O. V.; Ponomareva, I. A.; Kondakov, A. E.

    2015-09-01

    Results are given for a study of the effect of heat treatment regimes on the nature of change in micromechanical properties and phase composition of magnesium-aluminum composite material AD1-MA2-1 prepared by explosive welding.

  12. Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer

    DTIC Science & Technology

    2011-09-01

    TRANSFER (Contract No. N000140811139) by Prof. Issam Mudawar Sung-Min Kim Joseph Kim Boiling and Two-Phase Flow Laboratory School of...Final 01-10-2008 to 30-09-2011 Physics-Based Modeling and Measurement of High-Flux Condensation Heat Transfer NA N00014-08-1-1139 NA NA NA NA Mudawar ...respectively. phase change, condensation, electronics cooling, micro-channel, high-flux U U U UU 107 Mudawar , Issam 765-494-5705 Reset PHYSICS-BASED

  13. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    USGS Publications Warehouse

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  14. Preparation and characterization of polyaniline-copper composites by electrical explosion of wire.

    PubMed

    Liu, Aijie; Bac, Luong Huu; Kim, Jin-Chun; Liu, Lizhu

    2012-07-01

    Polyaniline-copper composites with a polyacrylic acid (PAA) were synthesized by electrical explosion of wire. Polyaniline (PANI) and PAA were put into the explosion medium, deionized water (DIW) and ethanol, stirred for 24 hrs and sonicated for 2 hrs. These solutions were used as base liquids for explosion process to fabricate Cu nanoparticle. Optical absorption in the UV-visible region of PANI and PANI/PAA-Cu composites was measured in a range of 200-900 nm. X-ray diffraction was used to analyze the phase of the composites. XRD pattern showed the PANI was amorphous and copper was polycrystalline. Two phases of Cu and Cu2O were formed in aqueous solution while single Cu phase was obtained in ethanol solution. Field emission scanning electron microscope was used to observe the microstructure of the composites. The synthesized composites were extensively characterized by Fourier Transform Infrared (FTIR) spectroscopy and electrical measurements.

  15. Photoinduced Processes in Cobalt-Complexes: Condensed Phase and Gas Phase

    NASA Astrophysics Data System (ADS)

    Rupp, F.; Chevalier, K.; Wolf, M. M. N.; Krüger, H.-J.; Wüllen, C. v.; Nosenko, Y.; Niedner-Schatteburg, Y.; Riehn, C.; Diller, R.

    2013-03-01

    Femtosecond time-resolved, steady-state spectroscopic methods and quantum chemical calculations are employed to study ultrafast photoinduced processes in [Co(III)-(L-N4Me2)(dbc)](BPh4) and [Co(II)-(L-N4tBu2)(dbsq)](B(p-C6H4Cl)4) and to characterise the transient redox- and spin-states in condensed and gas phase.

  16. Merging of independent condensates: disentangling the Kibble-Zurek mechanism

    NASA Astrophysics Data System (ADS)

    Ville, Jean-Loup; Aidelsburger, Monika; Saint-Jalm, Raphael; Nascimbene, Sylvain; Beugnon, Jerome; Dalibard, Jean

    2017-04-01

    An important step in the study of out-of-equilibrium physics is the Kibble-Zurek theory which describes a system after a quench through a second-order phase transition. This was studied in our group with a temperature quench across the normal-to-superfluid phase transition in an annular trap geometry, inducing the formation of supercurrents. Their magnitude and direction were detected by measuring spiral patterns resulting from the interference of the ring-shaped condensate with a central reference disk. According to the KZ mechanism domains of phase are created during the quench, with a characteristic size depending of its duration. In our case this results in a stochastic formation of supercurrents depending on the relative phases of the domains. As a next step of this study, we now design ourselves the patches thanks to our tunable trapping potential. We control both the number of condensates to be merged (from one to twelve) and their merging time. We report an increase of the vorticity in the ring for an increased number of patches compatible with a random phase model. We further investigate the time required by the phase to homogenize between two condensates.

  17. Intermediate energy cross sections for electron-impact vibrational-excitation of pyrimidine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, D. B.; Ellis-Gibbings, L.; García, G.

    2015-09-07

    We report differential cross sections (DCSs) and integral cross sections (ICSs) for electron-impact vibrational-excitation of pyrimidine, at incident electron energies in the range 15–50 eV. The scattered electron angular range for the DCS measurements was 15°–90°. The measurements at the DCS-level are the first to be reported for vibrational-excitation in pyrimidine via electron impact, while for the ICS we extend the results from the only previous condensed-phase study [P. L. Levesque, M. Michaud, and L. Sanche, J. Chem. Phys. 122, 094701 (2005)], for electron energies ⩽12 eV, to higher energies. Interestingly, the trend in the magnitude of the lower energymore » condensed-phase ICSs is much smaller when compared to the corresponding gas phase results. As there is no evidence for the existence of any shape-resonances, in the available pyrimidine total cross sections [Baek et al., Phys. Rev. A 88, 032702 (2013); Fuss et al., ibid. 88, 042702 (2013)], between 10 and 20 eV, this mismatch in absolute magnitude between the condensed-phase and gas-phase ICSs might be indicative for collective-behaviour effects in the condensed-phase results.« less

  18. Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis.

    PubMed

    Kagami, Yuya; Nihira, Keishi; Wada, Shota; Ono, Masaya; Honda, Mariko; Yoshida, Kiyotsugu

    2014-06-23

    During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is largely unknown. Here, we show that Mps1 regulates initial chromosome condensation during mitosis. We identify condensin II as a novel Mps1-associated protein. Mps1 phosphorylates one of the condensin II subunits, CAP-H2, at Ser492 during mitosis, and this phosphorylation event is required for the proper loading of condensin II on chromatin. Depletion of Mps1 inhibits chromosomal targeting of condensin II and accurate chromosome condensation during prophase. These findings demonstrate that Mps1 governs chromosomal organization during the early stage of mitosis to facilitate proper chromosome segregation. © 2014 Kagami et al.

  19. Mps1 phosphorylation of condensin II controls chromosome condensation at the onset of mitosis

    PubMed Central

    Kagami, Yuya; Nihira, Keishi; Wada, Shota; Ono, Masaya; Honda, Mariko

    2014-01-01

    During mitosis, genomic DNA is condensed into chromosomes to promote its equal segregation into daughter cells. Chromosome condensation occurs during cell cycle progression from G2 phase to mitosis. Failure of chromosome compaction at prophase leads to subsequent misregulation of chromosomes. However, the molecular mechanism that controls the early phase of mitotic chromosome condensation is largely unknown. Here, we show that Mps1 regulates initial chromosome condensation during mitosis. We identify condensin II as a novel Mps1-associated protein. Mps1 phosphorylates one of the condensin II subunits, CAP-H2, at Ser492 during mitosis, and this phosphorylation event is required for the proper loading of condensin II on chromatin. Depletion of Mps1 inhibits chromosomal targeting of condensin II and accurate chromosome condensation during prophase. These findings demonstrate that Mps1 governs chromosomal organization during the early stage of mitosis to facilitate proper chromosome segregation. PMID:24934155

  20. Near-Source Scattering of Explosion-Generated Rg: Insight From Difference Spectrograms of NTS Explosions

    NASA Astrophysics Data System (ADS)

    Gupta, I.; Chan, W.; Wagner, R.

    2005-12-01

    Several recent studies of the generation of low-frequency Lg from explosions indicate that the Lg wavetrain from explosions contains significant contributions from (1) the scattering of explosion-generated Rg into S and (2) direct S waves from the non-spherical spall source associated with a buried explosion. The pronounced spectral nulls observed in Lg spectra of Yucca Flats (NTS) and Semipalatinsk explosions (Patton and Taylor, 1995; Gupta et al., 1997) are related to Rg excitation caused by spall-related block motions in a conical volume over the shot point, which may be approximately represented by a compensated linear vector dipole (CLVD) source (Patton et al., 2005). Frequency-dependent excitation of Rg waves should be imprinted on all scattered P, S and Lg waves. A spectrogram may be considered as a three-dimensional matrix of numbers providing amplitude and frequency information for each point in the time series. We found difference spectrograms, derived from a normal explosion and a closely located over-buried shot recorded at the same common station, to be remarkably useful for an understanding of the origin and spectral contents of various regional phases. This technique allows isolation of source characteristics, essentially free from path and recording site effects, since the overburied shot acts as the empirical Green's function. Application of this methodology to several pairs of closely located explosions shows that the scattering of explosion-generated Rg makes significant contribution to not only Lg and its coda but also to the two other regional phases Pg (presumably by the scattering of Rg into P) and Sn. The scattered energy, identified by the presence of a spectral null at the appropriate frequency, generally appears to be more prominent in the somewhat later-arriving sections of Pg, Sn, and Lg than in the initial part. Difference spectrograms appear to provide a powerful new technique for understanding the mechanism of near-source scattering of explosion-generated Rg and its contribution to various regional phases.

  1. Bose-Einstein Condensation of Long-Lifetime Polaritons in Thermal Equilibrium.

    PubMed

    Sun, Yongbao; Wen, Patrick; Yoon, Yoseob; Liu, Gangqiang; Steger, Mark; Pfeiffer, Loren N; West, Ken; Snoke, David W; Nelson, Keith A

    2017-01-06

    The experimental realization of Bose-Einstein condensation (BEC) with atoms and quasiparticles has triggered wide exploration of macroscopic quantum effects. Microcavity polaritons are of particular interest because quantum phenomena such as BEC and superfluidity can be observed at elevated temperatures. However, polariton lifetimes are typically too short to permit thermal equilibration. This has led to debate about whether polariton condensation is intrinsically a nonequilibrium effect. Here we report the first unambiguous observation of BEC of optically trapped polaritons in thermal equilibrium in a high-Q microcavity, evidenced by equilibrium Bose-Einstein distributions over broad ranges of polariton densities and bath temperatures. With thermal equilibrium established, we verify that polariton condensation is a phase transition with a well-defined density-temperature phase diagram. The measured phase boundary agrees well with the predictions of basic quantum gas theory.

  2. Phase Transitions of the Polariton Condensate in 2D Dirac Materials

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-01

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e -ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS2 or WSe2 . Specifically, in forming the polariton, the e -ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e -e ) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  3. Phase Transitions of the Polariton Condensate in 2D Dirac Materials.

    PubMed

    Lee, Ki Hoon; Lee, Changhee; Min, Hongki; Chung, Suk Bum

    2018-04-13

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon (e-ph) coupling can lead to the hybridizations of the exciton and the cavity photon known as polaritons, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped two-dimensional Dirac material such as the transition metal dichalcogenide MoS_{2} or WSe_{2}. Specifically, in forming the polariton, the e-ph coupling from the optical selection rule due to the Berry phase can compete against the Coulomb electron-electron (e-e) interaction. We find that this competition gives rise to a rich phase diagram for the polariton condensate involving both topological and symmetry breaking phase transitions, with the former giving rise to the quantum anomalous Hall and the quantum spin Hall phases.

  4. Study of premixing phase of steam explosion with JASMINE code in ALPHA program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu

    Premixing phase of steam explosion has been studied in ALPHA Program at Japan Atomic Energy Research Institute (JAERI). An analytical model to simulate the premixing phase, JASMINE (JAERI Simulator for Multiphase Interaction and Explosion), has been developed based on a multi-dimensional multi-phase thermal hydraulics code MISTRAL (by Fuji Research Institute Co.). The original code was extended to simulate the physics in the premixing phenomena. The first stage of the code validation was performed by analyzing two mixing experiments with solid particles and water: the isothermal experiment by Gilbertson et al. (1992) and the hot particle experiment by Angelini et al.more » (1993) (MAGICO). The code predicted reasonably well the experiments. Effectiveness of the TVD scheme employed in the code was also demonstrated.« less

  5. Stratigraphy and textural characteristics of the 1982 83 tephra of Galunggung volcano (Indonesia): implications for volcanic hazards

    NASA Astrophysics Data System (ADS)

    Gourgaud, A.; Thouret, J.-C.; Bourdier, J.-L.

    2000-12-01

    The Galunggung volcano in western Java (Indonesia) was the site of historical activity in 1822, 1894, 1918, and 1982-83, located in a pre-historical horseshoe-shaped caldera. In 1982-83, a nine-month-long eruption generated successively (1) ash-and-scoria flows channeled in two valleys and extending 6 km from the vent (vulcanian phase 1), (2) surges and ash falls related to the excavation of a wide maar crater, with ash columns 20 km high (phreatomagmatic phase 2), and (3) ash and scoria falls that built a small cone inside the maar crater (strombolian phase 3). During phreatomagmatic phase 2, there was a significant increase of explosivity. Paradoxically, the magma composition had evolved from andesite to primitive magnesian basalt. Jet-plane incidents were recorded during this period: on the June 24 and July 13, 1982, two Boeing 747 aircraft experienced engine power loss when passing through the plume. The vertical variations of grain sizes and xenolith contents of pyroclasts were measured in the 1982-83 eruptive deposits. We show that a progressive increase of the ratio of xenolith versus juvenile magma before the end of vulcanian phase 1 heralded the increase of explosivity leading towards phreatomagmatic phase 2. In the same way, the decrease of the same ratio at the end of the phreatomagmatic phase 2 heralded the decrease of explosivity and the onset of strombolian phase 3. The transition from phase 1 to phase 2 is also marked by a slight but continuous decrease of the vesicularity index of juvenile clasts. We emphasize the increasing efficiency of groundwater/magma interaction during the eruption. The increasing interaction and renewed explosive activity occurred after a period of rest, during which additional groundwater was supplied in the vicinity of the magma column. The data suggest that it would have been possible to predict as soon as April-May 1982 the transition from vulcanian to phreatomagmatic activity, and consequently the corresponding increase in explosivity.

  6. Toward an Empirically-Based Parametric Explosion Spectral Model

    DTIC Science & Technology

    2011-09-01

    Site (NNSS, formerly the Nevada Test Site ) with data from explosions at the Semipalatinsk Test ...Nevada Test Site ) with data from explosions at the Semipalatinsk Test Site recorded at the Borovoye Geophysical Observatory (BRV). The BRV data archive...explosions at Semipalatinsk Test Site of the former Soviet Union (Figure 4). As an example, we plot the regional phase spectra of one of

  7. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    PubMed

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  8. Shock Initiated Reactions of Reactive Multiphase Blast Explosives

    NASA Astrophysics Data System (ADS)

    Wilson, Dennis; Granier, John; Johnson, Richard; Littrell, Donald

    2015-06-01

    This paper describes a new class of reactive multiphase blast explosives (RMBX) and characterization of their blast characteristics. These RMBXs are non-ideal explosive compositions of perfluoropolyether (PFPE), nano aluminum, and a micron-size high-density reactive metal - Tantalum, Zirconium, or Zinc in mass loadings of 66 to 83 percent. Unlike high explosives, these PFPE-metal compositions release energy via a fast self-oxidized combustion wave (rather than a true self-sustaining detonation) that is shock dependent, and can be overdriven to control energy release rate. The term ``reactive multiphase blast'' refers to the post-dispersion blast behavior: multiphase in that there are a gas phase that imparts pressure and a solid (particulate) phase that imparts momentum; and reactive in that the hot metal particles react with atmospheric oxygen and the explosive gas products to give an extended pressure pulse. The RMBX formulations were tested in two spherical core-shell geometries - an RMBX shell exploded by a high explosive core, and an RMBX core imploded by a high explosive shell. The fireball and blast characteristics were compared to a C-4 baseline charge.

  9. Silicotitanate molecular sieve and condensed phases

    DOEpatents

    Nenoff, Tina M.; Nyman, May D.

    2002-01-01

    A new microporous crystalline molecular sieve material having the formula Cs.sub.3 TiSi.sub.3 O.sub.95.cndot.3H.sub.2 O and its hydrothermally condensed phase, Cs.sub.2 TiSi.sub.6 O.sub.15, are disclosed. The microporous material can adsorb divalent ions of radionuclides or other industrial metals such as chromium, nickel, lead, copper, cobalt, zinc, cadmium, barium, and mercury, from aqueous or hydrocarbon solutions. The adsorbed metal ions can be leached out for recovery purposes or the microporous material can be hydrothermally condensed to a radiation resistant, structurally and chemically stable phase which can serve as a storage waste form for radionuclides.

  10. Anion binding by bambus[6]uril probed in the gas phase and in solution.

    PubMed

    Révész, Agnes; Schröder, Detlef; Svec, Jan; Wimmerová, Michaela; Sindelar, Vladimir

    2011-10-20

    Electrospray ionization mass spectrometry (ESI-MS) is used to probe the binding of small anions to the macrocycle of bambus[6]uril. For the halide ions, the experimental patterns suggest F(-) < Cl(-) < Br(-) < I(-), which is consistent with the order of anion binding found in the condensed phase. Parallel equilibrium studies in the condensed phase establish the association constants of halide anions and bambus[6]uril in mixed solvents. A detailed analysis of the mass spectrometric data is used to shed light on the correlations between the binding constants in the condensed phase and the ion abundances observed using ESI-MS. From the analysis it becomes apparent that ESI-MS can indeed represent the situation in solution to some extent, but the sampling in the gas-phase experiment is not 1:1 compared to that in solution.

  11. Thermodynamic States in Explosion Fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L

    2010-03-12

    We investigate the thermodynamic states occurring in explosion fields from condensed explosive charges. These states are often modeled with a Jones-Wilkins-Lee (JWL) function. However, the JWL function is not a Fundamental Equation of Thermodynamics, and therefore cannot give a complete specification of such states. We use the Cheetah code of Fried to study the loci of states of the expanded detonation products gases from C-4 charges, and their combustion products air. In the Le Chatelier Plane of specific-internal-energy versus temperature, these loci are fit with a Quadratic Model function u(T), which has been shown to be valid for T

  12. Simulation of Inviscid Compressible Multi-Phase Flow with Condensation

    NASA Technical Reports Server (NTRS)

    Kelleners, Philip

    2003-01-01

    Condensation of vapours in rapid expansions of compressible gases is investigated. In the case of high temperature gradients the condensation will start at conditions well away from thermodynamic equilibrium of the fluid. In those cases homogeneous condensation is dominant over heterogeneous condensation. The present work is concerned with development of a simulation tool for computation of high speed compressible flows with homogeneous condensation. The resulting ow solver should preferably be accurate and robust to be used for simulation of industrial flows in general geometries.

  13. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: On the gravitational-deceleration initiation of the phase transition of gas to a Bose condensate

    NASA Astrophysics Data System (ADS)

    Rivlin, L. A.

    2008-01-01

    A scenario of the experiment on the observation of the isothermal Bose condensation of cooled gas with increasing the concentration of atoms caused by the deceleration of a vertical atomic beam in the gravitational field resulting in a decrease in the phase transition critical temperature below the gas temperature is considered. Coherent phenomena accompanying the evolution of the Bose condensate during further beam deceleration are pointed out.

  14. Spray-loading: A cryogenic deposition method for diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Scelta, Demetrio; Ceppatelli, Matteo; Ballerini, Riccardo; Hajeb, Ahmed; Peruzzini, Maurizio; Bini, Roberto

    2018-05-01

    An efficient loading technique has been developed for flammable, toxic, or explosive gases which can be condensed at liquid nitrogen temperature and ambient pressure in membrane diamond anvil cells (DACs). This cryogenic technique consists in a deposition of small quantities of the desired gas directly into the sample chamber. The deposition is performed using a capillary that reaches the space between the diamond anvils. The DAC is kept under inert gas overpressure during the whole process, in order to avoid contamination from atmospheric O2, CO2, and H2O. This technique provides significant advantages over standard cryo-loading and gas-loading when the condensation of dangerous samples at liquid nitrogen temperature raises safety concerns because it allows dealing with minimum quantities of condensed gases. The whole procedure is particularly fast and efficient. The "spray-loading" has been successfully used in our laboratory to load several samples including acetylene, ammonia, ethylene, and carbon dioxide/water or red phosphorus/NH3 mixtures.

  15. Low temperature surface chemistry and nanostructures

    NASA Astrophysics Data System (ADS)

    Sergeev, G. B.; Shabatina, T. I.

    2002-03-01

    The new scientific field of low temperature surface chemistry, which combines the low temperature chemistry (cryochemistry) and surface chemistry approaches, is reviewed in this paper. One of the most exciting achievements in this field of science is the development of methods to create highly ordered hybrid nanosized structures on different organic and inorganic surfaces and to encapsulate nanosized metal particles in organic and polymer matrices. We consider physical and chemical behaviour for the systems obtained by co-condensation of the components vapours on the surfaces cooled down to 4-10 and 70-100 K. In particular the size effect of both types, the number of atoms in the reactive species structure and the thickness of growing co-condensate film, on the chemical activity of the system is analysed in detail. The effect of the internal mechanical stresses on the growing interfacial co-condensate film formation and on the generation of fast (explosive) spontaneous reactions at low temperatures is discussed. The examples of unusual chemical interactions of metal atoms, clusters and nanosized particles, obtained in co-condensate films on the cooled surfaces under different conditions, are presented. The examples of highly ordered surface and volume hybrid nanostructures formation are analysed.

  16. Effects of lunar phases on short-term, explosive physical performance among young trained athletes.

    PubMed

    Yousfi, Narimen; Mejri, Mohamed Arbi; Rouissi, Mehdi; Hammami, Amri; Tabben, Montassar; Chaouachi, Anis; Haddad, Monoem; Chamari, Karim

    2018-04-01

    Beliefs that lunar phases affect human physiology started in ancient times. Research has recently revealed that a physical fitness index increased in sedentary students at the new moon (NM) and full moon (FM) compared to other moon phases. However, the effect of lunar cycle (moon illumination and gravitational pull) on physical performance in athletes was not examined. Therefore, this study aimed to evaluate whether short-term explosive performance can be influenced by the different phases of the lunar cycle. Fourteen young male Taekwondo athletes (age: 16.9 ± 0.7 years, height: 159.7 ± 50.6 cm, body mass: 62.85 ± 7.84 kg) performed the following tests to assess the explosive physical performance during the different phases of the lunar cycle (NM, FQ (first quarter), FM, and LQ (last quarter)): maximal isometric manual contraction (dominant hand (MIMCD) and non-dominant hand (MIMCND)), maximal back isometric contraction (MBIC), squat jump (SJ), countermovement jump (CMJ), and 10-m sprint (10 m). The testing sessions during the different moon phases were performed in a counterbalanced order. The order of tests remained the same (MIMCD, MIMCND, MBIC, SJ, CMJ, and 10 m), and all sessions were performed in the evening (6:00 to 8:00 p.m.) on the first day of each evaluated lunar phase. Each parameter was measured over two consecutive lunar months in the calendar. Analysis of variance tests showed that there was no significant effect of lunar cycle on all explosive test measures, p > 0.05. Our results failed to identify any effect of lunar phase on evening explosive performance (mainly involving phosphagen pathway-based efforts) among young trained athletes. Therefore, it appears that moon phase/illumination does not affect short-term physical performance in young trained adolescents.

  17. INTEGRATED AND REAL-TIME DIFFUSION DENUDER SAMPLE FOR PM2.5. (R825367)

    EPA Science Inventory

    Abstract

    Particulate matter (PM) is a complex mixture of stable condensed phases, adsorbed or dissolved gases, and semi-volatile materials, i.e. compounds that transfer between the gas and condensed phases. Fine particles in both rural and urban environments contain su...

  18. Analysis and comparison of biomass pyrolysis/gasification condensates: Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.

    1986-06-01

    This report provides results of chemical and physical analysis of condensates from eleven biomass gasification and pyrolysis systems. The samples were representative of the various reactor configurations being researched within the Department of Energy, Biomass Thermochemical Conversion program. The condensates included tar phases and aqueous phases. The analyses included gross compositional analysis (elemental analysis, ash, moisture), physical characterization (pour point, viscosity, density, heat of combustion, distillation), specific chemical analysis (gas chromatography/mass spectrometry, infrared spectrophotometry, proton and carbon-13 nuclear magnetic resonance spectrometry) and biological activity (Ames assay and mouse skin tumorigenicity tests). These results are the first step of a longermore » term program to determine the properties, handling requirements, and utility of the condensates recovered from biomass gasification and pyrolysis. The analytical data demonstrates the wide range of chemical composition of the organics recovered in the condensates and suggests a direct relationship between operating temperature and chemical composition of the condensates. A continuous pathway of thermal degradation of the tar components as a function of temperature is proposed. Variations in the chemical composition of the organic components in the tars are reflected in the physical properties of tars and phase stability in relation to water in the condensate. The biological activity appears to be limited to the tars produced at high temperatures. 56 refs., 25 figs., 21 tabs.« less

  19. The Measurement of Electrical Conductivity in Detonating Condensed Explosives

    DTIC Science & Technology

    1993-03-01

    in the light of our existing understanding. DETONATION CONDUCTION MODELS Various models of conduction have been considered during the course of these...reduction, shock induced conduction in the reaction products, and conduction in coagulated carbon behind the reaction zone. The first model , due to...results below show. The second model was proposed by Griem. 3 For relative simplicity, he assumed that the reaction zone could be represented by a

  20. Negative ion photoelectron spectroscopy of solvated electron cluster anions, (H2O){/n -} and (NH3){/n -}

    NASA Astrophysics Data System (ADS)

    Lee, G. H.; Arnold, S. T.; Eaton, J. G.; Sarkas, H. W.; Bowen, K. H.; Ludewigt, C.; Haberland, H.

    1991-03-01

    The photodetachment spectra of (H2O){/n =2-69/-} and (NH3){/n =41-1100/-} have been recorded, and vertical detachment energies (VDEs) were obtained from the spectra. For both systems, the cluster anion VDEs increase smoothly with increasing sizes and most species plot linearly with n -1/3, extrapolating to a VDE ( n=∞) value which is very close to the photoelectric threshold energy for the corresponding condensed phase solvated electron system. The linear extrapolation of this data to the analogous condensed phase property suggests that these cluster anions are gas phase counterparts to solvated electrons, i.e. they are embryonic forms of hydrated and ammoniated electrons which mature with increasing cluster size toward condensed phase solvated electrons.

  1. Meson properties in asymmetric matter

    NASA Astrophysics Data System (ADS)

    Mammarella, Andrea; Mannarelli, Massimo

    2018-03-01

    In this work we study dynamic and thermodynamic (at T = 0) properties of mesons in asymmetric matter in the framework of Chiral Perturbation Theory. We consider a system at vanishing temperature with nonzero isospin chemical potential and strangeness chemical potential; meson masses and mixing in the normal phase, the pion condensation phase and the kaon condensation phase are described. We find differences with previous works, but the results presented here are supported by both theory group analysis and by direct calculations. Some pion decay channels in the normal and the pion condensation phases are studied, finding a nonmonotonic behavior of the decay width as a function of µ I . Furthermore, pressure, density and equation of state of the system at T = 0 are studied, finding remarkable agreement with analogue studies performed by lattice calculations.

  2. The application of single particle aerosol mass spectrometry for the detection and identification of high explosives and chemical warfare agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Audrey Noreen

    2006-01-01

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle (~1 pg) without the need formore » consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.« less

  3. On mechanism of explosive boiling in nanosecond regime

    NASA Astrophysics Data System (ADS)

    Çelen, Serap

    2016-06-01

    Today laser-based machining is used to manufacture vital parts for biomedical, aviation and aerospace industries. The aim of the paper is to report theoretical, numerical and experimental investigations of explosive boiling under nanosecond pulsed ytterbium fiber laser irradiation. Experiments were performed in an effective peak power density range between 1397 and 1450 MW/cm2 on pure titanium specimens. The threshold laser fluence for phase explosion, the pressure and temperature at the target surface and the velocity of the expulsed material were reported. A narrow transition zone was realized between the normal vaporization and phase explosion fields. The proof of heterogeneous boiling was given with detailed micrographs. A novel thermal model was proposed for laser-induced splashing at high fluences. Packaging factor and scattering arc radius terms were proposed to state the level of the melt ejection process. Results of the present investigation explain the explosive boiling during high-power laser interaction with metal.

  4. Strength of the phase change materials on loading with the products of electric explosion of conductors

    NASA Astrophysics Data System (ADS)

    Savenkov, Georgiy; Morozov, Viktor; Kats, Victor

    2018-05-01

    Results of the experimentation on the destruction of the phase change materials (beeswax and paraffin) by the electric explosion of conductors are presented. The process of the explosion of copper and nickel titanium wires in both pure PCM and its mixture with nonosized additives of cuprous oxide is analyzed. The effect of this additive on the process of the expansion of the electric-discharge plasma during the electric explosion of conductors and on the strength of composite materials is demonstrated. The piezoprobe-based method of measurement of the radial pressure during samples destruction is developed. The experiments made it possible to determine the dimensions of the melting channel formed inside the samples during the explosion and the subsequent expansion of the electric-discharge plasma. The experiments are performed on the generator of short-term high-voltage pulses capable to shape the voltage of (10-24) kV.

  5. Simulating condensation on microstructured surfaces using Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Alexeev, Alexander; Vasyliv, Yaroslav

    2017-11-01

    We simulate a single component fluid condensing on 2D structured surfaces with different wettability. To simulate the two phase fluid, we use the athermal Lattice Boltzmann Method (LBM) driven by a pseudopotential force. The pseudopotential force results in a non-ideal equation of state (EOS) which permits liquid-vapor phase change. To account for thermal effects, the athermal LBM is coupled to a finite volume discretization of the temperature evolution equation obtained using a thermal energy rate balance for the specific internal energy. We use the developed model to probe the effect of surface structure and surface wettability on the condensation rate in order to identify microstructure topographies promoting condensation. Financial support is acknowledged from Kimberly-Clark.

  6. Dynamical instability of a driven-dissipative electron-hole condensate in the BCS-BEC crossover region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hanai, Ryo; Littlewood, Peter B.; Ohashi, Yoji

    2017-09-01

    We present a stability analysis on a driven-dissipative electron-hole condensate in the BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein-condensation)-crossover region. Extending the combined BCS-Leggett theory with the generalized random phase approximation (GRPA) to the non-equilibrium case by employing the Keldysh formalism, we show that the pumping-and-decay of carriers causes a depairing effect on excitons. This phenomenon gives rise to an attractive interaction between excitons in the BEC regime, as well as a supercurrent that anomalously flows anti-parallel to ∇θ(r) (where θ(r) is the phase of the condensate) in the BCS regime, both leading to dynamical instabilities of an exciton-BEC.

  7. Heat-transfer enhancement of two-phase closed thermosyphon using a novel cross-flow condenser

    NASA Astrophysics Data System (ADS)

    Aghel, Babak; Rahimi, Masoud; Almasi, Saeed

    2017-03-01

    The present study reports the heat-transfer performance of a two-phase closed thermosyphon (TPCT) equipped with a novel condenser. Distillated water was used as working fluid, with a volumetric liquid filling ratio of 75 %. An increase in heat flux was used to measure the response of the TPCT, including variations in temperature distribution, thermal resistance, average temperature of each section of TPCT and overall thermal difference. Results show that for various power inputs from 71 to 960 W, the TPCT with the novel condenser had a lower wall-temperature difference between the evaporator and condenser sections than did the unmodified TPCT. Given the experimental data for heat-transfer performance, it was found that the thermal resistance in the TPCT equipped with the proposed condenser was between 10 and 17 % lower than in the one without.

  8. Searching for Supersolidity in Ultracold Atomic Bose Condensates with Rashba Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liao, Renyuan

    2018-04-01

    We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with the lower branch vanishing in the direction perpendicular to the stripe in the x -y plane. At the transition point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our formulation to finite temperatures to account for interactions between excitations.

  9. Numerical investigation of the droplet condensation on the horizontal surface with patterned wettability

    NASA Astrophysics Data System (ADS)

    Cho, Jaeyong; Lee, Joonsang

    2017-11-01

    The condensation is the one of the efficient heat transfer phenomenon that transfers the heat along an interface between two phases. This condensation is affected by the wettability of surface. Heat transfer rate can be improved by controlling the wettability of surface. Recently, the researches with patterned wettability, which is composed by a combination of hydrophilic and hydrophobic surface, have been performed to improve the heat transfer rate of condensation. In this study, we performed numerical simulation for condensation of droplet on the patterned wettability, and we analyze condensation phenomenon on the wettability pattered surface through the kinetic energy, heat flux curve, and droplet shape in the vicinity of the droplet. When we performed numerical simulations and analyzing the condensation with patterned wettability, we used the lattice Boltzmann method for the base model, and phase change was solved by Peng-Robinson equation of sate. We can find that the droplet is generated at the bottom surface and high condensation rate can be maintained on the patterned wettability. This work was also supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP) (No. 2015R1A5A1037668) and BrainKorea21plus.

  10. Study of toluene rotary fluid management device and shear flow condenser performance for a space-based organic Rankine power system

    NASA Technical Reports Server (NTRS)

    Havens, Vance; Ragaller, Dana

    1988-01-01

    Management of two-phase fluid and control of the heat transfer process in microgravity is a technical challenge that must be addressed for an orbital Organic Rankine Cycle (ORC) application. A test program was performed in 1-g that satisfactorily demonstrated the two-phase management capability of the rotating fluid management device (RFMD) and shear-flow condenser. Operational tests of the RFMD and shear flow condenser in adverse gravity orientations, confirmed that the centrifugal forces in the RFMD and the shear forces in the condenser were capable of overcoming gravity forces. In a microgravity environment, these same forces would not have to compete against gravity and would therefore be dominant. The specific test program covered the required operating range of the Space Station Solar Dynamic Rankine Cycle power system. Review of the test data verified that: fluid was pumped from the RFMD in all attitudes; subcooled states in the condenser were achieved; condensate was pushed uphill against gravity; and noncondensible gases were swept through the condenser.

  11. Heat transfer degradation during condensation of non-azeotropic mixtures

    NASA Astrophysics Data System (ADS)

    Azzolin, M.; Berto, A.; Bortolin, S.; Del, D., Col

    2017-11-01

    International organizations call for a reduction of the HFCs production and utilizations in the next years. Binary or ternary blends of hydroflourocarbons (HFCs) and hydrofluoroolefins (HFOs) are emerging as possible substitutes for high Global Warming Potential (GWP) fluids currently employed in some refrigeration and air-conditioning applications. In some cases, these mixtures are non-azeotropic and thus, during phase-change at constant pressure, they present a temperature glide that, for some blends, can be higher than 10 K. Such temperature variation during phase change could lead to a better matching between the refrigerant and the water temperature profiles in a condenser, thus reducing the exergy losses associated with the heat transfer process. Nevertheless, the additional mass transfer resistance which occurs during the phase change of zeotropic mixtures leads to a heat transfer degradation. Therefore, the design of a condenser working with a zeotropic mixture poses the problem of how to extend the correlations developed for pure fluids to the case of condensation of mixtures. Experimental data taken are very helpful in the assessment of design procedures. In the present paper, heat transfer coefficients have been measured during condensation of zeotropic mixtures of HFC and HFO fluids. Tests have been carried out in the test rig available at the Two Phase Heat Transfer Lab of University of Padova. During the condensation tests, the heat is subtracted from the mixture by using cold water and the heat transfer coefficient is obtained from the measurement of the heat flux on the water side, the direct measurements of the wall temperature and saturation temperature. Tests have been performed at 40°C mean saturation temperature. The present experimental database is used to assess predictive correlations for condensation of mixtures, providing valuable information on the applicability of available models.

  12. Phased Contrast X-Ray Imaging

    ScienceCinema

    Miller, Erin

    2018-02-07

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  13. The Secondary Organic Aerosol Processor (SOAP v1.0) model: a unified model with different ranges of complexity based on the molecular surrogate approach

    NASA Astrophysics Data System (ADS)

    Couvidat, F.; Sartelet, K.

    2014-01-01

    The Secondary Organic Aerosol Processor (SOAP v1.0) model is presented. This model is designed to be modular with different user options depending on the computing time and the complexity required by the user. This model is based on the molecular surrogate approach, in which each surrogate compound is associated with a molecular structure to estimate some properties and parameters (hygroscopicity, absorption on the aqueous phase of particles, activity coefficients, phase separation). Each surrogate can be hydrophilic (condenses only on the aqueous phase of particles), hydrophobic (condenses only on the organic phase of particles) or both (condenses on both the aqueous and the organic phases of particles). Activity coefficients are computed with the UNIFAC thermodynamic model for short-range interactions and with the AIOMFAC parameterization for medium and long-range interactions between electrolytes and organic compounds. Phase separation is determined by Gibbs energy minimization. The user can choose between an equilibrium and a dynamic representation of the organic aerosol. In the equilibrium representation, compounds in the particle phase are assumed to be at equilibrium with the gas phase. However, recent studies show that the organic aerosol (OA) is not at equilibrium with the gas phase because the organic phase could be semi-solid (very viscous liquid phase). The condensation or evaporation of organic compounds could then be limited by the diffusion in the organic phase due to the high viscosity. A dynamic representation of secondary organic aerosols (SOA) is used with OA divided into layers, the first layer at the center of the particle (slowly reaches equilibrium) and the final layer near the interface with the gas phase (quickly reaches equilibrium).

  14. Analytical methodologies for broad metabolite coverage of exhaled breath condensate.

    PubMed

    Aksenov, Alexander A; Zamuruyev, Konstantin O; Pasamontes, Alberto; Brown, Joshua F; Schivo, Michael; Foutouhi, Soraya; Weimer, Bart C; Kenyon, Nicholas J; Davis, Cristina E

    2017-09-01

    Breath analysis has been gaining popularity as a non-invasive technique that is amenable to a broad range of medical uses. One of the persistent problems hampering the wide application of the breath analysis method is measurement variability of metabolite abundances stemming from differences in both sampling and analysis methodologies used in various studies. Mass spectrometry has been a method of choice for comprehensive metabolomic analysis. For the first time in the present study, we juxtapose the most commonly employed mass spectrometry-based analysis methodologies and directly compare the resultant coverages of detected compounds in exhaled breath condensate in order to guide methodology choices for exhaled breath condensate analysis studies. Four methods were explored to broaden the range of measured compounds across both the volatile and non-volatile domain. Liquid phase sampling with polyacrylate Solid-Phase MicroExtraction fiber, liquid phase extraction with a polydimethylsiloxane patch, and headspace sampling using Carboxen/Polydimethylsiloxane Solid-Phase MicroExtraction (SPME) followed by gas chromatography mass spectrometry were tested for the analysis of volatile fraction. Hydrophilic interaction liquid chromatography and reversed-phase chromatography high performance liquid chromatography mass spectrometry were used for analysis of non-volatile fraction. We found that liquid phase breath condensate extraction was notably superior compared to headspace extraction and differences in employed sorbents manifested altered metabolite coverages. The most pronounced effect was substantially enhanced metabolite capture for larger, higher-boiling compounds using polyacrylate SPME liquid phase sampling. The analysis of the non-volatile fraction of breath condensate by hydrophilic and reverse phase high performance liquid chromatography mass spectrometry indicated orthogonal metabolite coverage by these chromatography modes. We found that the metabolite coverage could be enhanced significantly with the use of organic solvent as a device rinse after breath sampling to collect the non-aqueous fraction as opposed to neat breath condensate sample. Here, we show the detected ranges of compounds in each case and provide a practical guide for methodology selection for optimal detection of specific compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Both Chromosome Decondensation and Condensation Are Dependent on DNA Replication in C. elegans Embryos

    PubMed Central

    Sonneville, Remi; Craig, Gillian; Labib, Karim; Gartner, Anton; Blow, J. Julian

    2015-01-01

    Summary During cell division, chromatin alternates between a condensed state to facilitate chromosome segregation and a decondensed form when DNA replicates. In most tissues, S phase and mitosis are separated by defined G1 and G2 gap phases, but early embryogenesis involves rapid oscillations between replication and mitosis. Using Caenorhabditis elegans embryos as a model system, we show that chromosome condensation and condensin II concentration on chromosomal axes require replicated DNA. In addition, we found that, during late telophase, replication initiates on condensed chromosomes and promotes the rapid decondensation of the chromatin. Upon replication initiation, the CDC-45-MCM-GINS (CMG) DNA helicase drives the release of condensin I complexes from chromatin and the activation or displacement of inactive MCM-2–7 complexes, which together with the nucleoporin MEL-28/ELYS tethers condensed chromatin to the nuclear envelope, thereby promoting chromatin decondensation. Our results show how, in an early embryo, the chromosome-condensation cycle is functionally linked with DNA replication. PMID:26166571

  16. Numerical Simulations of Thermobaric Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V E

    2007-05-04

    A Model of the energy evolution in thermobaric explosions is presented. It is based on the two-phase formulation: conservation laws for the gas and particle phases along with inter-phase interaction terms. It incorporates a Combustion Model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields. The Model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the fuel (Al or TNT detonation products) with air. Numerical simulations were performed for 1.5-g thermobaric explosions inmore » five different chambers (volumes ranging from 6.6 to 40 liters and length-to-diameter ratios from 1 to 12.5). Computed pressure waveforms were very similar to measured waveforms in all cases - thereby proving that the Model correctly predicts the energy evolution in such explosions. The computed global fuel consumption {mu}(t) behaved as an exponential life function. Its derivative {dot {mu}}(t) represents the global rate of fuel consumption. It depends on the rate of turbulent mixing which controls the rate of energy release in thermobaric explosions.« less

  17. Advanced algorithms for the identification of mixtures using condensed-phase FT-IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Arnó, Josep; Andersson, Greger; Levy, Dustin; Tomczyk, Carol; Zou, Peng; Zuidema, Eric

    2011-06-01

    FT-IR spectroscopy is the technology of choice to identify solid and liquid phase unknown samples. Advances in instrument portability have made possible the use of FT-IR spectroscopy in emergency response and military field applications. The samples collected in those harsh environments are rarely pure and typically contain multiple chemical species in water, sand, or inorganic matrices. In such critical applications, it is also desired that in addition to broad chemical identification, the user is warned immediately if the sample contains a threat or target class material (i.e. biological, narcotic, explosive). The next generation HazMatID 360 combines the ruggedized design and functionality of the current HazMatID with advanced mixture analysis algorithms. The advanced FT-IR instrument allows effective chemical assessment of samples that may contain one or more interfering materials like water or dirt. The algorithm was the result of years of cumulative experience based on thousands of real-life spectra sent to our ReachBack spectral analysis service by customers in the field. The HazMatID 360 combines mixture analysis with threat detection and chemical hazard classification capabilities to provide, in record time, crucial information to the user. This paper will provide an overview of the software and algorithm enhancements, in addition to examples of improved performance in mixture identification.

  18. New Wine in Old Flasks: A New Solution of the Clapeyron Equation

    ERIC Educational Resources Information Center

    Shilo, Doron; Ghez, Richard

    2008-01-01

    The coexisting equilibrium states between single-component gas and condensed phases (liquid or solid) are often calculated by assuming that the condensed phase's molar volume is negligible in comparison with the gas's. Here, we present an analytic solution of Clapeyron's equation when this assumption is relaxed. It differs substantially from…

  19. The stability of hibonite, melilite and other aluminous phases in silicate melts: Implications for the origin of hibonite-bearing inclusions from carbonaceous chondrites

    NASA Technical Reports Server (NTRS)

    Beckett, J. R.; Stolper, E.

    1994-01-01

    Phase fields in which hibonite and silicate melt coexist with spinel CaAl4O7, gehlenitic melilite, anorthite or corundum at 1 bar in the system CaO-MgO-Al2O3-SiO2-TiO2 were determined. The hibonites contain up to 1.7 wt% SiO2. For TiO2, the experimentally determined partition coefficients between hibonite and coexisting melt D(sub i)(sup Hib/L), vary from 0.8 to 2.1 and generally decrease with increasing TiO2 in the liquid. Based on Ti partitioning between hibonite and melt, bulk inclusion compositions and hibonite-saturated liquidus phase diagrams, the hibonite in hibonite-poor fluffy Type A inclusions from Allende and at least some hibonite from hibonite-rich inclusions is relict, although much of the hibonite from hibonite-glass spherules probably crystallized metasably from a melt. Bulk compositions for all of these CAIs are consistent with an origin as melite + hibonite + spinel + perovskite phase assembalges that were partially altered and in some cases partially or completely melted. The duration of the melting event was sufficient to remove any Na introduced by the alteration process but frequently insufficient to dissolve all of the original hibonite. Simple thermochemical models developed for meteoritic melilite and hibonite solid solutions were used to obtain equilibration temperatures of hibonite-bearing phase assemblages with vapor. Referenced to 10(exp -3) atm, hibonite + corundum + vapor equilibrated at approximately 1260 C and hibonite + spinel +/- melilite + vapor at 1215 +/- 10 C. If these temperatures reflect condensation in a cooling gas of solar composition, then hibonite +/- corundum condensed first, followed by spinel and then melilite. The position of perovskite within this sequence is uncertain, but it probably began to condense before spinel. This sequence of phase appearances and relative temperatures is generally consistent with observed textures but differs from expectations based on classical condensation calculations in that equilibration temperatures are generally lower than predicted and melilite initially condenses with or even after spinel. Simple thermochemical modes for the substitution of trace elements into the Ca site of meteoritic hibonites suggest that virtually all Eu is divalent in early condensate hibonites but that Eu(2+)/Eu(#+) decreases by a factor of 20 or more during the course of condensation primarily because the ratio is proportional to the partial pressure of Al, which decreases dramatically as aluminous phase condense. The relative sizes of Eu and Yb anomalies in meteoritic hibonites and inclusions may be partly due to this effect.

  20. Closure device for lead-acid batteries

    DOEpatents

    Ledjeff, Konstantin

    1983-01-01

    A closure device for lead-acid batteries includes a filter of granulated activated carbon treated to be hydrophobic combined with means for preventing explosion of emitted hydrogen and oxygen gas. The explosion prevention means includes a vertical open-end tube within the closure housing for maintaining a liquid level above side wall openings in an adjacent closed end tube. Gases vent from the battery through a nozzle directed inside the closed end tube against an impingement surface to remove acid droplets. The gases then flow through the side wall openings and the liquid level to quench any possible ignition prior to entering the activated carbon filter. A wick in the activated carbon filter conducts condensed liquid back to the closure housing to replenish the liquid level limited by the open-end tube.

  1. Phase velocity enhancement of linear explosive shock tubes

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Serge, Matthew; Szirti, Daniel; Higgins, Andrew; Tanguay, Vincent

    2011-06-01

    Strong, high density shocks can be generated by sequentially detonating a hollow cylinder of explosives surrounding a thin-walled, pressurized tube. Implosion of the tube results in a pinch that travels at the detonation velocity of the explosive and acts like a piston to drive a shock into the gas ahead of it. In order to increase the maximum shock velocities that can be obtained, a phase velocity generator can be used to drag an oblique detonation wave along the gas tube at a velocity much higher than the base detonation velocity of the explosive. Since yielding and failure of the gas tube is the primary limitation of these devices, it is desirable to retain the dynamic confinement effects of a heavy-walled tamper without interfering with operation of the phase velocity generator. This was accomplished by cutting a slit into the tamper and introducing a phased detonation wave such that it asymmetrically wraps around the gas tube. This type of configuration has been previously experimentally verified to produce very strong shocks but the post-shock pressure and shock velocity limits have not been investigated. This study measured the shock trajectory for various fill pressures and phase velocities to ascertain the limiting effects of tube yield, detonation obliquity and pinch aspect ratio.

  2. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during CRYSTAL-FACE were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward- and downward-facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197 K - 224 K and pressures of 122 hPa - 224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4- 10(exp 14) molecules/sq cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 pm and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  3. Seismicity and infrasound associated with explosions at Mount St. Helens, 2004-2005: Chapter 6 in A volcano rekindled: the renewed eruption of Mount St. Helens, 2004-2006

    USGS Publications Warehouse

    Moran, Seth C.; McChesney, Patrick J.; Lockhart, Andrew B.; Sherrod, David R.; Scott, William E.; Stauffer, Peter H.

    2008-01-01

    Six explosions occurred during 2004-5 in association with renewed eruptive activity at Mount St. Helens, Washington. Of four explosions in October 2004, none had precursory seismicity and two had explosion-related seismic tremor that marked the end of the explosion. However, seismicity levels dropped following each of the October explosions, providing the primary instrumental means for explosion detection during the initial vent-clearing phase. In contrast, explosions on January 16 and March 8, 2005, produced noticeable seismicity in the form of explosion-related tremor, infrasonic signals, and, in the case of the March 8 explosion, an increase in event size ~2 hours before the explosion. In both 2005 cases seismic tremor appeared before any infrasonic signals and was best recorded on stations located within the crater. These explosions demonstrated that reliable explosion detection at volcanoes like Mount St. Helens requires seismic stations within 1-2 km of the vent and stations with multiple acoustic sensors.

  4. Explosive synchronization coexists with classical synchronization in the Kuramoto model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danziger, Michael M., E-mail: michael.danziger@biu.ac.il; Havlin, Shlomo; Moskalenko, Olga I.

    2016-06-15

    Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model.more » We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10{sup 6}) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.« less

  5. A Three-Dimensional Eulerian Code for Simulation of High-Speed Multimaterial Interactions

    DTIC Science & Technology

    2011-08-01

    PDE -based extension. The extension process is done on only the host cells on a particular processor. After extension the parallel communication is...condensation shocks, explosive debris transport, detonation in heterogeneous media and so on. In these flows complex interactions occur between the...A.22] and ijΩ is the spin tensor. The Jaumann derivative is used to ensure objectivity of the stress tensor with respect to rotation

  6. AMR Code Simulations of Turbulent Combustion in Confined and Unconfined SDF Explosions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, A L; Bell, J B; Beckner, V

    2009-05-29

    A heterogeneous continuum model is proposed to describe the dispersion and combustion of an aluminum particle cloud in an explosion. It combines the gas-dynamic conservation laws for the gas phase with a continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models. It incorporates a combustion model based on the mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gas dynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takesmore » into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Numerical simulations of the explosion fields from 1.5-g Shock-Dispersed-Fuel (SDF) charge in a 6.6 liter calorimeter were used to validate the combustion model. Then the model was applied to 10-kg Al-SDF explosions in a vented two-room structure and in an unconfined height-of-burst explosion. Computed pressure histories are in reasonable (but not perfect) agreement with measured waveforms. Differences are caused by physical-chemical kinetic effects of particle combustion which induce ignition delays in the initial reactive blast wave and quenching of reactions at late times. Current simulations give initial insights into such modeling issues.« less

  7. Flows with fractional quantum circulation in Bose-Einstein condensates induced by nontopological phase defects

    NASA Astrophysics Data System (ADS)

    Kanai, Toshiaki; Guo, Wei; Tsubota, Makoto

    2018-01-01

    It is a common view that rotational motion in a superfluid can exist only in the presence of topological defects, i.e., quantized vortices. However, in our numerical studies on the merging of two concentric Bose-Einstein condensates with axial symmetry in two-dimensional space, we observe the emergence of a spiral dark soliton when one condensate has a nonzero initial angular momentum. This spiral dark soliton enables the transfer of angular momentum between the condensates and allows the merged condensate to rotate even in the absence of quantized vortices. Our examination of the flow field around the soliton strikingly reveals that its sharp endpoint can induce flow like a vortex point but with a fraction of a quantized circulation. This interesting nontopological "phase defect" may generate broad interest since rotational motion is essential in many quantum transport processes.

  8. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  9. Scanning Tunneling Microscopy Observation of Phonon Condensate

    PubMed Central

    Altfeder, Igor; Voevodin, Andrey A.; Check, Michael H.; Eichfeld, Sarah M.; Robinson, Joshua A.; Balatsky, Alexander V.

    2017-01-01

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formation of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature. PMID:28225066

  10. Scanning Tunneling Microscopy Observation of Phonon Condensate

    DOE PAGES

    Altfeder, Igor; Balatsky, Alexander V.; Voevodin, Andrey A.; ...

    2017-02-22

    Using quantum tunneling of electrons into vibrating surface atoms, phonon oscillations can be observed on the atomic scale. Phonon interference patterns with unusually large signal amplitudes have been revealed by scanning tunneling microscopy in intercalated van der Waals heterostructures. Our results show that the effective radius of these phonon quasi-bound states, the real-space distribution of phonon standing wave amplitudes, the scattering phase shifts, and the nonlinear intermode coupling strongly depend on the presence of defect-induced scattering resonance. The observed coherence of these quasi-bound states most likely arises from phase- and frequency-synchronized dynamics of all phonon modes, and indicates the formationmore » of many-body condensate of optical phonons around resonant defects. We found that increasing the strength of the scattering resonance causes the increase of the condensate droplet radius without affecting the condensate fraction inside it. The condensate can be observed at room temperature.« less

  11. Toward the theory of fermionic condensation

    NASA Astrophysics Data System (ADS)

    Khodel, V. A.

    2017-04-01

    The diagrammatic technique elaborated by Belyaev for the theory of a Fermi liquid has been implemented to analyze the behavior of Fermi systems beyond the topological phase transition point, where the fermionic condensate appears. It has been shown that the inclusion of the interaction between the condensate and above-condensate particles leads to the emergence of a gap in the single-particle excitation spectrum of these particles even in the absence of Cooper pairing. Hence, the emergence of this gap in homogeneous electron systems of silicon field-effect structures leads to a metal-insulator phase transition rather than to superconductivity. It has been shown that the same interaction explains the nature of the Fermi arc structure in twodimensional electron systems of cuprates.

  12. Quark-hadron phase structure of QCD matter from SU(4) Polyakov linear sigma model

    NASA Astrophysics Data System (ADS)

    Diab, Abdel Magied Abdel Aal; Tawfik, Abdel Nasser

    2018-04-01

    The SU(4) Polyakov linear sigma model (PLSM) is extended towards characterizing the chiral condensates, σl, σs and σc of light, strange and charm quarks, respectively and the deconfinement order-parameters φ and φ at finite temperatures and densities (chemical potentials). The PLSM is considered to study the QCD equation of state in the presence of the chiral condensate of charm for different finite chemical potentials. The PLSM results are in a good agreement with the recent lattice QCD simulations. We conclude that, the charm condensate is likely not affected by the QCD phase-transition, where the corresponding critical temperature is greater than that of the light and strange quark condensates.

  13. Universal Themes of Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose-Einstein condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.

  14. Dissociative Electron Attachment in the condensed phase: sample morphology and bio-molecules

    NASA Astrophysics Data System (ADS)

    Bass, A. D.

    2001-10-01

    Recent electron impact experiments on condensed plasmid DNA have shown low energy electrons to be remarkably effective in causing damage and reveal that electron-scattering phenomena, such as transient anion formation and their decay via dissociative electron attachment, play a central role in this process. Such experiments may prompt a revision of our understanding of the mutagenic effects of radiation and have significant implications for both radiotherapy and radio-protection. These results can be better understood by investigating electron scattering with the various functional constituents of DNA in condensed environments. Recent work, to be presented here, has focused on electron attachment processes in condensed DNA bases and sugar-like analogues of the DNA backbone, as evidenced by the desorption of fragment anions. Despite this progress, a complete understanding of these processes requires parallel study of simpler `model' systems, which allow the characteristic condensed-phase phenomena modulating electron-scattering to be identified. Factors affecting anion formation and DEA can been classed as either intrinsic (affecting the properties of the resonance) or extrinsic (modifying the energy of electrons before attachment and/or the reactions of fragments, post-dissociation). In this talk we will present new results in which the extrinsic factors of porosity and phase of a sample are probed via the desorption of anionic fragments from either the pure film or from probe molecules condensed upon its surface. We show that anion desorption and hence our ability to observe DEA process, is highly sensitive to sample morphology and phase, a property which can be exploited to study the morphology of the film itself.

  15. Textbook Forum: Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State.

    ERIC Educational Resources Information Center

    Perlmutter-Hayman, Berta

    1984-01-01

    Problems of equilibria in condensed phases (particularly those involving solutes in dilute solutions) are encountered by students in their laboratory work; the thermodynamics of these equilibria is neglected in many textbooks. Therefore, several aspects of this topic are explored, focusing on pressure dependence and choice of standard state. (JN)

  16. On the state of the emitter of the 3.3 micron unidentified infrared band - Absorption spectroscopy of polycyclic aromatic hydrocarbon species

    NASA Technical Reports Server (NTRS)

    Flickinger, Gregory C.; Wdowiak, Thomas J.; Gomez, Percy L.

    1991-01-01

    Results of absorption measurements indicate that the PAH species responsible for the UIR (unidentified infrared) emission probably exist in a condensed form rather than as isolated molecules. It is shown that the peak absorption of the C-H stretch feature of vapor-phase PAHs occurs at a higher frequency than that of the condensed-phase PAHs and does not match the 3.289-micron interstellar feature. The vapor-phase experiments duplicate the phenomenon of the 3.3-micron profile simplification of PAH in KBr at elevated temperature. This confirms that the change of the profile with temperature is an intrinsic molecular effect, and is not a consequence of matrix (KBr) or condensed state interactions.

  17. Flow of Combustion Products Containing Condensed-Phase Particles over a Recessed Vectorable Jet Nozzle

    NASA Astrophysics Data System (ADS)

    Volkov, K. N.; Denisikhin, S. V.; Emel'yanov, V. N.; Teterina, I. V.

    2017-09-01

    The flow of combustion products containing condensed-phase particles over the recessed vectorable nozzle of a solid-propellant rocket motor was investigated with the use of the Reynolds-averaged Navier-Stokes equations, equations of the k-ɛ model of turbulence, and the Lagrange approach. The fields of flows of combustion products and the mechanical trajectories of condensed-phase particles in the charge channel, the prenozzle space, and the nozzle unit of this motor were calculated for different angles of swing of the nozzle. The formation of vortices in the gas flow in the neighborhood of the downstream cover of the nozzle and their influence on the movement of particles different in size were considered.

  18. Effects of frustration on explosive synchronization

    NASA Astrophysics Data System (ADS)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  19. Infrared Study of Supernova Ejecta and Dust

    NASA Astrophysics Data System (ADS)

    Meikle, W. Peter; Farrah, Duncan; Fesen, Robert; Fransson, Claes; Gerardy, Christopher; Hoeflich, Peter; Kotak, Rubina; Kozma, Cecilia; Lucy, Leon; Lundqvist, Peter; Mattila, Seppo; Pozzo, Monica; Sollerman, Jesper; van Dyk, Schuyler; Wheeler, Craig

    2004-09-01

    We propose to use IRAC and IRS to gain powerful new insights on the nature of supernova (SN) explosions and test the hypothesis that SNe are major sources of cosmic dust. One of our two aims is to carry out robust tests of SN explosion models through the measurement of fine-structure (FS) lines and, where possible, their evolution. The important molecule, SiO, will also be measured. By comparison with our spectral synthesis models, we shall test the explosion model-sensitive predictions of abundances and their distribution. Most of the FS lines arise from ground state transitions and so, in comparison with optical or near-IR spectra, are much less sensitive to temperature and density uncertainties. However, the FS lines are only accessible in the MIR and the most useful abundance measurements can only be achieved at late times when the ejecta are optically thin. Consequently, ground-based MIR observations at the necessary late epochs are difficult if not impossible for nearly all SNe. Observation with the Spitzer Space Telescope is therefore essential. Our second goal is to test the proposal that core-collapse SNe (CCSNe) are, or have been, the major source of dust in the universe. Direct evidence in support of this is still very sparse. Warm dust emits most strongly in the MIR region, and so is the ideal wavelength range for following the condensation of dust within the ejecta or, in the case of Type IIn SNe, in a cool, dense shell formed at the ejecta/progenitor wind interface. Alternatively, such radiation may arise from IR light echo emission from dust in the progenitor wind. Discrimination between condensing dust and pre-existing circumstellar dust can be achieved by measurement of its MIR spectral energy distribution and evolution. Such measurements can also provide dust mass estimates and give clues about the nature of the grain material. To achieve our two goals, we propose to use IRAC and IRS to observe up to 17 SNe at epochs ranging from about 100 days to 2 years post-explosion.

  20. Micro-explosion of compound drops

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Kuei; Lin, Ta-Hui

    2014-08-01

    Introducing water into spray combustion systems, by either water-in-oil emulsification or supplementary water injection, is one of the major techniques for combustion improvement and NOx reduction. Plentiful researches are available on combustion of water-in-oil emulsion fuel drops. The emulsified liquid is a heterogeneous mixture of immiscible liquids. One component forms the continuous phase and the other component forms the discrete phase. The discrete phase consists of globules of the one fluid that are suspended in the continuous phase fluid. Water-in-oil emulsions are commonly considered for combustion applications because emulsions can result in micro-explosion, thereby reducing the average drop diameter to enhance liquid vaporization, and suppressing the formation of soot and NOx. However, the water addition generally does not exceed about 20% for smooth engine operations[!, 21. The combustion characteristics and micro-explosion of emulsion drop were studied by many researchers. The micro-explosion of water in fuel emulsion drops was caused by very fast growth of superheated water vapor bubbles, its superheat limits must be lower than the boiling point temperature of the fuel. These bubbles were primarily governed by the pressure difference between the superheated vapor and the liquid, and by the inertia imparted to the liquid by the motion of the bubble surface[3 6 In this study, we used a coaxial nozzle to generation the multi-component drop. The different type of water-in-oil fuel drops called the compound drops. Unlike an emulsion drop, a compound drop consists of a water core and a fuel shell, which can originate from the phase separation of emulsion[7, 81 or a water drop colliding with a fuel drop[9, 101 Burning and micro-explosion of compound drops have been found to be distinct from those of emulsion drops[9-111 Wang et al.[9 , 101 studied the combustion characteristics of collision merged alkane-water drops. The merged drops appeared in adhesive and inserted manners. The drop ignition delay time increased with increasing water content. The average burning rate of alkane-water drops decreased with increasing water content. In the burning process, hexadecane-water drops exhibited flash vaporization or flame extinction. Heterogeneous explosion was occasionally observed in drops with trapped air bubbles. The air bubbles were assumed to be the nucleation points of the heterogeneous explosions. Chen and Lin[11 studied the characteristics of water-in-dodecane compound drop with different water content, diameter of drop and environmental oxygen concentration. The vaporization rate increased with increasing environmental oxygen concentration. The compound drops micro-exploded during the burning process in a random way. The number of micro-explosions was majorly influenced by drop diameter, followed by environmental oxygen concentration. Water content had a weaker effect on micro-explosion. As available literature and research results of compound drop burning are scarce, their combustion and micro-explosion behaviors are still poorly understood. In this regard, we changed the drop nature as compound drops to study their combustion characteristics and micro-explosion phenomena.

  1. Jamming and condensation in one-dimensional driven flow

    NASA Astrophysics Data System (ADS)

    Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong

    2018-03-01

    We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.

  2. Jamming and condensation in one-dimensional driven flow.

    PubMed

    Soh, Hyungjoon; Ha, Meesoon; Jeong, Hawoong

    2018-03-01

    We revisit the slow-bond (SB) problem of the one-dimensional (1D) totally asymmetric simple exclusion process (TASEP) with modified hopping rates. In the original SB problem, it turns out that a local defect is always relevant to the system as jamming, so that phase separation occurs in the 1D TASEP. However, crossover scaling behaviors are also observed as finite-size effects. In order to check if the SB can be irrelevant to the system with particle interaction, we employ the condensation concept in the zero-range process. The hopping rate in the modified TASEP depends on the interaction parameter and the distance up to the nearest particle in the moving direction, besides the SB factor. In particular, we focus on the interplay of jamming and condensation in the current-density relation of 1D driven flow. Based on mean-field calculations, we present the fundamental diagram and the phase diagram of the modified SB problem, which are numerically checked. Finally, we discuss how the condensation of holes suppresses the jamming of particles and vice versa, where the partially condensed phase is the most interesting, compared to that in the original SB problem.

  3. Analytical Approach in DeCoM

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2011-01-01

    There are many papers on describing a LHP as an overall system, but few detail on the condenser section of a loop heat pipe. The DeCoM (Deepak Condenser Model) method utilizes user set initial parameters in-order to simulate a condenser by calculating the interactions between the fluid and the wall. Equations are derived for two sections of the condenser: a two-phase section and a subcooled (liquid) section. All Equations are based upon the conservation of energy theory, from which fluid temperature, and fluid quality values are solved. In order to solve for the heat transfer value, between fluid and the wall in two phase section, the Lockhart-Martinelli correlation method was implemented as a solution approach. For Liquid phase, the Reynolds number was used in-order to differentiate the flow state, from either turbulent or laminar, and Nusselt number was used to solve for the film coefficient. To represent these calculations for both sections a flow chart is presented in order to display the execution process of DeCoM. The benefit of DeCoM is that it is capable of performing preliminary analysis without requiring a license and without much of users knowledge on condensers.

  4. Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer

    DOEpatents

    Dress, William B.; Kisner, Roger A.; Richards, Roger K.

    2004-06-01

    53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.

  5. Mesoporous aluminium organophosphonates: a reusable chemsensor for the detection of explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongdong, E-mail: lidongdong@jlu.edu.cn; Yu, Xiang

    Rapid and sensitive detection of explosives is in high demand for homeland security and public safety. In this work, electron-rich of anthracene functionalized mesoporous aluminium organophosphonates (En-AlPs) were synthesized by a one-pot condensation process. The mesoporous structure and strong blue emission of En-AlPs were confirmed by the N{sub 2} adsorption-desorption isotherms, transmission electron microscopy images and fluorescence spectra. The materials En-AlPs can serve as sensitive chemosensors for various electron deficient nitroderivatives, with the quenching constant and the detection limit up to 1.5×10{sup 6} M{sup −1} and 0.3 ppm in water solution. More importantly, the materials can be recycled for manymore » times by simply washed with ethanol, showing potential applications in explosives detection. - Graphical abstract: Electron-rich of anthracene functionalized mesoporous aluminium organophosphonates can serve as sensitive and recycled chemosensors for nitroderivatives with the quenching constant up to 1.5×10{sup 6} M{sup −1} in water solution. Display Omitted - Highlights: • Anthracene functionalized mesoporous aluminium organophosphonates were synthesized. • The materials serve as sensitive chemosensors for nitroderivatives. • The materials can be recycled for many times by simply washed with ethanol. • The materials show potential applications in explosives detection.« less

  6. Reconciling phase diffusion and Hartree-Fock approximation in condensate systems

    NASA Astrophysics Data System (ADS)

    Giorgi, Gian Luca; de Pasquale, Ferdinando

    2012-01-01

    Despite the weakly interacting regime, the physics of Bose-Einstein condensates is widely affected by particle-particle interactions. They determine quantum phase diffusion, which is known to be the main cause of loss of coherence. Studying a simple model of two interacting Bose systems, we show how to predict the appearance of phase diffusion beyond the Bogoliubov approximation, providing a self-consistent treatment in the framework of a generalized Hartree-Fock-Bogoliubov perturbation theory.

  7. Modeling of Bulk Evaporation and Condensation

    NASA Technical Reports Server (NTRS)

    Anghaie, S.; Ding, Z.

    1996-01-01

    This report describes the modeling and mathematical formulation of the bulk evaporation and condensation involved in liquid-vapor phase change processes. An internal energy formulation, for these phase change processes that occur under the constraint of constant volume, was studied. Compared to the enthalpy formulation, the internal energy formulation has a more concise and compact form. The velocity and time scales of the interface movement were obtained through scaling analysis and verified by performing detailed numerical experiments. The convection effect induced by the density change was analyzed and found to be negligible compared to the conduction effect. Two iterative methods for updating the value of the vapor phase fraction, the energy based (E-based) and temperature based (T-based) methods, were investigated. Numerical experiments revealed that for the evaporation and condensation problems the E-based method is superior to the T-based method in terms of computational efficiency. The internal energy formulation and the E-based method were used to compute the bulk evaporation and condensation processes under different conditions. The evolution of the phase change processes was investigated. This work provided a basis for the modeling of thermal performance of multi-phase nuclear fuel elements under variable gravity conditions, in which the buoyancy convection due to gravity effects and internal heating are involved.

  8. Direct observation of growth and collapse of a Bose-Einstein condensate with attractive interactions

    NASA Astrophysics Data System (ADS)

    Gerton, Jordan M.; Strekalov, Dmitry; Prodan, Ionut; Hulet, Randall G.

    2000-12-01

    Quantum theory predicts that Bose-Einstein condensation of a spatially homogeneous gas with attractive interactions is precluded by a conventional phase transition into either a liquid or solid. When confined to a trap, however, such a condensate can form, provided that its occupation number does not exceed a limiting value. The stability limit is determined by a balance between the self-attractive forces and a repulsion that arises from position-momentum uncertainty under conditions of spatial confinement. Near the stability limit, self-attraction can overwhelm the repulsion, causing the condensate to collapse. Growth of the condensate is therefore punctuated by intermittent collapses that are triggered by either macroscopic quantum tunnelling or thermal fluctuation. Previous observations of growth and collapse dynamics have been hampered by the stochastic nature of these mechanisms. Here we report direct observations of the growth and subsequent collapse of a 7Li condensate with attractive interactions, using phase-contrast imaging. The success of the measurement lies in our ability to reduce the stochasticity in the dynamics by controlling the initial number of condensate atoms using a two-photon transition to a diatomic molecular state.

  9. Nanosecond laser ablation of target Al in a gaseous medium: explosive boiling

    NASA Astrophysics Data System (ADS)

    Mazhukin, V. I.; Mazhukin, A. V.; Demin, M. M.; Shapranov, A. V.

    2018-03-01

    An approximate mathematical description of the processes of homogeneous nucleation and homogeneous evaporation (explosive boiling) of a metal target (Al) under the influence of ns laser radiation is proposed in the framework of the hydrodynamic model. Within the continuum approach, a multi-phase, multi-front hydrodynamic model and a computational algorithm are designed to simulate nanosecond laser ablation of the metal targets immersed in gaseous media. The proposed approach is intended for modeling and detailed analysis of the mechanisms of heterogeneous and homogeneous evaporation and their interaction with each other. It is shown that the proposed model and computational algorithm allow modeling of interrelated mechanisms of heterogeneous and homogeneous evaporation of metals, manifested in the form of pulsating explosive boiling. Modeling has shown that explosive evaporation in metals is due to the presence of a near-surface temperature maximum. It has been established that in nanosecond pulsed laser ablation, such exposure regimes can be implemented in which phase explosion is the main mechanism of material removal.

  10. Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals.

    PubMed

    Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom

    2017-11-17

    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

  11. Development of multi-component explosive lenses for arbitrary phase velocity generation

    NASA Astrophysics Data System (ADS)

    Loiseau, Jason; Huneault, Justin; Petel, Oren; Goroshin, Sam; Frost, David; Higgins, Andrew; Zhang, Fan

    2013-06-01

    The combination of explosives with different detonation velocities and lens-like geometric shaping is a well-established technique for producing structured detonation waves. This technique can be extended to produce nearly arbitrary detonation phase velocities for the purposes of sequentially imploding pressurized tubes or driving Mach disks through high-density metalized explosives. The current study presents the experimental development of accelerating, multi-component lenses designed using simple geometric optics and idealized front curvature. The fast explosive component is either Composition C4 (VOD = 8 km/s) or Primasheet 1000 (VOD = 7 km/s), while the slow component varies from heavily amine-diluted nitromethane (amine mass fraction exceeding 20%) to packed metal and glass particle beds wetted with amine-sensitized nitromethane. The applicability of the geometric optic analog to such highly heterogeneous explosives is also investigated. The multi-layered lens technique is further developed as a means of generating a directed mass and momentum flux of metal particles via Mach-disk formation and jetting in circular and oval planar lenses.

  12. Direct Quantum Mechanical Simulations of Shocked Energetic Materials

    DTIC Science & Technology

    2008-12-01

    dynamics (QMD) simulations of shocked pentaerythritol tetranitrate (PETN), a conventional high explosive , and the polymeric cubic gauche phase of...nitrogen (cg-N), proposed as an environmentally acceptable energetic alternative to conventional explosive formulations. These simulations, made...stored structural potential energy can be liberated quickly enough, it is possible that explosion can occur with energies several orders of magnitude

  13. Identification of targets at remote distances with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Cox, Rick; Williams, Brad; Harpster, Mark H.

    2012-06-01

    In the past few years, there has arisen an intense demand for new generation technologies which provide for the rapid and sensitive stand-off detection of explosive compounds and hazardous chemicals. This has been fueled, in large part, by the escalation of threats to homeland security and the debilitating effects of IED devices in both civilian and war zones. In this paper, we describe two portable stand-off Raman spectrometers which have been developed by DeltaNu and are intended for use in different test environments. The first, the DeltaNu ObserveR™, is a handheld785 nm laser device suited for the close range detection of explosive materials during nighttime operations, or indoors under restricted light conditions. The second device, the ObserveR LR, is a tripod-mounted, solar blind system that enables detection at longer distances (ca. <30 m) with reduced fluorescence interference. A condensed summary is presented of different tests that have been conducted using these devices, and results are discussed within the context of technological improvements that will be required to adequately meet the challenge of robust explosive material detection.

  14. Competing role of Interactions in Synchronization of Exciton-Polariton condensates

    NASA Astrophysics Data System (ADS)

    Khan, Saeed; Tureci, Hakan E.

    We present a theoretical study of synchronization dynamics in incoherently pumped exciton-polariton condensates in coupled traps. Our analysis is based on an expansion in non-Hermitian modes that take into account the trapping potential and the pump-induced complex-valued potential. We find that polariton-polariton and reservoir-polariton interactions play competing roles in the emergence of a synchronized phase as pumping power is increased, leading to qualitatively different synchronized phases. Crucially, these interactions can also act against each other to hinder synchronization. We present a phase diagram and explain the general characteristics of these phases using a generalized Adler equation. Our work sheds light on dynamics strongly influenced by competing interactions particular to incoherently pumped exciton-polariton condensates, which can lead to interesting features in recently engineered polariton lattices. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering.

  15. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  16. Formation of Silicate Grains in Circumstellar Environments: Experiment, Theory and Observations

    NASA Technical Reports Server (NTRS)

    Castleman, A., Jr.; Reber, A.; Clayborne, P.; Reveles, J.; Khanna, S.; Ali, A.

    2006-01-01

    Amongst chemical reactions (1) in the molecular universe (2), condensation reaction is probably the most poorly understood. The condensation of a solid from its components in the gas phase occurs in many parts of our galaxy such as stellar mass outflows, the terrestrial region of protoplanetary disks and in primordial solar nebula (3). But how does the transition occur from molecules to intermediate clusters to macroscopic grains? The major focus of the present work is the identification of chemical condensation reaction pathways that lead to the formation of stoichiometry, composition and crystallinity of cosmic silicates from vapor phase species.

  17. Nitric Acid Uptake on Subtropical Cirrus Cloud Particles

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Gao, R. S.; Marcy, T. P.; Fahey, D. W.; Hudson, P. K.; Thompson, T. L.; Kaercher, B.; Ridley, B. A.; Weinheimer, A. J.; Knapp, D. J.; hide

    2004-01-01

    The redistribution of HNO3 via uptake and sedimentation by cirrus cloud particles is considered an important term in the upper tropospheric budget of reactive nitrogen. Numerous cirrus cloud encounters by the NASA WB-57F high-altitude research aircraft during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) were accompanied by the observation of condensed-phase HNO3 with the NOAA chemical ionization mass spectrometer. The instrument measures HNO3 with two independent channels of detection connected to separate forward and downward facing inlets that allow a determination of the amount of HNO3 condensed on ice particles. Subtropical cirrus clouds, as indicated by the presence of ice particles, were observed coincident with condensed-phase HNO3 at temperatures of 197-224 K and pressures of 122-224 hPa. Maximum levels of condensed-phase HNO3 approached the gas-phase equivalent of 0.8 ppbv. Ice particle surface coverages as high as 1.4 # 10(exp 14) molecules/ square cm were observed. A dissociative Langmuir adsorption model, when using an empirically derived HNO3 adsorption enthalpy of -11.0 kcal/mol, effectively describes the observed molecular coverages to within a factor of 5. The percentage of total HNO3 in the condensed phase ranged from near zero to 100% in the observed cirrus clouds. With volume-weighted mean particle diameters up to 700 ?m and particle fall velocities up to 10 m/s, some observed clouds have significant potential to redistribute HNO3 in the upper troposphere.

  18. INDUSTRIAL AND SCIENTIFIC APPLICATIONS OF NUCLEAR EXPLOSIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Gerald W.

    1960-01-19

    ABS>Information is given for a series of underground and surface nuclear explosions ranging from 0.055 to 19 kilotons in size. A model of four stages is developed and applied to the case of the Rainier explosion: (1) Nuclear Reaction, microsecond range. (2) Hydrodynamic Phase, millisecond range. (3) Quasi-Static Phase, secondminute range. (4) Longer-Term Phase, minute-year range. Data are given for the growth rate of the Rainier cavity up to 75 msec, partition of energy in the second stage, and distribution of temperature 5 months after the Rainier explosion. The following generalizations were made for tuff soil: Radioactivity can be containedmore » completely underground at depths of D = 400 W/sup 1/3/ or greater, where W is the energy release in kilotons; the cavity initially formed has a radius of R = 50 W/sup 1/3/; and 65 to 80% of the fission-product activity is in dilute (0.1 ppm) glass solution. The purpose and scheme of the three current AEC projects, Gnome, Project Oil Sand, and Project Chariot, are given. Also, some experiments to be done with nuclear explosions are suggested for space research, production of transplutonic isotopes, neutron resonance, other cross sections, earth's structure, and seismology. (D.L.C.)« less

  19. Vapor-crystal phase transition in synthesis of paracetamol films by vacuum evaporation and condensation

    NASA Astrophysics Data System (ADS)

    Belyaev, A. P.; Rubets, V. P.; Antipov, V. V.; Bordei, N. S.; Zarembo, V. I.

    2014-03-01

    We report on the structural and technological investigations of the vapor-crystal phase transition during synthesis of paracetamol films of the monoclinic system by vacuum evaporation and condensation in the temperature range 220-320 K. The complex nature of the transformation accompanied by the formation of a gel-like phase is revealed. The results are interpreted using a model according to which the vapor-crystal phase transition is not a simple first-order phase transition, but is a nonlinear superposition of two phase transitions: a first-order transition with a change in density and a second-order phase transition with a change in ordering. Micrographs of the surface of the films are obtained at different phases of formation.

  20. Towards a predictive thermal explosion model for energetic materials

    NASA Astrophysics Data System (ADS)

    Yoh, Jack J.; McClelland, Matthew A.; Maienschein, Jon L.; Wardell, Jeffrey F.

    2005-01-01

    We present an overview of models and computational strategies for simulating the thermal response of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the behavior of energetic materials systems exposed to strong thermal environments such as fires. We apply these models and computational techniques to a thermal explosion experiment involving the slow heating of a confined explosive. The model includes the transition from slow heating to rapid deflagration in which the time scale decreases from days to hundreds of microseconds. Thermal, mechanical, and chemical effects are modeled during all phases of this process. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics. In addition, we investigate the sensitivity of wall expansion rates to numerical strategies and parameters. Results from a one-dimensional model show that violence is influenced by the presence of a gap between the explosive and container. In addition, a comparison is made between 2D model and measured results for the explosion temperature and tube wall expansion profiles.

  1. The Darzens Condensation: Structure Determination through Spectral Analysis and Understanding Substrate Reactivity

    ERIC Educational Resources Information Center

    Crouch, R. David; Holden, Michael S.; Romany, Candice A.

    2004-01-01

    The use of KOH and a phase transfer catalyst to achieve diastereoselective Darzens condensation is described and a modification of the method for use in organic chemistry is carried out. The experiment involves the condensation of t-butyl chloroacentate and p-tolualdehyde with KOH and benzyltriethylammonium chloride in THF.

  2. Kinetic Modeling of Slow Energy Release in Non-Ideal Carbon Rich Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P; Fried, L; Glaesemann, K

    2006-06-20

    We present here the first self-consistent kinetic based model for long time-scale energy release in detonation waves in the non-ideal explosive LX-17. Non-ideal, insensitive carbon rich explosives, such as those based on TATB, are believed to have significant late-time slow release in energy. One proposed source of this energy is diffusion-limited growth of carbon clusters. In this paper we consider the late-time energy release problem in detonation waves using the thermochemical code CHEETAH linked to a multidimensional ALE hydrodynamics model. The linked CHEETAH-ALE model dimensional treats slowly reacting chemical species using kinetic rate laws, with chemical equilibrium assumed for speciesmore » coupled via fast time-scale reactions. In the model presented here we include separate rate equations for the transformation of the un-reacted explosive to product gases and for the growth of a small particulate form of condensed graphite to a large particulate form. The small particulate graphite is assumed to be in chemical equilibrium with the gaseous species allowing for coupling between the instantaneous thermodynamic state and the production of graphite clusters. For the explosive burn rate a pressure dependent rate law was used. Low pressure freezing of the gas species mass fractions was also included to account for regions where the kinetic coupling rates become longer than the hydrodynamic time-scales. The model rate parameters were calibrated using cylinder and rate-stick experimental data. Excellent long time agreement and size effect results were achieved.« less

  3. Parity bifurcations in trapped multistable phase locked exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Tan, E. Z.; Sigurdsson, H.; Liew, T. C. H.

    2018-02-01

    We present a theoretical scheme for multistability in planar microcavity exciton-polariton condensates under nonresonant driving. Using an excitation profile resulting in a spatially patterned condensate, we observe organized phase locking which can abruptly reorganize as a result of pump induced instability made possible by nonlinear interactions. For π /2 symmetric systems this reorganization can be regarded as a parity transition and is found to be a fingerprint of multistable regimes existing over a finite range of excitation strengths. The natural degeneracy of the planar equations of motion gives rise to parity bifurcation points where the condensate, as a function of excitation intensity, bifurcates into one of two anisotropic degenerate solutions. Deterministic transitions between multistable states are made possible using controlled nonresonant pulses, perturbing the solution from one attractor to another.

  4. 2005 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barlow, Stephan E.

    2005-11-15

    The Pacific Northwest National Laboratory (PNNL) hosted its second annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2005. During this period, sixteen PNNL scientists hosted fourteen young scientists from eleven different universities. Of the fourteen participants, twelve were graduate students; one was a postdoctoral fellow; and one was a university faculty member.

  5. Condensation with two constraints and disorder

    NASA Astrophysics Data System (ADS)

    Barré, J.; Mangeolle, L.

    2018-04-01

    We consider a set of positive random variables obeying two additive constraints, a linear and a quadratic one; these constraints mimic the conservation laws of a dynamical system. In the simplest setting, without disorder, it is known that such a system may undergo a ‘condensation’ transition, whereby one random variable becomes much larger than the others; this transition has been related to the spontaneous appearance of non linear localized excitations in certain nonlinear chains, called breathers. Motivated by the study of breathers in a disordered discrete nonlinear Schrödinger equation, we study different instances of this problem in presence of a quenched disorder. Unless the disorder is too strong, the phase diagram looks like the one without disorder, with a transition separating a fluid phase, where all variables have the same order of magnitude, and a condensed phase, where one variable is much larger than the others. We then show that the condensed phase exhibits various degrees of ‘intermediate symmetry breaking’: the site hosting the condensate is chosen neither uniformly at random, nor is it fixed by the disorder realization. Throughout the article, our heuristic arguments are complemented with direct Monte Carlo simulations.

  6. Flow Boiling and Condensation Experiment (FBCE) for the International Space Station

    NASA Technical Reports Server (NTRS)

    Mudawar, Issam; O'Neill, Lucas; Hasan, Mohammad; Nahra, Henry; Hall, Nancy; Balasubramaniam, R.; Mackey, Jeffrey

    2016-01-01

    An effective means to reducing the size and weight of future space vehicles is to replace present mostly single-phase thermal management systems with two-phase counterparts. By capitalizing upon both latent and sensible heat of the coolant rather than sensible heat alone, two-phase thermal management systems can yield orders of magnitude enhancement in flow boiling and condensation heat transfer coefficients. Because the understanding of the influence of microgravity on two-phase flow and heat transfer is quite limited, there is an urgent need for a new experimental microgravity facility to enable investigators to perform long-duration flow boiling and condensation experiments in pursuit of reliable databases, correlations and models. This presentation will discuss recent progress in the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS) in collaboration between Purdue University and NASA Glenn Research Center. Emphasis will be placed on the design of the flow boiling module and on new flow boiling data that were measured in parabolic flight, along with extensive flow visualization of interfacial features at heat fluxes up to critical heat flux (CHF). Also discussed a theoretical model that will be shown to predict CHF with high accuracy.

  7. The role of phosphorus in chemical evolution.

    PubMed

    Maciá, Enrique

    2005-08-01

    In this tutorial review we consider the role of phosphorus and its compounds within the context of chemical evolution in galaxies. Following an interdisciplinary approach we first discuss the position of P among the main biogenic elements by considering its relevance in most essential biochemical functions as well as its peculiar chemistry under different physicochemical conditions. Then we review the phosphorus distribution in different cosmic sites, such as terrestrial planets, interplanetary dust particles, cometary dust, planetary atmospheres and the interstellar medium (ISM). In this way we realize that this element is both scarce and ubiquitous in the universe. These features can be related to the complex nucleosynthesis of P nuclide in the cores of massive stars under explosive conditions favouring a wide distribution of this element through the ISM, where it would be ready to react with other available atoms. A general tendency towards more oxidized phosphorus compounds is clearly appreciated as chemical evolution proceeds from circumstellar and ISM materials to protoplanetary and planetary condensed matter phases. To conclude we discuss some possible routes allowing for the incorporation of phosphorus compounds of prebiotic interest during the earlier stages of solar system formation.

  8. Theory of Mach reflection of detonation at glancing incidence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bdzil, John Bohdan; Short, Mark

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  9. Theory of Mach reflection of detonation at glancing incidence

    DOE PAGES

    Bdzil, John Bohdan; Short, Mark

    2016-12-06

    In this paper, we present a theory for Mach reflection of a detonation undergoing glancing incidence reflection off of a rigid wall. Our focus is on condensed-phase explosives, which we describe with a constant adiabatic gamma equation of state and an irreversible and either state-independent or weakly state-dependent reaction rate. We consider two detonation models: (1) the instantaneous reaction heat-release Chapman–Jouguet (CJ) limit and (2) the spatially resolved reaction heat-release Zeldovich–von Neumann–Dmore » $$\\ddot{Ø}$$ring (ZND) limit, where here we only consider that a small fraction of the detonation energy release is spatially resolved (the SRHR limit). We observe a three-shock reflection in the CJ limit case, with a Mach shock that is curved. In addition, we develop an analytical expression for the triple-point track angle as a function of the angle of incidence. For the SRHR model, we observe a smooth lead shock, akin to von Neumann reflection, with no reflected shock in the reaction zone. Only at larger angles of incidence is a three-shock Mach reflection observed.« less

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tarver, C M

    Recent laser ignition experiments on octahydro-1,3,5,7-tetranitro-1,3,5,7-terrazocine (HMX) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) subjected to laser fluxes ranging from 10 to 800 W/cm{sup 2} produced ignition times from seconds to milliseconds. Global chemical kinetic thermal decomposition models for HMX and TATB have been developed to calculate times to thermal explosion for experiments in the seconds to days time frame. These models are applied to the laser ignition experimental data in this paper. Excellent agreement was obtained for TATB, while the calculated ignition times were longer than experiment for HMX at lower laser fluxes. At the temperatures produced in the laser experiments, HMX melts.more » Melting generally increases condensed phase reaction rates so faster rates were used for three of the HMX reaction rates. This improved agreement with experiments at the lower laser fluxes but yielded very fast ignition at high fluxes. The calculated times to ignition are in reasonable agreement with the laser ignition experiments, and this justifies the use of these models for estimating reaction times at impact and shock ''hot spot'' temperatures.« less

  11. Invited papers presented to a workshop on thermodynamics and kinetics of dust formation in the space medium. [condensation, nucleation, and interstellar dust

    NASA Technical Reports Server (NTRS)

    Robertson, P. C.

    1978-01-01

    Abstracts of 25 papers relating to condensation processes in the early solar system are presented. Special emphasis is given to the transition of an initial vapor phase in the space medium, the characterization of condensation environments, and condensation processes in the space medium. The question of whether some fraction of the solar system solids (particularly exemplified by meteoritic solids) may be interstellar grains that gathered in the region of the proto-sun, rather than being products of local condensation is addressed.

  12. Vapor-liquid coexistence of the Stockmayer fluid in nonuniform external fields.

    PubMed

    Samin, Sela; Tsori, Yoav; Holm, Christian

    2013-05-01

    We investigate the structure and phase behavior of the Stockmayer fluid in the presence of nonuniform electric fields using molecular simulation. We find that an initially homogeneous vapor phase undergoes a local phase separation in a nonuniform field due to the combined effect of the field gradient and the fluid vapor-liquid equilibrium. This results in a high-density fluid condensing in the strong field region. The system polarization exhibits a strong field dependence due to the fluid condensation.

  13. Experimental Investigation of Flow Condensation in Microgravity

    NASA Technical Reports Server (NTRS)

    Lee, Hyoungsoon; Park, Ilchung; Konishi, Christopher; Mudawar, Issam; May, Rochelle I.; Juergens, Jeffery R.; Wagner, James D.; Hall, Nancy R.; Nahra, Henry K.; Hasan, Mohammed M.; hide

    2013-01-01

    Future manned missions to Mars are expected to greatly increase the space vehicle's size, weight, and heat dissipation requirements. An effective means to reducing both size and weight is to replace single-phase thermal management systems with two-phase counterparts that capitalize upon both latent and sensible heat of the coolant rather than sensible heat alone. This shift is expected to yield orders of magnitude enhancements in flow boiling and condensation heat transfer coefficients. A major challenge to this shift is a lack of reliable tools for accurate prediction of two-phase pressure drop and heat transfer coefficient in reduced gravity. Developing such tools will require a sophisticated experimental facility to enable investigators to perform both flow boiling and condensation experiments in microgravity in pursuit of reliable databases. This study will discuss the development of the Flow Boiling and Condensation Experiment (FBCE) for the International Space Station (ISS), which was initiated in 2012 in collaboration between Purdue University and NASA Glenn Research Center. This facility was recently tested in parabolic flight to acquire condensation data for FC-72 in microgravity, aided by high-speed video analysis of interfacial structure of the condensation film. The condensation is achieved by rejecting heat to a counter flow of water, and experiments were performed at different mass velocities of FC-72 and water and different FC-72 inlet qualities. It is shown that the film flow varies from smooth-laminar to wavy-laminar and ultimately turbulent with increasing FC-72 mass velocity. The heat transfer coefficient is highest near the inlet of the condensation tube, where the film is thinnest, and decreases monotonically along the tube, except for high FC-72 mass velocities, where the heat transfer coefficient is enhanced downstream. This enhancement is attributed to both turbulence and increased interfacial waviness. One-ge correlations are shown to predict the average condensation heat transfer coefficient with varying degrees of success, and a recent correlation is identified for its superior predictive capability, evidenced by a mean absolute error of 21.7%.

  14. Accounting for the Effect of Noncondensing Gases on Interphasic Heat and Mass Transfer in the Two-Fluid Model Used in the KORSAR Code

    NASA Astrophysics Data System (ADS)

    Yudov, Yu. V.

    2018-03-01

    A model is presented of the interphasic heat and mass transfer in the presence of noncondensable gases for the KORSAR/GP design code. This code was developed by FGUP NITI and the special design bureau OKB Gidropress. It was certified by Rostekhnadzor in 2009 for numerical substantiation of the safety of reactor installations with VVER reactors. The model is based on the assumption that there are three types of interphasic heat and mass transfer of the vapor component: vapor condensation or evaporation on the interphase under any thermodynamic conditions of the phases, pool boiling of the liquid superheated above the saturation temperature at the total pressure, and spontaneous condensation in the volume of gas phase supercooled below the saturation temperature at the vapor partial pressure. Condensation and evaporation on the interphase continuously occur in a two-phase flow and control the time response of the interphase heat and mass transfer. Boiling and spontaneous condensation take place only at the metastable condition of the phases and run at a quite high speed. The procedure used for calculating condensation and evaporation on the interphase accounts for the combined diffusion and thermal resistance of mass transfer in all regimes of the two-phase flow. The proposed approach accounts for, in a natural manner, a decrease in the rate of steam condensation (or generation) in the presence of noncondensing components in the gas phase due to a decrease (or increase) in the interphase temperature relative to the saturation temperature at the vapor partial pressure. The model of the interphase heat transfer also accounts for the processes of dissolution or release of noncondensing components in or from the liquid. The gas concentration at the interphase and on the saturation curve is calculated by the Henry law. The mass transfer coefficient in gas dissolution is based on the heat and mass transfer analogy. Results are presented of the verification of the interphase heat and mass transfer used in the KORSAR/GP code based on the data on film condensation of steam-air flows in vertical pipes. The proposed model was also tested by solving a problem of nitrogen release from a supersaturated water solution.

  15. Effect of deuteration on the diameter-effect curve of liquid nitromethane.

    PubMed

    Engelke, Ray; Sheffield, Stephen A; Stacy, Howard L

    2006-06-22

    The detonation properties of liquid nitromethane [CH(3)NO(2)] are probably the most thoroughly studied of any condensed-phase explosive. Because it is homogeneous (i.e., lacks hot-spot phenomena), it provides a window into the underlying chemical processes induced by a passing shock or detonation wave-such information is submerged in the complex fluid mechanics when heterogeneous explosives are detonated. In this paper, we provide experimental data and data analysis of the effect that deuterating nitromethane's methyl group has on some aspects of the processes that occur in the detonating liquid material. In the experimental part of this study, we report diameter-effect curves (i.e., inverse charge internal radius vs steady detonation speed) for pure CH(3)NO(2) and pure CD(3)NO(2) confined in right-circular cylinders of C-260 brass. Large differences in the infinite-medium (i.e., plane wave) detonation speed and in the failure diameter of the two materials are observed. Interpretations of the observations based on physical and chemical theory are given. The observed large decrease in deuterated nitromethane's infinite-medium detonation speed, relative to the protonated material, is interpreted in terms of the Zeldovitch, von Neumann, and Doering theory of steady-state detonation. We also estimate the relative size of the steady plane-wave reaction-zone length of the two materials. We interpret the observed increases in NM's failure diameter and its steady one-dimensional chemical-reaction-zone length due to deuteration in terms of the quantity of NM aci ion present. The new results are placed in the context of earlier work on detonating liquid nitromethane.

  16. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    PubMed

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate previous work demonstrating ciliates with improving expertise search grouped 'courting' assurances at quantum efficiencies and verify efficient processing by primitive 'social' intelligences involves network forms of Bose-Einstein condensation coupled to preceding thermodynamic-sensitive computational phases. 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Exotic states of matter with polariton chains

    NASA Astrophysics Data System (ADS)

    Kalinin, Kirill P.; Lagoudakis, Pavlos G.; Berloff, Natalia G.

    2018-04-01

    We consider linear periodic chains of exciton-polariton condensates formed by pumping polaritons nonresonantly into a linear network. To the leading order such a sequence of condensates establishes relative phases as to minimize a classical one-dimensional X Y Hamiltonian with nearest and next-to-nearest neighbors. We show that the low-energy states of polaritonic linear chains demonstrate various classical regimes: ferromagnetic, antiferromagnetic, and frustrated spiral phases where quantum or thermal fluctuations are expected to give rise to a spin-liquid state. At the same time nonlinear interactions at higher pumping intensities bring about phase chaos and novel exotic phases.

  18. Characterization of On-Orbit U.S. Lab Condensate Vacuum Venting

    NASA Astrophysics Data System (ADS)

    Schmidl, W. D.; Alred, J. A.; Mikatarian, R.; Soares, C.; Miles, E.

    2002-01-01

    The venting of liquid streams into a vacuum has been studied extensively for many years. An experiment was performed aboard the International Space Station (ISS) to video tape the U.S. Lab's condensate venting event with cameras located on the Space Station Remote Manipulator System (SSRMS). Images of the vent plume were acquired close to both the port and starboard vent nozzles. The imaging started with a wider view and then zoomed in closer before the shutdown phase of the vent event occurred. The objective of this experiment was to extend our understanding of the properties of venting liquids into space. Data from the video images were analyzed to obtain the approximate cone angle encompassing the core of the vent plume. The condensate vent plume was characterized as having three phases, a startup phase, a nominal phase, and a shutdown phase. The startup phase consisted of the initial period when the vent first started and the liquid first entered the heated line. The nominal phase was the period when the majority of the liquid was vented. The shutdown phase occurs close to the end of the vent event. The shutdown phase was further divided into two parts, the shutdown initial phase, and a later shutdown sputtering phase. The shutdown initial phase occurs when gas becomes entrained in the condensate liquid being vented. The sputtering phase occurred after the vent valve was closed, and the liquid/ice in the line was removed by continuing to heat the line to bake it out. It was determined that the ice particles were ejected at higher angles, but lower velocities, during the startup and shutdown phases. The number and velocities of ice particles ejected outside of the core region, during the startup, initial shutdown and shutdown sputtering phases were determined. The core of liquid ejected during the startup and shutdown phases was contained within a half cone angle of less than 60 degrees. The startup phase took approximately 36 seconds, the shutdown initial phase took approximately 22 seconds, and the shutdown sputtering phase took approximately 32 seconds. Results from the experiment were correlated with the Boeing ISS vent plume model.

  19. An Anion-Induced Hydrothermal Oriented-Explosive Strategy for the Synthesis of Porous Upconversion Nanocrystals

    PubMed Central

    Qiu, Peiyu; Sun, Rongjin; Gao, Guo; Zhang, Chunlei; Chen, Bin; Yan, Naishun; Yin, Ting; Liu, Yanlei; Zhang, Jingjing; Yang, Yao; Cui, Daxiang

    2015-01-01

    Rare-earth (RE)-doped upconversion nanocrystals (UCNCs) are deemed as the promising candidates of luminescent nanoprobe for biological imaging and labeling. A number of methods have been used for the fabrication of UCNCs, but their assembly into porous architectures with desired size, shape and crystallographic phase remains a long-term challenging task. Here we report a facile, anion-induced hydrothermal oriented-explosive method to simultaneously control size, shape and phase of porous UCNCs. Our results confirmed the anion-induced hydrothermal oriented-explosion porous structure, size and phase transition for the cubic/hexagonal phase of NaLuF4 and NaGdF4 nanocrystals with various sizes and shapes. This general method is very important not only for successfully preparing lanthanide doped porous UCNCs, but also for clarifying the formation process of porous UCNCs in the hydrothermal system. The synthesized UCNCs were used for in vitro and in vivo CT imaging, and could be acted as the potential CT contrast agents. PMID:25767613

  20. Polymer-induced DNA Condensation in the Lamellar Phase of DNA-Lipid Complexes

    NASA Astrophysics Data System (ADS)

    Martin, Ana; Lin, Alison J.; Schulze, Uwe; Safinya, Cyrus R.; Schmidt, Hans-Werner

    2000-03-01

    The lamellar phase of cationic lipid-DNA complexes (CL-DNA)[1,2] is a model system for the study of a polymer induced condensation in two dimensions. Measurements of X-ray diffraction show DNA condensation with the addition of cationic poly(ethylene glycol) PEG-lipid to the membrane of the CL-DNA complexes, revealing the existence of two different behaviors as a function of the PEG length. For shorter PEG the DNA condensation can be described by considering the charge increase on the membrane due to the incorporation of the cationic polymeric chains. For longer PEG a deviation from the predicted electrostatic distance between DNA chains is observed. This higher condensation is caused by a novel depletion-attraction interaction between DNA chains in two dimensions. This work is supported by NSF-DMR9972246 and a fellowship of the Education Ministry of Spain. [1] Rädler, JO; Koltover, I; Salditt, T; Safinya, CR., Science 275, 810 (1997). [2] Koltover, I; Salditt, T; Safinya, CR., Biophys. J. 77, 915 (1999).

  1. Impact of nonlinear effective interactions on group field theory quantum gravity condensates

    NASA Astrophysics Data System (ADS)

    Pithis, Andreas G. A.; Sakellariadou, Mairi; Tomov, Petar

    2016-09-01

    We present the numerical analysis of effectively interacting group field theory models in the context of the group field theory quantum gravity condensate analog of the Gross-Pitaevskii equation for real Bose-Einstein condensates including combinatorially local interaction terms. Thus, we go beyond the usually considered construction for free models. More precisely, considering such interactions in a weak regime, we find solutions for which the expectation value of the number operator N is finite, as in the free case. When tuning the interaction to the strongly nonlinear regime, however, we obtain solutions for which N grows and eventually blows up, which is reminiscent of what one observes for real Bose-Einstein condensates, where a strong interaction regime can only be realized at high density. This behavior suggests the breakdown of the Bogoliubov ansatz for quantum gravity condensates and the need for non-Fock representations to describe the system when the condensate constituents are strongly correlated. Furthermore, we study the expectation values of certain geometric operators imported from loop quantum gravity in the free and interacting cases. In particular, computing solutions around the nontrivial minima of the interaction potentials, one finds, already in the weakly interacting case, a nonvanishing condensate population for which the spectra are dominated by the lowest nontrivial configuration of the quantum geometry. This result indicates that the condensate may indeed consist of many smallest building blocks giving rise to an effectively continuous geometry, thus suggesting the interpretation of the condensate phase to correspond to a geometric phase.

  2. Small-scale explosive seam welding. [using ribbon explosive encased in lead sheath

    NASA Technical Reports Server (NTRS)

    Bement, L. J.

    1972-01-01

    A unique small scale explosive seam welding technique is reported that has successfully joined a variety of aluminum alloys and alloy combinations in thicknesses to 0.125 inch, as well as titanium in thicknesses to 0.056 inch. The explosively welded joints are less than one-half inch in width and apparently have no long length limitation. The ribbon explosive developed in this study contains very small quantities of explosive encased in a flexible thin lead sheath. The evaluation and demonstration of this welding technique was accomplished in three phases: evaluation and optimization of ten major explosive welding variables, the development of four weld joints, and an applicational analysis which included photomicrographs, pressure integrity tests, vacuum effects, and fabrication of some potentially useful structures in aluminum and titanium.

  3. Moment-Tensor Spectra of Source Physics Experiments (SPE) Explosions in Granite

    NASA Astrophysics Data System (ADS)

    Yang, X.; Cleveland, M.

    2016-12-01

    We perform frequency-domain moment tensor inversions of Source Physics Experiments (SPE) explosions conducted in granite during Phase I of the experiment. We test the sensitivity of source moment-tensor spectra to factors such as the velocity model, selected dataset and smoothing and damping parameters used in the inversion to constrain the error bound of inverted source spectra. Using source moments and corner frequencies measured from inverted source spectra of these explosions, we develop a new explosion P-wave source model that better describes observed source spectra of these small and over-buried chemical explosions detonated in granite than classical explosion source models derived mainly from nuclear-explosion data. In addition to source moment and corner frequency, we analyze other features in the source spectra to investigate their physical causes.

  4. Relaxation dynamics of a driven two-level system coupled to a Bose-Einstein condensate: application to quantum dot-dipolar exciton gas hybrid systems.

    PubMed

    Kovalev, Vadim M; Tse, Wang-Kong

    2017-11-22

    We develop a microscopic theory for the relaxation dynamics of an optically pumped two-level system (TLS) coupled to a bath of weakly interacting Bose gas. Using Keldysh formalism and diagrammatic perturbation theory, expressions for the relaxation times of the TLS Rabi oscillations are derived when the boson bath is in the normal state and the Bose-Einstein condensate (BEC) state. We apply our general theory to consider an irradiated quantum dot coupled with a boson bath consisting of a two-dimensional dipolar exciton gas. When the bath is in the BEC regime, relaxation of the Rabi oscillations is due to both condensate and non-condensate fractions of the bath bosons for weak TLS-light coupling and pre dominantly due to the non-condensate fraction for strong TLS-light coupling. Our theory also shows that a phase transition of the bath from the normal to the BEC state strongly influences the relaxation rate of the TLS Rabi oscillations. The TLS relaxation rate is approximately independent of the pump field frequency and monotonically dependent on the field strength when the bath is in the low-temperature regime of the normal phase. Phase transition of the dipolar exciton gas leads to a non-monotonic dependence of the TLS relaxation rate on both the pump field frequency and field strength, providing a characteristic signature for the detection of BEC phase transition of the coupled dipolar exciton gas.

  5. On Localized Vapor Pressure Gradients Governing Condensation and Frost Phenomena.

    PubMed

    Nath, Saurabh; Boreyko, Jonathan B

    2016-08-23

    Interdroplet vapor pressure gradients are the driving mechanism for several phase-change phenomena such as condensation dry zones, interdroplet ice bridging, dry zones around ice, and frost halos. Despite the fundamental nature of the underlying pressure gradients, the majority of studies on these emerging phenomena have been primarily empirical. Using classical nucleation theory and Becker-Döring embryo formation kinetics, here we calculate the pressure field for all possible modes of condensation and desublimation in order to gain fundamental insight into how pressure gradients govern the behavior of dry zones, condensation frosting, and frost halos. Our findings reveal that in a variety of phase-change systems the thermodynamically favorable mode of nucleation can switch between condensation and desublimation depending upon the temperature and wettability of the surface. The calculated pressure field is used to model the length of a dry zone around liquid or ice droplets over a broad parameter space. The long-standing question of whether the vapor pressure at the interface of growing frost is saturated or supersaturated is resolved by considering the kinetics of interdroplet ice bridging. Finally, on the basis of theoretical calculations, we propose that there exists a new mode of frost halo that is yet to be experimentally observed; a bimodal phase map is developed, demonstrating its dependence on the temperature and wettability of the underlying substrate. We hope that the model and predictions contained herein will assist future efforts to exploit localized vapor pressure gradients for the design of spatially controlled or antifrosting phase-change systems.

  6. SEPARATION OF VAPOR-PHASE ALCOHOL/WATER MIXTURES VIA FRACTIONAL CONDENSATION USING A PILOT-SCALE DEPHLEGMATOR: ENHANCEMENT OF THE PREVAPORATION PROCESS SEPARATION FACTOR

    EPA Science Inventory

    In prevaporation, a liquid mixture contacts a membrane surface that preferentially permeates one of the liquid components as a vapor. Our approach to improving pervaporation performance is to replace the one-stage condenser traditionally used to condense the permeate with a frac...

  7. An Evaluation of Liquid and Two-Phase Cooling Techniques for Use in Electrical Machinery.

    DTIC Science & Technology

    1984-12-01

    equations (3.5) & (3.6) k Thermal conductivity L Condenser length m Mass flow rate b Nu Nusselt number P Pressure Pr Prandtl number Q Heat-transfer rate...IRI finned condenser (with axially-straight or helical fins), or 4. use an internally-grooved condenser . Marto [17] presents a detailed discussion of...the appropriate models for the first two cases. For example, for rotating truncated-cone condensers , Ballback [28] performed a Nusselt -type analysis

  8. Possible formation of high temperature superconductor at an early stage of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yu, Lang; Chernodub, Maxim; Huang, Mei

    2016-12-01

    We investigate the effect of the inverse magnetic catalysis (IMC) on charged ρ meson condensation at finite temperature in the framework of the Nambu-Jona-Lasinio model, where mesons are calculated to the leading order of 1 /Nc expansion. The IMC for chiral condensate has been considered using three different approaches: incorporating the chiral condensate from lattice data, using the running coupling constant, and introducing the chiral chemical potential, respectively. It is observed that with no IMC effect included, the critical magnetic field e Bc for charged ρ condensation increases monotonically with the temperature. However, including IMC substantially affects the polarized charged ρ condensation around the critical temperature Tc of the chiral phase transition: first, the critical magnetic field e Bc for the charged ρ condensation decreases with the temperature, reaches its minimum value around Tc, and then increases with the temperature. It is quite surprising that the charged ρ can condense above the critical temperature of chiral phase transition with a even smaller critical magnetic field comparing its vacuum value. The Nambu-Jona-Lasinio model calculation shows that in the temperature region of 1 - 1.5 Tc , the critical magnetic field for charged ρ condensation is rather small and in the region of e Bc˜0.15 - 0.3 GeV2 , which suggests that high temperature superconductor might be created through noncentral heavy ion collisions at LHC energies.

  9. Model of melting (crystallization) process of the condensed disperse phase in the smoky plasmas

    NASA Astrophysics Data System (ADS)

    Dragan, G. S.; Kolesnikov, K. V.; Kutarov, V. V.

    2018-01-01

    The paper presents an analysis of the causes of a formation of spatial ordered grain structures in a smoky plasma. We are modeling the process of melting (crystallization) of a condensed phase in this environment taking into account the screened electrostatic interaction and the diffusion-drift force. We discuss an influence of the charge on the melting temperatures.

  10. Method of measuring interface area of activated carbons in condensed phase

    NASA Astrophysics Data System (ADS)

    Dmitriyev, D. S.; Agafonov, D. V.; Kiseleva, E. A.; Mikryukova, M. A.

    2018-01-01

    In this work, we investigated the correlation between the heat of wetting of super-capacitor electrode material (activated carbon) with condensed phases (electrolytes based on homologous series of phosphoric acid esters) and the capacity of the supercapacitor. The surface area of the electrode-electrolyte interface was calculated according to the obtained correlations using the conventional formula for calculating the capacitance of a capacitor.

  11. Modeling Secondary Organic Aerosols over Europe: Impact of Activity Coefficients and Viscosity

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sartelet, K.; Couvidat, F.

    2014-12-01

    Semi-volatile organic species (SVOC) can condense on suspended particulate materials (PM) in the atmosphere. The modeling of condensation/evaporation of SVOC often assumes that gas-phase and particle-phase concentrations are at equilibrium. However, recent studies show that secondary organic aerosols (SOA) may not be accurately represented by an equilibrium approach between the gas and particle phases, because organic aerosols in the particle phase may be very viscous. The condensation in the viscous liquid phase is limited by the diffusion from the surface of PM to its core. Using a surrogate approach to represent SVOC, depending on the user's choice, the secondary organic aerosol processor (SOAP) may assume equilibrium or model dynamically the condensation/evaporation between the gas and particle phases to take into account the viscosity of organic aerosols. The model is implemented in the three-dimensional chemistry-transport model of POLYPHEMUS. In SOAP, activity coefficients for organic mixtures can be computed using UNIFAC for short-range interactions between molecules and AIOMFAC to also take into account the effect of inorganic species on activity coefficients. Simulations over Europe are performed and POLYPHEMUS/SOAP is compared to POLYPHEMUS/H2O, which was previously used to model SOA using the equilibrium approach with activity coefficients from UNIFAC. Impacts of the dynamic approach on modeling SOA over Europe are evaluated. The concentrations of SOA using the dynamic approach are compared with those using the equilibrium approach. The increase of computational cost is also evaluated.

  12. Quantum fluids of light in acoustic lattices

    NASA Astrophysics Data System (ADS)

    Cerda-Méndez, E. A.; Krizhanovskii, D. N.; Skolnick, M. S.; Santos, P. V.

    2018-01-01

    In this topical review, we report on the recent advances on the manipulation of hybrid light-matter quasi-particles called exciton-polaritons and their quantum condensed phases by means of acoustic and static periodic potentials. Polaritons are a superposition of photons and excitons and form in optical microcavities with quantum wells embedded in it. They are low-mass bosons in the dilute limit and have strong inter-particle interactions inherited from the excitonic component. Their capability to form quantum-condensed phases at temperatures in the kelvin range and to behave like quantum fluids makes them very attractive for novel solid-state devices. Since their de Broglie wavelength is of the order of a few micrometers, polaritons can be manipulated using static or dynamic potentials with micrometer scales. We present here a summary of the techniques used to submit polaritons and their condensed phases to periodic potentials, with an emphasis in dynamic ones produced by surface acoustic waves. We discuss the interesting phenomena that occur under such a modulation, such as condensation in excited states of the Brillouin zone, fragmentation of a condensate, formation of self-localized wavepackets, and Dirac and massive polaritons in static hexagonal and kagome lattices, respectively. The different techniques explored open the way to implement polariton-based quantum simulators, nano-optomechanic resonators and polaritonic topological insulators.

  13. Method of lift-off patterning thin films in situ employing phase change resists

    DOEpatents

    Bahlke, Matthias Erhard; Baldo, Marc A; Mendoza, Hiroshi Antonio

    2014-09-23

    Method for making a patterned thin film of an organic semiconductor. The method includes condensing a resist gas into a solid film onto a substrate cooled to a temperature below the condensation point of the resist gas. The condensed solid film is heated selectively with a patterned stamp to cause local direct sublimation from solid to vapor of selected portions of the solid film thereby creating a patterned resist film. An organic semiconductor film is coated on the patterned resist film and the patterned resist film is heated to cause it to sublime away and to lift off because of the phase change.

  14. Development of a model and computer code to describe solar grade silicon production processes

    NASA Technical Reports Server (NTRS)

    Srivastava, R.; Gould, R. K.

    1979-01-01

    Mathematical models, and computer codes based on these models were developed which allow prediction of the product distribution in chemical reactors in which gaseous silicon compounds are converted to condensed phase silicon. The reactors to be modeled are flow reactors in which silane or one of the halogenated silanes is thermally decomposed or reacted with an alkali metal, H2 or H atoms. Because the product of interest is particulate silicon, processes which must be modeled, in addition to mixing and reaction of gas-phase reactants, include the nucleation and growth of condensed Si via coagulation, condensation, and heterogeneous reaction.

  15. Asymmetric Quintuplet Condensation in the Frustrated S=1 Spin Dimer Compound Ba3Mn2O8

    NASA Astrophysics Data System (ADS)

    Samulon, E. C.; Kohama, Y.; McDonald, R. D.; Shapiro, M. C.; Al-Hassanieh, K. A.; Batista, C. D.; Jaime, M.; Fisher, I. R.

    2009-07-01

    Ba3Mn2O8 is a spin-dimer compound based on pairs of S=1, 3d2, Mn5+ ions arranged on a triangular lattice. Antiferromagnetic intradimer exchange leads to a singlet ground state in zero field, with excited triplet and quintuplet states at higher energy. High field thermodynamic measurements are used to establish the phase diagram, revealing a substantial asymmetry of the quintuplet condensate. This striking effect, all but absent for the triplet condensate, is due to a fundamental asymmetry in quantum fluctuations of the paramagnetic phases near the various critical fields.

  16. A reduced theoretical model for estimating condensation effects in combustion-heated hypersonic tunnel

    NASA Astrophysics Data System (ADS)

    Lin, L.; Luo, X.; Qin, F.; Yang, J.

    2018-03-01

    As one of the combustion products of hydrocarbon fuels in a combustion-heated wind tunnel, water vapor may condense during the rapid expansion process, which will lead to a complex two-phase flow inside the wind tunnel and even change the design flow conditions at the nozzle exit. The coupling of the phase transition and the compressible flow makes the estimation of the condensation effects in such wind tunnels very difficult and time-consuming. In this work, a reduced theoretical model is developed to approximately compute the nozzle-exit conditions of a flow including real-gas and homogeneous condensation effects. Specifically, the conservation equations of the axisymmetric flow are first approximated in the quasi-one-dimensional way. Then, the complex process is split into two steps, i.e., a real-gas nozzle flow but excluding condensation, resulting in supersaturated nozzle-exit conditions, and a discontinuous jump at the end of the nozzle from the supersaturated state to a saturated state. Compared with two-dimensional numerical simulations implemented with a detailed condensation model, the reduced model predicts the flow parameters with good accuracy except for some deviations caused by the two-dimensional effect. Therefore, this reduced theoretical model can provide a fast, simple but also accurate estimation of the condensation effect in combustion-heated hypersonic tunnels.

  17. Directed reflectivity, long life AMTEC condenser (DRC). Final report of Phase II SBIR program[Alkali Metal ThermoElectric Converter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, Thomas K.

    The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion device that operates at high thermal to electric conversion efficiencies that are essentially independent of size, have reached 19% and are expected to reach 25% to 30% in 1997. AMTEC systems have been chosen by NASA and DOE for spacecraft applications and have considerable promise for a wide variety of terrestrial applications. Reduction of parasitic heat losses in AMTEC systems related to radiative heat transfer from the hot side to the condenser can make a substantial contribution to system efficiency. Through design, analysis and the fabrication andmore » testing of cells and systems, the proposed program to develop a Directed Reflectivity Condenser (DRC) has investigated the feasibility of an improved AMTEC condenser component. Phase 1 work showed the potential for adding from 4% to 7% to overall system efficiency for identical operating conditions using the concept. A detailed thermal analysis of several DRC capped cell designs was carried out and some of the conditions under which a DRC, used as the condenser at an end cap of a cylindrical converter, can reduce thermal radiation related losses were determined. A model experimental converter was built and tested to compare DRC and planar condenser surfaces. The results of both analysis and experiment indicate that for moderate aspect ratios of a cylindrical, end condensed converter, the DRC can reduce overall thermal losses by up to 4%. The initial effort in Phase 2 extended the analysis to a novel 150 watt radial AMTEC cell design. This analysis indicated that for the effective aspect ratio of this new converter design, the system performance at the 100+ watt level was not significantly improved by use of a DRC type condenser surface. Further analyses however showed that for cylindrical, end-condensed converters, optimized for use with internal radiation shields, the use of DRC surfaces on the side walls of the converter could be more effective than on the condenser end surface itself. The experimental work in Phase 2 was intended to incorporate a DRC into this cell design and use its measured performance to refine the state-of-the-art AMTEC analytical models. Because the analysis had indicated that the new radial converter design, which may be useful for systems at the {approx} 100 watt level was not much assisted by the DRC properties, this program was redirected toward the simpler cylindrical converter design with the corner cube surfaces on the side walls. The Phase II program was proposed and planned with a funding level substantially below the maximum potentially available for Phase II programs at that time. At the time, there were two other funded government sponsored programs at AMPS for which positive results of the analyses described in this report were expected to lead to incorporation of the DRC concept into converters scheduled to be built for these programs. The programs of interest were the Air Force program titled ''Radiation Tolerant, Eclipse Compatible, Solar AMTEC System'' (F29601-99-C-0132) and the DOE/NASA Advanced Radioisotope Power System (ARPS) program. Shortly after its start, the Air Force program was canceled due to elimination of AF SBIR funds at AFRL and the ARPS program was reduced to a level that could not support introduction of novel concept testing. As a result of these two circumstances, the direct testing of the DRC concept in a full up converter was not completed in the Phase II period.« less

  18. Variations in eruptive style and depositional processes of Neoproterozoic terrestrial volcano-sedimentary successions in the Hamid area, North Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Khalaf, Ezz El Din Abdel Hakim

    2013-07-01

    Two contrasting Neoproterozoic volcano-sedimentary successions of ca. 600 m thickness were recognized in the Hamid area, Northeastern Desert, Egypt. A lower Hamid succession consists of alluvial sediments, coherent lava flows, pyroclastic fall and flow deposits. An upper Hamid succession includes deposits from pyroclastic density currents, sills, and dykes. Sedimentological studies at different scales in the Hamid area show a very complex interaction of fluvial, eruptive, and gravitational processes in time and space and thus provided meaningful insights into the evolution of the rift sedimentary environments and the identification of different stages of effusive activity, explosive activity, and relative quiescence, determining syn-eruptive and inter-eruptive rock units. The volcano-sedimentary deposits of the study area can be ascribed to 14 facies and 7 facies associations: (1) basin-border alluvial fan, (2) mixed sandy fluvial braid plain, (3) bed-load-dominated ephemeral lake, (4) lava flows and volcaniclastics, (5) pyroclastic fall deposits, (6) phreatomagmatic volcanic deposits, and (7) pyroclastic density current deposits. These systems are in part coeval and in part succeed each other, forming five phases of basin evolution: (i) an opening phase including alluvial fan and valley flooding together with a lacustrine period, (ii) a phase of effusive and explosive volcanism (pulsatory phase), (iii) a phase of predominant explosive and deposition from base surges (collapsing phase), and (iv) a phase of caldera eruption and ignimbrite-forming processes (climactic phase). The facies architectures record a change in volcanic activity from mainly phreatomagmatic eruptions, producing large volumes of lava flows and pyroclastics (pulsatory and collapsing phase), to highly explosive, pumice-rich plinian-type pyroclastic density current deposits (climactic phase). Hamid area is a small-volume volcano, however, its magma compositions, eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes.

  19. Quantum quenches in a holographic Kondo model

    NASA Astrophysics Data System (ADS)

    Erdmenger, Johanna; Flory, Mario; Newrzella, Max-Niklas; Strydom, Migael; Wu, Jackson M. S.

    2017-04-01

    We study non-equilibrium dynamics and quantum quenches in a recent gauge/gravity duality model for a strongly coupled system interacting with a magnetic impurity with SU( N ) spin. At large N , it is convenient to write the impurity spin as a bilinear in Abrikosov fermions. The model describes an RG flow triggered by the marginally relevant Kondo operator. There is a phase transition at a critical temperature, below which an operator condenses which involves both an electron and an Abrikosov fermion field. This corresponds to a holographic superconductor in AdS2 and models the impurity screening. We quench the Kondo coupling either by a Gaussian pulse or by a hyperbolic tangent, the latter taking the system from the condensed to the uncondensed phase or vice-versa. We study the time dependence of the condensate induced by this quench. The timescale for equilibration is generically given by the leading quasinormal mode of the dual gravity model. This mode also governs the formation of the screening cloud, which is obtained as the decrease of impurity degrees of freedom with time. In the condensed phase, the leading quasinormal mode is imaginary and the relaxation of the condensate is over-damped. For quenches whose final state is close to the critical point of the large N phase transition, we study the critical slowing down and obtain the combination of critical exponents zν = 1. When the final state is exactly at the phase transition, we find that the exponential ringing of the quasinormal modes is replaced by a power-law behaviour of the form ˜ t - a sin( b log t). This indicates the emergence of a discrete scale invariance.

  20. The 2009 eruption of Redoubt Volcano, Alaska

    USGS Publications Warehouse

    Bull, Katharine F.; Cameron, Cheryl; Coombs, Michelle L.; Diefenbach, Angie; Lopez, Taryn; McNutt, Steve; Neal, Christina; Payne, Allison; Power, John A.; Schneider, David J.; Scott, William E.; Snedigar, Seth; Thompson, Glenn; Wallace, Kristi; Waythomas, Christopher F.; Webley, Peter; Werner, Cynthia A.; Schaefer, Janet R.

    2012-01-01

    Redoubt Volcano, an ice-covered stratovolcano on the west side of Cook Inlet, erupted in March 2009 after several months of escalating unrest. The 2009 eruption of Redoubt Volcano shares many similarities with eruptions documented most recently at Redoubt in 1966–68 and 1989–90. In each case, the eruptive phase lasted several months, consisted of multiple ashproducing explosions, produced andesitic lava and tephra, removed significant amounts of ice from the summit crater and Drift glacier, generated lahars that inundated the Drift River valley, and culminated with the extrusion of a lava dome in the summit crater. Prior to the 2009 explosive phase of the eruption, precursory seismicity lasted approximately six months with the fi rst weak tremor recorded on September 23, 2008. The first phreatic explosion was recorded on March 15, and the first magmatic explosion occurred seven days later, at 22:34 on March 22. The onset of magmatic explosions was preceded by a strong, shallow swarm of repetitive earthquakes that began about 04:00 on March 20, 2009, less than three days before an explosion. Nineteen major ash-producing explosions generated ash clouds that reached heights between 17,000 ft and 62,000 ft (5.2 and 18.9 km) ASL. During ash fall in Anchorage, the Ted Stevens International Airport was shut down for 20 hours, from ~17:00 on March 28 until 13:00 on March 29. On March 23 and April 4, lahars with fl ow depths to 10 m in the upper Drift River valley inundated parts of the Drift River Terminal (DRT). The explosive phase ended on April 4 with a dome collapse at 05:58. The April 4 ash cloud reached 50,000 ft (15.2 km) and moved swiftly to the southeast, depositing up to 2 mm of ash fall in Homer, Anchor Point, and Seldovia. At least two and possibly three lava domes grew and were destroyed by explosions prior to the final lava dome extrusion that began after the April 4 event. The fi nal lava dome ceased growth by July 1, 2009, with an estimated volume of 72 Mm3

  1. Molten salt corrosion of SiC and Si3N4

    NASA Technical Reports Server (NTRS)

    Jacobson, Nathan S.; Smialek, James L.; Fox, Dennis S.

    1988-01-01

    Industrial systems such as heat engines and heat exchangers involve harsh environments. The structural materials are subjected to high temperatures as well as corrosive gases and condensed phases. Past experience with metal alloys has shown that these condensed phases can be particularly corrosive and are often the limiting factor in the operation of these systems. In a heat engine the most common condensed corrodent is Na2SO4 whereas in a heat exchanger an oxide slag may be present. The primary emphasis is on Na2SO4 induced corrosion, however, similarities and differences to oxide slag are also discussed. The extensive research on corrosion of metal alloys has led to understanding and controlling corrosion for these materials. Currently silicon based ceramics are prime candidates for the applications discussed. Therefore it is important to understand the effects of condensed phase deposits on this emerging class of high temperature materials. Both the thermodynamic and strength of the ceramic is also examined. Finally some control strategies for corrosion of silicon based ceramics are explored.

  2. Motion of vortices in inhomogeneous Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Groszek, Andrew J.; Paganin, David M.; Helmerson, Kristian; Simula, Tapio P.

    2018-02-01

    We derive a general and exact equation of motion for a quantized vortex in an inhomogeneous two-dimensional Bose-Einstein condensate. This equation expresses the velocity of a vortex as a sum of local ambient density and phase gradients in the vicinity of the vortex. We perform Gross-Pitaevskii simulations of single-vortex dynamics in both harmonic and hard-walled disk-shaped traps, and find excellent agreement in both cases with our analytical prediction. The simulations reveal that, in a harmonic trap, the main contribution to the vortex velocity is an induced ambient phase gradient, a finding that contradicts the commonly quoted result that the local density gradient is the only relevant effect in this scenario. We use our analytical vortex velocity formula to derive a point-vortex model that accounts for both density and phase contributions to the vortex velocity, suitable for use in inhomogeneous condensates. Although good agreement is obtained between Gross-Pitaevskii and point-vortex simulations for specific few-vortex configurations, the effects of nonuniform condensate density are in general highly nontrivial, and are thus difficult to efficiently and accurately model using a simplified point-vortex description.

  3. Shock waves; Proceedings of the 18th International Symposium, Sendai, Japan, July 21-26, 1991. Vols. 1 & 2

    NASA Astrophysics Data System (ADS)

    Takayama, Kazuyoshi

    Various papers on shock waves are presented. The general topics addressed include: shock wave structure, propagation, and interaction; shock wave reflection, diffraction, refraction, and focusing; shock waves in condensed matter; shock waves in dusty gases and multiphase media; hypersonic flows and shock waves; chemical processes and related combustion phenomena; explosions, blast waves, and laser initiation of shock waves; shock tube technology and instrumentation; CFD of shock wave phenomena; medical applications and biological effects; industrial applications.

  4. A bi-directional two-phase/two-phase heat exchanger

    NASA Technical Reports Server (NTRS)

    Ku, Jentung; Ottenstein, Laura

    1993-01-01

    This paper describes the design and test of a heat exchanger that transfers heat from one two-phase thermal loop to another with very small drops in temperature and pressure. The heat exchanger condenses the vapor in one loop while evaporating the liquid in the other without mixing of the condensing and evaporating fluids. The heat exchanger is bidirectional in that it can transfer heat in reverse, condensing on the normally evaporating side and vice versa. It is fully compatible with capillary pumped loops and mechanically pumped loops. Test results verified that performance of the heat exchanger met the design requirements. It demonstrated a heat transfer rate of 6800 watts in the normal mode of operation and 1000 watts in the reverse mode with temperature drops of less than 5 C between two thermal loops.

  5. Wealth condensation in pareto macroeconomies

    NASA Astrophysics Data System (ADS)

    Burda, Z.; Johnston, D.; Jurkiewicz, J.; Kamiński, M.; Nowak, M. A.; Papp, G.; Zahed, I.

    2002-02-01

    We discuss a Pareto macroeconomy (a) in a closed system with fixed total wealth and (b) in an open system with average mean wealth, and compare our results to a similar analysis in a super-open system (c) with unbounded wealth [J.-P. Bouchaud and M. Mézard, Physica A 282, 536 (2000)]. Wealth condensation takes place in the social phase for closed and open economies, while it occurs in the liberal phase for super-open economies. In the first two cases, the condensation is related to a mechanism known from the balls-in-boxes model, while in the last case, to the nonintegrable tails of the Pareto distribution. For a closed macroeconomy in the social phase, we point to the emergence of a ``corruption'' phenomenon: a sizeable fraction of the total wealth is always amassed by a single individual.

  6. Heat transfer in condensing and evaporating two-component, two-phase flow inside a horizontal tube

    NASA Astrophysics Data System (ADS)

    Duval, W. M. B.

    The effect of adding a small amount of oil to condensing and evaporation refrigerant R-12 following inside a horizontal tube is investigated both experimentally and analytically. Analytically, the problem is addressed assuming annular flow inside the tube. The analysis is based on the momentum and energy equations with the heat transfer in the liquid film determined using the Reynolds analogy between turbulent heat and momentum transfer. Two separate methods are developed for extending this model to include the effects of the two-component nature of the flow. Experimentally, two-phase local heat transfer measurements and flow pattern visualization are made for both condensation and evaporation. From the measurements, correlations are developed to predict two-phase heat transfer for the range of 0%, 2% and 5% oil fraction by mass flow.

  7. Study of anyon condensation and topological phase transitions from a Z4 topological phase using the projected entangled pair states approach

    NASA Astrophysics Data System (ADS)

    Iqbal, Mohsin; Duivenvoorden, Kasper; Schuch, Norbert

    2018-05-01

    We use projected entangled pair states (PEPS) to study topological quantum phase transitions. The local description of topological order in the PEPS formalism allows us to set up order parameters which measure condensation and deconfinement of anyons and serve as substitutes for conventional order parameters. We apply these order parameters, together with anyon-anyon correlation functions and some further probes, to characterize topological phases and phase transitions within a family of models based on a Z4 symmetry, which contains Z4 quantum double, toric code, double semion, and trivial phases. We find a diverse phase diagram which exhibits a variety of different phase transitions of both first and second order which we comprehensively characterize, including direct transitions between the toric code and the double semion phase.

  8. Seismic Masking of an Underground Nuclear Explosion

    DTIC Science & Technology

    1973-10-31

    At this point in the analysis the existence of the Lgl phase (Ewing Jardetzky. and Press. 1957. p.219; Richter. 1958. p. 267; Bath . 1973. P- 76...These ve ocities are taken from the discussion by Bath who goes on to say that the ^ Phase in the records of continental earthquakes at short...the microzone of the masked explosion, but excluded from further study 1. 21 February 1963 CARMEL 2. 12 February 1965 ALPACA Reason for

  9. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover,; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  10. Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases

    DTIC Science & Technology

    2016-04-01

    condensed gas " which remains condensed above the expected critical temperature, and performed one of the first studies of the strongly-interacting "unitary...34 Bose gas . With the 2d harmonic trap we showed how the interaction-driven BKT phase is connected with purely statistical theory, and with the 3d...box trap we created the world’s first atomic BEC in a quasi-uniform potential. 15. SUBJECT TERMS EOARD, Bose gas , ultracold, condensation, equilibrium

  11. Revealing the dark side of a bright exciton–polariton condensate

    PubMed Central

    Ménard, J. -M.; Poellmann, C.; Porer, M.; Leierseder, U.; Galopin, E.; Lemaître, A.; Amo, A.; Bloch, J.; Huber, R.

    2014-01-01

    Condensation of bosons causes spectacular phenomena such as superfluidity or superconductivity. Understanding the nature of the condensed particles is crucial for active control of such quantum phases. Fascinating possibilities emerge from condensates of light–matter-coupled excitations, such as exciton–polaritons, photons hybridized with hydrogen-like bound electron–hole pairs. So far, only the photon component has been resolved, while even the mere existence of excitons in the condensed regime has been challenged. Here we trace the matter component of polariton condensates by monitoring intra-excitonic terahertz transitions. We study how a reservoir of optically dark excitons forms and feeds the degenerate state. Unlike atomic gases, the atom-like transition in excitons is dramatically renormalized on macroscopic ground state population. Our results establish fundamental differences between polariton condensation and photon lasing and open possibilities for coherent control of condensates. PMID:25115964

  12. Blockage-induced condensation controlled by a local reaction

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Colangeli, Matteo; Muntean, Adrian

    2016-10-01

    We consider the setup of stationary zero range models and discuss the onset of condensation induced by a local blockage on the lattice. We show that the introduction of a local feedback on the hopping rates allows us to control the particle fraction in the condensed phase. This phenomenon results in a current versus blockage parameter curve characterized by two nonanalyticity points.

  13. Condensation of an ideal gas obeying non-Abelian statistics.

    PubMed

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  14. Engineering topological defect patterns of Bose condensates in shaken optical lattices

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2017-04-01

    Topological defects emerge and play an essential role in the dynamics of systems undergoing continuous, symmetry-breaking phase transitions. Here, we study the topological defects (domain walls) which form when a Bose condensate in a shaken optical lattice undergoes a quantum phase transition and separates into domains of superfluid with finite momentum. Here, we experimentally demonstrate the ability to control the pattern of domain walls using a digital micromirror device. We further explore implementations of this technique to study dynamics near the phase transition and the evolution of topological defects.

  15. Atomic and Molecular Dynamics on and in Superfluid Helium Nanodroplets

    NASA Astrophysics Data System (ADS)

    Lehmann, Kevin K.

    2003-03-01

    Studies of intramolecular and intermolecular dynamics is at the core of Molecular Spectroscopic research several decades. Gas phase, particularly molecular beam, studies have greatly illuminated these processes in isolated molecules, bimolecular collisions, or small covalent and van der Waals complexes. Parallel to this effort have been studies in condensed phases, but there has unfortunately been little intellectual contact between these. The recent development of Helium Nanodropet Isolation Spectroscopy is providing an intellectual bridge between gas phase and condensed phase spectroscopy. While droplets of 10,000 He atoms are effectively a condensed phase, their low temperature ( 0.4 K) and ultralow heat capacities combined with their superfluid state make them an almost ideal matrix in which to study both molecular dynamics, including solute induced relaxations. The nsec times scales for many of the relaxation events, orders of magnitude slower than in classical liquids, results in spectra with unprecedented resolution for the liquid state. In this talk, studies of the Princeton group will be highlighted, with particular emphasis on those for which a combination of theory and experiment have combined to reveal dynamics in this unique Quantum Fluid.

  16. Mechanical Stability Criterion, Triple-Phase Condition, and Pressure Differences of Matter Condensed in a Porous Matrix.

    PubMed

    Setzer, Max J.

    2001-03-01

    In contrast to the triple-point condition of bulk material, condensed matter in porous media can coexist stably as liquid, solid, and vapor over a wide temperature range. The necessary conditions are found by a thermodynamic approach starting with the potential which reflects the grand canonical distribution and is characterized by heat and matter exchange. The other parameters are volume and surface. Therefore, it is designated the free mechanical potential. General expressions for mechanical stability are given. On condensation and melting the nonwetting phases vanish. These are thermodynamically stable phase transitions. For the opposing effects evaporation and fusion, an energy barrier must be transgressed either by nucleation or by intrusion as discussed here. These are metastable states. Phase transitions are the conditions which limit the triple-phase region. Within this region high negative pressures are generated in the unfrozen liquid independent of the pore size where it exists. The findings are applied to water in the disperse matrix of hardened cement paste. They are the basis for "micro ice lens pumping". Copyright 2001 Academic Press.

  17. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred

    1988-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes several independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  18. Pumped two-phase heat transfer loop

    NASA Technical Reports Server (NTRS)

    Edelstein, Fred (Inventor)

    1987-01-01

    A pumped loop two-phase heat transfer system, operating at a nearly constant temperature throughout, includes a plurality of independently operating grooved capillary heat exchanger plates supplied with working fluid through independent flow modulation valves connected to a liquid supply line, a vapor line for collecting vapor from the heat exchangers, a condenser between the vapor and the liquid lines, and a fluid circulating pump between the condenser and the heat exchangers.

  19. 2006 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Avery, Nikki B.; Barlow, Stephan E.

    2006-11-10

    The Pacific Northwest National Laboratory (PNNL) hosted its third annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from May through September 2006. During this period, twenty PNNL scientists hosted twenty-seven scientists from twenty-five different universities. Of the twenty-seven participants, one was a graduating senior; twenty-one were graduate students; one was a postdoctoral fellow; and four were university faculty members.

  20. Application of the string method to the study of critical nuclei in capillary condensation.

    PubMed

    Qiu, Chunyin; Qian, Tiezheng; Ren, Weiqing

    2008-10-21

    We adopt a continuum description for liquid-vapor phase transition in the framework of mean-field theory and use the string method to numerically investigate the critical nuclei for capillary condensation in a slit pore. This numerical approach allows us to determine the critical nuclei corresponding to saddle points of the grand potential function in which the chemical potential is given in the beginning. The string method locates the minimal energy path (MEP), which is the most probable transition pathway connecting two metastable/stable states in configuration space. From the MEP, the saddle point is determined and the corresponding energy barrier also obtained (for grand potential). Moreover, the MEP shows how the new phase (liquid) grows out of the old phase (vapor) along the most probable transition pathway, from the birth of a critical nucleus to its consequent expansion. Our calculations run from partial wetting to complete wetting with a variable strength of attractive wall potential. In the latter case, the string method presents a unified way for computing the critical nuclei, from film formation at solid surface to bulk condensation via liquid bridge. The present application of the string method to the numerical study of capillary condensation shows the great power of this method in evaluating the critical nuclei in various liquid-vapor phase transitions.

  1. Quantum mechanical force fields for condensed phase molecular simulations

    NASA Astrophysics Data System (ADS)

    Giese, Timothy J.; York, Darrin M.

    2017-09-01

    Molecular simulations are powerful tools for providing atomic-level details into complex chemical and physical processes that occur in the condensed phase. For strongly interacting systems where quantum many-body effects are known to play an important role, density-functional methods are often used to provide the model with the potential energy used to drive dynamics. These methods, however, suffer from two major drawbacks. First, they are often too computationally intensive to practically apply to large systems over long time scales, limiting their scope of application. Second, there remain challenges for these models to obtain the necessary level of accuracy for weak non-bonded interactions to obtain quantitative accuracy for a wide range of condensed phase properties. Quantum mechanical force fields (QMFFs) provide a potential solution to both of these limitations. In this review, we address recent advances in the development of QMFFs for condensed phase simulations. In particular, we examine the development of QMFF models using both approximate and ab initio density-functional models, the treatment of short-ranged non-bonded and long-ranged electrostatic interactions, and stability issues in molecular dynamics calculations. Example calculations are provided for crystalline systems, liquid water, and ionic liquids. We conclude with a perspective for emerging challenges and future research directions.

  2. Rotational symmetry breaking and topological phase transition in the exciton-polariton condensate of gapped 2D Dirac material

    NASA Astrophysics Data System (ADS)

    Lee, Ki Hoon; Lee, Changhee; Jeong, Jae-Seung; Min, Hongki; Chung, Suk Bum

    For the quantum well in an optical microcavity, the interplay of the Coulomb interaction and the electron-photon coupling can lead to the emergence of bosonic quasiparticles consisting of the exciton and the cavity photon known as polariton, which can form the Bose-Einstein condensate above a threshold density. Additional physics due to the nontrivial Berry phase comes into play when the quantum well consists of the gapped Dirac material such as the transition metal dichalcogenide (TMD) MoS2 or WTe2. Specifically, in forming excitons, the electron-photon coupling from the optical selection rule due to the Berry phase competes against, rather than cooperates with, the Coulomb interaction. We find that this competition gives rise to the spontaneous breaking of the rotational symmetry in the polariton condensate and also drives topological phase transition, both novel features in polariton condensation. We also investigate the possible detection of this competition through photoluminescence. This work was supported in part by the Institute for Basic Science of Korea (IBS) under Grant IBS-R009-Y1 and by the National Research Foundation of Korea (NRF) under the Basic Science Research Program Grant No. 2015R1D1A1A01058071.

  3. Development of Novel Decontamination and Inerting Techniques for Explosive Contaminated Facilities, Laboratory Evaluation of Concepts. Phase II. Laboratory Evaluation of Novel Explosives Decontamination Concepts

    DTIC Science & Technology

    1985-03-01

    gallons for Building 2. -... The system must be capable of wit standing caustic corrosion. • Either stainless steel or lined mild steel may be used. As...assumed that spent charcoal could be disposed in some safe manner arid would be re- placed as used. Additional costs were in luded for sampling and analysis...decontamination of all three explosives could be effected by further sequential treatment of the spent explosives decontami- nation solutions with acidic ferrous

  4. Dynamics of tobacco DNA topoisomerases II in cell cycle regulation: to manage topological constrains during replication, transcription and mitotic chromosome condensation and segregation.

    PubMed

    Singh, Badri Nath; Achary, V Mohan Murali; Panditi, Varakumar; Sopory, Sudhir K; Reddy, Malireddy K

    2017-08-01

    The topoisomerase II expression varies as a function of cell proliferation. Maximal topoisomerase II expression was tightly coupled to S phase and G2/M phase via both transcriptional and post-transcriptional regulation. Investigation in meiosis using pollen mother cells also revealed that it is not the major component of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed. Synchronized tobacco BY-2 cell cultures were used to study the role of topoisomerase II in various stages of the cell cycle. Topoisomerase II transcript accumulation was observed during the S- and G2/M- phase of cell cycle. This biphasic expression pattern indicates the active requirement of topoisomerase II during these stages of the cell cycle. Through immuno-localization of topoisomerase II was observed diffusely throughout the nucleoplasm in interphase nuclei, whereas, the nucleolus region exhibited a more prominent immuno-positive staining that correlated with rRNA transcription, as shown by propidium iodide staining and BrUTP incorporation. The immuno-staining analysis also showed that topoisomerase II is the major component of mitotic chromosomes and remain attached to the chromosomes during cell division. The inhibition of topoisomerase II activity using specific inhibitors revealed quite dramatic effect on condensation of chromatin and chromosome individualization from prophase to metaphase transition. Partially condensed chromosomes were not arranged on metaphase plate and chromosomal perturbations were observed when advance to anaphase, suggesting the importance of topoisomerase II activity for proper chromosome condensation and segregation during mitosis. Contrary, topoisomerase II is not the major component of meiotic chromosomes, even though mitosis and meiosis share many processes, including the DNA replication, chromosome condensation and precisely regulated partitioning of chromosomes into daughter cells. Even if topoisomerase II is required for individualization and condensation of meiotic chromosomes, it seems to diffuse out once meiotic chromosomal condensation is completed.

  5. Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces.

    PubMed

    Spezia, Riccardo; Martínez-Nuñez, Emilio; Vazquez, Saulo; Hase, William L

    2017-04-28

    In this Introduction, we show the basic problems of non-statistical and non-equilibrium phenomena related to the papers collected in this themed issue. Over the past few years, significant advances in both computing power and development of theories have allowed the study of larger systems, increasing the time length of simulations and improving the quality of potential energy surfaces. In particular, the possibility of using quantum chemistry to calculate energies and forces 'on the fly' has paved the way to directly study chemical reactions. This has provided a valuable tool to explore molecular mechanisms at given temperatures and energies and to see whether these reactive trajectories follow statistical laws and/or minimum energy pathways. This themed issue collects different aspects of the problem and gives an overview of recent works and developments in different contexts, from the gas phase to the condensed phase to excited states.This article is part of the themed issue 'Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces'. © 2017 The Author(s).

  6. New Mechanism for Explaing LENR and Certain forms of Technological and Natural Catastrophes

    NASA Astrophysics Data System (ADS)

    Gareev, Fangil

    2008-03-01

    We proposed a new mechanism for low energy nuclear reactions (LENR): cooperative resonance processes involving the whole the system - nuclei + atoms + condensed matter can occur at a smaller threshold energies than the corresponding ones on free constituents. The cooperative processes can be induced and enhanced by low energy external fields. The excess heat is the emission of internal energy and transmutations at LENR are the result of a redistribution of internal energy of the whole system. The lack of financial support and ignorance by mainstream physicists has resulted in the LENR field not being accepted. We postulate that LENR can lead to catastrophes, potentially including, the runaway evcnt involving the reactor at the Chernobyl Nuclear Power Plant, the explosion of the twin towers during the 11 September 2001 World Trade Center collapse, in New York, the explosion of transformers in Moscow, catastrophes of submarines, and other phenomena associated with a cooperative resonance synchronization mechanism.

  7. Demonstration of Nautilus Centripetal Capillary Condenser Technology

    NASA Technical Reports Server (NTRS)

    Wheeler, RIchard; Tang, Linh; Wambolt, Spencer; Golliher, Eric; Agui, Juan

    2016-01-01

    This paper describes the results of a proof of concept effort for development of a Nautilus Centripetal Capillary Condenser (NCCC or NC3) used for microgravity compatible water recovery from moist air with integral passive phase separation. Removal of liquid condensate from the air stream exiting a condenser is readily performed here on Earth. In order to perform this function in space however, without gravity or mechanical action, other tactics including utilization of inertial, drag and capillary forces are required. Within the NC3, liquid water forms via condensation on cold condenser surfaces as humid air passes along multiple spiral channels, each in its own plane, all together forming a stacked plate assembly. Non-mechanical inertial forces are employed to transfer condensate, as it forms, via centripetal action to the outer perimeter of each channel. A V-shaped groove, constructed on this outer edge of the spiral channel, increases local capillary forces thereby retaining the liquid. Air drag then pulls the liquid along to a collection region near the center of the device. Dry air produced by each parallel spiral channel is combined in a common orthogonal, out-of-plane conduit passing down the axial center of the stacked device. Similarly, the parallel condensate streams are combined and removed from the condenser/separator through yet another out-of-plane axial conduit. NC3 is an integration of conventional finned condenser operation, combined with static phase separation and capillary transport phenomena. A Mars' transit mission would be a logical application for this technology where gravity is absent and the use of vibrating, energy-intensive, motor-driven centrifugal separators is undesired. Here a vapor stream from either the Heat Melt Compactor or the Carbon dioxide Reduction Assembly, for example, would be dried to a dew point of 10 deg using a passive NC3 condenser/separator with the precious water condensate recycled to the water bus.

  8. Power-law decay of the spatial correlation function in exciton-polariton condensates

    PubMed Central

    Roumpos, Georgios; Lohse, Michael; Nitsche, Wolfgang H.; Keeling, Jonathan; Szymańska, Marzena Hanna; Littlewood, Peter B.; Löffler, Andreas; Höfling, Sven; Worschech, Lukas; Forchel, Alfred; Yamamoto, Yoshihisa

    2012-01-01

    We create a large exciton-polariton condensate and employ a Michelson interferometer setup to characterize the short- and long-distance behavior of the first order spatial correlation function. Our experimental results show distinct features of both the two-dimensional and nonequilibrium characters of the condensate. We find that the gaussian short-distance decay is followed by a power-law decay at longer distances, as expected for a two-dimensional condensate. The exponent of the power law is measured in the range 0.9–1.2, larger than is possible in equilibrium. We compare the experimental results to a theoretical model to understand the features required to observe a power law and to clarify the influence of external noise on spatial coherence in nonequilibrium phase transitions. Our results indicate that Berezinskii–Kosterlitz–Thouless-like phase order survives in open-dissipative systems. PMID:22496595

  9. Repetition rates in heavy ion beam driven fusion reactors

    NASA Astrophysics Data System (ADS)

    Peterson, Robert R.

    1986-01-01

    The limits on the cavity gas density required for beam propagation and condensation times for material vaporized by target explosions can determine the maximum repetition rate of Heavy Ion Beam (HIB) driven fusion reactors. If the ions are ballistically focused onto the target, the cavity gas must have a density below roughly 10-4 torr (3×1012 cm-3) at the time of propagation; other propagation schemes may allow densities as high as 1 torr or more. In some reactor designs, several kilograms of material may be vaporized off of the target chamber walls by the target generated x-rays, raising the average density in the cavity to 100 tor or more. A one-dimensional combined radiation hydrodynamics and vaporization and condensation computer code has been used to simulate the behavior of the vaporized material in the target chambers of HIB fusion reactors.

  10. Volatile elements in and on lunar volcanic glasses: What do they tell us about lunar genesis?

    NASA Technical Reports Server (NTRS)

    Koeberl, C.

    1984-01-01

    There are good reasons to believe that lunar volcanic glasses originated from a deep interior source. The presence of a thin layer of surface correlated elements on these glasses may indicate that the Moon has some reservoirs that are enriched in volatiles. Since the glasses themselves do not show similar enrichment, the source should be of limited extent. Three scenarios are advanced for the origin of these elements. The mechanism for lunar volcanism differs from the mechanism for volcanism on Earth since the former produces bubbling and the latter explosive fountaining. From the condensation behavior of the volatile compounds, which leads to heterogeneous condensation, it is concluded that comparing element ratios of surface correlated elements gives little sense. It seems as if the volatile reservoirs are of rather limited extent and that they do not enlarge the volatile content of the bulk Moon significantly.

  11. 2007 Annual Report Summer Research Institute Interfacial and Condensed Phase Chemical Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beck, Kenneth M.

    2007-10-31

    The Pacific Northwest National Laboratory (PNNL) hosted its fourth annual Summer Research Institute in Interfacial and Condensed Phase Chemical Physics from April through September 2007. During this time, 21 PNNL scientists hosted 23 participants from 20 different universities. Of the 23 participants, 20 were graduate students, 1 was a postdoctoral fellow, and 2 were university faculty members. This report covers the essense of the program and the research the participants performed.

  12. Water vapour condensation in a partly closed structure. Comparison between results obtained with an inside wet or dry bottom wall

    NASA Astrophysics Data System (ADS)

    Batina, Jean; Peyrous, René

    2018-04-01

    We are interested in the determination of the more significant parameters acting on the water vapour condensation in a partly closed structure, submitted to external constraints (temperature and humidity), in view to recover the generated droplets as an additional source of potable water. External temperature variations, by inducing temperature differences between outside and inside of the structure, lead to convective movements and thermal variations inside this structure. Through an orifice, these movements permit a renewing of the humid inner air and can lead to the condensation of the water vapour initially contained in the inner air volume and/or on the walls. With the above hypotheses, and by using a numerical simulation [1] based on the ambient air characteristics and a finite volumes method, it appears that condensed water quantities are mainly depending on the boundary conditions imposed. These conditions are: 1) dimensions of the structure; 2) external temperature and relative hygrometry; 3) the phase φ (T/RH) linking thermal and hydrometric conditions; 4) the air renewing and its hygrometry for each phase; and 5) for each case, the fact that the inside bottom wall can be wet or dry. The resulting condensed water vapour quantities obtained, for the width section, point out clearly that they are very depending on this phase φ (T/RH) which appears as the more significant parameter and can be modified by the presence or not of a thin layer of water vapour on the inside bottom wall. Condensation phenomenon could be increased if φ could be optimized.

  13. An extension of the Bardeen-Cooper-Schrieffer model of superconductivity

    NASA Astrophysics Data System (ADS)

    Maćkowiak, J.; Tarasewicz, P.

    An extension of the BCS Hamiltonian of HBCS, the form H= HBCS+ W+ V, where W=∑ kγknk+ nk-, V=-| Λ| -1∑ k, k‧ gk, k‧ bk* b- k* b- k‧ bk‧ , nkσ = akσ * akσ , bk= ak+ ak- and akσ *, akσ are fermion creation and annihilation operators, is investigated. It is shown that H represents a solvable mean-field model in the thermodynamic limit. H exhibits a 2nd-order phase transition if W is sufficiently strongly attractive and the low-temperature phase, characterized by two order parameters, contains two condensates: a condensate of BCS-type fermion pairs and a condensate of fermion quadruples with momenta and spins ( p, σ) equal {( p, σ),(- p, σ), ( p,- σ), (- p,- σ)}. If γk<0, a pseudogap is present in the excitation spectrum in the normal phase.

  14. Convergent solid-phase and solution approaches in the synthesis of the cysteine-rich Mdm2 RING finger domain.

    PubMed

    Vasileiou, Zoe; Barlos, Kostas; Gatos, Dimitrios

    2009-12-01

    The RING finger domain of the Mdm2, located at the C-terminus of the protein, is necessary for regulation of p53, a tumor suppressor protein. The 48-residues long Mdm2 peptide is an important target for studying its interaction with small anticancer drug candidates. For the chemical synthesis of the Mdm2 RING finger domain, the fragment condensation on solid-phase and the fragment condensation in solution were studied. The latter method was performed using either protected or free peptides at the C-terminus as the amino component. Best results were achieved using solution condensation where the N-component was applied with the C-terminal carboxyl group left unprotected. The developed method is well suited for large-scale synthesis of Mdm2 RING finger domain, combining the advantages of both solid-phase and solution synthesis. (c) 2009 European Peptide Society and John Wiley & Sons, Ltd.

  15. Dynamical control of a quantum Kapitza pendulum in a spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Gerving, Corey; Land, Ben; Anquez, Martin; Hamley, Chris; Chapman, Michael

    2013-05-01

    We demonstrate dynamic stabilization of an unstable strongly interacting quantum many-body system by periodic manipulation of the phase of the collective states. The experiment employs a spin-1 atomic Bose condensate that has spin dynamics analogous to a non-rigid pendulum in the mean-field limit. The condensate spin is initialized to an unstable (hyperbolic) fixed point of the phase space, where subsequent free evolution gives rise to spin-nematic squeezing and quantum spin mixing. To stabilize the system, periodic microwave pulses are applied that manipulate the spin-nematic fluctuations and limit their growth. The range of pulse periods and phase shifts with which the condensate can be stabilized is measured and compares well with a linear stability analysis of the problem. C.D. Hamley, et al., ``Spin-Nematic Squeezed Vacuum in a Quantum Gas,'' Nature Physics 8, 305-308 (2012).

  16. Linking photochemistry in the gas and solution phase: S-H bond fission in p-methylthiophenol following UV photoexcitation.

    PubMed

    Oliver, Thomas A A; Zhang, Yuyuan; Ashfold, Michael N R; Bradforth, Stephen E

    2011-01-01

    Gas-phase H (Rydberg) atom photofragment translational spectroscopy and solution-phase femtosecond-pump dispersed-probe transient absorption techniques are applied to explore the excited state dynamics of p-methylthiophenol connecting the short time reactive dynamics in the two phases. The molecule is excited at a range of UV wavelengths from 286 to 193 nm. The experiments clearly demonstrate that photoexcitation results in S-H bond fission--both in the gas phase and in ethanol solution-and that the resulting p-methythiophenoxyl radical fragments are formed with significant vibrational excitation. In the gas phase, the recoil anisotropy of the H atom and the vibrational energy disposal in the p-MePhS radical products formed at the longer excitation wavelengths reveal the operation of two excited state dissociation mechanisms. The prompt excited state dissociation motif appears to map into the condensed phase also. In both phases, radicals are produced in both their ground and first excited electronic states; characteristic signatures for both sets of radical products are already apparent in the condensed phase studies after 50 fs. No evidence is seen for either solute ionisation or proton coupled electron transfer--two alternate mechanisms that have been proposed for similar heteroaromatics in solution. Therefore, at least for prompt S-H bond fissions, the direct observation of the dissociation process in solution confirms that the gas phase photofragmentation studies indeed provide important insights into the early time dynamics that transfer to the condensed phase.

  17. Reaction path of energetic materials using THOR code

    NASA Astrophysics Data System (ADS)

    Duraes, L.; Campos, J.; Portugal, A.

    1997-07-01

    The method of predicting reaction path, using a thermochemical computer code, named THOR, allows for isobar and isochor adiabatic combustion and CJ detonation regimes, the calculation of the composition and thermodynamic properties of reaction products of energetic materials. THOR code assumes the thermodynamic equilibria of all possible products, for the minimum Gibbs free energy, using a thermal equation of state (EoS). The used HL EoS is a new EoS developed in previous works. HL EoS is supported by a Boltzmann EoS, taking α =13.5 to the exponent of the intermolecular potential and θ=1.4 to the adimensional temperature. This code allows now the possibility of estimating various sets of reaction products, obtained successively by the decomposition of the original reacting compound, as a function of the released energy. Two case studies of thermal decomposition procedure were selected, described, calculated and discussed - Ammonium Nitrate based explosives and Nitromethane - because they are very known explosives and their equivalence ratio is respectively near and greater than the stoicheiometry. Predictions of detonation properties of other condensed explosives, as a function of energy release, present results in good correlation with experimental values.

  18. Fast emission spectroscopy for monitoring condensed carbon in detonation products of oxygen-deficient high explosives

    NASA Astrophysics Data System (ADS)

    Poeuf, Sandra; Baudin, Gerard; Genetier, Marc; Lefrançois, Alexandre; Cinnayya, Ashwin; Laurent, Jacquet

    2017-06-01

    A new thermochemical code, SIAME, dedicated to the study of high explosives, is currently being developed. New experimental data relative to the expansion of detonation products are required to validate the code, and a particular focus is made on solid carbon products. Two different high explosive formulations are used: a melt-cast one (RDX/TNT 60/40 % wt.) and a pressed one (HMX/VitonR 96/4 % wt.). The experimental setup allows the expansion of the products at pressures below 1 GPa in an inert medium (vacuum, helium, nitrogen and PMMA). The results of fast emission dynamic spectroscopy measurements used to monitor the detonation carbon products are reported. Two spectral signatures are identified: the first is associated to ionized gases and the second to carbon thermal radiation. The experimental spectral lines are compared with simulated spectra. The trajectory of the shock wave front is continuously recorded with a high frequency interferometer. Comparisons with numerical simulations on the hydrodynamic code Ouranoshave been done. These two measurements, using the different inert media, enable to make one step forward in the validation of the detonation products equation of state implemented in the SIAME code.

  19. The Exoplanet Cloud Atlas

    NASA Astrophysics Data System (ADS)

    Gao, Peter; Marley, Mark S.; Morley, Caroline; Fortney, Jonathan J.

    2017-10-01

    Clouds have been readily inferred from observations of exoplanet atmospheres, and there exists great variability in cloudiness between planets, such that no clear trend in exoplanet cloudiness has so far been discerned. Equilibrium condensation calculations suggest a myriad of species - salts, sulfides, silicates, and metals - could condense in exoplanet atmospheres, but how they behave as clouds is uncertain. The behavior of clouds - their formation, evolution, and equilibrium size distribution - is controlled by cloud microphysics, which includes processes such as nucleation, condensation, and evaporation. In this work, we explore the cloudy exoplanet phase space by using a cloud microphysics model to simulate a suite of cloud species ranging from cooler condensates such as KCl/ZnS, to hotter condensates like perovskite and corundum. We investigate how the cloudiness and cloud particle sizes of exoplanets change due to variations in temperature, metallicity, gravity, and cloud formation mechanisms, and how these changes may be reflected in current and future observations. In particular, we will evaluate where in phase space could cloud spectral features be observable using JWST MIRI at long wavelengths, which will be dependent on the cloud particle size distribution and cloud species.

  20. Symmetry-enriched Bose-Einstein condensates in a spin-orbit-coupled bilayer system

    NASA Astrophysics Data System (ADS)

    Cheng, Jia-Ming; Zhou, Xiang-Fa; Zhou, Zheng-Wei; Guo, Guang-Can; Gong, Ming

    2018-01-01

    We consider the fate of Bose-Einstein condensation with time-reversal symmetry and inversion symmetry in a spin-orbit-coupled bilayer system. When these two symmetry operators commute, all the single-particle bands are exactly twofold degenerate in the momentum space. The scattering in the twofold-degenerate rings can relax the spin-momentum locking effect from spin-orbit-coupling interaction and thus can realize the spin-polarized plane-wave phase even when the interparticle interaction dominates. When these two operators anticommute, the lowest two bands may have the same minimal energy, but with totally different spin structures. As a result, the competition between different condensates in these two energetically degenerate rings can give rise to different stripe phases with atoms condensed at two or four collinear momenta. We find that the crossover between these two cases is accompanied by the excited band condensation when the interference energy can overcome the increased single-particle energy in the excited band. This effect is not based on strong interaction and thus can be realized even with moderate interaction strength.

  1. The equations of motion for moist atmospheric air

    NASA Astrophysics Data System (ADS)

    Makarieva, Anastassia M.; Gorshkov, Victor G.; Nefiodov, Andrei V.; Sheil, Douglas; Nobre, Antonio Donato; Bunyard, Peter; Nobre, Paulo; Li, Bai-Lian

    2017-07-01

    How phase transitions affect the motion of moist atmospheric air remains controversial. In the early 2000s two distinct differential equations of motion were proposed. Besides their contrasting formulations for the acceleration of condensate, the equations differ concerning the presence/absence of a term equal to the rate of phase transitions multiplied by the difference in velocity between condensate and air. This term was interpreted in the literature as the "reactive motion" associated with condensation. The reasoning behind this reactive motion was that when water vapor condenses and droplets begin to fall the remaining gas must move upward to conserve momentum. Here we show that the two contrasting formulations imply distinct assumptions about how gaseous air and condensate particles interact. We show that these assumptions cannot be simultaneously applicable to condensation and evaporation. Reactive motion leading to an upward acceleration of air during condensation does not exist. The reactive motion term can be justified for evaporation only; it describes the downward acceleration of air. We emphasize the difference between the equations of motion (i.e., equations constraining velocity) and those constraining momentum (i.e., equations of motion and continuity combined). We show that owing to the imprecise nature of the continuity equations, consideration of total momentum can be misleading and that this led to the reactive motion controversy. Finally, we provide a revised and generally applicable equation for the motion of moist air.

  2. Acoustically-Enhanced Direct Contact Vapor Bubble Condensation

    NASA Astrophysics Data System (ADS)

    Boziuk, Thomas; Smith, Marc; Glezer, Ari

    2017-11-01

    Rate-limited, direct contact vapor condensation of vapor bubbles that are formed by direct steam injection through a nozzle in a quiescent subcooled liquid bath is accelerated using ultrasonic (MHz-range) actuation. A submerged, low power actuator produces an acoustic beam whose radiation pressure deforms the liquid-vapor interface, leading to the formation of a liquid spear that penetrates the vapor bubble to form a vapor torus with a significantly larger surface area and condensation rate. Ultrasonic focusing along the spear leads to the ejection of small, subcooled droplets through the vapor volume that impact the vapor-liquid interface and further enhance the condensation. High-speed Schlieren imaging of the formation and collapse of the vapor bubbles in the absence and presence of actuation shows that the impulse associated with the collapse of the toroidal volume leads to the formation of a turbulent vortex ring in the liquid phase. Liquid motions near the condensing vapor volume are investigated in the absence and presence of acoustic actuation using high-magnification PIV and show the evolution of a liquid jet through the center of the condensing toroidal volume and the formation and advection of vortex ring structures whose impulse appear to increase with temperature difference between the liquid and vapor phases. High-speed image processing is used to assess the effect of the actuation on the temporal and spatial variations in the characteristic scales and condensation rates of the vapor bubbles.

  3. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  4. Condensation phenomenon detection through surface plasmon resonance.

    PubMed

    Ibrahim, Joyce; Al Masri, Mostafa; Veillas, Colette; Celle, Frédéric; Cioulachtjian, Serge; Verrier, Isabelle; Lefèvre, Frédéric; Parriaux, Olivier; Jourlin, Yves

    2017-10-02

    The aim of this work is to optically detect the condensation of acetone vapor on an aluminum plate cooled down in a two-phase environment (liquid/vapor). Sub-micron period aluminum based diffraction gratings with appropriate properties, exhibiting a highly sensitive plasmonic response, were successfully used for condensation experiments. A shift in the plasmonic wavelength resonance has been measured when acetone condensation on the aluminum surface takes place due to a change of the surrounding medium close to the surface, demonstrating that the surface modification occurs at the very beginning of the condensation phenomenon. This paper presents important steps in comprehending the incipience of condensate droplet and frost nucleation (since both mechanisms are similar) and thus to control the phenomenon by using an optimized engineered surface.

  5. Modeling compressible multiphase flows with dispersed particles in both dense and dilute regimes

    NASA Astrophysics Data System (ADS)

    McGrath, T.; St. Clair, J.; Balachandar, S.

    2018-05-01

    Many important explosives and energetics applications involve multiphase formulations employing dispersed particles. While considerable progress has been made toward developing mathematical models and computational methodologies for these flows, significant challenges remain. In this work, we apply a mathematical model for compressible multiphase flows with dispersed particles to existing shock and explosive dispersal problems from the literature. The model is cast in an Eulerian framework, treats all phases as compressible, is hyperbolic, and satisfies the second law of thermodynamics. It directly applies the continuous-phase pressure gradient as a forcing function for particle acceleration and thereby retains relaxed characteristics for the dispersed particle phase that remove the constituent material sound velocity from the eigenvalues. This is consistent with the expected characteristics of dispersed particle phases and can significantly improve the stable time-step size for explicit methods. The model is applied to test cases involving the shock and explosive dispersal of solid particles and compared to data from the literature. Computed results compare well with experimental measurements, providing confidence in the model and computational methods applied.

  6. "Fooling fido"--chemical and behavioral studies of pseudo-explosive canine training aids.

    PubMed

    Kranz, William D; Strange, Nicholas A; Goodpaster, John V

    2014-12-01

    Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.

  7. Next-Generation MDAC Discrimination Procedure Using Multi-Dimensional Spectral Analyses

    DTIC Science & Technology

    2007-09-01

    explosions near the Lop Nor, Novaya Zemlya, Semipalatinsk , Nevada, and Indian test sites . We have computed regional phase spectra and are correcting... test sites as mainly due to differences in explosion P and S corner frequencies. Fisk (2007) used source model fits to estimate Pn, Pg, and Lg corner...frequencies for Nevada Test Site (NTS) explosions and found that Lg corner frequencies exhibit similar scaling with source size as for Pn and Pg

  8. Analysis of heat and mass transfer during condensation over a porous substrate.

    PubMed

    Balasubramaniam, R; Nayagam, V; Hasan, M M; Khan, L

    2006-09-01

    Condensing heat exchangers are important in many space applications for thermal and humidity control systems. The International Space Station uses a cooled fin surface to condense moisture from humid air that is blown over it. The condensate and the air are "slurped" into a system that separates air and water by centrifugal forces. The use of a cooled porous substrate is an attractive alternative to the fin where condensation and liquid/gas separation can be achieved in a single step. We analyze the heat and mass transfer during condensation of moisture from flowing air over such a cooled, flat, porous substrate. A fully developed regime is investigated for coupled mass, momentum and energy transport in the gas phase, and momentum and energy transport in the condensate layer on the porous substrate and through the porous medium.

  9. Cloud Condensation in Titan's Lower Stratosphere

    NASA Technical Reports Server (NTRS)

    Romani, Paul N.; Anderson, Carrie M.

    2011-01-01

    A 1-D condensation model is developed for the purpose of reproducing ice clouds in Titan's lower stratosphere observed by the Composite Infrared Spectrometer (CIRS) onboard Cassini. Hydrogen cyanide (HCN), cyanoacetylene (HC3N), and ethane (C2H6) vapors are treated as chemically inert gas species that flow from an upper boundary at 500 km to a condensation sink near Titan's tropopause (-45 km). Gas vertical profiles are determined from eddy mixing and a downward flux at the upper boundary. The condensation sink is based upon diffusive growth of the cloud particles and is proportional to the degree of supersaturation in the cloud formation regIOn. Observations of the vapor phase abundances above the condensation levels and the locations and properties of the ice clouds provide constraints on the free parameters in the model. Vapor phase abundances are determined from CIRS mid-IR observations, whereas cloud particle sizes, altitudes, and latitudinal distributions are derived from analyses of CIRS far-IR observations of Titan. Specific cloud constraints include: I) mean particle radii of2-3 J.lm inferred from the V6 506 cm- band of HC3N, 2) latitudinal abundance distributions of condensed nitriles, inferred from a composite emission feature that peaks at 160/cm , and 3) a possible hydrocarbon cloud layer at high latitudes, located near an altitude of 60 km, which peaks between 60 and 80 cm l . Nitrile abundances appear to diminish substantially at high northern latitudes over the time period 2005 to 2010 (northern mid winter to early spring). Use of multiple gas species provides a consistency check on the eddy mixing coefficient profile. The flux at the upper boundary is the net column chemical production from the upper atmosphere and provides a constraint on chemical pathways leading to the production of these compounds. Comparison of the differing lifetimes, vapor phase transport, vapor phase loss rate, and particle sedimentation, sheds light on temporal stability of the clouds.

  10. Broadband Evaluation of DPRK Explosions, Collapse Event, and Induced Aftershocks

    NASA Astrophysics Data System (ADS)

    Mayeda, K.; Roman-Nieves, J. I.; Wagner, G.; Jeon, Y. S.

    2017-12-01

    We report on the past 6 declared DPRK nuclear explosions, a collapse event, and recent associated induced shear dislocation sources using long-period waveform modeling, direct regional phases, and stable P-coda and S-coda spectral ratios. We find that the recent September 3rd, 2017 explosion is well modeled with an MM71 explosion source model at normal scale depth, but the previous 5 smaller yield explosions exhibit much larger relative high frequency radiation, strongly suggesting they are all over buried by varying amounts. The collapse event that occurred 8 minutes following the September 3rd DPRK explosion shares significant similarities with a number of NTS collapse events for explosions of comparable yield, both in absolute amplitude and spectral fall-off. A large number of smaller sources have been observed, which from stable coda spectral analysis and waveform modeling, are consistent with shallow shear dislocations likely caused by stress redistribution following the past nuclear explosions. We conclude with testing of a new discriminant that is specific to this region.

  11. Detonation Initiation of Heterogeneous Melt-Cast High Explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent

    2015-06-01

    The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.

  12. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, F.J.; Caldwell, J.T.

    1993-04-06

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  13. Hidden explosives detector employing pulsed neutron and x-ray interrogation

    DOEpatents

    Schultz, Frederick J.; Caldwell, John T.

    1993-01-01

    Methods and systems for the detection of small amounts of modern, highly-explosive nitrogen-based explosives, such as plastic explosives, hidden in airline baggage. Several techniques are employed either individually or combined in a hybrid system. One technique employed in combination is X-ray imaging. Another technique is interrogation with a pulsed neutron source in a two-phase mode of operation to image both nitrogen and oxygen densities. Another technique employed in combination is neutron interrogation to form a hydrogen density image or three-dimensional map. In addition, deliberately-placed neutron-absorbing materials can be detected.

  14. Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko

    2018-05-01

    We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.

  15. Fluorescence, polarized fluorescence, and Brewster angle microscopy of palmitic acid and lung surfactant protein B monolayers.

    PubMed Central

    Lipp, M M; Lee, K Y; Waring, A; Zasadzinski, J A

    1997-01-01

    Fluorescence, polarized fluorescence, and Brewster angle microscopy reveal that human lung surfactant protein SP-B and its amino terminus (SP-B[1-25]) alter the phase behavior of palmitic acid monolayers by inhibiting the formation of condensed phases and creating a new fluid protein-rich phase. This fluid phase forms a network that separates condensed phase domains at coexistence and persists to high surface pressures. The network changes the monolayer collapse mechanism from heterogeneous nucleation/growth and fracturing processes to a more homogeneous process through isolating individual condensed phase domains. This results in higher surface pressures at collapse, and monolayers easier to respread on expansion, factors essential to the in vivo function of lung surfactant. The network is stabilized by a low-line tension between the coexisting phases, as confirmed by the observation of extended linear domains, or "stripe" phases, and a Gouy-Chapman analysis of protein-containing monolayers. Comparison of isotherm data and observed morphologies of monolayers containing SP-B(1-25) with those containing the full SP-B sequence show that the shortened peptide retains most of the native activity of the full-length protein, which may lead to cheaper and more effective synthetic replacement formulations. Images FIGURE 1 FIGURE 3 FIGURE 4 FIGURE 6 FIGURE 7 FIGURE 8 FIGURE 9 FIGURE 10 PMID:9168053

  16. Structural transformations and properties of titanium-aluminum composite during heat treatment

    NASA Astrophysics Data System (ADS)

    Pervukhin, L. B.; Kryukov, D. B.; Krivenkov, A. O.; Chugunov, S. N.

    2017-08-01

    The link between the parameters of heat treatment of a layered titanium-aluminum composite material obtained by explosive welding with the formation of intermetallic compounds in it has been analyzed. The results of measurements of the microhardness of the composite and the thickness of the interlayer of the intermetallic phase obtained using different regimes of heat treatment have been discussed. Special attention has been paid to estimating the composition of the intermetallic phase in the composite prepared by explosive welding.

  17. Defense Small Business Innovation Research Program (SBIR). Volume 1. Army Abstracts of Phase 1 Awards from FY 1988 SBIR Solicitation

    DTIC Science & Technology

    1989-05-01

    CONSTRUCTION). CONCEPT ANALYSIS CORP 14789 KEEL ST PLYMOUTH, MI 48170 CONTRACT NUMBER: DAHO -88-C-0942 DR’S WALDEN & GLANCE TITLE: MISSILE GEOMETRY PACKAGE TOPIC...COUNTING STUDY CAN BE UTILIZED TO EVALUATE THE EFFECTIVENESS OF AN EXPLOSION MONITORING SYSTEM. E SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM - PHASE... EXPLOSIVE OR GROUND PENETRATING MUNITIONS ARE TO BE EVALUATED. IN THAT CASE THE SYSTEM WILL BE ENHANCED WITH SEISMIC SENSORS. THE SEISMIC SIGNALS MAY

  18. Theory Analysis of Wavelength Dependence of Laser-Induced Phase Explosion of Silicon

    DTIC Science & Technology

    2008-01-01

    formed, they do not have enough time to grow up to the critical radius, thus explosive boiling will not occur. Therefore, little energy provided by the...When the laser irradiance is low, the laser pulse retains its original profile with little attenuation by the plasma. How- ever, when the laser... Fucke , J. Phys. F: Met. Phys. 8, L157 1978. 22V. P. Carey, Liquid-Vapor Phase Phenomena Hemisphere, Washington, FIG. 4. Temporal profiles of laser

  19. Seismicity associated with quiescent-explosive transitions at dome forming eruptions: The July 2008 Vulcanian Explosion of Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Rodgers, Mel; Smith, Patrick; Mather, Tamsin A.; Pyle, David M.

    2017-04-01

    During long-lived dome-forming eruptions volcanoes often transition between quiescent, effusive, and explosive behaviour. Soufrière Hills Volcano (SHV), Montserrat, has been erupting since 1995 and has repeatedly transitioned between these different phases of activity. At SHV many of the largest explosions have occurred either during periods of dome growth, or as major dome collapse events at the end of extrusion phases. However, on the 29th July 2008 a vulcanian explosion marked the transition from a quiescent phase (Pause 3) to explosion and then extrusion. This was one of the largest explosions by volume and the largest to occur outside a period of lava extrusion. The eruption was preceded by one of the most intense seismic swarms ever recorded at SHV. In this study we analysed precursory seismic data to investigate the subsurface volcanic processes that culminated in this eruption. We used spectral and multiplet analysis techniques, and applied a simple parameterization approach to relate monitoring observations (seismic, SO2, visual) to subsurface interpretations. These techniques would be available to most volcano observatories. Our study suggests that an initial VT swarm, coincident with ash-venting events, can be triggered by ascent of decoupled gas ahead of rising magma. A subsequent large LF swarm shows a coincident decrease in spectral content that we interpret as magma ascent through the upper conduit system. An ash-venting event on 27 July (a few hours before peak event rate) may have triggered rapid microlite growth. We observe an increase in the spectral content of the LF swarm that is concurrent with a decrease in event rates, suggesting pressurization of the magmatic system due to inhibited magmatic outgassing. Our results suggest that pressurization of the magmatic system may have occurred in the final 24 h before the vulcanian explosion. We also observe LP and Hybrid events within the same multiplet, suggesting that these events have very similar source processes and should be considered part of the same classification at SHV. Our study demonstrates the potential for using spectral and multiplet analysis to understand subsurface magmatic processes and for investigating the transition between quiescence and eruption.

  20. Phase field model of the nanoscale evolution during the explosive crystallization phenomenon

    NASA Astrophysics Data System (ADS)

    Lombardo, S. F.; Boninelli, S.; Cristiano, F.; Deretzis, I.; Grimaldi, M. G.; Huet, K.; Napolitani, E.; La Magna, A.

    2018-03-01

    Explosive crystallization is a well known phenomenon occurring due to the thermodynamic instability of strongly under-cooled liquids, which is particularly relevant in pulsed laser annealing processes of amorphous semiconductor materials due to the globally exothermic amorphous-to-liquid-to-crystal transition pathway. In spite of the assessed understanding of this phenomenon, quantitative predictions of the material kinetics promoted by explosive crystallization are hardly achieved due to the lack of a consistent model able to simulate the concurrent kinetics of the amorphous-liquid and liquid-crystal interfaces. Here, we propose a multi-well phase-field model specifically suited for the simulation of explosive crystallization induced by pulsed laser irradiation in the nanosecond time scale. The numerical implementation of the model is robust despite the discontinuous jumps of the interface speed induced by the phenomenon. The predictive potential of the simulations is demonstrated by means of comparisons of the modelling predictions with experimental data in terms of in situ reflectivity measurements and ex-situ micro-structural and chemical characterization.

  1. Thermal management of high power space based systems

    NASA Technical Reports Server (NTRS)

    Hwangbo, H.; Mcever, W. S.

    1985-01-01

    Conventional techniques of using a portion of the spacecraft skin for radiation of waste heat will be inadequate for high powered payloads (50 to 100 kWe) due to the lack of sufficient area. A Shuttle type system using a pumped single phase fluid loop could be scaled up to higher power but this type of system would require excessive pump power and weight. A pumped two-phase heat transfer loop has a much lower pumping requirement due to the higher latent heat of vaporization of the fluid in comparison to the sensible heat it can absorb through a temperature change. Concepts for an evaporator and a condenser for a pumped two-phase system are described. The condenser uses capillary grooves and a separate pumped condensate return line to achieve high heat transfer coefficients and stable operation due to the separation of the vapor and liquid flows. The cold plate evaporator uses wicks to contain the liquid and transport it to the heated surface. It can also function as a condenser for warming components. Control concepts for the cold plate are discussed. Concepts for deployment or erection of large space radiators are also considered.

  2. Phases of a fermionic model with chiral condensates and Cooper pairs in 1+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mihaila, Bogdan; Blagoev, Krastan B.; MIND Institute, Albuquerque, New Mexico 87131

    2006-01-01

    We study the phase structure of a 4-fermi model with three bare coupling constants, which potentially has three types of bound states. This model is a generalization of the model discussed previously by [A. Chodos, F. Cooper, W. Mao, H. Minakata, and A. Singh, Phys. Rev. D 61, 045011 (2000).], which contained both chiral condensates and Cooper pairs. For this generalization we find that there are two independent renormalized coupling constants which determine the phase structure at finite density and temperature. We find that the vacuum can be in one of three distinct phases depending on the value of thesemore » two renormalized coupling constants.« less

  3. Solid-phase microextraction coupled to gas chromatography for the determination of 2,3-dimethyl-2,3-dinitrobutane as a marking agent for explosives.

    PubMed

    Li, Xiujuan; Zeng, Zhaorui; Zeng, Yi

    2007-06-15

    This paper investigates the detection of 2,3-dimethyl-2,3-dinitrobutane (DMNB), a marking agent in explosives, by gas chromatography (GC) with electron capture detection using solid-phase microextraction (SPME) as a sample preparation technique. The 25,27-dihydroxy-26,28-oxy (2',7'-dioxo-3',6'-diazaoctyl) oxy-p-tert-butylcalix[4]arene/hydroxy-terminated silicone oil coated fiber was highly sensitive to trap DMNB from ammonium nitrate matrix. The analysis was performed by extracting 2g of explosives for 30s at room temperature and then immediately introducing into the heated GC injector for 1min of thermal desorption. The method showed good linearity in the range from 0.01 to 1.0mug/g. The relative standard deviations for these extractions were <8%. The calculated limit of detection for DMNB (S/N=3) was 4.43x10(-4)mug/g, which illustrates that the proposed systems are suitable for explosive detection at trace level. This is the first report of an SPME-GC system shown to extract marking agent in explosives for subsequent detection in a simple, rapid, sensitive, and inexpensive manner.

  4. In situ investigation of explosive crystallization in a-Ge: Experimental determination of the interface response function using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Nikolova, Liliya; Stern, Mark J.; MacLeod, Jennifer M.; Reed, Bryan W.; Ibrahim, Heide; Campbell, Geoffrey H.; Rosei, Federico; LaGrange, Thomas; Siwick, Bradley J.

    2014-09-01

    The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.

  5. Where do winds come from? A new theory on how water vapor condensation influences atmospheric pressure and dynamics

    NASA Astrophysics Data System (ADS)

    Makarieva, A. M.; Gorshkov, V. G.; Sheil, D.; Nobre, A. D.; Li, B.-L.

    2013-01-01

    Phase transitions of atmospheric water play a ubiquitous role in the Earth's climate system, but their direct impact on atmospheric dynamics has escaped wide attention. Here we examine and advance a theory as to how condensation influences atmospheric pressure through the mass removal of water from the gas phase with a simultaneous account of the latent heat release. Building from fundamental physical principles we show that condensation is associated with a decline in air pressure in the lower atmosphere. This decline occurs up to a certain height, which ranges from 3 to 4 km for surface temperatures from 10 to 30 °C. We then estimate the horizontal pressure differences associated with water vapor condensation and find that these are comparable in magnitude with the pressure differences driving observed circulation patterns. The water vapor delivered to the atmosphere via evaporation represents a store of potential energy available to accelerate air and thus drive winds. Our estimates suggest that the global mean power at which this potential energy is released by condensation is around one per cent of the global solar power - this is similar to the known stationary dissipative power of general atmospheric circulation. We conclude that condensation and evaporation merit attention as major, if previously overlooked, factors in driving atmospheric dynamics.

  6. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  7. Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics

    DTIC Science & Technology

    2011-05-04

    pubs.acs.org/JPCB Thermal Decomposition of Condensed-Phase Nitromethane from Molecular Dynamics from ReaxFF Reactive Dynamics Si-ping Han,†,‡ Adri C. T. van...ABSTRACT: We studied the thermal decomposition and subsequent reaction of the energetic material nitromethane (CH3NO2) using molec- ular dynamics...with ReaxFF, a first principles-based reactive force field. We characterize the chemistry of liquid and solid nitromethane at high temperatures (2000

  8. Bose–Einstein condensation versus Dicke–Hepp–Lieb transition in an optical cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piazza, Francesco, E-mail: francesco.piazza@ph.tum.de; Strack, Philipp; Zwerger, Wilhelm

    We provide an exact solution for the interplay between Bose–Einstein condensation and the Dicke–Hepp–Lieb self-organization transition of an ideal Bose gas trapped inside a single-mode optical cavity and subject to a transverse laser drive. Based on an effective action approach, we determine the full phase diagram at arbitrary temperature, which features a bi-critical point where the transitions cross. We calculate the dynamically generated band structure of the atoms and the associated suppression of the critical temperature for Bose–Einstein condensation in the phase with a spontaneous periodic density modulation. Moreover, we determine the evolution of the polariton spectrum due to themore » coupling of the cavity photons and the atomic field near the self-organization transition, which is quite different above or below the Bose–Einstein condensation temperature. At low temperatures, the critical value of the Dicke–Hepp–Lieb transition decreases with temperature and thus thermal fluctuations can enhance the tendency to a periodic arrangement of the atoms. -- Highlights: •Atoms inside a driven cavity can undergo two transitions: self-organization and BEC. •The phase diagram has four phases which coexist at a bi-critical point. •Atom–cavity coupling creates a dynamical lattice for the atoms. •Finite temperature can enhance the tendency towards self-organization. •We calculate the detailed spectrum of the polaritonic excitations.« less

  9. Explosive volcanism may not be an inevitable consequence of magma fragmentation.

    PubMed

    Gonnermann, Helge M; Manga, Michael

    2003-11-27

    The fragmentation of magma, containing abundant gas bubbles, is thought to be the defining characteristic of explosive eruptions. When viscous stresses associated with the growth of bubbles and the flow of the ascending magma exceed the strength of the melt, the magma breaks into disconnected fragments suspended within an expanding gas phase. Although repeated effusive and explosive eruptions for individual volcanoes are common, the dynamics governing the transition between explosive and effusive eruptions remain unclear. Magmas for both types of eruptions originate from sources with similar volatile content, yet effusive lavas erupt considerably more degassed than their explosive counterparts. One mechanism for degassing during magma ascent, consistent with observations, is the generation of intermittent permeable fracture networks generated by non-explosive fragmentation near the conduit walls. Here we show that such fragmentation can occur by viscous shear in both effusive and explosive eruptions. Moreover, we suggest that such fragmentation may be important for magma degassing and the inhibition of explosive behaviour. This implies that, contrary to conventional views, explosive volcanism is not an inevitable consequence of magma fragmentation.

  10. Joint seismic-infrasonic processing of recordings from a repeating source of atmospheric explosions.

    PubMed

    Gibbons, Steven J; Ringdal, Frode; Kvaerna, Tormod

    2007-11-01

    A database has been established of seismic and infrasonic recordings from more than 100 well-constrained surface explosions, conducted by the Finnish military to destroy old ammunition. The recorded seismic signals are essentially identical and indicate that the variation in source location and magnitude is negligible. In contrast, the infrasonic arrivals on both seismic and infrasound sensors exhibit significant variation both with regard to the number of detected phases, phase travel times, and phase amplitudes, which would be attributable to atmospheric factors. This data set provides an excellent database for studies in sound propagation, infrasound array detection, and direction estimation.

  11. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C.J. Miller; G. Elias; N.C. Schmitt

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that weremore » used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.« less

  12. Dense baryon matter with isospin and chiral imbalance in the framework of a NJL4 model at large Nc: Duality between chiral symmetry breaking and charged pion condensation

    NASA Astrophysics Data System (ADS)

    Khunjua, T. G.; Klimenko, K. G.; Zhokhov, R. N.

    2018-03-01

    In this paper the phase structure of dense quark matter has been investigated at zero temperature in the presence of baryon, isospin and chiral isospin chemical potentials in the framework of massless (3 +1 )-dimensional Nambu-Jona-Lasinio model with two quark flavors. It has been shown that in the large-Nc limit (Nc is the number of colors of quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation one. The key conclusion of our studies is the fact that chiral isospin chemical potential generates charged pion condensation in dense quark matter with isotopic asymmetry.

  13. Two-phase/two-phase heat exchanger simulation analysis

    NASA Technical Reports Server (NTRS)

    Kim, Rhyn H.

    1992-01-01

    The capillary pumped loop (CPL) system is one of the most desirable devices to dissipate heat energy in the radiation environment of the Space Station providing a relatively easy control of the temperature. A condenser, a component of the CPL system, is linked with a buffer evaporator in the form of an annulus section of a double tube heat exchanger arrangement: the concentric core of the double tube is the condenser; the annulus section is used as a buffer between the conditioned space and the radiation surrounding but works as an evaporator. A CPL system with this type of condenser is modeled to simulate its function numerically. Preliminary results for temperature variations of the system are shown and more investigations are suggested for further improvement.

  14. The track structure in condensed matter

    NASA Astrophysics Data System (ADS)

    Kaplan, I. G.

    1995-11-01

    The physical stage of track formation in a condensed phase is discussed. For interaction of charged particles with condensed molecular media its most important specific features are: (a) the continuous oscillator strength distribution with the broak peak in the energy range 21-22 eV attributed to the collective plasmon-type state; (b) the lowering of ionization potential compared to a gas phase. These specific features must be taken into account for simulation of track structures. The great difference in mass and charge for a electron and heavy ions cause a qualitative difference in their track structures. We analyse the structure of heavy ion tracks and prove the impossibility to use the LET as a universal characteristic for the radiation action of different ions.

  15. Nuclear magnetic resonance in high magnetic field: Application to condensed matter physics

    NASA Astrophysics Data System (ADS)

    Berthier, Claude; Horvatić, Mladen; Julien, Marc-Henri; Mayaffre, Hadrien; Krämer, Steffen

    2017-05-01

    In this review, we describe the potentialities offered by the nuclear magnetic resonance (NMR) technique to explore at a microscopic level new quantum states of condensed matter induced by high magnetic fields. We focus on experiments realised in resistive (up to 34 T) or hybrid (up to 45 T) magnets, which open a large access to these quantum phase transitions. After an introduction on NMR observables, we consider several topics: quantum spin systems (spin-Peierls transition, spin ladders, spin nematic phases, magnetisation plateaus, and Bose-Einstein condensation of triplet excitations), the field-induced charge density wave (CDW) in high-Tc superconductors, and exotic superconductivity including the Fulde-Ferrel-Larkin-Ovchinnikov superconducting state and the field-induced superconductivity due to the Jaccarino-Peter mechanism.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Urtiew, P A; Forbes, J W; Tarver, C M

    LX-04 is a widely used HMX-based plastic bonded explosive, which contains 85 weight % HMX and 15 weight % Viton binder. The sensitivity of LX-04 to a single stimulus such as heat, impact, and shock has been previously studied. However, hazard scenarios can involve multiple stimuli, such as heating to temperatures close to thermal explosion conditions followed by fragment impact, producing a shock in the hot explosive. The sensitivity of HMX at elevated temperatures is further complicated by the beta to delta solid-state phase transition, which occurs at approximately 165 C. This paper presents the results of shock initiation experimentsmore » conducted with LX-04 preheated to 190 C, as well as density measurements and small scale safety test results of the {delta} phase HMX at room temperature. This work shows that LX-04 at 190 C is more shock sensitive than LX-04 at 150 C or 170 C due to the volume increase during the {beta} to {delta} solid phase transition, which creates more hot spots, and the faster growth of reaction during shock compression.« less

  17. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames.

    PubMed

    Singh, Ajay V; Gollner, Michael J

    2016-06-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided.

  18. Experimental Methodology for Estimation of Local Heat Fluxes and Burning Rates in Steady Laminar Boundary Layer Diffusion Flames

    PubMed Central

    Singh, Ajay V.; Gollner, Michael J.

    2016-01-01

    Modeling the realistic burning behavior of condensed-phase fuels has remained out of reach, in part because of an inability to resolve the complex interactions occurring at the interface between gas-phase flames and condensed-phase fuels. The current research provides a technique to explore the dynamic relationship between a combustible condensed fuel surface and gas-phase flames in laminar boundary layers. Experiments have previously been conducted in both forced and free convective environments over both solid and liquid fuels. A unique methodology, based on the Reynolds Analogy, was used to estimate local mass burning rates and flame heat fluxes for these laminar boundary layer diffusion flames utilizing local temperature gradients at the fuel surface. Local mass burning rates and convective and radiative heat feedback from the flames were measured in both the pyrolysis and plume regions by using temperature gradients mapped near the wall by a two-axis traverse system. These experiments are time-consuming and can be challenging to design as the condensed fuel surface burns steadily for only a limited period of time following ignition. The temperature profiles near the fuel surface need to be mapped during steady burning of a condensed fuel surface at a very high spatial resolution in order to capture reasonable estimates of local temperature gradients. Careful corrections for radiative heat losses from the thermocouples are also essential for accurate measurements. For these reasons, the whole experimental setup needs to be automated with a computer-controlled traverse mechanism, eliminating most errors due to positioning of a micro-thermocouple. An outline of steps to reproducibly capture near-wall temperature gradients and use them to assess local burning rates and heat fluxes is provided. PMID:27285827

  19. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  20. Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40

    PubMed Central

    Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.

    2015-01-01

    A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484

  1. Tephra from the 1979 soufriere explosive eruption.

    PubMed

    Sigurdsson, H

    1982-06-04

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.

  2. Detection of an explosive simulant via electrical impedance spectroscopy utilizing the UiO-66-NH2 metal-organic framework.

    PubMed

    Peterson, G W; McEntee, M; Harris, C R; Klevitch, A D; Fountain, A W; Soliz, J R; Balboa, A; Hauser, A J

    2016-11-01

    Electrical impedance spectroscopy, in conjunction with the metal-organic framework (MOF) UiO-66-NH 2 , is used to detect trace levels of the explosive simulant 2,6-dinitrotoluene. The combination of porosity and functionality of the MOF provides an effective dielectric structure, resulting in changes of impedance magnitude and phase angle. The promising data indicate that MOFs may be used in low-cost, robust explosive detection devices.

  3. Under What Conditions Can Equilibrium Gas-Particle Partitioning Be Expected to Hold in the Atmosphere?

    PubMed

    Mai, Huajun; Shiraiwa, Manabu; Flagan, Richard C; Seinfeld, John H

    2015-10-06

    The prevailing treatment of secondary organic aerosol formation in atmospheric models is based on the assumption of instantaneous gas-particle equilibrium for the condensing species, yet compelling experimental evidence indicates that organic aerosols can exhibit the properties of highly viscous, semisolid particles, for which gas-particle equilibrium may be achieved slowly. The approach to gas-particle equilibrium partitioning is controlled by gas-phase diffusion, interfacial transport, and particle-phase diffusion. Here we evaluate the controlling processes and the time scale to achieve gas-particle equilibrium as a function of the volatility of the condensing species, its surface accommodation coefficient, and its particle-phase diffusivity. For particles in the size range of typical atmospheric organic aerosols (∼50-500 nm), the time scale to establish gas-particle equilibrium is generally governed either by interfacial accommodation or particle-phase diffusion. The rate of approach to equilibrium varies, depending on whether the bulk vapor concentration is constant, typical of an open system, or decreasing as a result of condensation into the particles, typical of a closed system.

  4. Dense Seismic Recordings of Two Surface-Detonated Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Koper, K. D.; Hale, J. M.; Burlacu, R.; Goddard, K. J.; Trow, A.; Linville, L. M.; Stein, J. R.; Drobeck, D.; Leidig, M.

    2015-12-01

    In the summer of 2015 two controlled chemical explosions were carried out near Dugway, Utah. The 2 June 2015 explosion consisted of 30,000 lbs of ammonium nitrate fuel oil (ANFO) and the 22 July 2015 explosion consisted of 60,000 lbs of ANFO. The explosion centroids were 1-2 m above the Earth's surface and both created significant craters in the soft desert alluvium. To better understand the seismic source associated with surface explosions, we deployed an array of wireless, three-component, short-period (5 Hz corner frequency) seismometers for several days around each shot. For the first explosion, 46 receivers were deployed in a "lollipop" geometry that had a sparse ring at a radius of 1 km, and a dense stem with 100 m spacing for distances of 0.5-4.5 km. For the second explosion, 48 receivers were deployed similarly, but with a dense ring spaced in azimuthal increments of 10 degrees at a distance of 1 km, and a sparse stem (~500 m spacing) that extended to a distance of nearly 6 km. A rich variety of phases were recorded including direct P waves, refracted and reflected P waves, nearly monochromatic air-coupled Rayleigh waves, normally dispersed fundamental mode Rayleigh waves (Rg), primary airblast arrivals, some secondary airblast arrivals, and possibly tertiary airblast arrivals. There is also evidence of converted S waves on the radial components and possibly direct S energy on the radial and transverse components, although the transverse energy does not always possess a simple, coherent move-out with distance, implying that it might have a scattering origin. To aid in the phase identification, especially of the apparent SH and Love energy, we are currently performing tau-p, f-k, and particle motion analysis.

  5. Tunable generation and adsorption of energetic compounds in the vapor phase at trace levels: a tool for testing and developing sensitive and selective substrates for explosive detection.

    PubMed

    Bonnot, Karine; Bernhardt, Pierre; Hassler, Dominique; Baras, Christian; Comet, Marc; Keller, Valérie; Spitzer, Denis

    2010-04-15

    Among various methods for landmine detection, as well as soil and water pollution monitoring, the detection of explosive compounds in air is becoming an important and inevitable challenge for homeland security applications, due to the threatening increase in terrorist explosive bombs used against civil populations. However, in the last case, there is a crucial need for the detection of vapor phase traces or subtraces (in the ppt range or even lower). A novel and innovative generator for explosive trace vapors was designed and developed. It allowed the generation of theoretical concentrations as low as 0.24 ppq for hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in air according to Clapeyron equations. The accurate generation of explosive concentrations at subppt levels was verified for RDX and 2,4,6-trinitrotoluene (TNT) using a gas chromatograph coupled to an electron capture detector (GC-ECD). First, sensing material experiments were conducted on a nanostructured tungsten oxide. The sensing efficiency of this material determined as its adsorption capacity toward 54 ppb RDX was calculated to be five times higher than the sensing efficiency of a 54 ppb TNT vapor. The material sensing efficiency showed no dependence on the mass of material used. The results showed that the device allowed the calibration and discrimination between materials for highly sensitive and accurate sensing detection in air of low vapor pressure explosives such as TNT or RDX at subppb levels. The designed device and method showed promising features for nanosensing applications in the field of ultratrace explosive detection. The current perspectives are to decrease the testing scale and the detection levels to ppt or subppt concentration of explosives in air.

  6. The role of community structure on the nature of explosive synchronization.

    PubMed

    Lotfi, Nastaran; Rodrigues, Francisco A; Darooneh, Amir Hossein

    2018-03-01

    In this paper, we analyze explosive synchronization in networks with a community structure. The results of our study indicate that the mesoscopic structure of the networks could affect the synchronization of coupled oscillators. With the variation of three parameters, the degree probability distribution exponent, the community size probability distribution exponent, and the mixing parameter, we could have a fast or slow phase transition. Besides, in some cases, we could have communities which are synchronized inside but not with other communities and vice versa. We also show that there is a limit in these mesoscopic structures which suppresses the transition from the second-order phase transition and results in explosive synchronization. This could be considered as a tuning parameter changing the transition of the system from the second order to the first order.

  7. Experimental evaluation of LPG tank explosion hazards.

    PubMed

    Stawczyk, Jan

    2003-01-31

    Liquefied-pressure gases (LPG) are transported and stored in the liquid phase in closed tanks under sufficiently high pressure. In the case of an accident, an abrupt tank unsealing may release enormous quantity of evaporating gas and energy that has a destructive effect on the tank and its surroundings. In this paper, experiments with explosions of small LPG tanks are described. The data acquisition equipment applied in the tests provided a chance to learn dynamics of the process and determine hazard factors. The tests enabled a determination of temperature and pressure at which tanks containing LPG disrupt. The results enable a reconstruction of consecutive phases of the explosion and identification of hazards resulting from damage of the tanks. An explanation of the tank unsealing process with fluid parameters above critical point is given.

  8. I. Excitonic Phase Diagram in Silicon: Evidence for Two Condensed Phases. I. Motion of Photoexcited Carriers in GALLIUM-ARSENIDE/ALUMINUM(X)GALLIUM(1-X)ARSENIDE Multiple Quantum Wells-Anomalous Confinement at High Densities.

    NASA Astrophysics Data System (ADS)

    Smith, Leigh Morris

    This thesis describes work on the thermodynamics and transport properties of photoexcited carriers in bulk and two-dimensional semiconductors. Two major topics are addressed. I. Photoluminescence experiments of excitons in unstressed silicon are presented which indicate the existence of a new non-degenerate condensed phase of plasma. This new liquid has a density one-tenth that of the ground state electron-hole liquid and is observed both above and below the liquid-gas critical point (~24.5K). A new phase diagram of excitons in silicon is presented which includes these two condensed plasmas. Consistent with the Gibbs phase rule, a triple point at 18.5 K is inferred from the luminescence data as the only temperature where the exciton gas, condensed plasma (CP) and electron-hole liquid (EHL) coexist. The low density condensed plasma persists up to a second critical point at 45 +/- 5K, above which the photoexcited carriers are observed to continuously decay into a partially ionized excitonic gas. II. We have measured the in-plane motion of photoexcited carriers in semiconductor quantum wells with 5 μm spatial and 10 ps temporal resolution and have discovered several surprising results. The effective diffusivity of the carriers at densities below n = 2 times 10^{11}cm ^{-2} is found to depend upon excitation level, possibly indicating defect-limited diffusion or phonon-wind effects. Above this density the spatial profiles exhibit two distinct components with widely differing diffusivities. This remarkable behavior may be understood with consideration of the interactions of non-equilibrium phonons with the photoexcited carriers. We postulate that the slowly diffusing component represents carriers which are "thermally confined" to a phonon hot spot, while the rapidly moving component is driven by the flux of non-equilibrium phonons away from the excitation region.

  9. Unknown loads affect force production capacity in early phases of bench press throws.

    PubMed

    Hernández Davó, J L; Sabido Solana, R; Sarabia Marínm, J M; Sánchez Martos, Á; Moya Ramón, M

    2015-10-01

    Explosive strength training aims to improve force generation in early phases of movement due to its importance in sport performance. The present study examined the influence of lack of knowledge about the load lifted in explosive parameters during bench press throws. Thirteen healthy young men (22.8±2.0 years) participated in the study. Participants performed bench press throws with three different loads (30, 50 and 70% of 1 repetition maximum) in two different conditions (known and unknown loads). In unknown condition, loads were changed within sets in each repetition and participants did not know the load, whereas in known condition the load did not change within sets and participants had knowledge about the load lifted. Results of repeated-measures ANOVA revealed that unknown conditions involves higher power in the first 30, 50, 100 and 150 ms with the three loads, higher values of ratio of force development in those first instants, and differences in time to reach maximal rate of force development with 50 and 70% of 1 repetition maximum. This study showed that unknown conditions elicit higher values of explosive parameters in early phases of bench press throws, thereby this kind of methodology could be considered in explosive strength training.

  10. Gas chromatographic detection of some nitro explosive compounds in soil samples after solid-phase microextraction with carbon ceramic copper nanoparticle fibers.

    PubMed

    Farhadi, Khalil; Bochani, Shayesteh; Hatami, Mehdi; Molaei, Rahim; Pirkharrati, Hossein

    2014-07-01

    In this research, a new solid-phase microextraction fiber based on carbon ceramic composites with copper nanoparticles followed by gas chromatography with flame ionization detection was applied for the extraction and determination of some nitro explosive compounds in soil samples. The proposed method provides an overview of trends related to synthesis of solid-phase microextraction sorbents and their applications in preconcentration and determination of nitro explosives. The sorbents were prepared by mixing of copper nanoparticles with a ceramic composite produced by mixture of methyltrimethoxysilane, graphite, methanol, and hydrochloric acid. The prepared sorbents were coated on copper wires by dip-coating method. The prepared nanocomposites were evaluated statistically and provided better limits of detection than the pure carbon ceramic. The limit of detection of the proposed method was 0.6 μg/g with a linear response over the concentration range of 2-160 μg/g and square of correlation coefficient >0.992. The new proposed fiber has been demonstrated to be a suitable, inexpensive, and sensitive candidate for extraction of nitro explosive compounds in contaminated soil samples. The constructed fiber can be used more than 100 times without the need for surface generation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Topology-driven phase transitions in the classical monomer-dimer-loop model.

    PubMed

    Li, Sazi; Li, Wei; Chen, Ziyu

    2015-06-01

    In this work, we investigate the classical loop models doped with monomers and dimers on a square lattice, whose partition function can be expressed as a tensor network (TN). In the thermodynamic limit, we use the boundary matrix product state technique to contract the partition function TN, and determine the thermodynamic properties with high accuracy. In this monomer-dimer-loop model, we find a second-order phase transition between a trivial monomer-condensation and a loop-condensation (LC) phase, which cannot be distinguished by any local order parameter, while nevertheless the two phases have distinct topological properties. In the LC phase, we find two degenerate dominating eigenvalues in the transfer-matrix spectrum, as well as a nonvanishing (nonlocal) string order parameter, both of which identify the topological ergodicity breaking in the LC phase and can serve as the order parameter for detecting the phase transitions.

  12. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography

    NASA Astrophysics Data System (ADS)

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-01

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  13. Suppressing Ice Nucleation of Supercooled Condensate with Biphilic Topography.

    PubMed

    Hou, Youmin; Yu, Miao; Shang, Yuhe; Zhou, Peng; Song, Ruyuan; Xu, Xiaonan; Chen, Xuemei; Wang, Zuankai; Yao, Shuhuai

    2018-02-16

    Preventing or minimizing ice formation in supercooled water is of prominent importance in many infrastructures, transportation, and cooling systems. The overall phase change heat transfer on icephobic surfaces, in general, is intentionally sacrificed to suppress the nucleation of water and ice. However, in a condensation frosting process, inhibiting freezing without compromising the water condensation has been an unsolved challenge. Here we show that this conflict between anti-icing and efficient condensation cooling can be resolved by utilizing biphilic topography with patterned high-contrast wettability. By creating a varying interfacial thermal barrier underneath the supercooled condensate, the biphilic structures tune the nucleation rates of water and ice in the sequential condensation-to-freezing process. Our experimental and theoretical investigation of condensate freezing dynamics further unravels the correlation between the onset of droplet freezing and its characteristic radius, offering a new insight for controlling the multiphase transitions among vapor, water, and ice in supercooled conditions.

  14. The relation of cool flames and auto-ignition phenomena to process safety at elevated pressure and temperature.

    PubMed

    Pekalski, A A; Zevenbergen, J F; Pasman, H J; Lemkowitz, S M; Dahoe, A E; Scarlett, B

    2002-07-01

    The cool-flame phenomenon can occur in fuel-oxygen (air) mixtures within the flammable range and outside the flammable range, at fuel-rich compositions, at temperatures below the auto-ignition temperature (AIT). It is caused by chemical reactions occurring spontaneously at relatively low temperatures and is favoured by elevated pressure. The hazards that cool flames generate are described. These vary from spoiling a product specification through contamination and explosive decomposition of condensed peroxides to the appearance of unexpected normal (hot) flame (two-stage ignition).

  15. Ozone, dust, smoke and humidity in nuclear winter

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Toon, O. B.; Ackerman, T. P.; Pollack, J. B.; Sagan, C.

    1985-01-01

    Recent correspondence on nuclear winter is commented on. Reasons are given for why the Tunguska meteor explosion may not be useful in calibrating the effects of a major nuclear exchange. The relationship between the optical depth of an aerosol cloud, the composition of the cloud, and its effect on sunlight intensity and climate are clarified. The significance of the Tambora eruption of 1815 and of historical fires for the nuclear winter theory are briefly discussed. The dispersion of smoke plumes from large fires is addressed, and water condensation and smoke scavenging are considered.

  16. Non-minimally coupled condensate cosmologies: a phase space analysis

    NASA Astrophysics Data System (ADS)

    Carloni, Sante; Vignolo, Stefano; Cianci, Roberto

    2014-09-01

    We present an analysis of the phase space of cosmological models based on a non-minimal coupling between the geometry and a fermionic condensate. We observe that the strong constraint coming from the Dirac equations allows a detailed design of the cosmology of these models, and at the same time guarantees an evolution towards a state indistinguishable from general relativistic cosmological models. In this light, we show in detail how the use of some specific potentials can naturally reproduce a phase of accelerated expansion. In particular, we find for the first time that an exponential potential is able to induce two de Sitter phases separated by a power law expansion, which could be an interesting model for the unification of an inflationary phase and a dark energy era.

  17. Research program on fractured petroleum reservoirs. Task II - new phase formation and flow in porous media. Quarterly progress report, April 1, 1996--June 30, 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, F.; Firoozabadi, A.

    We have developed a phenomenological model for critical condensate saturation. This model reveals that critical condensate saturation is a function of surface tension and contact angle hysteresis. On the other hand, residual oil saturation does not have such a dependency. Consequently, the selection of fluids in laboratory measurements for gas condensate systems should be made with care.

  18. Adaptive Osher-type scheme for the Euler equations with highly nonlinear equations of state

    NASA Astrophysics Data System (ADS)

    Lee, Bok Jik; Toro, Eleuterio F.; Castro, Cristóbal E.; Nikiforakis, Nikolaos

    2013-08-01

    For the numerical simulation of detonation of condensed phase explosives, a complex equation of state (EOS), such as the Jones-Wilkins-Lee (JWL) EOS or the Cochran-Chan (C-C) EOS, are widely used. However, when a conservative scheme is used for solving the Euler equations with such equations of state, a spurious solution across the contact discontinuity, a well known phenomenon in multi-fluid systems, arises even for single materials. In this work, we develop a generalised Osher-type scheme in an adaptive primitive-conservative framework to overcome the aforementioned difficulties. Resulting numerical solutions are compared with the exact solutions and with the numerical solutions from the Godunov method in conjunction with the exact Riemann solver for the Euler equations with Mie-Grüneisen form of equations of state, such as the JWL and the C-C equations of state. The adaptive scheme is extended to second order and its empirical convergence rates are presented, verifying second order accuracy for smooth solutions. Through a suite of several tests problems in one and two space dimensions we illustrate the failure of conservative schemes and the capability of the methods of this paper to overcome the difficulties.

  19. Condensed-Phase Photochemical Processes in Titan's Aerosols and Surface: The Role of Longer Wavelength Photochemistry

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Jacovi, Ronen; Lignell, Antti; Couturier, Isabelle

    2011-01-01

    We will discuss photochemical properties of Titan's organic molecules in the condensed phase as solid aerosols or surface material, from small linear polyyenes (polyacetylenes and polycyanoacetylenes) such as C2H2, C4N2, HC5N, etc. In particular we will focus on photochemistry caused by longer wavelength UV-VIS photons (greater than 250 nm) photons that make it through Titan's atmosphere to the haze region (approximately 100 km) and on to the surface of Titan.

  20. Vapordynamic thermosyphon - heat transfer two-phase device for wide applications

    NASA Astrophysics Data System (ADS)

    Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei

    2015-12-01

    Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.

  1. Heat Pipe with Axial Wick

    NASA Technical Reports Server (NTRS)

    Ambrose, Jay H. (Inventor); Holmes, Rolland (Inventor)

    2016-01-01

    A heat pipe has an evaporator portion, a condenser portion, and at least one flexible portion that is sealingly coupled between the evaporator portion and the condenser portion. The flexible portion has a flexible tube and a flexible separator plate held in place within the flexible tube so as to divide the flexible tube into a gas-phase passage and a liquid-phase artery. The separator plate and flexible tube are configured such that the flexible portion is flexible in a plane that is perpendicular to the separator plate.

  2. Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.

    PubMed

    Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne

    2014-08-22

    High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems.

  3. Comparing the mechanism of water condensation and evaporation in glassy aerosol.

    PubMed

    Bones, David L; Reid, Jonathan P; Lienhard, Daniel M; Krieger, Ulrich K

    2012-07-17

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3-4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫10(3) s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 10(13) Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk.

  4. Effect of Heat Treatment on the Structure and Properties of Explosion Welded Bimetal Kh20N80 + AD1

    NASA Astrophysics Data System (ADS)

    Shmorgun, V. G.; Arisova, V. N.; Slautin, O. V.; Taube, A. O.; Bakuntseva, V. M.

    2017-05-01

    Results of a study of the effect of heat treatment on the microhardness, structure and phase composition of diffusion zone in explosion-welded `refractory nickel alloy Kh20N80 + aluminum alloy AD1' bimetal are presented.

  5. When is an INP not an INP?

    NASA Astrophysics Data System (ADS)

    Simpson, Emma; Connolly, Paul; McFiggans, Gordon

    2016-04-01

    Processes such as precipitation and radiation depend on the concentration and size of different hydrometeors within clouds therefore it is important to accurately predict them in weather and climate models. A large fraction of clouds present in our atmosphere are mixed phase; contain both liquid and ice particles. The number of drops and ice crystals present in mixed phase clouds strongly depends on the size distribution of aerosols. Cloud condensation nuclei (CCN), a subset of atmospheric aerosol particles, are required for liquid drops to form in the atmosphere. These particles are ubiquitous in the atmosphere. To nucleate ice particles in mixed phase clouds ice nucleating particles (INP) are required. These particles are rarer than CCN. Here we investigate the case where CCN and INPs are in direct competition with each other for water vapour within a cloud. Focusing on the immersion and condensation modes of freezing (where an INP must be immersed within a liquid drop before it can freeze) we show that the presence of CCN can suppress the formation of ice. CCN are more hydrophilic than IN and as such are better able to compete for water vapour than, typically insoluble, INPs. Therefore water is more likely to condense onto a CCN than INP, leaving the INP without enough condensed water on it to be able to freeze in the immersion or condensation mode. The magnitude of this suppression effect strongly depends on a currently unconstrained quantity. Here we refer to this quantity as the critical mass of condensed water required for freezing, Mwc. Mwc is the threshold amount of water that must be condensed onto a INP before it can freeze in the immersion or condensation mode. Using the detailed cloud parcel model, Aerosol-Cloud-Precipiation-Interaction Model (ACPIM), developed at the University of Manchester we show that if only a small amount of water is required for freezing there is little suppression effect and if a large amount of water is required there is a large suppression effect. In this poster possible ways to constrain Mwc are discussed as well as conditions where the suppression effect is likely to be greatest. Key Words: Clouds, aerosol, CCN, IN, modelling

  6. A statistical mechanical model of economics

    NASA Astrophysics Data System (ADS)

    Lubbers, Nicholas Edward Williams

    Statistical mechanics pursues low-dimensional descriptions of systems with a very large number of degrees of freedom. I explore this theme in two contexts. The main body of this dissertation explores and extends the Yard Sale Model (YSM) of economic transactions using a combination of simulations and theory. The YSM is a simple interacting model for wealth distributions which has the potential to explain the empirical observation of Pareto distributions of wealth. I develop the link between wealth condensation and the breakdown of ergodicity due to nonlinear diffusion effects which are analogous to the geometric random walk. Using this, I develop a deterministic effective theory of wealth transfer in the YSM that is useful for explaining many quantitative results. I introduce various forms of growth to the model, paying attention to the effect of growth on wealth condensation, inequality, and ergodicity. Arithmetic growth is found to partially break condensation, and geometric growth is found to completely break condensation. Further generalizations of geometric growth with growth in- equality show that the system is divided into two phases by a tipping point in the inequality parameter. The tipping point marks the line between systems which are ergodic and systems which exhibit wealth condensation. I explore generalizations of the YSM transaction scheme to arbitrary betting functions to develop notions of universality in YSM-like models. I find that wealth vi condensation is universal to a large class of models which can be divided into two phases. The first exhibits slow, power-law condensation dynamics, and the second exhibits fast, finite-time condensation dynamics. I find that the YSM, which exhibits exponential dynamics, is the critical, self-similar model which marks the dividing line between the two phases. The final chapter develops a low-dimensional approach to materials microstructure quantification. Modern materials design harnesses complex microstructure effects to develop high-performance materials, but general microstructure quantification is an unsolved problem. Motivated by statistical physics, I envision microstructure as a low-dimensional manifold, and construct this manifold by leveraging multiple machine learning approaches including transfer learning, dimensionality reduction, and computer vision breakthroughs with convolutional neural networks.

  7. Dual-phase reactor plant with partitioned isolation condenser

    DOEpatents

    Hui, Marvin M.

    1992-01-01

    A nuclear energy plant housing a boiling-water reactor utilizes an isolation condenser in which a single chamber is partitioned into a distributor plenum and a collector plenum. Steam accumulates in the distributor plenum and is conveyed to the collector plenum through an annular manifold that includes tubes extending through a condenser pool. The tubes provide for a transfer of heat from the steam, forming a condensate. The chamber has a disk-shaped base, a cylindrical sidewall, and a semispherical top. This geometry results in a compact design that exhibits significant performance and cost advantages over prior designs.

  8. Synchronization crossover of polariton condensates in weakly disordered lattices

    NASA Astrophysics Data System (ADS)

    Ohadi, H.; del Valle-Inclan Redondo, Y.; Ramsay, A. J.; Hatzopoulos, Z.; Liew, T. C. H.; Eastham, P. R.; Savvidis, P. G.; Baumberg, J. J.

    2018-05-01

    We demonstrate that the synchronization of a lattice of solid-state condensates when intersite tunneling is switched on depends strongly on the weak local disorder. This finding is vital for implementation of condensate arrays as computation devices. The condensates here are nonlinear bosonic fluids of exciton-polaritons trapped in a weakly disordered Bose-Hubbard potential, where the nearest-neighboring tunneling rate (Josephson coupling) can be dynamically tuned. The system can thus be tuned from a localized to a delocalized fluid as the number density or the Josephson coupling between nearest neighbors increases. The localized fluid is observed as a lattice of unsynchronized condensates emitting at different energies set by the disorder potential. In the delocalized phase, the condensates synchronize and long-range order appears, evidenced by narrowing of momentum and energy distributions, new diffraction peaks in momentum space, and spatial coherence between condensates. Our paper identifies similarities and differences of this nonequilibrium crossover to the traditional Bose-glass to superfluid transition in atomic condensates.

  9. Condensed-Phase Nitric Acid in a Tropical Subvisible Cirrus Cloud

    NASA Technical Reports Server (NTRS)

    Popp, P. J.; Marcy, T. P.; Watts, O. A.; Gao, R. S.; Fahey, D. W.; Weinstock, E. M.; Smith, J. B.; Herman, R. L.; Tropy, R. F.; Webster, C. r.; hide

    2007-01-01

    In situ observations in a tropical subvisible cirrus cloud during the Costa Rica Aura Validation Experiment on 2 February 2006 show the presence of condensed-phase nitric acid. The cloud was observed near the tropopause at altitudes of 16.3-17.7 km in an extremely cold (183-191 K) and dry 5 ppm H2O) air mass. Relative humidities with respect to ice ranged from 150-250% throughout most of the cloud. Optical particle measurements indicate the presence of ice crystals as large as 90 microns in diameter. Condensed RN031H20 molar ratios observed in the cloud particles were 1-2 orders of magnitude greater than ratios observed previously in cirrus clouds at similar RN03 partial pressures. Nitric acid trihydrate saturation ratios were 10 or greater during much of the cloud encounter, indicating that RN03 may be present in the cloud particles as a stable condensate and not simply physically adsorbed on or trapped in the particles.

  10. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    NASA Astrophysics Data System (ADS)

    Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan

    2016-05-01

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.

  11. Dissolution and sorption of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) residues from detonated mineral surfaces.

    PubMed

    Jaramillo, Ashley M; Douglas, Thomas A; Walsh, Marianne E; Trainor, Thomas P

    2011-08-01

    Composition B (Comp B) is a commonly used military formulation composed of the toxic explosive compounds 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX). Numerous studies of the temporal fate of explosive compounds in soils, surface water and laboratory batch reactors have been conducted. However, most of these investigations relied on the application of explosive compounds to the media via aqueous addition and thus these studies do not provide information on the real world loading of explosive residues during detonation events. To address this we investigated the dissolution and sorption of TNT and RDX from Comp B residues loaded to pure mineral phases through controlled detonation. Mineral phases included nontronite, vermiculite, biotite and Ottawa sand (quartz with minor calcite). High Performance Liquid Chromatography and Attenuated Total Reflectance Fourier Transform Infrared spectroscopy were used to investigate the dissolution and sorption of TNT and RDX residues loaded onto the mineral surfaces. Detonation resulted in heterogeneous loading of TNT and RDX onto the mineral surfaces. Explosive compound residues dissolved rapidly (within 9 h) in all samples but maximum concentrations for TNT and RDX were not consistent over time due to precipitation from solution, sorption onto mineral surfaces, and/or chemical reactions between explosive compounds and mineral surfaces. We provide a conceptual model of the physical and chemical processes governing the fate of explosive compound residues in soil minerals controlled by sorption-desorption processes. Published by Elsevier Ltd.

  12. Composite particle theory of three-dimensional gapped fermionic phases: Fractional topological insulators and charge-loop excitation symmetry

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Hughes, Taylor L.; Maciejko, Joseph; Fradkin, Eduardo

    2016-09-01

    Topological phases of matter are usually realized in deconfined phases of gauge theories. In this context, confined phases with strongly fluctuating gauge fields seem to be irrelevant to the physics of topological phases. For example, the low-energy theory of the two-dimensional (2D) toric code model (i.e., the deconfined phase of Z2 gauge theory) is a U(1 )×U(1 ) Chern-Simons theory in which gauge charges (i.e., e and m particles) are deconfined and the gauge fields are gapped, while the confined phase is topologically trivial. In this paper, we point out a route to constructing exotic three-dimensional (3D) gapped fermionic phases in a confining phase of a gauge theory. Starting from a parton construction with strongly fluctuating compact U(1 )×U(1 ) gauge fields, we construct gapped phases of interacting fermions by condensing two linearly independent bosonic composite particles consisting of partons and U(1 )×U(1 ) magnetic monopoles. This can be regarded as a 3D generalization of the 2D Bais-Slingerland condensation mechanism. Charge fractionalization results from a Debye-Hückel-type screening cloud formed by the condensed composite particles. Within our general framework, we explore two aspects of symmetry-enriched 3D Abelian topological phases. First, we construct a new fermionic state of matter with time-reversal symmetry and Θ ≠π , the fractional topological insulator. Second, we generalize the notion of anyonic symmetry of 2D Abelian topological phases to the charge-loop excitation symmetry (Charles ) of 3D Abelian topological phases. We show that line twist defects, which realize Charles transformations, exhibit non-Abelian fusion properties.

  13. Development of Flow Boiling and Condensation Experiment on the International Space Station- Normal and Low Gravity Flow Boiling Experiment Development and Test Results

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hall, Nancy R.; Hasan, Mohammad M.; Wagner, James D.; May, Rochelle L.; Mackey, Jeffrey R.; Kolacz, John S.; Butcher, Robert L.; Frankenfield, Bruce J.; Mudawar, Issam; hide

    2013-01-01

    Flow boiling and condensation have been identified as two key mechanisms for heat transport that are vital for achieving weight and volume reduction as well as performance enhancement in future space systems. Since inertia driven flows are demanding on power usage, lower flows are desirable. However, in microgravity, lower flows are dominated by forces other than inertia (like the capillary force). It is of paramount interest to investigate limits of low flows beyond which the flow is inertial enough to be gravity independent. One of the objectives of the Flow Boiling and Condensation Flight Experiment sets to investigate these limits for flow boiling and condensation. A two-phase flow loop consisting of a Flow Boiling Module and two Condensation Modules has been developed to experimentally study flow boiling condensation heat transfer in the reduced gravity environment provided by the reduced gravity platform. This effort supports the development of a flow boiling and condensation facility for the International Space Station (ISS). The closed loop test facility is designed to deliver the test fluid, FC-72 to the inlet of any one of the test modules at specified thermodynamic and flow conditions. The zero-g-aircraft tests will provide subcooled and saturated flow boiling critical heat flux and flow condensation heat transfer data over wide range of flow velocities. Additionally, these tests will verify the performance of all gravity sensitive components, such as evaporator, condenser and accumulator associated with the two-phase flow loop. We will present in this paper the breadboard development and testing results which consist of detailed performance evaluation of the heater and condenser combination in reduced and normal gravity. We will also present the design of the reduced gravity aircraft rack and the results of the ground flow boiling heat transfer testing performed with the Flow Boiling Module that is designed to investigate flow boiling heat transfer and Critical Heat Flux (CHF) phenomena.

  14. Pore-scale mechanisms of gas flow in tight sand reservoirs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silin, D.; Kneafsey, T.J.; Ajo-Franklin, J.B.

    2010-11-30

    Tight gas sands are unconventional hydrocarbon energy resource storing large volume of natural gas. Microscopy and 3D imaging of reservoir samples at different scales and resolutions provide insights into the coaredo not significantly smaller in size than conventional sandstones, the extremely dense grain packing makes the pore space tortuous, and the porosity is small. In some cases the inter-granular void space is presented by micron-scale slits, whose geometry requires imaging at submicron resolutions. Maximal Inscribed Spheres computations simulate different scenarios of capillary-equilibrium two-phase fluid displacement. For tight sands, the simulations predict an unusually low wetting fluid saturation threshold, at whichmore » the non-wetting phase becomes disconnected. Flow simulations in combination with Maximal Inscribed Spheres computations evaluate relative permeability curves. The computations show that at the threshold saturation, when the nonwetting fluid becomes disconnected, the flow of both fluids is practically blocked. The nonwetting phase is immobile due to the disconnectedness, while the permeability to the wetting phase remains essentially equal to zero due to the pore space geometry. This observation explains the Permeability Jail, which was defined earlier by others. The gas is trapped by capillarity, and the brine is immobile due to the dynamic effects. At the same time, in drainage, simulations predict that the mobility of at least one of the fluids is greater than zero at all saturations. A pore-scale model of gas condensate dropout predicts the rate to be proportional to the scalar product of the fluid velocity and pressure gradient. The narrowest constriction in the flow path is subject to the highest rate of condensation. The pore-scale model naturally upscales to the Panfilov's Darcy-scale model, which implies that the condensate dropout rate is proportional to the pressure gradient squared. Pressure gradient is the greatest near the matrix-fracture interface. The distinctive two-phase flow properties of tight sand imply that a small amount of gas condensate can seriously affect the recovery rate by blocking gas flow. Dry gas injection, pressure maintenance, or heating can help to preserve the mobility of gas phase. A small amount of water can increase the mobility of gas condensate.« less

  15. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    NASA Technical Reports Server (NTRS)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  16. Maintenance of order in a moving strong condensate

    NASA Astrophysics Data System (ADS)

    Whitehouse, Justin; Costa, André; Blythe, Richard A.; Evans, Martin R.

    2014-11-01

    We investigate the conditions under which a moving condensate may exist in a driven mass transport system. Our paradigm is a minimal mass transport model in which n - 1 particles move simultaneously from a site containing n > 1 particles to the neighbouring site in a preferred direction. In the spirit of a zero-range process the rate u(n) of this move depends only on the occupation of the departure site. We study a hopping rate u(n) = 1 + b/nα numerically and find a moving strong condensate phase for b > bc(α) for all α > 0. This phase is characterised by a condensate that moves through the system and comprises a fraction of the system's mass that tends to unity. The mass lost by the condensate as it moves is constantly replenished from the trailing tail of low occupancy sites that collectively comprise a vanishing fraction of the mass. We formulate an approximate analytical treatment of the model that allows a reasonable estimate of bc(α) to be obtained. We show numerically (for α = 1) that the transition is of mixed order, exhibiting a discontinuity in the order parameter as well as a diverging length scale as b\\searrow bc .

  17. Volatile element chemistry in the solar nebula - Na, K, F, Cl, Br, and P

    NASA Technical Reports Server (NTRS)

    Fegley, B., Jr.; Lewis, J. S.

    1980-01-01

    The results of the most extensive set to date of thermodynamic calculations on the equilibrium chemistry of several hundred compounds of the elements Na, K, F, Cl, Br, and P in a solar composition system are reported. Two extreme models of accretion are investigated. In one extreme complete chemical equilibrium between condensates and gases is maintained because the time scale for accretion is long compared to the time scale for cooling or dissipation of the nebula. Condensates formed in this homogeneous accretion model include several phases such as whitlockite, alkali feldspars, and apatite minerals which are found in chondrites. In the other extreme complete isolation of newly formed condensates from prior condensates and gases occurs due to a time scale for accretion that is short relative to the time required for nebular cooling or dissipation. The condensates produced in this heterogeneous accretion model include alkali sulfides, ammonium halides, and ammonium phosphates. None of these phases are found in chondrites. Available observations of the Na, K, F, Cl, Br, and P elemental abundances in the terrestrial planets are found to be compatible with the predictions of the homogeneous accretion model.

  18. Refractory metal particles in refractory inclusions in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Fuchs, L. H.; Blander, M.

    1980-01-01

    SEM and X-ray analysis were used to study refractory metal particles in five calcium-aluminum-rich inclusions in the Allende meteorite, and a complex variety of compositions and large departures from equilibrium were found. It is suggested that these particles could have been primordial condensates which were isolated from the nebula and from each other at different times by cocondensing oxides. Selective diffusion and/or oxidation of the more oxidizable metals (Mo, W, Fe, and Ni), phase segregations into different alloy phases (fcc, bcc, hcp, and, possibly, ordered phases), and the formation of metastable condensates could have been involved in the genesis of these materials

  19. Competing role of interactions in synchronisation of exciton-polariton condensates

    NASA Astrophysics Data System (ADS)

    Khan, Saeed A.; Türeci, Hakan E.

    2017-10-01

    We present a theoretical study of synchronisation dynamics of incoherently pumped exciton-polariton condensates in coupled polariton traps. Our analysis is based on a coupled-mode theory for the generalised Gross-Pitaevskii equation, which employs an expansion in non-Hermitian, pump-dependent modes appropriate for the pumped geometry. We find that polariton-polariton and reservoir-polariton interactions play competing roles and lead to qualitatively different synchronised phases of the coupled polariton modes as pumping power is increased. Crucially, these interactions can also act against each other to hinder synchronisation. We map out a phase diagram and discuss the general characteristics of these phases using a generalised Adler equation.

  20. Detuning-Controlled Internal Oscillations in an Exciton-Polariton Condensate

    NASA Astrophysics Data System (ADS)

    Voronova, N. S.; Elistratov, A. A.; Lozovik, Yu. E.

    2015-10-01

    We theoretically analyze exciton-photon oscillatory dynamics within a homogenous polariton gas in the presence of energy detuning between the cavity and quantum well modes. Whereas pure Rabi oscillations consist of the particle exchange between the photon and exciton states in the polariton system without any oscillations of the phases of the two subcondensates, we demonstrate that any nonzero detuning results in oscillations of the relative phase of the photon and exciton macroscopic wave functions. Different initial conditions reveal a variety of behaviors of the relative phase between the two condensates, and a crossover from Rabi-like to Josephson-like oscillations is predicted.

  1. New developments of the CARTE thermochemical code: A two-phase equation of state for nanocarbons

    NASA Astrophysics Data System (ADS)

    Dubois, Vincent; Pineau, Nicolas

    2016-01-01

    We developed a new equation of state (EOS) for nanocarbons in the thermodynamic range of high explosives detonation products (up to 50 GPa and 4000 K). This EOS was fitted to an extensive database of thermodynamic properties computed by molecular dynamics simulations of nanodiamonds and nano-onions with the LCBOPII potential. We reproduced the detonation properties of a variety of high explosives with the CARTE thermochemical code, including carbon-poor and carbon-rich explosives, with excellent accuracy.

  2. The classification of explosion-proof protected induction motor into adequate temperature and efficiency class

    NASA Astrophysics Data System (ADS)

    Brinovar, Iztok; Srpčič, Gregor; Seme, Sebastijan; Štumberger, Bojan; Hadžiselimović, Miralem

    2017-07-01

    This article deals with the classification of explosion-proof protected induction motors, which are used in hazardous areas, into adequate temperature and efficiency class. Hazardous areas are defined as locations with a potentially explosive atmosphere where explosion may occur due to present of flammable gasses, liquids or combustible dusts (industrial plants, mines, etc.). Electric motors and electrical equipment used in such locations must be specially designed and tested to prevent electrical initiation of explosion due to high surface temperature and arcing contacts. This article presents the basic tests of three-phase explosion-proof protected induction motor with special emphasis on the measuring system and temperature rise test. All the measurements were performed with high-accuracy instrumentation and accessory equipment and carried out at the Institute of energy technology in the Electric machines and drives laboratory and Applied electrical engineering laboratory.

  3. Trace Explosives Signatures from World War II Unexploded Undersea Ordnance

    NASA Technical Reports Server (NTRS)

    Darrach, M. R.; Chutjian, A.; Plett, G. A.

    1998-01-01

    Trace explosives signatures of TNT and DNT have been extracted from multiple sediment samples adjacent to unexploded undersea ordnance at Halifax Harbor, Canada. The ordnance was hurled into the harbor during a massive explosion some 50 years earlier, in 1945 after World War II had ended. Laboratory sediment extractions were made using the solid-phase microextraction (SPME) method in seawater and detection using the Reversal Electron Attachment Detection (READ) technique and, in the case of DNT, a commercial gas chromatograph/mass spectrometer (GC/MS). Results show that, after more than 50 years in the environment, ordnance that appeared to be physically intact gave good explosives signatures at the parts per billion level, whereas ordnance that had been cracked open during the explosion gave no signatures at the 10 parts per trillion sensitivity level. These measurements appear to provide the first reported data of explosives signatures from undersea unexploded ordnance.

  4. A Massive Shell of Supernova-Formed Dust in SNR G54.1+0.3

    NASA Technical Reports Server (NTRS)

    Temim, Tea; Dwek, Eli; Arendt, Richard G.; Borkowski, Kazimiera J.; Reynolds, Stephen P.; Slane, Patrick; Gelfand, Joseph D.; Raymond, John C.

    2017-01-01

    While theoretical models of dust condensation predict that most refractory elements produced in core-collapsesupernovae (SNe) efficiently condense into dust, a large quantity of dust has so far only been observed inSN1987A. We present an analysis of observations from the Spitzer Space Telescope, Herschel SpaceObservatory, Stratospheric Observatory for Infrared Astronomy, and AKARI of the infrared shell surrounding thepulsar wind nebula in the supernova remnant G54.1+0.3. We attribute a distinctive spectral feature at 21 m to amagnesium silicate grain species that has been invoked in modeling the ejecta-condensed dust in Cas A, whichexhibits the same spectral signature. If this species is responsible for producing the observed spectral feature andaccounts for a significant fraction of the observed infrared continuum, we find that it would be the dominantconstituent of the dust in G54.1+0.3, with possible secondary contributions from other compositions, such ascarbon, silicate, or alumina grains. The total mass of SN-formed dust required by this model is at least 0.3Me. Wediscuss how these results may be affected by varying dust grain properties and self-consistent grain heating models.The spatial distribution of the dust mass and temperature in G54.1+0.3 confirms the scenario in which the SNformeddust has not yet been processed by the SN reverse shock and is being heated by stars belonging to a clusterin which the SN progenitor exploded. The dust mass and composition suggest a progenitor mass of 1627Me andimply a high dust condensation efficiency, similar to that found for Cas A and SN1987A. The study providesanother example of significant dust formation in a Type IIP SN explosion and sheds light on the properties ofpristine SN-condensed dust.

  5. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes <0.1km3 DRE, while the Sunset Crater deposit is at least 0.6km3 DRE [Amos (1986)]. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Due to its young age, the eruptive material is fresh and the deposit is well-preserved. We sampled the first five tephra units at 25 locations, ranging from 6 km to 20 km from the vent, concentrating our efforts in the downwind direction (E and SE of the vent) along the primary dispersal axes of several phases. Notable variations among the first five phases were found from evaluation of juvenile clast componentry, with each phase containing some proportion of red, grey, and glassy to iridescent clasts. The red and grey clasts are sub-rounded to rounded with high sphericity, while the other clasts are highly angular and slightly elongate, with blue-black to gold glassy and iridescent surfaces. The glassy and iridescent clasts likely represent fresh, juvenile ejecta, which were quenched rapidly, whereas the red and grey rounded clasts may be the result of recycling of the cone or vent-fill material. Alternatively, the differences among the populations may represent lateral variations in conduit flow conditions. In general, phases associated with large volumes and large dispersal areas tend to contain larger proportions of the glassy/iridescent clasts. Phase 1 has a large proportion of glassy clasts. Phase 2 has approximately half red and half grey clasts, as well as a small fraction of glassy material. Phase 3, which is the phase with the largest dispersal area, has a similar proportion of glassy clasts as phase 1. Phase 4, the largest by volume at ~0.11km3 DRE [Amos (1986)], has the highest proportion of glassy clasts. Phase 5 is comparable to phase 4 (similar fractions of each clast type), although the glassy surface changes from gold to black as clast size decreases. Each phase is well- to very well-sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.

  6. Statistical properties and condensate fluctuation of attractive Bose gas with finite number of particles

    NASA Astrophysics Data System (ADS)

    Bera, Sangita; Lekala, Mantile Leslie; Chakrabarti, Barnali; Bhattacharyya, Satadal; Rampho, Gaotsiwe Joel

    2017-09-01

    'We study the condensate fluctuation and several statistics of weakly interacting attractive Bose gas of 7 Li atoms in harmonic trap. Using exact recursion relation we calculate canonical ensemble partition function and study the thermal evolution of the condensate. As 7 Li condensate is associated with collapse, the number of condensate atom is truly finite and it facilitates to study the condensate in mesoscopic region. Being highly correlated, we utilize the two-body correlated basis function to get the many-body effective potential which is further used to calculate the energy levels. Taking van der Waals interaction as interatomic interaction we calculate several quantities like condensate fraction N, root-mean-square fluctuation δn0 and different orders of central moments. We observe the effect of finite size on the calculation of condensate fluctuations and the effect of attractive interaction over the noninteracting limit. We observe the depletion of the condensate with increase in temperature. The calculated moments nicely exhibit the mesoscopic effect. The sharp fall in the root-mean-square fluctuation near the critical point signifies the possibility of phase transition.

  7. Experiments of Transient Condensation Heat Transfer on the Heat Flux Senor

    NASA Astrophysics Data System (ADS)

    Wang, Xuwen; Liu, Qiusheng; Zhu, Zhiqiang; Chen, Xue

    2015-09-01

    The influence of transient heat transfer in different condensation condition was investigated experimentally in the present paper. Getting condensation heat and mass transfer regularity and characteristics in space can provide theoretical basis for thermodynamic device such as heat pipes, loop heat pipes and capillary pumped loops as well as other fluid management engineering designing. In order to study the condensation process in space, an experimental study has been carried out on the ground for space experiment. The results show that transit heat transfer coefficient of film condensation is related to the condensation film width, the flow condition near the two phase interface and the pressure of the vapor and non-condensable gas in chamber. On the ground, the condensation heat flux on vertical surface is higher than it on horizontal surface. The transit heat flux of film condensation is affected by the temperature of superheated vapor, the temperature of condensation surface and non-condensable gas pressure. Condensation heat flux with vapor forced convection is many times more than it with natural convection. All of heat flux for both vapor forced convection and natural convection condensation in limited chamber declines dramatically over time. The present experiment is preliminary work for our future space experiments of the condensation and heat transfer process onboard the Chinese Spacecraft "TZ-1" to be launched in 2016.

  8. Quantum fluctuations and gapped Goldstone modes in spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Beekman, Aron

    2015-03-01

    The classical Heisenberg ferromagnet is an exact eigenstate of the quantum Hamiltonian and therefore has no quantum fluctuations. Furthermore it has a reduced number of Goldstone modes, an order parameter that is itself a symmetry generator, is a highest-weight state for the spin algebra, and has no tower of states of vanishing energy. We derive the connection between all these properties and provide general criteria for their presence in other spontaneously-broken symmetry states. The phletora of groundstates in spinor Bose-Einstein condensates is an ideal testing ground for these predictions. In particular the phases with non-maximal polarization (e.g. the F-phase in spin-3 condensates) have an additional gapped mode that is a partner to the quadratically dispersing Goldstone mode, as compared to the maximally polarized, ferromagnetic phase. Furthermore there is a fundamental limit to the coherence time of superpositions in the non-maximally polarized state, which should manifest itself for small-size systems.

  9. Enhanced Hydrothermal Stability and Catalytic Activity of La x Zr y O z Mixed Oxides for the Ketonization of Acetic Acid in the Aqueous Condensed Phase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Ruiz, Juan A.; Cooper, Alan R.; Li, Guosheng

    Common ketonization catalysts such as ZrO2, CeO2, CexZryOz, and TiO2-based catalysts have been reported to lose surface area, undergo phase-transformation, and lose catalytic activity when utilized in the condensed aqueous phase. In this work, we synthesized and tested a series of LaxZryOz mixed metal oxides with different La:Zr atomic ratios with the goal of enhancing the catalytic activity and stability for the ketonization of acetic acid in condensed aqueous media at 568 K. We synthesized a hydrothermally stable LaxZryOz mixed-metal oxide catalyst with enhanced ketonization activities 360 and 40 times more active than La2O3 and ZrO2, respectively. Catalyst characterization techniquesmore » suggest that the formation of a hydrothermally stable catalyst which is isomorphic with tetragonal-ZrO2 under hydrothermal reaction conditions.« less

  10. Coherent inflationary dynamics for Bose-Einstein condensates crossing a quantum critical point

    NASA Astrophysics Data System (ADS)

    Feng, Lei; Clark, Logan W.; Gaj, Anita; Chin, Cheng

    2018-03-01

    Quantum phase transitions, transitions between many-body ground states, are of extensive interest in research ranging from condensed-matter physics to cosmology1-4. Key features of the phase transitions include a stage with rapidly growing new order, called inflation in cosmology5, followed by the formation of topological defects6-8. How inflation is initiated and evolves into topological defects remains a hot topic of debate. Ultracold atomic gas offers a pristine and tunable platform to investigate quantum critical dynamics9-21. We report the observation of coherent inflationary dynamics across a quantum critical point in driven Bose-Einstein condensates. The inflation manifests in the exponential growth of density waves and populations in well-resolved momentum states. After the inflation stage, extended coherent dynamics is evident in both real and momentum space. We present an intuitive description of the quantum critical dynamics in our system and demonstrate the essential role of phase fluctuations in the formation of topological defects.

  11. An efficient way of high-contrast, quasi-3D cellular imaging: off-axis illumination.

    PubMed

    Hostounský, Zdenĕk; Pelc, Radek

    2006-07-31

    An imaging system enabling a convenient visualisation of cells and other small objects is presented. It represents an adaptation of the optical microscope condenser, accommodating a built-in edge (relief) diaphragm brought close to the condenser iris diaphragm and enabling high-contrast pseudo-relief (quasi-3D) imaging. The device broadens the family of available apparatus based on the off-axis (or anaxial, asymmetric, inclined, oblique, schlieren-type, sideband) illumination. The simplicity of the design makes the condenser a user-friendly, dedicated device delivering high-contrast quasi-3D images of phase objects. Those are nearly invisible under the ordinary (axial) illumination. The phase contrast microscopy commonly used in visualisation of phase objects does not deliver the quasi-3D effect and introduces a disturbing 'halo' effect around the edges. The performance of the device presented here is demonstrated on living cells and tissue replicas. High-contrast quasi-3D images of cell-free preparations of biological origin (paper fibres and microcrystals) are shown as well.

  12. Revisiting kinetic boundary conditions at the surface of fuel droplet hydrocarbons: An atomistic computational fluid dynamics simulation

    PubMed Central

    Nasiri, Rasoul

    2016-01-01

    The role of boundary conditions at the interface for both Boltzmann equation and the set of Navier-Stokes equations have been suggested to be important for studying of multiphase flows such as evaporation/condensation process which doesn’t always obey the equilibrium conditions. Here we present aspects of transition-state theory (TST) alongside with kinetic gas theory (KGT) relevant to the study of quasi-equilibrium interfacial phenomena and the equilibrium gas phase processes, respectively. A two-state mathematical model for long-chain hydrocarbons which have multi-structural specifications is introduced to clarify how kinetics and thermodynamics affect evaporation/condensation process at the surface of fuel droplet, liquid and gas phases and then show how experimental observations for a number of n-alkane may be reproduced using a hybrid framework TST and KGT with physically reasonable parameters controlling the interface, gas and liquid phases. The importance of internal activation dynamics at the surface of n-alkane droplets is established during the evaporation/condensation process. PMID:27215897

  13. Formation of intermetallics at the interface of explosively welded Ni-Al multilayered composites during annealing

    NASA Astrophysics Data System (ADS)

    Ogneva, T. S.; Lazurenko, D. V.; Bataev, I. A.; Mali, V. I.; Esikov, M. A.; Bataev, A. A.

    2016-04-01

    The Ni-Al multilayer composite was fabricated using explosive welding. The zones of mixing of Ni and Al are observed at the composite interfaces after the welding. The composition of these zones is inhomogeneous. Continuous homogeneous intermetallic layers are formed at the interface after heat treatment at 620 °C during 5 h These intermetallic layers consist of NiAl3 and Ni2Al3 phases. The presence of mixed zones significantly accelerates the growth rate of intermetallic phases at the initial stages of heating.

  14. Can Bose condensation of alpha particles be observed in heavy ion collisions?

    NASA Technical Reports Server (NTRS)

    Tripathi, Ram K.; Townsend, Lawrence W.

    1993-01-01

    Using a fully self-consistent quantum statistical model, we demonstrate the possibility of Bose condensation of alpha particles with a concomitant phase transition in heavy ion collisions. Suggestions for the experimental observation of the signature of the onset of this phenomenon are made.

  15. Initial signatures of magnetic field and energetic particle fluxes at tail reconfiguration - Explosive growth phase

    NASA Technical Reports Server (NTRS)

    Ohtani, S.; Takahashi, K.; Zanetti, L. J.; Potemra, T. A.; Mcentire, R. W.; Iijima, T.

    1992-01-01

    The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.

  16. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupert, Titus; He, Huan; Keyserlingk, Curt von

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  17. No-go theorem for boson condensation in topologically ordered quantum liquids

    DOE PAGES

    Neupert, Titus; He, Huan; Keyserlingk, Curt von; ...

    2016-12-07

    Certain phase transitions between topological quantum field theories (TQFTs) are driven by the condensation of bosonic anyons. However, as bosons in a TQFT are themselves nontrivial collective excitations, there can be topological obstructions that prevent them from condensing. Here we formulate such an obstruction in the form of a no-go theorem. We use it to show that no condensation is possible in SO(3) k TQFTs with odd k. We further show that a 'layered' theory obtained by tensoring SO(3) k TQFT with itself any integer number of times does not admit condensation transitions either. Furthermore, this includes (as the casemore » k = 3) the noncondensability of any number of layers of the Fibonacci TQFT.« less

  18. Deepak Condenser Model (DeCoM)

    NASA Technical Reports Server (NTRS)

    Patel, Deepak

    2013-01-01

    Development of the DeCoM comes from the requirement of analyzing the performance of a condenser. A component of a loop heat pipe (LHP), the condenser, is interfaced with the radiator in order to reject heat. DeCoM simulates the condenser, with certain input parameters. Systems Improved Numerical Differencing Analyzer (SINDA), a thermal analysis software, calculates the adjoining component temperatures, based on the DeCoM parameters and interface temperatures to the radiator. Application of DeCoM is (at the time of this reporting) restricted to small-scale analysis, without the need for in-depth LHP component integrations. To efficiently develop a model to simulate the LHP condenser, DeCoM was developed to meet this purpose with least complexity. DeCoM is a single-condenser, single-pass simulator for analyzing its behavior. The analysis is done based on the interactions between condenser fluid, the wall, and the interface between the wall and the radiator. DeCoM is based on conservation of energy, two-phase equations, and flow equations. For two-phase, the Lockhart- Martinelli correlation has been used in order to calculate the convection value between fluid and wall. Software such as SINDA (for thermal analysis analysis) and Thermal Desktop (for modeling) are required. DeCoM also includes the ability to implement a condenser into a thermal model with the capability of understanding the code process and being edited to user-specific needs. DeCoM requires no license, and is an open-source code. Advantages to DeCoM include time dependency, reliability, and the ability for the user to view the code process and edit to their needs.

  19. Synthesis of C-rich dust in CO nova outbursts

    NASA Astrophysics Data System (ADS)

    José, Jordi; Halabi, Ghina M.; El Eid, Mounib F.

    2016-09-01

    Context. Classical novae are thermonuclear explosions that take place in the envelopes of accreting white dwarfs in stellar binary systems. The material transferred onto the white dwarf piles up under degenerate conditions, driving a thermonuclear runaway. In these outbursts, about 10-7-10-3 M⊙, enriched in CNO and sometimes other intermediate-mass elements (e.g., Ne, Na, Mg, or Al for ONe novae) are ejected into the interstellar medium. The large concentrations of metals spectroscopically inferred in the nova ejecta reveal that the solar-like material transferred from the secondary mixes with the outermost layers of the underlying white dwarf. Aims: Most theoretical models of nova outbursts reported to date yield, on average, outflows characterized by O > C, from which, in principle, only oxidized condensates (e.g., O-rich grains) would be expected. Methods: To specifically address whether CO novae can actually produce C-rich dust, six different hydrodynamic nova models have been evolved, from accretion to the expansion and ejection stages, with different choices for the composition of the substrate with which the solar-like accreted material mixes. Updated chemical profiles inside the H-exhausted core have been used, based on stellar evolution calculations for a progenitor of 8 M⊙ through H- and He-burning phases. Results: We show that these profiles lead to C-rich ejecta after the nova outburst. This extends the possible contribution of novae to the inventory of presolar grains identified in meteorites, particularly in a number of carbonaceous phases (I.e., nanodiamonds, silicon carbides, and graphites).

  20. Phase-space methods for the spin dynamics in condensed matter systems

    PubMed Central

    Hurst, Jérôme; Manfredi, Giovanni

    2017-01-01

    Using the phase-space formulation of quantum mechanics, we derive a four-component Wigner equation for a system composed of spin- fermions (typically, electrons) including the Zeeman effect and the spin–orbit coupling. This Wigner equation is coupled to the appropriate Maxwell equations to form a self-consistent mean-field model. A set of semiclassical Vlasov equations with spin effects is obtained by expanding the full quantum model to first order in the Planck constant. The corresponding hydrodynamic equations are derived by taking velocity moments of the phase-space distribution function. A simple closure relation is proposed to obtain a closed set of hydrodynamic equations. This article is part of the themed issue ‘Theoretical and computational studies of non-equilibrium and non-statistical dynamics in the gas phase, in the condensed phase and at interfaces’. PMID:28320903

  1. Aerosol-Phase Production of Nitrogen-Containing Oligomers After Uptake of Methylglyoxal and Cloud Processing

    NASA Astrophysics Data System (ADS)

    De Haan, D. O.; Riva, M.; Surratt, J. D.; Cazaunau, M.; Doussin, J. F.

    2016-12-01

    Minimal organic aerosol forms when aerosol particles are exposed to gas-phase methylglyoxal, but condensed phase laboratory studies of aerosol chemistry have suggested that methylglyoxal is a significant source of oligomerized aerosol material. In this study, various types of seed particles were exposed to gaseous methylglyoxal and then cloud-processed in the CESAM chamber. The gas phase was continuously probed by high-resolution PTR-MS during the experiments, and the particle phase WSOC was chemically characterized by high-resolution UPLC/ESI-DAD-QTOFMS. Uptake of methylglyoxal to dry particles caused optical rather than size changes, along with the release of imine products to the gas phase. High RH and cloud processing released some particle-bound methylglyoxal back to the gas phase but triggered an uptake of imine products. Analysis of the particle phase identified N-containing aldol condensation products derived from methylglyoxal, imine (produced from methylglyoxal and amine reactions), acetaldehyde (produced by methylglyoxal photolysis) and hydroxyacetone (produced by methylglyoxal disproportionation) monomers.

  2. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    NASA Astrophysics Data System (ADS)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  3. SN 2009ip: CONSTRAINING THE LATEST EXPLOSION PROPERTIES BY ITS LATE-PHASE LIGHT CURVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moriya, Takashi J., E-mail: moriyatk@astro.uni-bonn.de

    We constrain the explosion and circumstellar properties at the 2012b event of SN 2009ip based on its recently reported late-phase bolometric light curve. The explosion energy and ejected mass at the 2012b event are estimated as 0.01 M{sub ⊙} and 2 × 10{sup 49} erg, respectively. The circumstellar medium is assumed to have two components: an inner shell and an outer wind. The inner shell, which is likely created at the 2012a event, has a mass of 0.2 M{sub ⊙}. The outer wind is created by the wind mass loss before the 2012a mass ejection, and the progenitor is estimatedmore » to have had a mass-loss rate of about 0.1 M{sub ⊙} yr{sup −1} with a wind velocity of 550 km s{sup −1} before the 2012a event. The estimated explosion energy and ejected mass indicate that the 2012b event is not caused by a regular SN.« less

  4. Improved Reactive Flow Modeling of the LX-17 Double Shock Experiments

    NASA Astrophysics Data System (ADS)

    Rehagen, Thomas J.; Vitello, Peter

    2017-06-01

    Over driven double shock experiments provide a measurement of the properties of the reaction product states of the insensitive high explosive LX-17 (92.5% TATB and 7.5% Kel-F by weight). These experiments used two flyer materials mounted on the end of a projectile to send an initial shock through the LX-17, followed by a second shock of a higher magnitude into the detonation products. In the experiments, the explosive was initially driven by the flyer plate to pressures above the Chapman-Jouguet state. The particle velocity history was recorded by Photonic Doppler Velocimetry (PDV) probes pointing at an aluminum foil coated LiF window. The PDV data shows a sharp initial shock and decay, followed by a rounded second shock. Here, the experimental results are compared to 2D and 3D Cheetah reactive flow modeling. Our default Cheetah reactive flow model fails to accurately reproduce the decay of the first shock or the curvature or strength of the second shock. A new model is proposed in which the carbon condensate produced in the reaction zone is controlled by a kinetic rate. This allows the carbon condensate to be initially out of chemical equilibrium with the product gas. This new model reproduces the initial detonation peak and decay, and matches the curvature of the second shock, however, it still over-predicts the strength of the second shock. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.

  5. Condensation in Supernova Ejecta at High Spatial Resolution

    NASA Astrophysics Data System (ADS)

    Fedkin, A. V.; Meyer, B. S.; Grossman, L.; Desch, S. J.

    2009-03-01

    ^44Ti-rich TiC condenses before graphite in SN ejecta only if thin sub-layers of the main burning zones mix together; such mixing is also needed to form Fe-olivine. High-T phases change from carbides to oxides along composition gradients within the He/N zone.

  6. On the Origin of a Maximum Peak Pressure on the Target Outside of the Stagnation Point upon Normal Impact of a Blunt Projectile and with Underwater Explosion

    NASA Astrophysics Data System (ADS)

    Gonor, Alexander; Hooton, Irene

    2006-07-01

    Impact of a rigid projectile (impactor), against a metal target and a condensed explosive surface considered as the important process accompanying the normal entry of a rigid projectile into a target, was overlooked in the preceding studies. Within the framework of accurate shock wave theory, the flow-field, behind the shock wave attached to the perimeter of the adjoined surface, was defined. An important result is the peak pressure rises at points along the target surface away from the stagnation point. The maximum values of the peak pressure are 2.2 to 3.2 times higher for the metallic and soft targets (nitromethane, PBX 9502), than peak pressure values at the stagnation point. This effect changes the commonly held notion that the maximum peak pressure is reached at the projectile stagnation point. In the present study the interaction of a spherical decaying blast wave, caused by an underwater explosion, with a piece-wise plane target, having corner configurations, is investigated. The numerical calculation results in the determination of the vulnerable spots on the target, where the maximum peak overpressure surpassed that for the head-on shock wave reflection by a factor of 4.

  7. Study of the laser-induced decomposition of energetic materials at static high-pressure by time-resolved absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Hebert, Philippe; Saint-Amans, Charles

    2013-06-01

    A detailed description of the reaction rates and mechanisms occurring in shock-induced decomposition of condensed explosives is very important to improve the predictive capabilities of shock-to-detonation transition models. However, direct measurements of such experimental data are difficult to perform during detonation experiments. By coupling pulsed laser ignition of an explosive in a diamond anvil cell (DAC) with time-resolved streak camera recording of transmitted light, it is possible to make direct observations of deflagration phenomena at detonation pressure. We have developed an experimental set-up that allows combustion front propagation rates and time-resolved absorption spectroscopy measurements. The decomposition reactions are initiated using a nanosecond YAG laser and their kinetics is followed by time-resolved absorption spectroscopy. The results obtained for two explosives, nitromethane (NM) and HMX are presented in this paper. For NM, a change in reactivity is clearly seen around 25 GPa. Below this pressure, the reaction products are essentially carbon residues whereas at higher pressure, a transient absorption feature is first observed and is followed by the formation of a white amorphous product. For HMX, the evolution of the absorption as a function of time indicates a multi-step reaction mechanism which is found to depend on both the initial pressure and the laser fluence.

  8. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    NASA Astrophysics Data System (ADS)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of the explosive eruption.

  9. Prediction of Ignition of High Explosive When Submitted To Impact

    NASA Astrophysics Data System (ADS)

    Picart, Didier; Delmaire-Sizes, Franck; Gruau, Cyril; Trumel, Herve

    2009-06-01

    High explosive structures may unintentionally ignite and transit to deflagration or detonation, when subjected to mechanical loadings, such as low velocity impact. We focus our attention on ignition. The Browning and Scammon [1] criterion has been adapted. A concrete like constitutive law is derived, with an up-to-date experimental characterization. These models have been implemented in Abaqus/Explicit [2]. Numerical simulations are used to calibrate the ignition threshold. The presentation or the poster will detail the main assumptions, the models (Browning et al, mechanical behavior) and the calibration procedure. Comparisons between numerical results and experiments [3] will show the interest of this method but also its limitations (numerical artifacts, lack of mechanical data, misinterpretation of reactive tests). [1] R. Browning and R. Scammon, Shock compression of condensed matter, pp. 987-990, (2001). [2] C. Gruau, D. Picart et al., 17^th Dymat technical meeting, Cambridge, UK, (2007). [3] F. Delmaire-Sizes et al., 3^rd International symposium on energetic materials, Tokyo, Japan, (2008).

  10. Colloidal gas-liquid condensation of polystyrene latex particles with intermediate kappa a values (5 to 160, a > kappa(-1)).

    PubMed

    Ishikawa, Masamichi; Kitano, Ryota

    2010-02-16

    Polystyrene latex particles showed gas-liquid condensation under the conditions of large particle radius (a > kappa(-1)) and intermediate kappa a, where kappa is the Debye-Hückel parameter and a is the particle radius. The particles were dissolved in deionized water containing ethanol from 0 to 77 vol %, settled to the bottom of the glass plate within 1 h, and then laterally moved toward the center of a cell over a 20 h period in reaching a state of equilibrium condensation. All of the suspensions that were 1 and 3 microm in diameter and 0.01-0.20 vol % in concentration realized similar gas-liquid condensation with clear gas-liquid boundaries. In 50 vol % ethanol solvent, additional ethanol was added to enhance the sedimentation force so as to restrict the particles in a monoparticle layer thickness. The coexistence of gas-liquid-solid (crystalline solid) was microscopically recognized from the periphery to the center of the condensates. A phase diagram of the gas-liquid condensation was created as a function of KCl concentration at a particle diameter of 3 microm, 0.10 vol % concentration, and 50:50 water/ethanol solvent at room temperature. The miscibility gap was observed in the concentration range from 1 to 250 microM. There was an upper limit of salt concentration where the phase separation disappeared, showing nearly critical behavior of macroscopic density fluctuation from 250 microM to 1 mM. These results add new experimental evidence to the existence of colloidal gas-liquid condensation and specify conditions of like-charge attraction between particles.

  11. Seismic Analysis of Three Bomb Explosions in Turkey

    NASA Astrophysics Data System (ADS)

    Necmioglu, O.; Semin, K. U.; Kocak, S.; Destici, C.; Teoman, U.; Ozel, N. M.

    2016-12-01

    Seismic analysis of three vehicle-installed bomb explosions occurred on 13 March 2016 in Ankara, 12 May 2016 in Diyarbakır and 9 July 2016 in Mardin have been conducted using data from the nearest stations (LOD, DYBB and MAZI) of the Boğaziçi University - Kandilli Observatory and Earthquake Research Institute's (KOERI) seismic network and compared with low-magnitude earthquakes in similar distance based on phase readings and frequency content. Amplitude spectra has been compared through Fourier transformation and earthquake-explosion frequency discrimination has been performed using various filter bands. Time-domain and spectral analysis have been performed using Geotool software provided by CTBTO. Local magnitude (ML) values have been calculated for each explosion by removing instrument-response and adding Wood-Anderson type instrument response. Approximate amount of explosives used in these explosions have been determined using empirical methods of Koper (2002). Preliminary results indicated that 16 tons TNT equivalent explosives have been used in 12 May 2016 Diyarbakır explosion, which is very much in accordance with the media reports claiming 15 tons of TNT. Our analysis for 9 July 2016 Mardin explosion matched the reported 5 tons of explosives. Results concerning 13 March 2016 Ankara explosion indicated that approximately 1,7 ton of TNT equivalent explosives were used in the attack whereas security and intelligence reports claimed 300 kg explosives as a combination of TNT, RDX and ammonium nitrate. The overestimated results obtained in our analysis for the Ankara explosion may be related due to i) high relative effectiveness factor of the RDX component of the explosive ii) inefficiency of Koper (2002) method in lower yields (since the method was developed using explosions with yields of 3-12 tons of TNT), iii) combination of both.

  12. Physics through the 1990s: Condensed-matter physics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The volume presents the current status of condensed-matter physics from developments since the 1970s to opportunities in the 1990s. Topics include electronic structure, vibrational properties, critical phenomena and phase transitions, magnetism, semiconductors, defects and diffusion, surfaces and interfaces, low-temperature physics, liquid-state physics, polymers, nonlinear dynamics, instabilities, and chaos. Appendices cover the connections between condensed-matter physics and applications of national interest, new experimental techniques and materials, laser spectroscopy, and national facilities for condensed-matter physics research. The needs of the research community regarding support for individual researchers and for national facilities are presented, as are recommendations for improved government-academic-industrial relations.

  13. Polariton condensation with saturable molecules dressed by vibrational modes

    DOE PAGES

    Cwik, Justyna A.; Reja, Sahinur; Littlewood, Peter B.; ...

    2014-02-01

    Here, polaritons, mixed light-matter quasiparticles, undergo a transition to a condensed, macroscopically coherent state at low temperatures or high densities. Recent experiments show that coupling light to organic molecules inside a microcavity allows condensation at room temperature. The molecules act as saturable absorbers with transitions dressed by molecular vibrational modes. Motivated by this, we calculate the phase diagram and spectrum of a modified Tavis-Cummings model, describing vibrationally dressed two-level systems, coupled to a cavity mode. Coupling to vibrational modes can induce re-entrance, i.e. a normal-condensed-normal sequence with decreasing temperature and can drive the transition first-order.

  14. High-field instability of a field-induced triplon Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rakhimov, Abdulla; Sherman, E. Ya.; Kim, Chul Koo

    2010-01-01

    We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.

  15. Orthogonality Catastrophe as a prerequisite for the irreversible decay of the global relative phase of a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Birman, Joseph L.; Kuklov, A. B.

    2001-05-01

    The concept of the orthogonality catastrophe (OC), which has been introduced previously for one component condensate ( A.B. Kuklov, J.L. Birman, PRA 63), 013609 (2001), is applied to the two-component condensate. The evolution of the global relative phase, which is created by the rf-pulse, is studied under the condition of no exchange of bosons between the components after the pulse. It is shown that the normal component does not induce the OC. Instead, it produces a reversible thermal dephasing, which competes with the quantum phase diffusion (QPD) effect (E.M.Wright, et al, PRL 77), 2158(1996). The thermal dephasing results from the thermal ensemble averaging, and the corresponding dephasing rate is controlled by the two-body interaction and temperature as well as by the closeness to the intrinsic su(2) symmetry, so that no dephasing exists in the case of the exact symmetry (A.B. Kuklov, J.L. Birman, PRL 85), 5488 (2000). The reversible nature of the thermal dephasing as well as of the QPD can be revealed in the atomic echo effect. The role of external noise in erasing the phase memory is discussed as well.

  16. Cell cycle stage-specific differential expression of topoisomerase I in tobacco BY-2 cells and its ectopic overexpression and knockdown unravels its crucial role in plant morphogenesis and development.

    PubMed

    Singh, Badri Nath; Mudgil, Yashwanti; John, Riffat; Achary, V Mohan Murali; Tripathy, Manas Kumar; Sopory, Sudhir K; Reddy, Malireddy K; Kaul, Tanushri

    2015-11-01

    DNA topoisomerases catalyze the inter-conversion of different topological forms of DNA. Cell cycle coupled differential accumulation of topoisomerase I (Topo I) revealed biphasic expression maximum at S-phase and M/G1-phase of cultured synchronized tobacco BY-2 cells. This suggested its active role in resolving topological constrains during DNA replication (S-phase) and chromosome decondensation (M/G1 phase). Immuno-localization revealed high concentrations of Topo I in nucleolus. Propidium iodide staining and Br-UTP incorporation patterns revealed direct correlation between immunofluorescence intensity and rRNA transcription activity within nucleolus. Immuno-stained chromosomes during metaphase and anaphase suggested possible role of Topo I in resolving topological constrains during mitotic chromosome condensation. Inhibitor studies showed that in comparison to Topo I, Topo II was essential in resolving topological constrains during chromosome condensation. Probably, Topo II substituted Topo I functioning to certain extent during chromosome condensation, but not vice-versa. Transgenic Topo I tobacco lines revealed morphological abnormalities and highlighted its crucial role in plant morphogenesis and development. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  17. On the late-time cosmology of a condensed scalar field

    NASA Astrophysics Data System (ADS)

    Ghalee, Amir

    2016-04-01

    We study the late-time cosmology of a scalar field with a kinetic term non-minimally coupled to gravity. It is demonstrated that the scalar field dominate the radiation matter and the cold dark matter (CDM). Moreover, we show that eventually the scalar field will be condensed and results in an accelerated expansion. The metric perturbations around the condensed phase of the scalar field are investigated and it has been shown that the ghost instability and gradient instability do not exist.

  18. Development of explosively bonded TZM wire reinforced Columbian sheet composites

    NASA Technical Reports Server (NTRS)

    Otto, H. E.; Carpenter, S. H.

    1972-01-01

    Methods of producing TZM molybdenum wire reinforced C129Y columbium alloy composites by explosive welding were studied. Layers of TZM molybdenum wire were wound on frames with alternate layers of C129Y columbium alloy foil between the wire layers. The frames held both the wire and foils in place for the explosive bonding process. A goal of 33 volume percent molybdenum wire was achieved for some of the composites. Variables included wire diameter, foil thickness, wire separation, standoff distance between foils and types and amounts of explosive. The program was divided into two phases: (1) development of basic welding parameters using 5 x 10-inch composites, and (2) scaleup to 10 x 20-inch composites.

  19. Structural evolution of detonation carbon in composition B by X-ray scattering

    DOE PAGES

    Firestone, Millicent A.; Dattelbaum, Dana M.; Podlesak, David W.; ...

    2015-01-01

    Products evolved during the detonation of high explosives are primarily a collection of molecular gases and solid carbon condensates. Electron microscopy studies have revealed that detonation carbon (soot) can contain a variety of unique carbon particles possessing novel morphologies, such as carbon onions and ribbons. Despite these observations very little is known about the conditions that leads to the production of these novel carbon nanoparticles. A fuller understanding on conditions that generate such nanoparticles would greatly benefit from time-resolved studies that probe particle formation and evolution through and beyond the chemical reaction zone. Herein, we report initial results employing time-resolvedmore » X-ray scattering (TRSAXS) measurements to monitor nanosecond time-scale carbon products formed from detonating Composition B (60% TNT, 40% RDX). These studies were performed at the Dynamic Compression Sector (DCS, Sector 35) at the Advanced Photon Source (Argonne National Laboratory). Lastly, analysis of the collected scattering patterns reveals the presence of fractal multi-layered carbon condensates.« less

  20. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  1. Structural evolution of detonation carbon in composition B by X-ray scattering

    NASA Astrophysics Data System (ADS)

    Firestone, Millicent A.; Dattelbaum, Dana M.; Podlesak, David W.; Gustavsen, Richard L.; Huber, Rachel C.; Ringstrand, Bryan S.; Watkins, Erik B.; Jensen, Brian; Willey, Trevor; Lauderbauch, Lisa; Hodgin, Ralph; Bagge-Hansen, Michael; van Buuren, Tony; Seifert, Sönke; Graber, Timothy

    2017-01-01

    Products evolved during the detonation of high explosives are primarily a collection of molecular gases and solid carbon condensates. Electron microscopy studies have revealed that detonation carbon (soot) can contain a variety of unique carbon particles possessing novel morphologies, such as carbon onions and ribbons. Despite these observations very little is known about the conditions that leads to the production of these novel carbon nanoparticles. A fuller understanding on conditions that generate such nanoparticles would greatly benefit from time-resolved studies that probe particle formation and evolution through and beyond the chemical reaction zone. Herein, we report initial results employing time-resolved X-ray scattering (TRSAXS) measurements to monitor nanosecond time-scale carbon products formed from detonating Composition B (60% TNT, 40% RDX). These studies were performed at the Dynamic Compression Sector (DCS, Sector 35) at the Advanced Photon Source (Argonne National Laboratory). Analysis of the collected scattering patterns reveals the presence of fractal multi-layered carbon condensates.

  2. Energy Supply Alternatives for Picatinny Arsenal, NJ

    DTIC Science & Technology

    1992-09-01

    condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at...60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated at 150 MVA with a 0.85 Power Factor...condensation unit. The generator is a 3- phase, 60 cycle, synchronous, air -cooled type with brushless exciters. The generator’s voltage is 13.8 kV and rated

  3. Quantum Kibble-Zurek Mechanism in a Spin-1 Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Anquez, M.; Robbins, B. A.; Bharath, H. M.; Boguslawski, M.; Hoang, T. M.; Chapman, M. S.

    2016-04-01

    The dynamics of a quantum phase transition are explored using slow quenches from the polar to the broken-axisymmetry phases in a small spin-1 ferromagnetic Bose-Einstein condensate. Measurements of the evolution of the spin populations reveal a power-law scaling of the temporal onset of excitations versus quench speed as predicted from quantum extensions of the Kibble-Zurek mechanism. The satisfactory agreement of the measured scaling exponent with the analytical theory and numerical simulations provides experimental confirmation of the quantum Kibble-Zurek model.

  4. Increased water retention in polymer electrolyte membranes at elevated temperatures assisted by capillary condensation.

    PubMed

    Park, Moon Jeong; Downing, Kenneth H; Jackson, Andrew; Gomez, Enrique D; Minor, Andrew M; Cookson, David; Weber, Adam Z; Balsara, Nitash P

    2007-11-01

    We establish a new systematic methodology for controlling the water retention of polymer electrolyte membranes. Block copolymer membranes comprising hydrophilic phases with widths ranging from 2 to 5 nm become wetter as the temperature of the surrounding air is increased at constant relative humidity. The widths of the moist hydrophilic phases were measured by cryogenic electron microscopy experiments performed on humid membranes. Simple calculations suggest that capillary condensation is important at these length scales. The correlation between moisture content and proton conductivity of the membranes is demonstrated.

  5. Noise thermometry with two weakly coupled Bose-Einstein condensates.

    PubMed

    Gati, Rudolf; Hemmerling, Börge; Fölling, Jonas; Albiez, Michael; Oberthaler, Markus K

    2006-04-07

    Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.

  6. 9-Fluorenylmethyloxycarbonyl/ tbutyl-based convergent protein synthesis.

    PubMed

    Barlos, K; Gatos, D

    1999-01-01

    Besides linear solid phase peptide synthesis, segment condensation in solution and chemical ligation, convergent peptide synthesis (CPS) was developed in order to enable the efficient preparation of complex peptides and small proteins. According to this synthetic strategy, solid phase synthesized and suitably protected peptide fragments corresponding to the entire peptide/protein-sequence are condensed on a solid support or in solution, to the target protein. This review summarizes CPS performed utilizing the mild 9-fluorenylmethyloxycarbonyl/tbutyloxycarbonyl-based protecting scheme for the amino acids. Copyright 1999 John Wiley & Sons, Inc.

  7. Competing phases in a model of Pr-based cobaltites

    NASA Astrophysics Data System (ADS)

    Sotnikov, A.; Kuneš, J.

    2017-12-01

    Motivated by the physics of Pr-based cobaltites, we study the effect of the external magnetic field in the hole-doped two-band Hubbard model close to instabilities toward the excitonic condensation and ferromagnetic ordering. Using the dynamical mean-field theory we observe a field-driven suppression of the excitonic condensate. The onset of a magnetically ordered phase at the fixed chemical potential is accompanied by a sizable change of the electron density. This leads us to predict that Pr3 + abundance increases on the high-field side of the transition.

  8. Source characterization of underground explosions from hydrodynamic-to-elastic coupling simulations

    NASA Astrophysics Data System (ADS)

    Chiang, A.; Pitarka, A.; Ford, S. R.; Ezzedine, S. M.; Vorobiev, O.

    2017-12-01

    A major improvement in ground motion simulation capabilities for underground explosion monitoring during the first phase of the Source Physics Experiment (SPE) is the development of a wave propagation solver that can propagate explosion generated non-linear near field ground motions to the far-field. The calculation is done using a hybrid modeling approach with a one-way hydrodynamic-to-elastic coupling in three dimensions where near-field motions are computed using GEODYN-L, a Lagrangian hydrodynamics code, and then passed to WPP, an elastic finite-difference code for seismic waveform modeling. The advancement in ground motion simulation capabilities gives us the opportunity to assess moment tensor inversion of a realistic volumetric source with near-field effects in a controlled setting, where we can evaluate the recovered source properties as a function of modeling parameters (i.e. velocity model) and can provide insights into previous source studies on SPE Phase I chemical shots and other historical nuclear explosions. For example the moment tensor inversion of far-field SPE seismic data demonstrated while vertical motions are well-modeled using existing velocity models large misfits still persist in predicting tangential shear wave motions from explosions. One possible explanation we can explore is errors and uncertainties from the underlying Earth model. Here we investigate the recovered moment tensor solution, particularly on the non-volumetric component, by inverting far-field ground motions simulated from physics-based explosion source models in fractured material, where the physics-based source models are based on the modeling of SPE-4P, SPE-5 and SPE-6 near-field data. The hybrid modeling approach provides new prospects in modeling explosion source and understanding the uncertainties associated with it.

  9. Structure, phase content and mechanical properties of aluminium with hard particles after shock-wave compaction

    NASA Astrophysics Data System (ADS)

    Kulkov, S.; Vorozhtsov, S.; Turuntaev, I.

    2015-04-01

    The possibilities to combine metal and metal oxide powders in various compositions open a broad range of mechanical and thermal behavior. When using in nanostructured components the resulting materials might exhibit even more interesting properties, like product effectiveness, tensile strength, wear resistance, endurance and corrosion resistance. Intermetallics like TiAl could be obtained as TiAlx in a quality similar to that obtained from melting where only eutectic mixture can be produced. Similar effects are possible when compacting nanoceramic powders whereas these can be combined with intermetallics. Currently, it is very difficult to produce wires and special shaped parts from high temperature superconducting materials. The compacting by explosives could solve this problem.The present paper uses explosion compacting of Al nanoparticles to create nanocomposite with increased physico-mechanical properties. Russian civil explosive Uglenit was chosen as high energy material (HEM) for shock-wave compaction. The different schemes and conditions were suggested to run the explosion process. Al nanoparticles as produced by electric wire explosion contain 8-10% of aluminum oxide. That aluminum oxide can serve as strengthening material in the final nanocomposite which may be generated in various compositions by explosive compacting. Further modifications of nanocomposites were obtained when including nanodiamonds into the mixture with aluminum nanoparticles with different percentages. The addition of nanodiamonds results in a substantial strengthening effect. The experiments with compacting aluminum nanoparticles by explosives are described in detail including the process variations and conditions. The physico-mechanical properties of the nanocomposites are determined and discussed by considering the applied conditions. Especially, microstructure and phases of the obtained nanocomposites are analyzed by X-ray diffraction.

  10. Flow field topology of transient mixing driven by buoyancy

    NASA Technical Reports Server (NTRS)

    Duval, Walter M B.

    2004-01-01

    Transient mixing driven by buoyancy occurs through the birth of a symmetric Rayleigh-Taylor morphology (RTM) structure for large length scales. Beyond its critical bifurcation the RTM structure exhibits self-similarity and occurs on smaller and smaller length scales. The dynamics of the RTM structure, its nonlinear growth and internal collision, show that its genesis occurs from an explosive bifurcation which leads to the overlap of resonance regions in phase space. This event shows the coexistence of regular and chaotic regions in phase space which is corroborated with the existence of horseshoe maps. A measure of local chaos given by the topological entropy indicates that as the system evolves there is growth of uncertainty. Breakdown of the dissipative RTM structure occurs during the transition from explosive to catastrophic bifurcation; this event gives rise to annihilation of the separatrices which drives overlap of resonance regions. The global bifurcation of explosive and catastrophic events in phase space for the large length scale of the RTM structure serves as a template for which mixing occurs on smaller and smaller length scales. Copyright 2004 American Institute of Physics.

  11. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    NASA Astrophysics Data System (ADS)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  12. Phases of QCD3 from non-SUSY Seiberg duality and brane dynamics

    NASA Astrophysics Data System (ADS)

    Armoni, Adi; Niarchos, Vasilis

    2018-05-01

    We consider a nonsupersymmetric USp Yang-Mills Chern-Simons gauge theory coupled to fundamental flavors. The theory is realised in type-IIB string theory via an embedding in a Hanany-Witten brane configuration which includes an orientifold and antibranes. We argue that the theory admits a magnetic Seiberg dual. Using the magnetic dual we identify dynamics in field theory and brane physics that correspond to various phases, obtaining a better understanding of three-dimensional bosonization and dynamical breaking of flavor symmetry in USp QCD3 theory. In field theory both phases correspond to magnetic "squark" condensation. In string theory, they correspond to open string tachyon condensation and brane reconnection. We also discuss other phases where the magnetic `squark' is massive. Finally, we briefly comment on the case of unitary gauge groups.

  13. Singularity resolution in string theory and new quantum condensed matter phases

    NASA Astrophysics Data System (ADS)

    Fidkowski, Lukasz

    2007-12-01

    In the first part of this thesis (chapters 1 through 4) we study singularity resolution in string theory. We employ an array of techniques, including the AdS-CFT correspondence, exact solvability of low dimensional models, and supersymmetry. We are able to detect a signature of the black hole singularity by analytically continuing certain AdS-CFT correlators. Also in AdS-CFT, we are able to study a D-brane snapping transition on both sides of the correspondence. In the second part (chapters 5 through 7) we study topological phases in condensed matter systems. We investigate theoretical lattice models realizing such phases, use these to derive nontrivial mathematical physics results, and study an idealized quantum interferometer designed to detect such a phase in quantum Hall systems.

  14. Time-reversal and rotation symmetry breaking superconductivity in Dirac materials

    NASA Astrophysics Data System (ADS)

    Chirolli, Luca; de Juan, Fernando; Guinea, Francisco

    2017-05-01

    We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments. We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic moments.

  15. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    PubMed

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  16. Nature of the chiral restoration transition in QCD

    NASA Astrophysics Data System (ADS)

    Brown, Gerald E.; Grandchamp, Loı̈c.; Lee, Chang-Hwan; Rho, Mannque

    2004-03-01

    As the chirally restored phase ends with T coming down to Tc, a phase resembling a mixed phase is realized, during which the hadrons (which are massless at Tc in the chiral limit) get their masses back out of their kinetic energy. The gluon condensation energy is fed into the system to keep the temperature (nearly) constant. Lattice results for the gluon condensation are matched by a Nambu-Jona-Lasinio calculation. The latter shows that below Tc the chiral symmetry is barely broken, so that with an ˜6% drop in the scalar coupling G it is restored at Tc. Nearly half of the glue, which we call epoxy, is not melted at Tc.

  17. Quantum phase slips: from condensed matter to ultracold quantum gases.

    PubMed

    D'Errico, C; Abbate, S Scaffidi; Modugno, G

    2017-12-13

    Quantum phase slips (QPS) are the primary excitations in one-dimensional superfluids and superconductors at low temperatures. They have been well characterized in most condensed-matter systems, and signatures of their existence have been recently observed in superfluids based on quantum gases too. In this review, we briefly summarize the main results obtained on the investigation of phase slips from superconductors to quantum gases. In particular, we focus our attention on recent experimental results of the dissipation in one-dimensional Bose superfluids flowing along a shallow periodic potential, which show signatures of QPS.This article is part of the themed issue 'Breakdown of ergodicity in quantum systems: from solids to synthetic matter'. © 2017 The Author(s).

  18. Experimental study on steam condensation with non-condensable gas in horizontal microchannels

    NASA Astrophysics Data System (ADS)

    Ma, Xuehu; Fan, Xiaoguang; Lan, Zhong; Jiang, Rui; Tao, Bai

    2013-07-01

    This paper experimentally studied steam condensation with non-condensable gas in trapezoidal microchannels. The effect of noncondensable gas on condensation two-phase flow patterns and the characteristics of heat transfer and frictional pressure drop were investigated. The visualization study results showed that the special intermittent annular flow was found in the microchannel under the condition of larger mole fraction of noncondensable gas and lower steam mass flux; the apical area of injection was much larger and the neck of injection was longer for mixture gas with lower mole fraction of noncondensable gas in comparison with pure steam condensation; meanwhile, the noncondensable gas resulted in the decrease of flow patterns transitional steam mass flux and quality. The experimental results also indicated that the frictional pressure drop increased with the increasing mole fraction of noncondensable gas when the steam mass flux was fixed. Unlike nature convective condensation heat transfer, the mole fraction of noncondensable gas had little effect on Nusselt number. Based on experimental data, the predictive correlation of Nusselt number for mixture gas condensation in microchannels was established showed good agreement with experimental data.

  19. Surface phase behavior and microstructure of lipid/PEG-emulsifier monolayer-coated microbubbles.

    PubMed

    Borden, Mark A; Pu, Gang; Runner, Gabriel J; Longo, Marjorie L

    2004-06-01

    Langmuir trough methods and fluorescence microscopy were combined to investigate the phase behavior and microstructure of monolayer shells coating micron-scale bubbles (microbubbles) typically used in biomedical applications. The monolayer shell consisted of a homologous series of saturated acyl chain phospholipids and an emulsifier containing a single hydrophobic stearate chain and polyethylene glycol (PEG) head group. PEG-emulsifier was fully miscible with expanded phase lipids and phase separated from condensed phase lipids. Phase coexistence was observed in the form of dark condensed phase lipid domains surrounded by a sea of bright, emulsifier-rich expanded phase. A rich assortment of condensed phase area fractions and domain morphologies, including networks and other novel structures, were observed in each batch of microbubbles. Network domains were reproduced in Langmuir monolayers under conditions of heating-cooling followed by compression-expansion, as well as in microbubble shells that underwent surface flow with slight compression. Domain size decreased with increased cooling rate through the phase transition temperature, and domain branching increased with lipid acyl chain length at high cooling rates. Squeeze-out of the emulsifier at a surface pressure near 35 mN/m was indicated by a plateau in Langmuir isotherms and directly visualized with fluorescence microscopy, although collapse of the solid lipid domains occurred at much higher surface pressures. Compression of the monolayer past the PEG-emulsifier squeeze-out surface pressure resulted in a dark shell composed entirely of lipid. Under certain conditions, the PEG-emulsifier was reincorporated upon subsequent expansion. Factors that affect shell formation and evolution, as well as implications for the rational design of microbubbles in medical applications, are discussed.

  20. Collection of trace evidence of explosive residues from the skin in a death due to a disguised letter bomb. The synergy between confocal laser scanning microscope and inductively coupled plasma atomic emission spectrometer analyses.

    PubMed

    Turillazzi, Emanuela; Monaci, Fabrizio; Neri, Margherita; Pomara, Cristoforo; Riezzo, Irene; Baroni, Davide; Fineschi, Vittorio

    2010-04-15

    In most deaths caused by explosive, the victim's body becomes a depot for fragments of explosive materials, so contributing to the collection of trace evidence which may provide clues about the specific type of device used with explosion. Improvised explosive devices are used which contain "homemade" explosives rather than high explosives because of the relative ease with which such components can be procured. Many methods such as chromatography-mass spectrometry, scanning electron microscopy, stereomicroscopy, capillary electrophoresis are available for use in the identification of explosive residues on objects and bomb fragments. Identification and reconstruction of the distribution of explosive residues on the decedent's body may give additional hints in assessing the position of the victim in relation to the device. Traditionally these residues are retrieved by swabbing the body and clothing during the early phase, at autopsy. Gas chromatography-mass spectrometry and other analytical methods may be used to analyze the material swabbed from the victim body. The histological examination of explosive residues on skin samples collected during the autopsy may reveal significant details. The information about type, quantity and particularly about anatomical distribution of explosive residues obtained utilizing confocal laser scanning microscope (CLSM) together with inductively coupled plasma atomic emission spectrometer (ICP-AES), may provide very significant evidence in the clarification and reconstruction of the explosive-related events. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

Top